xref: /sqlite-3.40.0/src/wherecode.c (revision e684ac6f)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 
25 /*
26 ** Return the name of the i-th column of the pIdx index.
27 */
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29   i = pIdx->aiColumn[i];
30   if( i==XN_EXPR ) return "<expr>";
31   if( i==XN_ROWID ) return "rowid";
32   return pIdx->pTable->aCol[i].zCnName;
33 }
34 
35 /*
36 ** This routine is a helper for explainIndexRange() below
37 **
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time.  This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
42 */
43 static void explainAppendTerm(
44   StrAccum *pStr,             /* The text expression being built */
45   Index *pIdx,                /* Index to read column names from */
46   int nTerm,                  /* Number of terms */
47   int iTerm,                  /* Zero-based index of first term. */
48   int bAnd,                   /* Non-zero to append " AND " */
49   const char *zOp             /* Name of the operator */
50 ){
51   int i;
52 
53   assert( nTerm>=1 );
54   if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
55 
56   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
57   for(i=0; i<nTerm; i++){
58     if( i ) sqlite3_str_append(pStr, ",", 1);
59     sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
60   }
61   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
62 
63   sqlite3_str_append(pStr, zOp, 1);
64 
65   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
66   for(i=0; i<nTerm; i++){
67     if( i ) sqlite3_str_append(pStr, ",", 1);
68     sqlite3_str_append(pStr, "?", 1);
69   }
70   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
71 }
72 
73 /*
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
77 **
78 ** For example, if the query:
79 **
80 **   SELECT * FROM t1 WHERE a=1 AND b>2;
81 **
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
84 **
85 **   "a=? AND b>?"
86 */
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88   Index *pIndex = pLoop->u.btree.pIndex;
89   u16 nEq = pLoop->u.btree.nEq;
90   u16 nSkip = pLoop->nSkip;
91   int i, j;
92 
93   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94   sqlite3_str_append(pStr, " (", 2);
95   for(i=0; i<nEq; i++){
96     const char *z = explainIndexColumnName(pIndex, i);
97     if( i ) sqlite3_str_append(pStr, " AND ", 5);
98     sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
99   }
100 
101   j = i;
102   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104     i = 1;
105   }
106   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
108   }
109   sqlite3_str_append(pStr, ")", 1);
110 }
111 
112 /*
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
117 **
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
120 */
121 int sqlite3WhereExplainOneScan(
122   Parse *pParse,                  /* Parse context */
123   SrcList *pTabList,              /* Table list this loop refers to */
124   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
125   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
126 ){
127   int ret = 0;
128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
129   if( sqlite3ParseToplevel(pParse)->explain==2 )
130 #endif
131   {
132     SrcItem *pItem = &pTabList->a[pLevel->iFrom];
133     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
134     sqlite3 *db = pParse->db;     /* Database handle */
135     int isSearch;                 /* True for a SEARCH. False for SCAN. */
136     WhereLoop *pLoop;             /* The controlling WhereLoop object */
137     u32 flags;                    /* Flags that describe this loop */
138     char *zMsg;                   /* Text to add to EQP output */
139     StrAccum str;                 /* EQP output string */
140     char zBuf[100];               /* Initial space for EQP output string */
141 
142     pLoop = pLevel->pWLoop;
143     flags = pLoop->wsFlags;
144     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
145 
146     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
147             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
148             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
149 
150     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
151     str.printfFlags = SQLITE_PRINTF_INTERNAL;
152     sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem);
153     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
154       const char *zFmt = 0;
155       Index *pIdx;
156 
157       assert( pLoop->u.btree.pIndex!=0 );
158       pIdx = pLoop->u.btree.pIndex;
159       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
160       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
161         if( isSearch ){
162           zFmt = "PRIMARY KEY";
163         }
164       }else if( flags & WHERE_PARTIALIDX ){
165         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
166       }else if( flags & WHERE_AUTO_INDEX ){
167         zFmt = "AUTOMATIC COVERING INDEX";
168       }else if( flags & WHERE_IDX_ONLY ){
169         zFmt = "COVERING INDEX %s";
170       }else{
171         zFmt = "INDEX %s";
172       }
173       if( zFmt ){
174         sqlite3_str_append(&str, " USING ", 7);
175         sqlite3_str_appendf(&str, zFmt, pIdx->zName);
176         explainIndexRange(&str, pLoop);
177       }
178     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
179       char cRangeOp;
180 #if 0  /* Better output, but breaks many tests */
181       const Table *pTab = pItem->pTab;
182       const char *zRowid = pTab->iPKey>=0 ? pTab->aCol[pTab->iPKey].zCnName:
183                               "rowid";
184 #else
185       const char *zRowid = "rowid";
186 #endif
187       sqlite3_str_appendf(&str, " USING INTEGER PRIMARY KEY (%s", zRowid);
188       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
189         cRangeOp = '=';
190       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
191         sqlite3_str_appendf(&str, ">? AND %s", zRowid);
192         cRangeOp = '<';
193       }else if( flags&WHERE_BTM_LIMIT ){
194         cRangeOp = '>';
195       }else{
196         assert( flags&WHERE_TOP_LIMIT);
197         cRangeOp = '<';
198       }
199       sqlite3_str_appendf(&str, "%c?)", cRangeOp);
200     }
201 #ifndef SQLITE_OMIT_VIRTUALTABLE
202     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
203       sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
204                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
205     }
206 #endif
207 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
208     if( pLoop->nOut>=10 ){
209       sqlite3_str_appendf(&str, " (~%llu rows)",
210              sqlite3LogEstToInt(pLoop->nOut));
211     }else{
212       sqlite3_str_append(&str, " (~1 row)", 9);
213     }
214 #endif
215     zMsg = sqlite3StrAccumFinish(&str);
216     sqlite3ExplainBreakpoint("",zMsg);
217     ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
218                             pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
219   }
220   return ret;
221 }
222 
223 /*
224 ** Add a single OP_Explain opcode that describes a Bloom filter.
225 **
226 ** Or if not processing EXPLAIN QUERY PLAN and not in a SQLITE_DEBUG and/or
227 ** SQLITE_ENABLE_STMT_SCANSTATUS build, then OP_Explain opcodes are not
228 ** required and this routine is a no-op.
229 **
230 ** If an OP_Explain opcode is added to the VM, its address is returned.
231 ** Otherwise, if no OP_Explain is coded, zero is returned.
232 */
233 int sqlite3WhereExplainBloomFilter(
234   const Parse *pParse,               /* Parse context */
235   const WhereInfo *pWInfo,           /* WHERE clause */
236   const WhereLevel *pLevel           /* Bloom filter on this level */
237 ){
238   int ret = 0;
239   SrcItem *pItem = &pWInfo->pTabList->a[pLevel->iFrom];
240   Vdbe *v = pParse->pVdbe;      /* VM being constructed */
241   sqlite3 *db = pParse->db;     /* Database handle */
242   char *zMsg;                   /* Text to add to EQP output */
243   int i;                        /* Loop counter */
244   WhereLoop *pLoop;             /* The where loop */
245   StrAccum str;                 /* EQP output string */
246   char zBuf[100];               /* Initial space for EQP output string */
247 
248   sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
249   str.printfFlags = SQLITE_PRINTF_INTERNAL;
250   sqlite3_str_appendf(&str, "BLOOM FILTER ON %S (", pItem);
251   pLoop = pLevel->pWLoop;
252   if( pLoop->wsFlags & WHERE_IPK ){
253     const Table *pTab = pItem->pTab;
254     if( pTab->iPKey>=0 ){
255       sqlite3_str_appendf(&str, "%s=?", pTab->aCol[pTab->iPKey].zCnName);
256     }else{
257       sqlite3_str_appendf(&str, "rowid=?");
258     }
259   }else{
260     for(i=pLoop->nSkip; i<pLoop->u.btree.nEq; i++){
261       const char *z = explainIndexColumnName(pLoop->u.btree.pIndex, i);
262       if( i>pLoop->nSkip ) sqlite3_str_append(&str, " AND ", 5);
263       sqlite3_str_appendf(&str, "%s=?", z);
264     }
265   }
266   sqlite3_str_append(&str, ")", 1);
267   zMsg = sqlite3StrAccumFinish(&str);
268   ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
269                           pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
270   return ret;
271 }
272 #endif /* SQLITE_OMIT_EXPLAIN */
273 
274 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
275 /*
276 ** Configure the VM passed as the first argument with an
277 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
278 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
279 ** clause that the scan reads data from.
280 **
281 ** If argument addrExplain is not 0, it must be the address of an
282 ** OP_Explain instruction that describes the same loop.
283 */
284 void sqlite3WhereAddScanStatus(
285   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
286   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
287   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
288   int addrExplain                 /* Address of OP_Explain (or 0) */
289 ){
290   const char *zObj = 0;
291   WhereLoop *pLoop = pLvl->pWLoop;
292   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
293     zObj = pLoop->u.btree.pIndex->zName;
294   }else{
295     zObj = pSrclist->a[pLvl->iFrom].zName;
296   }
297   sqlite3VdbeScanStatus(
298       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
299   );
300 }
301 #endif
302 
303 
304 /*
305 ** Disable a term in the WHERE clause.  Except, do not disable the term
306 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
307 ** or USING clause of that join.
308 **
309 ** Consider the term t2.z='ok' in the following queries:
310 **
311 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
312 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
313 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
314 **
315 ** The t2.z='ok' is disabled in the in (2) because it originates
316 ** in the ON clause.  The term is disabled in (3) because it is not part
317 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
318 **
319 ** Disabling a term causes that term to not be tested in the inner loop
320 ** of the join.  Disabling is an optimization.  When terms are satisfied
321 ** by indices, we disable them to prevent redundant tests in the inner
322 ** loop.  We would get the correct results if nothing were ever disabled,
323 ** but joins might run a little slower.  The trick is to disable as much
324 ** as we can without disabling too much.  If we disabled in (1), we'd get
325 ** the wrong answer.  See ticket #813.
326 **
327 ** If all the children of a term are disabled, then that term is also
328 ** automatically disabled.  In this way, terms get disabled if derived
329 ** virtual terms are tested first.  For example:
330 **
331 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
332 **      \___________/     \______/     \_____/
333 **         parent          child1       child2
334 **
335 ** Only the parent term was in the original WHERE clause.  The child1
336 ** and child2 terms were added by the LIKE optimization.  If both of
337 ** the virtual child terms are valid, then testing of the parent can be
338 ** skipped.
339 **
340 ** Usually the parent term is marked as TERM_CODED.  But if the parent
341 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
342 ** The TERM_LIKECOND marking indicates that the term should be coded inside
343 ** a conditional such that is only evaluated on the second pass of a
344 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
345 */
346 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
347   int nLoop = 0;
348   assert( pTerm!=0 );
349   while( (pTerm->wtFlags & TERM_CODED)==0
350       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
351       && (pLevel->notReady & pTerm->prereqAll)==0
352   ){
353     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
354       pTerm->wtFlags |= TERM_LIKECOND;
355     }else{
356       pTerm->wtFlags |= TERM_CODED;
357     }
358 #ifdef WHERETRACE_ENABLED
359     if( sqlite3WhereTrace & 0x20000 ){
360       sqlite3DebugPrintf("DISABLE-");
361       sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a)));
362     }
363 #endif
364     if( pTerm->iParent<0 ) break;
365     pTerm = &pTerm->pWC->a[pTerm->iParent];
366     assert( pTerm!=0 );
367     pTerm->nChild--;
368     if( pTerm->nChild!=0 ) break;
369     nLoop++;
370   }
371 }
372 
373 /*
374 ** Code an OP_Affinity opcode to apply the column affinity string zAff
375 ** to the n registers starting at base.
376 **
377 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
378 ** are no-ops) at the beginning and end of zAff are ignored.  If all entries
379 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
380 **
381 ** This routine makes its own copy of zAff so that the caller is free
382 ** to modify zAff after this routine returns.
383 */
384 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
385   Vdbe *v = pParse->pVdbe;
386   if( zAff==0 ){
387     assert( pParse->db->mallocFailed );
388     return;
389   }
390   assert( v!=0 );
391 
392   /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
393   ** entries at the beginning and end of the affinity string.
394   */
395   assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB );
396   while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){
397     n--;
398     base++;
399     zAff++;
400   }
401   while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){
402     n--;
403   }
404 
405   /* Code the OP_Affinity opcode if there is anything left to do. */
406   if( n>0 ){
407     sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
408   }
409 }
410 
411 /*
412 ** Expression pRight, which is the RHS of a comparison operation, is
413 ** either a vector of n elements or, if n==1, a scalar expression.
414 ** Before the comparison operation, affinity zAff is to be applied
415 ** to the pRight values. This function modifies characters within the
416 ** affinity string to SQLITE_AFF_BLOB if either:
417 **
418 **   * the comparison will be performed with no affinity, or
419 **   * the affinity change in zAff is guaranteed not to change the value.
420 */
421 static void updateRangeAffinityStr(
422   Expr *pRight,                   /* RHS of comparison */
423   int n,                          /* Number of vector elements in comparison */
424   char *zAff                      /* Affinity string to modify */
425 ){
426   int i;
427   for(i=0; i<n; i++){
428     Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
429     if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
430      || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
431     ){
432       zAff[i] = SQLITE_AFF_BLOB;
433     }
434   }
435 }
436 
437 
438 /*
439 ** pX is an expression of the form:  (vector) IN (SELECT ...)
440 ** In other words, it is a vector IN operator with a SELECT clause on the
441 ** LHS.  But not all terms in the vector are indexable and the terms might
442 ** not be in the correct order for indexing.
443 **
444 ** This routine makes a copy of the input pX expression and then adjusts
445 ** the vector on the LHS with corresponding changes to the SELECT so that
446 ** the vector contains only index terms and those terms are in the correct
447 ** order.  The modified IN expression is returned.  The caller is responsible
448 ** for deleting the returned expression.
449 **
450 ** Example:
451 **
452 **    CREATE TABLE t1(a,b,c,d,e,f);
453 **    CREATE INDEX t1x1 ON t1(e,c);
454 **    SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
455 **                           \_______________________________________/
456 **                                     The pX expression
457 **
458 ** Since only columns e and c can be used with the index, in that order,
459 ** the modified IN expression that is returned will be:
460 **
461 **        (e,c) IN (SELECT z,x FROM t2)
462 **
463 ** The reduced pX is different from the original (obviously) and thus is
464 ** only used for indexing, to improve performance.  The original unaltered
465 ** IN expression must also be run on each output row for correctness.
466 */
467 static Expr *removeUnindexableInClauseTerms(
468   Parse *pParse,        /* The parsing context */
469   int iEq,              /* Look at loop terms starting here */
470   WhereLoop *pLoop,     /* The current loop */
471   Expr *pX              /* The IN expression to be reduced */
472 ){
473   sqlite3 *db = pParse->db;
474   Expr *pNew;
475   pNew = sqlite3ExprDup(db, pX, 0);
476   if( db->mallocFailed==0 ){
477     ExprList *pOrigRhs;         /* Original unmodified RHS */
478     ExprList *pOrigLhs;         /* Original unmodified LHS */
479     ExprList *pRhs = 0;         /* New RHS after modifications */
480     ExprList *pLhs = 0;         /* New LHS after mods */
481     int i;                      /* Loop counter */
482     Select *pSelect;            /* Pointer to the SELECT on the RHS */
483 
484     assert( ExprUseXSelect(pNew) );
485     pOrigRhs = pNew->x.pSelect->pEList;
486     assert( pNew->pLeft!=0 );
487     assert( ExprUseXList(pNew->pLeft) );
488     pOrigLhs = pNew->pLeft->x.pList;
489     for(i=iEq; i<pLoop->nLTerm; i++){
490       if( pLoop->aLTerm[i]->pExpr==pX ){
491         int iField;
492         assert( (pLoop->aLTerm[i]->eOperator & (WO_OR|WO_AND))==0 );
493         iField = pLoop->aLTerm[i]->u.x.iField - 1;
494         if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
495         pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
496         pOrigRhs->a[iField].pExpr = 0;
497         assert( pOrigLhs->a[iField].pExpr!=0 );
498         pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
499         pOrigLhs->a[iField].pExpr = 0;
500       }
501     }
502     sqlite3ExprListDelete(db, pOrigRhs);
503     sqlite3ExprListDelete(db, pOrigLhs);
504     pNew->pLeft->x.pList = pLhs;
505     pNew->x.pSelect->pEList = pRhs;
506     if( pLhs && pLhs->nExpr==1 ){
507       /* Take care here not to generate a TK_VECTOR containing only a
508       ** single value. Since the parser never creates such a vector, some
509       ** of the subroutines do not handle this case.  */
510       Expr *p = pLhs->a[0].pExpr;
511       pLhs->a[0].pExpr = 0;
512       sqlite3ExprDelete(db, pNew->pLeft);
513       pNew->pLeft = p;
514     }
515     pSelect = pNew->x.pSelect;
516     if( pSelect->pOrderBy ){
517       /* If the SELECT statement has an ORDER BY clause, zero the
518       ** iOrderByCol variables. These are set to non-zero when an
519       ** ORDER BY term exactly matches one of the terms of the
520       ** result-set. Since the result-set of the SELECT statement may
521       ** have been modified or reordered, these variables are no longer
522       ** set correctly.  Since setting them is just an optimization,
523       ** it's easiest just to zero them here.  */
524       ExprList *pOrderBy = pSelect->pOrderBy;
525       for(i=0; i<pOrderBy->nExpr; i++){
526         pOrderBy->a[i].u.x.iOrderByCol = 0;
527       }
528     }
529 
530 #if 0
531     printf("For indexing, change the IN expr:\n");
532     sqlite3TreeViewExpr(0, pX, 0);
533     printf("Into:\n");
534     sqlite3TreeViewExpr(0, pNew, 0);
535 #endif
536   }
537   return pNew;
538 }
539 
540 
541 /*
542 ** Generate code for a single equality term of the WHERE clause.  An equality
543 ** term can be either X=expr or X IN (...).   pTerm is the term to be
544 ** coded.
545 **
546 ** The current value for the constraint is left in a register, the index
547 ** of which is returned.  An attempt is made store the result in iTarget but
548 ** this is only guaranteed for TK_ISNULL and TK_IN constraints.  If the
549 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
550 ** some other register and it is the caller's responsibility to compensate.
551 **
552 ** For a constraint of the form X=expr, the expression is evaluated in
553 ** straight-line code.  For constraints of the form X IN (...)
554 ** this routine sets up a loop that will iterate over all values of X.
555 */
556 static int codeEqualityTerm(
557   Parse *pParse,      /* The parsing context */
558   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
559   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
560   int iEq,            /* Index of the equality term within this level */
561   int bRev,           /* True for reverse-order IN operations */
562   int iTarget         /* Attempt to leave results in this register */
563 ){
564   Expr *pX = pTerm->pExpr;
565   Vdbe *v = pParse->pVdbe;
566   int iReg;                  /* Register holding results */
567 
568   assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
569   assert( iTarget>0 );
570   if( pX->op==TK_EQ || pX->op==TK_IS ){
571     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
572   }else if( pX->op==TK_ISNULL ){
573     iReg = iTarget;
574     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
575 #ifndef SQLITE_OMIT_SUBQUERY
576   }else{
577     int eType = IN_INDEX_NOOP;
578     int iTab;
579     struct InLoop *pIn;
580     WhereLoop *pLoop = pLevel->pWLoop;
581     int i;
582     int nEq = 0;
583     int *aiMap = 0;
584 
585     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
586       && pLoop->u.btree.pIndex!=0
587       && pLoop->u.btree.pIndex->aSortOrder[iEq]
588     ){
589       testcase( iEq==0 );
590       testcase( bRev );
591       bRev = !bRev;
592     }
593     assert( pX->op==TK_IN );
594     iReg = iTarget;
595 
596     for(i=0; i<iEq; i++){
597       if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
598         disableTerm(pLevel, pTerm);
599         return iTarget;
600       }
601     }
602     for(i=iEq;i<pLoop->nLTerm; i++){
603       assert( pLoop->aLTerm[i]!=0 );
604       if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
605     }
606 
607     iTab = 0;
608     if( !ExprUseXSelect(pX) || pX->x.pSelect->pEList->nExpr==1 ){
609       eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab);
610     }else{
611       sqlite3 *db = pParse->db;
612       pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
613 
614       if( !db->mallocFailed ){
615         aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
616         eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab);
617         pTerm->pExpr->iTable = iTab;
618       }
619       sqlite3ExprDelete(db, pX);
620       pX = pTerm->pExpr;
621     }
622 
623     if( eType==IN_INDEX_INDEX_DESC ){
624       testcase( bRev );
625       bRev = !bRev;
626     }
627     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
628     VdbeCoverageIf(v, bRev);
629     VdbeCoverageIf(v, !bRev);
630 
631     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
632     pLoop->wsFlags |= WHERE_IN_ABLE;
633     if( pLevel->u.in.nIn==0 ){
634       pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
635     }
636     if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){
637       pLoop->wsFlags |= WHERE_IN_EARLYOUT;
638     }
639 
640     i = pLevel->u.in.nIn;
641     pLevel->u.in.nIn += nEq;
642     pLevel->u.in.aInLoop =
643        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
644                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
645     pIn = pLevel->u.in.aInLoop;
646     if( pIn ){
647       int iMap = 0;               /* Index in aiMap[] */
648       pIn += i;
649       for(i=iEq;i<pLoop->nLTerm; i++){
650         if( pLoop->aLTerm[i]->pExpr==pX ){
651           int iOut = iReg + i - iEq;
652           if( eType==IN_INDEX_ROWID ){
653             pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
654           }else{
655             int iCol = aiMap ? aiMap[iMap++] : 0;
656             pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
657           }
658           sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
659           if( i==iEq ){
660             pIn->iCur = iTab;
661             pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
662             if( iEq>0 ){
663               pIn->iBase = iReg - i;
664               pIn->nPrefix = i;
665             }else{
666               pIn->nPrefix = 0;
667             }
668           }else{
669             pIn->eEndLoopOp = OP_Noop;
670           }
671           pIn++;
672         }
673       }
674       testcase( iEq>0
675                 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
676                 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 );
677       if( iEq>0
678        && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0
679       ){
680         sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq);
681       }
682     }else{
683       pLevel->u.in.nIn = 0;
684     }
685     sqlite3DbFree(pParse->db, aiMap);
686 #endif
687   }
688 
689   /* As an optimization, try to disable the WHERE clause term that is
690   ** driving the index as it will always be true.  The correct answer is
691   ** obtained regardless, but we might get the answer with fewer CPU cycles
692   ** by omitting the term.
693   **
694   ** But do not disable the term unless we are certain that the term is
695   ** not a transitive constraint.  For an example of where that does not
696   ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04)
697   */
698   if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0
699    || (pTerm->eOperator & WO_EQUIV)==0
700   ){
701     disableTerm(pLevel, pTerm);
702   }
703 
704   return iReg;
705 }
706 
707 /*
708 ** Generate code that will evaluate all == and IN constraints for an
709 ** index scan.
710 **
711 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
712 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
713 ** The index has as many as three equality constraints, but in this
714 ** example, the third "c" value is an inequality.  So only two
715 ** constraints are coded.  This routine will generate code to evaluate
716 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
717 ** in consecutive registers and the index of the first register is returned.
718 **
719 ** In the example above nEq==2.  But this subroutine works for any value
720 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
721 ** The only thing it does is allocate the pLevel->iMem memory cell and
722 ** compute the affinity string.
723 **
724 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
725 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
726 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
727 ** occurs after the nEq quality constraints.
728 **
729 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
730 ** the index of the first memory cell in that range. The code that
731 ** calls this routine will use that memory range to store keys for
732 ** start and termination conditions of the loop.
733 ** key value of the loop.  If one or more IN operators appear, then
734 ** this routine allocates an additional nEq memory cells for internal
735 ** use.
736 **
737 ** Before returning, *pzAff is set to point to a buffer containing a
738 ** copy of the column affinity string of the index allocated using
739 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
740 ** with equality constraints that use BLOB or NONE affinity are set to
741 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
742 **
743 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
744 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
745 **
746 ** In the example above, the index on t1(a) has TEXT affinity. But since
747 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
748 ** no conversion should be attempted before using a t2.b value as part of
749 ** a key to search the index. Hence the first byte in the returned affinity
750 ** string in this example would be set to SQLITE_AFF_BLOB.
751 */
752 static int codeAllEqualityTerms(
753   Parse *pParse,        /* Parsing context */
754   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
755   int bRev,             /* Reverse the order of IN operators */
756   int nExtraReg,        /* Number of extra registers to allocate */
757   char **pzAff          /* OUT: Set to point to affinity string */
758 ){
759   u16 nEq;                      /* The number of == or IN constraints to code */
760   u16 nSkip;                    /* Number of left-most columns to skip */
761   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
762   Index *pIdx;                  /* The index being used for this loop */
763   WhereTerm *pTerm;             /* A single constraint term */
764   WhereLoop *pLoop;             /* The WhereLoop object */
765   int j;                        /* Loop counter */
766   int regBase;                  /* Base register */
767   int nReg;                     /* Number of registers to allocate */
768   char *zAff;                   /* Affinity string to return */
769 
770   /* This module is only called on query plans that use an index. */
771   pLoop = pLevel->pWLoop;
772   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
773   nEq = pLoop->u.btree.nEq;
774   nSkip = pLoop->nSkip;
775   pIdx = pLoop->u.btree.pIndex;
776   assert( pIdx!=0 );
777 
778   /* Figure out how many memory cells we will need then allocate them.
779   */
780   regBase = pParse->nMem + 1;
781   nReg = pLoop->u.btree.nEq + nExtraReg;
782   pParse->nMem += nReg;
783 
784   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
785   assert( zAff!=0 || pParse->db->mallocFailed );
786 
787   if( nSkip ){
788     int iIdxCur = pLevel->iIdxCur;
789     sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1);
790     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
791     VdbeCoverageIf(v, bRev==0);
792     VdbeCoverageIf(v, bRev!=0);
793     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
794     j = sqlite3VdbeAddOp0(v, OP_Goto);
795     assert( pLevel->addrSkip==0 );
796     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
797                             iIdxCur, 0, regBase, nSkip);
798     VdbeCoverageIf(v, bRev==0);
799     VdbeCoverageIf(v, bRev!=0);
800     sqlite3VdbeJumpHere(v, j);
801     for(j=0; j<nSkip; j++){
802       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
803       testcase( pIdx->aiColumn[j]==XN_EXPR );
804       VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
805     }
806   }
807 
808   /* Evaluate the equality constraints
809   */
810   assert( zAff==0 || (int)strlen(zAff)>=nEq );
811   for(j=nSkip; j<nEq; j++){
812     int r1;
813     pTerm = pLoop->aLTerm[j];
814     assert( pTerm!=0 );
815     /* The following testcase is true for indices with redundant columns.
816     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
817     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
818     testcase( pTerm->wtFlags & TERM_VIRTUAL );
819     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
820     if( r1!=regBase+j ){
821       if( nReg==1 ){
822         sqlite3ReleaseTempReg(pParse, regBase);
823         regBase = r1;
824       }else{
825         sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j);
826       }
827     }
828   }
829   for(j=nSkip; j<nEq; j++){
830     pTerm = pLoop->aLTerm[j];
831     if( pTerm->eOperator & WO_IN ){
832       if( pTerm->pExpr->flags & EP_xIsSelect ){
833         /* No affinity ever needs to be (or should be) applied to a value
834         ** from the RHS of an "? IN (SELECT ...)" expression. The
835         ** sqlite3FindInIndex() routine has already ensured that the
836         ** affinity of the comparison has been applied to the value.  */
837         if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
838       }
839     }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
840       Expr *pRight = pTerm->pExpr->pRight;
841       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
842         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
843         VdbeCoverage(v);
844       }
845       if( pParse->nErr==0 ){
846         assert( pParse->db->mallocFailed==0 );
847         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
848           zAff[j] = SQLITE_AFF_BLOB;
849         }
850         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
851           zAff[j] = SQLITE_AFF_BLOB;
852         }
853       }
854     }
855   }
856   *pzAff = zAff;
857   return regBase;
858 }
859 
860 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
861 /*
862 ** If the most recently coded instruction is a constant range constraint
863 ** (a string literal) that originated from the LIKE optimization, then
864 ** set P3 and P5 on the OP_String opcode so that the string will be cast
865 ** to a BLOB at appropriate times.
866 **
867 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
868 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
869 ** scan loop run twice, once for strings and a second time for BLOBs.
870 ** The OP_String opcodes on the second pass convert the upper and lower
871 ** bound string constants to blobs.  This routine makes the necessary changes
872 ** to the OP_String opcodes for that to happen.
873 **
874 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
875 ** only the one pass through the string space is required, so this routine
876 ** becomes a no-op.
877 */
878 static void whereLikeOptimizationStringFixup(
879   Vdbe *v,                /* prepared statement under construction */
880   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
881   WhereTerm *pTerm        /* The upper or lower bound just coded */
882 ){
883   if( pTerm->wtFlags & TERM_LIKEOPT ){
884     VdbeOp *pOp;
885     assert( pLevel->iLikeRepCntr>0 );
886     pOp = sqlite3VdbeGetOp(v, -1);
887     assert( pOp!=0 );
888     assert( pOp->opcode==OP_String8
889             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
890     pOp->p3 = (int)(pLevel->iLikeRepCntr>>1);  /* Register holding counter */
891     pOp->p5 = (u8)(pLevel->iLikeRepCntr&1);    /* ASC or DESC */
892   }
893 }
894 #else
895 # define whereLikeOptimizationStringFixup(A,B,C)
896 #endif
897 
898 #ifdef SQLITE_ENABLE_CURSOR_HINTS
899 /*
900 ** Information is passed from codeCursorHint() down to individual nodes of
901 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
902 ** structure.
903 */
904 struct CCurHint {
905   int iTabCur;    /* Cursor for the main table */
906   int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
907   Index *pIdx;    /* The index used to access the table */
908 };
909 
910 /*
911 ** This function is called for every node of an expression that is a candidate
912 ** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
913 ** the table CCurHint.iTabCur, verify that the same column can be
914 ** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
915 */
916 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
917   struct CCurHint *pHint = pWalker->u.pCCurHint;
918   assert( pHint->pIdx!=0 );
919   if( pExpr->op==TK_COLUMN
920    && pExpr->iTable==pHint->iTabCur
921    && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0
922   ){
923     pWalker->eCode = 1;
924   }
925   return WRC_Continue;
926 }
927 
928 /*
929 ** Test whether or not expression pExpr, which was part of a WHERE clause,
930 ** should be included in the cursor-hint for a table that is on the rhs
931 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
932 ** expression is not suitable.
933 **
934 ** An expression is unsuitable if it might evaluate to non NULL even if
935 ** a TK_COLUMN node that does affect the value of the expression is set
936 ** to NULL. For example:
937 **
938 **   col IS NULL
939 **   col IS NOT NULL
940 **   coalesce(col, 1)
941 **   CASE WHEN col THEN 0 ELSE 1 END
942 */
943 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
944   if( pExpr->op==TK_IS
945    || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
946    || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
947   ){
948     pWalker->eCode = 1;
949   }else if( pExpr->op==TK_FUNCTION ){
950     int d1;
951     char d2[4];
952     if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
953       pWalker->eCode = 1;
954     }
955   }
956 
957   return WRC_Continue;
958 }
959 
960 
961 /*
962 ** This function is called on every node of an expression tree used as an
963 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
964 ** that accesses any table other than the one identified by
965 ** CCurHint.iTabCur, then do the following:
966 **
967 **   1) allocate a register and code an OP_Column instruction to read
968 **      the specified column into the new register, and
969 **
970 **   2) transform the expression node to a TK_REGISTER node that reads
971 **      from the newly populated register.
972 **
973 ** Also, if the node is a TK_COLUMN that does access the table idenified
974 ** by pCCurHint.iTabCur, and an index is being used (which we will
975 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
976 ** an access of the index rather than the original table.
977 */
978 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
979   int rc = WRC_Continue;
980   struct CCurHint *pHint = pWalker->u.pCCurHint;
981   if( pExpr->op==TK_COLUMN ){
982     if( pExpr->iTable!=pHint->iTabCur ){
983       int reg = ++pWalker->pParse->nMem;   /* Register for column value */
984       sqlite3ExprCode(pWalker->pParse, pExpr, reg);
985       pExpr->op = TK_REGISTER;
986       pExpr->iTable = reg;
987     }else if( pHint->pIdx!=0 ){
988       pExpr->iTable = pHint->iIdxCur;
989       pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn);
990       assert( pExpr->iColumn>=0 );
991     }
992   }else if( pExpr->op==TK_AGG_FUNCTION ){
993     /* An aggregate function in the WHERE clause of a query means this must
994     ** be a correlated sub-query, and expression pExpr is an aggregate from
995     ** the parent context. Do not walk the function arguments in this case.
996     **
997     ** todo: It should be possible to replace this node with a TK_REGISTER
998     ** expression, as the result of the expression must be stored in a
999     ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
1000     rc = WRC_Prune;
1001   }
1002   return rc;
1003 }
1004 
1005 /*
1006 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
1007 */
1008 static void codeCursorHint(
1009   SrcItem *pTabItem,  /* FROM clause item */
1010   WhereInfo *pWInfo,    /* The where clause */
1011   WhereLevel *pLevel,   /* Which loop to provide hints for */
1012   WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
1013 ){
1014   Parse *pParse = pWInfo->pParse;
1015   sqlite3 *db = pParse->db;
1016   Vdbe *v = pParse->pVdbe;
1017   Expr *pExpr = 0;
1018   WhereLoop *pLoop = pLevel->pWLoop;
1019   int iCur;
1020   WhereClause *pWC;
1021   WhereTerm *pTerm;
1022   int i, j;
1023   struct CCurHint sHint;
1024   Walker sWalker;
1025 
1026   if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
1027   iCur = pLevel->iTabCur;
1028   assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
1029   sHint.iTabCur = iCur;
1030   sHint.iIdxCur = pLevel->iIdxCur;
1031   sHint.pIdx = pLoop->u.btree.pIndex;
1032   memset(&sWalker, 0, sizeof(sWalker));
1033   sWalker.pParse = pParse;
1034   sWalker.u.pCCurHint = &sHint;
1035   pWC = &pWInfo->sWC;
1036   for(i=0; i<pWC->nBase; i++){
1037     pTerm = &pWC->a[i];
1038     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1039     if( pTerm->prereqAll & pLevel->notReady ) continue;
1040 
1041     /* Any terms specified as part of the ON(...) clause for any LEFT
1042     ** JOIN for which the current table is not the rhs are omitted
1043     ** from the cursor-hint.
1044     **
1045     ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
1046     ** that were specified as part of the WHERE clause must be excluded.
1047     ** This is to address the following:
1048     **
1049     **   SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
1050     **
1051     ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
1052     ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
1053     ** pushed down to the cursor, this row is filtered out, causing
1054     ** SQLite to synthesize a row of NULL values. Which does match the
1055     ** WHERE clause, and so the query returns a row. Which is incorrect.
1056     **
1057     ** For the same reason, WHERE terms such as:
1058     **
1059     **   WHERE 1 = (t2.c IS NULL)
1060     **
1061     ** are also excluded. See codeCursorHintIsOrFunction() for details.
1062     */
1063     if( pTabItem->fg.jointype & JT_LEFT ){
1064       Expr *pExpr = pTerm->pExpr;
1065       if( !ExprHasProperty(pExpr, EP_FromJoin)
1066        || pExpr->w.iRightJoinTable!=pTabItem->iCursor
1067       ){
1068         sWalker.eCode = 0;
1069         sWalker.xExprCallback = codeCursorHintIsOrFunction;
1070         sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1071         if( sWalker.eCode ) continue;
1072       }
1073     }else{
1074       if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
1075     }
1076 
1077     /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
1078     ** the cursor.  These terms are not needed as hints for a pure range
1079     ** scan (that has no == terms) so omit them. */
1080     if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
1081       for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
1082       if( j<pLoop->nLTerm ) continue;
1083     }
1084 
1085     /* No subqueries or non-deterministic functions allowed */
1086     if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
1087 
1088     /* For an index scan, make sure referenced columns are actually in
1089     ** the index. */
1090     if( sHint.pIdx!=0 ){
1091       sWalker.eCode = 0;
1092       sWalker.xExprCallback = codeCursorHintCheckExpr;
1093       sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1094       if( sWalker.eCode ) continue;
1095     }
1096 
1097     /* If we survive all prior tests, that means this term is worth hinting */
1098     pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
1099   }
1100   if( pExpr!=0 ){
1101     sWalker.xExprCallback = codeCursorHintFixExpr;
1102     sqlite3WalkExpr(&sWalker, pExpr);
1103     sqlite3VdbeAddOp4(v, OP_CursorHint,
1104                       (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
1105                       (const char*)pExpr, P4_EXPR);
1106   }
1107 }
1108 #else
1109 # define codeCursorHint(A,B,C,D)  /* No-op */
1110 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1111 
1112 /*
1113 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1114 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1115 ** function generates code to do a deferred seek of cursor iCur to the
1116 ** rowid stored in register iRowid.
1117 **
1118 ** Normally, this is just:
1119 **
1120 **   OP_DeferredSeek $iCur $iRowid
1121 **
1122 ** Which causes a seek on $iCur to the row with rowid $iRowid.
1123 **
1124 ** However, if the scan currently being coded is a branch of an OR-loop and
1125 ** the statement currently being coded is a SELECT, then additional information
1126 ** is added that might allow OP_Column to omit the seek and instead do its
1127 ** lookup on the index, thus avoiding an expensive seek operation.  To
1128 ** enable this optimization, the P3 of OP_DeferredSeek is set to iIdxCur
1129 ** and P4 is set to an array of integers containing one entry for each column
1130 ** in the table.  For each table column, if the column is the i'th
1131 ** column of the index, then the corresponding array entry is set to (i+1).
1132 ** If the column does not appear in the index at all, the array entry is set
1133 ** to 0.  The OP_Column opcode can check this array to see if the column it
1134 ** wants is in the index and if it is, it will substitute the index cursor
1135 ** and column number and continue with those new values, rather than seeking
1136 ** the table cursor.
1137 */
1138 static void codeDeferredSeek(
1139   WhereInfo *pWInfo,              /* Where clause context */
1140   Index *pIdx,                    /* Index scan is using */
1141   int iCur,                       /* Cursor for IPK b-tree */
1142   int iIdxCur                     /* Index cursor */
1143 ){
1144   Parse *pParse = pWInfo->pParse; /* Parse context */
1145   Vdbe *v = pParse->pVdbe;        /* Vdbe to generate code within */
1146 
1147   assert( iIdxCur>0 );
1148   assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1149 
1150   pWInfo->bDeferredSeek = 1;
1151   sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1152   if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1153    && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1154   ){
1155     int i;
1156     Table *pTab = pIdx->pTable;
1157     u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1));
1158     if( ai ){
1159       ai[0] = pTab->nCol;
1160       for(i=0; i<pIdx->nColumn-1; i++){
1161         int x1, x2;
1162         assert( pIdx->aiColumn[i]<pTab->nCol );
1163         x1 = pIdx->aiColumn[i];
1164         x2 = sqlite3TableColumnToStorage(pTab, x1);
1165         testcase( x1!=x2 );
1166         if( x1>=0 ) ai[x2+1] = i+1;
1167       }
1168       sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1169     }
1170   }
1171 }
1172 
1173 /*
1174 ** If the expression passed as the second argument is a vector, generate
1175 ** code to write the first nReg elements of the vector into an array
1176 ** of registers starting with iReg.
1177 **
1178 ** If the expression is not a vector, then nReg must be passed 1. In
1179 ** this case, generate code to evaluate the expression and leave the
1180 ** result in register iReg.
1181 */
1182 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1183   assert( nReg>0 );
1184   if( p && sqlite3ExprIsVector(p) ){
1185 #ifndef SQLITE_OMIT_SUBQUERY
1186     if( ExprUseXSelect(p) ){
1187       Vdbe *v = pParse->pVdbe;
1188       int iSelect;
1189       assert( p->op==TK_SELECT );
1190       iSelect = sqlite3CodeSubselect(pParse, p);
1191       sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1192     }else
1193 #endif
1194     {
1195       int i;
1196       const ExprList *pList;
1197       assert( ExprUseXList(p) );
1198       pList = p->x.pList;
1199       assert( nReg<=pList->nExpr );
1200       for(i=0; i<nReg; i++){
1201         sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1202       }
1203     }
1204   }else{
1205     assert( nReg==1 || pParse->nErr );
1206     sqlite3ExprCode(pParse, p, iReg);
1207   }
1208 }
1209 
1210 /* An instance of the IdxExprTrans object carries information about a
1211 ** mapping from an expression on table columns into a column in an index
1212 ** down through the Walker.
1213 */
1214 typedef struct IdxExprTrans {
1215   Expr *pIdxExpr;    /* The index expression */
1216   int iTabCur;       /* The cursor of the corresponding table */
1217   int iIdxCur;       /* The cursor for the index */
1218   int iIdxCol;       /* The column for the index */
1219   int iTabCol;       /* The column for the table */
1220   WhereInfo *pWInfo; /* Complete WHERE clause information */
1221   sqlite3 *db;       /* Database connection (for malloc()) */
1222 } IdxExprTrans;
1223 
1224 /*
1225 ** Preserve pExpr on the WhereETrans list of the WhereInfo.
1226 */
1227 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){
1228   WhereExprMod *pNew;
1229   pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew));
1230   if( pNew==0 ) return;
1231   pNew->pNext = pTrans->pWInfo->pExprMods;
1232   pTrans->pWInfo->pExprMods = pNew;
1233   pNew->pExpr = pExpr;
1234   memcpy(&pNew->orig, pExpr, sizeof(*pExpr));
1235 }
1236 
1237 /* The walker node callback used to transform matching expressions into
1238 ** a reference to an index column for an index on an expression.
1239 **
1240 ** If pExpr matches, then transform it into a reference to the index column
1241 ** that contains the value of pExpr.
1242 */
1243 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1244   IdxExprTrans *pX = p->u.pIdxTrans;
1245   if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1246     preserveExpr(pX, pExpr);
1247     pExpr->affExpr = sqlite3ExprAffinity(pExpr);
1248     pExpr->op = TK_COLUMN;
1249     pExpr->iTable = pX->iIdxCur;
1250     pExpr->iColumn = pX->iIdxCol;
1251     testcase( ExprHasProperty(pExpr, EP_Skip) );
1252     testcase( ExprHasProperty(pExpr, EP_Unlikely) );
1253     ExprClearProperty(pExpr, EP_Skip|EP_Unlikely|EP_WinFunc|EP_Subrtn);
1254     pExpr->y.pTab = 0;
1255     return WRC_Prune;
1256   }else{
1257     return WRC_Continue;
1258   }
1259 }
1260 
1261 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1262 /* A walker node callback that translates a column reference to a table
1263 ** into a corresponding column reference of an index.
1264 */
1265 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){
1266   if( pExpr->op==TK_COLUMN ){
1267     IdxExprTrans *pX = p->u.pIdxTrans;
1268     if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){
1269       assert( ExprUseYTab(pExpr) && pExpr->y.pTab!=0 );
1270       preserveExpr(pX, pExpr);
1271       pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn);
1272       pExpr->iTable = pX->iIdxCur;
1273       pExpr->iColumn = pX->iIdxCol;
1274       pExpr->y.pTab = 0;
1275     }
1276   }
1277   return WRC_Continue;
1278 }
1279 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1280 
1281 /*
1282 ** For an indexes on expression X, locate every instance of expression X
1283 ** in pExpr and change that subexpression into a reference to the appropriate
1284 ** column of the index.
1285 **
1286 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in
1287 ** the table into references to the corresponding (stored) column of the
1288 ** index.
1289 */
1290 static void whereIndexExprTrans(
1291   Index *pIdx,      /* The Index */
1292   int iTabCur,      /* Cursor of the table that is being indexed */
1293   int iIdxCur,      /* Cursor of the index itself */
1294   WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1295 ){
1296   int iIdxCol;               /* Column number of the index */
1297   ExprList *aColExpr;        /* Expressions that are indexed */
1298   Table *pTab;
1299   Walker w;
1300   IdxExprTrans x;
1301   aColExpr = pIdx->aColExpr;
1302   if( aColExpr==0 && !pIdx->bHasVCol ){
1303     /* The index does not reference any expressions or virtual columns
1304     ** so no translations are needed. */
1305     return;
1306   }
1307   pTab = pIdx->pTable;
1308   memset(&w, 0, sizeof(w));
1309   w.u.pIdxTrans = &x;
1310   x.iTabCur = iTabCur;
1311   x.iIdxCur = iIdxCur;
1312   x.pWInfo = pWInfo;
1313   x.db = pWInfo->pParse->db;
1314   for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){
1315     i16 iRef = pIdx->aiColumn[iIdxCol];
1316     if( iRef==XN_EXPR ){
1317       assert( aColExpr!=0 && aColExpr->a[iIdxCol].pExpr!=0 );
1318       x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1319       if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue;
1320       w.xExprCallback = whereIndexExprTransNode;
1321 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1322     }else if( iRef>=0
1323        && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0
1324        && ((pTab->aCol[iRef].colFlags & COLFLAG_HASCOLL)==0
1325            || sqlite3StrICmp(sqlite3ColumnColl(&pTab->aCol[iRef]),
1326                                                sqlite3StrBINARY)==0)
1327     ){
1328       /* Check to see if there are direct references to generated columns
1329       ** that are contained in the index.  Pulling the generated column
1330       ** out of the index is an optimization only - the main table is always
1331       ** available if the index cannot be used.  To avoid unnecessary
1332       ** complication, omit this optimization if the collating sequence for
1333       ** the column is non-standard */
1334       x.iTabCol = iRef;
1335       w.xExprCallback = whereIndexExprTransColumn;
1336 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1337     }else{
1338       continue;
1339     }
1340     x.iIdxCol = iIdxCol;
1341     sqlite3WalkExpr(&w, pWInfo->pWhere);
1342     sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1343     sqlite3WalkExprList(&w, pWInfo->pResultSet);
1344   }
1345 }
1346 
1347 /*
1348 ** The pTruth expression is always true because it is the WHERE clause
1349 ** a partial index that is driving a query loop.  Look through all of the
1350 ** WHERE clause terms on the query, and if any of those terms must be
1351 ** true because pTruth is true, then mark those WHERE clause terms as
1352 ** coded.
1353 */
1354 static void whereApplyPartialIndexConstraints(
1355   Expr *pTruth,
1356   int iTabCur,
1357   WhereClause *pWC
1358 ){
1359   int i;
1360   WhereTerm *pTerm;
1361   while( pTruth->op==TK_AND ){
1362     whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC);
1363     pTruth = pTruth->pRight;
1364   }
1365   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1366     Expr *pExpr;
1367     if( pTerm->wtFlags & TERM_CODED ) continue;
1368     pExpr = pTerm->pExpr;
1369     if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){
1370       pTerm->wtFlags |= TERM_CODED;
1371     }
1372   }
1373 }
1374 
1375 /*
1376 ** This routine is called right after An OP_Filter has been generated and
1377 ** before the corresponding index search has been performed.  This routine
1378 ** checks to see if there are additional Bloom filters in inner loops that
1379 ** can be checked prior to doing the index lookup.  If there are available
1380 ** inner-loop Bloom filters, then evaluate those filters now, before the
1381 ** index lookup.  The idea is that a Bloom filter check is way faster than
1382 ** an index lookup, and the Bloom filter might return false, meaning that
1383 ** the index lookup can be skipped.
1384 **
1385 ** We know that an inner loop uses a Bloom filter because it has the
1386 ** WhereLevel.regFilter set.  If an inner-loop Bloom filter is checked,
1387 ** then clear the WhereLevel.regFilter value to prevent the Bloom filter
1388 ** from being checked a second time when the inner loop is evaluated.
1389 */
1390 static SQLITE_NOINLINE void filterPullDown(
1391   Parse *pParse,       /* Parsing context */
1392   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1393   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1394   int addrNxt,         /* Jump here to bypass inner loops */
1395   Bitmask notReady     /* Loops that are not ready */
1396 ){
1397   while( ++iLevel < pWInfo->nLevel ){
1398     WhereLevel *pLevel = &pWInfo->a[iLevel];
1399     WhereLoop *pLoop = pLevel->pWLoop;
1400     if( pLevel->regFilter==0 ) continue;
1401     if( pLevel->pWLoop->nSkip ) continue;
1402     /*         ,--- Because sqlite3ConstructBloomFilter() has will not have set
1403     **  vvvvv--'    pLevel->regFilter if this were true. */
1404     if( NEVER(pLoop->prereq & notReady) ) continue;
1405     if( pLoop->wsFlags & WHERE_IPK ){
1406       WhereTerm *pTerm = pLoop->aLTerm[0];
1407       int regRowid;
1408       assert( pTerm!=0 );
1409       assert( pTerm->pExpr!=0 );
1410       testcase( pTerm->wtFlags & TERM_VIRTUAL );
1411       regRowid = sqlite3GetTempReg(pParse);
1412       regRowid = codeEqualityTerm(pParse, pTerm, pLevel, 0, 0, regRowid);
1413       sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter,
1414                            addrNxt, regRowid, 1);
1415       VdbeCoverage(pParse->pVdbe);
1416     }else{
1417       u16 nEq = pLoop->u.btree.nEq;
1418       int r1;
1419       char *zStartAff;
1420 
1421       assert( pLoop->wsFlags & WHERE_INDEXED );
1422       assert( (pLoop->wsFlags & WHERE_COLUMN_IN)==0 );
1423       r1 = codeAllEqualityTerms(pParse,pLevel,0,0,&zStartAff);
1424       codeApplyAffinity(pParse, r1, nEq, zStartAff);
1425       sqlite3DbFree(pParse->db, zStartAff);
1426       sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter,
1427                            addrNxt, r1, nEq);
1428       VdbeCoverage(pParse->pVdbe);
1429     }
1430     pLevel->regFilter = 0;
1431   }
1432 }
1433 
1434 /*
1435 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1436 ** implementation described by pWInfo.
1437 */
1438 Bitmask sqlite3WhereCodeOneLoopStart(
1439   Parse *pParse,       /* Parsing context */
1440   Vdbe *v,             /* Prepared statement under construction */
1441   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1442   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1443   WhereLevel *pLevel,  /* The current level pointer */
1444   Bitmask notReady     /* Which tables are currently available */
1445 ){
1446   int j, k;            /* Loop counters */
1447   int iCur;            /* The VDBE cursor for the table */
1448   int addrNxt;         /* Where to jump to continue with the next IN case */
1449   int bRev;            /* True if we need to scan in reverse order */
1450   WhereLoop *pLoop;    /* The WhereLoop object being coded */
1451   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
1452   WhereTerm *pTerm;               /* A WHERE clause term */
1453   sqlite3 *db;                    /* Database connection */
1454   SrcItem *pTabItem;              /* FROM clause term being coded */
1455   int addrBrk;                    /* Jump here to break out of the loop */
1456   int addrHalt;                   /* addrBrk for the outermost loop */
1457   int addrCont;                   /* Jump here to continue with next cycle */
1458   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
1459   int iReleaseReg = 0;      /* Temp register to free before returning */
1460   Index *pIdx = 0;          /* Index used by loop (if any) */
1461   int iLoop;                /* Iteration of constraint generator loop */
1462 
1463   pWC = &pWInfo->sWC;
1464   db = pParse->db;
1465   pLoop = pLevel->pWLoop;
1466   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1467   iCur = pTabItem->iCursor;
1468   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1469   bRev = (pWInfo->revMask>>iLevel)&1;
1470   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1471 #if WHERETRACE_ENABLED /* 0x20800 */
1472   if( sqlite3WhereTrace & 0x800 ){
1473     sqlite3DebugPrintf("Coding level %d of %d:  notReady=%llx  iFrom=%d\n",
1474        iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom);
1475     sqlite3WhereLoopPrint(pLoop, pWC);
1476   }
1477   if( sqlite3WhereTrace & 0x20000 ){
1478     if( iLevel==0 ){
1479       sqlite3DebugPrintf("WHERE clause being coded:\n");
1480       sqlite3TreeViewExpr(0, pWInfo->pWhere, 0);
1481     }
1482     sqlite3DebugPrintf("All WHERE-clause terms before coding:\n");
1483     sqlite3WhereClausePrint(pWC);
1484   }
1485 #endif
1486 
1487   /* Create labels for the "break" and "continue" instructions
1488   ** for the current loop.  Jump to addrBrk to break out of a loop.
1489   ** Jump to cont to go immediately to the next iteration of the
1490   ** loop.
1491   **
1492   ** When there is an IN operator, we also have a "addrNxt" label that
1493   ** means to continue with the next IN value combination.  When
1494   ** there are no IN operators in the constraints, the "addrNxt" label
1495   ** is the same as "addrBrk".
1496   */
1497   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
1498   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse);
1499 
1500   /* If this is the right table of a LEFT OUTER JOIN, allocate and
1501   ** initialize a memory cell that records if this table matches any
1502   ** row of the left table of the join.
1503   */
1504   assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1505        || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
1506   );
1507   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1508     pLevel->iLeftJoin = ++pParse->nMem;
1509     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1510     VdbeComment((v, "init LEFT JOIN no-match flag"));
1511   }
1512 
1513   /* Compute a safe address to jump to if we discover that the table for
1514   ** this loop is empty and can never contribute content. */
1515   for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){}
1516   addrHalt = pWInfo->a[j].addrBrk;
1517 
1518   /* Special case of a FROM clause subquery implemented as a co-routine */
1519   if( pTabItem->fg.viaCoroutine ){
1520     int regYield = pTabItem->regReturn;
1521     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1522     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1523     VdbeCoverage(v);
1524     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
1525     pLevel->op = OP_Goto;
1526   }else
1527 
1528 #ifndef SQLITE_OMIT_VIRTUALTABLE
1529   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1530     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
1531     **          to access the data.
1532     */
1533     int iReg;   /* P3 Value for OP_VFilter */
1534     int addrNotFound;
1535     int nConstraint = pLoop->nLTerm;
1536 
1537     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1538     addrNotFound = pLevel->addrBrk;
1539     for(j=0; j<nConstraint; j++){
1540       int iTarget = iReg+j+2;
1541       pTerm = pLoop->aLTerm[j];
1542       if( NEVER(pTerm==0) ) continue;
1543       if( pTerm->eOperator & WO_IN ){
1544         if( SMASKBIT32(j) & pLoop->u.vtab.mHandleIn ){
1545           int iTab = pParse->nTab++;
1546           int iCache = ++pParse->nMem;
1547           sqlite3CodeRhsOfIN(pParse, pTerm->pExpr, iTab);
1548           sqlite3VdbeAddOp3(v, OP_VInitIn, iTab, iTarget, iCache);
1549         }else{
1550           codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1551           addrNotFound = pLevel->addrNxt;
1552         }
1553       }else{
1554         Expr *pRight = pTerm->pExpr->pRight;
1555         codeExprOrVector(pParse, pRight, iTarget, 1);
1556         if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET
1557          && pLoop->u.vtab.bOmitOffset
1558         ){
1559           assert( pTerm->eOperator==WO_AUX );
1560           assert( pWInfo->pLimit!=0 );
1561           assert( pWInfo->pLimit->iOffset>0 );
1562           sqlite3VdbeAddOp2(v, OP_Integer, 0, pWInfo->pLimit->iOffset);
1563           VdbeComment((v,"Zero OFFSET counter"));
1564         }
1565       }
1566     }
1567     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1568     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1569     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1570                       pLoop->u.vtab.idxStr,
1571                       pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1572     VdbeCoverage(v);
1573     pLoop->u.vtab.needFree = 0;
1574     /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed
1575     ** the u.vtab.idxStr.  NULL it out to prevent a use-after-free */
1576     if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0;
1577     pLevel->p1 = iCur;
1578     pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1579     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1580     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
1581 
1582     for(j=0; j<nConstraint; j++){
1583       pTerm = pLoop->aLTerm[j];
1584       if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1585         disableTerm(pLevel, pTerm);
1586         continue;
1587       }
1588       if( (pTerm->eOperator & WO_IN)!=0
1589        && (SMASKBIT32(j) & pLoop->u.vtab.mHandleIn)==0
1590        && !db->mallocFailed
1591       ){
1592         Expr *pCompare;  /* The comparison operator */
1593         Expr *pRight;    /* RHS of the comparison */
1594         VdbeOp *pOp;     /* Opcode to access the value of the IN constraint */
1595         int iIn;         /* IN loop corresponding to the j-th constraint */
1596 
1597         /* Reload the constraint value into reg[iReg+j+2].  The same value
1598         ** was loaded into the same register prior to the OP_VFilter, but
1599         ** the xFilter implementation might have changed the datatype or
1600         ** encoding of the value in the register, so it *must* be reloaded.
1601         */
1602         for(iIn=0; ALWAYS(iIn<pLevel->u.in.nIn); iIn++){
1603           pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop);
1604           if( (pOp->opcode==OP_Column && pOp->p3==iReg+j+2)
1605            || (pOp->opcode==OP_Rowid && pOp->p2==iReg+j+2)
1606           ){
1607             testcase( pOp->opcode==OP_Rowid );
1608             sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1609             break;
1610           }
1611         }
1612 
1613         /* Generate code that will continue to the next row if
1614         ** the IN constraint is not satisfied
1615         */
1616         pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1617         if( !db->mallocFailed ){
1618           int iFld = pTerm->u.x.iField;
1619           Expr *pLeft = pTerm->pExpr->pLeft;
1620           assert( pLeft!=0 );
1621           if( iFld>0 ){
1622             assert( pLeft->op==TK_VECTOR );
1623             assert( ExprUseXList(pLeft) );
1624             assert( iFld<=pLeft->x.pList->nExpr );
1625             pCompare->pLeft = pLeft->x.pList->a[iFld-1].pExpr;
1626           }else{
1627             pCompare->pLeft = pLeft;
1628           }
1629           pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1630           if( pRight ){
1631             pRight->iTable = iReg+j+2;
1632             sqlite3ExprIfFalse(
1633                 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL
1634             );
1635           }
1636           pCompare->pLeft = 0;
1637         }
1638         sqlite3ExprDelete(db, pCompare);
1639       }
1640     }
1641 
1642     /* These registers need to be preserved in case there is an IN operator
1643     ** loop.  So we could deallocate the registers here (and potentially
1644     ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0.  But it seems
1645     ** simpler and safer to simply not reuse the registers.
1646     **
1647     **    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1648     */
1649   }else
1650 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1651 
1652   if( (pLoop->wsFlags & WHERE_IPK)!=0
1653    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1654   ){
1655     /* Case 2:  We can directly reference a single row using an
1656     **          equality comparison against the ROWID field.  Or
1657     **          we reference multiple rows using a "rowid IN (...)"
1658     **          construct.
1659     */
1660     assert( pLoop->u.btree.nEq==1 );
1661     pTerm = pLoop->aLTerm[0];
1662     assert( pTerm!=0 );
1663     assert( pTerm->pExpr!=0 );
1664     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1665     iReleaseReg = ++pParse->nMem;
1666     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1667     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1668     addrNxt = pLevel->addrNxt;
1669     if( pLevel->regFilter ){
1670       sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt,
1671                            iRowidReg, 1);
1672       VdbeCoverage(v);
1673       filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady);
1674     }
1675     sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1676     VdbeCoverage(v);
1677     pLevel->op = OP_Noop;
1678   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1679          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1680   ){
1681     /* Case 3:  We have an inequality comparison against the ROWID field.
1682     */
1683     int testOp = OP_Noop;
1684     int start;
1685     int memEndValue = 0;
1686     WhereTerm *pStart, *pEnd;
1687 
1688     j = 0;
1689     pStart = pEnd = 0;
1690     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1691     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1692     assert( pStart!=0 || pEnd!=0 );
1693     if( bRev ){
1694       pTerm = pStart;
1695       pStart = pEnd;
1696       pEnd = pTerm;
1697     }
1698     codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1699     if( pStart ){
1700       Expr *pX;             /* The expression that defines the start bound */
1701       int r1, rTemp;        /* Registers for holding the start boundary */
1702       int op;               /* Cursor seek operation */
1703 
1704       /* The following constant maps TK_xx codes into corresponding
1705       ** seek opcodes.  It depends on a particular ordering of TK_xx
1706       */
1707       const u8 aMoveOp[] = {
1708            /* TK_GT */  OP_SeekGT,
1709            /* TK_LE */  OP_SeekLE,
1710            /* TK_LT */  OP_SeekLT,
1711            /* TK_GE */  OP_SeekGE
1712       };
1713       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
1714       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
1715       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
1716 
1717       assert( (pStart->wtFlags & TERM_VNULL)==0 );
1718       testcase( pStart->wtFlags & TERM_VIRTUAL );
1719       pX = pStart->pExpr;
1720       assert( pX!=0 );
1721       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1722       if( sqlite3ExprIsVector(pX->pRight) ){
1723         r1 = rTemp = sqlite3GetTempReg(pParse);
1724         codeExprOrVector(pParse, pX->pRight, r1, 1);
1725         testcase( pX->op==TK_GT );
1726         testcase( pX->op==TK_GE );
1727         testcase( pX->op==TK_LT );
1728         testcase( pX->op==TK_LE );
1729         op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
1730         assert( pX->op!=TK_GT || op==OP_SeekGE );
1731         assert( pX->op!=TK_GE || op==OP_SeekGE );
1732         assert( pX->op!=TK_LT || op==OP_SeekLE );
1733         assert( pX->op!=TK_LE || op==OP_SeekLE );
1734       }else{
1735         r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1736         disableTerm(pLevel, pStart);
1737         op = aMoveOp[(pX->op - TK_GT)];
1738       }
1739       sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1740       VdbeComment((v, "pk"));
1741       VdbeCoverageIf(v, pX->op==TK_GT);
1742       VdbeCoverageIf(v, pX->op==TK_LE);
1743       VdbeCoverageIf(v, pX->op==TK_LT);
1744       VdbeCoverageIf(v, pX->op==TK_GE);
1745       sqlite3ReleaseTempReg(pParse, rTemp);
1746     }else{
1747       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1748       VdbeCoverageIf(v, bRev==0);
1749       VdbeCoverageIf(v, bRev!=0);
1750     }
1751     if( pEnd ){
1752       Expr *pX;
1753       pX = pEnd->pExpr;
1754       assert( pX!=0 );
1755       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1756       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1757       testcase( pEnd->wtFlags & TERM_VIRTUAL );
1758       memEndValue = ++pParse->nMem;
1759       codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1760       if( 0==sqlite3ExprIsVector(pX->pRight)
1761        && (pX->op==TK_LT || pX->op==TK_GT)
1762       ){
1763         testOp = bRev ? OP_Le : OP_Ge;
1764       }else{
1765         testOp = bRev ? OP_Lt : OP_Gt;
1766       }
1767       if( 0==sqlite3ExprIsVector(pX->pRight) ){
1768         disableTerm(pLevel, pEnd);
1769       }
1770     }
1771     start = sqlite3VdbeCurrentAddr(v);
1772     pLevel->op = bRev ? OP_Prev : OP_Next;
1773     pLevel->p1 = iCur;
1774     pLevel->p2 = start;
1775     assert( pLevel->p5==0 );
1776     if( testOp!=OP_Noop ){
1777       iRowidReg = ++pParse->nMem;
1778       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1779       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1780       VdbeCoverageIf(v, testOp==OP_Le);
1781       VdbeCoverageIf(v, testOp==OP_Lt);
1782       VdbeCoverageIf(v, testOp==OP_Ge);
1783       VdbeCoverageIf(v, testOp==OP_Gt);
1784       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1785     }
1786   }else if( pLoop->wsFlags & WHERE_INDEXED ){
1787     /* Case 4: A scan using an index.
1788     **
1789     **         The WHERE clause may contain zero or more equality
1790     **         terms ("==" or "IN" operators) that refer to the N
1791     **         left-most columns of the index. It may also contain
1792     **         inequality constraints (>, <, >= or <=) on the indexed
1793     **         column that immediately follows the N equalities. Only
1794     **         the right-most column can be an inequality - the rest must
1795     **         use the "==" and "IN" operators. For example, if the
1796     **         index is on (x,y,z), then the following clauses are all
1797     **         optimized:
1798     **
1799     **            x=5
1800     **            x=5 AND y=10
1801     **            x=5 AND y<10
1802     **            x=5 AND y>5 AND y<10
1803     **            x=5 AND y=5 AND z<=10
1804     **
1805     **         The z<10 term of the following cannot be used, only
1806     **         the x=5 term:
1807     **
1808     **            x=5 AND z<10
1809     **
1810     **         N may be zero if there are inequality constraints.
1811     **         If there are no inequality constraints, then N is at
1812     **         least one.
1813     **
1814     **         This case is also used when there are no WHERE clause
1815     **         constraints but an index is selected anyway, in order
1816     **         to force the output order to conform to an ORDER BY.
1817     */
1818     static const u8 aStartOp[] = {
1819       0,
1820       0,
1821       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
1822       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
1823       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
1824       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
1825       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
1826       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
1827     };
1828     static const u8 aEndOp[] = {
1829       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
1830       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
1831       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
1832       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
1833     };
1834     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
1835     u16 nBtm = pLoop->u.btree.nBtm;   /* Length of BTM vector */
1836     u16 nTop = pLoop->u.btree.nTop;   /* Length of TOP vector */
1837     int regBase;                 /* Base register holding constraint values */
1838     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
1839     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
1840     int startEq;                 /* True if range start uses ==, >= or <= */
1841     int endEq;                   /* True if range end uses ==, >= or <= */
1842     int start_constraints;       /* Start of range is constrained */
1843     int nConstraint;             /* Number of constraint terms */
1844     int iIdxCur;                 /* The VDBE cursor for the index */
1845     int nExtraReg = 0;           /* Number of extra registers needed */
1846     int op;                      /* Instruction opcode */
1847     char *zStartAff;             /* Affinity for start of range constraint */
1848     char *zEndAff = 0;           /* Affinity for end of range constraint */
1849     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
1850     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
1851     int omitTable;               /* True if we use the index only */
1852     int regBignull = 0;          /* big-null flag register */
1853     int addrSeekScan = 0;        /* Opcode of the OP_SeekScan, if any */
1854 
1855     pIdx = pLoop->u.btree.pIndex;
1856     iIdxCur = pLevel->iIdxCur;
1857     assert( nEq>=pLoop->nSkip );
1858 
1859     /* Find any inequality constraint terms for the start and end
1860     ** of the range.
1861     */
1862     j = nEq;
1863     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1864       pRangeStart = pLoop->aLTerm[j++];
1865       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1866       /* Like optimization range constraints always occur in pairs */
1867       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1868               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1869     }
1870     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1871       pRangeEnd = pLoop->aLTerm[j++];
1872       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1873 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1874       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1875         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
1876         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
1877         pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1878         sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1879         VdbeComment((v, "LIKE loop counter"));
1880         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1881         /* iLikeRepCntr actually stores 2x the counter register number.  The
1882         ** bottom bit indicates whether the search order is ASC or DESC. */
1883         testcase( bRev );
1884         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1885         assert( (bRev & ~1)==0 );
1886         pLevel->iLikeRepCntr <<=1;
1887         pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1888       }
1889 #endif
1890       if( pRangeStart==0 ){
1891         j = pIdx->aiColumn[nEq];
1892         if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1893           bSeekPastNull = 1;
1894         }
1895       }
1896     }
1897     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1898 
1899     /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
1900     ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
1901     ** FIRST). In both cases separate ordered scans are made of those
1902     ** index entries for which the column is null and for those for which
1903     ** it is not. For an ASC sort, the non-NULL entries are scanned first.
1904     ** For DESC, NULL entries are scanned first.
1905     */
1906     if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0
1907      && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0
1908     ){
1909       assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 );
1910       assert( pRangeEnd==0 && pRangeStart==0 );
1911       testcase( pLoop->nSkip>0 );
1912       nExtraReg = 1;
1913       bSeekPastNull = 1;
1914       pLevel->regBignull = regBignull = ++pParse->nMem;
1915       if( pLevel->iLeftJoin ){
1916         sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull);
1917       }
1918       pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse);
1919     }
1920 
1921     /* If we are doing a reverse order scan on an ascending index, or
1922     ** a forward order scan on a descending index, interchange the
1923     ** start and end terms (pRangeStart and pRangeEnd).
1924     */
1925     if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){
1926       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1927       SWAP(u8, bSeekPastNull, bStopAtNull);
1928       SWAP(u8, nBtm, nTop);
1929     }
1930 
1931     if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){
1932       /* In case OP_SeekScan is used, ensure that the index cursor does not
1933       ** point to a valid row for the first iteration of this loop. */
1934       sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
1935     }
1936 
1937     /* Generate code to evaluate all constraint terms using == or IN
1938     ** and store the values of those terms in an array of registers
1939     ** starting at regBase.
1940     */
1941     codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1942     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1943     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1944     if( zStartAff && nTop ){
1945       zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1946     }
1947     addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt);
1948 
1949     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1950     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1951     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1952     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1953     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1954     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1955     start_constraints = pRangeStart || nEq>0;
1956 
1957     /* Seek the index cursor to the start of the range. */
1958     nConstraint = nEq;
1959     if( pRangeStart ){
1960       Expr *pRight = pRangeStart->pExpr->pRight;
1961       codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1962       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1963       if( (pRangeStart->wtFlags & TERM_VNULL)==0
1964        && sqlite3ExprCanBeNull(pRight)
1965       ){
1966         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1967         VdbeCoverage(v);
1968       }
1969       if( zStartAff ){
1970         updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1971       }
1972       nConstraint += nBtm;
1973       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1974       if( sqlite3ExprIsVector(pRight)==0 ){
1975         disableTerm(pLevel, pRangeStart);
1976       }else{
1977         startEq = 1;
1978       }
1979       bSeekPastNull = 0;
1980     }else if( bSeekPastNull ){
1981       startEq = 0;
1982       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1983       start_constraints = 1;
1984       nConstraint++;
1985     }else if( regBignull ){
1986       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1987       start_constraints = 1;
1988       nConstraint++;
1989     }
1990     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1991     if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1992       /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1993       ** above has already left the cursor sitting on the correct row,
1994       ** so no further seeking is needed */
1995     }else{
1996       if( regBignull ){
1997         sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull);
1998         VdbeComment((v, "NULL-scan pass ctr"));
1999       }
2000       if( pLevel->regFilter ){
2001         sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt,
2002                              regBase, nEq);
2003         VdbeCoverage(v);
2004         filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady);
2005       }
2006 
2007       op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
2008       assert( op!=0 );
2009       if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){
2010         assert( regBignull==0 );
2011         /* TUNING:  The OP_SeekScan opcode seeks to reduce the number
2012         ** of expensive seek operations by replacing a single seek with
2013         ** 1 or more step operations.  The question is, how many steps
2014         ** should we try before giving up and going with a seek.  The cost
2015         ** of a seek is proportional to the logarithm of the of the number
2016         ** of entries in the tree, so basing the number of steps to try
2017         ** on the estimated number of rows in the btree seems like a good
2018         ** guess. */
2019         addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan,
2020                                          (pIdx->aiRowLogEst[0]+9)/10);
2021         VdbeCoverage(v);
2022       }
2023       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
2024       VdbeCoverage(v);
2025       VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
2026       VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
2027       VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
2028       VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
2029       VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
2030       VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
2031 
2032       assert( bSeekPastNull==0 || bStopAtNull==0 );
2033       if( regBignull ){
2034         assert( bSeekPastNull==1 || bStopAtNull==1 );
2035         assert( bSeekPastNull==!bStopAtNull );
2036         assert( bStopAtNull==startEq );
2037         sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2);
2038         op = aStartOp[(nConstraint>1)*4 + 2 + bRev];
2039         sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
2040                              nConstraint-startEq);
2041         VdbeCoverage(v);
2042         VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
2043         VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
2044         VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
2045         VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
2046         assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE);
2047       }
2048     }
2049 
2050     /* Load the value for the inequality constraint at the end of the
2051     ** range (if any).
2052     */
2053     nConstraint = nEq;
2054     assert( pLevel->p2==0 );
2055     if( pRangeEnd ){
2056       Expr *pRight = pRangeEnd->pExpr->pRight;
2057       if( addrSeekScan ){
2058         /* For a seek-scan that has a range on the lowest term of the index,
2059         ** we have to make the top of the loop be code that sets the end
2060         ** condition of the range.  Otherwise, the OP_SeekScan might jump
2061         ** over that initialization, leaving the range-end value set to the
2062         ** range-start value, resulting in a wrong answer.
2063         ** See ticket 5981a8c041a3c2f3 (2021-11-02).
2064         */
2065         pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2066       }
2067       codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
2068       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
2069       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
2070        && sqlite3ExprCanBeNull(pRight)
2071       ){
2072         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
2073         VdbeCoverage(v);
2074       }
2075       if( zEndAff ){
2076         updateRangeAffinityStr(pRight, nTop, zEndAff);
2077         codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
2078       }else{
2079         assert( pParse->db->mallocFailed );
2080       }
2081       nConstraint += nTop;
2082       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
2083 
2084       if( sqlite3ExprIsVector(pRight)==0 ){
2085         disableTerm(pLevel, pRangeEnd);
2086       }else{
2087         endEq = 1;
2088       }
2089     }else if( bStopAtNull ){
2090       if( regBignull==0 ){
2091         sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
2092         endEq = 0;
2093       }
2094       nConstraint++;
2095     }
2096     sqlite3DbFree(db, zStartAff);
2097     sqlite3DbFree(db, zEndAff);
2098 
2099     /* Top of the loop body */
2100     if( pLevel->p2==0 ) pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2101 
2102     /* Check if the index cursor is past the end of the range. */
2103     if( nConstraint ){
2104       if( regBignull ){
2105         /* Except, skip the end-of-range check while doing the NULL-scan */
2106         sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3);
2107         VdbeComment((v, "If NULL-scan 2nd pass"));
2108         VdbeCoverage(v);
2109       }
2110       op = aEndOp[bRev*2 + endEq];
2111       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
2112       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
2113       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
2114       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
2115       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
2116       if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan);
2117     }
2118     if( regBignull ){
2119       /* During a NULL-scan, check to see if we have reached the end of
2120       ** the NULLs */
2121       assert( bSeekPastNull==!bStopAtNull );
2122       assert( bSeekPastNull+bStopAtNull==1 );
2123       assert( nConstraint+bSeekPastNull>0 );
2124       sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2);
2125       VdbeComment((v, "If NULL-scan 1st pass"));
2126       VdbeCoverage(v);
2127       op = aEndOp[bRev*2 + bSeekPastNull];
2128       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
2129                            nConstraint+bSeekPastNull);
2130       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
2131       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
2132       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
2133       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
2134     }
2135 
2136     if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){
2137       sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq);
2138     }
2139 
2140     /* Seek the table cursor, if required */
2141     omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
2142            && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
2143     if( omitTable ){
2144       /* pIdx is a covering index.  No need to access the main table. */
2145     }else if( HasRowid(pIdx->pTable) ){
2146       codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
2147     }else if( iCur!=iIdxCur ){
2148       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
2149       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
2150       for(j=0; j<pPk->nKeyCol; j++){
2151         k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
2152         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
2153       }
2154       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
2155                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
2156     }
2157 
2158     if( pLevel->iLeftJoin==0 ){
2159       /* If pIdx is an index on one or more expressions, then look through
2160       ** all the expressions in pWInfo and try to transform matching expressions
2161       ** into reference to index columns.  Also attempt to translate references
2162       ** to virtual columns in the table into references to (stored) columns
2163       ** of the index.
2164       **
2165       ** Do not do this for the RHS of a LEFT JOIN. This is because the
2166       ** expression may be evaluated after OP_NullRow has been executed on
2167       ** the cursor. In this case it is important to do the full evaluation,
2168       ** as the result of the expression may not be NULL, even if all table
2169       ** column values are.  https://www.sqlite.org/src/info/7fa8049685b50b5a
2170       **
2171       ** Also, do not do this when processing one index an a multi-index
2172       ** OR clause, since the transformation will become invalid once we
2173       ** move forward to the next index.
2174       ** https://sqlite.org/src/info/4e8e4857d32d401f
2175       */
2176       if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
2177         whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
2178       }
2179 
2180       /* If a partial index is driving the loop, try to eliminate WHERE clause
2181       ** terms from the query that must be true due to the WHERE clause of
2182       ** the partial index.
2183       **
2184       ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
2185       ** for a LEFT JOIN.
2186       */
2187       if( pIdx->pPartIdxWhere ){
2188         whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC);
2189       }
2190     }else{
2191       testcase( pIdx->pPartIdxWhere );
2192       /* The following assert() is not a requirement, merely an observation:
2193       ** The OR-optimization doesn't work for the right hand table of
2194       ** a LEFT JOIN: */
2195       assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 );
2196     }
2197 
2198     /* Record the instruction used to terminate the loop. */
2199     if( pLoop->wsFlags & WHERE_ONEROW ){
2200       pLevel->op = OP_Noop;
2201     }else if( bRev ){
2202       pLevel->op = OP_Prev;
2203     }else{
2204       pLevel->op = OP_Next;
2205     }
2206     pLevel->p1 = iIdxCur;
2207     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
2208     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
2209       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2210     }else{
2211       assert( pLevel->p5==0 );
2212     }
2213     if( omitTable ) pIdx = 0;
2214   }else
2215 
2216 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
2217   if( pLoop->wsFlags & WHERE_MULTI_OR ){
2218     /* Case 5:  Two or more separately indexed terms connected by OR
2219     **
2220     ** Example:
2221     **
2222     **   CREATE TABLE t1(a,b,c,d);
2223     **   CREATE INDEX i1 ON t1(a);
2224     **   CREATE INDEX i2 ON t1(b);
2225     **   CREATE INDEX i3 ON t1(c);
2226     **
2227     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
2228     **
2229     ** In the example, there are three indexed terms connected by OR.
2230     ** The top of the loop looks like this:
2231     **
2232     **          Null       1                # Zero the rowset in reg 1
2233     **
2234     ** Then, for each indexed term, the following. The arguments to
2235     ** RowSetTest are such that the rowid of the current row is inserted
2236     ** into the RowSet. If it is already present, control skips the
2237     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
2238     **
2239     **        sqlite3WhereBegin(<term>)
2240     **          RowSetTest                  # Insert rowid into rowset
2241     **          Gosub      2 A
2242     **        sqlite3WhereEnd()
2243     **
2244     ** Following the above, code to terminate the loop. Label A, the target
2245     ** of the Gosub above, jumps to the instruction right after the Goto.
2246     **
2247     **          Null       1                # Zero the rowset in reg 1
2248     **          Goto       B                # The loop is finished.
2249     **
2250     **       A: <loop body>                 # Return data, whatever.
2251     **
2252     **          Return     2                # Jump back to the Gosub
2253     **
2254     **       B: <after the loop>
2255     **
2256     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
2257     ** use an ephemeral index instead of a RowSet to record the primary
2258     ** keys of the rows we have already seen.
2259     **
2260     */
2261     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
2262     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
2263     Index *pCov = 0;             /* Potential covering index (or NULL) */
2264     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
2265 
2266     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
2267     int regRowset = 0;                        /* Register for RowSet object */
2268     int regRowid = 0;                         /* Register holding rowid */
2269     int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */
2270     int iRetInit;                             /* Address of regReturn init */
2271     int untestedTerms = 0;             /* Some terms not completely tested */
2272     int ii;                            /* Loop counter */
2273     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
2274     Table *pTab = pTabItem->pTab;
2275 
2276     pTerm = pLoop->aLTerm[0];
2277     assert( pTerm!=0 );
2278     assert( pTerm->eOperator & WO_OR );
2279     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
2280     pOrWc = &pTerm->u.pOrInfo->wc;
2281     pLevel->op = OP_Return;
2282     pLevel->p1 = regReturn;
2283 
2284     /* Set up a new SrcList in pOrTab containing the table being scanned
2285     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
2286     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
2287     */
2288     if( pWInfo->nLevel>1 ){
2289       int nNotReady;                 /* The number of notReady tables */
2290       SrcItem *origSrc;              /* Original list of tables */
2291       nNotReady = pWInfo->nLevel - iLevel - 1;
2292       pOrTab = sqlite3StackAllocRaw(db,
2293                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
2294       if( pOrTab==0 ) return notReady;
2295       pOrTab->nAlloc = (u8)(nNotReady + 1);
2296       pOrTab->nSrc = pOrTab->nAlloc;
2297       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
2298       origSrc = pWInfo->pTabList->a;
2299       for(k=1; k<=nNotReady; k++){
2300         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
2301       }
2302     }else{
2303       pOrTab = pWInfo->pTabList;
2304     }
2305 
2306     /* Initialize the rowset register to contain NULL. An SQL NULL is
2307     ** equivalent to an empty rowset.  Or, create an ephemeral index
2308     ** capable of holding primary keys in the case of a WITHOUT ROWID.
2309     **
2310     ** Also initialize regReturn to contain the address of the instruction
2311     ** immediately following the OP_Return at the bottom of the loop. This
2312     ** is required in a few obscure LEFT JOIN cases where control jumps
2313     ** over the top of the loop into the body of it. In this case the
2314     ** correct response for the end-of-loop code (the OP_Return) is to
2315     ** fall through to the next instruction, just as an OP_Next does if
2316     ** called on an uninitialized cursor.
2317     */
2318     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2319       if( HasRowid(pTab) ){
2320         regRowset = ++pParse->nMem;
2321         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
2322       }else{
2323         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2324         regRowset = pParse->nTab++;
2325         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
2326         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
2327       }
2328       regRowid = ++pParse->nMem;
2329     }
2330     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
2331 
2332     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
2333     ** Then for every term xN, evaluate as the subexpression: xN AND y
2334     ** That way, terms in y that are factored into the disjunction will
2335     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
2336     **
2337     ** Actually, each subexpression is converted to "xN AND w" where w is
2338     ** the "interesting" terms of z - terms that did not originate in the
2339     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
2340     ** indices.
2341     **
2342     ** This optimization also only applies if the (x1 OR x2 OR ...) term
2343     ** is not contained in the ON clause of a LEFT JOIN.
2344     ** See ticket http://www.sqlite.org/src/info/f2369304e4
2345     **
2346     ** 2022-02-04:  Do not push down slices of a row-value comparison.
2347     ** In other words, "w" or "y" may not be a slice of a vector.  Otherwise,
2348     ** the initialization of the right-hand operand of the vector comparison
2349     ** might not occur, or might occur only in an OR branch that is not
2350     ** taken.  dbsqlfuzz 80a9fade844b4fb43564efc972bcb2c68270f5d1.
2351     **
2352     ** 2022-03-03:  Do not push down expressions that involve subqueries.
2353     ** The subquery might get coded as a subroutine.  Any table-references
2354     ** in the subquery might be resolved to index-references for the index on
2355     ** the OR branch in which the subroutine is coded.  But if the subroutine
2356     ** is invoked from a different OR branch that uses a different index, such
2357     ** index-references will not work.  tag-20220303a
2358     ** https://sqlite.org/forum/forumpost/36937b197273d403
2359     */
2360     if( pWC->nTerm>1 ){
2361       int iTerm;
2362       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
2363         Expr *pExpr = pWC->a[iTerm].pExpr;
2364         if( &pWC->a[iTerm] == pTerm ) continue;
2365         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
2366         testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
2367         testcase( pWC->a[iTerm].wtFlags & TERM_SLICE );
2368         if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED|TERM_SLICE))!=0 ){
2369           continue;
2370         }
2371         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
2372         if( ExprHasProperty(pExpr, EP_Subquery) ) continue;  /* tag-20220303a */
2373         pExpr = sqlite3ExprDup(db, pExpr, 0);
2374         pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr);
2375       }
2376       if( pAndExpr ){
2377         /* The extra 0x10000 bit on the opcode is masked off and does not
2378         ** become part of the new Expr.op.  However, it does make the
2379         ** op==TK_AND comparison inside of sqlite3PExpr() false, and this
2380         ** prevents sqlite3PExpr() from applying the AND short-circuit
2381         ** optimization, which we do not want here. */
2382         pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr);
2383       }
2384     }
2385 
2386     /* Run a separate WHERE clause for each term of the OR clause.  After
2387     ** eliminating duplicates from other WHERE clauses, the action for each
2388     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
2389     */
2390     ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
2391     for(ii=0; ii<pOrWc->nTerm; ii++){
2392       WhereTerm *pOrTerm = &pOrWc->a[ii];
2393       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
2394         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
2395         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
2396         Expr *pDelete;                  /* Local copy of OR clause term */
2397         int jmp1 = 0;                   /* Address of jump operation */
2398         testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0
2399                && !ExprHasProperty(pOrExpr, EP_FromJoin)
2400         ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */
2401         pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0);
2402         if( db->mallocFailed ){
2403           sqlite3ExprDelete(db, pDelete);
2404           continue;
2405         }
2406         if( pAndExpr ){
2407           pAndExpr->pLeft = pOrExpr;
2408           pOrExpr = pAndExpr;
2409         }
2410         /* Loop through table entries that match term pOrTerm. */
2411         ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1));
2412         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
2413         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 0,
2414                                       WHERE_OR_SUBCLAUSE, iCovCur);
2415         assert( pSubWInfo || pParse->nErr );
2416         if( pSubWInfo ){
2417           WhereLoop *pSubLoop;
2418           int addrExplain = sqlite3WhereExplainOneScan(
2419               pParse, pOrTab, &pSubWInfo->a[0], 0
2420           );
2421           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
2422 
2423           /* This is the sub-WHERE clause body.  First skip over
2424           ** duplicate rows from prior sub-WHERE clauses, and record the
2425           ** rowid (or PRIMARY KEY) for the current row so that the same
2426           ** row will be skipped in subsequent sub-WHERE clauses.
2427           */
2428           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2429             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
2430             if( HasRowid(pTab) ){
2431               sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid);
2432               jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
2433                                           regRowid, iSet);
2434               VdbeCoverage(v);
2435             }else{
2436               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2437               int nPk = pPk->nKeyCol;
2438               int iPk;
2439               int r;
2440 
2441               /* Read the PK into an array of temp registers. */
2442               r = sqlite3GetTempRange(pParse, nPk);
2443               for(iPk=0; iPk<nPk; iPk++){
2444                 int iCol = pPk->aiColumn[iPk];
2445                 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2446               }
2447 
2448               /* Check if the temp table already contains this key. If so,
2449               ** the row has already been included in the result set and
2450               ** can be ignored (by jumping past the Gosub below). Otherwise,
2451               ** insert the key into the temp table and proceed with processing
2452               ** the row.
2453               **
2454               ** Use some of the same optimizations as OP_RowSetTest: If iSet
2455               ** is zero, assume that the key cannot already be present in
2456               ** the temp table. And if iSet is -1, assume that there is no
2457               ** need to insert the key into the temp table, as it will never
2458               ** be tested for.  */
2459               if( iSet ){
2460                 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
2461                 VdbeCoverage(v);
2462               }
2463               if( iSet>=0 ){
2464                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
2465                 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
2466                                      r, nPk);
2467                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2468               }
2469 
2470               /* Release the array of temp registers */
2471               sqlite3ReleaseTempRange(pParse, r, nPk);
2472             }
2473           }
2474 
2475           /* Invoke the main loop body as a subroutine */
2476           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2477 
2478           /* Jump here (skipping the main loop body subroutine) if the
2479           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2480           if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
2481 
2482           /* The pSubWInfo->untestedTerms flag means that this OR term
2483           ** contained one or more AND term from a notReady table.  The
2484           ** terms from the notReady table could not be tested and will
2485           ** need to be tested later.
2486           */
2487           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
2488 
2489           /* If all of the OR-connected terms are optimized using the same
2490           ** index, and the index is opened using the same cursor number
2491           ** by each call to sqlite3WhereBegin() made by this loop, it may
2492           ** be possible to use that index as a covering index.
2493           **
2494           ** If the call to sqlite3WhereBegin() above resulted in a scan that
2495           ** uses an index, and this is either the first OR-connected term
2496           ** processed or the index is the same as that used by all previous
2497           ** terms, set pCov to the candidate covering index. Otherwise, set
2498           ** pCov to NULL to indicate that no candidate covering index will
2499           ** be available.
2500           */
2501           pSubLoop = pSubWInfo->a[0].pWLoop;
2502           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2503           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2504            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2505            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2506           ){
2507             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2508             pCov = pSubLoop->u.btree.pIndex;
2509           }else{
2510             pCov = 0;
2511           }
2512           if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){
2513             pWInfo->bDeferredSeek = 1;
2514           }
2515 
2516           /* Finish the loop through table entries that match term pOrTerm. */
2517           sqlite3WhereEnd(pSubWInfo);
2518           ExplainQueryPlanPop(pParse);
2519         }
2520         sqlite3ExprDelete(db, pDelete);
2521       }
2522     }
2523     ExplainQueryPlanPop(pParse);
2524     assert( pLevel->pWLoop==pLoop );
2525     assert( (pLoop->wsFlags & WHERE_MULTI_OR)!=0 );
2526     assert( (pLoop->wsFlags & WHERE_IN_ABLE)==0 );
2527     pLevel->u.pCoveringIdx = pCov;
2528     if( pCov ) pLevel->iIdxCur = iCovCur;
2529     if( pAndExpr ){
2530       pAndExpr->pLeft = 0;
2531       sqlite3ExprDelete(db, pAndExpr);
2532     }
2533     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2534     sqlite3VdbeGoto(v, pLevel->addrBrk);
2535     sqlite3VdbeResolveLabel(v, iLoopBody);
2536 
2537     if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); }
2538     if( !untestedTerms ) disableTerm(pLevel, pTerm);
2539   }else
2540 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2541 
2542   {
2543     /* Case 6:  There is no usable index.  We must do a complete
2544     **          scan of the entire table.
2545     */
2546     static const u8 aStep[] = { OP_Next, OP_Prev };
2547     static const u8 aStart[] = { OP_Rewind, OP_Last };
2548     assert( bRev==0 || bRev==1 );
2549     if( pTabItem->fg.isRecursive ){
2550       /* Tables marked isRecursive have only a single row that is stored in
2551       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
2552       pLevel->op = OP_Noop;
2553     }else{
2554       codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2555       pLevel->op = aStep[bRev];
2556       pLevel->p1 = iCur;
2557       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2558       VdbeCoverageIf(v, bRev==0);
2559       VdbeCoverageIf(v, bRev!=0);
2560       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2561     }
2562   }
2563 
2564 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2565   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2566 #endif
2567 
2568   /* Insert code to test every subexpression that can be completely
2569   ** computed using the current set of tables.
2570   **
2571   ** This loop may run between one and three times, depending on the
2572   ** constraints to be generated. The value of stack variable iLoop
2573   ** determines the constraints coded by each iteration, as follows:
2574   **
2575   ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2576   ** iLoop==2: Code remaining expressions that do not contain correlated
2577   **           sub-queries.
2578   ** iLoop==3: Code all remaining expressions.
2579   **
2580   ** An effort is made to skip unnecessary iterations of the loop.
2581   */
2582   iLoop = (pIdx ? 1 : 2);
2583   do{
2584     int iNext = 0;                /* Next value for iLoop */
2585     for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2586       Expr *pE;
2587       int skipLikeAddr = 0;
2588       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2589       testcase( pTerm->wtFlags & TERM_CODED );
2590       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2591       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2592         testcase( pWInfo->untestedTerms==0
2593             && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2594         pWInfo->untestedTerms = 1;
2595         continue;
2596       }
2597       pE = pTerm->pExpr;
2598       assert( pE!=0 );
2599       if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){
2600         continue;
2601       }
2602 
2603       if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2604         iNext = 2;
2605         continue;
2606       }
2607       if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2608         if( iNext==0 ) iNext = 3;
2609         continue;
2610       }
2611 
2612       if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
2613         /* If the TERM_LIKECOND flag is set, that means that the range search
2614         ** is sufficient to guarantee that the LIKE operator is true, so we
2615         ** can skip the call to the like(A,B) function.  But this only works
2616         ** for strings.  So do not skip the call to the function on the pass
2617         ** that compares BLOBs. */
2618 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2619         continue;
2620 #else
2621         u32 x = pLevel->iLikeRepCntr;
2622         if( x>0 ){
2623           skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
2624           VdbeCoverageIf(v, (x&1)==1);
2625           VdbeCoverageIf(v, (x&1)==0);
2626         }
2627 #endif
2628       }
2629 #ifdef WHERETRACE_ENABLED /* 0xffff */
2630       if( sqlite3WhereTrace ){
2631         VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2632                          pWC->nTerm-j, pTerm, iLoop));
2633       }
2634       if( sqlite3WhereTrace & 0x800 ){
2635         sqlite3DebugPrintf("Coding auxiliary constraint:\n");
2636         sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2637       }
2638 #endif
2639       sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2640       if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2641       pTerm->wtFlags |= TERM_CODED;
2642     }
2643     iLoop = iNext;
2644   }while( iLoop>0 );
2645 
2646   /* Insert code to test for implied constraints based on transitivity
2647   ** of the "==" operator.
2648   **
2649   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2650   ** and we are coding the t1 loop and the t2 loop has not yet coded,
2651   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2652   ** the implied "t1.a=123" constraint.
2653   */
2654   for(pTerm=pWC->a, j=pWC->nBase; j>0; j--, pTerm++){
2655     Expr *pE, sEAlt;
2656     WhereTerm *pAlt;
2657     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2658     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2659     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2660     if( pTerm->leftCursor!=iCur ) continue;
2661     if( pTabItem->fg.jointype & JT_LEFT ) continue;
2662     pE = pTerm->pExpr;
2663 #ifdef WHERETRACE_ENABLED /* 0x800 */
2664     if( sqlite3WhereTrace & 0x800 ){
2665       sqlite3DebugPrintf("Coding transitive constraint:\n");
2666       sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2667     }
2668 #endif
2669     assert( !ExprHasProperty(pE, EP_FromJoin) );
2670     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2671     assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
2672     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady,
2673                     WO_EQ|WO_IN|WO_IS, 0);
2674     if( pAlt==0 ) continue;
2675     if( pAlt->wtFlags & (TERM_CODED) ) continue;
2676     if( (pAlt->eOperator & WO_IN)
2677      && ExprUseXSelect(pAlt->pExpr)
2678      && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
2679     ){
2680       continue;
2681     }
2682     testcase( pAlt->eOperator & WO_EQ );
2683     testcase( pAlt->eOperator & WO_IS );
2684     testcase( pAlt->eOperator & WO_IN );
2685     VdbeModuleComment((v, "begin transitive constraint"));
2686     sEAlt = *pAlt->pExpr;
2687     sEAlt.pLeft = pE->pLeft;
2688     sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2689     pAlt->wtFlags |= TERM_CODED;
2690   }
2691 
2692   /* For a LEFT OUTER JOIN, generate code that will record the fact that
2693   ** at least one row of the right table has matched the left table.
2694   */
2695   if( pLevel->iLeftJoin ){
2696     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2697     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2698     VdbeComment((v, "record LEFT JOIN hit"));
2699     for(pTerm=pWC->a, j=0; j<pWC->nBase; j++, pTerm++){
2700       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2701       testcase( pTerm->wtFlags & TERM_CODED );
2702       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2703       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2704         assert( pWInfo->untestedTerms );
2705         continue;
2706       }
2707       assert( pTerm->pExpr );
2708       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2709       pTerm->wtFlags |= TERM_CODED;
2710     }
2711   }
2712 
2713 #if WHERETRACE_ENABLED /* 0x20800 */
2714   if( sqlite3WhereTrace & 0x20000 ){
2715     sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n",
2716                        iLevel);
2717     sqlite3WhereClausePrint(pWC);
2718   }
2719   if( sqlite3WhereTrace & 0x800 ){
2720     sqlite3DebugPrintf("End Coding level %d:  notReady=%llx\n",
2721        iLevel, (u64)pLevel->notReady);
2722   }
2723 #endif
2724   return pLevel->notReady;
2725 }
2726