1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 25 /* 26 ** Return the name of the i-th column of the pIdx index. 27 */ 28 static const char *explainIndexColumnName(Index *pIdx, int i){ 29 i = pIdx->aiColumn[i]; 30 if( i==XN_EXPR ) return "<expr>"; 31 if( i==XN_ROWID ) return "rowid"; 32 return pIdx->pTable->aCol[i].zName; 33 } 34 35 /* 36 ** This routine is a helper for explainIndexRange() below 37 ** 38 ** pStr holds the text of an expression that we are building up one term 39 ** at a time. This routine adds a new term to the end of the expression. 40 ** Terms are separated by AND so add the "AND" text for second and subsequent 41 ** terms only. 42 */ 43 static void explainAppendTerm( 44 StrAccum *pStr, /* The text expression being built */ 45 Index *pIdx, /* Index to read column names from */ 46 int nTerm, /* Number of terms */ 47 int iTerm, /* Zero-based index of first term. */ 48 int bAnd, /* Non-zero to append " AND " */ 49 const char *zOp /* Name of the operator */ 50 ){ 51 int i; 52 53 assert( nTerm>=1 ); 54 if( bAnd ) sqlite3_str_append(pStr, " AND ", 5); 55 56 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 57 for(i=0; i<nTerm; i++){ 58 if( i ) sqlite3_str_append(pStr, ",", 1); 59 sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i)); 60 } 61 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 62 63 sqlite3_str_append(pStr, zOp, 1); 64 65 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 66 for(i=0; i<nTerm; i++){ 67 if( i ) sqlite3_str_append(pStr, ",", 1); 68 sqlite3_str_append(pStr, "?", 1); 69 } 70 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 71 } 72 73 /* 74 ** Argument pLevel describes a strategy for scanning table pTab. This 75 ** function appends text to pStr that describes the subset of table 76 ** rows scanned by the strategy in the form of an SQL expression. 77 ** 78 ** For example, if the query: 79 ** 80 ** SELECT * FROM t1 WHERE a=1 AND b>2; 81 ** 82 ** is run and there is an index on (a, b), then this function returns a 83 ** string similar to: 84 ** 85 ** "a=? AND b>?" 86 */ 87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 88 Index *pIndex = pLoop->u.btree.pIndex; 89 u16 nEq = pLoop->u.btree.nEq; 90 u16 nSkip = pLoop->nSkip; 91 int i, j; 92 93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 94 sqlite3_str_append(pStr, " (", 2); 95 for(i=0; i<nEq; i++){ 96 const char *z = explainIndexColumnName(pIndex, i); 97 if( i ) sqlite3_str_append(pStr, " AND ", 5); 98 sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); 99 } 100 101 j = i; 102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); 104 i = 1; 105 } 106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); 108 } 109 sqlite3_str_append(pStr, ")", 1); 110 } 111 112 /* 113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 116 ** is added to the output to describe the table scan strategy in pLevel. 117 ** 118 ** If an OP_Explain opcode is added to the VM, its address is returned. 119 ** Otherwise, if no OP_Explain is coded, zero is returned. 120 */ 121 int sqlite3WhereExplainOneScan( 122 Parse *pParse, /* Parse context */ 123 SrcList *pTabList, /* Table list this loop refers to */ 124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 125 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 126 ){ 127 int ret = 0; 128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 129 if( sqlite3ParseToplevel(pParse)->explain==2 ) 130 #endif 131 { 132 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 133 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 134 sqlite3 *db = pParse->db; /* Database handle */ 135 int isSearch; /* True for a SEARCH. False for SCAN. */ 136 WhereLoop *pLoop; /* The controlling WhereLoop object */ 137 u32 flags; /* Flags that describe this loop */ 138 char *zMsg; /* Text to add to EQP output */ 139 StrAccum str; /* EQP output string */ 140 char zBuf[100]; /* Initial space for EQP output string */ 141 142 pLoop = pLevel->pWLoop; 143 flags = pLoop->wsFlags; 144 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; 145 146 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 147 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 148 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 149 150 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 151 sqlite3_str_appendall(&str, isSearch ? "SEARCH" : "SCAN"); 152 if( pItem->pSelect ){ 153 sqlite3_str_appendf(&str, " SUBQUERY %u", pItem->pSelect->selId); 154 }else{ 155 sqlite3_str_appendf(&str, " TABLE %s", pItem->zName); 156 } 157 158 if( pItem->zAlias ){ 159 sqlite3_str_appendf(&str, " AS %s", pItem->zAlias); 160 } 161 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 162 const char *zFmt = 0; 163 Index *pIdx; 164 165 assert( pLoop->u.btree.pIndex!=0 ); 166 pIdx = pLoop->u.btree.pIndex; 167 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 168 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 169 if( isSearch ){ 170 zFmt = "PRIMARY KEY"; 171 } 172 }else if( flags & WHERE_PARTIALIDX ){ 173 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 174 }else if( flags & WHERE_AUTO_INDEX ){ 175 zFmt = "AUTOMATIC COVERING INDEX"; 176 }else if( flags & WHERE_IDX_ONLY ){ 177 zFmt = "COVERING INDEX %s"; 178 }else{ 179 zFmt = "INDEX %s"; 180 } 181 if( zFmt ){ 182 sqlite3_str_append(&str, " USING ", 7); 183 sqlite3_str_appendf(&str, zFmt, pIdx->zName); 184 explainIndexRange(&str, pLoop); 185 } 186 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 187 const char *zRangeOp; 188 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 189 zRangeOp = "="; 190 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 191 zRangeOp = ">? AND rowid<"; 192 }else if( flags&WHERE_BTM_LIMIT ){ 193 zRangeOp = ">"; 194 }else{ 195 assert( flags&WHERE_TOP_LIMIT); 196 zRangeOp = "<"; 197 } 198 sqlite3_str_appendf(&str, 199 " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp); 200 } 201 #ifndef SQLITE_OMIT_VIRTUALTABLE 202 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 203 sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s", 204 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 205 } 206 #endif 207 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 208 if( pLoop->nOut>=10 ){ 209 sqlite3_str_appendf(&str, " (~%llu rows)", 210 sqlite3LogEstToInt(pLoop->nOut)); 211 }else{ 212 sqlite3_str_append(&str, " (~1 row)", 9); 213 } 214 #endif 215 zMsg = sqlite3StrAccumFinish(&str); 216 sqlite3ExplainBreakpoint("",zMsg); 217 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), 218 pParse->addrExplain, 0, zMsg,P4_DYNAMIC); 219 } 220 return ret; 221 } 222 #endif /* SQLITE_OMIT_EXPLAIN */ 223 224 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 225 /* 226 ** Configure the VM passed as the first argument with an 227 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 228 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 229 ** clause that the scan reads data from. 230 ** 231 ** If argument addrExplain is not 0, it must be the address of an 232 ** OP_Explain instruction that describes the same loop. 233 */ 234 void sqlite3WhereAddScanStatus( 235 Vdbe *v, /* Vdbe to add scanstatus entry to */ 236 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 237 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 238 int addrExplain /* Address of OP_Explain (or 0) */ 239 ){ 240 const char *zObj = 0; 241 WhereLoop *pLoop = pLvl->pWLoop; 242 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 243 zObj = pLoop->u.btree.pIndex->zName; 244 }else{ 245 zObj = pSrclist->a[pLvl->iFrom].zName; 246 } 247 sqlite3VdbeScanStatus( 248 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 249 ); 250 } 251 #endif 252 253 254 /* 255 ** Disable a term in the WHERE clause. Except, do not disable the term 256 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 257 ** or USING clause of that join. 258 ** 259 ** Consider the term t2.z='ok' in the following queries: 260 ** 261 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 262 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 263 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 264 ** 265 ** The t2.z='ok' is disabled in the in (2) because it originates 266 ** in the ON clause. The term is disabled in (3) because it is not part 267 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 268 ** 269 ** Disabling a term causes that term to not be tested in the inner loop 270 ** of the join. Disabling is an optimization. When terms are satisfied 271 ** by indices, we disable them to prevent redundant tests in the inner 272 ** loop. We would get the correct results if nothing were ever disabled, 273 ** but joins might run a little slower. The trick is to disable as much 274 ** as we can without disabling too much. If we disabled in (1), we'd get 275 ** the wrong answer. See ticket #813. 276 ** 277 ** If all the children of a term are disabled, then that term is also 278 ** automatically disabled. In this way, terms get disabled if derived 279 ** virtual terms are tested first. For example: 280 ** 281 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 282 ** \___________/ \______/ \_____/ 283 ** parent child1 child2 284 ** 285 ** Only the parent term was in the original WHERE clause. The child1 286 ** and child2 terms were added by the LIKE optimization. If both of 287 ** the virtual child terms are valid, then testing of the parent can be 288 ** skipped. 289 ** 290 ** Usually the parent term is marked as TERM_CODED. But if the parent 291 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 292 ** The TERM_LIKECOND marking indicates that the term should be coded inside 293 ** a conditional such that is only evaluated on the second pass of a 294 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 295 */ 296 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 297 int nLoop = 0; 298 assert( pTerm!=0 ); 299 while( (pTerm->wtFlags & TERM_CODED)==0 300 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 301 && (pLevel->notReady & pTerm->prereqAll)==0 302 ){ 303 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 304 pTerm->wtFlags |= TERM_LIKECOND; 305 }else{ 306 pTerm->wtFlags |= TERM_CODED; 307 } 308 if( pTerm->iParent<0 ) break; 309 pTerm = &pTerm->pWC->a[pTerm->iParent]; 310 assert( pTerm!=0 ); 311 pTerm->nChild--; 312 if( pTerm->nChild!=0 ) break; 313 nLoop++; 314 } 315 } 316 317 /* 318 ** Code an OP_Affinity opcode to apply the column affinity string zAff 319 ** to the n registers starting at base. 320 ** 321 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the 322 ** beginning and end of zAff are ignored. If all entries in zAff are 323 ** SQLITE_AFF_BLOB, then no code gets generated. 324 ** 325 ** This routine makes its own copy of zAff so that the caller is free 326 ** to modify zAff after this routine returns. 327 */ 328 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 329 Vdbe *v = pParse->pVdbe; 330 if( zAff==0 ){ 331 assert( pParse->db->mallocFailed ); 332 return; 333 } 334 assert( v!=0 ); 335 336 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning 337 ** and end of the affinity string. 338 */ 339 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){ 340 n--; 341 base++; 342 zAff++; 343 } 344 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){ 345 n--; 346 } 347 348 /* Code the OP_Affinity opcode if there is anything left to do. */ 349 if( n>0 ){ 350 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 351 } 352 } 353 354 /* 355 ** Expression pRight, which is the RHS of a comparison operation, is 356 ** either a vector of n elements or, if n==1, a scalar expression. 357 ** Before the comparison operation, affinity zAff is to be applied 358 ** to the pRight values. This function modifies characters within the 359 ** affinity string to SQLITE_AFF_BLOB if either: 360 ** 361 ** * the comparison will be performed with no affinity, or 362 ** * the affinity change in zAff is guaranteed not to change the value. 363 */ 364 static void updateRangeAffinityStr( 365 Expr *pRight, /* RHS of comparison */ 366 int n, /* Number of vector elements in comparison */ 367 char *zAff /* Affinity string to modify */ 368 ){ 369 int i; 370 for(i=0; i<n; i++){ 371 Expr *p = sqlite3VectorFieldSubexpr(pRight, i); 372 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB 373 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) 374 ){ 375 zAff[i] = SQLITE_AFF_BLOB; 376 } 377 } 378 } 379 380 381 /* 382 ** pX is an expression of the form: (vector) IN (SELECT ...) 383 ** In other words, it is a vector IN operator with a SELECT clause on the 384 ** LHS. But not all terms in the vector are indexable and the terms might 385 ** not be in the correct order for indexing. 386 ** 387 ** This routine makes a copy of the input pX expression and then adjusts 388 ** the vector on the LHS with corresponding changes to the SELECT so that 389 ** the vector contains only index terms and those terms are in the correct 390 ** order. The modified IN expression is returned. The caller is responsible 391 ** for deleting the returned expression. 392 ** 393 ** Example: 394 ** 395 ** CREATE TABLE t1(a,b,c,d,e,f); 396 ** CREATE INDEX t1x1 ON t1(e,c); 397 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2) 398 ** \_______________________________________/ 399 ** The pX expression 400 ** 401 ** Since only columns e and c can be used with the index, in that order, 402 ** the modified IN expression that is returned will be: 403 ** 404 ** (e,c) IN (SELECT z,x FROM t2) 405 ** 406 ** The reduced pX is different from the original (obviously) and thus is 407 ** only used for indexing, to improve performance. The original unaltered 408 ** IN expression must also be run on each output row for correctness. 409 */ 410 static Expr *removeUnindexableInClauseTerms( 411 Parse *pParse, /* The parsing context */ 412 int iEq, /* Look at loop terms starting here */ 413 WhereLoop *pLoop, /* The current loop */ 414 Expr *pX /* The IN expression to be reduced */ 415 ){ 416 sqlite3 *db = pParse->db; 417 Expr *pNew = sqlite3ExprDup(db, pX, 0); 418 if( db->mallocFailed==0 ){ 419 ExprList *pOrigRhs = pNew->x.pSelect->pEList; /* Original unmodified RHS */ 420 ExprList *pOrigLhs = pNew->pLeft->x.pList; /* Original unmodified LHS */ 421 ExprList *pRhs = 0; /* New RHS after modifications */ 422 ExprList *pLhs = 0; /* New LHS after mods */ 423 int i; /* Loop counter */ 424 Select *pSelect; /* Pointer to the SELECT on the RHS */ 425 426 for(i=iEq; i<pLoop->nLTerm; i++){ 427 if( pLoop->aLTerm[i]->pExpr==pX ){ 428 int iField = pLoop->aLTerm[i]->iField - 1; 429 if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */ 430 pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr); 431 pOrigRhs->a[iField].pExpr = 0; 432 assert( pOrigLhs->a[iField].pExpr!=0 ); 433 pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr); 434 pOrigLhs->a[iField].pExpr = 0; 435 } 436 } 437 sqlite3ExprListDelete(db, pOrigRhs); 438 sqlite3ExprListDelete(db, pOrigLhs); 439 pNew->pLeft->x.pList = pLhs; 440 pNew->x.pSelect->pEList = pRhs; 441 if( pLhs && pLhs->nExpr==1 ){ 442 /* Take care here not to generate a TK_VECTOR containing only a 443 ** single value. Since the parser never creates such a vector, some 444 ** of the subroutines do not handle this case. */ 445 Expr *p = pLhs->a[0].pExpr; 446 pLhs->a[0].pExpr = 0; 447 sqlite3ExprDelete(db, pNew->pLeft); 448 pNew->pLeft = p; 449 } 450 pSelect = pNew->x.pSelect; 451 if( pSelect->pOrderBy ){ 452 /* If the SELECT statement has an ORDER BY clause, zero the 453 ** iOrderByCol variables. These are set to non-zero when an 454 ** ORDER BY term exactly matches one of the terms of the 455 ** result-set. Since the result-set of the SELECT statement may 456 ** have been modified or reordered, these variables are no longer 457 ** set correctly. Since setting them is just an optimization, 458 ** it's easiest just to zero them here. */ 459 ExprList *pOrderBy = pSelect->pOrderBy; 460 for(i=0; i<pOrderBy->nExpr; i++){ 461 pOrderBy->a[i].u.x.iOrderByCol = 0; 462 } 463 } 464 465 #if 0 466 printf("For indexing, change the IN expr:\n"); 467 sqlite3TreeViewExpr(0, pX, 0); 468 printf("Into:\n"); 469 sqlite3TreeViewExpr(0, pNew, 0); 470 #endif 471 } 472 return pNew; 473 } 474 475 476 /* 477 ** Generate code for a single equality term of the WHERE clause. An equality 478 ** term can be either X=expr or X IN (...). pTerm is the term to be 479 ** coded. 480 ** 481 ** The current value for the constraint is left in a register, the index 482 ** of which is returned. An attempt is made store the result in iTarget but 483 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the 484 ** constraint is a TK_EQ or TK_IS, then the current value might be left in 485 ** some other register and it is the caller's responsibility to compensate. 486 ** 487 ** For a constraint of the form X=expr, the expression is evaluated in 488 ** straight-line code. For constraints of the form X IN (...) 489 ** this routine sets up a loop that will iterate over all values of X. 490 */ 491 static int codeEqualityTerm( 492 Parse *pParse, /* The parsing context */ 493 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 494 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 495 int iEq, /* Index of the equality term within this level */ 496 int bRev, /* True for reverse-order IN operations */ 497 int iTarget /* Attempt to leave results in this register */ 498 ){ 499 Expr *pX = pTerm->pExpr; 500 Vdbe *v = pParse->pVdbe; 501 int iReg; /* Register holding results */ 502 503 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); 504 assert( iTarget>0 ); 505 if( pX->op==TK_EQ || pX->op==TK_IS ){ 506 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 507 }else if( pX->op==TK_ISNULL ){ 508 iReg = iTarget; 509 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 510 #ifndef SQLITE_OMIT_SUBQUERY 511 }else{ 512 int eType = IN_INDEX_NOOP; 513 int iTab; 514 struct InLoop *pIn; 515 WhereLoop *pLoop = pLevel->pWLoop; 516 int i; 517 int nEq = 0; 518 int *aiMap = 0; 519 520 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 521 && pLoop->u.btree.pIndex!=0 522 && pLoop->u.btree.pIndex->aSortOrder[iEq] 523 ){ 524 testcase( iEq==0 ); 525 testcase( bRev ); 526 bRev = !bRev; 527 } 528 assert( pX->op==TK_IN ); 529 iReg = iTarget; 530 531 for(i=0; i<iEq; i++){ 532 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ 533 disableTerm(pLevel, pTerm); 534 return iTarget; 535 } 536 } 537 for(i=iEq;i<pLoop->nLTerm; i++){ 538 assert( pLoop->aLTerm[i]!=0 ); 539 if( pLoop->aLTerm[i]->pExpr==pX ) nEq++; 540 } 541 542 iTab = 0; 543 if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){ 544 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab); 545 }else{ 546 sqlite3 *db = pParse->db; 547 pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX); 548 549 if( !db->mallocFailed ){ 550 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq); 551 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab); 552 pTerm->pExpr->iTable = iTab; 553 } 554 sqlite3ExprDelete(db, pX); 555 pX = pTerm->pExpr; 556 } 557 558 if( eType==IN_INDEX_INDEX_DESC ){ 559 testcase( bRev ); 560 bRev = !bRev; 561 } 562 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 563 VdbeCoverageIf(v, bRev); 564 VdbeCoverageIf(v, !bRev); 565 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 566 567 pLoop->wsFlags |= WHERE_IN_ABLE; 568 if( pLevel->u.in.nIn==0 ){ 569 pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 570 } 571 572 i = pLevel->u.in.nIn; 573 pLevel->u.in.nIn += nEq; 574 pLevel->u.in.aInLoop = 575 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 576 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 577 pIn = pLevel->u.in.aInLoop; 578 if( pIn ){ 579 int iMap = 0; /* Index in aiMap[] */ 580 pIn += i; 581 for(i=iEq;i<pLoop->nLTerm; i++){ 582 if( pLoop->aLTerm[i]->pExpr==pX ){ 583 int iOut = iReg + i - iEq; 584 if( eType==IN_INDEX_ROWID ){ 585 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); 586 }else{ 587 int iCol = aiMap ? aiMap[iMap++] : 0; 588 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); 589 } 590 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); 591 if( i==iEq ){ 592 pIn->iCur = iTab; 593 pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next; 594 if( iEq>0 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 595 pIn->iBase = iReg - i; 596 pIn->nPrefix = i; 597 pLoop->wsFlags |= WHERE_IN_EARLYOUT; 598 }else{ 599 pIn->nPrefix = 0; 600 } 601 }else{ 602 pIn->eEndLoopOp = OP_Noop; 603 } 604 pIn++; 605 } 606 } 607 }else{ 608 pLevel->u.in.nIn = 0; 609 } 610 sqlite3DbFree(pParse->db, aiMap); 611 #endif 612 } 613 disableTerm(pLevel, pTerm); 614 return iReg; 615 } 616 617 /* 618 ** Generate code that will evaluate all == and IN constraints for an 619 ** index scan. 620 ** 621 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 622 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 623 ** The index has as many as three equality constraints, but in this 624 ** example, the third "c" value is an inequality. So only two 625 ** constraints are coded. This routine will generate code to evaluate 626 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 627 ** in consecutive registers and the index of the first register is returned. 628 ** 629 ** In the example above nEq==2. But this subroutine works for any value 630 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 631 ** The only thing it does is allocate the pLevel->iMem memory cell and 632 ** compute the affinity string. 633 ** 634 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 635 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 636 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 637 ** occurs after the nEq quality constraints. 638 ** 639 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 640 ** the index of the first memory cell in that range. The code that 641 ** calls this routine will use that memory range to store keys for 642 ** start and termination conditions of the loop. 643 ** key value of the loop. If one or more IN operators appear, then 644 ** this routine allocates an additional nEq memory cells for internal 645 ** use. 646 ** 647 ** Before returning, *pzAff is set to point to a buffer containing a 648 ** copy of the column affinity string of the index allocated using 649 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 650 ** with equality constraints that use BLOB or NONE affinity are set to 651 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 652 ** 653 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 654 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 655 ** 656 ** In the example above, the index on t1(a) has TEXT affinity. But since 657 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 658 ** no conversion should be attempted before using a t2.b value as part of 659 ** a key to search the index. Hence the first byte in the returned affinity 660 ** string in this example would be set to SQLITE_AFF_BLOB. 661 */ 662 static int codeAllEqualityTerms( 663 Parse *pParse, /* Parsing context */ 664 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 665 int bRev, /* Reverse the order of IN operators */ 666 int nExtraReg, /* Number of extra registers to allocate */ 667 char **pzAff /* OUT: Set to point to affinity string */ 668 ){ 669 u16 nEq; /* The number of == or IN constraints to code */ 670 u16 nSkip; /* Number of left-most columns to skip */ 671 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 672 Index *pIdx; /* The index being used for this loop */ 673 WhereTerm *pTerm; /* A single constraint term */ 674 WhereLoop *pLoop; /* The WhereLoop object */ 675 int j; /* Loop counter */ 676 int regBase; /* Base register */ 677 int nReg; /* Number of registers to allocate */ 678 char *zAff; /* Affinity string to return */ 679 680 /* This module is only called on query plans that use an index. */ 681 pLoop = pLevel->pWLoop; 682 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 683 nEq = pLoop->u.btree.nEq; 684 nSkip = pLoop->nSkip; 685 pIdx = pLoop->u.btree.pIndex; 686 assert( pIdx!=0 ); 687 688 /* Figure out how many memory cells we will need then allocate them. 689 */ 690 regBase = pParse->nMem + 1; 691 nReg = pLoop->u.btree.nEq + nExtraReg; 692 pParse->nMem += nReg; 693 694 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 695 assert( zAff!=0 || pParse->db->mallocFailed ); 696 697 if( nSkip ){ 698 int iIdxCur = pLevel->iIdxCur; 699 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 700 VdbeCoverageIf(v, bRev==0); 701 VdbeCoverageIf(v, bRev!=0); 702 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 703 j = sqlite3VdbeAddOp0(v, OP_Goto); 704 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 705 iIdxCur, 0, regBase, nSkip); 706 VdbeCoverageIf(v, bRev==0); 707 VdbeCoverageIf(v, bRev!=0); 708 sqlite3VdbeJumpHere(v, j); 709 for(j=0; j<nSkip; j++){ 710 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 711 testcase( pIdx->aiColumn[j]==XN_EXPR ); 712 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 713 } 714 } 715 716 /* Evaluate the equality constraints 717 */ 718 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 719 for(j=nSkip; j<nEq; j++){ 720 int r1; 721 pTerm = pLoop->aLTerm[j]; 722 assert( pTerm!=0 ); 723 /* The following testcase is true for indices with redundant columns. 724 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 725 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 726 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 727 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 728 if( r1!=regBase+j ){ 729 if( nReg==1 ){ 730 sqlite3ReleaseTempReg(pParse, regBase); 731 regBase = r1; 732 }else{ 733 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 734 } 735 } 736 if( pTerm->eOperator & WO_IN ){ 737 if( pTerm->pExpr->flags & EP_xIsSelect ){ 738 /* No affinity ever needs to be (or should be) applied to a value 739 ** from the RHS of an "? IN (SELECT ...)" expression. The 740 ** sqlite3FindInIndex() routine has already ensured that the 741 ** affinity of the comparison has been applied to the value. */ 742 if( zAff ) zAff[j] = SQLITE_AFF_BLOB; 743 } 744 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ 745 Expr *pRight = pTerm->pExpr->pRight; 746 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 747 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 748 VdbeCoverage(v); 749 } 750 if( zAff ){ 751 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 752 zAff[j] = SQLITE_AFF_BLOB; 753 } 754 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 755 zAff[j] = SQLITE_AFF_BLOB; 756 } 757 } 758 } 759 } 760 *pzAff = zAff; 761 return regBase; 762 } 763 764 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 765 /* 766 ** If the most recently coded instruction is a constant range constraint 767 ** (a string literal) that originated from the LIKE optimization, then 768 ** set P3 and P5 on the OP_String opcode so that the string will be cast 769 ** to a BLOB at appropriate times. 770 ** 771 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 772 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 773 ** scan loop run twice, once for strings and a second time for BLOBs. 774 ** The OP_String opcodes on the second pass convert the upper and lower 775 ** bound string constants to blobs. This routine makes the necessary changes 776 ** to the OP_String opcodes for that to happen. 777 ** 778 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 779 ** only the one pass through the string space is required, so this routine 780 ** becomes a no-op. 781 */ 782 static void whereLikeOptimizationStringFixup( 783 Vdbe *v, /* prepared statement under construction */ 784 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 785 WhereTerm *pTerm /* The upper or lower bound just coded */ 786 ){ 787 if( pTerm->wtFlags & TERM_LIKEOPT ){ 788 VdbeOp *pOp; 789 assert( pLevel->iLikeRepCntr>0 ); 790 pOp = sqlite3VdbeGetOp(v, -1); 791 assert( pOp!=0 ); 792 assert( pOp->opcode==OP_String8 793 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 794 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ 795 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ 796 } 797 } 798 #else 799 # define whereLikeOptimizationStringFixup(A,B,C) 800 #endif 801 802 #ifdef SQLITE_ENABLE_CURSOR_HINTS 803 /* 804 ** Information is passed from codeCursorHint() down to individual nodes of 805 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 806 ** structure. 807 */ 808 struct CCurHint { 809 int iTabCur; /* Cursor for the main table */ 810 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 811 Index *pIdx; /* The index used to access the table */ 812 }; 813 814 /* 815 ** This function is called for every node of an expression that is a candidate 816 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 817 ** the table CCurHint.iTabCur, verify that the same column can be 818 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 819 */ 820 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 821 struct CCurHint *pHint = pWalker->u.pCCurHint; 822 assert( pHint->pIdx!=0 ); 823 if( pExpr->op==TK_COLUMN 824 && pExpr->iTable==pHint->iTabCur 825 && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0 826 ){ 827 pWalker->eCode = 1; 828 } 829 return WRC_Continue; 830 } 831 832 /* 833 ** Test whether or not expression pExpr, which was part of a WHERE clause, 834 ** should be included in the cursor-hint for a table that is on the rhs 835 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the 836 ** expression is not suitable. 837 ** 838 ** An expression is unsuitable if it might evaluate to non NULL even if 839 ** a TK_COLUMN node that does affect the value of the expression is set 840 ** to NULL. For example: 841 ** 842 ** col IS NULL 843 ** col IS NOT NULL 844 ** coalesce(col, 1) 845 ** CASE WHEN col THEN 0 ELSE 1 END 846 */ 847 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ 848 if( pExpr->op==TK_IS 849 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT 850 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE 851 ){ 852 pWalker->eCode = 1; 853 }else if( pExpr->op==TK_FUNCTION ){ 854 int d1; 855 char d2[4]; 856 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ 857 pWalker->eCode = 1; 858 } 859 } 860 861 return WRC_Continue; 862 } 863 864 865 /* 866 ** This function is called on every node of an expression tree used as an 867 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 868 ** that accesses any table other than the one identified by 869 ** CCurHint.iTabCur, then do the following: 870 ** 871 ** 1) allocate a register and code an OP_Column instruction to read 872 ** the specified column into the new register, and 873 ** 874 ** 2) transform the expression node to a TK_REGISTER node that reads 875 ** from the newly populated register. 876 ** 877 ** Also, if the node is a TK_COLUMN that does access the table idenified 878 ** by pCCurHint.iTabCur, and an index is being used (which we will 879 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 880 ** an access of the index rather than the original table. 881 */ 882 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 883 int rc = WRC_Continue; 884 struct CCurHint *pHint = pWalker->u.pCCurHint; 885 if( pExpr->op==TK_COLUMN ){ 886 if( pExpr->iTable!=pHint->iTabCur ){ 887 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 888 sqlite3ExprCode(pWalker->pParse, pExpr, reg); 889 pExpr->op = TK_REGISTER; 890 pExpr->iTable = reg; 891 }else if( pHint->pIdx!=0 ){ 892 pExpr->iTable = pHint->iIdxCur; 893 pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn); 894 assert( pExpr->iColumn>=0 ); 895 } 896 }else if( pExpr->op==TK_AGG_FUNCTION ){ 897 /* An aggregate function in the WHERE clause of a query means this must 898 ** be a correlated sub-query, and expression pExpr is an aggregate from 899 ** the parent context. Do not walk the function arguments in this case. 900 ** 901 ** todo: It should be possible to replace this node with a TK_REGISTER 902 ** expression, as the result of the expression must be stored in a 903 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 904 rc = WRC_Prune; 905 } 906 return rc; 907 } 908 909 /* 910 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 911 */ 912 static void codeCursorHint( 913 struct SrcList_item *pTabItem, /* FROM clause item */ 914 WhereInfo *pWInfo, /* The where clause */ 915 WhereLevel *pLevel, /* Which loop to provide hints for */ 916 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 917 ){ 918 Parse *pParse = pWInfo->pParse; 919 sqlite3 *db = pParse->db; 920 Vdbe *v = pParse->pVdbe; 921 Expr *pExpr = 0; 922 WhereLoop *pLoop = pLevel->pWLoop; 923 int iCur; 924 WhereClause *pWC; 925 WhereTerm *pTerm; 926 int i, j; 927 struct CCurHint sHint; 928 Walker sWalker; 929 930 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 931 iCur = pLevel->iTabCur; 932 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 933 sHint.iTabCur = iCur; 934 sHint.iIdxCur = pLevel->iIdxCur; 935 sHint.pIdx = pLoop->u.btree.pIndex; 936 memset(&sWalker, 0, sizeof(sWalker)); 937 sWalker.pParse = pParse; 938 sWalker.u.pCCurHint = &sHint; 939 pWC = &pWInfo->sWC; 940 for(i=0; i<pWC->nTerm; i++){ 941 pTerm = &pWC->a[i]; 942 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 943 if( pTerm->prereqAll & pLevel->notReady ) continue; 944 945 /* Any terms specified as part of the ON(...) clause for any LEFT 946 ** JOIN for which the current table is not the rhs are omitted 947 ** from the cursor-hint. 948 ** 949 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms 950 ** that were specified as part of the WHERE clause must be excluded. 951 ** This is to address the following: 952 ** 953 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; 954 ** 955 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its 956 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is 957 ** pushed down to the cursor, this row is filtered out, causing 958 ** SQLite to synthesize a row of NULL values. Which does match the 959 ** WHERE clause, and so the query returns a row. Which is incorrect. 960 ** 961 ** For the same reason, WHERE terms such as: 962 ** 963 ** WHERE 1 = (t2.c IS NULL) 964 ** 965 ** are also excluded. See codeCursorHintIsOrFunction() for details. 966 */ 967 if( pTabItem->fg.jointype & JT_LEFT ){ 968 Expr *pExpr = pTerm->pExpr; 969 if( !ExprHasProperty(pExpr, EP_FromJoin) 970 || pExpr->iRightJoinTable!=pTabItem->iCursor 971 ){ 972 sWalker.eCode = 0; 973 sWalker.xExprCallback = codeCursorHintIsOrFunction; 974 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 975 if( sWalker.eCode ) continue; 976 } 977 }else{ 978 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; 979 } 980 981 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 982 ** the cursor. These terms are not needed as hints for a pure range 983 ** scan (that has no == terms) so omit them. */ 984 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 985 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 986 if( j<pLoop->nLTerm ) continue; 987 } 988 989 /* No subqueries or non-deterministic functions allowed */ 990 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 991 992 /* For an index scan, make sure referenced columns are actually in 993 ** the index. */ 994 if( sHint.pIdx!=0 ){ 995 sWalker.eCode = 0; 996 sWalker.xExprCallback = codeCursorHintCheckExpr; 997 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 998 if( sWalker.eCode ) continue; 999 } 1000 1001 /* If we survive all prior tests, that means this term is worth hinting */ 1002 pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 1003 } 1004 if( pExpr!=0 ){ 1005 sWalker.xExprCallback = codeCursorHintFixExpr; 1006 sqlite3WalkExpr(&sWalker, pExpr); 1007 sqlite3VdbeAddOp4(v, OP_CursorHint, 1008 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 1009 (const char*)pExpr, P4_EXPR); 1010 } 1011 } 1012 #else 1013 # define codeCursorHint(A,B,C,D) /* No-op */ 1014 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 1015 1016 /* 1017 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains 1018 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This 1019 ** function generates code to do a deferred seek of cursor iCur to the 1020 ** rowid stored in register iRowid. 1021 ** 1022 ** Normally, this is just: 1023 ** 1024 ** OP_DeferredSeek $iCur $iRowid 1025 ** 1026 ** However, if the scan currently being coded is a branch of an OR-loop and 1027 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek 1028 ** is set to iIdxCur and P4 is set to point to an array of integers 1029 ** containing one entry for each column of the table cursor iCur is open 1030 ** on. For each table column, if the column is the i'th column of the 1031 ** index, then the corresponding array entry is set to (i+1). If the column 1032 ** does not appear in the index at all, the array entry is set to 0. 1033 */ 1034 static void codeDeferredSeek( 1035 WhereInfo *pWInfo, /* Where clause context */ 1036 Index *pIdx, /* Index scan is using */ 1037 int iCur, /* Cursor for IPK b-tree */ 1038 int iIdxCur /* Index cursor */ 1039 ){ 1040 Parse *pParse = pWInfo->pParse; /* Parse context */ 1041 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ 1042 1043 assert( iIdxCur>0 ); 1044 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); 1045 1046 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur); 1047 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 1048 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) 1049 ){ 1050 int i; 1051 Table *pTab = pIdx->pTable; 1052 int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1)); 1053 if( ai ){ 1054 ai[0] = pTab->nCol; 1055 for(i=0; i<pIdx->nColumn-1; i++){ 1056 assert( pIdx->aiColumn[i]<pTab->nCol ); 1057 if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1; 1058 } 1059 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); 1060 } 1061 } 1062 } 1063 1064 /* 1065 ** If the expression passed as the second argument is a vector, generate 1066 ** code to write the first nReg elements of the vector into an array 1067 ** of registers starting with iReg. 1068 ** 1069 ** If the expression is not a vector, then nReg must be passed 1. In 1070 ** this case, generate code to evaluate the expression and leave the 1071 ** result in register iReg. 1072 */ 1073 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ 1074 assert( nReg>0 ); 1075 if( p && sqlite3ExprIsVector(p) ){ 1076 #ifndef SQLITE_OMIT_SUBQUERY 1077 if( (p->flags & EP_xIsSelect) ){ 1078 Vdbe *v = pParse->pVdbe; 1079 int iSelect; 1080 assert( p->op==TK_SELECT ); 1081 iSelect = sqlite3CodeSubselect(pParse, p); 1082 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); 1083 }else 1084 #endif 1085 { 1086 int i; 1087 ExprList *pList = p->x.pList; 1088 assert( nReg<=pList->nExpr ); 1089 for(i=0; i<nReg; i++){ 1090 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i); 1091 } 1092 } 1093 }else{ 1094 assert( nReg==1 ); 1095 sqlite3ExprCode(pParse, p, iReg); 1096 } 1097 } 1098 1099 /* An instance of the IdxExprTrans object carries information about a 1100 ** mapping from an expression on table columns into a column in an index 1101 ** down through the Walker. 1102 */ 1103 typedef struct IdxExprTrans { 1104 Expr *pIdxExpr; /* The index expression */ 1105 int iTabCur; /* The cursor of the corresponding table */ 1106 int iIdxCur; /* The cursor for the index */ 1107 int iIdxCol; /* The column for the index */ 1108 } IdxExprTrans; 1109 1110 /* The walker node callback used to transform matching expressions into 1111 ** a reference to an index column for an index on an expression. 1112 ** 1113 ** If pExpr matches, then transform it into a reference to the index column 1114 ** that contains the value of pExpr. 1115 */ 1116 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){ 1117 IdxExprTrans *pX = p->u.pIdxTrans; 1118 if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){ 1119 pExpr->op = TK_COLUMN; 1120 pExpr->iTable = pX->iIdxCur; 1121 pExpr->iColumn = pX->iIdxCol; 1122 pExpr->y.pTab = 0; 1123 return WRC_Prune; 1124 }else{ 1125 return WRC_Continue; 1126 } 1127 } 1128 1129 /* 1130 ** For an indexes on expression X, locate every instance of expression X 1131 ** in pExpr and change that subexpression into a reference to the appropriate 1132 ** column of the index. 1133 */ 1134 static void whereIndexExprTrans( 1135 Index *pIdx, /* The Index */ 1136 int iTabCur, /* Cursor of the table that is being indexed */ 1137 int iIdxCur, /* Cursor of the index itself */ 1138 WhereInfo *pWInfo /* Transform expressions in this WHERE clause */ 1139 ){ 1140 int iIdxCol; /* Column number of the index */ 1141 ExprList *aColExpr; /* Expressions that are indexed */ 1142 Walker w; 1143 IdxExprTrans x; 1144 aColExpr = pIdx->aColExpr; 1145 if( aColExpr==0 ) return; /* Not an index on expressions */ 1146 memset(&w, 0, sizeof(w)); 1147 w.xExprCallback = whereIndexExprTransNode; 1148 w.u.pIdxTrans = &x; 1149 x.iTabCur = iTabCur; 1150 x.iIdxCur = iIdxCur; 1151 for(iIdxCol=0; iIdxCol<aColExpr->nExpr; iIdxCol++){ 1152 if( pIdx->aiColumn[iIdxCol]!=XN_EXPR ) continue; 1153 assert( aColExpr->a[iIdxCol].pExpr!=0 ); 1154 x.iIdxCol = iIdxCol; 1155 x.pIdxExpr = aColExpr->a[iIdxCol].pExpr; 1156 sqlite3WalkExpr(&w, pWInfo->pWhere); 1157 sqlite3WalkExprList(&w, pWInfo->pOrderBy); 1158 sqlite3WalkExprList(&w, pWInfo->pResultSet); 1159 } 1160 } 1161 1162 /* 1163 ** The pTruth expression is always true because it is the WHERE clause 1164 ** a partial index that is driving a query loop. Look through all of the 1165 ** WHERE clause terms on the query, and if any of those terms must be 1166 ** true because pTruth is true, then mark those WHERE clause terms as 1167 ** coded. 1168 */ 1169 static void whereApplyPartialIndexConstraints( 1170 Expr *pTruth, 1171 int iTabCur, 1172 WhereClause *pWC 1173 ){ 1174 int i; 1175 WhereTerm *pTerm; 1176 while( pTruth->op==TK_AND ){ 1177 whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC); 1178 pTruth = pTruth->pRight; 1179 } 1180 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1181 Expr *pExpr; 1182 if( pTerm->wtFlags & TERM_CODED ) continue; 1183 pExpr = pTerm->pExpr; 1184 if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){ 1185 pTerm->wtFlags |= TERM_CODED; 1186 } 1187 } 1188 } 1189 1190 /* 1191 ** Generate code for the start of the iLevel-th loop in the WHERE clause 1192 ** implementation described by pWInfo. 1193 */ 1194 Bitmask sqlite3WhereCodeOneLoopStart( 1195 Parse *pParse, /* Parsing context */ 1196 Vdbe *v, /* Prepared statement under construction */ 1197 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1198 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1199 WhereLevel *pLevel, /* The current level pointer */ 1200 Bitmask notReady /* Which tables are currently available */ 1201 ){ 1202 int j, k; /* Loop counters */ 1203 int iCur; /* The VDBE cursor for the table */ 1204 int addrNxt; /* Where to jump to continue with the next IN case */ 1205 int bRev; /* True if we need to scan in reverse order */ 1206 WhereLoop *pLoop; /* The WhereLoop object being coded */ 1207 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 1208 WhereTerm *pTerm; /* A WHERE clause term */ 1209 sqlite3 *db; /* Database connection */ 1210 struct SrcList_item *pTabItem; /* FROM clause term being coded */ 1211 int addrBrk; /* Jump here to break out of the loop */ 1212 int addrHalt; /* addrBrk for the outermost loop */ 1213 int addrCont; /* Jump here to continue with next cycle */ 1214 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 1215 int iReleaseReg = 0; /* Temp register to free before returning */ 1216 Index *pIdx = 0; /* Index used by loop (if any) */ 1217 int iLoop; /* Iteration of constraint generator loop */ 1218 1219 pWC = &pWInfo->sWC; 1220 db = pParse->db; 1221 pLoop = pLevel->pWLoop; 1222 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1223 iCur = pTabItem->iCursor; 1224 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 1225 bRev = (pWInfo->revMask>>iLevel)&1; 1226 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 1227 1228 /* Create labels for the "break" and "continue" instructions 1229 ** for the current loop. Jump to addrBrk to break out of a loop. 1230 ** Jump to cont to go immediately to the next iteration of the 1231 ** loop. 1232 ** 1233 ** When there is an IN operator, we also have a "addrNxt" label that 1234 ** means to continue with the next IN value combination. When 1235 ** there are no IN operators in the constraints, the "addrNxt" label 1236 ** is the same as "addrBrk". 1237 */ 1238 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 1239 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse); 1240 1241 /* If this is the right table of a LEFT OUTER JOIN, allocate and 1242 ** initialize a memory cell that records if this table matches any 1243 ** row of the left table of the join. 1244 */ 1245 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 1246 || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0 1247 ); 1248 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 1249 pLevel->iLeftJoin = ++pParse->nMem; 1250 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 1251 VdbeComment((v, "init LEFT JOIN no-match flag")); 1252 } 1253 1254 /* Compute a safe address to jump to if we discover that the table for 1255 ** this loop is empty and can never contribute content. */ 1256 for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){} 1257 addrHalt = pWInfo->a[j].addrBrk; 1258 1259 /* Special case of a FROM clause subquery implemented as a co-routine */ 1260 if( pTabItem->fg.viaCoroutine ){ 1261 int regYield = pTabItem->regReturn; 1262 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 1263 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 1264 VdbeCoverage(v); 1265 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 1266 pLevel->op = OP_Goto; 1267 }else 1268 1269 #ifndef SQLITE_OMIT_VIRTUALTABLE 1270 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 1271 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 1272 ** to access the data. 1273 */ 1274 int iReg; /* P3 Value for OP_VFilter */ 1275 int addrNotFound; 1276 int nConstraint = pLoop->nLTerm; 1277 int iIn; /* Counter for IN constraints */ 1278 1279 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 1280 addrNotFound = pLevel->addrBrk; 1281 for(j=0; j<nConstraint; j++){ 1282 int iTarget = iReg+j+2; 1283 pTerm = pLoop->aLTerm[j]; 1284 if( NEVER(pTerm==0) ) continue; 1285 if( pTerm->eOperator & WO_IN ){ 1286 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 1287 addrNotFound = pLevel->addrNxt; 1288 }else{ 1289 Expr *pRight = pTerm->pExpr->pRight; 1290 codeExprOrVector(pParse, pRight, iTarget, 1); 1291 } 1292 } 1293 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 1294 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 1295 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 1296 pLoop->u.vtab.idxStr, 1297 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); 1298 VdbeCoverage(v); 1299 pLoop->u.vtab.needFree = 0; 1300 pLevel->p1 = iCur; 1301 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 1302 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1303 iIn = pLevel->u.in.nIn; 1304 for(j=nConstraint-1; j>=0; j--){ 1305 pTerm = pLoop->aLTerm[j]; 1306 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ 1307 disableTerm(pLevel, pTerm); 1308 }else if( (pTerm->eOperator & WO_IN)!=0 ){ 1309 Expr *pCompare; /* The comparison operator */ 1310 Expr *pRight; /* RHS of the comparison */ 1311 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ 1312 1313 /* Reload the constraint value into reg[iReg+j+2]. The same value 1314 ** was loaded into the same register prior to the OP_VFilter, but 1315 ** the xFilter implementation might have changed the datatype or 1316 ** encoding of the value in the register, so it *must* be reloaded. */ 1317 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed ); 1318 if( !db->mallocFailed ){ 1319 assert( iIn>0 ); 1320 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[--iIn].addrInTop); 1321 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid ); 1322 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 ); 1323 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 ); 1324 testcase( pOp->opcode==OP_Rowid ); 1325 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); 1326 } 1327 1328 /* Generate code that will continue to the next row if 1329 ** the IN constraint is not satisfied */ 1330 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); 1331 assert( pCompare!=0 || db->mallocFailed ); 1332 if( pCompare ){ 1333 pCompare->pLeft = pTerm->pExpr->pLeft; 1334 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); 1335 if( pRight ){ 1336 pRight->iTable = iReg+j+2; 1337 sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0); 1338 } 1339 pCompare->pLeft = 0; 1340 sqlite3ExprDelete(db, pCompare); 1341 } 1342 } 1343 } 1344 /* These registers need to be preserved in case there is an IN operator 1345 ** loop. So we could deallocate the registers here (and potentially 1346 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems 1347 ** simpler and safer to simply not reuse the registers. 1348 ** 1349 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 1350 */ 1351 }else 1352 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1353 1354 if( (pLoop->wsFlags & WHERE_IPK)!=0 1355 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 1356 ){ 1357 /* Case 2: We can directly reference a single row using an 1358 ** equality comparison against the ROWID field. Or 1359 ** we reference multiple rows using a "rowid IN (...)" 1360 ** construct. 1361 */ 1362 assert( pLoop->u.btree.nEq==1 ); 1363 pTerm = pLoop->aLTerm[0]; 1364 assert( pTerm!=0 ); 1365 assert( pTerm->pExpr!=0 ); 1366 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1367 iReleaseReg = ++pParse->nMem; 1368 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 1369 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 1370 addrNxt = pLevel->addrNxt; 1371 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); 1372 VdbeCoverage(v); 1373 pLevel->op = OP_Noop; 1374 if( (pTerm->prereqAll & pLevel->notReady)==0 ){ 1375 pTerm->wtFlags |= TERM_CODED; 1376 } 1377 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 1378 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 1379 ){ 1380 /* Case 3: We have an inequality comparison against the ROWID field. 1381 */ 1382 int testOp = OP_Noop; 1383 int start; 1384 int memEndValue = 0; 1385 WhereTerm *pStart, *pEnd; 1386 1387 j = 0; 1388 pStart = pEnd = 0; 1389 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 1390 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 1391 assert( pStart!=0 || pEnd!=0 ); 1392 if( bRev ){ 1393 pTerm = pStart; 1394 pStart = pEnd; 1395 pEnd = pTerm; 1396 } 1397 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); 1398 if( pStart ){ 1399 Expr *pX; /* The expression that defines the start bound */ 1400 int r1, rTemp; /* Registers for holding the start boundary */ 1401 int op; /* Cursor seek operation */ 1402 1403 /* The following constant maps TK_xx codes into corresponding 1404 ** seek opcodes. It depends on a particular ordering of TK_xx 1405 */ 1406 const u8 aMoveOp[] = { 1407 /* TK_GT */ OP_SeekGT, 1408 /* TK_LE */ OP_SeekLE, 1409 /* TK_LT */ OP_SeekLT, 1410 /* TK_GE */ OP_SeekGE 1411 }; 1412 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 1413 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 1414 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 1415 1416 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 1417 testcase( pStart->wtFlags & TERM_VIRTUAL ); 1418 pX = pStart->pExpr; 1419 assert( pX!=0 ); 1420 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 1421 if( sqlite3ExprIsVector(pX->pRight) ){ 1422 r1 = rTemp = sqlite3GetTempReg(pParse); 1423 codeExprOrVector(pParse, pX->pRight, r1, 1); 1424 testcase( pX->op==TK_GT ); 1425 testcase( pX->op==TK_GE ); 1426 testcase( pX->op==TK_LT ); 1427 testcase( pX->op==TK_LE ); 1428 op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1]; 1429 assert( pX->op!=TK_GT || op==OP_SeekGE ); 1430 assert( pX->op!=TK_GE || op==OP_SeekGE ); 1431 assert( pX->op!=TK_LT || op==OP_SeekLE ); 1432 assert( pX->op!=TK_LE || op==OP_SeekLE ); 1433 }else{ 1434 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 1435 disableTerm(pLevel, pStart); 1436 op = aMoveOp[(pX->op - TK_GT)]; 1437 } 1438 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); 1439 VdbeComment((v, "pk")); 1440 VdbeCoverageIf(v, pX->op==TK_GT); 1441 VdbeCoverageIf(v, pX->op==TK_LE); 1442 VdbeCoverageIf(v, pX->op==TK_LT); 1443 VdbeCoverageIf(v, pX->op==TK_GE); 1444 sqlite3ReleaseTempReg(pParse, rTemp); 1445 }else{ 1446 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt); 1447 VdbeCoverageIf(v, bRev==0); 1448 VdbeCoverageIf(v, bRev!=0); 1449 } 1450 if( pEnd ){ 1451 Expr *pX; 1452 pX = pEnd->pExpr; 1453 assert( pX!=0 ); 1454 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 1455 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 1456 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 1457 memEndValue = ++pParse->nMem; 1458 codeExprOrVector(pParse, pX->pRight, memEndValue, 1); 1459 if( 0==sqlite3ExprIsVector(pX->pRight) 1460 && (pX->op==TK_LT || pX->op==TK_GT) 1461 ){ 1462 testOp = bRev ? OP_Le : OP_Ge; 1463 }else{ 1464 testOp = bRev ? OP_Lt : OP_Gt; 1465 } 1466 if( 0==sqlite3ExprIsVector(pX->pRight) ){ 1467 disableTerm(pLevel, pEnd); 1468 } 1469 } 1470 start = sqlite3VdbeCurrentAddr(v); 1471 pLevel->op = bRev ? OP_Prev : OP_Next; 1472 pLevel->p1 = iCur; 1473 pLevel->p2 = start; 1474 assert( pLevel->p5==0 ); 1475 if( testOp!=OP_Noop ){ 1476 iRowidReg = ++pParse->nMem; 1477 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 1478 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 1479 VdbeCoverageIf(v, testOp==OP_Le); 1480 VdbeCoverageIf(v, testOp==OP_Lt); 1481 VdbeCoverageIf(v, testOp==OP_Ge); 1482 VdbeCoverageIf(v, testOp==OP_Gt); 1483 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 1484 } 1485 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 1486 /* Case 4: A scan using an index. 1487 ** 1488 ** The WHERE clause may contain zero or more equality 1489 ** terms ("==" or "IN" operators) that refer to the N 1490 ** left-most columns of the index. It may also contain 1491 ** inequality constraints (>, <, >= or <=) on the indexed 1492 ** column that immediately follows the N equalities. Only 1493 ** the right-most column can be an inequality - the rest must 1494 ** use the "==" and "IN" operators. For example, if the 1495 ** index is on (x,y,z), then the following clauses are all 1496 ** optimized: 1497 ** 1498 ** x=5 1499 ** x=5 AND y=10 1500 ** x=5 AND y<10 1501 ** x=5 AND y>5 AND y<10 1502 ** x=5 AND y=5 AND z<=10 1503 ** 1504 ** The z<10 term of the following cannot be used, only 1505 ** the x=5 term: 1506 ** 1507 ** x=5 AND z<10 1508 ** 1509 ** N may be zero if there are inequality constraints. 1510 ** If there are no inequality constraints, then N is at 1511 ** least one. 1512 ** 1513 ** This case is also used when there are no WHERE clause 1514 ** constraints but an index is selected anyway, in order 1515 ** to force the output order to conform to an ORDER BY. 1516 */ 1517 static const u8 aStartOp[] = { 1518 0, 1519 0, 1520 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1521 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1522 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1523 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1524 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1525 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1526 }; 1527 static const u8 aEndOp[] = { 1528 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1529 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1530 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1531 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1532 }; 1533 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1534 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ 1535 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ 1536 int regBase; /* Base register holding constraint values */ 1537 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1538 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1539 int startEq; /* True if range start uses ==, >= or <= */ 1540 int endEq; /* True if range end uses ==, >= or <= */ 1541 int start_constraints; /* Start of range is constrained */ 1542 int nConstraint; /* Number of constraint terms */ 1543 int iIdxCur; /* The VDBE cursor for the index */ 1544 int nExtraReg = 0; /* Number of extra registers needed */ 1545 int op; /* Instruction opcode */ 1546 char *zStartAff; /* Affinity for start of range constraint */ 1547 char *zEndAff = 0; /* Affinity for end of range constraint */ 1548 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1549 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1550 int omitTable; /* True if we use the index only */ 1551 1552 1553 pIdx = pLoop->u.btree.pIndex; 1554 iIdxCur = pLevel->iIdxCur; 1555 assert( nEq>=pLoop->nSkip ); 1556 1557 /* If this loop satisfies a sort order (pOrderBy) request that 1558 ** was passed to this function to implement a "SELECT min(x) ..." 1559 ** query, then the caller will only allow the loop to run for 1560 ** a single iteration. This means that the first row returned 1561 ** should not have a NULL value stored in 'x'. If column 'x' is 1562 ** the first one after the nEq equality constraints in the index, 1563 ** this requires some special handling. 1564 */ 1565 assert( pWInfo->pOrderBy==0 1566 || pWInfo->pOrderBy->nExpr==1 1567 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); 1568 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 1569 && pWInfo->nOBSat>0 1570 && (pIdx->nKeyCol>nEq) 1571 ){ 1572 assert( pLoop->nSkip==0 ); 1573 bSeekPastNull = 1; 1574 nExtraReg = 1; 1575 } 1576 1577 /* Find any inequality constraint terms for the start and end 1578 ** of the range. 1579 */ 1580 j = nEq; 1581 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1582 pRangeStart = pLoop->aLTerm[j++]; 1583 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); 1584 /* Like optimization range constraints always occur in pairs */ 1585 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1586 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1587 } 1588 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1589 pRangeEnd = pLoop->aLTerm[j++]; 1590 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); 1591 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1592 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1593 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1594 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1595 pLevel->iLikeRepCntr = (u32)++pParse->nMem; 1596 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); 1597 VdbeComment((v, "LIKE loop counter")); 1598 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1599 /* iLikeRepCntr actually stores 2x the counter register number. The 1600 ** bottom bit indicates whether the search order is ASC or DESC. */ 1601 testcase( bRev ); 1602 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1603 assert( (bRev & ~1)==0 ); 1604 pLevel->iLikeRepCntr <<=1; 1605 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); 1606 } 1607 #endif 1608 if( pRangeStart==0 ){ 1609 j = pIdx->aiColumn[nEq]; 1610 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){ 1611 bSeekPastNull = 1; 1612 } 1613 } 1614 } 1615 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1616 1617 /* If we are doing a reverse order scan on an ascending index, or 1618 ** a forward order scan on a descending index, interchange the 1619 ** start and end terms (pRangeStart and pRangeEnd). 1620 */ 1621 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) 1622 || (bRev && pIdx->nKeyCol==nEq) 1623 ){ 1624 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1625 SWAP(u8, bSeekPastNull, bStopAtNull); 1626 SWAP(u8, nBtm, nTop); 1627 } 1628 1629 /* Generate code to evaluate all constraint terms using == or IN 1630 ** and store the values of those terms in an array of registers 1631 ** starting at regBase. 1632 */ 1633 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); 1634 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1635 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1636 if( zStartAff && nTop ){ 1637 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); 1638 } 1639 addrNxt = pLevel->addrNxt; 1640 1641 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1642 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1643 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1644 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1645 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1646 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1647 start_constraints = pRangeStart || nEq>0; 1648 1649 /* Seek the index cursor to the start of the range. */ 1650 nConstraint = nEq; 1651 if( pRangeStart ){ 1652 Expr *pRight = pRangeStart->pExpr->pRight; 1653 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); 1654 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1655 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1656 && sqlite3ExprCanBeNull(pRight) 1657 ){ 1658 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1659 VdbeCoverage(v); 1660 } 1661 if( zStartAff ){ 1662 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); 1663 } 1664 nConstraint += nBtm; 1665 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1666 if( sqlite3ExprIsVector(pRight)==0 ){ 1667 disableTerm(pLevel, pRangeStart); 1668 }else{ 1669 startEq = 1; 1670 } 1671 bSeekPastNull = 0; 1672 }else if( bSeekPastNull ){ 1673 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1674 nConstraint++; 1675 startEq = 0; 1676 start_constraints = 1; 1677 } 1678 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1679 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ 1680 /* The skip-scan logic inside the call to codeAllEqualityConstraints() 1681 ** above has already left the cursor sitting on the correct row, 1682 ** so no further seeking is needed */ 1683 }else{ 1684 if( pLoop->wsFlags & WHERE_IN_EARLYOUT ){ 1685 sqlite3VdbeAddOp1(v, OP_SeekHit, iIdxCur); 1686 } 1687 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 1688 assert( op!=0 ); 1689 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1690 VdbeCoverage(v); 1691 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1692 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1693 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 1694 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1695 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1696 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 1697 } 1698 1699 /* Load the value for the inequality constraint at the end of the 1700 ** range (if any). 1701 */ 1702 nConstraint = nEq; 1703 if( pRangeEnd ){ 1704 Expr *pRight = pRangeEnd->pExpr->pRight; 1705 codeExprOrVector(pParse, pRight, regBase+nEq, nTop); 1706 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 1707 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 1708 && sqlite3ExprCanBeNull(pRight) 1709 ){ 1710 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1711 VdbeCoverage(v); 1712 } 1713 if( zEndAff ){ 1714 updateRangeAffinityStr(pRight, nTop, zEndAff); 1715 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); 1716 }else{ 1717 assert( pParse->db->mallocFailed ); 1718 } 1719 nConstraint += nTop; 1720 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 1721 1722 if( sqlite3ExprIsVector(pRight)==0 ){ 1723 disableTerm(pLevel, pRangeEnd); 1724 }else{ 1725 endEq = 1; 1726 } 1727 }else if( bStopAtNull ){ 1728 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1729 endEq = 0; 1730 nConstraint++; 1731 } 1732 sqlite3DbFree(db, zStartAff); 1733 sqlite3DbFree(db, zEndAff); 1734 1735 /* Top of the loop body */ 1736 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1737 1738 /* Check if the index cursor is past the end of the range. */ 1739 if( nConstraint ){ 1740 op = aEndOp[bRev*2 + endEq]; 1741 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1742 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1743 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1744 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1745 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1746 } 1747 1748 if( pLoop->wsFlags & WHERE_IN_EARLYOUT ){ 1749 sqlite3VdbeAddOp2(v, OP_SeekHit, iIdxCur, 1); 1750 } 1751 1752 /* Seek the table cursor, if required */ 1753 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 1754 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0; 1755 if( omitTable ){ 1756 /* pIdx is a covering index. No need to access the main table. */ 1757 }else if( HasRowid(pIdx->pTable) ){ 1758 if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE) || ( 1759 (pWInfo->wctrlFlags & WHERE_SEEK_UNIQ_TABLE) 1760 && (pWInfo->eOnePass==ONEPASS_SINGLE) 1761 )){ 1762 iRowidReg = ++pParse->nMem; 1763 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); 1764 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg); 1765 VdbeCoverage(v); 1766 }else{ 1767 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); 1768 } 1769 }else if( iCur!=iIdxCur ){ 1770 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1771 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1772 for(j=0; j<pPk->nKeyCol; j++){ 1773 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); 1774 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 1775 } 1776 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 1777 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 1778 } 1779 1780 /* If pIdx is an index on one or more expressions, then look through 1781 ** all the expressions in pWInfo and try to transform matching expressions 1782 ** into reference to index columns. 1783 ** 1784 ** Do not do this for the RHS of a LEFT JOIN. This is because the 1785 ** expression may be evaluated after OP_NullRow has been executed on 1786 ** the cursor. In this case it is important to do the full evaluation, 1787 ** as the result of the expression may not be NULL, even if all table 1788 ** column values are. https://www.sqlite.org/src/info/7fa8049685b50b5a 1789 ** 1790 ** Also, do not do this when processing one index an a multi-index 1791 ** OR clause, since the transformation will become invalid once we 1792 ** move forward to the next index. 1793 ** https://sqlite.org/src/info/4e8e4857d32d401f 1794 */ 1795 if( pLevel->iLeftJoin==0 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ 1796 whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo); 1797 } 1798 1799 /* If a partial index is driving the loop, try to eliminate WHERE clause 1800 ** terms from the query that must be true due to the WHERE clause of 1801 ** the partial index 1802 */ 1803 if( pIdx->pPartIdxWhere ){ 1804 whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC); 1805 } 1806 1807 /* Record the instruction used to terminate the loop. */ 1808 if( pLoop->wsFlags & WHERE_ONEROW ){ 1809 pLevel->op = OP_Noop; 1810 }else if( bRev ){ 1811 pLevel->op = OP_Prev; 1812 }else{ 1813 pLevel->op = OP_Next; 1814 } 1815 pLevel->p1 = iIdxCur; 1816 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 1817 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 1818 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 1819 }else{ 1820 assert( pLevel->p5==0 ); 1821 } 1822 if( omitTable ) pIdx = 0; 1823 }else 1824 1825 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 1826 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 1827 /* Case 5: Two or more separately indexed terms connected by OR 1828 ** 1829 ** Example: 1830 ** 1831 ** CREATE TABLE t1(a,b,c,d); 1832 ** CREATE INDEX i1 ON t1(a); 1833 ** CREATE INDEX i2 ON t1(b); 1834 ** CREATE INDEX i3 ON t1(c); 1835 ** 1836 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 1837 ** 1838 ** In the example, there are three indexed terms connected by OR. 1839 ** The top of the loop looks like this: 1840 ** 1841 ** Null 1 # Zero the rowset in reg 1 1842 ** 1843 ** Then, for each indexed term, the following. The arguments to 1844 ** RowSetTest are such that the rowid of the current row is inserted 1845 ** into the RowSet. If it is already present, control skips the 1846 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 1847 ** 1848 ** sqlite3WhereBegin(<term>) 1849 ** RowSetTest # Insert rowid into rowset 1850 ** Gosub 2 A 1851 ** sqlite3WhereEnd() 1852 ** 1853 ** Following the above, code to terminate the loop. Label A, the target 1854 ** of the Gosub above, jumps to the instruction right after the Goto. 1855 ** 1856 ** Null 1 # Zero the rowset in reg 1 1857 ** Goto B # The loop is finished. 1858 ** 1859 ** A: <loop body> # Return data, whatever. 1860 ** 1861 ** Return 2 # Jump back to the Gosub 1862 ** 1863 ** B: <after the loop> 1864 ** 1865 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 1866 ** use an ephemeral index instead of a RowSet to record the primary 1867 ** keys of the rows we have already seen. 1868 ** 1869 */ 1870 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 1871 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 1872 Index *pCov = 0; /* Potential covering index (or NULL) */ 1873 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 1874 1875 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 1876 int regRowset = 0; /* Register for RowSet object */ 1877 int regRowid = 0; /* Register holding rowid */ 1878 int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */ 1879 int iRetInit; /* Address of regReturn init */ 1880 int untestedTerms = 0; /* Some terms not completely tested */ 1881 int ii; /* Loop counter */ 1882 u16 wctrlFlags; /* Flags for sub-WHERE clause */ 1883 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 1884 Table *pTab = pTabItem->pTab; 1885 1886 pTerm = pLoop->aLTerm[0]; 1887 assert( pTerm!=0 ); 1888 assert( pTerm->eOperator & WO_OR ); 1889 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 1890 pOrWc = &pTerm->u.pOrInfo->wc; 1891 pLevel->op = OP_Return; 1892 pLevel->p1 = regReturn; 1893 1894 /* Set up a new SrcList in pOrTab containing the table being scanned 1895 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 1896 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 1897 */ 1898 if( pWInfo->nLevel>1 ){ 1899 int nNotReady; /* The number of notReady tables */ 1900 struct SrcList_item *origSrc; /* Original list of tables */ 1901 nNotReady = pWInfo->nLevel - iLevel - 1; 1902 pOrTab = sqlite3StackAllocRaw(db, 1903 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 1904 if( pOrTab==0 ) return notReady; 1905 pOrTab->nAlloc = (u8)(nNotReady + 1); 1906 pOrTab->nSrc = pOrTab->nAlloc; 1907 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 1908 origSrc = pWInfo->pTabList->a; 1909 for(k=1; k<=nNotReady; k++){ 1910 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 1911 } 1912 }else{ 1913 pOrTab = pWInfo->pTabList; 1914 } 1915 1916 /* Initialize the rowset register to contain NULL. An SQL NULL is 1917 ** equivalent to an empty rowset. Or, create an ephemeral index 1918 ** capable of holding primary keys in the case of a WITHOUT ROWID. 1919 ** 1920 ** Also initialize regReturn to contain the address of the instruction 1921 ** immediately following the OP_Return at the bottom of the loop. This 1922 ** is required in a few obscure LEFT JOIN cases where control jumps 1923 ** over the top of the loop into the body of it. In this case the 1924 ** correct response for the end-of-loop code (the OP_Return) is to 1925 ** fall through to the next instruction, just as an OP_Next does if 1926 ** called on an uninitialized cursor. 1927 */ 1928 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 1929 if( HasRowid(pTab) ){ 1930 regRowset = ++pParse->nMem; 1931 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 1932 }else{ 1933 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1934 regRowset = pParse->nTab++; 1935 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 1936 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 1937 } 1938 regRowid = ++pParse->nMem; 1939 } 1940 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 1941 1942 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 1943 ** Then for every term xN, evaluate as the subexpression: xN AND z 1944 ** That way, terms in y that are factored into the disjunction will 1945 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 1946 ** 1947 ** Actually, each subexpression is converted to "xN AND w" where w is 1948 ** the "interesting" terms of z - terms that did not originate in the 1949 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 1950 ** indices. 1951 ** 1952 ** This optimization also only applies if the (x1 OR x2 OR ...) term 1953 ** is not contained in the ON clause of a LEFT JOIN. 1954 ** See ticket http://www.sqlite.org/src/info/f2369304e4 1955 */ 1956 if( pWC->nTerm>1 ){ 1957 int iTerm; 1958 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 1959 Expr *pExpr = pWC->a[iTerm].pExpr; 1960 if( &pWC->a[iTerm] == pTerm ) continue; 1961 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); 1962 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); 1963 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue; 1964 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 1965 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); 1966 pExpr = sqlite3ExprDup(db, pExpr, 0); 1967 pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr); 1968 } 1969 if( pAndExpr ){ 1970 /* The extra 0x10000 bit on the opcode is masked off and does not 1971 ** become part of the new Expr.op. However, it does make the 1972 ** op==TK_AND comparison inside of sqlite3PExpr() false, and this 1973 ** prevents sqlite3PExpr() from implementing AND short-circuit 1974 ** optimization, which we do not want here. */ 1975 pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr); 1976 } 1977 } 1978 1979 /* Run a separate WHERE clause for each term of the OR clause. After 1980 ** eliminating duplicates from other WHERE clauses, the action for each 1981 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 1982 */ 1983 wctrlFlags = WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE); 1984 ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR")); 1985 for(ii=0; ii<pOrWc->nTerm; ii++){ 1986 WhereTerm *pOrTerm = &pOrWc->a[ii]; 1987 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 1988 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 1989 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 1990 int jmp1 = 0; /* Address of jump operation */ 1991 assert( (pTabItem[0].fg.jointype & JT_LEFT)==0 1992 || ExprHasProperty(pOrExpr, EP_FromJoin) 1993 ); 1994 if( pAndExpr ){ 1995 pAndExpr->pLeft = pOrExpr; 1996 pOrExpr = pAndExpr; 1997 } 1998 /* Loop through table entries that match term pOrTerm. */ 1999 ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1)); 2000 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 2001 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 2002 wctrlFlags, iCovCur); 2003 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); 2004 if( pSubWInfo ){ 2005 WhereLoop *pSubLoop; 2006 int addrExplain = sqlite3WhereExplainOneScan( 2007 pParse, pOrTab, &pSubWInfo->a[0], 0 2008 ); 2009 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 2010 2011 /* This is the sub-WHERE clause body. First skip over 2012 ** duplicate rows from prior sub-WHERE clauses, and record the 2013 ** rowid (or PRIMARY KEY) for the current row so that the same 2014 ** row will be skipped in subsequent sub-WHERE clauses. 2015 */ 2016 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2017 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 2018 if( HasRowid(pTab) ){ 2019 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid); 2020 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 2021 regRowid, iSet); 2022 VdbeCoverage(v); 2023 }else{ 2024 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2025 int nPk = pPk->nKeyCol; 2026 int iPk; 2027 int r; 2028 2029 /* Read the PK into an array of temp registers. */ 2030 r = sqlite3GetTempRange(pParse, nPk); 2031 for(iPk=0; iPk<nPk; iPk++){ 2032 int iCol = pPk->aiColumn[iPk]; 2033 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol, r+iPk); 2034 } 2035 2036 /* Check if the temp table already contains this key. If so, 2037 ** the row has already been included in the result set and 2038 ** can be ignored (by jumping past the Gosub below). Otherwise, 2039 ** insert the key into the temp table and proceed with processing 2040 ** the row. 2041 ** 2042 ** Use some of the same optimizations as OP_RowSetTest: If iSet 2043 ** is zero, assume that the key cannot already be present in 2044 ** the temp table. And if iSet is -1, assume that there is no 2045 ** need to insert the key into the temp table, as it will never 2046 ** be tested for. */ 2047 if( iSet ){ 2048 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 2049 VdbeCoverage(v); 2050 } 2051 if( iSet>=0 ){ 2052 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 2053 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid, 2054 r, nPk); 2055 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2056 } 2057 2058 /* Release the array of temp registers */ 2059 sqlite3ReleaseTempRange(pParse, r, nPk); 2060 } 2061 } 2062 2063 /* Invoke the main loop body as a subroutine */ 2064 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 2065 2066 /* Jump here (skipping the main loop body subroutine) if the 2067 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 2068 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 2069 2070 /* The pSubWInfo->untestedTerms flag means that this OR term 2071 ** contained one or more AND term from a notReady table. The 2072 ** terms from the notReady table could not be tested and will 2073 ** need to be tested later. 2074 */ 2075 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 2076 2077 /* If all of the OR-connected terms are optimized using the same 2078 ** index, and the index is opened using the same cursor number 2079 ** by each call to sqlite3WhereBegin() made by this loop, it may 2080 ** be possible to use that index as a covering index. 2081 ** 2082 ** If the call to sqlite3WhereBegin() above resulted in a scan that 2083 ** uses an index, and this is either the first OR-connected term 2084 ** processed or the index is the same as that used by all previous 2085 ** terms, set pCov to the candidate covering index. Otherwise, set 2086 ** pCov to NULL to indicate that no candidate covering index will 2087 ** be available. 2088 */ 2089 pSubLoop = pSubWInfo->a[0].pWLoop; 2090 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2091 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 2092 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 2093 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 2094 ){ 2095 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 2096 pCov = pSubLoop->u.btree.pIndex; 2097 }else{ 2098 pCov = 0; 2099 } 2100 2101 /* Finish the loop through table entries that match term pOrTerm. */ 2102 sqlite3WhereEnd(pSubWInfo); 2103 ExplainQueryPlanPop(pParse); 2104 } 2105 } 2106 } 2107 ExplainQueryPlanPop(pParse); 2108 pLevel->u.pCovidx = pCov; 2109 if( pCov ) pLevel->iIdxCur = iCovCur; 2110 if( pAndExpr ){ 2111 pAndExpr->pLeft = 0; 2112 sqlite3ExprDelete(db, pAndExpr); 2113 } 2114 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 2115 sqlite3VdbeGoto(v, pLevel->addrBrk); 2116 sqlite3VdbeResolveLabel(v, iLoopBody); 2117 2118 if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); } 2119 if( !untestedTerms ) disableTerm(pLevel, pTerm); 2120 }else 2121 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 2122 2123 { 2124 /* Case 6: There is no usable index. We must do a complete 2125 ** scan of the entire table. 2126 */ 2127 static const u8 aStep[] = { OP_Next, OP_Prev }; 2128 static const u8 aStart[] = { OP_Rewind, OP_Last }; 2129 assert( bRev==0 || bRev==1 ); 2130 if( pTabItem->fg.isRecursive ){ 2131 /* Tables marked isRecursive have only a single row that is stored in 2132 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 2133 pLevel->op = OP_Noop; 2134 }else{ 2135 codeCursorHint(pTabItem, pWInfo, pLevel, 0); 2136 pLevel->op = aStep[bRev]; 2137 pLevel->p1 = iCur; 2138 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt); 2139 VdbeCoverageIf(v, bRev==0); 2140 VdbeCoverageIf(v, bRev!=0); 2141 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2142 } 2143 } 2144 2145 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2146 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 2147 #endif 2148 2149 /* Insert code to test every subexpression that can be completely 2150 ** computed using the current set of tables. 2151 ** 2152 ** This loop may run between one and three times, depending on the 2153 ** constraints to be generated. The value of stack variable iLoop 2154 ** determines the constraints coded by each iteration, as follows: 2155 ** 2156 ** iLoop==1: Code only expressions that are entirely covered by pIdx. 2157 ** iLoop==2: Code remaining expressions that do not contain correlated 2158 ** sub-queries. 2159 ** iLoop==3: Code all remaining expressions. 2160 ** 2161 ** An effort is made to skip unnecessary iterations of the loop. 2162 */ 2163 iLoop = (pIdx ? 1 : 2); 2164 do{ 2165 int iNext = 0; /* Next value for iLoop */ 2166 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2167 Expr *pE; 2168 int skipLikeAddr = 0; 2169 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2170 testcase( pTerm->wtFlags & TERM_CODED ); 2171 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2172 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2173 testcase( pWInfo->untestedTerms==0 2174 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); 2175 pWInfo->untestedTerms = 1; 2176 continue; 2177 } 2178 pE = pTerm->pExpr; 2179 assert( pE!=0 ); 2180 if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){ 2181 continue; 2182 } 2183 2184 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){ 2185 iNext = 2; 2186 continue; 2187 } 2188 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){ 2189 if( iNext==0 ) iNext = 3; 2190 continue; 2191 } 2192 2193 if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){ 2194 /* If the TERM_LIKECOND flag is set, that means that the range search 2195 ** is sufficient to guarantee that the LIKE operator is true, so we 2196 ** can skip the call to the like(A,B) function. But this only works 2197 ** for strings. So do not skip the call to the function on the pass 2198 ** that compares BLOBs. */ 2199 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 2200 continue; 2201 #else 2202 u32 x = pLevel->iLikeRepCntr; 2203 if( x>0 ){ 2204 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1)); 2205 VdbeCoverageIf(v, (x&1)==1); 2206 VdbeCoverageIf(v, (x&1)==0); 2207 } 2208 #endif 2209 } 2210 #ifdef WHERETRACE_ENABLED /* 0xffff */ 2211 if( sqlite3WhereTrace ){ 2212 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d", 2213 pWC->nTerm-j, pTerm, iLoop)); 2214 } 2215 #endif 2216 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 2217 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 2218 pTerm->wtFlags |= TERM_CODED; 2219 } 2220 iLoop = iNext; 2221 }while( iLoop>0 ); 2222 2223 /* Insert code to test for implied constraints based on transitivity 2224 ** of the "==" operator. 2225 ** 2226 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 2227 ** and we are coding the t1 loop and the t2 loop has not yet coded, 2228 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 2229 ** the implied "t1.a=123" constraint. 2230 */ 2231 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2232 Expr *pE, sEAlt; 2233 WhereTerm *pAlt; 2234 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2235 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 2236 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 2237 if( pTerm->leftCursor!=iCur ) continue; 2238 if( pLevel->iLeftJoin ) continue; 2239 pE = pTerm->pExpr; 2240 assert( !ExprHasProperty(pE, EP_FromJoin) ); 2241 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 2242 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady, 2243 WO_EQ|WO_IN|WO_IS, 0); 2244 if( pAlt==0 ) continue; 2245 if( pAlt->wtFlags & (TERM_CODED) ) continue; 2246 if( (pAlt->eOperator & WO_IN) 2247 && (pAlt->pExpr->flags & EP_xIsSelect) 2248 && (pAlt->pExpr->x.pSelect->pEList->nExpr>1) 2249 ){ 2250 continue; 2251 } 2252 testcase( pAlt->eOperator & WO_EQ ); 2253 testcase( pAlt->eOperator & WO_IS ); 2254 testcase( pAlt->eOperator & WO_IN ); 2255 VdbeModuleComment((v, "begin transitive constraint")); 2256 sEAlt = *pAlt->pExpr; 2257 sEAlt.pLeft = pE->pLeft; 2258 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); 2259 } 2260 2261 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2262 ** at least one row of the right table has matched the left table. 2263 */ 2264 if( pLevel->iLeftJoin ){ 2265 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2266 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2267 VdbeComment((v, "record LEFT JOIN hit")); 2268 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 2269 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2270 testcase( pTerm->wtFlags & TERM_CODED ); 2271 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2272 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2273 assert( pWInfo->untestedTerms ); 2274 continue; 2275 } 2276 assert( pTerm->pExpr ); 2277 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 2278 pTerm->wtFlags |= TERM_CODED; 2279 } 2280 } 2281 2282 return pLevel->notReady; 2283 } 2284