1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 25 /* 26 ** Return the name of the i-th column of the pIdx index. 27 */ 28 static const char *explainIndexColumnName(Index *pIdx, int i){ 29 i = pIdx->aiColumn[i]; 30 if( i==XN_EXPR ) return "<expr>"; 31 if( i==XN_ROWID ) return "rowid"; 32 return pIdx->pTable->aCol[i].zName; 33 } 34 35 /* 36 ** This routine is a helper for explainIndexRange() below 37 ** 38 ** pStr holds the text of an expression that we are building up one term 39 ** at a time. This routine adds a new term to the end of the expression. 40 ** Terms are separated by AND so add the "AND" text for second and subsequent 41 ** terms only. 42 */ 43 static void explainAppendTerm( 44 StrAccum *pStr, /* The text expression being built */ 45 Index *pIdx, /* Index to read column names from */ 46 int nTerm, /* Number of terms */ 47 int iTerm, /* Zero-based index of first term. */ 48 int bAnd, /* Non-zero to append " AND " */ 49 const char *zOp /* Name of the operator */ 50 ){ 51 int i; 52 53 assert( nTerm>=1 ); 54 if( bAnd ) sqlite3_str_append(pStr, " AND ", 5); 55 56 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 57 for(i=0; i<nTerm; i++){ 58 if( i ) sqlite3_str_append(pStr, ",", 1); 59 sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i)); 60 } 61 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 62 63 sqlite3_str_append(pStr, zOp, 1); 64 65 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 66 for(i=0; i<nTerm; i++){ 67 if( i ) sqlite3_str_append(pStr, ",", 1); 68 sqlite3_str_append(pStr, "?", 1); 69 } 70 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 71 } 72 73 /* 74 ** Argument pLevel describes a strategy for scanning table pTab. This 75 ** function appends text to pStr that describes the subset of table 76 ** rows scanned by the strategy in the form of an SQL expression. 77 ** 78 ** For example, if the query: 79 ** 80 ** SELECT * FROM t1 WHERE a=1 AND b>2; 81 ** 82 ** is run and there is an index on (a, b), then this function returns a 83 ** string similar to: 84 ** 85 ** "a=? AND b>?" 86 */ 87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 88 Index *pIndex = pLoop->u.btree.pIndex; 89 u16 nEq = pLoop->u.btree.nEq; 90 u16 nSkip = pLoop->nSkip; 91 int i, j; 92 93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 94 sqlite3_str_append(pStr, " (", 2); 95 for(i=0; i<nEq; i++){ 96 const char *z = explainIndexColumnName(pIndex, i); 97 if( i ) sqlite3_str_append(pStr, " AND ", 5); 98 sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); 99 } 100 101 j = i; 102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); 104 i = 1; 105 } 106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); 108 } 109 sqlite3_str_append(pStr, ")", 1); 110 } 111 112 /* 113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 116 ** is added to the output to describe the table scan strategy in pLevel. 117 ** 118 ** If an OP_Explain opcode is added to the VM, its address is returned. 119 ** Otherwise, if no OP_Explain is coded, zero is returned. 120 */ 121 int sqlite3WhereExplainOneScan( 122 Parse *pParse, /* Parse context */ 123 SrcList *pTabList, /* Table list this loop refers to */ 124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 125 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 126 ){ 127 int ret = 0; 128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 129 if( sqlite3ParseToplevel(pParse)->explain==2 ) 130 #endif 131 { 132 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 133 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 134 sqlite3 *db = pParse->db; /* Database handle */ 135 int isSearch; /* True for a SEARCH. False for SCAN. */ 136 WhereLoop *pLoop; /* The controlling WhereLoop object */ 137 u32 flags; /* Flags that describe this loop */ 138 char *zMsg; /* Text to add to EQP output */ 139 StrAccum str; /* EQP output string */ 140 char zBuf[100]; /* Initial space for EQP output string */ 141 142 pLoop = pLevel->pWLoop; 143 flags = pLoop->wsFlags; 144 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; 145 146 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 147 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 148 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 149 150 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 151 sqlite3_str_appendall(&str, isSearch ? "SEARCH" : "SCAN"); 152 if( pItem->pSelect ){ 153 sqlite3_str_appendf(&str, " SUBQUERY %u", pItem->pSelect->selId); 154 }else{ 155 sqlite3_str_appendf(&str, " TABLE %s", pItem->zName); 156 } 157 158 if( pItem->zAlias ){ 159 sqlite3_str_appendf(&str, " AS %s", pItem->zAlias); 160 } 161 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 162 const char *zFmt = 0; 163 Index *pIdx; 164 165 assert( pLoop->u.btree.pIndex!=0 ); 166 pIdx = pLoop->u.btree.pIndex; 167 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 168 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 169 if( isSearch ){ 170 zFmt = "PRIMARY KEY"; 171 } 172 }else if( flags & WHERE_PARTIALIDX ){ 173 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 174 }else if( flags & WHERE_AUTO_INDEX ){ 175 zFmt = "AUTOMATIC COVERING INDEX"; 176 }else if( flags & WHERE_IDX_ONLY ){ 177 zFmt = "COVERING INDEX %s"; 178 }else{ 179 zFmt = "INDEX %s"; 180 } 181 if( zFmt ){ 182 sqlite3_str_append(&str, " USING ", 7); 183 sqlite3_str_appendf(&str, zFmt, pIdx->zName); 184 explainIndexRange(&str, pLoop); 185 } 186 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 187 const char *zRangeOp; 188 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 189 zRangeOp = "="; 190 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 191 zRangeOp = ">? AND rowid<"; 192 }else if( flags&WHERE_BTM_LIMIT ){ 193 zRangeOp = ">"; 194 }else{ 195 assert( flags&WHERE_TOP_LIMIT); 196 zRangeOp = "<"; 197 } 198 sqlite3_str_appendf(&str, 199 " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp); 200 } 201 #ifndef SQLITE_OMIT_VIRTUALTABLE 202 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 203 sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s", 204 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 205 } 206 #endif 207 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 208 if( pLoop->nOut>=10 ){ 209 sqlite3_str_appendf(&str, " (~%llu rows)", 210 sqlite3LogEstToInt(pLoop->nOut)); 211 }else{ 212 sqlite3_str_append(&str, " (~1 row)", 9); 213 } 214 #endif 215 zMsg = sqlite3StrAccumFinish(&str); 216 sqlite3ExplainBreakpoint("",zMsg); 217 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), 218 pParse->addrExplain, 0, zMsg,P4_DYNAMIC); 219 } 220 return ret; 221 } 222 #endif /* SQLITE_OMIT_EXPLAIN */ 223 224 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 225 /* 226 ** Configure the VM passed as the first argument with an 227 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 228 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 229 ** clause that the scan reads data from. 230 ** 231 ** If argument addrExplain is not 0, it must be the address of an 232 ** OP_Explain instruction that describes the same loop. 233 */ 234 void sqlite3WhereAddScanStatus( 235 Vdbe *v, /* Vdbe to add scanstatus entry to */ 236 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 237 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 238 int addrExplain /* Address of OP_Explain (or 0) */ 239 ){ 240 const char *zObj = 0; 241 WhereLoop *pLoop = pLvl->pWLoop; 242 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 243 zObj = pLoop->u.btree.pIndex->zName; 244 }else{ 245 zObj = pSrclist->a[pLvl->iFrom].zName; 246 } 247 sqlite3VdbeScanStatus( 248 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 249 ); 250 } 251 #endif 252 253 254 /* 255 ** Disable a term in the WHERE clause. Except, do not disable the term 256 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 257 ** or USING clause of that join. 258 ** 259 ** Consider the term t2.z='ok' in the following queries: 260 ** 261 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 262 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 263 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 264 ** 265 ** The t2.z='ok' is disabled in the in (2) because it originates 266 ** in the ON clause. The term is disabled in (3) because it is not part 267 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 268 ** 269 ** Disabling a term causes that term to not be tested in the inner loop 270 ** of the join. Disabling is an optimization. When terms are satisfied 271 ** by indices, we disable them to prevent redundant tests in the inner 272 ** loop. We would get the correct results if nothing were ever disabled, 273 ** but joins might run a little slower. The trick is to disable as much 274 ** as we can without disabling too much. If we disabled in (1), we'd get 275 ** the wrong answer. See ticket #813. 276 ** 277 ** If all the children of a term are disabled, then that term is also 278 ** automatically disabled. In this way, terms get disabled if derived 279 ** virtual terms are tested first. For example: 280 ** 281 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 282 ** \___________/ \______/ \_____/ 283 ** parent child1 child2 284 ** 285 ** Only the parent term was in the original WHERE clause. The child1 286 ** and child2 terms were added by the LIKE optimization. If both of 287 ** the virtual child terms are valid, then testing of the parent can be 288 ** skipped. 289 ** 290 ** Usually the parent term is marked as TERM_CODED. But if the parent 291 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 292 ** The TERM_LIKECOND marking indicates that the term should be coded inside 293 ** a conditional such that is only evaluated on the second pass of a 294 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 295 */ 296 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 297 int nLoop = 0; 298 assert( pTerm!=0 ); 299 while( (pTerm->wtFlags & TERM_CODED)==0 300 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 301 && (pLevel->notReady & pTerm->prereqAll)==0 302 ){ 303 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 304 pTerm->wtFlags |= TERM_LIKECOND; 305 }else{ 306 pTerm->wtFlags |= TERM_CODED; 307 } 308 if( pTerm->iParent<0 ) break; 309 pTerm = &pTerm->pWC->a[pTerm->iParent]; 310 assert( pTerm!=0 ); 311 pTerm->nChild--; 312 if( pTerm->nChild!=0 ) break; 313 nLoop++; 314 } 315 } 316 317 /* 318 ** Code an OP_Affinity opcode to apply the column affinity string zAff 319 ** to the n registers starting at base. 320 ** 321 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which 322 ** are no-ops) at the beginning and end of zAff are ignored. If all entries 323 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated. 324 ** 325 ** This routine makes its own copy of zAff so that the caller is free 326 ** to modify zAff after this routine returns. 327 */ 328 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 329 Vdbe *v = pParse->pVdbe; 330 if( zAff==0 ){ 331 assert( pParse->db->mallocFailed ); 332 return; 333 } 334 assert( v!=0 ); 335 336 /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE 337 ** entries at the beginning and end of the affinity string. 338 */ 339 assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB ); 340 while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){ 341 n--; 342 base++; 343 zAff++; 344 } 345 while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){ 346 n--; 347 } 348 349 /* Code the OP_Affinity opcode if there is anything left to do. */ 350 if( n>0 ){ 351 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 352 } 353 } 354 355 /* 356 ** Expression pRight, which is the RHS of a comparison operation, is 357 ** either a vector of n elements or, if n==1, a scalar expression. 358 ** Before the comparison operation, affinity zAff is to be applied 359 ** to the pRight values. This function modifies characters within the 360 ** affinity string to SQLITE_AFF_BLOB if either: 361 ** 362 ** * the comparison will be performed with no affinity, or 363 ** * the affinity change in zAff is guaranteed not to change the value. 364 */ 365 static void updateRangeAffinityStr( 366 Expr *pRight, /* RHS of comparison */ 367 int n, /* Number of vector elements in comparison */ 368 char *zAff /* Affinity string to modify */ 369 ){ 370 int i; 371 for(i=0; i<n; i++){ 372 Expr *p = sqlite3VectorFieldSubexpr(pRight, i); 373 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB 374 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) 375 ){ 376 zAff[i] = SQLITE_AFF_BLOB; 377 } 378 } 379 } 380 381 382 /* 383 ** pX is an expression of the form: (vector) IN (SELECT ...) 384 ** In other words, it is a vector IN operator with a SELECT clause on the 385 ** LHS. But not all terms in the vector are indexable and the terms might 386 ** not be in the correct order for indexing. 387 ** 388 ** This routine makes a copy of the input pX expression and then adjusts 389 ** the vector on the LHS with corresponding changes to the SELECT so that 390 ** the vector contains only index terms and those terms are in the correct 391 ** order. The modified IN expression is returned. The caller is responsible 392 ** for deleting the returned expression. 393 ** 394 ** Example: 395 ** 396 ** CREATE TABLE t1(a,b,c,d,e,f); 397 ** CREATE INDEX t1x1 ON t1(e,c); 398 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2) 399 ** \_______________________________________/ 400 ** The pX expression 401 ** 402 ** Since only columns e and c can be used with the index, in that order, 403 ** the modified IN expression that is returned will be: 404 ** 405 ** (e,c) IN (SELECT z,x FROM t2) 406 ** 407 ** The reduced pX is different from the original (obviously) and thus is 408 ** only used for indexing, to improve performance. The original unaltered 409 ** IN expression must also be run on each output row for correctness. 410 */ 411 static Expr *removeUnindexableInClauseTerms( 412 Parse *pParse, /* The parsing context */ 413 int iEq, /* Look at loop terms starting here */ 414 WhereLoop *pLoop, /* The current loop */ 415 Expr *pX /* The IN expression to be reduced */ 416 ){ 417 sqlite3 *db = pParse->db; 418 Expr *pNew = sqlite3ExprDup(db, pX, 0); 419 if( db->mallocFailed==0 ){ 420 ExprList *pOrigRhs = pNew->x.pSelect->pEList; /* Original unmodified RHS */ 421 ExprList *pOrigLhs = pNew->pLeft->x.pList; /* Original unmodified LHS */ 422 ExprList *pRhs = 0; /* New RHS after modifications */ 423 ExprList *pLhs = 0; /* New LHS after mods */ 424 int i; /* Loop counter */ 425 Select *pSelect; /* Pointer to the SELECT on the RHS */ 426 427 for(i=iEq; i<pLoop->nLTerm; i++){ 428 if( pLoop->aLTerm[i]->pExpr==pX ){ 429 int iField = pLoop->aLTerm[i]->iField - 1; 430 if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */ 431 pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr); 432 pOrigRhs->a[iField].pExpr = 0; 433 assert( pOrigLhs->a[iField].pExpr!=0 ); 434 pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr); 435 pOrigLhs->a[iField].pExpr = 0; 436 } 437 } 438 sqlite3ExprListDelete(db, pOrigRhs); 439 sqlite3ExprListDelete(db, pOrigLhs); 440 pNew->pLeft->x.pList = pLhs; 441 pNew->x.pSelect->pEList = pRhs; 442 if( pLhs && pLhs->nExpr==1 ){ 443 /* Take care here not to generate a TK_VECTOR containing only a 444 ** single value. Since the parser never creates such a vector, some 445 ** of the subroutines do not handle this case. */ 446 Expr *p = pLhs->a[0].pExpr; 447 pLhs->a[0].pExpr = 0; 448 sqlite3ExprDelete(db, pNew->pLeft); 449 pNew->pLeft = p; 450 } 451 pSelect = pNew->x.pSelect; 452 if( pSelect->pOrderBy ){ 453 /* If the SELECT statement has an ORDER BY clause, zero the 454 ** iOrderByCol variables. These are set to non-zero when an 455 ** ORDER BY term exactly matches one of the terms of the 456 ** result-set. Since the result-set of the SELECT statement may 457 ** have been modified or reordered, these variables are no longer 458 ** set correctly. Since setting them is just an optimization, 459 ** it's easiest just to zero them here. */ 460 ExprList *pOrderBy = pSelect->pOrderBy; 461 for(i=0; i<pOrderBy->nExpr; i++){ 462 pOrderBy->a[i].u.x.iOrderByCol = 0; 463 } 464 } 465 466 #if 0 467 printf("For indexing, change the IN expr:\n"); 468 sqlite3TreeViewExpr(0, pX, 0); 469 printf("Into:\n"); 470 sqlite3TreeViewExpr(0, pNew, 0); 471 #endif 472 } 473 return pNew; 474 } 475 476 477 /* 478 ** Generate code for a single equality term of the WHERE clause. An equality 479 ** term can be either X=expr or X IN (...). pTerm is the term to be 480 ** coded. 481 ** 482 ** The current value for the constraint is left in a register, the index 483 ** of which is returned. An attempt is made store the result in iTarget but 484 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the 485 ** constraint is a TK_EQ or TK_IS, then the current value might be left in 486 ** some other register and it is the caller's responsibility to compensate. 487 ** 488 ** For a constraint of the form X=expr, the expression is evaluated in 489 ** straight-line code. For constraints of the form X IN (...) 490 ** this routine sets up a loop that will iterate over all values of X. 491 */ 492 static int codeEqualityTerm( 493 Parse *pParse, /* The parsing context */ 494 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 495 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 496 int iEq, /* Index of the equality term within this level */ 497 int bRev, /* True for reverse-order IN operations */ 498 int iTarget /* Attempt to leave results in this register */ 499 ){ 500 Expr *pX = pTerm->pExpr; 501 Vdbe *v = pParse->pVdbe; 502 int iReg; /* Register holding results */ 503 504 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); 505 assert( iTarget>0 ); 506 if( pX->op==TK_EQ || pX->op==TK_IS ){ 507 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 508 }else if( pX->op==TK_ISNULL ){ 509 iReg = iTarget; 510 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 511 #ifndef SQLITE_OMIT_SUBQUERY 512 }else{ 513 int eType = IN_INDEX_NOOP; 514 int iTab; 515 struct InLoop *pIn; 516 WhereLoop *pLoop = pLevel->pWLoop; 517 int i; 518 int nEq = 0; 519 int *aiMap = 0; 520 521 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 522 && pLoop->u.btree.pIndex!=0 523 && pLoop->u.btree.pIndex->aSortOrder[iEq] 524 ){ 525 testcase( iEq==0 ); 526 testcase( bRev ); 527 bRev = !bRev; 528 } 529 assert( pX->op==TK_IN ); 530 iReg = iTarget; 531 532 for(i=0; i<iEq; i++){ 533 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ 534 disableTerm(pLevel, pTerm); 535 return iTarget; 536 } 537 } 538 for(i=iEq;i<pLoop->nLTerm; i++){ 539 assert( pLoop->aLTerm[i]!=0 ); 540 if( pLoop->aLTerm[i]->pExpr==pX ) nEq++; 541 } 542 543 iTab = 0; 544 if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){ 545 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab); 546 }else{ 547 sqlite3 *db = pParse->db; 548 pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX); 549 550 if( !db->mallocFailed ){ 551 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq); 552 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab); 553 pTerm->pExpr->iTable = iTab; 554 } 555 sqlite3ExprDelete(db, pX); 556 pX = pTerm->pExpr; 557 } 558 559 if( eType==IN_INDEX_INDEX_DESC ){ 560 testcase( bRev ); 561 bRev = !bRev; 562 } 563 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 564 VdbeCoverageIf(v, bRev); 565 VdbeCoverageIf(v, !bRev); 566 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 567 568 pLoop->wsFlags |= WHERE_IN_ABLE; 569 if( pLevel->u.in.nIn==0 ){ 570 pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 571 } 572 573 i = pLevel->u.in.nIn; 574 pLevel->u.in.nIn += nEq; 575 pLevel->u.in.aInLoop = 576 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 577 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 578 pIn = pLevel->u.in.aInLoop; 579 if( pIn ){ 580 int iMap = 0; /* Index in aiMap[] */ 581 pIn += i; 582 for(i=iEq;i<pLoop->nLTerm; i++){ 583 if( pLoop->aLTerm[i]->pExpr==pX ){ 584 int iOut = iReg + i - iEq; 585 if( eType==IN_INDEX_ROWID ){ 586 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); 587 }else{ 588 int iCol = aiMap ? aiMap[iMap++] : 0; 589 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); 590 } 591 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); 592 if( i==iEq ){ 593 pIn->iCur = iTab; 594 pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next; 595 if( iEq>0 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 596 pIn->iBase = iReg - i; 597 pIn->nPrefix = i; 598 pLoop->wsFlags |= WHERE_IN_EARLYOUT; 599 }else{ 600 pIn->nPrefix = 0; 601 } 602 }else{ 603 pIn->eEndLoopOp = OP_Noop; 604 } 605 pIn++; 606 } 607 } 608 }else{ 609 pLevel->u.in.nIn = 0; 610 } 611 sqlite3DbFree(pParse->db, aiMap); 612 #endif 613 } 614 disableTerm(pLevel, pTerm); 615 return iReg; 616 } 617 618 /* 619 ** Generate code that will evaluate all == and IN constraints for an 620 ** index scan. 621 ** 622 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 623 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 624 ** The index has as many as three equality constraints, but in this 625 ** example, the third "c" value is an inequality. So only two 626 ** constraints are coded. This routine will generate code to evaluate 627 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 628 ** in consecutive registers and the index of the first register is returned. 629 ** 630 ** In the example above nEq==2. But this subroutine works for any value 631 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 632 ** The only thing it does is allocate the pLevel->iMem memory cell and 633 ** compute the affinity string. 634 ** 635 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 636 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 637 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 638 ** occurs after the nEq quality constraints. 639 ** 640 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 641 ** the index of the first memory cell in that range. The code that 642 ** calls this routine will use that memory range to store keys for 643 ** start and termination conditions of the loop. 644 ** key value of the loop. If one or more IN operators appear, then 645 ** this routine allocates an additional nEq memory cells for internal 646 ** use. 647 ** 648 ** Before returning, *pzAff is set to point to a buffer containing a 649 ** copy of the column affinity string of the index allocated using 650 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 651 ** with equality constraints that use BLOB or NONE affinity are set to 652 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 653 ** 654 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 655 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 656 ** 657 ** In the example above, the index on t1(a) has TEXT affinity. But since 658 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 659 ** no conversion should be attempted before using a t2.b value as part of 660 ** a key to search the index. Hence the first byte in the returned affinity 661 ** string in this example would be set to SQLITE_AFF_BLOB. 662 */ 663 static int codeAllEqualityTerms( 664 Parse *pParse, /* Parsing context */ 665 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 666 int bRev, /* Reverse the order of IN operators */ 667 int nExtraReg, /* Number of extra registers to allocate */ 668 char **pzAff /* OUT: Set to point to affinity string */ 669 ){ 670 u16 nEq; /* The number of == or IN constraints to code */ 671 u16 nSkip; /* Number of left-most columns to skip */ 672 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 673 Index *pIdx; /* The index being used for this loop */ 674 WhereTerm *pTerm; /* A single constraint term */ 675 WhereLoop *pLoop; /* The WhereLoop object */ 676 int j; /* Loop counter */ 677 int regBase; /* Base register */ 678 int nReg; /* Number of registers to allocate */ 679 char *zAff; /* Affinity string to return */ 680 681 /* This module is only called on query plans that use an index. */ 682 pLoop = pLevel->pWLoop; 683 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 684 nEq = pLoop->u.btree.nEq; 685 nSkip = pLoop->nSkip; 686 pIdx = pLoop->u.btree.pIndex; 687 assert( pIdx!=0 ); 688 689 /* Figure out how many memory cells we will need then allocate them. 690 */ 691 regBase = pParse->nMem + 1; 692 nReg = pLoop->u.btree.nEq + nExtraReg; 693 pParse->nMem += nReg; 694 695 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 696 assert( zAff!=0 || pParse->db->mallocFailed ); 697 698 if( nSkip ){ 699 int iIdxCur = pLevel->iIdxCur; 700 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 701 VdbeCoverageIf(v, bRev==0); 702 VdbeCoverageIf(v, bRev!=0); 703 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 704 j = sqlite3VdbeAddOp0(v, OP_Goto); 705 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 706 iIdxCur, 0, regBase, nSkip); 707 VdbeCoverageIf(v, bRev==0); 708 VdbeCoverageIf(v, bRev!=0); 709 sqlite3VdbeJumpHere(v, j); 710 for(j=0; j<nSkip; j++){ 711 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 712 testcase( pIdx->aiColumn[j]==XN_EXPR ); 713 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 714 } 715 } 716 717 /* Evaluate the equality constraints 718 */ 719 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 720 for(j=nSkip; j<nEq; j++){ 721 int r1; 722 pTerm = pLoop->aLTerm[j]; 723 assert( pTerm!=0 ); 724 /* The following testcase is true for indices with redundant columns. 725 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 726 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 727 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 728 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 729 if( r1!=regBase+j ){ 730 if( nReg==1 ){ 731 sqlite3ReleaseTempReg(pParse, regBase); 732 regBase = r1; 733 }else{ 734 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 735 } 736 } 737 if( pTerm->eOperator & WO_IN ){ 738 if( pTerm->pExpr->flags & EP_xIsSelect ){ 739 /* No affinity ever needs to be (or should be) applied to a value 740 ** from the RHS of an "? IN (SELECT ...)" expression. The 741 ** sqlite3FindInIndex() routine has already ensured that the 742 ** affinity of the comparison has been applied to the value. */ 743 if( zAff ) zAff[j] = SQLITE_AFF_BLOB; 744 } 745 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ 746 Expr *pRight = pTerm->pExpr->pRight; 747 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 748 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 749 VdbeCoverage(v); 750 } 751 if( zAff ){ 752 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 753 zAff[j] = SQLITE_AFF_BLOB; 754 } 755 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 756 zAff[j] = SQLITE_AFF_BLOB; 757 } 758 } 759 } 760 } 761 *pzAff = zAff; 762 return regBase; 763 } 764 765 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 766 /* 767 ** If the most recently coded instruction is a constant range constraint 768 ** (a string literal) that originated from the LIKE optimization, then 769 ** set P3 and P5 on the OP_String opcode so that the string will be cast 770 ** to a BLOB at appropriate times. 771 ** 772 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 773 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 774 ** scan loop run twice, once for strings and a second time for BLOBs. 775 ** The OP_String opcodes on the second pass convert the upper and lower 776 ** bound string constants to blobs. This routine makes the necessary changes 777 ** to the OP_String opcodes for that to happen. 778 ** 779 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 780 ** only the one pass through the string space is required, so this routine 781 ** becomes a no-op. 782 */ 783 static void whereLikeOptimizationStringFixup( 784 Vdbe *v, /* prepared statement under construction */ 785 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 786 WhereTerm *pTerm /* The upper or lower bound just coded */ 787 ){ 788 if( pTerm->wtFlags & TERM_LIKEOPT ){ 789 VdbeOp *pOp; 790 assert( pLevel->iLikeRepCntr>0 ); 791 pOp = sqlite3VdbeGetOp(v, -1); 792 assert( pOp!=0 ); 793 assert( pOp->opcode==OP_String8 794 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 795 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ 796 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ 797 } 798 } 799 #else 800 # define whereLikeOptimizationStringFixup(A,B,C) 801 #endif 802 803 #ifdef SQLITE_ENABLE_CURSOR_HINTS 804 /* 805 ** Information is passed from codeCursorHint() down to individual nodes of 806 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 807 ** structure. 808 */ 809 struct CCurHint { 810 int iTabCur; /* Cursor for the main table */ 811 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 812 Index *pIdx; /* The index used to access the table */ 813 }; 814 815 /* 816 ** This function is called for every node of an expression that is a candidate 817 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 818 ** the table CCurHint.iTabCur, verify that the same column can be 819 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 820 */ 821 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 822 struct CCurHint *pHint = pWalker->u.pCCurHint; 823 assert( pHint->pIdx!=0 ); 824 if( pExpr->op==TK_COLUMN 825 && pExpr->iTable==pHint->iTabCur 826 && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0 827 ){ 828 pWalker->eCode = 1; 829 } 830 return WRC_Continue; 831 } 832 833 /* 834 ** Test whether or not expression pExpr, which was part of a WHERE clause, 835 ** should be included in the cursor-hint for a table that is on the rhs 836 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the 837 ** expression is not suitable. 838 ** 839 ** An expression is unsuitable if it might evaluate to non NULL even if 840 ** a TK_COLUMN node that does affect the value of the expression is set 841 ** to NULL. For example: 842 ** 843 ** col IS NULL 844 ** col IS NOT NULL 845 ** coalesce(col, 1) 846 ** CASE WHEN col THEN 0 ELSE 1 END 847 */ 848 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ 849 if( pExpr->op==TK_IS 850 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT 851 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE 852 ){ 853 pWalker->eCode = 1; 854 }else if( pExpr->op==TK_FUNCTION ){ 855 int d1; 856 char d2[4]; 857 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ 858 pWalker->eCode = 1; 859 } 860 } 861 862 return WRC_Continue; 863 } 864 865 866 /* 867 ** This function is called on every node of an expression tree used as an 868 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 869 ** that accesses any table other than the one identified by 870 ** CCurHint.iTabCur, then do the following: 871 ** 872 ** 1) allocate a register and code an OP_Column instruction to read 873 ** the specified column into the new register, and 874 ** 875 ** 2) transform the expression node to a TK_REGISTER node that reads 876 ** from the newly populated register. 877 ** 878 ** Also, if the node is a TK_COLUMN that does access the table idenified 879 ** by pCCurHint.iTabCur, and an index is being used (which we will 880 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 881 ** an access of the index rather than the original table. 882 */ 883 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 884 int rc = WRC_Continue; 885 struct CCurHint *pHint = pWalker->u.pCCurHint; 886 if( pExpr->op==TK_COLUMN ){ 887 if( pExpr->iTable!=pHint->iTabCur ){ 888 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 889 sqlite3ExprCode(pWalker->pParse, pExpr, reg); 890 pExpr->op = TK_REGISTER; 891 pExpr->iTable = reg; 892 }else if( pHint->pIdx!=0 ){ 893 pExpr->iTable = pHint->iIdxCur; 894 pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn); 895 assert( pExpr->iColumn>=0 ); 896 } 897 }else if( pExpr->op==TK_AGG_FUNCTION ){ 898 /* An aggregate function in the WHERE clause of a query means this must 899 ** be a correlated sub-query, and expression pExpr is an aggregate from 900 ** the parent context. Do not walk the function arguments in this case. 901 ** 902 ** todo: It should be possible to replace this node with a TK_REGISTER 903 ** expression, as the result of the expression must be stored in a 904 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 905 rc = WRC_Prune; 906 } 907 return rc; 908 } 909 910 /* 911 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 912 */ 913 static void codeCursorHint( 914 struct SrcList_item *pTabItem, /* FROM clause item */ 915 WhereInfo *pWInfo, /* The where clause */ 916 WhereLevel *pLevel, /* Which loop to provide hints for */ 917 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 918 ){ 919 Parse *pParse = pWInfo->pParse; 920 sqlite3 *db = pParse->db; 921 Vdbe *v = pParse->pVdbe; 922 Expr *pExpr = 0; 923 WhereLoop *pLoop = pLevel->pWLoop; 924 int iCur; 925 WhereClause *pWC; 926 WhereTerm *pTerm; 927 int i, j; 928 struct CCurHint sHint; 929 Walker sWalker; 930 931 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 932 iCur = pLevel->iTabCur; 933 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 934 sHint.iTabCur = iCur; 935 sHint.iIdxCur = pLevel->iIdxCur; 936 sHint.pIdx = pLoop->u.btree.pIndex; 937 memset(&sWalker, 0, sizeof(sWalker)); 938 sWalker.pParse = pParse; 939 sWalker.u.pCCurHint = &sHint; 940 pWC = &pWInfo->sWC; 941 for(i=0; i<pWC->nTerm; i++){ 942 pTerm = &pWC->a[i]; 943 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 944 if( pTerm->prereqAll & pLevel->notReady ) continue; 945 946 /* Any terms specified as part of the ON(...) clause for any LEFT 947 ** JOIN for which the current table is not the rhs are omitted 948 ** from the cursor-hint. 949 ** 950 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms 951 ** that were specified as part of the WHERE clause must be excluded. 952 ** This is to address the following: 953 ** 954 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; 955 ** 956 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its 957 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is 958 ** pushed down to the cursor, this row is filtered out, causing 959 ** SQLite to synthesize a row of NULL values. Which does match the 960 ** WHERE clause, and so the query returns a row. Which is incorrect. 961 ** 962 ** For the same reason, WHERE terms such as: 963 ** 964 ** WHERE 1 = (t2.c IS NULL) 965 ** 966 ** are also excluded. See codeCursorHintIsOrFunction() for details. 967 */ 968 if( pTabItem->fg.jointype & JT_LEFT ){ 969 Expr *pExpr = pTerm->pExpr; 970 if( !ExprHasProperty(pExpr, EP_FromJoin) 971 || pExpr->iRightJoinTable!=pTabItem->iCursor 972 ){ 973 sWalker.eCode = 0; 974 sWalker.xExprCallback = codeCursorHintIsOrFunction; 975 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 976 if( sWalker.eCode ) continue; 977 } 978 }else{ 979 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; 980 } 981 982 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 983 ** the cursor. These terms are not needed as hints for a pure range 984 ** scan (that has no == terms) so omit them. */ 985 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 986 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 987 if( j<pLoop->nLTerm ) continue; 988 } 989 990 /* No subqueries or non-deterministic functions allowed */ 991 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 992 993 /* For an index scan, make sure referenced columns are actually in 994 ** the index. */ 995 if( sHint.pIdx!=0 ){ 996 sWalker.eCode = 0; 997 sWalker.xExprCallback = codeCursorHintCheckExpr; 998 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 999 if( sWalker.eCode ) continue; 1000 } 1001 1002 /* If we survive all prior tests, that means this term is worth hinting */ 1003 pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 1004 } 1005 if( pExpr!=0 ){ 1006 sWalker.xExprCallback = codeCursorHintFixExpr; 1007 sqlite3WalkExpr(&sWalker, pExpr); 1008 sqlite3VdbeAddOp4(v, OP_CursorHint, 1009 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 1010 (const char*)pExpr, P4_EXPR); 1011 } 1012 } 1013 #else 1014 # define codeCursorHint(A,B,C,D) /* No-op */ 1015 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 1016 1017 /* 1018 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains 1019 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This 1020 ** function generates code to do a deferred seek of cursor iCur to the 1021 ** rowid stored in register iRowid. 1022 ** 1023 ** Normally, this is just: 1024 ** 1025 ** OP_DeferredSeek $iCur $iRowid 1026 ** 1027 ** However, if the scan currently being coded is a branch of an OR-loop and 1028 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek 1029 ** is set to iIdxCur and P4 is set to point to an array of integers 1030 ** containing one entry for each column of the table cursor iCur is open 1031 ** on. For each table column, if the column is the i'th column of the 1032 ** index, then the corresponding array entry is set to (i+1). If the column 1033 ** does not appear in the index at all, the array entry is set to 0. 1034 */ 1035 static void codeDeferredSeek( 1036 WhereInfo *pWInfo, /* Where clause context */ 1037 Index *pIdx, /* Index scan is using */ 1038 int iCur, /* Cursor for IPK b-tree */ 1039 int iIdxCur /* Index cursor */ 1040 ){ 1041 Parse *pParse = pWInfo->pParse; /* Parse context */ 1042 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ 1043 1044 assert( iIdxCur>0 ); 1045 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); 1046 1047 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur); 1048 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 1049 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) 1050 ){ 1051 int i; 1052 Table *pTab = pIdx->pTable; 1053 int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1)); 1054 if( ai ){ 1055 ai[0] = pTab->nCol; 1056 for(i=0; i<pIdx->nColumn-1; i++){ 1057 int x1, x2; 1058 assert( pIdx->aiColumn[i]<pTab->nCol ); 1059 x1 = pIdx->aiColumn[i]; 1060 x2 = sqlite3TableColumnToStorage(pTab, x1); 1061 testcase( x1!=x2 ); 1062 if( x1>=0 ) ai[x2+1] = i+1; 1063 } 1064 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); 1065 } 1066 } 1067 } 1068 1069 /* 1070 ** If the expression passed as the second argument is a vector, generate 1071 ** code to write the first nReg elements of the vector into an array 1072 ** of registers starting with iReg. 1073 ** 1074 ** If the expression is not a vector, then nReg must be passed 1. In 1075 ** this case, generate code to evaluate the expression and leave the 1076 ** result in register iReg. 1077 */ 1078 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ 1079 assert( nReg>0 ); 1080 if( p && sqlite3ExprIsVector(p) ){ 1081 #ifndef SQLITE_OMIT_SUBQUERY 1082 if( (p->flags & EP_xIsSelect) ){ 1083 Vdbe *v = pParse->pVdbe; 1084 int iSelect; 1085 assert( p->op==TK_SELECT ); 1086 iSelect = sqlite3CodeSubselect(pParse, p); 1087 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); 1088 }else 1089 #endif 1090 { 1091 int i; 1092 ExprList *pList = p->x.pList; 1093 assert( nReg<=pList->nExpr ); 1094 for(i=0; i<nReg; i++){ 1095 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i); 1096 } 1097 } 1098 }else{ 1099 assert( nReg==1 ); 1100 sqlite3ExprCode(pParse, p, iReg); 1101 } 1102 } 1103 1104 /* An instance of the IdxExprTrans object carries information about a 1105 ** mapping from an expression on table columns into a column in an index 1106 ** down through the Walker. 1107 */ 1108 typedef struct IdxExprTrans { 1109 Expr *pIdxExpr; /* The index expression */ 1110 int iTabCur; /* The cursor of the corresponding table */ 1111 int iIdxCur; /* The cursor for the index */ 1112 int iIdxCol; /* The column for the index */ 1113 int iTabCol; /* The column for the table */ 1114 } IdxExprTrans; 1115 1116 /* The walker node callback used to transform matching expressions into 1117 ** a reference to an index column for an index on an expression. 1118 ** 1119 ** If pExpr matches, then transform it into a reference to the index column 1120 ** that contains the value of pExpr. 1121 */ 1122 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){ 1123 IdxExprTrans *pX = p->u.pIdxTrans; 1124 if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){ 1125 pExpr->affExpr = sqlite3ExprAffinity(pExpr); 1126 pExpr->op = TK_COLUMN; 1127 pExpr->iTable = pX->iIdxCur; 1128 pExpr->iColumn = pX->iIdxCol; 1129 pExpr->y.pTab = 0; 1130 return WRC_Prune; 1131 }else{ 1132 return WRC_Continue; 1133 } 1134 } 1135 1136 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1137 /* A walker node callback that translates a column reference to a table 1138 ** into a corresponding column reference of an index. 1139 */ 1140 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){ 1141 if( pExpr->op==TK_COLUMN ){ 1142 IdxExprTrans *pX = p->u.pIdxTrans; 1143 if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){ 1144 assert( pExpr->y.pTab!=0 ); 1145 pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn); 1146 pExpr->iTable = pX->iIdxCur; 1147 pExpr->iColumn = pX->iIdxCol; 1148 pExpr->y.pTab = 0; 1149 } 1150 } 1151 return WRC_Continue; 1152 } 1153 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1154 1155 /* 1156 ** For an indexes on expression X, locate every instance of expression X 1157 ** in pExpr and change that subexpression into a reference to the appropriate 1158 ** column of the index. 1159 ** 1160 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in 1161 ** the table into references to the corresponding (stored) column of the 1162 ** index. 1163 */ 1164 static void whereIndexExprTrans( 1165 Index *pIdx, /* The Index */ 1166 int iTabCur, /* Cursor of the table that is being indexed */ 1167 int iIdxCur, /* Cursor of the index itself */ 1168 WhereInfo *pWInfo /* Transform expressions in this WHERE clause */ 1169 ){ 1170 int iIdxCol; /* Column number of the index */ 1171 ExprList *aColExpr; /* Expressions that are indexed */ 1172 Table *pTab; 1173 Walker w; 1174 IdxExprTrans x; 1175 aColExpr = pIdx->aColExpr; 1176 if( aColExpr==0 && !pIdx->bHasVCol ){ 1177 /* The index does not reference any expressions or virtual columns 1178 ** so no translations are needed. */ 1179 return; 1180 } 1181 pTab = pIdx->pTable; 1182 memset(&w, 0, sizeof(w)); 1183 w.u.pIdxTrans = &x; 1184 x.iTabCur = iTabCur; 1185 x.iIdxCur = iIdxCur; 1186 for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){ 1187 i16 iRef = pIdx->aiColumn[iIdxCol]; 1188 if( iRef==XN_EXPR ){ 1189 assert( aColExpr->a[iIdxCol].pExpr!=0 ); 1190 x.pIdxExpr = aColExpr->a[iIdxCol].pExpr; 1191 w.xExprCallback = whereIndexExprTransNode; 1192 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1193 }else if( iRef>=0 && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0 ){ 1194 x.iTabCol = iRef; 1195 w.xExprCallback = whereIndexExprTransColumn; 1196 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1197 }else{ 1198 continue; 1199 } 1200 x.iIdxCol = iIdxCol; 1201 sqlite3WalkExpr(&w, pWInfo->pWhere); 1202 sqlite3WalkExprList(&w, pWInfo->pOrderBy); 1203 sqlite3WalkExprList(&w, pWInfo->pResultSet); 1204 } 1205 } 1206 1207 /* 1208 ** The pTruth expression is always true because it is the WHERE clause 1209 ** a partial index that is driving a query loop. Look through all of the 1210 ** WHERE clause terms on the query, and if any of those terms must be 1211 ** true because pTruth is true, then mark those WHERE clause terms as 1212 ** coded. 1213 */ 1214 static void whereApplyPartialIndexConstraints( 1215 Expr *pTruth, 1216 int iTabCur, 1217 WhereClause *pWC 1218 ){ 1219 int i; 1220 WhereTerm *pTerm; 1221 while( pTruth->op==TK_AND ){ 1222 whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC); 1223 pTruth = pTruth->pRight; 1224 } 1225 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1226 Expr *pExpr; 1227 if( pTerm->wtFlags & TERM_CODED ) continue; 1228 pExpr = pTerm->pExpr; 1229 if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){ 1230 pTerm->wtFlags |= TERM_CODED; 1231 } 1232 } 1233 } 1234 1235 /* 1236 ** Generate code for the start of the iLevel-th loop in the WHERE clause 1237 ** implementation described by pWInfo. 1238 */ 1239 Bitmask sqlite3WhereCodeOneLoopStart( 1240 Parse *pParse, /* Parsing context */ 1241 Vdbe *v, /* Prepared statement under construction */ 1242 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1243 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1244 WhereLevel *pLevel, /* The current level pointer */ 1245 Bitmask notReady /* Which tables are currently available */ 1246 ){ 1247 int j, k; /* Loop counters */ 1248 int iCur; /* The VDBE cursor for the table */ 1249 int addrNxt; /* Where to jump to continue with the next IN case */ 1250 int bRev; /* True if we need to scan in reverse order */ 1251 WhereLoop *pLoop; /* The WhereLoop object being coded */ 1252 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 1253 WhereTerm *pTerm; /* A WHERE clause term */ 1254 sqlite3 *db; /* Database connection */ 1255 struct SrcList_item *pTabItem; /* FROM clause term being coded */ 1256 int addrBrk; /* Jump here to break out of the loop */ 1257 int addrHalt; /* addrBrk for the outermost loop */ 1258 int addrCont; /* Jump here to continue with next cycle */ 1259 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 1260 int iReleaseReg = 0; /* Temp register to free before returning */ 1261 Index *pIdx = 0; /* Index used by loop (if any) */ 1262 int iLoop; /* Iteration of constraint generator loop */ 1263 1264 pWC = &pWInfo->sWC; 1265 db = pParse->db; 1266 pLoop = pLevel->pWLoop; 1267 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1268 iCur = pTabItem->iCursor; 1269 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 1270 bRev = (pWInfo->revMask>>iLevel)&1; 1271 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 1272 1273 /* Create labels for the "break" and "continue" instructions 1274 ** for the current loop. Jump to addrBrk to break out of a loop. 1275 ** Jump to cont to go immediately to the next iteration of the 1276 ** loop. 1277 ** 1278 ** When there is an IN operator, we also have a "addrNxt" label that 1279 ** means to continue with the next IN value combination. When 1280 ** there are no IN operators in the constraints, the "addrNxt" label 1281 ** is the same as "addrBrk". 1282 */ 1283 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 1284 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse); 1285 1286 /* If this is the right table of a LEFT OUTER JOIN, allocate and 1287 ** initialize a memory cell that records if this table matches any 1288 ** row of the left table of the join. 1289 */ 1290 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 1291 || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0 1292 ); 1293 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 1294 pLevel->iLeftJoin = ++pParse->nMem; 1295 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 1296 VdbeComment((v, "init LEFT JOIN no-match flag")); 1297 } 1298 1299 /* Compute a safe address to jump to if we discover that the table for 1300 ** this loop is empty and can never contribute content. */ 1301 for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){} 1302 addrHalt = pWInfo->a[j].addrBrk; 1303 1304 /* Special case of a FROM clause subquery implemented as a co-routine */ 1305 if( pTabItem->fg.viaCoroutine ){ 1306 int regYield = pTabItem->regReturn; 1307 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 1308 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 1309 VdbeCoverage(v); 1310 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 1311 pLevel->op = OP_Goto; 1312 }else 1313 1314 #ifndef SQLITE_OMIT_VIRTUALTABLE 1315 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 1316 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 1317 ** to access the data. 1318 */ 1319 int iReg; /* P3 Value for OP_VFilter */ 1320 int addrNotFound; 1321 int nConstraint = pLoop->nLTerm; 1322 int iIn; /* Counter for IN constraints */ 1323 1324 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 1325 addrNotFound = pLevel->addrBrk; 1326 for(j=0; j<nConstraint; j++){ 1327 int iTarget = iReg+j+2; 1328 pTerm = pLoop->aLTerm[j]; 1329 if( NEVER(pTerm==0) ) continue; 1330 if( pTerm->eOperator & WO_IN ){ 1331 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 1332 addrNotFound = pLevel->addrNxt; 1333 }else{ 1334 Expr *pRight = pTerm->pExpr->pRight; 1335 codeExprOrVector(pParse, pRight, iTarget, 1); 1336 } 1337 } 1338 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 1339 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 1340 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 1341 pLoop->u.vtab.idxStr, 1342 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); 1343 VdbeCoverage(v); 1344 pLoop->u.vtab.needFree = 0; 1345 pLevel->p1 = iCur; 1346 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 1347 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1348 iIn = pLevel->u.in.nIn; 1349 for(j=nConstraint-1; j>=0; j--){ 1350 pTerm = pLoop->aLTerm[j]; 1351 if( (pTerm->eOperator & WO_IN)!=0 ) iIn--; 1352 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ 1353 disableTerm(pLevel, pTerm); 1354 }else if( (pTerm->eOperator & WO_IN)!=0 1355 && sqlite3ExprVectorSize(pTerm->pExpr->pLeft)==1 1356 ){ 1357 Expr *pCompare; /* The comparison operator */ 1358 Expr *pRight; /* RHS of the comparison */ 1359 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ 1360 1361 /* Reload the constraint value into reg[iReg+j+2]. The same value 1362 ** was loaded into the same register prior to the OP_VFilter, but 1363 ** the xFilter implementation might have changed the datatype or 1364 ** encoding of the value in the register, so it *must* be reloaded. */ 1365 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed ); 1366 if( !db->mallocFailed ){ 1367 assert( iIn>=0 && iIn<pLevel->u.in.nIn ); 1368 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop); 1369 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid ); 1370 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 ); 1371 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 ); 1372 testcase( pOp->opcode==OP_Rowid ); 1373 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); 1374 } 1375 1376 /* Generate code that will continue to the next row if 1377 ** the IN constraint is not satisfied */ 1378 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); 1379 assert( pCompare!=0 || db->mallocFailed ); 1380 if( pCompare ){ 1381 pCompare->pLeft = pTerm->pExpr->pLeft; 1382 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); 1383 if( pRight ){ 1384 pRight->iTable = iReg+j+2; 1385 sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0); 1386 } 1387 pCompare->pLeft = 0; 1388 sqlite3ExprDelete(db, pCompare); 1389 } 1390 } 1391 } 1392 assert( iIn==0 || db->mallocFailed ); 1393 /* These registers need to be preserved in case there is an IN operator 1394 ** loop. So we could deallocate the registers here (and potentially 1395 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems 1396 ** simpler and safer to simply not reuse the registers. 1397 ** 1398 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 1399 */ 1400 }else 1401 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1402 1403 if( (pLoop->wsFlags & WHERE_IPK)!=0 1404 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 1405 ){ 1406 /* Case 2: We can directly reference a single row using an 1407 ** equality comparison against the ROWID field. Or 1408 ** we reference multiple rows using a "rowid IN (...)" 1409 ** construct. 1410 */ 1411 assert( pLoop->u.btree.nEq==1 ); 1412 pTerm = pLoop->aLTerm[0]; 1413 assert( pTerm!=0 ); 1414 assert( pTerm->pExpr!=0 ); 1415 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1416 iReleaseReg = ++pParse->nMem; 1417 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 1418 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 1419 addrNxt = pLevel->addrNxt; 1420 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); 1421 VdbeCoverage(v); 1422 pLevel->op = OP_Noop; 1423 if( (pTerm->prereqAll & pLevel->notReady)==0 ){ 1424 pTerm->wtFlags |= TERM_CODED; 1425 } 1426 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 1427 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 1428 ){ 1429 /* Case 3: We have an inequality comparison against the ROWID field. 1430 */ 1431 int testOp = OP_Noop; 1432 int start; 1433 int memEndValue = 0; 1434 WhereTerm *pStart, *pEnd; 1435 1436 j = 0; 1437 pStart = pEnd = 0; 1438 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 1439 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 1440 assert( pStart!=0 || pEnd!=0 ); 1441 if( bRev ){ 1442 pTerm = pStart; 1443 pStart = pEnd; 1444 pEnd = pTerm; 1445 } 1446 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); 1447 if( pStart ){ 1448 Expr *pX; /* The expression that defines the start bound */ 1449 int r1, rTemp; /* Registers for holding the start boundary */ 1450 int op; /* Cursor seek operation */ 1451 1452 /* The following constant maps TK_xx codes into corresponding 1453 ** seek opcodes. It depends on a particular ordering of TK_xx 1454 */ 1455 const u8 aMoveOp[] = { 1456 /* TK_GT */ OP_SeekGT, 1457 /* TK_LE */ OP_SeekLE, 1458 /* TK_LT */ OP_SeekLT, 1459 /* TK_GE */ OP_SeekGE 1460 }; 1461 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 1462 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 1463 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 1464 1465 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 1466 testcase( pStart->wtFlags & TERM_VIRTUAL ); 1467 pX = pStart->pExpr; 1468 assert( pX!=0 ); 1469 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 1470 if( sqlite3ExprIsVector(pX->pRight) ){ 1471 r1 = rTemp = sqlite3GetTempReg(pParse); 1472 codeExprOrVector(pParse, pX->pRight, r1, 1); 1473 testcase( pX->op==TK_GT ); 1474 testcase( pX->op==TK_GE ); 1475 testcase( pX->op==TK_LT ); 1476 testcase( pX->op==TK_LE ); 1477 op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1]; 1478 assert( pX->op!=TK_GT || op==OP_SeekGE ); 1479 assert( pX->op!=TK_GE || op==OP_SeekGE ); 1480 assert( pX->op!=TK_LT || op==OP_SeekLE ); 1481 assert( pX->op!=TK_LE || op==OP_SeekLE ); 1482 }else{ 1483 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 1484 disableTerm(pLevel, pStart); 1485 op = aMoveOp[(pX->op - TK_GT)]; 1486 } 1487 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); 1488 VdbeComment((v, "pk")); 1489 VdbeCoverageIf(v, pX->op==TK_GT); 1490 VdbeCoverageIf(v, pX->op==TK_LE); 1491 VdbeCoverageIf(v, pX->op==TK_LT); 1492 VdbeCoverageIf(v, pX->op==TK_GE); 1493 sqlite3ReleaseTempReg(pParse, rTemp); 1494 }else{ 1495 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt); 1496 VdbeCoverageIf(v, bRev==0); 1497 VdbeCoverageIf(v, bRev!=0); 1498 } 1499 if( pEnd ){ 1500 Expr *pX; 1501 pX = pEnd->pExpr; 1502 assert( pX!=0 ); 1503 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 1504 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 1505 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 1506 memEndValue = ++pParse->nMem; 1507 codeExprOrVector(pParse, pX->pRight, memEndValue, 1); 1508 if( 0==sqlite3ExprIsVector(pX->pRight) 1509 && (pX->op==TK_LT || pX->op==TK_GT) 1510 ){ 1511 testOp = bRev ? OP_Le : OP_Ge; 1512 }else{ 1513 testOp = bRev ? OP_Lt : OP_Gt; 1514 } 1515 if( 0==sqlite3ExprIsVector(pX->pRight) ){ 1516 disableTerm(pLevel, pEnd); 1517 } 1518 } 1519 start = sqlite3VdbeCurrentAddr(v); 1520 pLevel->op = bRev ? OP_Prev : OP_Next; 1521 pLevel->p1 = iCur; 1522 pLevel->p2 = start; 1523 assert( pLevel->p5==0 ); 1524 if( testOp!=OP_Noop ){ 1525 iRowidReg = ++pParse->nMem; 1526 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 1527 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 1528 VdbeCoverageIf(v, testOp==OP_Le); 1529 VdbeCoverageIf(v, testOp==OP_Lt); 1530 VdbeCoverageIf(v, testOp==OP_Ge); 1531 VdbeCoverageIf(v, testOp==OP_Gt); 1532 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 1533 } 1534 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 1535 /* Case 4: A scan using an index. 1536 ** 1537 ** The WHERE clause may contain zero or more equality 1538 ** terms ("==" or "IN" operators) that refer to the N 1539 ** left-most columns of the index. It may also contain 1540 ** inequality constraints (>, <, >= or <=) on the indexed 1541 ** column that immediately follows the N equalities. Only 1542 ** the right-most column can be an inequality - the rest must 1543 ** use the "==" and "IN" operators. For example, if the 1544 ** index is on (x,y,z), then the following clauses are all 1545 ** optimized: 1546 ** 1547 ** x=5 1548 ** x=5 AND y=10 1549 ** x=5 AND y<10 1550 ** x=5 AND y>5 AND y<10 1551 ** x=5 AND y=5 AND z<=10 1552 ** 1553 ** The z<10 term of the following cannot be used, only 1554 ** the x=5 term: 1555 ** 1556 ** x=5 AND z<10 1557 ** 1558 ** N may be zero if there are inequality constraints. 1559 ** If there are no inequality constraints, then N is at 1560 ** least one. 1561 ** 1562 ** This case is also used when there are no WHERE clause 1563 ** constraints but an index is selected anyway, in order 1564 ** to force the output order to conform to an ORDER BY. 1565 */ 1566 static const u8 aStartOp[] = { 1567 0, 1568 0, 1569 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1570 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1571 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1572 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1573 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1574 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1575 }; 1576 static const u8 aEndOp[] = { 1577 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1578 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1579 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1580 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1581 }; 1582 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1583 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ 1584 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ 1585 int regBase; /* Base register holding constraint values */ 1586 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1587 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1588 int startEq; /* True if range start uses ==, >= or <= */ 1589 int endEq; /* True if range end uses ==, >= or <= */ 1590 int start_constraints; /* Start of range is constrained */ 1591 int nConstraint; /* Number of constraint terms */ 1592 int iIdxCur; /* The VDBE cursor for the index */ 1593 int nExtraReg = 0; /* Number of extra registers needed */ 1594 int op; /* Instruction opcode */ 1595 char *zStartAff; /* Affinity for start of range constraint */ 1596 char *zEndAff = 0; /* Affinity for end of range constraint */ 1597 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1598 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1599 int omitTable; /* True if we use the index only */ 1600 int regBignull = 0; /* big-null flag register */ 1601 1602 pIdx = pLoop->u.btree.pIndex; 1603 iIdxCur = pLevel->iIdxCur; 1604 assert( nEq>=pLoop->nSkip ); 1605 1606 /* Find any inequality constraint terms for the start and end 1607 ** of the range. 1608 */ 1609 j = nEq; 1610 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1611 pRangeStart = pLoop->aLTerm[j++]; 1612 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); 1613 /* Like optimization range constraints always occur in pairs */ 1614 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1615 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1616 } 1617 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1618 pRangeEnd = pLoop->aLTerm[j++]; 1619 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); 1620 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1621 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1622 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1623 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1624 pLevel->iLikeRepCntr = (u32)++pParse->nMem; 1625 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); 1626 VdbeComment((v, "LIKE loop counter")); 1627 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1628 /* iLikeRepCntr actually stores 2x the counter register number. The 1629 ** bottom bit indicates whether the search order is ASC or DESC. */ 1630 testcase( bRev ); 1631 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1632 assert( (bRev & ~1)==0 ); 1633 pLevel->iLikeRepCntr <<=1; 1634 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); 1635 } 1636 #endif 1637 if( pRangeStart==0 ){ 1638 j = pIdx->aiColumn[nEq]; 1639 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){ 1640 bSeekPastNull = 1; 1641 } 1642 } 1643 } 1644 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1645 1646 /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses 1647 ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS 1648 ** FIRST). In both cases separate ordered scans are made of those 1649 ** index entries for which the column is null and for those for which 1650 ** it is not. For an ASC sort, the non-NULL entries are scanned first. 1651 ** For DESC, NULL entries are scanned first. 1652 */ 1653 if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0 1654 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0 1655 ){ 1656 assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 ); 1657 assert( pRangeEnd==0 && pRangeStart==0 ); 1658 assert( pLoop->nSkip==0 ); 1659 nExtraReg = 1; 1660 bSeekPastNull = 1; 1661 pLevel->regBignull = regBignull = ++pParse->nMem; 1662 pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse); 1663 } 1664 1665 /* If we are doing a reverse order scan on an ascending index, or 1666 ** a forward order scan on a descending index, interchange the 1667 ** start and end terms (pRangeStart and pRangeEnd). 1668 */ 1669 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) 1670 || (bRev && pIdx->nKeyCol==nEq) 1671 ){ 1672 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1673 SWAP(u8, bSeekPastNull, bStopAtNull); 1674 SWAP(u8, nBtm, nTop); 1675 } 1676 1677 /* Generate code to evaluate all constraint terms using == or IN 1678 ** and store the values of those terms in an array of registers 1679 ** starting at regBase. 1680 */ 1681 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); 1682 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1683 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1684 if( zStartAff && nTop ){ 1685 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); 1686 } 1687 addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt); 1688 1689 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1690 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1691 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1692 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1693 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1694 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1695 start_constraints = pRangeStart || nEq>0; 1696 1697 /* Seek the index cursor to the start of the range. */ 1698 nConstraint = nEq; 1699 if( pRangeStart ){ 1700 Expr *pRight = pRangeStart->pExpr->pRight; 1701 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); 1702 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1703 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1704 && sqlite3ExprCanBeNull(pRight) 1705 ){ 1706 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1707 VdbeCoverage(v); 1708 } 1709 if( zStartAff ){ 1710 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); 1711 } 1712 nConstraint += nBtm; 1713 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1714 if( sqlite3ExprIsVector(pRight)==0 ){ 1715 disableTerm(pLevel, pRangeStart); 1716 }else{ 1717 startEq = 1; 1718 } 1719 bSeekPastNull = 0; 1720 }else if( bSeekPastNull ){ 1721 startEq = 0; 1722 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1723 start_constraints = 1; 1724 nConstraint++; 1725 }else if( regBignull ){ 1726 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1727 start_constraints = 1; 1728 nConstraint++; 1729 } 1730 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1731 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ 1732 /* The skip-scan logic inside the call to codeAllEqualityConstraints() 1733 ** above has already left the cursor sitting on the correct row, 1734 ** so no further seeking is needed */ 1735 }else{ 1736 if( pLoop->wsFlags & WHERE_IN_EARLYOUT ){ 1737 sqlite3VdbeAddOp1(v, OP_SeekHit, iIdxCur); 1738 } 1739 if( regBignull ){ 1740 sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull); 1741 VdbeComment((v, "NULL-scan pass ctr")); 1742 } 1743 1744 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 1745 assert( op!=0 ); 1746 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1747 VdbeCoverage(v); 1748 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1749 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1750 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 1751 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1752 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1753 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 1754 1755 assert( bSeekPastNull==0 || bStopAtNull==0 ); 1756 if( regBignull ){ 1757 assert( bSeekPastNull==1 || bStopAtNull==1 ); 1758 assert( bSeekPastNull==!bStopAtNull ); 1759 assert( bStopAtNull==startEq ); 1760 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2); 1761 op = aStartOp[(nConstraint>1)*4 + 2 + bRev]; 1762 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 1763 nConstraint-startEq); 1764 VdbeCoverage(v); 1765 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1766 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1767 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1768 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1769 assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE); 1770 } 1771 } 1772 1773 /* Load the value for the inequality constraint at the end of the 1774 ** range (if any). 1775 */ 1776 nConstraint = nEq; 1777 if( pRangeEnd ){ 1778 Expr *pRight = pRangeEnd->pExpr->pRight; 1779 codeExprOrVector(pParse, pRight, regBase+nEq, nTop); 1780 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 1781 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 1782 && sqlite3ExprCanBeNull(pRight) 1783 ){ 1784 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1785 VdbeCoverage(v); 1786 } 1787 if( zEndAff ){ 1788 updateRangeAffinityStr(pRight, nTop, zEndAff); 1789 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); 1790 }else{ 1791 assert( pParse->db->mallocFailed ); 1792 } 1793 nConstraint += nTop; 1794 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 1795 1796 if( sqlite3ExprIsVector(pRight)==0 ){ 1797 disableTerm(pLevel, pRangeEnd); 1798 }else{ 1799 endEq = 1; 1800 } 1801 }else if( bStopAtNull ){ 1802 if( regBignull==0 ){ 1803 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1804 endEq = 0; 1805 } 1806 nConstraint++; 1807 } 1808 sqlite3DbFree(db, zStartAff); 1809 sqlite3DbFree(db, zEndAff); 1810 1811 /* Top of the loop body */ 1812 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1813 1814 /* Check if the index cursor is past the end of the range. */ 1815 if( nConstraint ){ 1816 if( regBignull ){ 1817 /* Except, skip the end-of-range check while doing the NULL-scan */ 1818 sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3); 1819 VdbeComment((v, "If NULL-scan 2nd pass")); 1820 VdbeCoverage(v); 1821 } 1822 op = aEndOp[bRev*2 + endEq]; 1823 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1824 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1825 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1826 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1827 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1828 } 1829 if( regBignull ){ 1830 /* During a NULL-scan, check to see if we have reached the end of 1831 ** the NULLs */ 1832 assert( bSeekPastNull==!bStopAtNull ); 1833 assert( bSeekPastNull+bStopAtNull==1 ); 1834 assert( nConstraint+bSeekPastNull>0 ); 1835 sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2); 1836 VdbeComment((v, "If NULL-scan 1st pass")); 1837 VdbeCoverage(v); 1838 op = aEndOp[bRev*2 + bSeekPastNull]; 1839 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 1840 nConstraint+bSeekPastNull); 1841 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1842 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1843 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1844 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1845 } 1846 1847 if( pLoop->wsFlags & WHERE_IN_EARLYOUT ){ 1848 sqlite3VdbeAddOp2(v, OP_SeekHit, iIdxCur, 1); 1849 } 1850 1851 /* Seek the table cursor, if required */ 1852 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 1853 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0; 1854 if( omitTable ){ 1855 /* pIdx is a covering index. No need to access the main table. */ 1856 }else if( HasRowid(pIdx->pTable) ){ 1857 if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE) 1858 || ( (pWInfo->wctrlFlags & WHERE_SEEK_UNIQ_TABLE)!=0 1859 && (pWInfo->eOnePass==ONEPASS_SINGLE || pLoop->nLTerm==0) ) 1860 ){ 1861 iRowidReg = ++pParse->nMem; 1862 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); 1863 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg); 1864 VdbeCoverage(v); 1865 }else{ 1866 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); 1867 } 1868 }else if( iCur!=iIdxCur ){ 1869 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1870 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1871 for(j=0; j<pPk->nKeyCol; j++){ 1872 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]); 1873 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 1874 } 1875 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 1876 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 1877 } 1878 1879 if( pLevel->iLeftJoin==0 ){ 1880 /* If pIdx is an index on one or more expressions, then look through 1881 ** all the expressions in pWInfo and try to transform matching expressions 1882 ** into reference to index columns. Also attempt to translate references 1883 ** to virtual columns in the table into references to (stored) columns 1884 ** of the index. 1885 ** 1886 ** Do not do this for the RHS of a LEFT JOIN. This is because the 1887 ** expression may be evaluated after OP_NullRow has been executed on 1888 ** the cursor. In this case it is important to do the full evaluation, 1889 ** as the result of the expression may not be NULL, even if all table 1890 ** column values are. https://www.sqlite.org/src/info/7fa8049685b50b5a 1891 ** 1892 ** Also, do not do this when processing one index an a multi-index 1893 ** OR clause, since the transformation will become invalid once we 1894 ** move forward to the next index. 1895 ** https://sqlite.org/src/info/4e8e4857d32d401f 1896 */ 1897 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ 1898 whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo); 1899 } 1900 1901 /* If a partial index is driving the loop, try to eliminate WHERE clause 1902 ** terms from the query that must be true due to the WHERE clause of 1903 ** the partial index. 1904 ** 1905 ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work 1906 ** for a LEFT JOIN. 1907 */ 1908 if( pIdx->pPartIdxWhere ){ 1909 whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC); 1910 } 1911 }else{ 1912 testcase( pIdx->pPartIdxWhere ); 1913 /* The following assert() is not a requirement, merely an observation: 1914 ** The OR-optimization doesn't work for the right hand table of 1915 ** a LEFT JOIN: */ 1916 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ); 1917 } 1918 1919 /* Record the instruction used to terminate the loop. */ 1920 if( pLoop->wsFlags & WHERE_ONEROW ){ 1921 pLevel->op = OP_Noop; 1922 }else if( bRev ){ 1923 pLevel->op = OP_Prev; 1924 }else{ 1925 pLevel->op = OP_Next; 1926 } 1927 pLevel->p1 = iIdxCur; 1928 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 1929 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 1930 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 1931 }else{ 1932 assert( pLevel->p5==0 ); 1933 } 1934 if( omitTable ) pIdx = 0; 1935 }else 1936 1937 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 1938 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 1939 /* Case 5: Two or more separately indexed terms connected by OR 1940 ** 1941 ** Example: 1942 ** 1943 ** CREATE TABLE t1(a,b,c,d); 1944 ** CREATE INDEX i1 ON t1(a); 1945 ** CREATE INDEX i2 ON t1(b); 1946 ** CREATE INDEX i3 ON t1(c); 1947 ** 1948 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 1949 ** 1950 ** In the example, there are three indexed terms connected by OR. 1951 ** The top of the loop looks like this: 1952 ** 1953 ** Null 1 # Zero the rowset in reg 1 1954 ** 1955 ** Then, for each indexed term, the following. The arguments to 1956 ** RowSetTest are such that the rowid of the current row is inserted 1957 ** into the RowSet. If it is already present, control skips the 1958 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 1959 ** 1960 ** sqlite3WhereBegin(<term>) 1961 ** RowSetTest # Insert rowid into rowset 1962 ** Gosub 2 A 1963 ** sqlite3WhereEnd() 1964 ** 1965 ** Following the above, code to terminate the loop. Label A, the target 1966 ** of the Gosub above, jumps to the instruction right after the Goto. 1967 ** 1968 ** Null 1 # Zero the rowset in reg 1 1969 ** Goto B # The loop is finished. 1970 ** 1971 ** A: <loop body> # Return data, whatever. 1972 ** 1973 ** Return 2 # Jump back to the Gosub 1974 ** 1975 ** B: <after the loop> 1976 ** 1977 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 1978 ** use an ephemeral index instead of a RowSet to record the primary 1979 ** keys of the rows we have already seen. 1980 ** 1981 */ 1982 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 1983 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 1984 Index *pCov = 0; /* Potential covering index (or NULL) */ 1985 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 1986 1987 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 1988 int regRowset = 0; /* Register for RowSet object */ 1989 int regRowid = 0; /* Register holding rowid */ 1990 int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */ 1991 int iRetInit; /* Address of regReturn init */ 1992 int untestedTerms = 0; /* Some terms not completely tested */ 1993 int ii; /* Loop counter */ 1994 u16 wctrlFlags; /* Flags for sub-WHERE clause */ 1995 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 1996 Table *pTab = pTabItem->pTab; 1997 1998 pTerm = pLoop->aLTerm[0]; 1999 assert( pTerm!=0 ); 2000 assert( pTerm->eOperator & WO_OR ); 2001 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 2002 pOrWc = &pTerm->u.pOrInfo->wc; 2003 pLevel->op = OP_Return; 2004 pLevel->p1 = regReturn; 2005 2006 /* Set up a new SrcList in pOrTab containing the table being scanned 2007 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 2008 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 2009 */ 2010 if( pWInfo->nLevel>1 ){ 2011 int nNotReady; /* The number of notReady tables */ 2012 struct SrcList_item *origSrc; /* Original list of tables */ 2013 nNotReady = pWInfo->nLevel - iLevel - 1; 2014 pOrTab = sqlite3StackAllocRaw(db, 2015 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 2016 if( pOrTab==0 ) return notReady; 2017 pOrTab->nAlloc = (u8)(nNotReady + 1); 2018 pOrTab->nSrc = pOrTab->nAlloc; 2019 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 2020 origSrc = pWInfo->pTabList->a; 2021 for(k=1; k<=nNotReady; k++){ 2022 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 2023 } 2024 }else{ 2025 pOrTab = pWInfo->pTabList; 2026 } 2027 2028 /* Initialize the rowset register to contain NULL. An SQL NULL is 2029 ** equivalent to an empty rowset. Or, create an ephemeral index 2030 ** capable of holding primary keys in the case of a WITHOUT ROWID. 2031 ** 2032 ** Also initialize regReturn to contain the address of the instruction 2033 ** immediately following the OP_Return at the bottom of the loop. This 2034 ** is required in a few obscure LEFT JOIN cases where control jumps 2035 ** over the top of the loop into the body of it. In this case the 2036 ** correct response for the end-of-loop code (the OP_Return) is to 2037 ** fall through to the next instruction, just as an OP_Next does if 2038 ** called on an uninitialized cursor. 2039 */ 2040 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2041 if( HasRowid(pTab) ){ 2042 regRowset = ++pParse->nMem; 2043 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 2044 }else{ 2045 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2046 regRowset = pParse->nTab++; 2047 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 2048 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 2049 } 2050 regRowid = ++pParse->nMem; 2051 } 2052 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 2053 2054 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 2055 ** Then for every term xN, evaluate as the subexpression: xN AND z 2056 ** That way, terms in y that are factored into the disjunction will 2057 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 2058 ** 2059 ** Actually, each subexpression is converted to "xN AND w" where w is 2060 ** the "interesting" terms of z - terms that did not originate in the 2061 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 2062 ** indices. 2063 ** 2064 ** This optimization also only applies if the (x1 OR x2 OR ...) term 2065 ** is not contained in the ON clause of a LEFT JOIN. 2066 ** See ticket http://www.sqlite.org/src/info/f2369304e4 2067 */ 2068 if( pWC->nTerm>1 ){ 2069 int iTerm; 2070 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 2071 Expr *pExpr = pWC->a[iTerm].pExpr; 2072 if( &pWC->a[iTerm] == pTerm ) continue; 2073 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); 2074 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); 2075 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue; 2076 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 2077 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); 2078 pExpr = sqlite3ExprDup(db, pExpr, 0); 2079 pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr); 2080 } 2081 if( pAndExpr ){ 2082 /* The extra 0x10000 bit on the opcode is masked off and does not 2083 ** become part of the new Expr.op. However, it does make the 2084 ** op==TK_AND comparison inside of sqlite3PExpr() false, and this 2085 ** prevents sqlite3PExpr() from implementing AND short-circuit 2086 ** optimization, which we do not want here. */ 2087 pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr); 2088 } 2089 } 2090 2091 /* Run a separate WHERE clause for each term of the OR clause. After 2092 ** eliminating duplicates from other WHERE clauses, the action for each 2093 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 2094 */ 2095 wctrlFlags = WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE); 2096 ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR")); 2097 for(ii=0; ii<pOrWc->nTerm; ii++){ 2098 WhereTerm *pOrTerm = &pOrWc->a[ii]; 2099 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 2100 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 2101 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 2102 int jmp1 = 0; /* Address of jump operation */ 2103 assert( (pTabItem[0].fg.jointype & JT_LEFT)==0 2104 || ExprHasProperty(pOrExpr, EP_FromJoin) 2105 ); 2106 if( pAndExpr ){ 2107 pAndExpr->pLeft = pOrExpr; 2108 pOrExpr = pAndExpr; 2109 } 2110 /* Loop through table entries that match term pOrTerm. */ 2111 ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1)); 2112 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 2113 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 2114 wctrlFlags, iCovCur); 2115 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); 2116 if( pSubWInfo ){ 2117 WhereLoop *pSubLoop; 2118 int addrExplain = sqlite3WhereExplainOneScan( 2119 pParse, pOrTab, &pSubWInfo->a[0], 0 2120 ); 2121 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 2122 2123 /* This is the sub-WHERE clause body. First skip over 2124 ** duplicate rows from prior sub-WHERE clauses, and record the 2125 ** rowid (or PRIMARY KEY) for the current row so that the same 2126 ** row will be skipped in subsequent sub-WHERE clauses. 2127 */ 2128 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2129 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 2130 if( HasRowid(pTab) ){ 2131 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid); 2132 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 2133 regRowid, iSet); 2134 VdbeCoverage(v); 2135 }else{ 2136 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2137 int nPk = pPk->nKeyCol; 2138 int iPk; 2139 int r; 2140 2141 /* Read the PK into an array of temp registers. */ 2142 r = sqlite3GetTempRange(pParse, nPk); 2143 for(iPk=0; iPk<nPk; iPk++){ 2144 int iCol = pPk->aiColumn[iPk]; 2145 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk); 2146 } 2147 2148 /* Check if the temp table already contains this key. If so, 2149 ** the row has already been included in the result set and 2150 ** can be ignored (by jumping past the Gosub below). Otherwise, 2151 ** insert the key into the temp table and proceed with processing 2152 ** the row. 2153 ** 2154 ** Use some of the same optimizations as OP_RowSetTest: If iSet 2155 ** is zero, assume that the key cannot already be present in 2156 ** the temp table. And if iSet is -1, assume that there is no 2157 ** need to insert the key into the temp table, as it will never 2158 ** be tested for. */ 2159 if( iSet ){ 2160 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 2161 VdbeCoverage(v); 2162 } 2163 if( iSet>=0 ){ 2164 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 2165 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid, 2166 r, nPk); 2167 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2168 } 2169 2170 /* Release the array of temp registers */ 2171 sqlite3ReleaseTempRange(pParse, r, nPk); 2172 } 2173 } 2174 2175 /* Invoke the main loop body as a subroutine */ 2176 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 2177 2178 /* Jump here (skipping the main loop body subroutine) if the 2179 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 2180 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 2181 2182 /* The pSubWInfo->untestedTerms flag means that this OR term 2183 ** contained one or more AND term from a notReady table. The 2184 ** terms from the notReady table could not be tested and will 2185 ** need to be tested later. 2186 */ 2187 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 2188 2189 /* If all of the OR-connected terms are optimized using the same 2190 ** index, and the index is opened using the same cursor number 2191 ** by each call to sqlite3WhereBegin() made by this loop, it may 2192 ** be possible to use that index as a covering index. 2193 ** 2194 ** If the call to sqlite3WhereBegin() above resulted in a scan that 2195 ** uses an index, and this is either the first OR-connected term 2196 ** processed or the index is the same as that used by all previous 2197 ** terms, set pCov to the candidate covering index. Otherwise, set 2198 ** pCov to NULL to indicate that no candidate covering index will 2199 ** be available. 2200 */ 2201 pSubLoop = pSubWInfo->a[0].pWLoop; 2202 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2203 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 2204 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 2205 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 2206 ){ 2207 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 2208 pCov = pSubLoop->u.btree.pIndex; 2209 }else{ 2210 pCov = 0; 2211 } 2212 2213 /* Finish the loop through table entries that match term pOrTerm. */ 2214 sqlite3WhereEnd(pSubWInfo); 2215 ExplainQueryPlanPop(pParse); 2216 } 2217 } 2218 } 2219 ExplainQueryPlanPop(pParse); 2220 pLevel->u.pCovidx = pCov; 2221 if( pCov ) pLevel->iIdxCur = iCovCur; 2222 if( pAndExpr ){ 2223 pAndExpr->pLeft = 0; 2224 sqlite3ExprDelete(db, pAndExpr); 2225 } 2226 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 2227 sqlite3VdbeGoto(v, pLevel->addrBrk); 2228 sqlite3VdbeResolveLabel(v, iLoopBody); 2229 2230 if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); } 2231 if( !untestedTerms ) disableTerm(pLevel, pTerm); 2232 }else 2233 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 2234 2235 { 2236 /* Case 6: There is no usable index. We must do a complete 2237 ** scan of the entire table. 2238 */ 2239 static const u8 aStep[] = { OP_Next, OP_Prev }; 2240 static const u8 aStart[] = { OP_Rewind, OP_Last }; 2241 assert( bRev==0 || bRev==1 ); 2242 if( pTabItem->fg.isRecursive ){ 2243 /* Tables marked isRecursive have only a single row that is stored in 2244 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 2245 pLevel->op = OP_Noop; 2246 }else{ 2247 codeCursorHint(pTabItem, pWInfo, pLevel, 0); 2248 pLevel->op = aStep[bRev]; 2249 pLevel->p1 = iCur; 2250 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt); 2251 VdbeCoverageIf(v, bRev==0); 2252 VdbeCoverageIf(v, bRev!=0); 2253 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2254 } 2255 } 2256 2257 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2258 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 2259 #endif 2260 2261 /* Insert code to test every subexpression that can be completely 2262 ** computed using the current set of tables. 2263 ** 2264 ** This loop may run between one and three times, depending on the 2265 ** constraints to be generated. The value of stack variable iLoop 2266 ** determines the constraints coded by each iteration, as follows: 2267 ** 2268 ** iLoop==1: Code only expressions that are entirely covered by pIdx. 2269 ** iLoop==2: Code remaining expressions that do not contain correlated 2270 ** sub-queries. 2271 ** iLoop==3: Code all remaining expressions. 2272 ** 2273 ** An effort is made to skip unnecessary iterations of the loop. 2274 */ 2275 iLoop = (pIdx ? 1 : 2); 2276 do{ 2277 int iNext = 0; /* Next value for iLoop */ 2278 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2279 Expr *pE; 2280 int skipLikeAddr = 0; 2281 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2282 testcase( pTerm->wtFlags & TERM_CODED ); 2283 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2284 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2285 testcase( pWInfo->untestedTerms==0 2286 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); 2287 pWInfo->untestedTerms = 1; 2288 continue; 2289 } 2290 pE = pTerm->pExpr; 2291 assert( pE!=0 ); 2292 if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){ 2293 continue; 2294 } 2295 2296 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){ 2297 iNext = 2; 2298 continue; 2299 } 2300 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){ 2301 if( iNext==0 ) iNext = 3; 2302 continue; 2303 } 2304 2305 if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){ 2306 /* If the TERM_LIKECOND flag is set, that means that the range search 2307 ** is sufficient to guarantee that the LIKE operator is true, so we 2308 ** can skip the call to the like(A,B) function. But this only works 2309 ** for strings. So do not skip the call to the function on the pass 2310 ** that compares BLOBs. */ 2311 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 2312 continue; 2313 #else 2314 u32 x = pLevel->iLikeRepCntr; 2315 if( x>0 ){ 2316 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1)); 2317 VdbeCoverageIf(v, (x&1)==1); 2318 VdbeCoverageIf(v, (x&1)==0); 2319 } 2320 #endif 2321 } 2322 #ifdef WHERETRACE_ENABLED /* 0xffff */ 2323 if( sqlite3WhereTrace ){ 2324 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d", 2325 pWC->nTerm-j, pTerm, iLoop)); 2326 } 2327 #endif 2328 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 2329 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 2330 pTerm->wtFlags |= TERM_CODED; 2331 } 2332 iLoop = iNext; 2333 }while( iLoop>0 ); 2334 2335 /* Insert code to test for implied constraints based on transitivity 2336 ** of the "==" operator. 2337 ** 2338 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 2339 ** and we are coding the t1 loop and the t2 loop has not yet coded, 2340 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 2341 ** the implied "t1.a=123" constraint. 2342 */ 2343 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2344 Expr *pE, sEAlt; 2345 WhereTerm *pAlt; 2346 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2347 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 2348 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 2349 if( pTerm->leftCursor!=iCur ) continue; 2350 if( pLevel->iLeftJoin ) continue; 2351 pE = pTerm->pExpr; 2352 assert( !ExprHasProperty(pE, EP_FromJoin) ); 2353 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 2354 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady, 2355 WO_EQ|WO_IN|WO_IS, 0); 2356 if( pAlt==0 ) continue; 2357 if( pAlt->wtFlags & (TERM_CODED) ) continue; 2358 if( (pAlt->eOperator & WO_IN) 2359 && (pAlt->pExpr->flags & EP_xIsSelect) 2360 && (pAlt->pExpr->x.pSelect->pEList->nExpr>1) 2361 ){ 2362 continue; 2363 } 2364 testcase( pAlt->eOperator & WO_EQ ); 2365 testcase( pAlt->eOperator & WO_IS ); 2366 testcase( pAlt->eOperator & WO_IN ); 2367 VdbeModuleComment((v, "begin transitive constraint")); 2368 sEAlt = *pAlt->pExpr; 2369 sEAlt.pLeft = pE->pLeft; 2370 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); 2371 } 2372 2373 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2374 ** at least one row of the right table has matched the left table. 2375 */ 2376 if( pLevel->iLeftJoin ){ 2377 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2378 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2379 VdbeComment((v, "record LEFT JOIN hit")); 2380 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 2381 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2382 testcase( pTerm->wtFlags & TERM_CODED ); 2383 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2384 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2385 assert( pWInfo->untestedTerms ); 2386 continue; 2387 } 2388 assert( pTerm->pExpr ); 2389 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 2390 pTerm->wtFlags |= TERM_CODED; 2391 } 2392 } 2393 2394 return pLevel->notReady; 2395 } 2396