xref: /sqlite-3.40.0/src/wherecode.c (revision e7952263)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 
25 /*
26 ** Return the name of the i-th column of the pIdx index.
27 */
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29   i = pIdx->aiColumn[i];
30   if( i==XN_EXPR ) return "<expr>";
31   if( i==XN_ROWID ) return "rowid";
32   return pIdx->pTable->aCol[i].zName;
33 }
34 
35 /*
36 ** This routine is a helper for explainIndexRange() below
37 **
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time.  This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
42 */
43 static void explainAppendTerm(
44   StrAccum *pStr,             /* The text expression being built */
45   Index *pIdx,                /* Index to read column names from */
46   int nTerm,                  /* Number of terms */
47   int iTerm,                  /* Zero-based index of first term. */
48   int bAnd,                   /* Non-zero to append " AND " */
49   const char *zOp             /* Name of the operator */
50 ){
51   int i;
52 
53   assert( nTerm>=1 );
54   if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
55 
56   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
57   for(i=0; i<nTerm; i++){
58     if( i ) sqlite3_str_append(pStr, ",", 1);
59     sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
60   }
61   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
62 
63   sqlite3_str_append(pStr, zOp, 1);
64 
65   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
66   for(i=0; i<nTerm; i++){
67     if( i ) sqlite3_str_append(pStr, ",", 1);
68     sqlite3_str_append(pStr, "?", 1);
69   }
70   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
71 }
72 
73 /*
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
77 **
78 ** For example, if the query:
79 **
80 **   SELECT * FROM t1 WHERE a=1 AND b>2;
81 **
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
84 **
85 **   "a=? AND b>?"
86 */
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88   Index *pIndex = pLoop->u.btree.pIndex;
89   u16 nEq = pLoop->u.btree.nEq;
90   u16 nSkip = pLoop->nSkip;
91   int i, j;
92 
93   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94   sqlite3_str_append(pStr, " (", 2);
95   for(i=0; i<nEq; i++){
96     const char *z = explainIndexColumnName(pIndex, i);
97     if( i ) sqlite3_str_append(pStr, " AND ", 5);
98     sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
99   }
100 
101   j = i;
102   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104     i = 1;
105   }
106   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
108   }
109   sqlite3_str_append(pStr, ")", 1);
110 }
111 
112 /*
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
117 **
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
120 */
121 int sqlite3WhereExplainOneScan(
122   Parse *pParse,                  /* Parse context */
123   SrcList *pTabList,              /* Table list this loop refers to */
124   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
125   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
126 ){
127   int ret = 0;
128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
129   if( sqlite3ParseToplevel(pParse)->explain==2 )
130 #endif
131   {
132     struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
133     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
134     sqlite3 *db = pParse->db;     /* Database handle */
135     int isSearch;                 /* True for a SEARCH. False for SCAN. */
136     WhereLoop *pLoop;             /* The controlling WhereLoop object */
137     u32 flags;                    /* Flags that describe this loop */
138     char *zMsg;                   /* Text to add to EQP output */
139     StrAccum str;                 /* EQP output string */
140     char zBuf[100];               /* Initial space for EQP output string */
141 
142     pLoop = pLevel->pWLoop;
143     flags = pLoop->wsFlags;
144     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
145 
146     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
147             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
148             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
149 
150     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
151     sqlite3_str_appendall(&str, isSearch ? "SEARCH" : "SCAN");
152     if( pItem->pSelect ){
153       sqlite3_str_appendf(&str, " SUBQUERY %u", pItem->pSelect->selId);
154     }else{
155       sqlite3_str_appendf(&str, " TABLE %s", pItem->zName);
156     }
157 
158     if( pItem->zAlias ){
159       sqlite3_str_appendf(&str, " AS %s", pItem->zAlias);
160     }
161     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
162       const char *zFmt = 0;
163       Index *pIdx;
164 
165       assert( pLoop->u.btree.pIndex!=0 );
166       pIdx = pLoop->u.btree.pIndex;
167       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
168       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
169         if( isSearch ){
170           zFmt = "PRIMARY KEY";
171         }
172       }else if( flags & WHERE_PARTIALIDX ){
173         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
174       }else if( flags & WHERE_AUTO_INDEX ){
175         zFmt = "AUTOMATIC COVERING INDEX";
176       }else if( flags & WHERE_IDX_ONLY ){
177         zFmt = "COVERING INDEX %s";
178       }else{
179         zFmt = "INDEX %s";
180       }
181       if( zFmt ){
182         sqlite3_str_append(&str, " USING ", 7);
183         sqlite3_str_appendf(&str, zFmt, pIdx->zName);
184         explainIndexRange(&str, pLoop);
185       }
186     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
187       const char *zRangeOp;
188       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
189         zRangeOp = "=";
190       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
191         zRangeOp = ">? AND rowid<";
192       }else if( flags&WHERE_BTM_LIMIT ){
193         zRangeOp = ">";
194       }else{
195         assert( flags&WHERE_TOP_LIMIT);
196         zRangeOp = "<";
197       }
198       sqlite3_str_appendf(&str,
199           " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
200     }
201 #ifndef SQLITE_OMIT_VIRTUALTABLE
202     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
203       sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
204                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
205     }
206 #endif
207 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
208     if( pLoop->nOut>=10 ){
209       sqlite3_str_appendf(&str, " (~%llu rows)",
210              sqlite3LogEstToInt(pLoop->nOut));
211     }else{
212       sqlite3_str_append(&str, " (~1 row)", 9);
213     }
214 #endif
215     zMsg = sqlite3StrAccumFinish(&str);
216     ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
217                             pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
218   }
219   return ret;
220 }
221 #endif /* SQLITE_OMIT_EXPLAIN */
222 
223 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
224 /*
225 ** Configure the VM passed as the first argument with an
226 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
227 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
228 ** clause that the scan reads data from.
229 **
230 ** If argument addrExplain is not 0, it must be the address of an
231 ** OP_Explain instruction that describes the same loop.
232 */
233 void sqlite3WhereAddScanStatus(
234   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
235   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
236   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
237   int addrExplain                 /* Address of OP_Explain (or 0) */
238 ){
239   const char *zObj = 0;
240   WhereLoop *pLoop = pLvl->pWLoop;
241   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
242     zObj = pLoop->u.btree.pIndex->zName;
243   }else{
244     zObj = pSrclist->a[pLvl->iFrom].zName;
245   }
246   sqlite3VdbeScanStatus(
247       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
248   );
249 }
250 #endif
251 
252 
253 /*
254 ** Disable a term in the WHERE clause.  Except, do not disable the term
255 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
256 ** or USING clause of that join.
257 **
258 ** Consider the term t2.z='ok' in the following queries:
259 **
260 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
261 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
262 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
263 **
264 ** The t2.z='ok' is disabled in the in (2) because it originates
265 ** in the ON clause.  The term is disabled in (3) because it is not part
266 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
267 **
268 ** Disabling a term causes that term to not be tested in the inner loop
269 ** of the join.  Disabling is an optimization.  When terms are satisfied
270 ** by indices, we disable them to prevent redundant tests in the inner
271 ** loop.  We would get the correct results if nothing were ever disabled,
272 ** but joins might run a little slower.  The trick is to disable as much
273 ** as we can without disabling too much.  If we disabled in (1), we'd get
274 ** the wrong answer.  See ticket #813.
275 **
276 ** If all the children of a term are disabled, then that term is also
277 ** automatically disabled.  In this way, terms get disabled if derived
278 ** virtual terms are tested first.  For example:
279 **
280 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
281 **      \___________/     \______/     \_____/
282 **         parent          child1       child2
283 **
284 ** Only the parent term was in the original WHERE clause.  The child1
285 ** and child2 terms were added by the LIKE optimization.  If both of
286 ** the virtual child terms are valid, then testing of the parent can be
287 ** skipped.
288 **
289 ** Usually the parent term is marked as TERM_CODED.  But if the parent
290 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
291 ** The TERM_LIKECOND marking indicates that the term should be coded inside
292 ** a conditional such that is only evaluated on the second pass of a
293 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
294 */
295 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
296   int nLoop = 0;
297   assert( pTerm!=0 );
298   while( (pTerm->wtFlags & TERM_CODED)==0
299       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
300       && (pLevel->notReady & pTerm->prereqAll)==0
301   ){
302     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
303       pTerm->wtFlags |= TERM_LIKECOND;
304     }else{
305       pTerm->wtFlags |= TERM_CODED;
306     }
307     if( pTerm->iParent<0 ) break;
308     pTerm = &pTerm->pWC->a[pTerm->iParent];
309     assert( pTerm!=0 );
310     pTerm->nChild--;
311     if( pTerm->nChild!=0 ) break;
312     nLoop++;
313   }
314 }
315 
316 /*
317 ** Code an OP_Affinity opcode to apply the column affinity string zAff
318 ** to the n registers starting at base.
319 **
320 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the
321 ** beginning and end of zAff are ignored.  If all entries in zAff are
322 ** SQLITE_AFF_BLOB, then no code gets generated.
323 **
324 ** This routine makes its own copy of zAff so that the caller is free
325 ** to modify zAff after this routine returns.
326 */
327 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
328   Vdbe *v = pParse->pVdbe;
329   if( zAff==0 ){
330     assert( pParse->db->mallocFailed );
331     return;
332   }
333   assert( v!=0 );
334 
335   /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning
336   ** and end of the affinity string.
337   */
338   while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){
339     n--;
340     base++;
341     zAff++;
342   }
343   while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){
344     n--;
345   }
346 
347   /* Code the OP_Affinity opcode if there is anything left to do. */
348   if( n>0 ){
349     sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
350     sqlite3ExprCacheAffinityChange(pParse, base, n);
351   }
352 }
353 
354 /*
355 ** Expression pRight, which is the RHS of a comparison operation, is
356 ** either a vector of n elements or, if n==1, a scalar expression.
357 ** Before the comparison operation, affinity zAff is to be applied
358 ** to the pRight values. This function modifies characters within the
359 ** affinity string to SQLITE_AFF_BLOB if either:
360 **
361 **   * the comparison will be performed with no affinity, or
362 **   * the affinity change in zAff is guaranteed not to change the value.
363 */
364 static void updateRangeAffinityStr(
365   Expr *pRight,                   /* RHS of comparison */
366   int n,                          /* Number of vector elements in comparison */
367   char *zAff                      /* Affinity string to modify */
368 ){
369   int i;
370   for(i=0; i<n; i++){
371     Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
372     if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
373      || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
374     ){
375       zAff[i] = SQLITE_AFF_BLOB;
376     }
377   }
378 }
379 
380 
381 /*
382 ** pX is an expression of the form:  (vector) IN (SELECT ...)
383 ** In other words, it is a vector IN operator with a SELECT clause on the
384 ** LHS.  But not all terms in the vector are indexable and the terms might
385 ** not be in the correct order for indexing.
386 **
387 ** This routine makes a copy of the input pX expression and then adjusts
388 ** the vector on the LHS with corresponding changes to the SELECT so that
389 ** the vector contains only index terms and those terms are in the correct
390 ** order.  The modified IN expression is returned.  The caller is responsible
391 ** for deleting the returned expression.
392 **
393 ** Example:
394 **
395 **    CREATE TABLE t1(a,b,c,d,e,f);
396 **    CREATE INDEX t1x1 ON t1(e,c);
397 **    SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
398 **                           \_______________________________________/
399 **                                     The pX expression
400 **
401 ** Since only columns e and c can be used with the index, in that order,
402 ** the modified IN expression that is returned will be:
403 **
404 **        (e,c) IN (SELECT z,x FROM t2)
405 **
406 ** The reduced pX is different from the original (obviously) and thus is
407 ** only used for indexing, to improve performance.  The original unaltered
408 ** IN expression must also be run on each output row for correctness.
409 */
410 static Expr *removeUnindexableInClauseTerms(
411   Parse *pParse,        /* The parsing context */
412   int iEq,              /* Look at loop terms starting here */
413   WhereLoop *pLoop,     /* The current loop */
414   Expr *pX              /* The IN expression to be reduced */
415 ){
416   sqlite3 *db = pParse->db;
417   Expr *pNew = sqlite3ExprDup(db, pX, 0);
418   if( db->mallocFailed==0 ){
419     ExprList *pOrigRhs = pNew->x.pSelect->pEList;  /* Original unmodified RHS */
420     ExprList *pOrigLhs = pNew->pLeft->x.pList;     /* Original unmodified LHS */
421     ExprList *pRhs = 0;         /* New RHS after modifications */
422     ExprList *pLhs = 0;         /* New LHS after mods */
423     int i;                      /* Loop counter */
424     Select *pSelect;            /* Pointer to the SELECT on the RHS */
425 
426     for(i=iEq; i<pLoop->nLTerm; i++){
427       if( pLoop->aLTerm[i]->pExpr==pX ){
428         int iField = pLoop->aLTerm[i]->iField - 1;
429         assert( pOrigRhs->a[iField].pExpr!=0 );
430         pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
431         pOrigRhs->a[iField].pExpr = 0;
432         assert( pOrigLhs->a[iField].pExpr!=0 );
433         pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
434         pOrigLhs->a[iField].pExpr = 0;
435       }
436     }
437     sqlite3ExprListDelete(db, pOrigRhs);
438     sqlite3ExprListDelete(db, pOrigLhs);
439     pNew->pLeft->x.pList = pLhs;
440     pNew->x.pSelect->pEList = pRhs;
441     if( pLhs && pLhs->nExpr==1 ){
442       /* Take care here not to generate a TK_VECTOR containing only a
443       ** single value. Since the parser never creates such a vector, some
444       ** of the subroutines do not handle this case.  */
445       Expr *p = pLhs->a[0].pExpr;
446       pLhs->a[0].pExpr = 0;
447       sqlite3ExprDelete(db, pNew->pLeft);
448       pNew->pLeft = p;
449     }
450     pSelect = pNew->x.pSelect;
451     if( pSelect->pOrderBy ){
452       /* If the SELECT statement has an ORDER BY clause, zero the
453       ** iOrderByCol variables. These are set to non-zero when an
454       ** ORDER BY term exactly matches one of the terms of the
455       ** result-set. Since the result-set of the SELECT statement may
456       ** have been modified or reordered, these variables are no longer
457       ** set correctly.  Since setting them is just an optimization,
458       ** it's easiest just to zero them here.  */
459       ExprList *pOrderBy = pSelect->pOrderBy;
460       for(i=0; i<pOrderBy->nExpr; i++){
461         pOrderBy->a[i].u.x.iOrderByCol = 0;
462       }
463     }
464 
465 #if 0
466     printf("For indexing, change the IN expr:\n");
467     sqlite3TreeViewExpr(0, pX, 0);
468     printf("Into:\n");
469     sqlite3TreeViewExpr(0, pNew, 0);
470 #endif
471   }
472   return pNew;
473 }
474 
475 
476 /*
477 ** Generate code for a single equality term of the WHERE clause.  An equality
478 ** term can be either X=expr or X IN (...).   pTerm is the term to be
479 ** coded.
480 **
481 ** The current value for the constraint is left in a register, the index
482 ** of which is returned.  An attempt is made store the result in iTarget but
483 ** this is only guaranteed for TK_ISNULL and TK_IN constraints.  If the
484 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
485 ** some other register and it is the caller's responsibility to compensate.
486 **
487 ** For a constraint of the form X=expr, the expression is evaluated in
488 ** straight-line code.  For constraints of the form X IN (...)
489 ** this routine sets up a loop that will iterate over all values of X.
490 */
491 static int codeEqualityTerm(
492   Parse *pParse,      /* The parsing context */
493   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
494   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
495   int iEq,            /* Index of the equality term within this level */
496   int bRev,           /* True for reverse-order IN operations */
497   int iTarget         /* Attempt to leave results in this register */
498 ){
499   Expr *pX = pTerm->pExpr;
500   Vdbe *v = pParse->pVdbe;
501   int iReg;                  /* Register holding results */
502 
503   assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
504   assert( iTarget>0 );
505   if( pX->op==TK_EQ || pX->op==TK_IS ){
506     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
507   }else if( pX->op==TK_ISNULL ){
508     iReg = iTarget;
509     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
510 #ifndef SQLITE_OMIT_SUBQUERY
511   }else{
512     int eType = IN_INDEX_NOOP;
513     int iTab;
514     struct InLoop *pIn;
515     WhereLoop *pLoop = pLevel->pWLoop;
516     int i;
517     int nEq = 0;
518     int *aiMap = 0;
519 
520     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
521       && pLoop->u.btree.pIndex!=0
522       && pLoop->u.btree.pIndex->aSortOrder[iEq]
523     ){
524       testcase( iEq==0 );
525       testcase( bRev );
526       bRev = !bRev;
527     }
528     assert( pX->op==TK_IN );
529     iReg = iTarget;
530 
531     for(i=0; i<iEq; i++){
532       if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
533         disableTerm(pLevel, pTerm);
534         return iTarget;
535       }
536     }
537     for(i=iEq;i<pLoop->nLTerm; i++){
538       assert( pLoop->aLTerm[i]!=0 );
539       if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
540     }
541 
542     if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){
543       eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0);
544     }else{
545       sqlite3 *db = pParse->db;
546       pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
547 
548       if( !db->mallocFailed ){
549         aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
550         eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap);
551         pTerm->pExpr->iTable = pX->iTable;
552       }
553       sqlite3ExprDelete(db, pX);
554       pX = pTerm->pExpr;
555     }
556 
557     if( eType==IN_INDEX_INDEX_DESC ){
558       testcase( bRev );
559       bRev = !bRev;
560     }
561     iTab = pX->iTable;
562     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
563     VdbeCoverageIf(v, bRev);
564     VdbeCoverageIf(v, !bRev);
565     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
566 
567     pLoop->wsFlags |= WHERE_IN_ABLE;
568     if( pLevel->u.in.nIn==0 ){
569       pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
570     }
571 
572     i = pLevel->u.in.nIn;
573     pLevel->u.in.nIn += nEq;
574     pLevel->u.in.aInLoop =
575        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
576                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
577     pIn = pLevel->u.in.aInLoop;
578     if( pIn ){
579       int iMap = 0;               /* Index in aiMap[] */
580       pIn += i;
581       for(i=iEq;i<pLoop->nLTerm; i++){
582         if( pLoop->aLTerm[i]->pExpr==pX ){
583           int iOut = iReg + i - iEq;
584           if( eType==IN_INDEX_ROWID ){
585             testcase( nEq>1 );  /* Happens with a UNIQUE index on ROWID */
586             pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
587           }else{
588             int iCol = aiMap ? aiMap[iMap++] : 0;
589             pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
590           }
591           sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
592           if( i==iEq ){
593             pIn->iCur = iTab;
594             pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
595             if( iEq>0 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ){
596               pIn->iBase = iReg - i;
597               pIn->nPrefix = i;
598               pLoop->wsFlags |= WHERE_IN_EARLYOUT;
599             }else{
600               pIn->nPrefix = 0;
601             }
602           }else{
603             pIn->eEndLoopOp = OP_Noop;
604           }
605           pIn++;
606         }
607       }
608     }else{
609       pLevel->u.in.nIn = 0;
610     }
611     sqlite3DbFree(pParse->db, aiMap);
612 #endif
613   }
614   disableTerm(pLevel, pTerm);
615   return iReg;
616 }
617 
618 /*
619 ** Generate code that will evaluate all == and IN constraints for an
620 ** index scan.
621 **
622 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
623 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
624 ** The index has as many as three equality constraints, but in this
625 ** example, the third "c" value is an inequality.  So only two
626 ** constraints are coded.  This routine will generate code to evaluate
627 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
628 ** in consecutive registers and the index of the first register is returned.
629 **
630 ** In the example above nEq==2.  But this subroutine works for any value
631 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
632 ** The only thing it does is allocate the pLevel->iMem memory cell and
633 ** compute the affinity string.
634 **
635 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
636 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
637 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
638 ** occurs after the nEq quality constraints.
639 **
640 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
641 ** the index of the first memory cell in that range. The code that
642 ** calls this routine will use that memory range to store keys for
643 ** start and termination conditions of the loop.
644 ** key value of the loop.  If one or more IN operators appear, then
645 ** this routine allocates an additional nEq memory cells for internal
646 ** use.
647 **
648 ** Before returning, *pzAff is set to point to a buffer containing a
649 ** copy of the column affinity string of the index allocated using
650 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
651 ** with equality constraints that use BLOB or NONE affinity are set to
652 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
653 **
654 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
655 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
656 **
657 ** In the example above, the index on t1(a) has TEXT affinity. But since
658 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
659 ** no conversion should be attempted before using a t2.b value as part of
660 ** a key to search the index. Hence the first byte in the returned affinity
661 ** string in this example would be set to SQLITE_AFF_BLOB.
662 */
663 static int codeAllEqualityTerms(
664   Parse *pParse,        /* Parsing context */
665   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
666   int bRev,             /* Reverse the order of IN operators */
667   int nExtraReg,        /* Number of extra registers to allocate */
668   char **pzAff          /* OUT: Set to point to affinity string */
669 ){
670   u16 nEq;                      /* The number of == or IN constraints to code */
671   u16 nSkip;                    /* Number of left-most columns to skip */
672   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
673   Index *pIdx;                  /* The index being used for this loop */
674   WhereTerm *pTerm;             /* A single constraint term */
675   WhereLoop *pLoop;             /* The WhereLoop object */
676   int j;                        /* Loop counter */
677   int regBase;                  /* Base register */
678   int nReg;                     /* Number of registers to allocate */
679   char *zAff;                   /* Affinity string to return */
680 
681   /* This module is only called on query plans that use an index. */
682   pLoop = pLevel->pWLoop;
683   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
684   nEq = pLoop->u.btree.nEq;
685   nSkip = pLoop->nSkip;
686   pIdx = pLoop->u.btree.pIndex;
687   assert( pIdx!=0 );
688 
689   /* Figure out how many memory cells we will need then allocate them.
690   */
691   regBase = pParse->nMem + 1;
692   nReg = pLoop->u.btree.nEq + nExtraReg;
693   pParse->nMem += nReg;
694 
695   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
696   assert( zAff!=0 || pParse->db->mallocFailed );
697 
698   if( nSkip ){
699     int iIdxCur = pLevel->iIdxCur;
700     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
701     VdbeCoverageIf(v, bRev==0);
702     VdbeCoverageIf(v, bRev!=0);
703     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
704     j = sqlite3VdbeAddOp0(v, OP_Goto);
705     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
706                             iIdxCur, 0, regBase, nSkip);
707     VdbeCoverageIf(v, bRev==0);
708     VdbeCoverageIf(v, bRev!=0);
709     sqlite3VdbeJumpHere(v, j);
710     for(j=0; j<nSkip; j++){
711       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
712       testcase( pIdx->aiColumn[j]==XN_EXPR );
713       VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
714     }
715   }
716 
717   /* Evaluate the equality constraints
718   */
719   assert( zAff==0 || (int)strlen(zAff)>=nEq );
720   for(j=nSkip; j<nEq; j++){
721     int r1;
722     pTerm = pLoop->aLTerm[j];
723     assert( pTerm!=0 );
724     /* The following testcase is true for indices with redundant columns.
725     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
726     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
727     testcase( pTerm->wtFlags & TERM_VIRTUAL );
728     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
729     if( r1!=regBase+j ){
730       if( nReg==1 ){
731         sqlite3ReleaseTempReg(pParse, regBase);
732         regBase = r1;
733       }else{
734         sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
735       }
736     }
737     if( pTerm->eOperator & WO_IN ){
738       if( pTerm->pExpr->flags & EP_xIsSelect ){
739         /* No affinity ever needs to be (or should be) applied to a value
740         ** from the RHS of an "? IN (SELECT ...)" expression. The
741         ** sqlite3FindInIndex() routine has already ensured that the
742         ** affinity of the comparison has been applied to the value.  */
743         if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
744       }
745     }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
746       Expr *pRight = pTerm->pExpr->pRight;
747       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
748         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
749         VdbeCoverage(v);
750       }
751       if( zAff ){
752         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
753           zAff[j] = SQLITE_AFF_BLOB;
754         }
755         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
756           zAff[j] = SQLITE_AFF_BLOB;
757         }
758       }
759     }
760   }
761   *pzAff = zAff;
762   return regBase;
763 }
764 
765 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
766 /*
767 ** If the most recently coded instruction is a constant range constraint
768 ** (a string literal) that originated from the LIKE optimization, then
769 ** set P3 and P5 on the OP_String opcode so that the string will be cast
770 ** to a BLOB at appropriate times.
771 **
772 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
773 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
774 ** scan loop run twice, once for strings and a second time for BLOBs.
775 ** The OP_String opcodes on the second pass convert the upper and lower
776 ** bound string constants to blobs.  This routine makes the necessary changes
777 ** to the OP_String opcodes for that to happen.
778 **
779 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
780 ** only the one pass through the string space is required, so this routine
781 ** becomes a no-op.
782 */
783 static void whereLikeOptimizationStringFixup(
784   Vdbe *v,                /* prepared statement under construction */
785   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
786   WhereTerm *pTerm        /* The upper or lower bound just coded */
787 ){
788   if( pTerm->wtFlags & TERM_LIKEOPT ){
789     VdbeOp *pOp;
790     assert( pLevel->iLikeRepCntr>0 );
791     pOp = sqlite3VdbeGetOp(v, -1);
792     assert( pOp!=0 );
793     assert( pOp->opcode==OP_String8
794             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
795     pOp->p3 = (int)(pLevel->iLikeRepCntr>>1);  /* Register holding counter */
796     pOp->p5 = (u8)(pLevel->iLikeRepCntr&1);    /* ASC or DESC */
797   }
798 }
799 #else
800 # define whereLikeOptimizationStringFixup(A,B,C)
801 #endif
802 
803 #ifdef SQLITE_ENABLE_CURSOR_HINTS
804 /*
805 ** Information is passed from codeCursorHint() down to individual nodes of
806 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
807 ** structure.
808 */
809 struct CCurHint {
810   int iTabCur;    /* Cursor for the main table */
811   int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
812   Index *pIdx;    /* The index used to access the table */
813 };
814 
815 /*
816 ** This function is called for every node of an expression that is a candidate
817 ** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
818 ** the table CCurHint.iTabCur, verify that the same column can be
819 ** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
820 */
821 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
822   struct CCurHint *pHint = pWalker->u.pCCurHint;
823   assert( pHint->pIdx!=0 );
824   if( pExpr->op==TK_COLUMN
825    && pExpr->iTable==pHint->iTabCur
826    && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0
827   ){
828     pWalker->eCode = 1;
829   }
830   return WRC_Continue;
831 }
832 
833 /*
834 ** Test whether or not expression pExpr, which was part of a WHERE clause,
835 ** should be included in the cursor-hint for a table that is on the rhs
836 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
837 ** expression is not suitable.
838 **
839 ** An expression is unsuitable if it might evaluate to non NULL even if
840 ** a TK_COLUMN node that does affect the value of the expression is set
841 ** to NULL. For example:
842 **
843 **   col IS NULL
844 **   col IS NOT NULL
845 **   coalesce(col, 1)
846 **   CASE WHEN col THEN 0 ELSE 1 END
847 */
848 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
849   if( pExpr->op==TK_IS
850    || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
851    || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
852   ){
853     pWalker->eCode = 1;
854   }else if( pExpr->op==TK_FUNCTION ){
855     int d1;
856     char d2[4];
857     if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
858       pWalker->eCode = 1;
859     }
860   }
861 
862   return WRC_Continue;
863 }
864 
865 
866 /*
867 ** This function is called on every node of an expression tree used as an
868 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
869 ** that accesses any table other than the one identified by
870 ** CCurHint.iTabCur, then do the following:
871 **
872 **   1) allocate a register and code an OP_Column instruction to read
873 **      the specified column into the new register, and
874 **
875 **   2) transform the expression node to a TK_REGISTER node that reads
876 **      from the newly populated register.
877 **
878 ** Also, if the node is a TK_COLUMN that does access the table idenified
879 ** by pCCurHint.iTabCur, and an index is being used (which we will
880 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
881 ** an access of the index rather than the original table.
882 */
883 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
884   int rc = WRC_Continue;
885   struct CCurHint *pHint = pWalker->u.pCCurHint;
886   if( pExpr->op==TK_COLUMN ){
887     if( pExpr->iTable!=pHint->iTabCur ){
888       Vdbe *v = pWalker->pParse->pVdbe;
889       int reg = ++pWalker->pParse->nMem;   /* Register for column value */
890       sqlite3ExprCodeGetColumnOfTable(
891           v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg
892       );
893       pExpr->op = TK_REGISTER;
894       pExpr->iTable = reg;
895     }else if( pHint->pIdx!=0 ){
896       pExpr->iTable = pHint->iIdxCur;
897       pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn);
898       assert( pExpr->iColumn>=0 );
899     }
900   }else if( pExpr->op==TK_AGG_FUNCTION ){
901     /* An aggregate function in the WHERE clause of a query means this must
902     ** be a correlated sub-query, and expression pExpr is an aggregate from
903     ** the parent context. Do not walk the function arguments in this case.
904     **
905     ** todo: It should be possible to replace this node with a TK_REGISTER
906     ** expression, as the result of the expression must be stored in a
907     ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
908     rc = WRC_Prune;
909   }
910   return rc;
911 }
912 
913 /*
914 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
915 */
916 static void codeCursorHint(
917   struct SrcList_item *pTabItem,  /* FROM clause item */
918   WhereInfo *pWInfo,    /* The where clause */
919   WhereLevel *pLevel,   /* Which loop to provide hints for */
920   WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
921 ){
922   Parse *pParse = pWInfo->pParse;
923   sqlite3 *db = pParse->db;
924   Vdbe *v = pParse->pVdbe;
925   Expr *pExpr = 0;
926   WhereLoop *pLoop = pLevel->pWLoop;
927   int iCur;
928   WhereClause *pWC;
929   WhereTerm *pTerm;
930   int i, j;
931   struct CCurHint sHint;
932   Walker sWalker;
933 
934   if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
935   iCur = pLevel->iTabCur;
936   assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
937   sHint.iTabCur = iCur;
938   sHint.iIdxCur = pLevel->iIdxCur;
939   sHint.pIdx = pLoop->u.btree.pIndex;
940   memset(&sWalker, 0, sizeof(sWalker));
941   sWalker.pParse = pParse;
942   sWalker.u.pCCurHint = &sHint;
943   pWC = &pWInfo->sWC;
944   for(i=0; i<pWC->nTerm; i++){
945     pTerm = &pWC->a[i];
946     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
947     if( pTerm->prereqAll & pLevel->notReady ) continue;
948 
949     /* Any terms specified as part of the ON(...) clause for any LEFT
950     ** JOIN for which the current table is not the rhs are omitted
951     ** from the cursor-hint.
952     **
953     ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
954     ** that were specified as part of the WHERE clause must be excluded.
955     ** This is to address the following:
956     **
957     **   SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
958     **
959     ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
960     ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
961     ** pushed down to the cursor, this row is filtered out, causing
962     ** SQLite to synthesize a row of NULL values. Which does match the
963     ** WHERE clause, and so the query returns a row. Which is incorrect.
964     **
965     ** For the same reason, WHERE terms such as:
966     **
967     **   WHERE 1 = (t2.c IS NULL)
968     **
969     ** are also excluded. See codeCursorHintIsOrFunction() for details.
970     */
971     if( pTabItem->fg.jointype & JT_LEFT ){
972       Expr *pExpr = pTerm->pExpr;
973       if( !ExprHasProperty(pExpr, EP_FromJoin)
974        || pExpr->iRightJoinTable!=pTabItem->iCursor
975       ){
976         sWalker.eCode = 0;
977         sWalker.xExprCallback = codeCursorHintIsOrFunction;
978         sqlite3WalkExpr(&sWalker, pTerm->pExpr);
979         if( sWalker.eCode ) continue;
980       }
981     }else{
982       if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
983     }
984 
985     /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
986     ** the cursor.  These terms are not needed as hints for a pure range
987     ** scan (that has no == terms) so omit them. */
988     if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
989       for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
990       if( j<pLoop->nLTerm ) continue;
991     }
992 
993     /* No subqueries or non-deterministic functions allowed */
994     if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
995 
996     /* For an index scan, make sure referenced columns are actually in
997     ** the index. */
998     if( sHint.pIdx!=0 ){
999       sWalker.eCode = 0;
1000       sWalker.xExprCallback = codeCursorHintCheckExpr;
1001       sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1002       if( sWalker.eCode ) continue;
1003     }
1004 
1005     /* If we survive all prior tests, that means this term is worth hinting */
1006     pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
1007   }
1008   if( pExpr!=0 ){
1009     sWalker.xExprCallback = codeCursorHintFixExpr;
1010     sqlite3WalkExpr(&sWalker, pExpr);
1011     sqlite3VdbeAddOp4(v, OP_CursorHint,
1012                       (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
1013                       (const char*)pExpr, P4_EXPR);
1014   }
1015 }
1016 #else
1017 # define codeCursorHint(A,B,C,D)  /* No-op */
1018 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1019 
1020 /*
1021 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1022 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1023 ** function generates code to do a deferred seek of cursor iCur to the
1024 ** rowid stored in register iRowid.
1025 **
1026 ** Normally, this is just:
1027 **
1028 **   OP_DeferredSeek $iCur $iRowid
1029 **
1030 ** However, if the scan currently being coded is a branch of an OR-loop and
1031 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek
1032 ** is set to iIdxCur and P4 is set to point to an array of integers
1033 ** containing one entry for each column of the table cursor iCur is open
1034 ** on. For each table column, if the column is the i'th column of the
1035 ** index, then the corresponding array entry is set to (i+1). If the column
1036 ** does not appear in the index at all, the array entry is set to 0.
1037 */
1038 static void codeDeferredSeek(
1039   WhereInfo *pWInfo,              /* Where clause context */
1040   Index *pIdx,                    /* Index scan is using */
1041   int iCur,                       /* Cursor for IPK b-tree */
1042   int iIdxCur                     /* Index cursor */
1043 ){
1044   Parse *pParse = pWInfo->pParse; /* Parse context */
1045   Vdbe *v = pParse->pVdbe;        /* Vdbe to generate code within */
1046 
1047   assert( iIdxCur>0 );
1048   assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1049 
1050   sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1051   if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1052    && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1053   ){
1054     int i;
1055     Table *pTab = pIdx->pTable;
1056     int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1));
1057     if( ai ){
1058       ai[0] = pTab->nCol;
1059       for(i=0; i<pIdx->nColumn-1; i++){
1060         assert( pIdx->aiColumn[i]<pTab->nCol );
1061         if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1;
1062       }
1063       sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1064     }
1065   }
1066 }
1067 
1068 /*
1069 ** If the expression passed as the second argument is a vector, generate
1070 ** code to write the first nReg elements of the vector into an array
1071 ** of registers starting with iReg.
1072 **
1073 ** If the expression is not a vector, then nReg must be passed 1. In
1074 ** this case, generate code to evaluate the expression and leave the
1075 ** result in register iReg.
1076 */
1077 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1078   assert( nReg>0 );
1079   if( p && sqlite3ExprIsVector(p) ){
1080 #ifndef SQLITE_OMIT_SUBQUERY
1081     if( (p->flags & EP_xIsSelect) ){
1082       Vdbe *v = pParse->pVdbe;
1083       int iSelect = sqlite3CodeSubselect(pParse, p, 0, 0);
1084       sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1085     }else
1086 #endif
1087     {
1088       int i;
1089       ExprList *pList = p->x.pList;
1090       assert( nReg<=pList->nExpr );
1091       for(i=0; i<nReg; i++){
1092         sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1093       }
1094     }
1095   }else{
1096     assert( nReg==1 );
1097     sqlite3ExprCode(pParse, p, iReg);
1098   }
1099 }
1100 
1101 /* An instance of the IdxExprTrans object carries information about a
1102 ** mapping from an expression on table columns into a column in an index
1103 ** down through the Walker.
1104 */
1105 typedef struct IdxExprTrans {
1106   Expr *pIdxExpr;    /* The index expression */
1107   int iTabCur;       /* The cursor of the corresponding table */
1108   int iIdxCur;       /* The cursor for the index */
1109   int iIdxCol;       /* The column for the index */
1110 } IdxExprTrans;
1111 
1112 /* The walker node callback used to transform matching expressions into
1113 ** a reference to an index column for an index on an expression.
1114 **
1115 ** If pExpr matches, then transform it into a reference to the index column
1116 ** that contains the value of pExpr.
1117 */
1118 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1119   IdxExprTrans *pX = p->u.pIdxTrans;
1120   if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1121     pExpr->op = TK_COLUMN;
1122     pExpr->iTable = pX->iIdxCur;
1123     pExpr->iColumn = pX->iIdxCol;
1124     pExpr->pTab = 0;
1125     return WRC_Prune;
1126   }else{
1127     return WRC_Continue;
1128   }
1129 }
1130 
1131 /*
1132 ** For an indexes on expression X, locate every instance of expression X
1133 ** in pExpr and change that subexpression into a reference to the appropriate
1134 ** column of the index.
1135 */
1136 static void whereIndexExprTrans(
1137   Index *pIdx,      /* The Index */
1138   int iTabCur,      /* Cursor of the table that is being indexed */
1139   int iIdxCur,      /* Cursor of the index itself */
1140   WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1141 ){
1142   int iIdxCol;               /* Column number of the index */
1143   ExprList *aColExpr;        /* Expressions that are indexed */
1144   Walker w;
1145   IdxExprTrans x;
1146   aColExpr = pIdx->aColExpr;
1147   if( aColExpr==0 ) return;  /* Not an index on expressions */
1148   memset(&w, 0, sizeof(w));
1149   w.xExprCallback = whereIndexExprTransNode;
1150   w.u.pIdxTrans = &x;
1151   x.iTabCur = iTabCur;
1152   x.iIdxCur = iIdxCur;
1153   for(iIdxCol=0; iIdxCol<aColExpr->nExpr; iIdxCol++){
1154     if( pIdx->aiColumn[iIdxCol]!=XN_EXPR ) continue;
1155     assert( aColExpr->a[iIdxCol].pExpr!=0 );
1156     x.iIdxCol = iIdxCol;
1157     x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1158     sqlite3WalkExpr(&w, pWInfo->pWhere);
1159     sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1160     sqlite3WalkExprList(&w, pWInfo->pResultSet);
1161   }
1162 }
1163 
1164 /*
1165 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1166 ** implementation described by pWInfo.
1167 */
1168 Bitmask sqlite3WhereCodeOneLoopStart(
1169   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1170   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1171   Bitmask notReady     /* Which tables are currently available */
1172 ){
1173   int j, k;            /* Loop counters */
1174   int iCur;            /* The VDBE cursor for the table */
1175   int addrNxt;         /* Where to jump to continue with the next IN case */
1176   int omitTable;       /* True if we use the index only */
1177   int bRev;            /* True if we need to scan in reverse order */
1178   WhereLevel *pLevel;  /* The where level to be coded */
1179   WhereLoop *pLoop;    /* The WhereLoop object being coded */
1180   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
1181   WhereTerm *pTerm;               /* A WHERE clause term */
1182   Parse *pParse;                  /* Parsing context */
1183   sqlite3 *db;                    /* Database connection */
1184   Vdbe *v;                        /* The prepared stmt under constructions */
1185   struct SrcList_item *pTabItem;  /* FROM clause term being coded */
1186   int addrBrk;                    /* Jump here to break out of the loop */
1187   int addrHalt;                   /* addrBrk for the outermost loop */
1188   int addrCont;                   /* Jump here to continue with next cycle */
1189   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
1190   int iReleaseReg = 0;      /* Temp register to free before returning */
1191   Index *pIdx = 0;          /* Index used by loop (if any) */
1192   int iLoop;                /* Iteration of constraint generator loop */
1193 
1194   pParse = pWInfo->pParse;
1195   v = pParse->pVdbe;
1196   pWC = &pWInfo->sWC;
1197   db = pParse->db;
1198   pLevel = &pWInfo->a[iLevel];
1199   pLoop = pLevel->pWLoop;
1200   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1201   iCur = pTabItem->iCursor;
1202   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1203   bRev = (pWInfo->revMask>>iLevel)&1;
1204   omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
1205            && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
1206   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1207 
1208   /* Create labels for the "break" and "continue" instructions
1209   ** for the current loop.  Jump to addrBrk to break out of a loop.
1210   ** Jump to cont to go immediately to the next iteration of the
1211   ** loop.
1212   **
1213   ** When there is an IN operator, we also have a "addrNxt" label that
1214   ** means to continue with the next IN value combination.  When
1215   ** there are no IN operators in the constraints, the "addrNxt" label
1216   ** is the same as "addrBrk".
1217   */
1218   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
1219   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
1220 
1221   /* If this is the right table of a LEFT OUTER JOIN, allocate and
1222   ** initialize a memory cell that records if this table matches any
1223   ** row of the left table of the join.
1224   */
1225   assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1226        || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
1227   );
1228   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1229     pLevel->iLeftJoin = ++pParse->nMem;
1230     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1231     VdbeComment((v, "init LEFT JOIN no-match flag"));
1232   }
1233 
1234   /* Compute a safe address to jump to if we discover that the table for
1235   ** this loop is empty and can never contribute content. */
1236   for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){}
1237   addrHalt = pWInfo->a[j].addrBrk;
1238 
1239   /* Special case of a FROM clause subquery implemented as a co-routine */
1240   if( pTabItem->fg.viaCoroutine ){
1241     int regYield = pTabItem->regReturn;
1242     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1243     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1244     VdbeCoverage(v);
1245     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
1246     pLevel->op = OP_Goto;
1247   }else
1248 
1249 #ifndef SQLITE_OMIT_VIRTUALTABLE
1250   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1251     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
1252     **          to access the data.
1253     */
1254     int iReg;   /* P3 Value for OP_VFilter */
1255     int addrNotFound;
1256     int nConstraint = pLoop->nLTerm;
1257     int iIn;    /* Counter for IN constraints */
1258 
1259     sqlite3ExprCachePush(pParse);
1260     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1261     addrNotFound = pLevel->addrBrk;
1262     for(j=0; j<nConstraint; j++){
1263       int iTarget = iReg+j+2;
1264       pTerm = pLoop->aLTerm[j];
1265       if( NEVER(pTerm==0) ) continue;
1266       if( pTerm->eOperator & WO_IN ){
1267         codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1268         addrNotFound = pLevel->addrNxt;
1269       }else{
1270         Expr *pRight = pTerm->pExpr->pRight;
1271         codeExprOrVector(pParse, pRight, iTarget, 1);
1272       }
1273     }
1274     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1275     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1276     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1277                       pLoop->u.vtab.idxStr,
1278                       pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1279     VdbeCoverage(v);
1280     pLoop->u.vtab.needFree = 0;
1281     pLevel->p1 = iCur;
1282     pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1283     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1284     iIn = pLevel->u.in.nIn;
1285     for(j=nConstraint-1; j>=0; j--){
1286       pTerm = pLoop->aLTerm[j];
1287       if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1288         disableTerm(pLevel, pTerm);
1289       }else if( (pTerm->eOperator & WO_IN)!=0 ){
1290         Expr *pCompare;  /* The comparison operator */
1291         Expr *pRight;    /* RHS of the comparison */
1292         VdbeOp *pOp;     /* Opcode to access the value of the IN constraint */
1293 
1294         /* Reload the constraint value into reg[iReg+j+2].  The same value
1295         ** was loaded into the same register prior to the OP_VFilter, but
1296         ** the xFilter implementation might have changed the datatype or
1297         ** encoding of the value in the register, so it *must* be reloaded. */
1298         assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed );
1299         if( !db->mallocFailed ){
1300           assert( iIn>0 );
1301           pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[--iIn].addrInTop);
1302           assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid );
1303           assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 );
1304           assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 );
1305           testcase( pOp->opcode==OP_Rowid );
1306           sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1307         }
1308 
1309         /* Generate code that will continue to the next row if
1310         ** the IN constraint is not satisfied */
1311         pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1312         assert( pCompare!=0 || db->mallocFailed );
1313         if( pCompare ){
1314           pCompare->pLeft = pTerm->pExpr->pLeft;
1315           pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1316           if( pRight ){
1317             pRight->iTable = iReg+j+2;
1318             sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0);
1319           }
1320           pCompare->pLeft = 0;
1321           sqlite3ExprDelete(db, pCompare);
1322         }
1323       }
1324     }
1325     /* These registers need to be preserved in case there is an IN operator
1326     ** loop.  So we could deallocate the registers here (and potentially
1327     ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0.  But it seems
1328     ** simpler and safer to simply not reuse the registers.
1329     **
1330     **    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1331     */
1332     sqlite3ExprCachePop(pParse);
1333   }else
1334 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1335 
1336   if( (pLoop->wsFlags & WHERE_IPK)!=0
1337    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1338   ){
1339     /* Case 2:  We can directly reference a single row using an
1340     **          equality comparison against the ROWID field.  Or
1341     **          we reference multiple rows using a "rowid IN (...)"
1342     **          construct.
1343     */
1344     assert( pLoop->u.btree.nEq==1 );
1345     pTerm = pLoop->aLTerm[0];
1346     assert( pTerm!=0 );
1347     assert( pTerm->pExpr!=0 );
1348     assert( omitTable==0 );
1349     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1350     iReleaseReg = ++pParse->nMem;
1351     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1352     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1353     addrNxt = pLevel->addrNxt;
1354     sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1355     VdbeCoverage(v);
1356     sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
1357     sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1358     VdbeComment((v, "pk"));
1359     pLevel->op = OP_Noop;
1360   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1361          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1362   ){
1363     /* Case 3:  We have an inequality comparison against the ROWID field.
1364     */
1365     int testOp = OP_Noop;
1366     int start;
1367     int memEndValue = 0;
1368     WhereTerm *pStart, *pEnd;
1369 
1370     assert( omitTable==0 );
1371     j = 0;
1372     pStart = pEnd = 0;
1373     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1374     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1375     assert( pStart!=0 || pEnd!=0 );
1376     if( bRev ){
1377       pTerm = pStart;
1378       pStart = pEnd;
1379       pEnd = pTerm;
1380     }
1381     codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1382     if( pStart ){
1383       Expr *pX;             /* The expression that defines the start bound */
1384       int r1, rTemp;        /* Registers for holding the start boundary */
1385       int op;               /* Cursor seek operation */
1386 
1387       /* The following constant maps TK_xx codes into corresponding
1388       ** seek opcodes.  It depends on a particular ordering of TK_xx
1389       */
1390       const u8 aMoveOp[] = {
1391            /* TK_GT */  OP_SeekGT,
1392            /* TK_LE */  OP_SeekLE,
1393            /* TK_LT */  OP_SeekLT,
1394            /* TK_GE */  OP_SeekGE
1395       };
1396       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
1397       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
1398       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
1399 
1400       assert( (pStart->wtFlags & TERM_VNULL)==0 );
1401       testcase( pStart->wtFlags & TERM_VIRTUAL );
1402       pX = pStart->pExpr;
1403       assert( pX!=0 );
1404       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1405       if( sqlite3ExprIsVector(pX->pRight) ){
1406         r1 = rTemp = sqlite3GetTempReg(pParse);
1407         codeExprOrVector(pParse, pX->pRight, r1, 1);
1408         testcase( pX->op==TK_GT );
1409         testcase( pX->op==TK_GE );
1410         testcase( pX->op==TK_LT );
1411         testcase( pX->op==TK_LE );
1412         op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
1413         assert( pX->op!=TK_GT || op==OP_SeekGE );
1414         assert( pX->op!=TK_GE || op==OP_SeekGE );
1415         assert( pX->op!=TK_LT || op==OP_SeekLE );
1416         assert( pX->op!=TK_LE || op==OP_SeekLE );
1417       }else{
1418         r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1419         disableTerm(pLevel, pStart);
1420         op = aMoveOp[(pX->op - TK_GT)];
1421       }
1422       sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1423       VdbeComment((v, "pk"));
1424       VdbeCoverageIf(v, pX->op==TK_GT);
1425       VdbeCoverageIf(v, pX->op==TK_LE);
1426       VdbeCoverageIf(v, pX->op==TK_LT);
1427       VdbeCoverageIf(v, pX->op==TK_GE);
1428       sqlite3ExprCacheAffinityChange(pParse, r1, 1);
1429       sqlite3ReleaseTempReg(pParse, rTemp);
1430     }else{
1431       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1432       VdbeCoverageIf(v, bRev==0);
1433       VdbeCoverageIf(v, bRev!=0);
1434     }
1435     if( pEnd ){
1436       Expr *pX;
1437       pX = pEnd->pExpr;
1438       assert( pX!=0 );
1439       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1440       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1441       testcase( pEnd->wtFlags & TERM_VIRTUAL );
1442       memEndValue = ++pParse->nMem;
1443       codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1444       if( 0==sqlite3ExprIsVector(pX->pRight)
1445        && (pX->op==TK_LT || pX->op==TK_GT)
1446       ){
1447         testOp = bRev ? OP_Le : OP_Ge;
1448       }else{
1449         testOp = bRev ? OP_Lt : OP_Gt;
1450       }
1451       if( 0==sqlite3ExprIsVector(pX->pRight) ){
1452         disableTerm(pLevel, pEnd);
1453       }
1454     }
1455     start = sqlite3VdbeCurrentAddr(v);
1456     pLevel->op = bRev ? OP_Prev : OP_Next;
1457     pLevel->p1 = iCur;
1458     pLevel->p2 = start;
1459     assert( pLevel->p5==0 );
1460     if( testOp!=OP_Noop ){
1461       iRowidReg = ++pParse->nMem;
1462       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1463       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1464       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1465       VdbeCoverageIf(v, testOp==OP_Le);
1466       VdbeCoverageIf(v, testOp==OP_Lt);
1467       VdbeCoverageIf(v, testOp==OP_Ge);
1468       VdbeCoverageIf(v, testOp==OP_Gt);
1469       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1470     }
1471   }else if( pLoop->wsFlags & WHERE_INDEXED ){
1472     /* Case 4: A scan using an index.
1473     **
1474     **         The WHERE clause may contain zero or more equality
1475     **         terms ("==" or "IN" operators) that refer to the N
1476     **         left-most columns of the index. It may also contain
1477     **         inequality constraints (>, <, >= or <=) on the indexed
1478     **         column that immediately follows the N equalities. Only
1479     **         the right-most column can be an inequality - the rest must
1480     **         use the "==" and "IN" operators. For example, if the
1481     **         index is on (x,y,z), then the following clauses are all
1482     **         optimized:
1483     **
1484     **            x=5
1485     **            x=5 AND y=10
1486     **            x=5 AND y<10
1487     **            x=5 AND y>5 AND y<10
1488     **            x=5 AND y=5 AND z<=10
1489     **
1490     **         The z<10 term of the following cannot be used, only
1491     **         the x=5 term:
1492     **
1493     **            x=5 AND z<10
1494     **
1495     **         N may be zero if there are inequality constraints.
1496     **         If there are no inequality constraints, then N is at
1497     **         least one.
1498     **
1499     **         This case is also used when there are no WHERE clause
1500     **         constraints but an index is selected anyway, in order
1501     **         to force the output order to conform to an ORDER BY.
1502     */
1503     static const u8 aStartOp[] = {
1504       0,
1505       0,
1506       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
1507       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
1508       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
1509       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
1510       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
1511       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
1512     };
1513     static const u8 aEndOp[] = {
1514       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
1515       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
1516       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
1517       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
1518     };
1519     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
1520     u16 nBtm = pLoop->u.btree.nBtm;   /* Length of BTM vector */
1521     u16 nTop = pLoop->u.btree.nTop;   /* Length of TOP vector */
1522     int regBase;                 /* Base register holding constraint values */
1523     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
1524     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
1525     int startEq;                 /* True if range start uses ==, >= or <= */
1526     int endEq;                   /* True if range end uses ==, >= or <= */
1527     int start_constraints;       /* Start of range is constrained */
1528     int nConstraint;             /* Number of constraint terms */
1529     int iIdxCur;                 /* The VDBE cursor for the index */
1530     int nExtraReg = 0;           /* Number of extra registers needed */
1531     int op;                      /* Instruction opcode */
1532     char *zStartAff;             /* Affinity for start of range constraint */
1533     char *zEndAff = 0;           /* Affinity for end of range constraint */
1534     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
1535     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
1536 
1537     pIdx = pLoop->u.btree.pIndex;
1538     iIdxCur = pLevel->iIdxCur;
1539     assert( nEq>=pLoop->nSkip );
1540 
1541     /* If this loop satisfies a sort order (pOrderBy) request that
1542     ** was passed to this function to implement a "SELECT min(x) ..."
1543     ** query, then the caller will only allow the loop to run for
1544     ** a single iteration. This means that the first row returned
1545     ** should not have a NULL value stored in 'x'. If column 'x' is
1546     ** the first one after the nEq equality constraints in the index,
1547     ** this requires some special handling.
1548     */
1549     assert( pWInfo->pOrderBy==0
1550          || pWInfo->pOrderBy->nExpr==1
1551          || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
1552     if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
1553      && pWInfo->nOBSat>0
1554      && (pIdx->nKeyCol>nEq)
1555     ){
1556       assert( pLoop->nSkip==0 );
1557       bSeekPastNull = 1;
1558       nExtraReg = 1;
1559     }
1560 
1561     /* Find any inequality constraint terms for the start and end
1562     ** of the range.
1563     */
1564     j = nEq;
1565     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1566       pRangeStart = pLoop->aLTerm[j++];
1567       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1568       /* Like optimization range constraints always occur in pairs */
1569       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1570               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1571     }
1572     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1573       pRangeEnd = pLoop->aLTerm[j++];
1574       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1575 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1576       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1577         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
1578         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
1579         pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1580         sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1581         VdbeComment((v, "LIKE loop counter"));
1582         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1583         /* iLikeRepCntr actually stores 2x the counter register number.  The
1584         ** bottom bit indicates whether the search order is ASC or DESC. */
1585         testcase( bRev );
1586         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1587         assert( (bRev & ~1)==0 );
1588         pLevel->iLikeRepCntr <<=1;
1589         pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1590       }
1591 #endif
1592       if( pRangeStart==0 ){
1593         j = pIdx->aiColumn[nEq];
1594         if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1595           bSeekPastNull = 1;
1596         }
1597       }
1598     }
1599     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1600 
1601     /* If we are doing a reverse order scan on an ascending index, or
1602     ** a forward order scan on a descending index, interchange the
1603     ** start and end terms (pRangeStart and pRangeEnd).
1604     */
1605     if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1606      || (bRev && pIdx->nKeyCol==nEq)
1607     ){
1608       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1609       SWAP(u8, bSeekPastNull, bStopAtNull);
1610       SWAP(u8, nBtm, nTop);
1611     }
1612 
1613     /* Generate code to evaluate all constraint terms using == or IN
1614     ** and store the values of those terms in an array of registers
1615     ** starting at regBase.
1616     */
1617     codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1618     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1619     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1620     if( zStartAff && nTop ){
1621       zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1622     }
1623     addrNxt = pLevel->addrNxt;
1624 
1625     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1626     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1627     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1628     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1629     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1630     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1631     start_constraints = pRangeStart || nEq>0;
1632 
1633     /* Seek the index cursor to the start of the range. */
1634     nConstraint = nEq;
1635     if( pRangeStart ){
1636       Expr *pRight = pRangeStart->pExpr->pRight;
1637       codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1638       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1639       if( (pRangeStart->wtFlags & TERM_VNULL)==0
1640        && sqlite3ExprCanBeNull(pRight)
1641       ){
1642         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1643         VdbeCoverage(v);
1644       }
1645       if( zStartAff ){
1646         updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1647       }
1648       nConstraint += nBtm;
1649       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1650       if( sqlite3ExprIsVector(pRight)==0 ){
1651         disableTerm(pLevel, pRangeStart);
1652       }else{
1653         startEq = 1;
1654       }
1655       bSeekPastNull = 0;
1656     }else if( bSeekPastNull ){
1657       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1658       nConstraint++;
1659       startEq = 0;
1660       start_constraints = 1;
1661     }
1662     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1663     if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1664       /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1665       ** above has already left the cursor sitting on the correct row,
1666       ** so no further seeking is needed */
1667     }else{
1668       if( pLoop->wsFlags & WHERE_IN_EARLYOUT ){
1669         sqlite3VdbeAddOp1(v, OP_SeekHit, iIdxCur);
1670       }
1671       op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1672       assert( op!=0 );
1673       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1674       VdbeCoverage(v);
1675       VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1676       VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1677       VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
1678       VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1679       VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1680       VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
1681     }
1682 
1683     /* Load the value for the inequality constraint at the end of the
1684     ** range (if any).
1685     */
1686     nConstraint = nEq;
1687     if( pRangeEnd ){
1688       Expr *pRight = pRangeEnd->pExpr->pRight;
1689       sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
1690       codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
1691       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1692       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1693        && sqlite3ExprCanBeNull(pRight)
1694       ){
1695         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1696         VdbeCoverage(v);
1697       }
1698       if( zEndAff ){
1699         updateRangeAffinityStr(pRight, nTop, zEndAff);
1700         codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1701       }else{
1702         assert( pParse->db->mallocFailed );
1703       }
1704       nConstraint += nTop;
1705       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1706 
1707       if( sqlite3ExprIsVector(pRight)==0 ){
1708         disableTerm(pLevel, pRangeEnd);
1709       }else{
1710         endEq = 1;
1711       }
1712     }else if( bStopAtNull ){
1713       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1714       sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
1715       endEq = 0;
1716       nConstraint++;
1717     }
1718     sqlite3DbFree(db, zStartAff);
1719     sqlite3DbFree(db, zEndAff);
1720 
1721     /* Top of the loop body */
1722     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1723 
1724     /* Check if the index cursor is past the end of the range. */
1725     if( nConstraint ){
1726       op = aEndOp[bRev*2 + endEq];
1727       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1728       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1729       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1730       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1731       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1732     }
1733 
1734     if( pLoop->wsFlags & WHERE_IN_EARLYOUT ){
1735       sqlite3VdbeAddOp2(v, OP_SeekHit, iIdxCur, 1);
1736     }
1737 
1738     /* Seek the table cursor, if required */
1739     if( omitTable ){
1740       /* pIdx is a covering index.  No need to access the main table. */
1741     }else if( HasRowid(pIdx->pTable) ){
1742       if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE) || (
1743           (pWInfo->wctrlFlags & WHERE_SEEK_UNIQ_TABLE)
1744        && (pWInfo->eOnePass==ONEPASS_SINGLE)
1745       )){
1746         iRowidReg = ++pParse->nMem;
1747         sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
1748         sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1749         sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
1750         VdbeCoverage(v);
1751       }else{
1752         codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
1753       }
1754     }else if( iCur!=iIdxCur ){
1755       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1756       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1757       for(j=0; j<pPk->nKeyCol; j++){
1758         k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1759         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1760       }
1761       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1762                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1763     }
1764 
1765     /* If pIdx is an index on one or more expressions, then look through
1766     ** all the expressions in pWInfo and try to transform matching expressions
1767     ** into reference to index columns.
1768     **
1769     ** Do not do this for the RHS of a LEFT JOIN. This is because the
1770     ** expression may be evaluated after OP_NullRow has been executed on
1771     ** the cursor. In this case it is important to do the full evaluation,
1772     ** as the result of the expression may not be NULL, even if all table
1773     ** column values are.  https://www.sqlite.org/src/info/7fa8049685b50b5a
1774     */
1775     if( pLevel->iLeftJoin==0 ){
1776       whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
1777     }
1778 
1779     /* Record the instruction used to terminate the loop. */
1780     if( pLoop->wsFlags & WHERE_ONEROW ){
1781       pLevel->op = OP_Noop;
1782     }else if( bRev ){
1783       pLevel->op = OP_Prev;
1784     }else{
1785       pLevel->op = OP_Next;
1786     }
1787     pLevel->p1 = iIdxCur;
1788     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1789     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1790       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1791     }else{
1792       assert( pLevel->p5==0 );
1793     }
1794     if( omitTable ) pIdx = 0;
1795   }else
1796 
1797 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1798   if( pLoop->wsFlags & WHERE_MULTI_OR ){
1799     /* Case 5:  Two or more separately indexed terms connected by OR
1800     **
1801     ** Example:
1802     **
1803     **   CREATE TABLE t1(a,b,c,d);
1804     **   CREATE INDEX i1 ON t1(a);
1805     **   CREATE INDEX i2 ON t1(b);
1806     **   CREATE INDEX i3 ON t1(c);
1807     **
1808     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
1809     **
1810     ** In the example, there are three indexed terms connected by OR.
1811     ** The top of the loop looks like this:
1812     **
1813     **          Null       1                # Zero the rowset in reg 1
1814     **
1815     ** Then, for each indexed term, the following. The arguments to
1816     ** RowSetTest are such that the rowid of the current row is inserted
1817     ** into the RowSet. If it is already present, control skips the
1818     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
1819     **
1820     **        sqlite3WhereBegin(<term>)
1821     **          RowSetTest                  # Insert rowid into rowset
1822     **          Gosub      2 A
1823     **        sqlite3WhereEnd()
1824     **
1825     ** Following the above, code to terminate the loop. Label A, the target
1826     ** of the Gosub above, jumps to the instruction right after the Goto.
1827     **
1828     **          Null       1                # Zero the rowset in reg 1
1829     **          Goto       B                # The loop is finished.
1830     **
1831     **       A: <loop body>                 # Return data, whatever.
1832     **
1833     **          Return     2                # Jump back to the Gosub
1834     **
1835     **       B: <after the loop>
1836     **
1837     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
1838     ** use an ephemeral index instead of a RowSet to record the primary
1839     ** keys of the rows we have already seen.
1840     **
1841     */
1842     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
1843     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
1844     Index *pCov = 0;             /* Potential covering index (or NULL) */
1845     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
1846 
1847     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
1848     int regRowset = 0;                        /* Register for RowSet object */
1849     int regRowid = 0;                         /* Register holding rowid */
1850     int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
1851     int iRetInit;                             /* Address of regReturn init */
1852     int untestedTerms = 0;             /* Some terms not completely tested */
1853     int ii;                            /* Loop counter */
1854     u16 wctrlFlags;                    /* Flags for sub-WHERE clause */
1855     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
1856     Table *pTab = pTabItem->pTab;
1857 
1858     pTerm = pLoop->aLTerm[0];
1859     assert( pTerm!=0 );
1860     assert( pTerm->eOperator & WO_OR );
1861     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
1862     pOrWc = &pTerm->u.pOrInfo->wc;
1863     pLevel->op = OP_Return;
1864     pLevel->p1 = regReturn;
1865 
1866     /* Set up a new SrcList in pOrTab containing the table being scanned
1867     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
1868     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
1869     */
1870     if( pWInfo->nLevel>1 ){
1871       int nNotReady;                 /* The number of notReady tables */
1872       struct SrcList_item *origSrc;     /* Original list of tables */
1873       nNotReady = pWInfo->nLevel - iLevel - 1;
1874       pOrTab = sqlite3StackAllocRaw(db,
1875                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
1876       if( pOrTab==0 ) return notReady;
1877       pOrTab->nAlloc = (u8)(nNotReady + 1);
1878       pOrTab->nSrc = pOrTab->nAlloc;
1879       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
1880       origSrc = pWInfo->pTabList->a;
1881       for(k=1; k<=nNotReady; k++){
1882         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
1883       }
1884     }else{
1885       pOrTab = pWInfo->pTabList;
1886     }
1887 
1888     /* Initialize the rowset register to contain NULL. An SQL NULL is
1889     ** equivalent to an empty rowset.  Or, create an ephemeral index
1890     ** capable of holding primary keys in the case of a WITHOUT ROWID.
1891     **
1892     ** Also initialize regReturn to contain the address of the instruction
1893     ** immediately following the OP_Return at the bottom of the loop. This
1894     ** is required in a few obscure LEFT JOIN cases where control jumps
1895     ** over the top of the loop into the body of it. In this case the
1896     ** correct response for the end-of-loop code (the OP_Return) is to
1897     ** fall through to the next instruction, just as an OP_Next does if
1898     ** called on an uninitialized cursor.
1899     */
1900     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1901       if( HasRowid(pTab) ){
1902         regRowset = ++pParse->nMem;
1903         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
1904       }else{
1905         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1906         regRowset = pParse->nTab++;
1907         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
1908         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
1909       }
1910       regRowid = ++pParse->nMem;
1911     }
1912     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
1913 
1914     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
1915     ** Then for every term xN, evaluate as the subexpression: xN AND z
1916     ** That way, terms in y that are factored into the disjunction will
1917     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
1918     **
1919     ** Actually, each subexpression is converted to "xN AND w" where w is
1920     ** the "interesting" terms of z - terms that did not originate in the
1921     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
1922     ** indices.
1923     **
1924     ** This optimization also only applies if the (x1 OR x2 OR ...) term
1925     ** is not contained in the ON clause of a LEFT JOIN.
1926     ** See ticket http://www.sqlite.org/src/info/f2369304e4
1927     */
1928     if( pWC->nTerm>1 ){
1929       int iTerm;
1930       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
1931         Expr *pExpr = pWC->a[iTerm].pExpr;
1932         if( &pWC->a[iTerm] == pTerm ) continue;
1933         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
1934         testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
1935         if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
1936         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
1937         testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
1938         pExpr = sqlite3ExprDup(db, pExpr, 0);
1939         pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
1940       }
1941       if( pAndExpr ){
1942         pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr);
1943       }
1944     }
1945 
1946     /* Run a separate WHERE clause for each term of the OR clause.  After
1947     ** eliminating duplicates from other WHERE clauses, the action for each
1948     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
1949     */
1950     wctrlFlags =  WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE);
1951     ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
1952     for(ii=0; ii<pOrWc->nTerm; ii++){
1953       WhereTerm *pOrTerm = &pOrWc->a[ii];
1954       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
1955         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
1956         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
1957         int jmp1 = 0;                   /* Address of jump operation */
1958         assert( (pTabItem[0].fg.jointype & JT_LEFT)==0
1959              || ExprHasProperty(pOrExpr, EP_FromJoin)
1960         );
1961         if( pAndExpr ){
1962           pAndExpr->pLeft = pOrExpr;
1963           pOrExpr = pAndExpr;
1964         }
1965         /* Loop through table entries that match term pOrTerm. */
1966         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
1967         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
1968                                       wctrlFlags, iCovCur);
1969         assert( pSubWInfo || pParse->nErr || db->mallocFailed );
1970         if( pSubWInfo ){
1971           WhereLoop *pSubLoop;
1972           int addrExplain = sqlite3WhereExplainOneScan(
1973               pParse, pOrTab, &pSubWInfo->a[0], 0
1974           );
1975           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
1976 
1977           /* This is the sub-WHERE clause body.  First skip over
1978           ** duplicate rows from prior sub-WHERE clauses, and record the
1979           ** rowid (or PRIMARY KEY) for the current row so that the same
1980           ** row will be skipped in subsequent sub-WHERE clauses.
1981           */
1982           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1983             int r;
1984             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
1985             if( HasRowid(pTab) ){
1986               r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0);
1987               jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
1988                                            r,iSet);
1989               VdbeCoverage(v);
1990             }else{
1991               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1992               int nPk = pPk->nKeyCol;
1993               int iPk;
1994 
1995               /* Read the PK into an array of temp registers. */
1996               r = sqlite3GetTempRange(pParse, nPk);
1997               for(iPk=0; iPk<nPk; iPk++){
1998                 int iCol = pPk->aiColumn[iPk];
1999                 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk);
2000               }
2001 
2002               /* Check if the temp table already contains this key. If so,
2003               ** the row has already been included in the result set and
2004               ** can be ignored (by jumping past the Gosub below). Otherwise,
2005               ** insert the key into the temp table and proceed with processing
2006               ** the row.
2007               **
2008               ** Use some of the same optimizations as OP_RowSetTest: If iSet
2009               ** is zero, assume that the key cannot already be present in
2010               ** the temp table. And if iSet is -1, assume that there is no
2011               ** need to insert the key into the temp table, as it will never
2012               ** be tested for.  */
2013               if( iSet ){
2014                 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
2015                 VdbeCoverage(v);
2016               }
2017               if( iSet>=0 ){
2018                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
2019                 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
2020                                      r, nPk);
2021                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2022               }
2023 
2024               /* Release the array of temp registers */
2025               sqlite3ReleaseTempRange(pParse, r, nPk);
2026             }
2027           }
2028 
2029           /* Invoke the main loop body as a subroutine */
2030           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2031 
2032           /* Jump here (skipping the main loop body subroutine) if the
2033           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2034           if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
2035 
2036           /* The pSubWInfo->untestedTerms flag means that this OR term
2037           ** contained one or more AND term from a notReady table.  The
2038           ** terms from the notReady table could not be tested and will
2039           ** need to be tested later.
2040           */
2041           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
2042 
2043           /* If all of the OR-connected terms are optimized using the same
2044           ** index, and the index is opened using the same cursor number
2045           ** by each call to sqlite3WhereBegin() made by this loop, it may
2046           ** be possible to use that index as a covering index.
2047           **
2048           ** If the call to sqlite3WhereBegin() above resulted in a scan that
2049           ** uses an index, and this is either the first OR-connected term
2050           ** processed or the index is the same as that used by all previous
2051           ** terms, set pCov to the candidate covering index. Otherwise, set
2052           ** pCov to NULL to indicate that no candidate covering index will
2053           ** be available.
2054           */
2055           pSubLoop = pSubWInfo->a[0].pWLoop;
2056           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2057           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2058            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2059            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2060           ){
2061             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2062             pCov = pSubLoop->u.btree.pIndex;
2063           }else{
2064             pCov = 0;
2065           }
2066 
2067           /* Finish the loop through table entries that match term pOrTerm. */
2068           sqlite3WhereEnd(pSubWInfo);
2069         }
2070       }
2071     }
2072     ExplainQueryPlanPop(pParse);
2073     pLevel->u.pCovidx = pCov;
2074     if( pCov ) pLevel->iIdxCur = iCovCur;
2075     if( pAndExpr ){
2076       pAndExpr->pLeft = 0;
2077       sqlite3ExprDelete(db, pAndExpr);
2078     }
2079     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2080     sqlite3VdbeGoto(v, pLevel->addrBrk);
2081     sqlite3VdbeResolveLabel(v, iLoopBody);
2082 
2083     if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
2084     if( !untestedTerms ) disableTerm(pLevel, pTerm);
2085   }else
2086 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2087 
2088   {
2089     /* Case 6:  There is no usable index.  We must do a complete
2090     **          scan of the entire table.
2091     */
2092     static const u8 aStep[] = { OP_Next, OP_Prev };
2093     static const u8 aStart[] = { OP_Rewind, OP_Last };
2094     assert( bRev==0 || bRev==1 );
2095     if( pTabItem->fg.isRecursive ){
2096       /* Tables marked isRecursive have only a single row that is stored in
2097       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
2098       pLevel->op = OP_Noop;
2099     }else{
2100       codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2101       pLevel->op = aStep[bRev];
2102       pLevel->p1 = iCur;
2103       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2104       VdbeCoverageIf(v, bRev==0);
2105       VdbeCoverageIf(v, bRev!=0);
2106       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2107     }
2108   }
2109 
2110 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2111   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2112 #endif
2113 
2114   /* Insert code to test every subexpression that can be completely
2115   ** computed using the current set of tables.
2116   **
2117   ** This loop may run between one and three times, depending on the
2118   ** constraints to be generated. The value of stack variable iLoop
2119   ** determines the constraints coded by each iteration, as follows:
2120   **
2121   ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2122   ** iLoop==2: Code remaining expressions that do not contain correlated
2123   **           sub-queries.
2124   ** iLoop==3: Code all remaining expressions.
2125   **
2126   ** An effort is made to skip unnecessary iterations of the loop.
2127   */
2128   iLoop = (pIdx ? 1 : 2);
2129   do{
2130     int iNext = 0;                /* Next value for iLoop */
2131     for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2132       Expr *pE;
2133       int skipLikeAddr = 0;
2134       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2135       testcase( pTerm->wtFlags & TERM_CODED );
2136       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2137       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2138         testcase( pWInfo->untestedTerms==0
2139             && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2140         pWInfo->untestedTerms = 1;
2141         continue;
2142       }
2143       pE = pTerm->pExpr;
2144       assert( pE!=0 );
2145       if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){
2146         continue;
2147       }
2148 
2149       if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2150         iNext = 2;
2151         continue;
2152       }
2153       if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2154         if( iNext==0 ) iNext = 3;
2155         continue;
2156       }
2157 
2158       if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
2159         /* If the TERM_LIKECOND flag is set, that means that the range search
2160         ** is sufficient to guarantee that the LIKE operator is true, so we
2161         ** can skip the call to the like(A,B) function.  But this only works
2162         ** for strings.  So do not skip the call to the function on the pass
2163         ** that compares BLOBs. */
2164 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2165         continue;
2166 #else
2167         u32 x = pLevel->iLikeRepCntr;
2168         if( x>0 ){
2169           skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
2170         }
2171         VdbeCoverage(v);
2172 #endif
2173       }
2174 #ifdef WHERETRACE_ENABLED /* 0xffff */
2175       if( sqlite3WhereTrace ){
2176         VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2177                          pWC->nTerm-j, pTerm, iLoop));
2178       }
2179 #endif
2180       sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2181       if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2182       pTerm->wtFlags |= TERM_CODED;
2183     }
2184     iLoop = iNext;
2185   }while( iLoop>0 );
2186 
2187   /* Insert code to test for implied constraints based on transitivity
2188   ** of the "==" operator.
2189   **
2190   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2191   ** and we are coding the t1 loop and the t2 loop has not yet coded,
2192   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2193   ** the implied "t1.a=123" constraint.
2194   */
2195   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2196     Expr *pE, sEAlt;
2197     WhereTerm *pAlt;
2198     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2199     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2200     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2201     if( pTerm->leftCursor!=iCur ) continue;
2202     if( pLevel->iLeftJoin ) continue;
2203     pE = pTerm->pExpr;
2204     assert( !ExprHasProperty(pE, EP_FromJoin) );
2205     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2206     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
2207                     WO_EQ|WO_IN|WO_IS, 0);
2208     if( pAlt==0 ) continue;
2209     if( pAlt->wtFlags & (TERM_CODED) ) continue;
2210     if( (pAlt->eOperator & WO_IN)
2211      && (pAlt->pExpr->flags & EP_xIsSelect)
2212      && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
2213     ){
2214       continue;
2215     }
2216     testcase( pAlt->eOperator & WO_EQ );
2217     testcase( pAlt->eOperator & WO_IS );
2218     testcase( pAlt->eOperator & WO_IN );
2219     VdbeModuleComment((v, "begin transitive constraint"));
2220     sEAlt = *pAlt->pExpr;
2221     sEAlt.pLeft = pE->pLeft;
2222     sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2223   }
2224 
2225   /* For a LEFT OUTER JOIN, generate code that will record the fact that
2226   ** at least one row of the right table has matched the left table.
2227   */
2228   if( pLevel->iLeftJoin ){
2229     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2230     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2231     VdbeComment((v, "record LEFT JOIN hit"));
2232     sqlite3ExprCacheClear(pParse);
2233     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
2234       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2235       testcase( pTerm->wtFlags & TERM_CODED );
2236       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2237       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2238         assert( pWInfo->untestedTerms );
2239         continue;
2240       }
2241       assert( pTerm->pExpr );
2242       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2243       pTerm->wtFlags |= TERM_CODED;
2244     }
2245   }
2246 
2247   return pLevel->notReady;
2248 }
2249