1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 25 /* 26 ** Return the name of the i-th column of the pIdx index. 27 */ 28 static const char *explainIndexColumnName(Index *pIdx, int i){ 29 i = pIdx->aiColumn[i]; 30 if( i==XN_EXPR ) return "<expr>"; 31 if( i==XN_ROWID ) return "rowid"; 32 return pIdx->pTable->aCol[i].zCnName; 33 } 34 35 /* 36 ** This routine is a helper for explainIndexRange() below 37 ** 38 ** pStr holds the text of an expression that we are building up one term 39 ** at a time. This routine adds a new term to the end of the expression. 40 ** Terms are separated by AND so add the "AND" text for second and subsequent 41 ** terms only. 42 */ 43 static void explainAppendTerm( 44 StrAccum *pStr, /* The text expression being built */ 45 Index *pIdx, /* Index to read column names from */ 46 int nTerm, /* Number of terms */ 47 int iTerm, /* Zero-based index of first term. */ 48 int bAnd, /* Non-zero to append " AND " */ 49 const char *zOp /* Name of the operator */ 50 ){ 51 int i; 52 53 assert( nTerm>=1 ); 54 if( bAnd ) sqlite3_str_append(pStr, " AND ", 5); 55 56 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 57 for(i=0; i<nTerm; i++){ 58 if( i ) sqlite3_str_append(pStr, ",", 1); 59 sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i)); 60 } 61 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 62 63 sqlite3_str_append(pStr, zOp, 1); 64 65 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 66 for(i=0; i<nTerm; i++){ 67 if( i ) sqlite3_str_append(pStr, ",", 1); 68 sqlite3_str_append(pStr, "?", 1); 69 } 70 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 71 } 72 73 /* 74 ** Argument pLevel describes a strategy for scanning table pTab. This 75 ** function appends text to pStr that describes the subset of table 76 ** rows scanned by the strategy in the form of an SQL expression. 77 ** 78 ** For example, if the query: 79 ** 80 ** SELECT * FROM t1 WHERE a=1 AND b>2; 81 ** 82 ** is run and there is an index on (a, b), then this function returns a 83 ** string similar to: 84 ** 85 ** "a=? AND b>?" 86 */ 87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 88 Index *pIndex = pLoop->u.btree.pIndex; 89 u16 nEq = pLoop->u.btree.nEq; 90 u16 nSkip = pLoop->nSkip; 91 int i, j; 92 93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 94 sqlite3_str_append(pStr, " (", 2); 95 for(i=0; i<nEq; i++){ 96 const char *z = explainIndexColumnName(pIndex, i); 97 if( i ) sqlite3_str_append(pStr, " AND ", 5); 98 sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); 99 } 100 101 j = i; 102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); 104 i = 1; 105 } 106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); 108 } 109 sqlite3_str_append(pStr, ")", 1); 110 } 111 112 /* 113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 116 ** is added to the output to describe the table scan strategy in pLevel. 117 ** 118 ** If an OP_Explain opcode is added to the VM, its address is returned. 119 ** Otherwise, if no OP_Explain is coded, zero is returned. 120 */ 121 int sqlite3WhereExplainOneScan( 122 Parse *pParse, /* Parse context */ 123 SrcList *pTabList, /* Table list this loop refers to */ 124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 125 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 126 ){ 127 int ret = 0; 128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 129 if( sqlite3ParseToplevel(pParse)->explain==2 ) 130 #endif 131 { 132 SrcItem *pItem = &pTabList->a[pLevel->iFrom]; 133 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 134 sqlite3 *db = pParse->db; /* Database handle */ 135 int isSearch; /* True for a SEARCH. False for SCAN. */ 136 WhereLoop *pLoop; /* The controlling WhereLoop object */ 137 u32 flags; /* Flags that describe this loop */ 138 char *zMsg; /* Text to add to EQP output */ 139 StrAccum str; /* EQP output string */ 140 char zBuf[100]; /* Initial space for EQP output string */ 141 142 pLoop = pLevel->pWLoop; 143 flags = pLoop->wsFlags; 144 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; 145 146 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 147 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 148 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 149 150 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 151 str.printfFlags = SQLITE_PRINTF_INTERNAL; 152 sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem); 153 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 154 const char *zFmt = 0; 155 Index *pIdx; 156 157 assert( pLoop->u.btree.pIndex!=0 ); 158 pIdx = pLoop->u.btree.pIndex; 159 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 160 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 161 if( isSearch ){ 162 zFmt = "PRIMARY KEY"; 163 } 164 }else if( flags & WHERE_PARTIALIDX ){ 165 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 166 }else if( flags & WHERE_AUTO_INDEX ){ 167 zFmt = "AUTOMATIC COVERING INDEX"; 168 }else if( flags & WHERE_IDX_ONLY ){ 169 zFmt = "COVERING INDEX %s"; 170 }else{ 171 zFmt = "INDEX %s"; 172 } 173 if( zFmt ){ 174 sqlite3_str_append(&str, " USING ", 7); 175 sqlite3_str_appendf(&str, zFmt, pIdx->zName); 176 explainIndexRange(&str, pLoop); 177 } 178 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 179 char cRangeOp; 180 #if 0 /* Better output, but breaks many tests */ 181 const Table *pTab = pItem->pTab; 182 const char *zRowid = pTab->iPKey>=0 ? pTab->aCol[pTab->iPKey].zCnName: 183 "rowid"; 184 #else 185 const char *zRowid = "rowid"; 186 #endif 187 sqlite3_str_appendf(&str, " USING INTEGER PRIMARY KEY (%s", zRowid); 188 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 189 cRangeOp = '='; 190 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 191 sqlite3_str_appendf(&str, ">? AND %s", zRowid); 192 cRangeOp = '<'; 193 }else if( flags&WHERE_BTM_LIMIT ){ 194 cRangeOp = '>'; 195 }else{ 196 assert( flags&WHERE_TOP_LIMIT); 197 cRangeOp = '<'; 198 } 199 sqlite3_str_appendf(&str, "%c?)", cRangeOp); 200 } 201 #ifndef SQLITE_OMIT_VIRTUALTABLE 202 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 203 sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s", 204 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 205 } 206 #endif 207 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 208 if( pLoop->nOut>=10 ){ 209 sqlite3_str_appendf(&str, " (~%llu rows)", 210 sqlite3LogEstToInt(pLoop->nOut)); 211 }else{ 212 sqlite3_str_append(&str, " (~1 row)", 9); 213 } 214 #endif 215 zMsg = sqlite3StrAccumFinish(&str); 216 sqlite3ExplainBreakpoint("",zMsg); 217 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), 218 pParse->addrExplain, 0, zMsg,P4_DYNAMIC); 219 } 220 return ret; 221 } 222 223 /* 224 ** Add a single OP_Explain opcode that describes a Bloom filter. 225 ** 226 ** Or if not processing EXPLAIN QUERY PLAN and not in a SQLITE_DEBUG and/or 227 ** SQLITE_ENABLE_STMT_SCANSTATUS build, then OP_Explain opcodes are not 228 ** required and this routine is a no-op. 229 ** 230 ** If an OP_Explain opcode is added to the VM, its address is returned. 231 ** Otherwise, if no OP_Explain is coded, zero is returned. 232 */ 233 int sqlite3WhereExplainBloomFilter( 234 const Parse *pParse, /* Parse context */ 235 const WhereInfo *pWInfo, /* WHERE clause */ 236 const WhereLevel *pLevel /* Bloom filter on this level */ 237 ){ 238 int ret = 0; 239 SrcItem *pItem = &pWInfo->pTabList->a[pLevel->iFrom]; 240 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 241 sqlite3 *db = pParse->db; /* Database handle */ 242 char *zMsg; /* Text to add to EQP output */ 243 int i; /* Loop counter */ 244 WhereLoop *pLoop; /* The where loop */ 245 StrAccum str; /* EQP output string */ 246 char zBuf[100]; /* Initial space for EQP output string */ 247 248 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 249 str.printfFlags = SQLITE_PRINTF_INTERNAL; 250 sqlite3_str_appendf(&str, "BLOOM FILTER ON %S (", pItem); 251 pLoop = pLevel->pWLoop; 252 if( pLoop->wsFlags & WHERE_IPK ){ 253 const Table *pTab = pItem->pTab; 254 if( pTab->iPKey>=0 ){ 255 sqlite3_str_appendf(&str, "%s=?", pTab->aCol[pTab->iPKey].zCnName); 256 }else{ 257 sqlite3_str_appendf(&str, "rowid=?"); 258 } 259 }else{ 260 for(i=pLoop->nSkip; i<pLoop->u.btree.nEq; i++){ 261 const char *z = explainIndexColumnName(pLoop->u.btree.pIndex, i); 262 if( i>pLoop->nSkip ) sqlite3_str_append(&str, " AND ", 5); 263 sqlite3_str_appendf(&str, "%s=?", z); 264 } 265 } 266 sqlite3_str_append(&str, ")", 1); 267 zMsg = sqlite3StrAccumFinish(&str); 268 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), 269 pParse->addrExplain, 0, zMsg,P4_DYNAMIC); 270 return ret; 271 } 272 #endif /* SQLITE_OMIT_EXPLAIN */ 273 274 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 275 /* 276 ** Configure the VM passed as the first argument with an 277 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 278 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 279 ** clause that the scan reads data from. 280 ** 281 ** If argument addrExplain is not 0, it must be the address of an 282 ** OP_Explain instruction that describes the same loop. 283 */ 284 void sqlite3WhereAddScanStatus( 285 Vdbe *v, /* Vdbe to add scanstatus entry to */ 286 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 287 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 288 int addrExplain /* Address of OP_Explain (or 0) */ 289 ){ 290 const char *zObj = 0; 291 WhereLoop *pLoop = pLvl->pWLoop; 292 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 293 zObj = pLoop->u.btree.pIndex->zName; 294 }else{ 295 zObj = pSrclist->a[pLvl->iFrom].zName; 296 } 297 sqlite3VdbeScanStatus( 298 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 299 ); 300 } 301 #endif 302 303 304 /* 305 ** Disable a term in the WHERE clause. Except, do not disable the term 306 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 307 ** or USING clause of that join. 308 ** 309 ** Consider the term t2.z='ok' in the following queries: 310 ** 311 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 312 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 313 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 314 ** 315 ** The t2.z='ok' is disabled in the in (2) because it originates 316 ** in the ON clause. The term is disabled in (3) because it is not part 317 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 318 ** 319 ** Disabling a term causes that term to not be tested in the inner loop 320 ** of the join. Disabling is an optimization. When terms are satisfied 321 ** by indices, we disable them to prevent redundant tests in the inner 322 ** loop. We would get the correct results if nothing were ever disabled, 323 ** but joins might run a little slower. The trick is to disable as much 324 ** as we can without disabling too much. If we disabled in (1), we'd get 325 ** the wrong answer. See ticket #813. 326 ** 327 ** If all the children of a term are disabled, then that term is also 328 ** automatically disabled. In this way, terms get disabled if derived 329 ** virtual terms are tested first. For example: 330 ** 331 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 332 ** \___________/ \______/ \_____/ 333 ** parent child1 child2 334 ** 335 ** Only the parent term was in the original WHERE clause. The child1 336 ** and child2 terms were added by the LIKE optimization. If both of 337 ** the virtual child terms are valid, then testing of the parent can be 338 ** skipped. 339 ** 340 ** Usually the parent term is marked as TERM_CODED. But if the parent 341 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 342 ** The TERM_LIKECOND marking indicates that the term should be coded inside 343 ** a conditional such that is only evaluated on the second pass of a 344 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 345 */ 346 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 347 int nLoop = 0; 348 assert( pTerm!=0 ); 349 while( (pTerm->wtFlags & TERM_CODED)==0 350 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 351 && (pLevel->notReady & pTerm->prereqAll)==0 352 ){ 353 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 354 pTerm->wtFlags |= TERM_LIKECOND; 355 }else{ 356 pTerm->wtFlags |= TERM_CODED; 357 } 358 #ifdef WHERETRACE_ENABLED 359 if( sqlite3WhereTrace & 0x20000 ){ 360 sqlite3DebugPrintf("DISABLE-"); 361 sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a))); 362 } 363 #endif 364 if( pTerm->iParent<0 ) break; 365 pTerm = &pTerm->pWC->a[pTerm->iParent]; 366 assert( pTerm!=0 ); 367 pTerm->nChild--; 368 if( pTerm->nChild!=0 ) break; 369 nLoop++; 370 } 371 } 372 373 /* 374 ** Code an OP_Affinity opcode to apply the column affinity string zAff 375 ** to the n registers starting at base. 376 ** 377 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which 378 ** are no-ops) at the beginning and end of zAff are ignored. If all entries 379 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated. 380 ** 381 ** This routine makes its own copy of zAff so that the caller is free 382 ** to modify zAff after this routine returns. 383 */ 384 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 385 Vdbe *v = pParse->pVdbe; 386 if( zAff==0 ){ 387 assert( pParse->db->mallocFailed ); 388 return; 389 } 390 assert( v!=0 ); 391 392 /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE 393 ** entries at the beginning and end of the affinity string. 394 */ 395 assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB ); 396 while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){ 397 n--; 398 base++; 399 zAff++; 400 } 401 while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){ 402 n--; 403 } 404 405 /* Code the OP_Affinity opcode if there is anything left to do. */ 406 if( n>0 ){ 407 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 408 } 409 } 410 411 /* 412 ** Expression pRight, which is the RHS of a comparison operation, is 413 ** either a vector of n elements or, if n==1, a scalar expression. 414 ** Before the comparison operation, affinity zAff is to be applied 415 ** to the pRight values. This function modifies characters within the 416 ** affinity string to SQLITE_AFF_BLOB if either: 417 ** 418 ** * the comparison will be performed with no affinity, or 419 ** * the affinity change in zAff is guaranteed not to change the value. 420 */ 421 static void updateRangeAffinityStr( 422 Expr *pRight, /* RHS of comparison */ 423 int n, /* Number of vector elements in comparison */ 424 char *zAff /* Affinity string to modify */ 425 ){ 426 int i; 427 for(i=0; i<n; i++){ 428 Expr *p = sqlite3VectorFieldSubexpr(pRight, i); 429 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB 430 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) 431 ){ 432 zAff[i] = SQLITE_AFF_BLOB; 433 } 434 } 435 } 436 437 438 /* 439 ** pX is an expression of the form: (vector) IN (SELECT ...) 440 ** In other words, it is a vector IN operator with a SELECT clause on the 441 ** LHS. But not all terms in the vector are indexable and the terms might 442 ** not be in the correct order for indexing. 443 ** 444 ** This routine makes a copy of the input pX expression and then adjusts 445 ** the vector on the LHS with corresponding changes to the SELECT so that 446 ** the vector contains only index terms and those terms are in the correct 447 ** order. The modified IN expression is returned. The caller is responsible 448 ** for deleting the returned expression. 449 ** 450 ** Example: 451 ** 452 ** CREATE TABLE t1(a,b,c,d,e,f); 453 ** CREATE INDEX t1x1 ON t1(e,c); 454 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2) 455 ** \_______________________________________/ 456 ** The pX expression 457 ** 458 ** Since only columns e and c can be used with the index, in that order, 459 ** the modified IN expression that is returned will be: 460 ** 461 ** (e,c) IN (SELECT z,x FROM t2) 462 ** 463 ** The reduced pX is different from the original (obviously) and thus is 464 ** only used for indexing, to improve performance. The original unaltered 465 ** IN expression must also be run on each output row for correctness. 466 */ 467 static Expr *removeUnindexableInClauseTerms( 468 Parse *pParse, /* The parsing context */ 469 int iEq, /* Look at loop terms starting here */ 470 WhereLoop *pLoop, /* The current loop */ 471 Expr *pX /* The IN expression to be reduced */ 472 ){ 473 sqlite3 *db = pParse->db; 474 Expr *pNew; 475 pNew = sqlite3ExprDup(db, pX, 0); 476 if( db->mallocFailed==0 ){ 477 ExprList *pOrigRhs; /* Original unmodified RHS */ 478 ExprList *pOrigLhs; /* Original unmodified LHS */ 479 ExprList *pRhs = 0; /* New RHS after modifications */ 480 ExprList *pLhs = 0; /* New LHS after mods */ 481 int i; /* Loop counter */ 482 Select *pSelect; /* Pointer to the SELECT on the RHS */ 483 484 assert( ExprUseXSelect(pNew) ); 485 pOrigRhs = pNew->x.pSelect->pEList; 486 assert( pNew->pLeft!=0 ); 487 assert( ExprUseXList(pNew->pLeft) ); 488 pOrigLhs = pNew->pLeft->x.pList; 489 for(i=iEq; i<pLoop->nLTerm; i++){ 490 if( pLoop->aLTerm[i]->pExpr==pX ){ 491 int iField; 492 assert( (pLoop->aLTerm[i]->eOperator & (WO_OR|WO_AND))==0 ); 493 iField = pLoop->aLTerm[i]->u.x.iField - 1; 494 if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */ 495 pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr); 496 pOrigRhs->a[iField].pExpr = 0; 497 assert( pOrigLhs->a[iField].pExpr!=0 ); 498 pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr); 499 pOrigLhs->a[iField].pExpr = 0; 500 } 501 } 502 sqlite3ExprListDelete(db, pOrigRhs); 503 sqlite3ExprListDelete(db, pOrigLhs); 504 pNew->pLeft->x.pList = pLhs; 505 pNew->x.pSelect->pEList = pRhs; 506 if( pLhs && pLhs->nExpr==1 ){ 507 /* Take care here not to generate a TK_VECTOR containing only a 508 ** single value. Since the parser never creates such a vector, some 509 ** of the subroutines do not handle this case. */ 510 Expr *p = pLhs->a[0].pExpr; 511 pLhs->a[0].pExpr = 0; 512 sqlite3ExprDelete(db, pNew->pLeft); 513 pNew->pLeft = p; 514 } 515 pSelect = pNew->x.pSelect; 516 if( pSelect->pOrderBy ){ 517 /* If the SELECT statement has an ORDER BY clause, zero the 518 ** iOrderByCol variables. These are set to non-zero when an 519 ** ORDER BY term exactly matches one of the terms of the 520 ** result-set. Since the result-set of the SELECT statement may 521 ** have been modified or reordered, these variables are no longer 522 ** set correctly. Since setting them is just an optimization, 523 ** it's easiest just to zero them here. */ 524 ExprList *pOrderBy = pSelect->pOrderBy; 525 for(i=0; i<pOrderBy->nExpr; i++){ 526 pOrderBy->a[i].u.x.iOrderByCol = 0; 527 } 528 } 529 530 #if 0 531 printf("For indexing, change the IN expr:\n"); 532 sqlite3TreeViewExpr(0, pX, 0); 533 printf("Into:\n"); 534 sqlite3TreeViewExpr(0, pNew, 0); 535 #endif 536 } 537 return pNew; 538 } 539 540 541 /* 542 ** Generate code for a single equality term of the WHERE clause. An equality 543 ** term can be either X=expr or X IN (...). pTerm is the term to be 544 ** coded. 545 ** 546 ** The current value for the constraint is left in a register, the index 547 ** of which is returned. An attempt is made store the result in iTarget but 548 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the 549 ** constraint is a TK_EQ or TK_IS, then the current value might be left in 550 ** some other register and it is the caller's responsibility to compensate. 551 ** 552 ** For a constraint of the form X=expr, the expression is evaluated in 553 ** straight-line code. For constraints of the form X IN (...) 554 ** this routine sets up a loop that will iterate over all values of X. 555 */ 556 static int codeEqualityTerm( 557 Parse *pParse, /* The parsing context */ 558 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 559 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 560 int iEq, /* Index of the equality term within this level */ 561 int bRev, /* True for reverse-order IN operations */ 562 int iTarget /* Attempt to leave results in this register */ 563 ){ 564 Expr *pX = pTerm->pExpr; 565 Vdbe *v = pParse->pVdbe; 566 int iReg; /* Register holding results */ 567 568 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); 569 assert( iTarget>0 ); 570 if( pX->op==TK_EQ || pX->op==TK_IS ){ 571 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 572 }else if( pX->op==TK_ISNULL ){ 573 iReg = iTarget; 574 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 575 #ifndef SQLITE_OMIT_SUBQUERY 576 }else{ 577 int eType = IN_INDEX_NOOP; 578 int iTab; 579 struct InLoop *pIn; 580 WhereLoop *pLoop = pLevel->pWLoop; 581 int i; 582 int nEq = 0; 583 int *aiMap = 0; 584 585 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 586 && pLoop->u.btree.pIndex!=0 587 && pLoop->u.btree.pIndex->aSortOrder[iEq] 588 ){ 589 testcase( iEq==0 ); 590 testcase( bRev ); 591 bRev = !bRev; 592 } 593 assert( pX->op==TK_IN ); 594 iReg = iTarget; 595 596 for(i=0; i<iEq; i++){ 597 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ 598 disableTerm(pLevel, pTerm); 599 return iTarget; 600 } 601 } 602 for(i=iEq;i<pLoop->nLTerm; i++){ 603 assert( pLoop->aLTerm[i]!=0 ); 604 if( pLoop->aLTerm[i]->pExpr==pX ) nEq++; 605 } 606 607 iTab = 0; 608 if( !ExprUseXSelect(pX) || pX->x.pSelect->pEList->nExpr==1 ){ 609 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab); 610 }else{ 611 sqlite3 *db = pParse->db; 612 pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX); 613 614 if( !db->mallocFailed ){ 615 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq); 616 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab); 617 pTerm->pExpr->iTable = iTab; 618 } 619 sqlite3ExprDelete(db, pX); 620 pX = pTerm->pExpr; 621 } 622 623 if( eType==IN_INDEX_INDEX_DESC ){ 624 testcase( bRev ); 625 bRev = !bRev; 626 } 627 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 628 VdbeCoverageIf(v, bRev); 629 VdbeCoverageIf(v, !bRev); 630 631 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 632 pLoop->wsFlags |= WHERE_IN_ABLE; 633 if( pLevel->u.in.nIn==0 ){ 634 pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 635 } 636 if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){ 637 pLoop->wsFlags |= WHERE_IN_EARLYOUT; 638 } 639 640 i = pLevel->u.in.nIn; 641 pLevel->u.in.nIn += nEq; 642 pLevel->u.in.aInLoop = 643 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 644 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 645 pIn = pLevel->u.in.aInLoop; 646 if( pIn ){ 647 int iMap = 0; /* Index in aiMap[] */ 648 pIn += i; 649 for(i=iEq;i<pLoop->nLTerm; i++){ 650 if( pLoop->aLTerm[i]->pExpr==pX ){ 651 int iOut = iReg + i - iEq; 652 if( eType==IN_INDEX_ROWID ){ 653 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); 654 }else{ 655 int iCol = aiMap ? aiMap[iMap++] : 0; 656 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); 657 } 658 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); 659 if( i==iEq ){ 660 pIn->iCur = iTab; 661 pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next; 662 if( iEq>0 ){ 663 pIn->iBase = iReg - i; 664 pIn->nPrefix = i; 665 }else{ 666 pIn->nPrefix = 0; 667 } 668 }else{ 669 pIn->eEndLoopOp = OP_Noop; 670 } 671 pIn++; 672 } 673 } 674 testcase( iEq>0 675 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 676 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ); 677 if( iEq>0 678 && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0 679 ){ 680 sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq); 681 } 682 }else{ 683 pLevel->u.in.nIn = 0; 684 } 685 sqlite3DbFree(pParse->db, aiMap); 686 #endif 687 } 688 689 /* As an optimization, try to disable the WHERE clause term that is 690 ** driving the index as it will always be true. The correct answer is 691 ** obtained regardless, but we might get the answer with fewer CPU cycles 692 ** by omitting the term. 693 ** 694 ** But do not disable the term unless we are certain that the term is 695 ** not a transitive constraint. For an example of where that does not 696 ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04) 697 */ 698 if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0 699 || (pTerm->eOperator & WO_EQUIV)==0 700 ){ 701 disableTerm(pLevel, pTerm); 702 } 703 704 return iReg; 705 } 706 707 /* 708 ** Generate code that will evaluate all == and IN constraints for an 709 ** index scan. 710 ** 711 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 712 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 713 ** The index has as many as three equality constraints, but in this 714 ** example, the third "c" value is an inequality. So only two 715 ** constraints are coded. This routine will generate code to evaluate 716 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 717 ** in consecutive registers and the index of the first register is returned. 718 ** 719 ** In the example above nEq==2. But this subroutine works for any value 720 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 721 ** The only thing it does is allocate the pLevel->iMem memory cell and 722 ** compute the affinity string. 723 ** 724 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 725 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 726 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 727 ** occurs after the nEq quality constraints. 728 ** 729 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 730 ** the index of the first memory cell in that range. The code that 731 ** calls this routine will use that memory range to store keys for 732 ** start and termination conditions of the loop. 733 ** key value of the loop. If one or more IN operators appear, then 734 ** this routine allocates an additional nEq memory cells for internal 735 ** use. 736 ** 737 ** Before returning, *pzAff is set to point to a buffer containing a 738 ** copy of the column affinity string of the index allocated using 739 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 740 ** with equality constraints that use BLOB or NONE affinity are set to 741 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 742 ** 743 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 744 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 745 ** 746 ** In the example above, the index on t1(a) has TEXT affinity. But since 747 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 748 ** no conversion should be attempted before using a t2.b value as part of 749 ** a key to search the index. Hence the first byte in the returned affinity 750 ** string in this example would be set to SQLITE_AFF_BLOB. 751 */ 752 static int codeAllEqualityTerms( 753 Parse *pParse, /* Parsing context */ 754 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 755 int bRev, /* Reverse the order of IN operators */ 756 int nExtraReg, /* Number of extra registers to allocate */ 757 char **pzAff /* OUT: Set to point to affinity string */ 758 ){ 759 u16 nEq; /* The number of == or IN constraints to code */ 760 u16 nSkip; /* Number of left-most columns to skip */ 761 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 762 Index *pIdx; /* The index being used for this loop */ 763 WhereTerm *pTerm; /* A single constraint term */ 764 WhereLoop *pLoop; /* The WhereLoop object */ 765 int j; /* Loop counter */ 766 int regBase; /* Base register */ 767 int nReg; /* Number of registers to allocate */ 768 char *zAff; /* Affinity string to return */ 769 770 /* This module is only called on query plans that use an index. */ 771 pLoop = pLevel->pWLoop; 772 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 773 nEq = pLoop->u.btree.nEq; 774 nSkip = pLoop->nSkip; 775 pIdx = pLoop->u.btree.pIndex; 776 assert( pIdx!=0 ); 777 778 /* Figure out how many memory cells we will need then allocate them. 779 */ 780 regBase = pParse->nMem + 1; 781 nReg = pLoop->u.btree.nEq + nExtraReg; 782 pParse->nMem += nReg; 783 784 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 785 assert( zAff!=0 || pParse->db->mallocFailed ); 786 787 if( nSkip ){ 788 int iIdxCur = pLevel->iIdxCur; 789 sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1); 790 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 791 VdbeCoverageIf(v, bRev==0); 792 VdbeCoverageIf(v, bRev!=0); 793 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 794 j = sqlite3VdbeAddOp0(v, OP_Goto); 795 assert( pLevel->addrSkip==0 ); 796 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 797 iIdxCur, 0, regBase, nSkip); 798 VdbeCoverageIf(v, bRev==0); 799 VdbeCoverageIf(v, bRev!=0); 800 sqlite3VdbeJumpHere(v, j); 801 for(j=0; j<nSkip; j++){ 802 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 803 testcase( pIdx->aiColumn[j]==XN_EXPR ); 804 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 805 } 806 } 807 808 /* Evaluate the equality constraints 809 */ 810 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 811 for(j=nSkip; j<nEq; j++){ 812 int r1; 813 pTerm = pLoop->aLTerm[j]; 814 assert( pTerm!=0 ); 815 /* The following testcase is true for indices with redundant columns. 816 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 817 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 818 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 819 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 820 if( r1!=regBase+j ){ 821 if( nReg==1 ){ 822 sqlite3ReleaseTempReg(pParse, regBase); 823 regBase = r1; 824 }else{ 825 sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j); 826 } 827 } 828 } 829 for(j=nSkip; j<nEq; j++){ 830 pTerm = pLoop->aLTerm[j]; 831 if( pTerm->eOperator & WO_IN ){ 832 if( pTerm->pExpr->flags & EP_xIsSelect ){ 833 /* No affinity ever needs to be (or should be) applied to a value 834 ** from the RHS of an "? IN (SELECT ...)" expression. The 835 ** sqlite3FindInIndex() routine has already ensured that the 836 ** affinity of the comparison has been applied to the value. */ 837 if( zAff ) zAff[j] = SQLITE_AFF_BLOB; 838 } 839 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ 840 Expr *pRight = pTerm->pExpr->pRight; 841 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 842 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 843 VdbeCoverage(v); 844 } 845 if( pParse->nErr==0 ){ 846 assert( pParse->db->mallocFailed==0 ); 847 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 848 zAff[j] = SQLITE_AFF_BLOB; 849 } 850 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 851 zAff[j] = SQLITE_AFF_BLOB; 852 } 853 } 854 } 855 } 856 *pzAff = zAff; 857 return regBase; 858 } 859 860 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 861 /* 862 ** If the most recently coded instruction is a constant range constraint 863 ** (a string literal) that originated from the LIKE optimization, then 864 ** set P3 and P5 on the OP_String opcode so that the string will be cast 865 ** to a BLOB at appropriate times. 866 ** 867 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 868 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 869 ** scan loop run twice, once for strings and a second time for BLOBs. 870 ** The OP_String opcodes on the second pass convert the upper and lower 871 ** bound string constants to blobs. This routine makes the necessary changes 872 ** to the OP_String opcodes for that to happen. 873 ** 874 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 875 ** only the one pass through the string space is required, so this routine 876 ** becomes a no-op. 877 */ 878 static void whereLikeOptimizationStringFixup( 879 Vdbe *v, /* prepared statement under construction */ 880 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 881 WhereTerm *pTerm /* The upper or lower bound just coded */ 882 ){ 883 if( pTerm->wtFlags & TERM_LIKEOPT ){ 884 VdbeOp *pOp; 885 assert( pLevel->iLikeRepCntr>0 ); 886 pOp = sqlite3VdbeGetOp(v, -1); 887 assert( pOp!=0 ); 888 assert( pOp->opcode==OP_String8 889 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 890 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ 891 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ 892 } 893 } 894 #else 895 # define whereLikeOptimizationStringFixup(A,B,C) 896 #endif 897 898 #ifdef SQLITE_ENABLE_CURSOR_HINTS 899 /* 900 ** Information is passed from codeCursorHint() down to individual nodes of 901 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 902 ** structure. 903 */ 904 struct CCurHint { 905 int iTabCur; /* Cursor for the main table */ 906 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 907 Index *pIdx; /* The index used to access the table */ 908 }; 909 910 /* 911 ** This function is called for every node of an expression that is a candidate 912 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 913 ** the table CCurHint.iTabCur, verify that the same column can be 914 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 915 */ 916 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 917 struct CCurHint *pHint = pWalker->u.pCCurHint; 918 assert( pHint->pIdx!=0 ); 919 if( pExpr->op==TK_COLUMN 920 && pExpr->iTable==pHint->iTabCur 921 && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0 922 ){ 923 pWalker->eCode = 1; 924 } 925 return WRC_Continue; 926 } 927 928 /* 929 ** Test whether or not expression pExpr, which was part of a WHERE clause, 930 ** should be included in the cursor-hint for a table that is on the rhs 931 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the 932 ** expression is not suitable. 933 ** 934 ** An expression is unsuitable if it might evaluate to non NULL even if 935 ** a TK_COLUMN node that does affect the value of the expression is set 936 ** to NULL. For example: 937 ** 938 ** col IS NULL 939 ** col IS NOT NULL 940 ** coalesce(col, 1) 941 ** CASE WHEN col THEN 0 ELSE 1 END 942 */ 943 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ 944 if( pExpr->op==TK_IS 945 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT 946 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE 947 ){ 948 pWalker->eCode = 1; 949 }else if( pExpr->op==TK_FUNCTION ){ 950 int d1; 951 char d2[4]; 952 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ 953 pWalker->eCode = 1; 954 } 955 } 956 957 return WRC_Continue; 958 } 959 960 961 /* 962 ** This function is called on every node of an expression tree used as an 963 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 964 ** that accesses any table other than the one identified by 965 ** CCurHint.iTabCur, then do the following: 966 ** 967 ** 1) allocate a register and code an OP_Column instruction to read 968 ** the specified column into the new register, and 969 ** 970 ** 2) transform the expression node to a TK_REGISTER node that reads 971 ** from the newly populated register. 972 ** 973 ** Also, if the node is a TK_COLUMN that does access the table idenified 974 ** by pCCurHint.iTabCur, and an index is being used (which we will 975 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 976 ** an access of the index rather than the original table. 977 */ 978 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 979 int rc = WRC_Continue; 980 struct CCurHint *pHint = pWalker->u.pCCurHint; 981 if( pExpr->op==TK_COLUMN ){ 982 if( pExpr->iTable!=pHint->iTabCur ){ 983 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 984 sqlite3ExprCode(pWalker->pParse, pExpr, reg); 985 pExpr->op = TK_REGISTER; 986 pExpr->iTable = reg; 987 }else if( pHint->pIdx!=0 ){ 988 pExpr->iTable = pHint->iIdxCur; 989 pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn); 990 assert( pExpr->iColumn>=0 ); 991 } 992 }else if( pExpr->op==TK_AGG_FUNCTION ){ 993 /* An aggregate function in the WHERE clause of a query means this must 994 ** be a correlated sub-query, and expression pExpr is an aggregate from 995 ** the parent context. Do not walk the function arguments in this case. 996 ** 997 ** todo: It should be possible to replace this node with a TK_REGISTER 998 ** expression, as the result of the expression must be stored in a 999 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 1000 rc = WRC_Prune; 1001 } 1002 return rc; 1003 } 1004 1005 /* 1006 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 1007 */ 1008 static void codeCursorHint( 1009 SrcItem *pTabItem, /* FROM clause item */ 1010 WhereInfo *pWInfo, /* The where clause */ 1011 WhereLevel *pLevel, /* Which loop to provide hints for */ 1012 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 1013 ){ 1014 Parse *pParse = pWInfo->pParse; 1015 sqlite3 *db = pParse->db; 1016 Vdbe *v = pParse->pVdbe; 1017 Expr *pExpr = 0; 1018 WhereLoop *pLoop = pLevel->pWLoop; 1019 int iCur; 1020 WhereClause *pWC; 1021 WhereTerm *pTerm; 1022 int i, j; 1023 struct CCurHint sHint; 1024 Walker sWalker; 1025 1026 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 1027 iCur = pLevel->iTabCur; 1028 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 1029 sHint.iTabCur = iCur; 1030 sHint.iIdxCur = pLevel->iIdxCur; 1031 sHint.pIdx = pLoop->u.btree.pIndex; 1032 memset(&sWalker, 0, sizeof(sWalker)); 1033 sWalker.pParse = pParse; 1034 sWalker.u.pCCurHint = &sHint; 1035 pWC = &pWInfo->sWC; 1036 for(i=0; i<pWC->nBase; i++){ 1037 pTerm = &pWC->a[i]; 1038 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1039 if( pTerm->prereqAll & pLevel->notReady ) continue; 1040 1041 /* Any terms specified as part of the ON(...) clause for any LEFT 1042 ** JOIN for which the current table is not the rhs are omitted 1043 ** from the cursor-hint. 1044 ** 1045 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms 1046 ** that were specified as part of the WHERE clause must be excluded. 1047 ** This is to address the following: 1048 ** 1049 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; 1050 ** 1051 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its 1052 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is 1053 ** pushed down to the cursor, this row is filtered out, causing 1054 ** SQLite to synthesize a row of NULL values. Which does match the 1055 ** WHERE clause, and so the query returns a row. Which is incorrect. 1056 ** 1057 ** For the same reason, WHERE terms such as: 1058 ** 1059 ** WHERE 1 = (t2.c IS NULL) 1060 ** 1061 ** are also excluded. See codeCursorHintIsOrFunction() for details. 1062 */ 1063 if( pTabItem->fg.jointype & JT_LEFT ){ 1064 Expr *pExpr = pTerm->pExpr; 1065 if( !ExprHasProperty(pExpr, EP_FromJoin) 1066 || pExpr->w.iRightJoinTable!=pTabItem->iCursor 1067 ){ 1068 sWalker.eCode = 0; 1069 sWalker.xExprCallback = codeCursorHintIsOrFunction; 1070 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 1071 if( sWalker.eCode ) continue; 1072 } 1073 }else{ 1074 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; 1075 } 1076 1077 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 1078 ** the cursor. These terms are not needed as hints for a pure range 1079 ** scan (that has no == terms) so omit them. */ 1080 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 1081 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 1082 if( j<pLoop->nLTerm ) continue; 1083 } 1084 1085 /* No subqueries or non-deterministic functions allowed */ 1086 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 1087 1088 /* For an index scan, make sure referenced columns are actually in 1089 ** the index. */ 1090 if( sHint.pIdx!=0 ){ 1091 sWalker.eCode = 0; 1092 sWalker.xExprCallback = codeCursorHintCheckExpr; 1093 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 1094 if( sWalker.eCode ) continue; 1095 } 1096 1097 /* If we survive all prior tests, that means this term is worth hinting */ 1098 pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 1099 } 1100 if( pExpr!=0 ){ 1101 sWalker.xExprCallback = codeCursorHintFixExpr; 1102 sqlite3WalkExpr(&sWalker, pExpr); 1103 sqlite3VdbeAddOp4(v, OP_CursorHint, 1104 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 1105 (const char*)pExpr, P4_EXPR); 1106 } 1107 } 1108 #else 1109 # define codeCursorHint(A,B,C,D) /* No-op */ 1110 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 1111 1112 /* 1113 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains 1114 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This 1115 ** function generates code to do a deferred seek of cursor iCur to the 1116 ** rowid stored in register iRowid. 1117 ** 1118 ** Normally, this is just: 1119 ** 1120 ** OP_DeferredSeek $iCur $iRowid 1121 ** 1122 ** Which causes a seek on $iCur to the row with rowid $iRowid. 1123 ** 1124 ** However, if the scan currently being coded is a branch of an OR-loop and 1125 ** the statement currently being coded is a SELECT, then additional information 1126 ** is added that might allow OP_Column to omit the seek and instead do its 1127 ** lookup on the index, thus avoiding an expensive seek operation. To 1128 ** enable this optimization, the P3 of OP_DeferredSeek is set to iIdxCur 1129 ** and P4 is set to an array of integers containing one entry for each column 1130 ** in the table. For each table column, if the column is the i'th 1131 ** column of the index, then the corresponding array entry is set to (i+1). 1132 ** If the column does not appear in the index at all, the array entry is set 1133 ** to 0. The OP_Column opcode can check this array to see if the column it 1134 ** wants is in the index and if it is, it will substitute the index cursor 1135 ** and column number and continue with those new values, rather than seeking 1136 ** the table cursor. 1137 */ 1138 static void codeDeferredSeek( 1139 WhereInfo *pWInfo, /* Where clause context */ 1140 Index *pIdx, /* Index scan is using */ 1141 int iCur, /* Cursor for IPK b-tree */ 1142 int iIdxCur /* Index cursor */ 1143 ){ 1144 Parse *pParse = pWInfo->pParse; /* Parse context */ 1145 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ 1146 1147 assert( iIdxCur>0 ); 1148 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); 1149 1150 pWInfo->bDeferredSeek = 1; 1151 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur); 1152 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 1153 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) 1154 ){ 1155 int i; 1156 Table *pTab = pIdx->pTable; 1157 u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1)); 1158 if( ai ){ 1159 ai[0] = pTab->nCol; 1160 for(i=0; i<pIdx->nColumn-1; i++){ 1161 int x1, x2; 1162 assert( pIdx->aiColumn[i]<pTab->nCol ); 1163 x1 = pIdx->aiColumn[i]; 1164 x2 = sqlite3TableColumnToStorage(pTab, x1); 1165 testcase( x1!=x2 ); 1166 if( x1>=0 ) ai[x2+1] = i+1; 1167 } 1168 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); 1169 } 1170 } 1171 } 1172 1173 /* 1174 ** If the expression passed as the second argument is a vector, generate 1175 ** code to write the first nReg elements of the vector into an array 1176 ** of registers starting with iReg. 1177 ** 1178 ** If the expression is not a vector, then nReg must be passed 1. In 1179 ** this case, generate code to evaluate the expression and leave the 1180 ** result in register iReg. 1181 */ 1182 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ 1183 assert( nReg>0 ); 1184 if( p && sqlite3ExprIsVector(p) ){ 1185 #ifndef SQLITE_OMIT_SUBQUERY 1186 if( ExprUseXSelect(p) ){ 1187 Vdbe *v = pParse->pVdbe; 1188 int iSelect; 1189 assert( p->op==TK_SELECT ); 1190 iSelect = sqlite3CodeSubselect(pParse, p); 1191 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); 1192 }else 1193 #endif 1194 { 1195 int i; 1196 const ExprList *pList; 1197 assert( ExprUseXList(p) ); 1198 pList = p->x.pList; 1199 assert( nReg<=pList->nExpr ); 1200 for(i=0; i<nReg; i++){ 1201 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i); 1202 } 1203 } 1204 }else{ 1205 assert( nReg==1 || pParse->nErr ); 1206 sqlite3ExprCode(pParse, p, iReg); 1207 } 1208 } 1209 1210 /* An instance of the IdxExprTrans object carries information about a 1211 ** mapping from an expression on table columns into a column in an index 1212 ** down through the Walker. 1213 */ 1214 typedef struct IdxExprTrans { 1215 Expr *pIdxExpr; /* The index expression */ 1216 int iTabCur; /* The cursor of the corresponding table */ 1217 int iIdxCur; /* The cursor for the index */ 1218 int iIdxCol; /* The column for the index */ 1219 int iTabCol; /* The column for the table */ 1220 WhereInfo *pWInfo; /* Complete WHERE clause information */ 1221 sqlite3 *db; /* Database connection (for malloc()) */ 1222 } IdxExprTrans; 1223 1224 /* 1225 ** Preserve pExpr on the WhereETrans list of the WhereInfo. 1226 */ 1227 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){ 1228 WhereExprMod *pNew; 1229 pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew)); 1230 if( pNew==0 ) return; 1231 pNew->pNext = pTrans->pWInfo->pExprMods; 1232 pTrans->pWInfo->pExprMods = pNew; 1233 pNew->pExpr = pExpr; 1234 memcpy(&pNew->orig, pExpr, sizeof(*pExpr)); 1235 } 1236 1237 /* The walker node callback used to transform matching expressions into 1238 ** a reference to an index column for an index on an expression. 1239 ** 1240 ** If pExpr matches, then transform it into a reference to the index column 1241 ** that contains the value of pExpr. 1242 */ 1243 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){ 1244 IdxExprTrans *pX = p->u.pIdxTrans; 1245 if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){ 1246 preserveExpr(pX, pExpr); 1247 pExpr->affExpr = sqlite3ExprAffinity(pExpr); 1248 pExpr->op = TK_COLUMN; 1249 pExpr->iTable = pX->iIdxCur; 1250 pExpr->iColumn = pX->iIdxCol; 1251 testcase( ExprHasProperty(pExpr, EP_Skip) ); 1252 testcase( ExprHasProperty(pExpr, EP_Unlikely) ); 1253 ExprClearProperty(pExpr, EP_Skip|EP_Unlikely|EP_WinFunc|EP_Subrtn); 1254 pExpr->y.pTab = 0; 1255 return WRC_Prune; 1256 }else{ 1257 return WRC_Continue; 1258 } 1259 } 1260 1261 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1262 /* A walker node callback that translates a column reference to a table 1263 ** into a corresponding column reference of an index. 1264 */ 1265 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){ 1266 if( pExpr->op==TK_COLUMN ){ 1267 IdxExprTrans *pX = p->u.pIdxTrans; 1268 if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){ 1269 assert( ExprUseYTab(pExpr) && pExpr->y.pTab!=0 ); 1270 preserveExpr(pX, pExpr); 1271 pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn); 1272 pExpr->iTable = pX->iIdxCur; 1273 pExpr->iColumn = pX->iIdxCol; 1274 pExpr->y.pTab = 0; 1275 } 1276 } 1277 return WRC_Continue; 1278 } 1279 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1280 1281 /* 1282 ** For an indexes on expression X, locate every instance of expression X 1283 ** in pExpr and change that subexpression into a reference to the appropriate 1284 ** column of the index. 1285 ** 1286 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in 1287 ** the table into references to the corresponding (stored) column of the 1288 ** index. 1289 */ 1290 static void whereIndexExprTrans( 1291 Index *pIdx, /* The Index */ 1292 int iTabCur, /* Cursor of the table that is being indexed */ 1293 int iIdxCur, /* Cursor of the index itself */ 1294 WhereInfo *pWInfo /* Transform expressions in this WHERE clause */ 1295 ){ 1296 int iIdxCol; /* Column number of the index */ 1297 ExprList *aColExpr; /* Expressions that are indexed */ 1298 Table *pTab; 1299 Walker w; 1300 IdxExprTrans x; 1301 aColExpr = pIdx->aColExpr; 1302 if( aColExpr==0 && !pIdx->bHasVCol ){ 1303 /* The index does not reference any expressions or virtual columns 1304 ** so no translations are needed. */ 1305 return; 1306 } 1307 pTab = pIdx->pTable; 1308 memset(&w, 0, sizeof(w)); 1309 w.u.pIdxTrans = &x; 1310 x.iTabCur = iTabCur; 1311 x.iIdxCur = iIdxCur; 1312 x.pWInfo = pWInfo; 1313 x.db = pWInfo->pParse->db; 1314 for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){ 1315 i16 iRef = pIdx->aiColumn[iIdxCol]; 1316 if( iRef==XN_EXPR ){ 1317 assert( aColExpr!=0 && aColExpr->a[iIdxCol].pExpr!=0 ); 1318 x.pIdxExpr = aColExpr->a[iIdxCol].pExpr; 1319 if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue; 1320 w.xExprCallback = whereIndexExprTransNode; 1321 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1322 }else if( iRef>=0 1323 && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0 1324 && ((pTab->aCol[iRef].colFlags & COLFLAG_HASCOLL)==0 1325 || sqlite3StrICmp(sqlite3ColumnColl(&pTab->aCol[iRef]), 1326 sqlite3StrBINARY)==0) 1327 ){ 1328 /* Check to see if there are direct references to generated columns 1329 ** that are contained in the index. Pulling the generated column 1330 ** out of the index is an optimization only - the main table is always 1331 ** available if the index cannot be used. To avoid unnecessary 1332 ** complication, omit this optimization if the collating sequence for 1333 ** the column is non-standard */ 1334 x.iTabCol = iRef; 1335 w.xExprCallback = whereIndexExprTransColumn; 1336 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1337 }else{ 1338 continue; 1339 } 1340 x.iIdxCol = iIdxCol; 1341 sqlite3WalkExpr(&w, pWInfo->pWhere); 1342 sqlite3WalkExprList(&w, pWInfo->pOrderBy); 1343 sqlite3WalkExprList(&w, pWInfo->pResultSet); 1344 } 1345 } 1346 1347 /* 1348 ** The pTruth expression is always true because it is the WHERE clause 1349 ** a partial index that is driving a query loop. Look through all of the 1350 ** WHERE clause terms on the query, and if any of those terms must be 1351 ** true because pTruth is true, then mark those WHERE clause terms as 1352 ** coded. 1353 */ 1354 static void whereApplyPartialIndexConstraints( 1355 Expr *pTruth, 1356 int iTabCur, 1357 WhereClause *pWC 1358 ){ 1359 int i; 1360 WhereTerm *pTerm; 1361 while( pTruth->op==TK_AND ){ 1362 whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC); 1363 pTruth = pTruth->pRight; 1364 } 1365 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1366 Expr *pExpr; 1367 if( pTerm->wtFlags & TERM_CODED ) continue; 1368 pExpr = pTerm->pExpr; 1369 if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){ 1370 pTerm->wtFlags |= TERM_CODED; 1371 } 1372 } 1373 } 1374 1375 /* 1376 ** This routine is called right after An OP_Filter has been generated and 1377 ** before the corresponding index search has been performed. This routine 1378 ** checks to see if there are additional Bloom filters in inner loops that 1379 ** can be checked prior to doing the index lookup. If there are available 1380 ** inner-loop Bloom filters, then evaluate those filters now, before the 1381 ** index lookup. The idea is that a Bloom filter check is way faster than 1382 ** an index lookup, and the Bloom filter might return false, meaning that 1383 ** the index lookup can be skipped. 1384 ** 1385 ** We know that an inner loop uses a Bloom filter because it has the 1386 ** WhereLevel.regFilter set. If an inner-loop Bloom filter is checked, 1387 ** then clear the WhereLevel.regFilter value to prevent the Bloom filter 1388 ** from being checked a second time when the inner loop is evaluated. 1389 */ 1390 static SQLITE_NOINLINE void filterPullDown( 1391 Parse *pParse, /* Parsing context */ 1392 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1393 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1394 int addrNxt, /* Jump here to bypass inner loops */ 1395 Bitmask notReady /* Loops that are not ready */ 1396 ){ 1397 while( ++iLevel < pWInfo->nLevel ){ 1398 WhereLevel *pLevel = &pWInfo->a[iLevel]; 1399 WhereLoop *pLoop = pLevel->pWLoop; 1400 if( pLevel->regFilter==0 ) continue; 1401 if( pLevel->pWLoop->nSkip ) continue; 1402 /* ,--- Because sqlite3ConstructBloomFilter() has will not have set 1403 ** vvvvv--' pLevel->regFilter if this were true. */ 1404 if( NEVER(pLoop->prereq & notReady) ) continue; 1405 if( pLoop->wsFlags & WHERE_IPK ){ 1406 WhereTerm *pTerm = pLoop->aLTerm[0]; 1407 int regRowid; 1408 assert( pTerm!=0 ); 1409 assert( pTerm->pExpr!=0 ); 1410 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1411 regRowid = sqlite3GetTempReg(pParse); 1412 regRowid = codeEqualityTerm(pParse, pTerm, pLevel, 0, 0, regRowid); 1413 sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter, 1414 addrNxt, regRowid, 1); 1415 VdbeCoverage(pParse->pVdbe); 1416 }else{ 1417 u16 nEq = pLoop->u.btree.nEq; 1418 int r1; 1419 char *zStartAff; 1420 1421 assert( pLoop->wsFlags & WHERE_INDEXED ); 1422 assert( (pLoop->wsFlags & WHERE_COLUMN_IN)==0 ); 1423 r1 = codeAllEqualityTerms(pParse,pLevel,0,0,&zStartAff); 1424 codeApplyAffinity(pParse, r1, nEq, zStartAff); 1425 sqlite3DbFree(pParse->db, zStartAff); 1426 sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter, 1427 addrNxt, r1, nEq); 1428 VdbeCoverage(pParse->pVdbe); 1429 } 1430 pLevel->regFilter = 0; 1431 } 1432 } 1433 1434 /* 1435 ** Generate code for the start of the iLevel-th loop in the WHERE clause 1436 ** implementation described by pWInfo. 1437 */ 1438 Bitmask sqlite3WhereCodeOneLoopStart( 1439 Parse *pParse, /* Parsing context */ 1440 Vdbe *v, /* Prepared statement under construction */ 1441 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1442 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1443 WhereLevel *pLevel, /* The current level pointer */ 1444 Bitmask notReady /* Which tables are currently available */ 1445 ){ 1446 int j, k; /* Loop counters */ 1447 int iCur; /* The VDBE cursor for the table */ 1448 int addrNxt; /* Where to jump to continue with the next IN case */ 1449 int bRev; /* True if we need to scan in reverse order */ 1450 WhereLoop *pLoop; /* The WhereLoop object being coded */ 1451 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 1452 WhereTerm *pTerm; /* A WHERE clause term */ 1453 sqlite3 *db; /* Database connection */ 1454 SrcItem *pTabItem; /* FROM clause term being coded */ 1455 int addrBrk; /* Jump here to break out of the loop */ 1456 int addrHalt; /* addrBrk for the outermost loop */ 1457 int addrCont; /* Jump here to continue with next cycle */ 1458 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 1459 int iReleaseReg = 0; /* Temp register to free before returning */ 1460 Index *pIdx = 0; /* Index used by loop (if any) */ 1461 int iLoop; /* Iteration of constraint generator loop */ 1462 1463 pWC = &pWInfo->sWC; 1464 db = pParse->db; 1465 pLoop = pLevel->pWLoop; 1466 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1467 iCur = pTabItem->iCursor; 1468 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 1469 bRev = (pWInfo->revMask>>iLevel)&1; 1470 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 1471 #if WHERETRACE_ENABLED /* 0x20800 */ 1472 if( sqlite3WhereTrace & 0x800 ){ 1473 sqlite3DebugPrintf("Coding level %d of %d: notReady=%llx iFrom=%d\n", 1474 iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom); 1475 sqlite3WhereLoopPrint(pLoop, pWC); 1476 } 1477 if( sqlite3WhereTrace & 0x20000 ){ 1478 if( iLevel==0 ){ 1479 sqlite3DebugPrintf("WHERE clause being coded:\n"); 1480 sqlite3TreeViewExpr(0, pWInfo->pWhere, 0); 1481 } 1482 sqlite3DebugPrintf("All WHERE-clause terms before coding:\n"); 1483 sqlite3WhereClausePrint(pWC); 1484 } 1485 #endif 1486 1487 /* Create labels for the "break" and "continue" instructions 1488 ** for the current loop. Jump to addrBrk to break out of a loop. 1489 ** Jump to cont to go immediately to the next iteration of the 1490 ** loop. 1491 ** 1492 ** When there is an IN operator, we also have a "addrNxt" label that 1493 ** means to continue with the next IN value combination. When 1494 ** there are no IN operators in the constraints, the "addrNxt" label 1495 ** is the same as "addrBrk". 1496 */ 1497 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 1498 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse); 1499 1500 /* If this is the right table of a LEFT OUTER JOIN, allocate and 1501 ** initialize a memory cell that records if this table matches any 1502 ** row of the left table of the join. 1503 */ 1504 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 1505 || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0 1506 ); 1507 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 1508 pLevel->iLeftJoin = ++pParse->nMem; 1509 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 1510 VdbeComment((v, "init LEFT JOIN no-match flag")); 1511 } 1512 1513 /* Compute a safe address to jump to if we discover that the table for 1514 ** this loop is empty and can never contribute content. */ 1515 for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){} 1516 addrHalt = pWInfo->a[j].addrBrk; 1517 1518 /* Special case of a FROM clause subquery implemented as a co-routine */ 1519 if( pTabItem->fg.viaCoroutine ){ 1520 int regYield = pTabItem->regReturn; 1521 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 1522 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 1523 VdbeCoverage(v); 1524 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 1525 pLevel->op = OP_Goto; 1526 }else 1527 1528 #ifndef SQLITE_OMIT_VIRTUALTABLE 1529 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 1530 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 1531 ** to access the data. 1532 */ 1533 int iReg; /* P3 Value for OP_VFilter */ 1534 int addrNotFound; 1535 int nConstraint = pLoop->nLTerm; 1536 1537 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 1538 addrNotFound = pLevel->addrBrk; 1539 for(j=0; j<nConstraint; j++){ 1540 int iTarget = iReg+j+2; 1541 pTerm = pLoop->aLTerm[j]; 1542 if( NEVER(pTerm==0) ) continue; 1543 if( pTerm->eOperator & WO_IN ){ 1544 if( SMASKBIT32(j) & pLoop->u.vtab.mHandleIn ){ 1545 int iTab = pParse->nTab++; 1546 int iCache = ++pParse->nMem; 1547 sqlite3CodeRhsOfIN(pParse, pTerm->pExpr, iTab); 1548 sqlite3VdbeAddOp3(v, OP_VInitIn, iTab, iTarget, iCache); 1549 }else{ 1550 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 1551 addrNotFound = pLevel->addrNxt; 1552 } 1553 }else{ 1554 Expr *pRight = pTerm->pExpr->pRight; 1555 codeExprOrVector(pParse, pRight, iTarget, 1); 1556 if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET 1557 && pLoop->u.vtab.bOmitOffset 1558 ){ 1559 assert( pTerm->eOperator==WO_AUX ); 1560 assert( pWInfo->pLimit!=0 ); 1561 assert( pWInfo->pLimit->iOffset>0 ); 1562 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWInfo->pLimit->iOffset); 1563 VdbeComment((v,"Zero OFFSET counter")); 1564 } 1565 } 1566 } 1567 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 1568 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 1569 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 1570 pLoop->u.vtab.idxStr, 1571 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); 1572 VdbeCoverage(v); 1573 pLoop->u.vtab.needFree = 0; 1574 /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed 1575 ** the u.vtab.idxStr. NULL it out to prevent a use-after-free */ 1576 if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0; 1577 pLevel->p1 = iCur; 1578 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 1579 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1580 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 1581 1582 for(j=0; j<nConstraint; j++){ 1583 pTerm = pLoop->aLTerm[j]; 1584 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ 1585 disableTerm(pLevel, pTerm); 1586 continue; 1587 } 1588 if( (pTerm->eOperator & WO_IN)!=0 1589 && (SMASKBIT32(j) & pLoop->u.vtab.mHandleIn)==0 1590 && !db->mallocFailed 1591 ){ 1592 Expr *pCompare; /* The comparison operator */ 1593 Expr *pRight; /* RHS of the comparison */ 1594 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ 1595 int iIn; /* IN loop corresponding to the j-th constraint */ 1596 1597 /* Reload the constraint value into reg[iReg+j+2]. The same value 1598 ** was loaded into the same register prior to the OP_VFilter, but 1599 ** the xFilter implementation might have changed the datatype or 1600 ** encoding of the value in the register, so it *must* be reloaded. 1601 */ 1602 for(iIn=0; ALWAYS(iIn<pLevel->u.in.nIn); iIn++){ 1603 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop); 1604 if( (pOp->opcode==OP_Column && pOp->p3==iReg+j+2) 1605 || (pOp->opcode==OP_Rowid && pOp->p2==iReg+j+2) 1606 ){ 1607 testcase( pOp->opcode==OP_Rowid ); 1608 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); 1609 break; 1610 } 1611 } 1612 1613 /* Generate code that will continue to the next row if 1614 ** the IN constraint is not satisfied 1615 */ 1616 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); 1617 if( !db->mallocFailed ){ 1618 int iFld = pTerm->u.x.iField; 1619 Expr *pLeft = pTerm->pExpr->pLeft; 1620 assert( pLeft!=0 ); 1621 if( iFld>0 ){ 1622 assert( pLeft->op==TK_VECTOR ); 1623 assert( ExprUseXList(pLeft) ); 1624 assert( iFld<=pLeft->x.pList->nExpr ); 1625 pCompare->pLeft = pLeft->x.pList->a[iFld-1].pExpr; 1626 }else{ 1627 pCompare->pLeft = pLeft; 1628 } 1629 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); 1630 if( pRight ){ 1631 pRight->iTable = iReg+j+2; 1632 sqlite3ExprIfFalse( 1633 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL 1634 ); 1635 } 1636 pCompare->pLeft = 0; 1637 } 1638 sqlite3ExprDelete(db, pCompare); 1639 } 1640 } 1641 1642 /* These registers need to be preserved in case there is an IN operator 1643 ** loop. So we could deallocate the registers here (and potentially 1644 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems 1645 ** simpler and safer to simply not reuse the registers. 1646 ** 1647 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 1648 */ 1649 }else 1650 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1651 1652 if( (pLoop->wsFlags & WHERE_IPK)!=0 1653 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 1654 ){ 1655 /* Case 2: We can directly reference a single row using an 1656 ** equality comparison against the ROWID field. Or 1657 ** we reference multiple rows using a "rowid IN (...)" 1658 ** construct. 1659 */ 1660 assert( pLoop->u.btree.nEq==1 ); 1661 pTerm = pLoop->aLTerm[0]; 1662 assert( pTerm!=0 ); 1663 assert( pTerm->pExpr!=0 ); 1664 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1665 iReleaseReg = ++pParse->nMem; 1666 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 1667 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 1668 addrNxt = pLevel->addrNxt; 1669 if( pLevel->regFilter ){ 1670 sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt, 1671 iRowidReg, 1); 1672 VdbeCoverage(v); 1673 filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady); 1674 } 1675 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); 1676 VdbeCoverage(v); 1677 pLevel->op = OP_Noop; 1678 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 1679 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 1680 ){ 1681 /* Case 3: We have an inequality comparison against the ROWID field. 1682 */ 1683 int testOp = OP_Noop; 1684 int start; 1685 int memEndValue = 0; 1686 WhereTerm *pStart, *pEnd; 1687 1688 j = 0; 1689 pStart = pEnd = 0; 1690 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 1691 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 1692 assert( pStart!=0 || pEnd!=0 ); 1693 if( bRev ){ 1694 pTerm = pStart; 1695 pStart = pEnd; 1696 pEnd = pTerm; 1697 } 1698 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); 1699 if( pStart ){ 1700 Expr *pX; /* The expression that defines the start bound */ 1701 int r1, rTemp; /* Registers for holding the start boundary */ 1702 int op; /* Cursor seek operation */ 1703 1704 /* The following constant maps TK_xx codes into corresponding 1705 ** seek opcodes. It depends on a particular ordering of TK_xx 1706 */ 1707 const u8 aMoveOp[] = { 1708 /* TK_GT */ OP_SeekGT, 1709 /* TK_LE */ OP_SeekLE, 1710 /* TK_LT */ OP_SeekLT, 1711 /* TK_GE */ OP_SeekGE 1712 }; 1713 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 1714 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 1715 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 1716 1717 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 1718 testcase( pStart->wtFlags & TERM_VIRTUAL ); 1719 pX = pStart->pExpr; 1720 assert( pX!=0 ); 1721 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 1722 if( sqlite3ExprIsVector(pX->pRight) ){ 1723 r1 = rTemp = sqlite3GetTempReg(pParse); 1724 codeExprOrVector(pParse, pX->pRight, r1, 1); 1725 testcase( pX->op==TK_GT ); 1726 testcase( pX->op==TK_GE ); 1727 testcase( pX->op==TK_LT ); 1728 testcase( pX->op==TK_LE ); 1729 op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1]; 1730 assert( pX->op!=TK_GT || op==OP_SeekGE ); 1731 assert( pX->op!=TK_GE || op==OP_SeekGE ); 1732 assert( pX->op!=TK_LT || op==OP_SeekLE ); 1733 assert( pX->op!=TK_LE || op==OP_SeekLE ); 1734 }else{ 1735 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 1736 disableTerm(pLevel, pStart); 1737 op = aMoveOp[(pX->op - TK_GT)]; 1738 } 1739 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); 1740 VdbeComment((v, "pk")); 1741 VdbeCoverageIf(v, pX->op==TK_GT); 1742 VdbeCoverageIf(v, pX->op==TK_LE); 1743 VdbeCoverageIf(v, pX->op==TK_LT); 1744 VdbeCoverageIf(v, pX->op==TK_GE); 1745 sqlite3ReleaseTempReg(pParse, rTemp); 1746 }else{ 1747 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt); 1748 VdbeCoverageIf(v, bRev==0); 1749 VdbeCoverageIf(v, bRev!=0); 1750 } 1751 if( pEnd ){ 1752 Expr *pX; 1753 pX = pEnd->pExpr; 1754 assert( pX!=0 ); 1755 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 1756 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 1757 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 1758 memEndValue = ++pParse->nMem; 1759 codeExprOrVector(pParse, pX->pRight, memEndValue, 1); 1760 if( 0==sqlite3ExprIsVector(pX->pRight) 1761 && (pX->op==TK_LT || pX->op==TK_GT) 1762 ){ 1763 testOp = bRev ? OP_Le : OP_Ge; 1764 }else{ 1765 testOp = bRev ? OP_Lt : OP_Gt; 1766 } 1767 if( 0==sqlite3ExprIsVector(pX->pRight) ){ 1768 disableTerm(pLevel, pEnd); 1769 } 1770 } 1771 start = sqlite3VdbeCurrentAddr(v); 1772 pLevel->op = bRev ? OP_Prev : OP_Next; 1773 pLevel->p1 = iCur; 1774 pLevel->p2 = start; 1775 assert( pLevel->p5==0 ); 1776 if( testOp!=OP_Noop ){ 1777 iRowidReg = ++pParse->nMem; 1778 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 1779 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 1780 VdbeCoverageIf(v, testOp==OP_Le); 1781 VdbeCoverageIf(v, testOp==OP_Lt); 1782 VdbeCoverageIf(v, testOp==OP_Ge); 1783 VdbeCoverageIf(v, testOp==OP_Gt); 1784 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 1785 } 1786 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 1787 /* Case 4: A scan using an index. 1788 ** 1789 ** The WHERE clause may contain zero or more equality 1790 ** terms ("==" or "IN" operators) that refer to the N 1791 ** left-most columns of the index. It may also contain 1792 ** inequality constraints (>, <, >= or <=) on the indexed 1793 ** column that immediately follows the N equalities. Only 1794 ** the right-most column can be an inequality - the rest must 1795 ** use the "==" and "IN" operators. For example, if the 1796 ** index is on (x,y,z), then the following clauses are all 1797 ** optimized: 1798 ** 1799 ** x=5 1800 ** x=5 AND y=10 1801 ** x=5 AND y<10 1802 ** x=5 AND y>5 AND y<10 1803 ** x=5 AND y=5 AND z<=10 1804 ** 1805 ** The z<10 term of the following cannot be used, only 1806 ** the x=5 term: 1807 ** 1808 ** x=5 AND z<10 1809 ** 1810 ** N may be zero if there are inequality constraints. 1811 ** If there are no inequality constraints, then N is at 1812 ** least one. 1813 ** 1814 ** This case is also used when there are no WHERE clause 1815 ** constraints but an index is selected anyway, in order 1816 ** to force the output order to conform to an ORDER BY. 1817 */ 1818 static const u8 aStartOp[] = { 1819 0, 1820 0, 1821 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1822 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1823 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1824 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1825 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1826 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1827 }; 1828 static const u8 aEndOp[] = { 1829 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1830 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1831 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1832 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1833 }; 1834 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1835 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ 1836 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ 1837 int regBase; /* Base register holding constraint values */ 1838 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1839 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1840 int startEq; /* True if range start uses ==, >= or <= */ 1841 int endEq; /* True if range end uses ==, >= or <= */ 1842 int start_constraints; /* Start of range is constrained */ 1843 int nConstraint; /* Number of constraint terms */ 1844 int iIdxCur; /* The VDBE cursor for the index */ 1845 int nExtraReg = 0; /* Number of extra registers needed */ 1846 int op; /* Instruction opcode */ 1847 char *zStartAff; /* Affinity for start of range constraint */ 1848 char *zEndAff = 0; /* Affinity for end of range constraint */ 1849 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1850 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1851 int omitTable; /* True if we use the index only */ 1852 int regBignull = 0; /* big-null flag register */ 1853 int addrSeekScan = 0; /* Opcode of the OP_SeekScan, if any */ 1854 1855 pIdx = pLoop->u.btree.pIndex; 1856 iIdxCur = pLevel->iIdxCur; 1857 assert( nEq>=pLoop->nSkip ); 1858 1859 /* Find any inequality constraint terms for the start and end 1860 ** of the range. 1861 */ 1862 j = nEq; 1863 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1864 pRangeStart = pLoop->aLTerm[j++]; 1865 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); 1866 /* Like optimization range constraints always occur in pairs */ 1867 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1868 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1869 } 1870 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1871 pRangeEnd = pLoop->aLTerm[j++]; 1872 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); 1873 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1874 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1875 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1876 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1877 pLevel->iLikeRepCntr = (u32)++pParse->nMem; 1878 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); 1879 VdbeComment((v, "LIKE loop counter")); 1880 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1881 /* iLikeRepCntr actually stores 2x the counter register number. The 1882 ** bottom bit indicates whether the search order is ASC or DESC. */ 1883 testcase( bRev ); 1884 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1885 assert( (bRev & ~1)==0 ); 1886 pLevel->iLikeRepCntr <<=1; 1887 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); 1888 } 1889 #endif 1890 if( pRangeStart==0 ){ 1891 j = pIdx->aiColumn[nEq]; 1892 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){ 1893 bSeekPastNull = 1; 1894 } 1895 } 1896 } 1897 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1898 1899 /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses 1900 ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS 1901 ** FIRST). In both cases separate ordered scans are made of those 1902 ** index entries for which the column is null and for those for which 1903 ** it is not. For an ASC sort, the non-NULL entries are scanned first. 1904 ** For DESC, NULL entries are scanned first. 1905 */ 1906 if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0 1907 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0 1908 ){ 1909 assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 ); 1910 assert( pRangeEnd==0 && pRangeStart==0 ); 1911 testcase( pLoop->nSkip>0 ); 1912 nExtraReg = 1; 1913 bSeekPastNull = 1; 1914 pLevel->regBignull = regBignull = ++pParse->nMem; 1915 if( pLevel->iLeftJoin ){ 1916 sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull); 1917 } 1918 pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse); 1919 } 1920 1921 /* If we are doing a reverse order scan on an ascending index, or 1922 ** a forward order scan on a descending index, interchange the 1923 ** start and end terms (pRangeStart and pRangeEnd). 1924 */ 1925 if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){ 1926 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1927 SWAP(u8, bSeekPastNull, bStopAtNull); 1928 SWAP(u8, nBtm, nTop); 1929 } 1930 1931 if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){ 1932 /* In case OP_SeekScan is used, ensure that the index cursor does not 1933 ** point to a valid row for the first iteration of this loop. */ 1934 sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur); 1935 } 1936 1937 /* Generate code to evaluate all constraint terms using == or IN 1938 ** and store the values of those terms in an array of registers 1939 ** starting at regBase. 1940 */ 1941 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); 1942 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1943 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1944 if( zStartAff && nTop ){ 1945 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); 1946 } 1947 addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt); 1948 1949 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1950 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1951 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1952 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1953 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1954 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1955 start_constraints = pRangeStart || nEq>0; 1956 1957 /* Seek the index cursor to the start of the range. */ 1958 nConstraint = nEq; 1959 if( pRangeStart ){ 1960 Expr *pRight = pRangeStart->pExpr->pRight; 1961 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); 1962 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1963 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1964 && sqlite3ExprCanBeNull(pRight) 1965 ){ 1966 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1967 VdbeCoverage(v); 1968 } 1969 if( zStartAff ){ 1970 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); 1971 } 1972 nConstraint += nBtm; 1973 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1974 if( sqlite3ExprIsVector(pRight)==0 ){ 1975 disableTerm(pLevel, pRangeStart); 1976 }else{ 1977 startEq = 1; 1978 } 1979 bSeekPastNull = 0; 1980 }else if( bSeekPastNull ){ 1981 startEq = 0; 1982 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1983 start_constraints = 1; 1984 nConstraint++; 1985 }else if( regBignull ){ 1986 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1987 start_constraints = 1; 1988 nConstraint++; 1989 } 1990 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1991 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ 1992 /* The skip-scan logic inside the call to codeAllEqualityConstraints() 1993 ** above has already left the cursor sitting on the correct row, 1994 ** so no further seeking is needed */ 1995 }else{ 1996 if( regBignull ){ 1997 sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull); 1998 VdbeComment((v, "NULL-scan pass ctr")); 1999 } 2000 if( pLevel->regFilter ){ 2001 sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt, 2002 regBase, nEq); 2003 VdbeCoverage(v); 2004 filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady); 2005 } 2006 2007 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 2008 assert( op!=0 ); 2009 if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){ 2010 assert( regBignull==0 ); 2011 /* TUNING: The OP_SeekScan opcode seeks to reduce the number 2012 ** of expensive seek operations by replacing a single seek with 2013 ** 1 or more step operations. The question is, how many steps 2014 ** should we try before giving up and going with a seek. The cost 2015 ** of a seek is proportional to the logarithm of the of the number 2016 ** of entries in the tree, so basing the number of steps to try 2017 ** on the estimated number of rows in the btree seems like a good 2018 ** guess. */ 2019 addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan, 2020 (pIdx->aiRowLogEst[0]+9)/10); 2021 VdbeCoverage(v); 2022 } 2023 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 2024 VdbeCoverage(v); 2025 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 2026 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 2027 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 2028 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 2029 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 2030 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 2031 2032 assert( bSeekPastNull==0 || bStopAtNull==0 ); 2033 if( regBignull ){ 2034 assert( bSeekPastNull==1 || bStopAtNull==1 ); 2035 assert( bSeekPastNull==!bStopAtNull ); 2036 assert( bStopAtNull==startEq ); 2037 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2); 2038 op = aStartOp[(nConstraint>1)*4 + 2 + bRev]; 2039 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 2040 nConstraint-startEq); 2041 VdbeCoverage(v); 2042 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 2043 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 2044 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 2045 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 2046 assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE); 2047 } 2048 } 2049 2050 /* Load the value for the inequality constraint at the end of the 2051 ** range (if any). 2052 */ 2053 nConstraint = nEq; 2054 assert( pLevel->p2==0 ); 2055 if( pRangeEnd ){ 2056 Expr *pRight = pRangeEnd->pExpr->pRight; 2057 if( addrSeekScan ){ 2058 /* For a seek-scan that has a range on the lowest term of the index, 2059 ** we have to make the top of the loop be code that sets the end 2060 ** condition of the range. Otherwise, the OP_SeekScan might jump 2061 ** over that initialization, leaving the range-end value set to the 2062 ** range-start value, resulting in a wrong answer. 2063 ** See ticket 5981a8c041a3c2f3 (2021-11-02). 2064 */ 2065 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2066 } 2067 codeExprOrVector(pParse, pRight, regBase+nEq, nTop); 2068 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 2069 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 2070 && sqlite3ExprCanBeNull(pRight) 2071 ){ 2072 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 2073 VdbeCoverage(v); 2074 } 2075 if( zEndAff ){ 2076 updateRangeAffinityStr(pRight, nTop, zEndAff); 2077 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); 2078 }else{ 2079 assert( pParse->db->mallocFailed ); 2080 } 2081 nConstraint += nTop; 2082 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 2083 2084 if( sqlite3ExprIsVector(pRight)==0 ){ 2085 disableTerm(pLevel, pRangeEnd); 2086 }else{ 2087 endEq = 1; 2088 } 2089 }else if( bStopAtNull ){ 2090 if( regBignull==0 ){ 2091 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 2092 endEq = 0; 2093 } 2094 nConstraint++; 2095 } 2096 sqlite3DbFree(db, zStartAff); 2097 sqlite3DbFree(db, zEndAff); 2098 2099 /* Top of the loop body */ 2100 if( pLevel->p2==0 ) pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2101 2102 /* Check if the index cursor is past the end of the range. */ 2103 if( nConstraint ){ 2104 if( regBignull ){ 2105 /* Except, skip the end-of-range check while doing the NULL-scan */ 2106 sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3); 2107 VdbeComment((v, "If NULL-scan 2nd pass")); 2108 VdbeCoverage(v); 2109 } 2110 op = aEndOp[bRev*2 + endEq]; 2111 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 2112 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 2113 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 2114 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 2115 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 2116 if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan); 2117 } 2118 if( regBignull ){ 2119 /* During a NULL-scan, check to see if we have reached the end of 2120 ** the NULLs */ 2121 assert( bSeekPastNull==!bStopAtNull ); 2122 assert( bSeekPastNull+bStopAtNull==1 ); 2123 assert( nConstraint+bSeekPastNull>0 ); 2124 sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2); 2125 VdbeComment((v, "If NULL-scan 1st pass")); 2126 VdbeCoverage(v); 2127 op = aEndOp[bRev*2 + bSeekPastNull]; 2128 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 2129 nConstraint+bSeekPastNull); 2130 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 2131 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 2132 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 2133 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 2134 } 2135 2136 if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){ 2137 sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq); 2138 } 2139 2140 /* Seek the table cursor, if required */ 2141 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 2142 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0; 2143 if( omitTable ){ 2144 /* pIdx is a covering index. No need to access the main table. */ 2145 }else if( HasRowid(pIdx->pTable) ){ 2146 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); 2147 }else if( iCur!=iIdxCur ){ 2148 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 2149 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 2150 for(j=0; j<pPk->nKeyCol; j++){ 2151 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]); 2152 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 2153 } 2154 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 2155 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 2156 } 2157 2158 if( pLevel->iLeftJoin==0 ){ 2159 /* If pIdx is an index on one or more expressions, then look through 2160 ** all the expressions in pWInfo and try to transform matching expressions 2161 ** into reference to index columns. Also attempt to translate references 2162 ** to virtual columns in the table into references to (stored) columns 2163 ** of the index. 2164 ** 2165 ** Do not do this for the RHS of a LEFT JOIN. This is because the 2166 ** expression may be evaluated after OP_NullRow has been executed on 2167 ** the cursor. In this case it is important to do the full evaluation, 2168 ** as the result of the expression may not be NULL, even if all table 2169 ** column values are. https://www.sqlite.org/src/info/7fa8049685b50b5a 2170 ** 2171 ** Also, do not do this when processing one index an a multi-index 2172 ** OR clause, since the transformation will become invalid once we 2173 ** move forward to the next index. 2174 ** https://sqlite.org/src/info/4e8e4857d32d401f 2175 */ 2176 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ 2177 whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo); 2178 } 2179 2180 /* If a partial index is driving the loop, try to eliminate WHERE clause 2181 ** terms from the query that must be true due to the WHERE clause of 2182 ** the partial index. 2183 ** 2184 ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work 2185 ** for a LEFT JOIN. 2186 */ 2187 if( pIdx->pPartIdxWhere ){ 2188 whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC); 2189 } 2190 }else{ 2191 testcase( pIdx->pPartIdxWhere ); 2192 /* The following assert() is not a requirement, merely an observation: 2193 ** The OR-optimization doesn't work for the right hand table of 2194 ** a LEFT JOIN: */ 2195 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ); 2196 } 2197 2198 /* Record the instruction used to terminate the loop. */ 2199 if( pLoop->wsFlags & WHERE_ONEROW ){ 2200 pLevel->op = OP_Noop; 2201 }else if( bRev ){ 2202 pLevel->op = OP_Prev; 2203 }else{ 2204 pLevel->op = OP_Next; 2205 } 2206 pLevel->p1 = iIdxCur; 2207 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 2208 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 2209 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2210 }else{ 2211 assert( pLevel->p5==0 ); 2212 } 2213 if( omitTable ) pIdx = 0; 2214 }else 2215 2216 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 2217 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 2218 /* Case 5: Two or more separately indexed terms connected by OR 2219 ** 2220 ** Example: 2221 ** 2222 ** CREATE TABLE t1(a,b,c,d); 2223 ** CREATE INDEX i1 ON t1(a); 2224 ** CREATE INDEX i2 ON t1(b); 2225 ** CREATE INDEX i3 ON t1(c); 2226 ** 2227 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 2228 ** 2229 ** In the example, there are three indexed terms connected by OR. 2230 ** The top of the loop looks like this: 2231 ** 2232 ** Null 1 # Zero the rowset in reg 1 2233 ** 2234 ** Then, for each indexed term, the following. The arguments to 2235 ** RowSetTest are such that the rowid of the current row is inserted 2236 ** into the RowSet. If it is already present, control skips the 2237 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 2238 ** 2239 ** sqlite3WhereBegin(<term>) 2240 ** RowSetTest # Insert rowid into rowset 2241 ** Gosub 2 A 2242 ** sqlite3WhereEnd() 2243 ** 2244 ** Following the above, code to terminate the loop. Label A, the target 2245 ** of the Gosub above, jumps to the instruction right after the Goto. 2246 ** 2247 ** Null 1 # Zero the rowset in reg 1 2248 ** Goto B # The loop is finished. 2249 ** 2250 ** A: <loop body> # Return data, whatever. 2251 ** 2252 ** Return 2 # Jump back to the Gosub 2253 ** 2254 ** B: <after the loop> 2255 ** 2256 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 2257 ** use an ephemeral index instead of a RowSet to record the primary 2258 ** keys of the rows we have already seen. 2259 ** 2260 */ 2261 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 2262 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 2263 Index *pCov = 0; /* Potential covering index (or NULL) */ 2264 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 2265 2266 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 2267 int regRowset = 0; /* Register for RowSet object */ 2268 int regRowid = 0; /* Register holding rowid */ 2269 int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */ 2270 int iRetInit; /* Address of regReturn init */ 2271 int untestedTerms = 0; /* Some terms not completely tested */ 2272 int ii; /* Loop counter */ 2273 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 2274 Table *pTab = pTabItem->pTab; 2275 2276 pTerm = pLoop->aLTerm[0]; 2277 assert( pTerm!=0 ); 2278 assert( pTerm->eOperator & WO_OR ); 2279 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 2280 pOrWc = &pTerm->u.pOrInfo->wc; 2281 pLevel->op = OP_Return; 2282 pLevel->p1 = regReturn; 2283 2284 /* Set up a new SrcList in pOrTab containing the table being scanned 2285 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 2286 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 2287 */ 2288 if( pWInfo->nLevel>1 ){ 2289 int nNotReady; /* The number of notReady tables */ 2290 SrcItem *origSrc; /* Original list of tables */ 2291 nNotReady = pWInfo->nLevel - iLevel - 1; 2292 pOrTab = sqlite3StackAllocRaw(db, 2293 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 2294 if( pOrTab==0 ) return notReady; 2295 pOrTab->nAlloc = (u8)(nNotReady + 1); 2296 pOrTab->nSrc = pOrTab->nAlloc; 2297 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 2298 origSrc = pWInfo->pTabList->a; 2299 for(k=1; k<=nNotReady; k++){ 2300 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 2301 } 2302 }else{ 2303 pOrTab = pWInfo->pTabList; 2304 } 2305 2306 /* Initialize the rowset register to contain NULL. An SQL NULL is 2307 ** equivalent to an empty rowset. Or, create an ephemeral index 2308 ** capable of holding primary keys in the case of a WITHOUT ROWID. 2309 ** 2310 ** Also initialize regReturn to contain the address of the instruction 2311 ** immediately following the OP_Return at the bottom of the loop. This 2312 ** is required in a few obscure LEFT JOIN cases where control jumps 2313 ** over the top of the loop into the body of it. In this case the 2314 ** correct response for the end-of-loop code (the OP_Return) is to 2315 ** fall through to the next instruction, just as an OP_Next does if 2316 ** called on an uninitialized cursor. 2317 */ 2318 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2319 if( HasRowid(pTab) ){ 2320 regRowset = ++pParse->nMem; 2321 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 2322 }else{ 2323 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2324 regRowset = pParse->nTab++; 2325 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 2326 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 2327 } 2328 regRowid = ++pParse->nMem; 2329 } 2330 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 2331 2332 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 2333 ** Then for every term xN, evaluate as the subexpression: xN AND y 2334 ** That way, terms in y that are factored into the disjunction will 2335 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 2336 ** 2337 ** Actually, each subexpression is converted to "xN AND w" where w is 2338 ** the "interesting" terms of z - terms that did not originate in the 2339 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 2340 ** indices. 2341 ** 2342 ** This optimization also only applies if the (x1 OR x2 OR ...) term 2343 ** is not contained in the ON clause of a LEFT JOIN. 2344 ** See ticket http://www.sqlite.org/src/info/f2369304e4 2345 ** 2346 ** 2022-02-04: Do not push down slices of a row-value comparison. 2347 ** In other words, "w" or "y" may not be a slice of a vector. Otherwise, 2348 ** the initialization of the right-hand operand of the vector comparison 2349 ** might not occur, or might occur only in an OR branch that is not 2350 ** taken. dbsqlfuzz 80a9fade844b4fb43564efc972bcb2c68270f5d1. 2351 ** 2352 ** 2022-03-03: Do not push down expressions that involve subqueries. 2353 ** The subquery might get coded as a subroutine. Any table-references 2354 ** in the subquery might be resolved to index-references for the index on 2355 ** the OR branch in which the subroutine is coded. But if the subroutine 2356 ** is invoked from a different OR branch that uses a different index, such 2357 ** index-references will not work. tag-20220303a 2358 ** https://sqlite.org/forum/forumpost/36937b197273d403 2359 */ 2360 if( pWC->nTerm>1 ){ 2361 int iTerm; 2362 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 2363 Expr *pExpr = pWC->a[iTerm].pExpr; 2364 if( &pWC->a[iTerm] == pTerm ) continue; 2365 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); 2366 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); 2367 testcase( pWC->a[iTerm].wtFlags & TERM_SLICE ); 2368 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED|TERM_SLICE))!=0 ){ 2369 continue; 2370 } 2371 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 2372 if( ExprHasProperty(pExpr, EP_Subquery) ) continue; /* tag-20220303a */ 2373 pExpr = sqlite3ExprDup(db, pExpr, 0); 2374 pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr); 2375 } 2376 if( pAndExpr ){ 2377 /* The extra 0x10000 bit on the opcode is masked off and does not 2378 ** become part of the new Expr.op. However, it does make the 2379 ** op==TK_AND comparison inside of sqlite3PExpr() false, and this 2380 ** prevents sqlite3PExpr() from applying the AND short-circuit 2381 ** optimization, which we do not want here. */ 2382 pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr); 2383 } 2384 } 2385 2386 /* Run a separate WHERE clause for each term of the OR clause. After 2387 ** eliminating duplicates from other WHERE clauses, the action for each 2388 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 2389 */ 2390 ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR")); 2391 for(ii=0; ii<pOrWc->nTerm; ii++){ 2392 WhereTerm *pOrTerm = &pOrWc->a[ii]; 2393 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 2394 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 2395 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 2396 Expr *pDelete; /* Local copy of OR clause term */ 2397 int jmp1 = 0; /* Address of jump operation */ 2398 testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0 2399 && !ExprHasProperty(pOrExpr, EP_FromJoin) 2400 ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */ 2401 pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0); 2402 if( db->mallocFailed ){ 2403 sqlite3ExprDelete(db, pDelete); 2404 continue; 2405 } 2406 if( pAndExpr ){ 2407 pAndExpr->pLeft = pOrExpr; 2408 pOrExpr = pAndExpr; 2409 } 2410 /* Loop through table entries that match term pOrTerm. */ 2411 ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1)); 2412 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 2413 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 0, 2414 WHERE_OR_SUBCLAUSE, iCovCur); 2415 assert( pSubWInfo || pParse->nErr ); 2416 if( pSubWInfo ){ 2417 WhereLoop *pSubLoop; 2418 int addrExplain = sqlite3WhereExplainOneScan( 2419 pParse, pOrTab, &pSubWInfo->a[0], 0 2420 ); 2421 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 2422 2423 /* This is the sub-WHERE clause body. First skip over 2424 ** duplicate rows from prior sub-WHERE clauses, and record the 2425 ** rowid (or PRIMARY KEY) for the current row so that the same 2426 ** row will be skipped in subsequent sub-WHERE clauses. 2427 */ 2428 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2429 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 2430 if( HasRowid(pTab) ){ 2431 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid); 2432 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 2433 regRowid, iSet); 2434 VdbeCoverage(v); 2435 }else{ 2436 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2437 int nPk = pPk->nKeyCol; 2438 int iPk; 2439 int r; 2440 2441 /* Read the PK into an array of temp registers. */ 2442 r = sqlite3GetTempRange(pParse, nPk); 2443 for(iPk=0; iPk<nPk; iPk++){ 2444 int iCol = pPk->aiColumn[iPk]; 2445 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk); 2446 } 2447 2448 /* Check if the temp table already contains this key. If so, 2449 ** the row has already been included in the result set and 2450 ** can be ignored (by jumping past the Gosub below). Otherwise, 2451 ** insert the key into the temp table and proceed with processing 2452 ** the row. 2453 ** 2454 ** Use some of the same optimizations as OP_RowSetTest: If iSet 2455 ** is zero, assume that the key cannot already be present in 2456 ** the temp table. And if iSet is -1, assume that there is no 2457 ** need to insert the key into the temp table, as it will never 2458 ** be tested for. */ 2459 if( iSet ){ 2460 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 2461 VdbeCoverage(v); 2462 } 2463 if( iSet>=0 ){ 2464 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 2465 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid, 2466 r, nPk); 2467 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2468 } 2469 2470 /* Release the array of temp registers */ 2471 sqlite3ReleaseTempRange(pParse, r, nPk); 2472 } 2473 } 2474 2475 /* Invoke the main loop body as a subroutine */ 2476 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 2477 2478 /* Jump here (skipping the main loop body subroutine) if the 2479 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 2480 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 2481 2482 /* The pSubWInfo->untestedTerms flag means that this OR term 2483 ** contained one or more AND term from a notReady table. The 2484 ** terms from the notReady table could not be tested and will 2485 ** need to be tested later. 2486 */ 2487 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 2488 2489 /* If all of the OR-connected terms are optimized using the same 2490 ** index, and the index is opened using the same cursor number 2491 ** by each call to sqlite3WhereBegin() made by this loop, it may 2492 ** be possible to use that index as a covering index. 2493 ** 2494 ** If the call to sqlite3WhereBegin() above resulted in a scan that 2495 ** uses an index, and this is either the first OR-connected term 2496 ** processed or the index is the same as that used by all previous 2497 ** terms, set pCov to the candidate covering index. Otherwise, set 2498 ** pCov to NULL to indicate that no candidate covering index will 2499 ** be available. 2500 */ 2501 pSubLoop = pSubWInfo->a[0].pWLoop; 2502 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2503 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 2504 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 2505 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 2506 ){ 2507 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 2508 pCov = pSubLoop->u.btree.pIndex; 2509 }else{ 2510 pCov = 0; 2511 } 2512 if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){ 2513 pWInfo->bDeferredSeek = 1; 2514 } 2515 2516 /* Finish the loop through table entries that match term pOrTerm. */ 2517 sqlite3WhereEnd(pSubWInfo); 2518 ExplainQueryPlanPop(pParse); 2519 } 2520 sqlite3ExprDelete(db, pDelete); 2521 } 2522 } 2523 ExplainQueryPlanPop(pParse); 2524 assert( pLevel->pWLoop==pLoop ); 2525 assert( (pLoop->wsFlags & WHERE_MULTI_OR)!=0 ); 2526 assert( (pLoop->wsFlags & WHERE_IN_ABLE)==0 ); 2527 pLevel->u.pCoveringIdx = pCov; 2528 if( pCov ) pLevel->iIdxCur = iCovCur; 2529 if( pAndExpr ){ 2530 pAndExpr->pLeft = 0; 2531 sqlite3ExprDelete(db, pAndExpr); 2532 } 2533 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 2534 sqlite3VdbeGoto(v, pLevel->addrBrk); 2535 sqlite3VdbeResolveLabel(v, iLoopBody); 2536 2537 if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); } 2538 if( !untestedTerms ) disableTerm(pLevel, pTerm); 2539 }else 2540 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 2541 2542 { 2543 /* Case 6: There is no usable index. We must do a complete 2544 ** scan of the entire table. 2545 */ 2546 static const u8 aStep[] = { OP_Next, OP_Prev }; 2547 static const u8 aStart[] = { OP_Rewind, OP_Last }; 2548 assert( bRev==0 || bRev==1 ); 2549 if( pTabItem->fg.isRecursive ){ 2550 /* Tables marked isRecursive have only a single row that is stored in 2551 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 2552 pLevel->op = OP_Noop; 2553 }else{ 2554 codeCursorHint(pTabItem, pWInfo, pLevel, 0); 2555 pLevel->op = aStep[bRev]; 2556 pLevel->p1 = iCur; 2557 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt); 2558 VdbeCoverageIf(v, bRev==0); 2559 VdbeCoverageIf(v, bRev!=0); 2560 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2561 } 2562 } 2563 2564 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2565 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 2566 #endif 2567 2568 /* Insert code to test every subexpression that can be completely 2569 ** computed using the current set of tables. 2570 ** 2571 ** This loop may run between one and three times, depending on the 2572 ** constraints to be generated. The value of stack variable iLoop 2573 ** determines the constraints coded by each iteration, as follows: 2574 ** 2575 ** iLoop==1: Code only expressions that are entirely covered by pIdx. 2576 ** iLoop==2: Code remaining expressions that do not contain correlated 2577 ** sub-queries. 2578 ** iLoop==3: Code all remaining expressions. 2579 ** 2580 ** An effort is made to skip unnecessary iterations of the loop. 2581 */ 2582 iLoop = (pIdx ? 1 : 2); 2583 do{ 2584 int iNext = 0; /* Next value for iLoop */ 2585 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2586 Expr *pE; 2587 int skipLikeAddr = 0; 2588 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2589 testcase( pTerm->wtFlags & TERM_CODED ); 2590 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2591 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2592 testcase( pWInfo->untestedTerms==0 2593 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); 2594 pWInfo->untestedTerms = 1; 2595 continue; 2596 } 2597 pE = pTerm->pExpr; 2598 assert( pE!=0 ); 2599 if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){ 2600 continue; 2601 } 2602 2603 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){ 2604 iNext = 2; 2605 continue; 2606 } 2607 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){ 2608 if( iNext==0 ) iNext = 3; 2609 continue; 2610 } 2611 2612 if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){ 2613 /* If the TERM_LIKECOND flag is set, that means that the range search 2614 ** is sufficient to guarantee that the LIKE operator is true, so we 2615 ** can skip the call to the like(A,B) function. But this only works 2616 ** for strings. So do not skip the call to the function on the pass 2617 ** that compares BLOBs. */ 2618 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 2619 continue; 2620 #else 2621 u32 x = pLevel->iLikeRepCntr; 2622 if( x>0 ){ 2623 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1)); 2624 VdbeCoverageIf(v, (x&1)==1); 2625 VdbeCoverageIf(v, (x&1)==0); 2626 } 2627 #endif 2628 } 2629 #ifdef WHERETRACE_ENABLED /* 0xffff */ 2630 if( sqlite3WhereTrace ){ 2631 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d", 2632 pWC->nTerm-j, pTerm, iLoop)); 2633 } 2634 if( sqlite3WhereTrace & 0x800 ){ 2635 sqlite3DebugPrintf("Coding auxiliary constraint:\n"); 2636 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2637 } 2638 #endif 2639 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 2640 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 2641 pTerm->wtFlags |= TERM_CODED; 2642 } 2643 iLoop = iNext; 2644 }while( iLoop>0 ); 2645 2646 /* Insert code to test for implied constraints based on transitivity 2647 ** of the "==" operator. 2648 ** 2649 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 2650 ** and we are coding the t1 loop and the t2 loop has not yet coded, 2651 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 2652 ** the implied "t1.a=123" constraint. 2653 */ 2654 for(pTerm=pWC->a, j=pWC->nBase; j>0; j--, pTerm++){ 2655 Expr *pE, sEAlt; 2656 WhereTerm *pAlt; 2657 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2658 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 2659 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 2660 if( pTerm->leftCursor!=iCur ) continue; 2661 if( pTabItem->fg.jointype & JT_LEFT ) continue; 2662 pE = pTerm->pExpr; 2663 #ifdef WHERETRACE_ENABLED /* 0x800 */ 2664 if( sqlite3WhereTrace & 0x800 ){ 2665 sqlite3DebugPrintf("Coding transitive constraint:\n"); 2666 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2667 } 2668 #endif 2669 assert( !ExprHasProperty(pE, EP_FromJoin) ); 2670 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 2671 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 2672 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady, 2673 WO_EQ|WO_IN|WO_IS, 0); 2674 if( pAlt==0 ) continue; 2675 if( pAlt->wtFlags & (TERM_CODED) ) continue; 2676 if( (pAlt->eOperator & WO_IN) 2677 && ExprUseXSelect(pAlt->pExpr) 2678 && (pAlt->pExpr->x.pSelect->pEList->nExpr>1) 2679 ){ 2680 continue; 2681 } 2682 testcase( pAlt->eOperator & WO_EQ ); 2683 testcase( pAlt->eOperator & WO_IS ); 2684 testcase( pAlt->eOperator & WO_IN ); 2685 VdbeModuleComment((v, "begin transitive constraint")); 2686 sEAlt = *pAlt->pExpr; 2687 sEAlt.pLeft = pE->pLeft; 2688 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); 2689 pAlt->wtFlags |= TERM_CODED; 2690 } 2691 2692 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2693 ** at least one row of the right table has matched the left table. 2694 */ 2695 if( pLevel->iLeftJoin ){ 2696 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2697 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2698 VdbeComment((v, "record LEFT JOIN hit")); 2699 for(pTerm=pWC->a, j=0; j<pWC->nBase; j++, pTerm++){ 2700 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2701 testcase( pTerm->wtFlags & TERM_CODED ); 2702 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2703 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2704 assert( pWInfo->untestedTerms ); 2705 continue; 2706 } 2707 assert( pTerm->pExpr ); 2708 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 2709 pTerm->wtFlags |= TERM_CODED; 2710 } 2711 } 2712 2713 #if WHERETRACE_ENABLED /* 0x20800 */ 2714 if( sqlite3WhereTrace & 0x20000 ){ 2715 sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n", 2716 iLevel); 2717 sqlite3WhereClausePrint(pWC); 2718 } 2719 if( sqlite3WhereTrace & 0x800 ){ 2720 sqlite3DebugPrintf("End Coding level %d: notReady=%llx\n", 2721 iLevel, (u64)pLevel->notReady); 2722 } 2723 #endif 2724 return pLevel->notReady; 2725 } 2726