xref: /sqlite-3.40.0/src/wherecode.c (revision ec778d27)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 
25 /*
26 ** Return the name of the i-th column of the pIdx index.
27 */
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29   i = pIdx->aiColumn[i];
30   if( i==XN_EXPR ) return "<expr>";
31   if( i==XN_ROWID ) return "rowid";
32   return pIdx->pTable->aCol[i].zCnName;
33 }
34 
35 /*
36 ** This routine is a helper for explainIndexRange() below
37 **
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time.  This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
42 */
43 static void explainAppendTerm(
44   StrAccum *pStr,             /* The text expression being built */
45   Index *pIdx,                /* Index to read column names from */
46   int nTerm,                  /* Number of terms */
47   int iTerm,                  /* Zero-based index of first term. */
48   int bAnd,                   /* Non-zero to append " AND " */
49   const char *zOp             /* Name of the operator */
50 ){
51   int i;
52 
53   assert( nTerm>=1 );
54   if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
55 
56   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
57   for(i=0; i<nTerm; i++){
58     if( i ) sqlite3_str_append(pStr, ",", 1);
59     sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
60   }
61   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
62 
63   sqlite3_str_append(pStr, zOp, 1);
64 
65   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
66   for(i=0; i<nTerm; i++){
67     if( i ) sqlite3_str_append(pStr, ",", 1);
68     sqlite3_str_append(pStr, "?", 1);
69   }
70   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
71 }
72 
73 /*
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
77 **
78 ** For example, if the query:
79 **
80 **   SELECT * FROM t1 WHERE a=1 AND b>2;
81 **
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
84 **
85 **   "a=? AND b>?"
86 */
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88   Index *pIndex = pLoop->u.btree.pIndex;
89   u16 nEq = pLoop->u.btree.nEq;
90   u16 nSkip = pLoop->nSkip;
91   int i, j;
92 
93   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94   sqlite3_str_append(pStr, " (", 2);
95   for(i=0; i<nEq; i++){
96     const char *z = explainIndexColumnName(pIndex, i);
97     if( i ) sqlite3_str_append(pStr, " AND ", 5);
98     sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
99   }
100 
101   j = i;
102   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104     i = 1;
105   }
106   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
108   }
109   sqlite3_str_append(pStr, ")", 1);
110 }
111 
112 /*
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
117 **
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
120 */
121 int sqlite3WhereExplainOneScan(
122   Parse *pParse,                  /* Parse context */
123   SrcList *pTabList,              /* Table list this loop refers to */
124   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
125   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
126 ){
127   int ret = 0;
128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
129   if( sqlite3ParseToplevel(pParse)->explain==2 )
130 #endif
131   {
132     SrcItem *pItem = &pTabList->a[pLevel->iFrom];
133     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
134     sqlite3 *db = pParse->db;     /* Database handle */
135     int isSearch;                 /* True for a SEARCH. False for SCAN. */
136     WhereLoop *pLoop;             /* The controlling WhereLoop object */
137     u32 flags;                    /* Flags that describe this loop */
138     char *zMsg;                   /* Text to add to EQP output */
139     StrAccum str;                 /* EQP output string */
140     char zBuf[100];               /* Initial space for EQP output string */
141 
142     pLoop = pLevel->pWLoop;
143     flags = pLoop->wsFlags;
144     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
145 
146     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
147             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
148             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
149 
150     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
151     str.printfFlags = SQLITE_PRINTF_INTERNAL;
152     sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem);
153     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
154       const char *zFmt = 0;
155       Index *pIdx;
156 
157       assert( pLoop->u.btree.pIndex!=0 );
158       pIdx = pLoop->u.btree.pIndex;
159       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
160       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
161         if( isSearch ){
162           zFmt = "PRIMARY KEY";
163         }
164       }else if( flags & WHERE_PARTIALIDX ){
165         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
166       }else if( flags & WHERE_AUTO_INDEX ){
167         zFmt = "AUTOMATIC COVERING INDEX";
168       }else if( flags & WHERE_IDX_ONLY ){
169         zFmt = "COVERING INDEX %s";
170       }else{
171         zFmt = "INDEX %s";
172       }
173       if( zFmt ){
174         sqlite3_str_append(&str, " USING ", 7);
175         sqlite3_str_appendf(&str, zFmt, pIdx->zName);
176         explainIndexRange(&str, pLoop);
177       }
178     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
179       char cRangeOp;
180 #if 0  /* Better output, but breaks many tests */
181       const Table *pTab = pItem->pTab;
182       const char *zRowid = pTab->iPKey>=0 ? pTab->aCol[pTab->iPKey].zCnName:
183                               "rowid";
184 #else
185       const char *zRowid = "rowid";
186 #endif
187       sqlite3_str_appendf(&str, " USING INTEGER PRIMARY KEY (%s", zRowid);
188       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
189         cRangeOp = '=';
190       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
191         sqlite3_str_appendf(&str, ">? AND %s", zRowid);
192         cRangeOp = '<';
193       }else if( flags&WHERE_BTM_LIMIT ){
194         cRangeOp = '>';
195       }else{
196         assert( flags&WHERE_TOP_LIMIT);
197         cRangeOp = '<';
198       }
199       sqlite3_str_appendf(&str, "%c?)", cRangeOp);
200     }
201 #ifndef SQLITE_OMIT_VIRTUALTABLE
202     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
203       sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
204                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
205     }
206 #endif
207 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
208     if( pLoop->nOut>=10 ){
209       sqlite3_str_appendf(&str, " (~%llu rows)",
210              sqlite3LogEstToInt(pLoop->nOut));
211     }else{
212       sqlite3_str_append(&str, " (~1 row)", 9);
213     }
214 #endif
215     zMsg = sqlite3StrAccumFinish(&str);
216     sqlite3ExplainBreakpoint("",zMsg);
217     ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
218                             pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
219   }
220   return ret;
221 }
222 
223 /*
224 ** Add a single OP_Explain opcode that describes a Bloom filter.
225 **
226 ** Or if not processing EXPLAIN QUERY PLAN and not in a SQLITE_DEBUG and/or
227 ** SQLITE_ENABLE_STMT_SCANSTATUS build, then OP_Explain opcodes are not
228 ** required and this routine is a no-op.
229 **
230 ** If an OP_Explain opcode is added to the VM, its address is returned.
231 ** Otherwise, if no OP_Explain is coded, zero is returned.
232 */
233 int sqlite3WhereExplainBloomFilter(
234   const Parse *pParse,               /* Parse context */
235   const WhereInfo *pWInfo,           /* WHERE clause */
236   const WhereLevel *pLevel           /* Bloom filter on this level */
237 ){
238   int ret = 0;
239   SrcItem *pItem = &pWInfo->pTabList->a[pLevel->iFrom];
240   Vdbe *v = pParse->pVdbe;      /* VM being constructed */
241   sqlite3 *db = pParse->db;     /* Database handle */
242   char *zMsg;                   /* Text to add to EQP output */
243   int i;                        /* Loop counter */
244   WhereLoop *pLoop;             /* The where loop */
245   StrAccum str;                 /* EQP output string */
246   char zBuf[100];               /* Initial space for EQP output string */
247 
248   sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
249   str.printfFlags = SQLITE_PRINTF_INTERNAL;
250   sqlite3_str_appendf(&str, "BLOOM FILTER ON %S (", pItem);
251   pLoop = pLevel->pWLoop;
252   if( pLoop->wsFlags & WHERE_IPK ){
253     const Table *pTab = pItem->pTab;
254     if( pTab->iPKey>=0 ){
255       sqlite3_str_appendf(&str, "%s=?", pTab->aCol[pTab->iPKey].zCnName);
256     }else{
257       sqlite3_str_appendf(&str, "rowid=?");
258     }
259   }else{
260     for(i=pLoop->nSkip; i<pLoop->u.btree.nEq; i++){
261       const char *z = explainIndexColumnName(pLoop->u.btree.pIndex, i);
262       if( i>pLoop->nSkip ) sqlite3_str_append(&str, " AND ", 5);
263       sqlite3_str_appendf(&str, "%s=?", z);
264     }
265   }
266   sqlite3_str_append(&str, ")", 1);
267   zMsg = sqlite3StrAccumFinish(&str);
268   ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
269                           pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
270   return ret;
271 }
272 #endif /* SQLITE_OMIT_EXPLAIN */
273 
274 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
275 /*
276 ** Configure the VM passed as the first argument with an
277 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
278 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
279 ** clause that the scan reads data from.
280 **
281 ** If argument addrExplain is not 0, it must be the address of an
282 ** OP_Explain instruction that describes the same loop.
283 */
284 void sqlite3WhereAddScanStatus(
285   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
286   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
287   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
288   int addrExplain                 /* Address of OP_Explain (or 0) */
289 ){
290   const char *zObj = 0;
291   WhereLoop *pLoop = pLvl->pWLoop;
292   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
293     zObj = pLoop->u.btree.pIndex->zName;
294   }else{
295     zObj = pSrclist->a[pLvl->iFrom].zName;
296   }
297   sqlite3VdbeScanStatus(
298       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
299   );
300 }
301 #endif
302 
303 
304 /*
305 ** Disable a term in the WHERE clause.  Except, do not disable the term
306 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
307 ** or USING clause of that join.
308 **
309 ** Consider the term t2.z='ok' in the following queries:
310 **
311 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
312 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
313 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
314 **
315 ** The t2.z='ok' is disabled in the in (2) because it originates
316 ** in the ON clause.  The term is disabled in (3) because it is not part
317 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
318 **
319 ** Disabling a term causes that term to not be tested in the inner loop
320 ** of the join.  Disabling is an optimization.  When terms are satisfied
321 ** by indices, we disable them to prevent redundant tests in the inner
322 ** loop.  We would get the correct results if nothing were ever disabled,
323 ** but joins might run a little slower.  The trick is to disable as much
324 ** as we can without disabling too much.  If we disabled in (1), we'd get
325 ** the wrong answer.  See ticket #813.
326 **
327 ** If all the children of a term are disabled, then that term is also
328 ** automatically disabled.  In this way, terms get disabled if derived
329 ** virtual terms are tested first.  For example:
330 **
331 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
332 **      \___________/     \______/     \_____/
333 **         parent          child1       child2
334 **
335 ** Only the parent term was in the original WHERE clause.  The child1
336 ** and child2 terms were added by the LIKE optimization.  If both of
337 ** the virtual child terms are valid, then testing of the parent can be
338 ** skipped.
339 **
340 ** Usually the parent term is marked as TERM_CODED.  But if the parent
341 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
342 ** The TERM_LIKECOND marking indicates that the term should be coded inside
343 ** a conditional such that is only evaluated on the second pass of a
344 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
345 */
346 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
347   int nLoop = 0;
348   assert( pTerm!=0 );
349   while( (pTerm->wtFlags & TERM_CODED)==0
350       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
351       && (pLevel->notReady & pTerm->prereqAll)==0
352   ){
353     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
354       pTerm->wtFlags |= TERM_LIKECOND;
355     }else{
356       pTerm->wtFlags |= TERM_CODED;
357     }
358 #ifdef WHERETRACE_ENABLED
359     if( sqlite3WhereTrace & 0x20000 ){
360       sqlite3DebugPrintf("DISABLE-");
361       sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a)));
362     }
363 #endif
364     if( pTerm->iParent<0 ) break;
365     pTerm = &pTerm->pWC->a[pTerm->iParent];
366     assert( pTerm!=0 );
367     pTerm->nChild--;
368     if( pTerm->nChild!=0 ) break;
369     nLoop++;
370   }
371 }
372 
373 /*
374 ** Code an OP_Affinity opcode to apply the column affinity string zAff
375 ** to the n registers starting at base.
376 **
377 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
378 ** are no-ops) at the beginning and end of zAff are ignored.  If all entries
379 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
380 **
381 ** This routine makes its own copy of zAff so that the caller is free
382 ** to modify zAff after this routine returns.
383 */
384 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
385   Vdbe *v = pParse->pVdbe;
386   if( zAff==0 ){
387     assert( pParse->db->mallocFailed );
388     return;
389   }
390   assert( v!=0 );
391 
392   /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
393   ** entries at the beginning and end of the affinity string.
394   */
395   assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB );
396   while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){
397     n--;
398     base++;
399     zAff++;
400   }
401   while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){
402     n--;
403   }
404 
405   /* Code the OP_Affinity opcode if there is anything left to do. */
406   if( n>0 ){
407     sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
408   }
409 }
410 
411 /*
412 ** Expression pRight, which is the RHS of a comparison operation, is
413 ** either a vector of n elements or, if n==1, a scalar expression.
414 ** Before the comparison operation, affinity zAff is to be applied
415 ** to the pRight values. This function modifies characters within the
416 ** affinity string to SQLITE_AFF_BLOB if either:
417 **
418 **   * the comparison will be performed with no affinity, or
419 **   * the affinity change in zAff is guaranteed not to change the value.
420 */
421 static void updateRangeAffinityStr(
422   Expr *pRight,                   /* RHS of comparison */
423   int n,                          /* Number of vector elements in comparison */
424   char *zAff                      /* Affinity string to modify */
425 ){
426   int i;
427   for(i=0; i<n; i++){
428     Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
429     if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
430      || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
431     ){
432       zAff[i] = SQLITE_AFF_BLOB;
433     }
434   }
435 }
436 
437 
438 /*
439 ** pX is an expression of the form:  (vector) IN (SELECT ...)
440 ** In other words, it is a vector IN operator with a SELECT clause on the
441 ** LHS.  But not all terms in the vector are indexable and the terms might
442 ** not be in the correct order for indexing.
443 **
444 ** This routine makes a copy of the input pX expression and then adjusts
445 ** the vector on the LHS with corresponding changes to the SELECT so that
446 ** the vector contains only index terms and those terms are in the correct
447 ** order.  The modified IN expression is returned.  The caller is responsible
448 ** for deleting the returned expression.
449 **
450 ** Example:
451 **
452 **    CREATE TABLE t1(a,b,c,d,e,f);
453 **    CREATE INDEX t1x1 ON t1(e,c);
454 **    SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
455 **                           \_______________________________________/
456 **                                     The pX expression
457 **
458 ** Since only columns e and c can be used with the index, in that order,
459 ** the modified IN expression that is returned will be:
460 **
461 **        (e,c) IN (SELECT z,x FROM t2)
462 **
463 ** The reduced pX is different from the original (obviously) and thus is
464 ** only used for indexing, to improve performance.  The original unaltered
465 ** IN expression must also be run on each output row for correctness.
466 */
467 static Expr *removeUnindexableInClauseTerms(
468   Parse *pParse,        /* The parsing context */
469   int iEq,              /* Look at loop terms starting here */
470   WhereLoop *pLoop,     /* The current loop */
471   Expr *pX              /* The IN expression to be reduced */
472 ){
473   sqlite3 *db = pParse->db;
474   Expr *pNew;
475   pNew = sqlite3ExprDup(db, pX, 0);
476   if( db->mallocFailed==0 ){
477     ExprList *pOrigRhs;         /* Original unmodified RHS */
478     ExprList *pOrigLhs;         /* Original unmodified LHS */
479     ExprList *pRhs = 0;         /* New RHS after modifications */
480     ExprList *pLhs = 0;         /* New LHS after mods */
481     int i;                      /* Loop counter */
482     Select *pSelect;            /* Pointer to the SELECT on the RHS */
483 
484     assert( ExprUseXSelect(pNew) );
485     pOrigRhs = pNew->x.pSelect->pEList;
486     assert( pNew->pLeft!=0 );
487     assert( ExprUseXList(pNew->pLeft) );
488     pOrigLhs = pNew->pLeft->x.pList;
489     for(i=iEq; i<pLoop->nLTerm; i++){
490       if( pLoop->aLTerm[i]->pExpr==pX ){
491         int iField;
492         assert( (pLoop->aLTerm[i]->eOperator & (WO_OR|WO_AND))==0 );
493         iField = pLoop->aLTerm[i]->u.x.iField - 1;
494         if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
495         pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
496         pOrigRhs->a[iField].pExpr = 0;
497         assert( pOrigLhs->a[iField].pExpr!=0 );
498         pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
499         pOrigLhs->a[iField].pExpr = 0;
500       }
501     }
502     sqlite3ExprListDelete(db, pOrigRhs);
503     sqlite3ExprListDelete(db, pOrigLhs);
504     pNew->pLeft->x.pList = pLhs;
505     pNew->x.pSelect->pEList = pRhs;
506     if( pLhs && pLhs->nExpr==1 ){
507       /* Take care here not to generate a TK_VECTOR containing only a
508       ** single value. Since the parser never creates such a vector, some
509       ** of the subroutines do not handle this case.  */
510       Expr *p = pLhs->a[0].pExpr;
511       pLhs->a[0].pExpr = 0;
512       sqlite3ExprDelete(db, pNew->pLeft);
513       pNew->pLeft = p;
514     }
515     pSelect = pNew->x.pSelect;
516     if( pSelect->pOrderBy ){
517       /* If the SELECT statement has an ORDER BY clause, zero the
518       ** iOrderByCol variables. These are set to non-zero when an
519       ** ORDER BY term exactly matches one of the terms of the
520       ** result-set. Since the result-set of the SELECT statement may
521       ** have been modified or reordered, these variables are no longer
522       ** set correctly.  Since setting them is just an optimization,
523       ** it's easiest just to zero them here.  */
524       ExprList *pOrderBy = pSelect->pOrderBy;
525       for(i=0; i<pOrderBy->nExpr; i++){
526         pOrderBy->a[i].u.x.iOrderByCol = 0;
527       }
528     }
529 
530 #if 0
531     printf("For indexing, change the IN expr:\n");
532     sqlite3TreeViewExpr(0, pX, 0);
533     printf("Into:\n");
534     sqlite3TreeViewExpr(0, pNew, 0);
535 #endif
536   }
537   return pNew;
538 }
539 
540 
541 /*
542 ** Generate code for a single equality term of the WHERE clause.  An equality
543 ** term can be either X=expr or X IN (...).   pTerm is the term to be
544 ** coded.
545 **
546 ** The current value for the constraint is left in a register, the index
547 ** of which is returned.  An attempt is made store the result in iTarget but
548 ** this is only guaranteed for TK_ISNULL and TK_IN constraints.  If the
549 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
550 ** some other register and it is the caller's responsibility to compensate.
551 **
552 ** For a constraint of the form X=expr, the expression is evaluated in
553 ** straight-line code.  For constraints of the form X IN (...)
554 ** this routine sets up a loop that will iterate over all values of X.
555 */
556 static int codeEqualityTerm(
557   Parse *pParse,      /* The parsing context */
558   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
559   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
560   int iEq,            /* Index of the equality term within this level */
561   int bRev,           /* True for reverse-order IN operations */
562   int iTarget         /* Attempt to leave results in this register */
563 ){
564   Expr *pX = pTerm->pExpr;
565   Vdbe *v = pParse->pVdbe;
566   int iReg;                  /* Register holding results */
567 
568   assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
569   assert( iTarget>0 );
570   if( pX->op==TK_EQ || pX->op==TK_IS ){
571     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
572   }else if( pX->op==TK_ISNULL ){
573     iReg = iTarget;
574     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
575 #ifndef SQLITE_OMIT_SUBQUERY
576   }else{
577     int eType = IN_INDEX_NOOP;
578     int iTab;
579     struct InLoop *pIn;
580     WhereLoop *pLoop = pLevel->pWLoop;
581     int i;
582     int nEq = 0;
583     int *aiMap = 0;
584 
585     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
586       && pLoop->u.btree.pIndex!=0
587       && pLoop->u.btree.pIndex->aSortOrder[iEq]
588     ){
589       testcase( iEq==0 );
590       testcase( bRev );
591       bRev = !bRev;
592     }
593     assert( pX->op==TK_IN );
594     iReg = iTarget;
595 
596     for(i=0; i<iEq; i++){
597       if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
598         disableTerm(pLevel, pTerm);
599         return iTarget;
600       }
601     }
602     for(i=iEq;i<pLoop->nLTerm; i++){
603       assert( pLoop->aLTerm[i]!=0 );
604       if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
605     }
606 
607     iTab = 0;
608     if( !ExprUseXSelect(pX) || pX->x.pSelect->pEList->nExpr==1 ){
609       eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab);
610     }else{
611       sqlite3 *db = pParse->db;
612       pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
613 
614       if( !db->mallocFailed ){
615         aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
616         eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab);
617         pTerm->pExpr->iTable = iTab;
618       }
619       sqlite3ExprDelete(db, pX);
620       pX = pTerm->pExpr;
621     }
622 
623     if( eType==IN_INDEX_INDEX_DESC ){
624       testcase( bRev );
625       bRev = !bRev;
626     }
627     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
628     VdbeCoverageIf(v, bRev);
629     VdbeCoverageIf(v, !bRev);
630 
631     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
632     pLoop->wsFlags |= WHERE_IN_ABLE;
633     if( pLevel->u.in.nIn==0 ){
634       pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
635     }
636     if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){
637       pLoop->wsFlags |= WHERE_IN_EARLYOUT;
638     }
639 
640     i = pLevel->u.in.nIn;
641     pLevel->u.in.nIn += nEq;
642     pLevel->u.in.aInLoop =
643        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
644                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
645     pIn = pLevel->u.in.aInLoop;
646     if( pIn ){
647       int iMap = 0;               /* Index in aiMap[] */
648       pIn += i;
649       for(i=iEq;i<pLoop->nLTerm; i++){
650         if( pLoop->aLTerm[i]->pExpr==pX ){
651           int iOut = iReg + i - iEq;
652           if( eType==IN_INDEX_ROWID ){
653             pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
654           }else{
655             int iCol = aiMap ? aiMap[iMap++] : 0;
656             pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
657           }
658           sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
659           if( i==iEq ){
660             pIn->iCur = iTab;
661             pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
662             if( iEq>0 ){
663               pIn->iBase = iReg - i;
664               pIn->nPrefix = i;
665             }else{
666               pIn->nPrefix = 0;
667             }
668           }else{
669             pIn->eEndLoopOp = OP_Noop;
670           }
671           pIn++;
672         }
673       }
674       testcase( iEq>0
675                 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
676                 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 );
677       if( iEq>0
678        && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0
679       ){
680         sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq);
681       }
682     }else{
683       pLevel->u.in.nIn = 0;
684     }
685     sqlite3DbFree(pParse->db, aiMap);
686 #endif
687   }
688 
689   /* As an optimization, try to disable the WHERE clause term that is
690   ** driving the index as it will always be true.  The correct answer is
691   ** obtained regardless, but we might get the answer with fewer CPU cycles
692   ** by omitting the term.
693   **
694   ** But do not disable the term unless we are certain that the term is
695   ** not a transitive constraint.  For an example of where that does not
696   ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04)
697   */
698   if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0
699    || (pTerm->eOperator & WO_EQUIV)==0
700   ){
701     disableTerm(pLevel, pTerm);
702   }
703 
704   return iReg;
705 }
706 
707 /*
708 ** Generate code that will evaluate all == and IN constraints for an
709 ** index scan.
710 **
711 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
712 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
713 ** The index has as many as three equality constraints, but in this
714 ** example, the third "c" value is an inequality.  So only two
715 ** constraints are coded.  This routine will generate code to evaluate
716 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
717 ** in consecutive registers and the index of the first register is returned.
718 **
719 ** In the example above nEq==2.  But this subroutine works for any value
720 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
721 ** The only thing it does is allocate the pLevel->iMem memory cell and
722 ** compute the affinity string.
723 **
724 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
725 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
726 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
727 ** occurs after the nEq quality constraints.
728 **
729 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
730 ** the index of the first memory cell in that range. The code that
731 ** calls this routine will use that memory range to store keys for
732 ** start and termination conditions of the loop.
733 ** key value of the loop.  If one or more IN operators appear, then
734 ** this routine allocates an additional nEq memory cells for internal
735 ** use.
736 **
737 ** Before returning, *pzAff is set to point to a buffer containing a
738 ** copy of the column affinity string of the index allocated using
739 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
740 ** with equality constraints that use BLOB or NONE affinity are set to
741 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
742 **
743 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
744 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
745 **
746 ** In the example above, the index on t1(a) has TEXT affinity. But since
747 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
748 ** no conversion should be attempted before using a t2.b value as part of
749 ** a key to search the index. Hence the first byte in the returned affinity
750 ** string in this example would be set to SQLITE_AFF_BLOB.
751 */
752 static int codeAllEqualityTerms(
753   Parse *pParse,        /* Parsing context */
754   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
755   int bRev,             /* Reverse the order of IN operators */
756   int nExtraReg,        /* Number of extra registers to allocate */
757   char **pzAff          /* OUT: Set to point to affinity string */
758 ){
759   u16 nEq;                      /* The number of == or IN constraints to code */
760   u16 nSkip;                    /* Number of left-most columns to skip */
761   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
762   Index *pIdx;                  /* The index being used for this loop */
763   WhereTerm *pTerm;             /* A single constraint term */
764   WhereLoop *pLoop;             /* The WhereLoop object */
765   int j;                        /* Loop counter */
766   int regBase;                  /* Base register */
767   int nReg;                     /* Number of registers to allocate */
768   char *zAff;                   /* Affinity string to return */
769 
770   /* This module is only called on query plans that use an index. */
771   pLoop = pLevel->pWLoop;
772   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
773   nEq = pLoop->u.btree.nEq;
774   nSkip = pLoop->nSkip;
775   pIdx = pLoop->u.btree.pIndex;
776   assert( pIdx!=0 );
777 
778   /* Figure out how many memory cells we will need then allocate them.
779   */
780   regBase = pParse->nMem + 1;
781   nReg = pLoop->u.btree.nEq + nExtraReg;
782   pParse->nMem += nReg;
783 
784   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
785   assert( zAff!=0 || pParse->db->mallocFailed );
786 
787   if( nSkip ){
788     int iIdxCur = pLevel->iIdxCur;
789     sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1);
790     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
791     VdbeCoverageIf(v, bRev==0);
792     VdbeCoverageIf(v, bRev!=0);
793     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
794     j = sqlite3VdbeAddOp0(v, OP_Goto);
795     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
796                             iIdxCur, 0, regBase, nSkip);
797     VdbeCoverageIf(v, bRev==0);
798     VdbeCoverageIf(v, bRev!=0);
799     sqlite3VdbeJumpHere(v, j);
800     for(j=0; j<nSkip; j++){
801       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
802       testcase( pIdx->aiColumn[j]==XN_EXPR );
803       VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
804     }
805   }
806 
807   /* Evaluate the equality constraints
808   */
809   assert( zAff==0 || (int)strlen(zAff)>=nEq );
810   for(j=nSkip; j<nEq; j++){
811     int r1;
812     pTerm = pLoop->aLTerm[j];
813     assert( pTerm!=0 );
814     /* The following testcase is true for indices with redundant columns.
815     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
816     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
817     testcase( pTerm->wtFlags & TERM_VIRTUAL );
818     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
819     if( r1!=regBase+j ){
820       if( nReg==1 ){
821         sqlite3ReleaseTempReg(pParse, regBase);
822         regBase = r1;
823       }else{
824         sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j);
825       }
826     }
827   }
828   for(j=nSkip; j<nEq; j++){
829     pTerm = pLoop->aLTerm[j];
830     if( pTerm->eOperator & WO_IN ){
831       if( pTerm->pExpr->flags & EP_xIsSelect ){
832         /* No affinity ever needs to be (or should be) applied to a value
833         ** from the RHS of an "? IN (SELECT ...)" expression. The
834         ** sqlite3FindInIndex() routine has already ensured that the
835         ** affinity of the comparison has been applied to the value.  */
836         if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
837       }
838     }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
839       Expr *pRight = pTerm->pExpr->pRight;
840       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
841         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
842         VdbeCoverage(v);
843       }
844       if( pParse->db->mallocFailed==0 && pParse->nErr==0 ){
845         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
846           zAff[j] = SQLITE_AFF_BLOB;
847         }
848         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
849           zAff[j] = SQLITE_AFF_BLOB;
850         }
851       }
852     }
853   }
854   *pzAff = zAff;
855   return regBase;
856 }
857 
858 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
859 /*
860 ** If the most recently coded instruction is a constant range constraint
861 ** (a string literal) that originated from the LIKE optimization, then
862 ** set P3 and P5 on the OP_String opcode so that the string will be cast
863 ** to a BLOB at appropriate times.
864 **
865 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
866 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
867 ** scan loop run twice, once for strings and a second time for BLOBs.
868 ** The OP_String opcodes on the second pass convert the upper and lower
869 ** bound string constants to blobs.  This routine makes the necessary changes
870 ** to the OP_String opcodes for that to happen.
871 **
872 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
873 ** only the one pass through the string space is required, so this routine
874 ** becomes a no-op.
875 */
876 static void whereLikeOptimizationStringFixup(
877   Vdbe *v,                /* prepared statement under construction */
878   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
879   WhereTerm *pTerm        /* The upper or lower bound just coded */
880 ){
881   if( pTerm->wtFlags & TERM_LIKEOPT ){
882     VdbeOp *pOp;
883     assert( pLevel->iLikeRepCntr>0 );
884     pOp = sqlite3VdbeGetOp(v, -1);
885     assert( pOp!=0 );
886     assert( pOp->opcode==OP_String8
887             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
888     pOp->p3 = (int)(pLevel->iLikeRepCntr>>1);  /* Register holding counter */
889     pOp->p5 = (u8)(pLevel->iLikeRepCntr&1);    /* ASC or DESC */
890   }
891 }
892 #else
893 # define whereLikeOptimizationStringFixup(A,B,C)
894 #endif
895 
896 #ifdef SQLITE_ENABLE_CURSOR_HINTS
897 /*
898 ** Information is passed from codeCursorHint() down to individual nodes of
899 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
900 ** structure.
901 */
902 struct CCurHint {
903   int iTabCur;    /* Cursor for the main table */
904   int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
905   Index *pIdx;    /* The index used to access the table */
906 };
907 
908 /*
909 ** This function is called for every node of an expression that is a candidate
910 ** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
911 ** the table CCurHint.iTabCur, verify that the same column can be
912 ** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
913 */
914 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
915   struct CCurHint *pHint = pWalker->u.pCCurHint;
916   assert( pHint->pIdx!=0 );
917   if( pExpr->op==TK_COLUMN
918    && pExpr->iTable==pHint->iTabCur
919    && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0
920   ){
921     pWalker->eCode = 1;
922   }
923   return WRC_Continue;
924 }
925 
926 /*
927 ** Test whether or not expression pExpr, which was part of a WHERE clause,
928 ** should be included in the cursor-hint for a table that is on the rhs
929 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
930 ** expression is not suitable.
931 **
932 ** An expression is unsuitable if it might evaluate to non NULL even if
933 ** a TK_COLUMN node that does affect the value of the expression is set
934 ** to NULL. For example:
935 **
936 **   col IS NULL
937 **   col IS NOT NULL
938 **   coalesce(col, 1)
939 **   CASE WHEN col THEN 0 ELSE 1 END
940 */
941 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
942   if( pExpr->op==TK_IS
943    || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
944    || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
945   ){
946     pWalker->eCode = 1;
947   }else if( pExpr->op==TK_FUNCTION ){
948     int d1;
949     char d2[4];
950     if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
951       pWalker->eCode = 1;
952     }
953   }
954 
955   return WRC_Continue;
956 }
957 
958 
959 /*
960 ** This function is called on every node of an expression tree used as an
961 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
962 ** that accesses any table other than the one identified by
963 ** CCurHint.iTabCur, then do the following:
964 **
965 **   1) allocate a register and code an OP_Column instruction to read
966 **      the specified column into the new register, and
967 **
968 **   2) transform the expression node to a TK_REGISTER node that reads
969 **      from the newly populated register.
970 **
971 ** Also, if the node is a TK_COLUMN that does access the table idenified
972 ** by pCCurHint.iTabCur, and an index is being used (which we will
973 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
974 ** an access of the index rather than the original table.
975 */
976 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
977   int rc = WRC_Continue;
978   struct CCurHint *pHint = pWalker->u.pCCurHint;
979   if( pExpr->op==TK_COLUMN ){
980     if( pExpr->iTable!=pHint->iTabCur ){
981       int reg = ++pWalker->pParse->nMem;   /* Register for column value */
982       sqlite3ExprCode(pWalker->pParse, pExpr, reg);
983       pExpr->op = TK_REGISTER;
984       pExpr->iTable = reg;
985     }else if( pHint->pIdx!=0 ){
986       pExpr->iTable = pHint->iIdxCur;
987       pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn);
988       assert( pExpr->iColumn>=0 );
989     }
990   }else if( pExpr->op==TK_AGG_FUNCTION ){
991     /* An aggregate function in the WHERE clause of a query means this must
992     ** be a correlated sub-query, and expression pExpr is an aggregate from
993     ** the parent context. Do not walk the function arguments in this case.
994     **
995     ** todo: It should be possible to replace this node with a TK_REGISTER
996     ** expression, as the result of the expression must be stored in a
997     ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
998     rc = WRC_Prune;
999   }
1000   return rc;
1001 }
1002 
1003 /*
1004 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
1005 */
1006 static void codeCursorHint(
1007   SrcItem *pTabItem,  /* FROM clause item */
1008   WhereInfo *pWInfo,    /* The where clause */
1009   WhereLevel *pLevel,   /* Which loop to provide hints for */
1010   WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
1011 ){
1012   Parse *pParse = pWInfo->pParse;
1013   sqlite3 *db = pParse->db;
1014   Vdbe *v = pParse->pVdbe;
1015   Expr *pExpr = 0;
1016   WhereLoop *pLoop = pLevel->pWLoop;
1017   int iCur;
1018   WhereClause *pWC;
1019   WhereTerm *pTerm;
1020   int i, j;
1021   struct CCurHint sHint;
1022   Walker sWalker;
1023 
1024   if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
1025   iCur = pLevel->iTabCur;
1026   assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
1027   sHint.iTabCur = iCur;
1028   sHint.iIdxCur = pLevel->iIdxCur;
1029   sHint.pIdx = pLoop->u.btree.pIndex;
1030   memset(&sWalker, 0, sizeof(sWalker));
1031   sWalker.pParse = pParse;
1032   sWalker.u.pCCurHint = &sHint;
1033   pWC = &pWInfo->sWC;
1034   for(i=0; i<pWC->nBase; i++){
1035     pTerm = &pWC->a[i];
1036     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1037     if( pTerm->prereqAll & pLevel->notReady ) continue;
1038 
1039     /* Any terms specified as part of the ON(...) clause for any LEFT
1040     ** JOIN for which the current table is not the rhs are omitted
1041     ** from the cursor-hint.
1042     **
1043     ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
1044     ** that were specified as part of the WHERE clause must be excluded.
1045     ** This is to address the following:
1046     **
1047     **   SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
1048     **
1049     ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
1050     ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
1051     ** pushed down to the cursor, this row is filtered out, causing
1052     ** SQLite to synthesize a row of NULL values. Which does match the
1053     ** WHERE clause, and so the query returns a row. Which is incorrect.
1054     **
1055     ** For the same reason, WHERE terms such as:
1056     **
1057     **   WHERE 1 = (t2.c IS NULL)
1058     **
1059     ** are also excluded. See codeCursorHintIsOrFunction() for details.
1060     */
1061     if( pTabItem->fg.jointype & JT_LEFT ){
1062       Expr *pExpr = pTerm->pExpr;
1063       if( !ExprHasProperty(pExpr, EP_FromJoin)
1064        || pExpr->iRightJoinTable!=pTabItem->iCursor
1065       ){
1066         sWalker.eCode = 0;
1067         sWalker.xExprCallback = codeCursorHintIsOrFunction;
1068         sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1069         if( sWalker.eCode ) continue;
1070       }
1071     }else{
1072       if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
1073     }
1074 
1075     /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
1076     ** the cursor.  These terms are not needed as hints for a pure range
1077     ** scan (that has no == terms) so omit them. */
1078     if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
1079       for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
1080       if( j<pLoop->nLTerm ) continue;
1081     }
1082 
1083     /* No subqueries or non-deterministic functions allowed */
1084     if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
1085 
1086     /* For an index scan, make sure referenced columns are actually in
1087     ** the index. */
1088     if( sHint.pIdx!=0 ){
1089       sWalker.eCode = 0;
1090       sWalker.xExprCallback = codeCursorHintCheckExpr;
1091       sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1092       if( sWalker.eCode ) continue;
1093     }
1094 
1095     /* If we survive all prior tests, that means this term is worth hinting */
1096     pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
1097   }
1098   if( pExpr!=0 ){
1099     sWalker.xExprCallback = codeCursorHintFixExpr;
1100     sqlite3WalkExpr(&sWalker, pExpr);
1101     sqlite3VdbeAddOp4(v, OP_CursorHint,
1102                       (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
1103                       (const char*)pExpr, P4_EXPR);
1104   }
1105 }
1106 #else
1107 # define codeCursorHint(A,B,C,D)  /* No-op */
1108 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1109 
1110 /*
1111 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1112 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1113 ** function generates code to do a deferred seek of cursor iCur to the
1114 ** rowid stored in register iRowid.
1115 **
1116 ** Normally, this is just:
1117 **
1118 **   OP_DeferredSeek $iCur $iRowid
1119 **
1120 ** However, if the scan currently being coded is a branch of an OR-loop and
1121 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek
1122 ** is set to iIdxCur and P4 is set to point to an array of integers
1123 ** containing one entry for each column of the table cursor iCur is open
1124 ** on. For each table column, if the column is the i'th column of the
1125 ** index, then the corresponding array entry is set to (i+1). If the column
1126 ** does not appear in the index at all, the array entry is set to 0.
1127 */
1128 static void codeDeferredSeek(
1129   WhereInfo *pWInfo,              /* Where clause context */
1130   Index *pIdx,                    /* Index scan is using */
1131   int iCur,                       /* Cursor for IPK b-tree */
1132   int iIdxCur                     /* Index cursor */
1133 ){
1134   Parse *pParse = pWInfo->pParse; /* Parse context */
1135   Vdbe *v = pParse->pVdbe;        /* Vdbe to generate code within */
1136 
1137   assert( iIdxCur>0 );
1138   assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1139 
1140   pWInfo->bDeferredSeek = 1;
1141   sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1142   if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1143    && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1144   ){
1145     int i;
1146     Table *pTab = pIdx->pTable;
1147     u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1));
1148     if( ai ){
1149       ai[0] = pTab->nCol;
1150       for(i=0; i<pIdx->nColumn-1; i++){
1151         int x1, x2;
1152         assert( pIdx->aiColumn[i]<pTab->nCol );
1153         x1 = pIdx->aiColumn[i];
1154         x2 = sqlite3TableColumnToStorage(pTab, x1);
1155         testcase( x1!=x2 );
1156         if( x1>=0 ) ai[x2+1] = i+1;
1157       }
1158       sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1159     }
1160   }
1161 }
1162 
1163 /*
1164 ** If the expression passed as the second argument is a vector, generate
1165 ** code to write the first nReg elements of the vector into an array
1166 ** of registers starting with iReg.
1167 **
1168 ** If the expression is not a vector, then nReg must be passed 1. In
1169 ** this case, generate code to evaluate the expression and leave the
1170 ** result in register iReg.
1171 */
1172 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1173   assert( nReg>0 );
1174   if( p && sqlite3ExprIsVector(p) ){
1175 #ifndef SQLITE_OMIT_SUBQUERY
1176     if( ExprUseXSelect(p) ){
1177       Vdbe *v = pParse->pVdbe;
1178       int iSelect;
1179       assert( p->op==TK_SELECT );
1180       iSelect = sqlite3CodeSubselect(pParse, p);
1181       sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1182     }else
1183 #endif
1184     {
1185       int i;
1186       const ExprList *pList;
1187       assert( ExprUseXList(p) );
1188       pList = p->x.pList;
1189       assert( nReg<=pList->nExpr );
1190       for(i=0; i<nReg; i++){
1191         sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1192       }
1193     }
1194   }else{
1195     assert( nReg==1 || pParse->nErr );
1196     sqlite3ExprCode(pParse, p, iReg);
1197   }
1198 }
1199 
1200 /* An instance of the IdxExprTrans object carries information about a
1201 ** mapping from an expression on table columns into a column in an index
1202 ** down through the Walker.
1203 */
1204 typedef struct IdxExprTrans {
1205   Expr *pIdxExpr;    /* The index expression */
1206   int iTabCur;       /* The cursor of the corresponding table */
1207   int iIdxCur;       /* The cursor for the index */
1208   int iIdxCol;       /* The column for the index */
1209   int iTabCol;       /* The column for the table */
1210   WhereInfo *pWInfo; /* Complete WHERE clause information */
1211   sqlite3 *db;       /* Database connection (for malloc()) */
1212 } IdxExprTrans;
1213 
1214 /*
1215 ** Preserve pExpr on the WhereETrans list of the WhereInfo.
1216 */
1217 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){
1218   WhereExprMod *pNew;
1219   pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew));
1220   if( pNew==0 ) return;
1221   pNew->pNext = pTrans->pWInfo->pExprMods;
1222   pTrans->pWInfo->pExprMods = pNew;
1223   pNew->pExpr = pExpr;
1224   memcpy(&pNew->orig, pExpr, sizeof(*pExpr));
1225 }
1226 
1227 /* The walker node callback used to transform matching expressions into
1228 ** a reference to an index column for an index on an expression.
1229 **
1230 ** If pExpr matches, then transform it into a reference to the index column
1231 ** that contains the value of pExpr.
1232 */
1233 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1234   IdxExprTrans *pX = p->u.pIdxTrans;
1235   if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1236     preserveExpr(pX, pExpr);
1237     pExpr->affExpr = sqlite3ExprAffinity(pExpr);
1238     pExpr->op = TK_COLUMN;
1239     pExpr->iTable = pX->iIdxCur;
1240     pExpr->iColumn = pX->iIdxCol;
1241     testcase( ExprHasProperty(pExpr, EP_Skip) );
1242     testcase( ExprHasProperty(pExpr, EP_Unlikely) );
1243     ExprClearProperty(pExpr, EP_Skip|EP_Unlikely|EP_WinFunc|EP_Subrtn);
1244     pExpr->y.pTab = 0;
1245     return WRC_Prune;
1246   }else{
1247     return WRC_Continue;
1248   }
1249 }
1250 
1251 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1252 /* A walker node callback that translates a column reference to a table
1253 ** into a corresponding column reference of an index.
1254 */
1255 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){
1256   if( pExpr->op==TK_COLUMN ){
1257     IdxExprTrans *pX = p->u.pIdxTrans;
1258     if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){
1259       assert( ExprUseYTab(pExpr) && pExpr->y.pTab!=0 );
1260       preserveExpr(pX, pExpr);
1261       pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn);
1262       pExpr->iTable = pX->iIdxCur;
1263       pExpr->iColumn = pX->iIdxCol;
1264       pExpr->y.pTab = 0;
1265     }
1266   }
1267   return WRC_Continue;
1268 }
1269 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1270 
1271 /*
1272 ** For an indexes on expression X, locate every instance of expression X
1273 ** in pExpr and change that subexpression into a reference to the appropriate
1274 ** column of the index.
1275 **
1276 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in
1277 ** the table into references to the corresponding (stored) column of the
1278 ** index.
1279 */
1280 static void whereIndexExprTrans(
1281   Index *pIdx,      /* The Index */
1282   int iTabCur,      /* Cursor of the table that is being indexed */
1283   int iIdxCur,      /* Cursor of the index itself */
1284   WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1285 ){
1286   int iIdxCol;               /* Column number of the index */
1287   ExprList *aColExpr;        /* Expressions that are indexed */
1288   Table *pTab;
1289   Walker w;
1290   IdxExprTrans x;
1291   aColExpr = pIdx->aColExpr;
1292   if( aColExpr==0 && !pIdx->bHasVCol ){
1293     /* The index does not reference any expressions or virtual columns
1294     ** so no translations are needed. */
1295     return;
1296   }
1297   pTab = pIdx->pTable;
1298   memset(&w, 0, sizeof(w));
1299   w.u.pIdxTrans = &x;
1300   x.iTabCur = iTabCur;
1301   x.iIdxCur = iIdxCur;
1302   x.pWInfo = pWInfo;
1303   x.db = pWInfo->pParse->db;
1304   for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){
1305     i16 iRef = pIdx->aiColumn[iIdxCol];
1306     if( iRef==XN_EXPR ){
1307       assert( aColExpr!=0 && aColExpr->a[iIdxCol].pExpr!=0 );
1308       x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1309       if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue;
1310       w.xExprCallback = whereIndexExprTransNode;
1311 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1312     }else if( iRef>=0
1313        && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0
1314        && ((pTab->aCol[iRef].colFlags & COLFLAG_HASCOLL)==0
1315            || sqlite3StrICmp(sqlite3ColumnColl(&pTab->aCol[iRef]),
1316                                                sqlite3StrBINARY)==0)
1317     ){
1318       /* Check to see if there are direct references to generated columns
1319       ** that are contained in the index.  Pulling the generated column
1320       ** out of the index is an optimization only - the main table is always
1321       ** available if the index cannot be used.  To avoid unnecessary
1322       ** complication, omit this optimization if the collating sequence for
1323       ** the column is non-standard */
1324       x.iTabCol = iRef;
1325       w.xExprCallback = whereIndexExprTransColumn;
1326 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1327     }else{
1328       continue;
1329     }
1330     x.iIdxCol = iIdxCol;
1331     sqlite3WalkExpr(&w, pWInfo->pWhere);
1332     sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1333     sqlite3WalkExprList(&w, pWInfo->pResultSet);
1334   }
1335 }
1336 
1337 /*
1338 ** The pTruth expression is always true because it is the WHERE clause
1339 ** a partial index that is driving a query loop.  Look through all of the
1340 ** WHERE clause terms on the query, and if any of those terms must be
1341 ** true because pTruth is true, then mark those WHERE clause terms as
1342 ** coded.
1343 */
1344 static void whereApplyPartialIndexConstraints(
1345   Expr *pTruth,
1346   int iTabCur,
1347   WhereClause *pWC
1348 ){
1349   int i;
1350   WhereTerm *pTerm;
1351   while( pTruth->op==TK_AND ){
1352     whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC);
1353     pTruth = pTruth->pRight;
1354   }
1355   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1356     Expr *pExpr;
1357     if( pTerm->wtFlags & TERM_CODED ) continue;
1358     pExpr = pTerm->pExpr;
1359     if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){
1360       pTerm->wtFlags |= TERM_CODED;
1361     }
1362   }
1363 }
1364 
1365 /*
1366 ** This routine is called right after An OP_Filter has been generated and
1367 ** before the corresponding index search has been performed.  This routine
1368 ** checks to see if there are additional Bloom filters in inner loops that
1369 ** can be checked prior to doing the index lookup.  If there are available
1370 ** inner-loop Bloom filters, then evaluate those filters now, before the
1371 ** index lookup.  The idea is that a Bloom filter check is way faster than
1372 ** an index lookup, and the Bloom filter might return false, meaning that
1373 ** the index lookup can be skipped.
1374 **
1375 ** We know that an inner loop uses a Bloom filter because it has the
1376 ** WhereLevel.regFilter set.  If an inner-loop Bloom filter is checked,
1377 ** then clear the WhereLevel.regFilter value to prevent the Bloom filter
1378 ** from being checked a second time when the inner loop is evaluated.
1379 */
1380 static SQLITE_NOINLINE void filterPullDown(
1381   Parse *pParse,       /* Parsing context */
1382   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1383   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1384   int addrNxt,         /* Jump here to bypass inner loops */
1385   Bitmask notReady     /* Loops that are not ready */
1386 ){
1387   while( ++iLevel < pWInfo->nLevel ){
1388     WhereLevel *pLevel = &pWInfo->a[iLevel];
1389     WhereLoop *pLoop = pLevel->pWLoop;
1390     if( pLevel->regFilter==0 ) continue;
1391     /*         ,--- Because sqlite3ConstructBloomFilter() has will not have set
1392     **  vvvvv--'    pLevel->regFilter if this were true. */
1393     if( NEVER(pLoop->prereq & notReady) ) continue;
1394     if( pLoop->wsFlags & WHERE_IPK ){
1395       WhereTerm *pTerm = pLoop->aLTerm[0];
1396       int regRowid;
1397       assert( pTerm!=0 );
1398       assert( pTerm->pExpr!=0 );
1399       testcase( pTerm->wtFlags & TERM_VIRTUAL );
1400       regRowid = sqlite3GetTempReg(pParse);
1401       regRowid = codeEqualityTerm(pParse, pTerm, pLevel, 0, 0, regRowid);
1402       sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter,
1403                            addrNxt, regRowid, 1);
1404       VdbeCoverage(pParse->pVdbe);
1405     }else{
1406       u16 nEq = pLoop->u.btree.nEq;
1407       int r1;
1408       char *zStartAff;
1409 
1410       assert( pLoop->wsFlags & WHERE_INDEXED );
1411       assert( (pLoop->wsFlags & WHERE_COLUMN_IN)==0 );
1412       r1 = codeAllEqualityTerms(pParse,pLevel,0,0,&zStartAff);
1413       codeApplyAffinity(pParse, r1, nEq, zStartAff);
1414       sqlite3DbFree(pParse->db, zStartAff);
1415       sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter,
1416                            addrNxt, r1, nEq);
1417       VdbeCoverage(pParse->pVdbe);
1418     }
1419     pLevel->regFilter = 0;
1420   }
1421 }
1422 
1423 /*
1424 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1425 ** implementation described by pWInfo.
1426 */
1427 Bitmask sqlite3WhereCodeOneLoopStart(
1428   Parse *pParse,       /* Parsing context */
1429   Vdbe *v,             /* Prepared statement under construction */
1430   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1431   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1432   WhereLevel *pLevel,  /* The current level pointer */
1433   Bitmask notReady     /* Which tables are currently available */
1434 ){
1435   int j, k;            /* Loop counters */
1436   int iCur;            /* The VDBE cursor for the table */
1437   int addrNxt;         /* Where to jump to continue with the next IN case */
1438   int bRev;            /* True if we need to scan in reverse order */
1439   WhereLoop *pLoop;    /* The WhereLoop object being coded */
1440   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
1441   WhereTerm *pTerm;               /* A WHERE clause term */
1442   sqlite3 *db;                    /* Database connection */
1443   SrcItem *pTabItem;              /* FROM clause term being coded */
1444   int addrBrk;                    /* Jump here to break out of the loop */
1445   int addrHalt;                   /* addrBrk for the outermost loop */
1446   int addrCont;                   /* Jump here to continue with next cycle */
1447   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
1448   int iReleaseReg = 0;      /* Temp register to free before returning */
1449   Index *pIdx = 0;          /* Index used by loop (if any) */
1450   int iLoop;                /* Iteration of constraint generator loop */
1451 
1452   pWC = &pWInfo->sWC;
1453   db = pParse->db;
1454   pLoop = pLevel->pWLoop;
1455   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1456   iCur = pTabItem->iCursor;
1457   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1458   bRev = (pWInfo->revMask>>iLevel)&1;
1459   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1460 #if WHERETRACE_ENABLED /* 0x20800 */
1461   if( sqlite3WhereTrace & 0x800 ){
1462     sqlite3DebugPrintf("Coding level %d of %d:  notReady=%llx  iFrom=%d\n",
1463        iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom);
1464     sqlite3WhereLoopPrint(pLoop, pWC);
1465   }
1466   if( sqlite3WhereTrace & 0x20000 ){
1467     if( iLevel==0 ){
1468       sqlite3DebugPrintf("WHERE clause being coded:\n");
1469       sqlite3TreeViewExpr(0, pWInfo->pWhere, 0);
1470     }
1471     sqlite3DebugPrintf("All WHERE-clause terms before coding:\n");
1472     sqlite3WhereClausePrint(pWC);
1473   }
1474 #endif
1475 
1476   /* Create labels for the "break" and "continue" instructions
1477   ** for the current loop.  Jump to addrBrk to break out of a loop.
1478   ** Jump to cont to go immediately to the next iteration of the
1479   ** loop.
1480   **
1481   ** When there is an IN operator, we also have a "addrNxt" label that
1482   ** means to continue with the next IN value combination.  When
1483   ** there are no IN operators in the constraints, the "addrNxt" label
1484   ** is the same as "addrBrk".
1485   */
1486   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
1487   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse);
1488 
1489   /* If this is the right table of a LEFT OUTER JOIN, allocate and
1490   ** initialize a memory cell that records if this table matches any
1491   ** row of the left table of the join.
1492   */
1493   assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1494        || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
1495   );
1496   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1497     pLevel->iLeftJoin = ++pParse->nMem;
1498     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1499     VdbeComment((v, "init LEFT JOIN no-match flag"));
1500   }
1501 
1502   /* Compute a safe address to jump to if we discover that the table for
1503   ** this loop is empty and can never contribute content. */
1504   for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){}
1505   addrHalt = pWInfo->a[j].addrBrk;
1506 
1507   /* Special case of a FROM clause subquery implemented as a co-routine */
1508   if( pTabItem->fg.viaCoroutine ){
1509     int regYield = pTabItem->regReturn;
1510     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1511     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1512     VdbeCoverage(v);
1513     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
1514     pLevel->op = OP_Goto;
1515   }else
1516 
1517 #ifndef SQLITE_OMIT_VIRTUALTABLE
1518   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1519     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
1520     **          to access the data.
1521     */
1522     int iReg;   /* P3 Value for OP_VFilter */
1523     int addrNotFound;
1524     int nConstraint = pLoop->nLTerm;
1525     int iIn;    /* Counter for IN constraints */
1526 
1527     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1528     addrNotFound = pLevel->addrBrk;
1529     for(j=0; j<nConstraint; j++){
1530       int iTarget = iReg+j+2;
1531       pTerm = pLoop->aLTerm[j];
1532       if( NEVER(pTerm==0) ) continue;
1533       if( pTerm->eOperator & WO_IN ){
1534         codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1535         addrNotFound = pLevel->addrNxt;
1536       }else{
1537         Expr *pRight = pTerm->pExpr->pRight;
1538         codeExprOrVector(pParse, pRight, iTarget, 1);
1539       }
1540     }
1541     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1542     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1543     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1544                       pLoop->u.vtab.idxStr,
1545                       pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1546     VdbeCoverage(v);
1547     pLoop->u.vtab.needFree = 0;
1548     /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed
1549     ** the u.vtab.idxStr.  NULL it out to prevent a use-after-free */
1550     if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0;
1551     pLevel->p1 = iCur;
1552     pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1553     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1554     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
1555     if( pLoop->wsFlags & WHERE_IN_ABLE ){
1556       iIn = pLevel->u.in.nIn;
1557     }else{
1558       iIn = 0;
1559     }
1560     for(j=nConstraint-1; j>=0; j--){
1561       pTerm = pLoop->aLTerm[j];
1562       if( (pTerm->eOperator & WO_IN)!=0 ) iIn--;
1563       if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1564         disableTerm(pLevel, pTerm);
1565       }else if( (pTerm->eOperator & WO_IN)!=0
1566         && sqlite3ExprVectorSize(pTerm->pExpr->pLeft)==1
1567       ){
1568         Expr *pCompare;  /* The comparison operator */
1569         Expr *pRight;    /* RHS of the comparison */
1570         VdbeOp *pOp;     /* Opcode to access the value of the IN constraint */
1571 
1572         /* Reload the constraint value into reg[iReg+j+2].  The same value
1573         ** was loaded into the same register prior to the OP_VFilter, but
1574         ** the xFilter implementation might have changed the datatype or
1575         ** encoding of the value in the register, so it *must* be reloaded. */
1576         assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed );
1577         if( !db->mallocFailed ){
1578           assert( iIn>=0 && iIn<pLevel->u.in.nIn );
1579           pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop);
1580           assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid );
1581           assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 );
1582           assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 );
1583           testcase( pOp->opcode==OP_Rowid );
1584           sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1585         }
1586 
1587         /* Generate code that will continue to the next row if
1588         ** the IN constraint is not satisfied */
1589         pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1590         assert( pCompare!=0 || db->mallocFailed );
1591         if( pCompare ){
1592           pCompare->pLeft = pTerm->pExpr->pLeft;
1593           pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1594           if( pRight ){
1595             pRight->iTable = iReg+j+2;
1596             sqlite3ExprIfFalse(
1597                 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL
1598             );
1599           }
1600           pCompare->pLeft = 0;
1601           sqlite3ExprDelete(db, pCompare);
1602         }
1603       }
1604     }
1605     assert( iIn==0 || db->mallocFailed );
1606     /* These registers need to be preserved in case there is an IN operator
1607     ** loop.  So we could deallocate the registers here (and potentially
1608     ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0.  But it seems
1609     ** simpler and safer to simply not reuse the registers.
1610     **
1611     **    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1612     */
1613   }else
1614 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1615 
1616   if( (pLoop->wsFlags & WHERE_IPK)!=0
1617    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1618   ){
1619     /* Case 2:  We can directly reference a single row using an
1620     **          equality comparison against the ROWID field.  Or
1621     **          we reference multiple rows using a "rowid IN (...)"
1622     **          construct.
1623     */
1624     assert( pLoop->u.btree.nEq==1 );
1625     pTerm = pLoop->aLTerm[0];
1626     assert( pTerm!=0 );
1627     assert( pTerm->pExpr!=0 );
1628     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1629     iReleaseReg = ++pParse->nMem;
1630     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1631     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1632     addrNxt = pLevel->addrNxt;
1633     if( pLevel->regFilter ){
1634       sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt,
1635                            iRowidReg, 1);
1636       VdbeCoverage(v);
1637       filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady);
1638     }
1639     sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1640     VdbeCoverage(v);
1641     pLevel->op = OP_Noop;
1642   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1643          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1644   ){
1645     /* Case 3:  We have an inequality comparison against the ROWID field.
1646     */
1647     int testOp = OP_Noop;
1648     int start;
1649     int memEndValue = 0;
1650     WhereTerm *pStart, *pEnd;
1651 
1652     j = 0;
1653     pStart = pEnd = 0;
1654     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1655     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1656     assert( pStart!=0 || pEnd!=0 );
1657     if( bRev ){
1658       pTerm = pStart;
1659       pStart = pEnd;
1660       pEnd = pTerm;
1661     }
1662     codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1663     if( pStart ){
1664       Expr *pX;             /* The expression that defines the start bound */
1665       int r1, rTemp;        /* Registers for holding the start boundary */
1666       int op;               /* Cursor seek operation */
1667 
1668       /* The following constant maps TK_xx codes into corresponding
1669       ** seek opcodes.  It depends on a particular ordering of TK_xx
1670       */
1671       const u8 aMoveOp[] = {
1672            /* TK_GT */  OP_SeekGT,
1673            /* TK_LE */  OP_SeekLE,
1674            /* TK_LT */  OP_SeekLT,
1675            /* TK_GE */  OP_SeekGE
1676       };
1677       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
1678       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
1679       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
1680 
1681       assert( (pStart->wtFlags & TERM_VNULL)==0 );
1682       testcase( pStart->wtFlags & TERM_VIRTUAL );
1683       pX = pStart->pExpr;
1684       assert( pX!=0 );
1685       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1686       if( sqlite3ExprIsVector(pX->pRight) ){
1687         r1 = rTemp = sqlite3GetTempReg(pParse);
1688         codeExprOrVector(pParse, pX->pRight, r1, 1);
1689         testcase( pX->op==TK_GT );
1690         testcase( pX->op==TK_GE );
1691         testcase( pX->op==TK_LT );
1692         testcase( pX->op==TK_LE );
1693         op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
1694         assert( pX->op!=TK_GT || op==OP_SeekGE );
1695         assert( pX->op!=TK_GE || op==OP_SeekGE );
1696         assert( pX->op!=TK_LT || op==OP_SeekLE );
1697         assert( pX->op!=TK_LE || op==OP_SeekLE );
1698       }else{
1699         r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1700         disableTerm(pLevel, pStart);
1701         op = aMoveOp[(pX->op - TK_GT)];
1702       }
1703       sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1704       VdbeComment((v, "pk"));
1705       VdbeCoverageIf(v, pX->op==TK_GT);
1706       VdbeCoverageIf(v, pX->op==TK_LE);
1707       VdbeCoverageIf(v, pX->op==TK_LT);
1708       VdbeCoverageIf(v, pX->op==TK_GE);
1709       sqlite3ReleaseTempReg(pParse, rTemp);
1710     }else{
1711       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1712       VdbeCoverageIf(v, bRev==0);
1713       VdbeCoverageIf(v, bRev!=0);
1714     }
1715     if( pEnd ){
1716       Expr *pX;
1717       pX = pEnd->pExpr;
1718       assert( pX!=0 );
1719       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1720       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1721       testcase( pEnd->wtFlags & TERM_VIRTUAL );
1722       memEndValue = ++pParse->nMem;
1723       codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1724       if( 0==sqlite3ExprIsVector(pX->pRight)
1725        && (pX->op==TK_LT || pX->op==TK_GT)
1726       ){
1727         testOp = bRev ? OP_Le : OP_Ge;
1728       }else{
1729         testOp = bRev ? OP_Lt : OP_Gt;
1730       }
1731       if( 0==sqlite3ExprIsVector(pX->pRight) ){
1732         disableTerm(pLevel, pEnd);
1733       }
1734     }
1735     start = sqlite3VdbeCurrentAddr(v);
1736     pLevel->op = bRev ? OP_Prev : OP_Next;
1737     pLevel->p1 = iCur;
1738     pLevel->p2 = start;
1739     assert( pLevel->p5==0 );
1740     if( testOp!=OP_Noop ){
1741       iRowidReg = ++pParse->nMem;
1742       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1743       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1744       VdbeCoverageIf(v, testOp==OP_Le);
1745       VdbeCoverageIf(v, testOp==OP_Lt);
1746       VdbeCoverageIf(v, testOp==OP_Ge);
1747       VdbeCoverageIf(v, testOp==OP_Gt);
1748       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1749     }
1750   }else if( pLoop->wsFlags & WHERE_INDEXED ){
1751     /* Case 4: A scan using an index.
1752     **
1753     **         The WHERE clause may contain zero or more equality
1754     **         terms ("==" or "IN" operators) that refer to the N
1755     **         left-most columns of the index. It may also contain
1756     **         inequality constraints (>, <, >= or <=) on the indexed
1757     **         column that immediately follows the N equalities. Only
1758     **         the right-most column can be an inequality - the rest must
1759     **         use the "==" and "IN" operators. For example, if the
1760     **         index is on (x,y,z), then the following clauses are all
1761     **         optimized:
1762     **
1763     **            x=5
1764     **            x=5 AND y=10
1765     **            x=5 AND y<10
1766     **            x=5 AND y>5 AND y<10
1767     **            x=5 AND y=5 AND z<=10
1768     **
1769     **         The z<10 term of the following cannot be used, only
1770     **         the x=5 term:
1771     **
1772     **            x=5 AND z<10
1773     **
1774     **         N may be zero if there are inequality constraints.
1775     **         If there are no inequality constraints, then N is at
1776     **         least one.
1777     **
1778     **         This case is also used when there are no WHERE clause
1779     **         constraints but an index is selected anyway, in order
1780     **         to force the output order to conform to an ORDER BY.
1781     */
1782     static const u8 aStartOp[] = {
1783       0,
1784       0,
1785       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
1786       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
1787       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
1788       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
1789       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
1790       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
1791     };
1792     static const u8 aEndOp[] = {
1793       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
1794       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
1795       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
1796       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
1797     };
1798     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
1799     u16 nBtm = pLoop->u.btree.nBtm;   /* Length of BTM vector */
1800     u16 nTop = pLoop->u.btree.nTop;   /* Length of TOP vector */
1801     int regBase;                 /* Base register holding constraint values */
1802     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
1803     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
1804     int startEq;                 /* True if range start uses ==, >= or <= */
1805     int endEq;                   /* True if range end uses ==, >= or <= */
1806     int start_constraints;       /* Start of range is constrained */
1807     int nConstraint;             /* Number of constraint terms */
1808     int iIdxCur;                 /* The VDBE cursor for the index */
1809     int nExtraReg = 0;           /* Number of extra registers needed */
1810     int op;                      /* Instruction opcode */
1811     char *zStartAff;             /* Affinity for start of range constraint */
1812     char *zEndAff = 0;           /* Affinity for end of range constraint */
1813     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
1814     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
1815     int omitTable;               /* True if we use the index only */
1816     int regBignull = 0;          /* big-null flag register */
1817     int addrSeekScan = 0;        /* Opcode of the OP_SeekScan, if any */
1818 
1819     pIdx = pLoop->u.btree.pIndex;
1820     iIdxCur = pLevel->iIdxCur;
1821     assert( nEq>=pLoop->nSkip );
1822 
1823     /* Find any inequality constraint terms for the start and end
1824     ** of the range.
1825     */
1826     j = nEq;
1827     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1828       pRangeStart = pLoop->aLTerm[j++];
1829       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1830       /* Like optimization range constraints always occur in pairs */
1831       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1832               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1833     }
1834     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1835       pRangeEnd = pLoop->aLTerm[j++];
1836       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1837 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1838       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1839         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
1840         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
1841         pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1842         sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1843         VdbeComment((v, "LIKE loop counter"));
1844         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1845         /* iLikeRepCntr actually stores 2x the counter register number.  The
1846         ** bottom bit indicates whether the search order is ASC or DESC. */
1847         testcase( bRev );
1848         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1849         assert( (bRev & ~1)==0 );
1850         pLevel->iLikeRepCntr <<=1;
1851         pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1852       }
1853 #endif
1854       if( pRangeStart==0 ){
1855         j = pIdx->aiColumn[nEq];
1856         if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1857           bSeekPastNull = 1;
1858         }
1859       }
1860     }
1861     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1862 
1863     /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
1864     ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
1865     ** FIRST). In both cases separate ordered scans are made of those
1866     ** index entries for which the column is null and for those for which
1867     ** it is not. For an ASC sort, the non-NULL entries are scanned first.
1868     ** For DESC, NULL entries are scanned first.
1869     */
1870     if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0
1871      && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0
1872     ){
1873       assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 );
1874       assert( pRangeEnd==0 && pRangeStart==0 );
1875       testcase( pLoop->nSkip>0 );
1876       nExtraReg = 1;
1877       bSeekPastNull = 1;
1878       pLevel->regBignull = regBignull = ++pParse->nMem;
1879       if( pLevel->iLeftJoin ){
1880         sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull);
1881       }
1882       pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse);
1883     }
1884 
1885     /* If we are doing a reverse order scan on an ascending index, or
1886     ** a forward order scan on a descending index, interchange the
1887     ** start and end terms (pRangeStart and pRangeEnd).
1888     */
1889     if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){
1890       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1891       SWAP(u8, bSeekPastNull, bStopAtNull);
1892       SWAP(u8, nBtm, nTop);
1893     }
1894 
1895     if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){
1896       /* In case OP_SeekScan is used, ensure that the index cursor does not
1897       ** point to a valid row for the first iteration of this loop. */
1898       sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
1899     }
1900 
1901     /* Generate code to evaluate all constraint terms using == or IN
1902     ** and store the values of those terms in an array of registers
1903     ** starting at regBase.
1904     */
1905     codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1906     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1907     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1908     if( zStartAff && nTop ){
1909       zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1910     }
1911     addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt);
1912 
1913     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1914     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1915     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1916     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1917     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1918     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1919     start_constraints = pRangeStart || nEq>0;
1920 
1921     /* Seek the index cursor to the start of the range. */
1922     nConstraint = nEq;
1923     if( pRangeStart ){
1924       Expr *pRight = pRangeStart->pExpr->pRight;
1925       codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1926       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1927       if( (pRangeStart->wtFlags & TERM_VNULL)==0
1928        && sqlite3ExprCanBeNull(pRight)
1929       ){
1930         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1931         VdbeCoverage(v);
1932       }
1933       if( zStartAff ){
1934         updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1935       }
1936       nConstraint += nBtm;
1937       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1938       if( sqlite3ExprIsVector(pRight)==0 ){
1939         disableTerm(pLevel, pRangeStart);
1940       }else{
1941         startEq = 1;
1942       }
1943       bSeekPastNull = 0;
1944     }else if( bSeekPastNull ){
1945       startEq = 0;
1946       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1947       start_constraints = 1;
1948       nConstraint++;
1949     }else if( regBignull ){
1950       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1951       start_constraints = 1;
1952       nConstraint++;
1953     }
1954     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1955     if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1956       /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1957       ** above has already left the cursor sitting on the correct row,
1958       ** so no further seeking is needed */
1959     }else{
1960       if( regBignull ){
1961         sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull);
1962         VdbeComment((v, "NULL-scan pass ctr"));
1963       }
1964       if( pLevel->regFilter ){
1965         sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt,
1966                              regBase, nEq);
1967         VdbeCoverage(v);
1968         filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady);
1969       }
1970 
1971       op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1972       assert( op!=0 );
1973       if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){
1974         assert( regBignull==0 );
1975         /* TUNING:  The OP_SeekScan opcode seeks to reduce the number
1976         ** of expensive seek operations by replacing a single seek with
1977         ** 1 or more step operations.  The question is, how many steps
1978         ** should we try before giving up and going with a seek.  The cost
1979         ** of a seek is proportional to the logarithm of the of the number
1980         ** of entries in the tree, so basing the number of steps to try
1981         ** on the estimated number of rows in the btree seems like a good
1982         ** guess. */
1983         addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan,
1984                                          (pIdx->aiRowLogEst[0]+9)/10);
1985         VdbeCoverage(v);
1986       }
1987       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1988       VdbeCoverage(v);
1989       VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1990       VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1991       VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
1992       VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1993       VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1994       VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
1995 
1996       assert( bSeekPastNull==0 || bStopAtNull==0 );
1997       if( regBignull ){
1998         assert( bSeekPastNull==1 || bStopAtNull==1 );
1999         assert( bSeekPastNull==!bStopAtNull );
2000         assert( bStopAtNull==startEq );
2001         sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2);
2002         op = aStartOp[(nConstraint>1)*4 + 2 + bRev];
2003         sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
2004                              nConstraint-startEq);
2005         VdbeCoverage(v);
2006         VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
2007         VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
2008         VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
2009         VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
2010         assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE);
2011       }
2012     }
2013 
2014     /* Load the value for the inequality constraint at the end of the
2015     ** range (if any).
2016     */
2017     nConstraint = nEq;
2018     assert( pLevel->p2==0 );
2019     if( pRangeEnd ){
2020       Expr *pRight = pRangeEnd->pExpr->pRight;
2021       if( addrSeekScan ){
2022         /* For a seek-scan that has a range on the lowest term of the index,
2023         ** we have to make the top of the loop be code that sets the end
2024         ** condition of the range.  Otherwise, the OP_SeekScan might jump
2025         ** over that initialization, leaving the range-end value set to the
2026         ** range-start value, resulting in a wrong answer.
2027         ** See ticket 5981a8c041a3c2f3 (2021-11-02).
2028         */
2029         pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2030       }
2031       codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
2032       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
2033       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
2034        && sqlite3ExprCanBeNull(pRight)
2035       ){
2036         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
2037         VdbeCoverage(v);
2038       }
2039       if( zEndAff ){
2040         updateRangeAffinityStr(pRight, nTop, zEndAff);
2041         codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
2042       }else{
2043         assert( pParse->db->mallocFailed );
2044       }
2045       nConstraint += nTop;
2046       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
2047 
2048       if( sqlite3ExprIsVector(pRight)==0 ){
2049         disableTerm(pLevel, pRangeEnd);
2050       }else{
2051         endEq = 1;
2052       }
2053     }else if( bStopAtNull ){
2054       if( regBignull==0 ){
2055         sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
2056         endEq = 0;
2057       }
2058       nConstraint++;
2059     }
2060     sqlite3DbFree(db, zStartAff);
2061     sqlite3DbFree(db, zEndAff);
2062 
2063     /* Top of the loop body */
2064     if( pLevel->p2==0 ) pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2065 
2066     /* Check if the index cursor is past the end of the range. */
2067     if( nConstraint ){
2068       if( regBignull ){
2069         /* Except, skip the end-of-range check while doing the NULL-scan */
2070         sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3);
2071         VdbeComment((v, "If NULL-scan 2nd pass"));
2072         VdbeCoverage(v);
2073       }
2074       op = aEndOp[bRev*2 + endEq];
2075       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
2076       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
2077       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
2078       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
2079       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
2080       if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan);
2081     }
2082     if( regBignull ){
2083       /* During a NULL-scan, check to see if we have reached the end of
2084       ** the NULLs */
2085       assert( bSeekPastNull==!bStopAtNull );
2086       assert( bSeekPastNull+bStopAtNull==1 );
2087       assert( nConstraint+bSeekPastNull>0 );
2088       sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2);
2089       VdbeComment((v, "If NULL-scan 1st pass"));
2090       VdbeCoverage(v);
2091       op = aEndOp[bRev*2 + bSeekPastNull];
2092       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
2093                            nConstraint+bSeekPastNull);
2094       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
2095       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
2096       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
2097       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
2098     }
2099 
2100     if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){
2101       sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq);
2102     }
2103 
2104     /* Seek the table cursor, if required */
2105     omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
2106            && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
2107     if( omitTable ){
2108       /* pIdx is a covering index.  No need to access the main table. */
2109     }else if( HasRowid(pIdx->pTable) ){
2110       codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
2111     }else if( iCur!=iIdxCur ){
2112       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
2113       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
2114       for(j=0; j<pPk->nKeyCol; j++){
2115         k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
2116         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
2117       }
2118       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
2119                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
2120     }
2121 
2122     if( pLevel->iLeftJoin==0 ){
2123       /* If pIdx is an index on one or more expressions, then look through
2124       ** all the expressions in pWInfo and try to transform matching expressions
2125       ** into reference to index columns.  Also attempt to translate references
2126       ** to virtual columns in the table into references to (stored) columns
2127       ** of the index.
2128       **
2129       ** Do not do this for the RHS of a LEFT JOIN. This is because the
2130       ** expression may be evaluated after OP_NullRow has been executed on
2131       ** the cursor. In this case it is important to do the full evaluation,
2132       ** as the result of the expression may not be NULL, even if all table
2133       ** column values are.  https://www.sqlite.org/src/info/7fa8049685b50b5a
2134       **
2135       ** Also, do not do this when processing one index an a multi-index
2136       ** OR clause, since the transformation will become invalid once we
2137       ** move forward to the next index.
2138       ** https://sqlite.org/src/info/4e8e4857d32d401f
2139       */
2140       if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
2141         whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
2142       }
2143 
2144       /* If a partial index is driving the loop, try to eliminate WHERE clause
2145       ** terms from the query that must be true due to the WHERE clause of
2146       ** the partial index.
2147       **
2148       ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
2149       ** for a LEFT JOIN.
2150       */
2151       if( pIdx->pPartIdxWhere ){
2152         whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC);
2153       }
2154     }else{
2155       testcase( pIdx->pPartIdxWhere );
2156       /* The following assert() is not a requirement, merely an observation:
2157       ** The OR-optimization doesn't work for the right hand table of
2158       ** a LEFT JOIN: */
2159       assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 );
2160     }
2161 
2162     /* Record the instruction used to terminate the loop. */
2163     if( pLoop->wsFlags & WHERE_ONEROW ){
2164       pLevel->op = OP_Noop;
2165     }else if( bRev ){
2166       pLevel->op = OP_Prev;
2167     }else{
2168       pLevel->op = OP_Next;
2169     }
2170     pLevel->p1 = iIdxCur;
2171     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
2172     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
2173       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2174     }else{
2175       assert( pLevel->p5==0 );
2176     }
2177     if( omitTable ) pIdx = 0;
2178   }else
2179 
2180 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
2181   if( pLoop->wsFlags & WHERE_MULTI_OR ){
2182     /* Case 5:  Two or more separately indexed terms connected by OR
2183     **
2184     ** Example:
2185     **
2186     **   CREATE TABLE t1(a,b,c,d);
2187     **   CREATE INDEX i1 ON t1(a);
2188     **   CREATE INDEX i2 ON t1(b);
2189     **   CREATE INDEX i3 ON t1(c);
2190     **
2191     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
2192     **
2193     ** In the example, there are three indexed terms connected by OR.
2194     ** The top of the loop looks like this:
2195     **
2196     **          Null       1                # Zero the rowset in reg 1
2197     **
2198     ** Then, for each indexed term, the following. The arguments to
2199     ** RowSetTest are such that the rowid of the current row is inserted
2200     ** into the RowSet. If it is already present, control skips the
2201     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
2202     **
2203     **        sqlite3WhereBegin(<term>)
2204     **          RowSetTest                  # Insert rowid into rowset
2205     **          Gosub      2 A
2206     **        sqlite3WhereEnd()
2207     **
2208     ** Following the above, code to terminate the loop. Label A, the target
2209     ** of the Gosub above, jumps to the instruction right after the Goto.
2210     **
2211     **          Null       1                # Zero the rowset in reg 1
2212     **          Goto       B                # The loop is finished.
2213     **
2214     **       A: <loop body>                 # Return data, whatever.
2215     **
2216     **          Return     2                # Jump back to the Gosub
2217     **
2218     **       B: <after the loop>
2219     **
2220     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
2221     ** use an ephemeral index instead of a RowSet to record the primary
2222     ** keys of the rows we have already seen.
2223     **
2224     */
2225     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
2226     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
2227     Index *pCov = 0;             /* Potential covering index (or NULL) */
2228     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
2229 
2230     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
2231     int regRowset = 0;                        /* Register for RowSet object */
2232     int regRowid = 0;                         /* Register holding rowid */
2233     int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */
2234     int iRetInit;                             /* Address of regReturn init */
2235     int untestedTerms = 0;             /* Some terms not completely tested */
2236     int ii;                            /* Loop counter */
2237     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
2238     Table *pTab = pTabItem->pTab;
2239 
2240     pTerm = pLoop->aLTerm[0];
2241     assert( pTerm!=0 );
2242     assert( pTerm->eOperator & WO_OR );
2243     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
2244     pOrWc = &pTerm->u.pOrInfo->wc;
2245     pLevel->op = OP_Return;
2246     pLevel->p1 = regReturn;
2247 
2248     /* Set up a new SrcList in pOrTab containing the table being scanned
2249     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
2250     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
2251     */
2252     if( pWInfo->nLevel>1 ){
2253       int nNotReady;                 /* The number of notReady tables */
2254       SrcItem *origSrc;              /* Original list of tables */
2255       nNotReady = pWInfo->nLevel - iLevel - 1;
2256       pOrTab = sqlite3StackAllocRaw(db,
2257                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
2258       if( pOrTab==0 ) return notReady;
2259       pOrTab->nAlloc = (u8)(nNotReady + 1);
2260       pOrTab->nSrc = pOrTab->nAlloc;
2261       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
2262       origSrc = pWInfo->pTabList->a;
2263       for(k=1; k<=nNotReady; k++){
2264         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
2265       }
2266     }else{
2267       pOrTab = pWInfo->pTabList;
2268     }
2269 
2270     /* Initialize the rowset register to contain NULL. An SQL NULL is
2271     ** equivalent to an empty rowset.  Or, create an ephemeral index
2272     ** capable of holding primary keys in the case of a WITHOUT ROWID.
2273     **
2274     ** Also initialize regReturn to contain the address of the instruction
2275     ** immediately following the OP_Return at the bottom of the loop. This
2276     ** is required in a few obscure LEFT JOIN cases where control jumps
2277     ** over the top of the loop into the body of it. In this case the
2278     ** correct response for the end-of-loop code (the OP_Return) is to
2279     ** fall through to the next instruction, just as an OP_Next does if
2280     ** called on an uninitialized cursor.
2281     */
2282     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2283       if( HasRowid(pTab) ){
2284         regRowset = ++pParse->nMem;
2285         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
2286       }else{
2287         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2288         regRowset = pParse->nTab++;
2289         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
2290         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
2291       }
2292       regRowid = ++pParse->nMem;
2293     }
2294     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
2295 
2296     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
2297     ** Then for every term xN, evaluate as the subexpression: xN AND z
2298     ** That way, terms in y that are factored into the disjunction will
2299     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
2300     **
2301     ** Actually, each subexpression is converted to "xN AND w" where w is
2302     ** the "interesting" terms of z - terms that did not originate in the
2303     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
2304     ** indices.
2305     **
2306     ** This optimization also only applies if the (x1 OR x2 OR ...) term
2307     ** is not contained in the ON clause of a LEFT JOIN.
2308     ** See ticket http://www.sqlite.org/src/info/f2369304e4
2309     */
2310     if( pWC->nTerm>1 ){
2311       int iTerm;
2312       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
2313         Expr *pExpr = pWC->a[iTerm].pExpr;
2314         if( &pWC->a[iTerm] == pTerm ) continue;
2315         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
2316         testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
2317         if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
2318         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
2319         testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
2320         pExpr = sqlite3ExprDup(db, pExpr, 0);
2321         pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr);
2322       }
2323       if( pAndExpr ){
2324         /* The extra 0x10000 bit on the opcode is masked off and does not
2325         ** become part of the new Expr.op.  However, it does make the
2326         ** op==TK_AND comparison inside of sqlite3PExpr() false, and this
2327         ** prevents sqlite3PExpr() from applying the AND short-circuit
2328         ** optimization, which we do not want here. */
2329         pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr);
2330       }
2331     }
2332 
2333     /* Run a separate WHERE clause for each term of the OR clause.  After
2334     ** eliminating duplicates from other WHERE clauses, the action for each
2335     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
2336     */
2337     ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
2338     for(ii=0; ii<pOrWc->nTerm; ii++){
2339       WhereTerm *pOrTerm = &pOrWc->a[ii];
2340       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
2341         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
2342         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
2343         Expr *pDelete;                  /* Local copy of OR clause term */
2344         int jmp1 = 0;                   /* Address of jump operation */
2345         testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0
2346                && !ExprHasProperty(pOrExpr, EP_FromJoin)
2347         ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */
2348         pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0);
2349         if( db->mallocFailed ){
2350           sqlite3ExprDelete(db, pDelete);
2351           continue;
2352         }
2353         if( pAndExpr ){
2354           pAndExpr->pLeft = pOrExpr;
2355           pOrExpr = pAndExpr;
2356         }
2357         /* Loop through table entries that match term pOrTerm. */
2358         ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1));
2359         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
2360         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
2361                                       WHERE_OR_SUBCLAUSE, iCovCur);
2362         assert( pSubWInfo || pParse->nErr || db->mallocFailed );
2363         if( pSubWInfo ){
2364           WhereLoop *pSubLoop;
2365           int addrExplain = sqlite3WhereExplainOneScan(
2366               pParse, pOrTab, &pSubWInfo->a[0], 0
2367           );
2368           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
2369 
2370           /* This is the sub-WHERE clause body.  First skip over
2371           ** duplicate rows from prior sub-WHERE clauses, and record the
2372           ** rowid (or PRIMARY KEY) for the current row so that the same
2373           ** row will be skipped in subsequent sub-WHERE clauses.
2374           */
2375           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2376             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
2377             if( HasRowid(pTab) ){
2378               sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid);
2379               jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
2380                                           regRowid, iSet);
2381               VdbeCoverage(v);
2382             }else{
2383               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2384               int nPk = pPk->nKeyCol;
2385               int iPk;
2386               int r;
2387 
2388               /* Read the PK into an array of temp registers. */
2389               r = sqlite3GetTempRange(pParse, nPk);
2390               for(iPk=0; iPk<nPk; iPk++){
2391                 int iCol = pPk->aiColumn[iPk];
2392                 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2393               }
2394 
2395               /* Check if the temp table already contains this key. If so,
2396               ** the row has already been included in the result set and
2397               ** can be ignored (by jumping past the Gosub below). Otherwise,
2398               ** insert the key into the temp table and proceed with processing
2399               ** the row.
2400               **
2401               ** Use some of the same optimizations as OP_RowSetTest: If iSet
2402               ** is zero, assume that the key cannot already be present in
2403               ** the temp table. And if iSet is -1, assume that there is no
2404               ** need to insert the key into the temp table, as it will never
2405               ** be tested for.  */
2406               if( iSet ){
2407                 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
2408                 VdbeCoverage(v);
2409               }
2410               if( iSet>=0 ){
2411                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
2412                 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
2413                                      r, nPk);
2414                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2415               }
2416 
2417               /* Release the array of temp registers */
2418               sqlite3ReleaseTempRange(pParse, r, nPk);
2419             }
2420           }
2421 
2422           /* Invoke the main loop body as a subroutine */
2423           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2424 
2425           /* Jump here (skipping the main loop body subroutine) if the
2426           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2427           if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
2428 
2429           /* The pSubWInfo->untestedTerms flag means that this OR term
2430           ** contained one or more AND term from a notReady table.  The
2431           ** terms from the notReady table could not be tested and will
2432           ** need to be tested later.
2433           */
2434           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
2435 
2436           /* If all of the OR-connected terms are optimized using the same
2437           ** index, and the index is opened using the same cursor number
2438           ** by each call to sqlite3WhereBegin() made by this loop, it may
2439           ** be possible to use that index as a covering index.
2440           **
2441           ** If the call to sqlite3WhereBegin() above resulted in a scan that
2442           ** uses an index, and this is either the first OR-connected term
2443           ** processed or the index is the same as that used by all previous
2444           ** terms, set pCov to the candidate covering index. Otherwise, set
2445           ** pCov to NULL to indicate that no candidate covering index will
2446           ** be available.
2447           */
2448           pSubLoop = pSubWInfo->a[0].pWLoop;
2449           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2450           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2451            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2452            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2453           ){
2454             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2455             pCov = pSubLoop->u.btree.pIndex;
2456           }else{
2457             pCov = 0;
2458           }
2459           if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){
2460             pWInfo->bDeferredSeek = 1;
2461           }
2462 
2463           /* Finish the loop through table entries that match term pOrTerm. */
2464           sqlite3WhereEnd(pSubWInfo);
2465           ExplainQueryPlanPop(pParse);
2466         }
2467         sqlite3ExprDelete(db, pDelete);
2468       }
2469     }
2470     ExplainQueryPlanPop(pParse);
2471     assert( pLevel->pWLoop==pLoop );
2472     assert( (pLoop->wsFlags & WHERE_MULTI_OR)!=0 );
2473     assert( (pLoop->wsFlags & WHERE_IN_ABLE)==0 );
2474     pLevel->u.pCoveringIdx = pCov;
2475     if( pCov ) pLevel->iIdxCur = iCovCur;
2476     if( pAndExpr ){
2477       pAndExpr->pLeft = 0;
2478       sqlite3ExprDelete(db, pAndExpr);
2479     }
2480     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2481     sqlite3VdbeGoto(v, pLevel->addrBrk);
2482     sqlite3VdbeResolveLabel(v, iLoopBody);
2483 
2484     if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); }
2485     if( !untestedTerms ) disableTerm(pLevel, pTerm);
2486   }else
2487 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2488 
2489   {
2490     /* Case 6:  There is no usable index.  We must do a complete
2491     **          scan of the entire table.
2492     */
2493     static const u8 aStep[] = { OP_Next, OP_Prev };
2494     static const u8 aStart[] = { OP_Rewind, OP_Last };
2495     assert( bRev==0 || bRev==1 );
2496     if( pTabItem->fg.isRecursive ){
2497       /* Tables marked isRecursive have only a single row that is stored in
2498       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
2499       pLevel->op = OP_Noop;
2500     }else{
2501       codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2502       pLevel->op = aStep[bRev];
2503       pLevel->p1 = iCur;
2504       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2505       VdbeCoverageIf(v, bRev==0);
2506       VdbeCoverageIf(v, bRev!=0);
2507       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2508     }
2509   }
2510 
2511 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2512   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2513 #endif
2514 
2515   /* Insert code to test every subexpression that can be completely
2516   ** computed using the current set of tables.
2517   **
2518   ** This loop may run between one and three times, depending on the
2519   ** constraints to be generated. The value of stack variable iLoop
2520   ** determines the constraints coded by each iteration, as follows:
2521   **
2522   ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2523   ** iLoop==2: Code remaining expressions that do not contain correlated
2524   **           sub-queries.
2525   ** iLoop==3: Code all remaining expressions.
2526   **
2527   ** An effort is made to skip unnecessary iterations of the loop.
2528   */
2529   iLoop = (pIdx ? 1 : 2);
2530   do{
2531     int iNext = 0;                /* Next value for iLoop */
2532     for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2533       Expr *pE;
2534       int skipLikeAddr = 0;
2535       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2536       testcase( pTerm->wtFlags & TERM_CODED );
2537       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2538       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2539         testcase( pWInfo->untestedTerms==0
2540             && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2541         pWInfo->untestedTerms = 1;
2542         continue;
2543       }
2544       pE = pTerm->pExpr;
2545       assert( pE!=0 );
2546       if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){
2547         continue;
2548       }
2549 
2550       if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2551         iNext = 2;
2552         continue;
2553       }
2554       if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2555         if( iNext==0 ) iNext = 3;
2556         continue;
2557       }
2558 
2559       if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
2560         /* If the TERM_LIKECOND flag is set, that means that the range search
2561         ** is sufficient to guarantee that the LIKE operator is true, so we
2562         ** can skip the call to the like(A,B) function.  But this only works
2563         ** for strings.  So do not skip the call to the function on the pass
2564         ** that compares BLOBs. */
2565 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2566         continue;
2567 #else
2568         u32 x = pLevel->iLikeRepCntr;
2569         if( x>0 ){
2570           skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
2571           VdbeCoverageIf(v, (x&1)==1);
2572           VdbeCoverageIf(v, (x&1)==0);
2573         }
2574 #endif
2575       }
2576 #ifdef WHERETRACE_ENABLED /* 0xffff */
2577       if( sqlite3WhereTrace ){
2578         VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2579                          pWC->nTerm-j, pTerm, iLoop));
2580       }
2581       if( sqlite3WhereTrace & 0x800 ){
2582         sqlite3DebugPrintf("Coding auxiliary constraint:\n");
2583         sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2584       }
2585 #endif
2586       sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2587       if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2588       pTerm->wtFlags |= TERM_CODED;
2589     }
2590     iLoop = iNext;
2591   }while( iLoop>0 );
2592 
2593   /* Insert code to test for implied constraints based on transitivity
2594   ** of the "==" operator.
2595   **
2596   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2597   ** and we are coding the t1 loop and the t2 loop has not yet coded,
2598   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2599   ** the implied "t1.a=123" constraint.
2600   */
2601   for(pTerm=pWC->a, j=pWC->nBase; j>0; j--, pTerm++){
2602     Expr *pE, sEAlt;
2603     WhereTerm *pAlt;
2604     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2605     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2606     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2607     if( pTerm->leftCursor!=iCur ) continue;
2608     if( pTabItem->fg.jointype & JT_LEFT ) continue;
2609     pE = pTerm->pExpr;
2610 #ifdef WHERETRACE_ENABLED /* 0x800 */
2611     if( sqlite3WhereTrace & 0x800 ){
2612       sqlite3DebugPrintf("Coding transitive constraint:\n");
2613       sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2614     }
2615 #endif
2616     assert( !ExprHasProperty(pE, EP_FromJoin) );
2617     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2618     assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
2619     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady,
2620                     WO_EQ|WO_IN|WO_IS, 0);
2621     if( pAlt==0 ) continue;
2622     if( pAlt->wtFlags & (TERM_CODED) ) continue;
2623     if( (pAlt->eOperator & WO_IN)
2624      && ExprUseXSelect(pAlt->pExpr)
2625      && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
2626     ){
2627       continue;
2628     }
2629     testcase( pAlt->eOperator & WO_EQ );
2630     testcase( pAlt->eOperator & WO_IS );
2631     testcase( pAlt->eOperator & WO_IN );
2632     VdbeModuleComment((v, "begin transitive constraint"));
2633     sEAlt = *pAlt->pExpr;
2634     sEAlt.pLeft = pE->pLeft;
2635     sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2636     pAlt->wtFlags |= TERM_CODED;
2637   }
2638 
2639   /* For a LEFT OUTER JOIN, generate code that will record the fact that
2640   ** at least one row of the right table has matched the left table.
2641   */
2642   if( pLevel->iLeftJoin ){
2643     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2644     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2645     VdbeComment((v, "record LEFT JOIN hit"));
2646     for(pTerm=pWC->a, j=0; j<pWC->nBase; j++, pTerm++){
2647       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2648       testcase( pTerm->wtFlags & TERM_CODED );
2649       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2650       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2651         assert( pWInfo->untestedTerms );
2652         continue;
2653       }
2654       assert( pTerm->pExpr );
2655       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2656       pTerm->wtFlags |= TERM_CODED;
2657     }
2658   }
2659 
2660 #if WHERETRACE_ENABLED /* 0x20800 */
2661   if( sqlite3WhereTrace & 0x20000 ){
2662     sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n",
2663                        iLevel);
2664     sqlite3WhereClausePrint(pWC);
2665   }
2666   if( sqlite3WhereTrace & 0x800 ){
2667     sqlite3DebugPrintf("End Coding level %d:  notReady=%llx\n",
2668        iLevel, (u64)pLevel->notReady);
2669   }
2670 #endif
2671   return pLevel->notReady;
2672 }
2673