1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 /* 25 ** This routine is a helper for explainIndexRange() below 26 ** 27 ** pStr holds the text of an expression that we are building up one term 28 ** at a time. This routine adds a new term to the end of the expression. 29 ** Terms are separated by AND so add the "AND" text for second and subsequent 30 ** terms only. 31 */ 32 static void explainAppendTerm( 33 StrAccum *pStr, /* The text expression being built */ 34 int iTerm, /* Index of this term. First is zero */ 35 const char *zColumn, /* Name of the column */ 36 const char *zOp /* Name of the operator */ 37 ){ 38 if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5); 39 sqlite3StrAccumAppendAll(pStr, zColumn); 40 sqlite3StrAccumAppend(pStr, zOp, 1); 41 sqlite3StrAccumAppend(pStr, "?", 1); 42 } 43 44 /* 45 ** Return the name of the i-th column of the pIdx index. 46 */ 47 static const char *explainIndexColumnName(Index *pIdx, int i){ 48 i = pIdx->aiColumn[i]; 49 if( i==XN_EXPR ) return "<expr>"; 50 if( i==XN_ROWID ) return "rowid"; 51 return pIdx->pTable->aCol[i].zName; 52 } 53 54 /* 55 ** Argument pLevel describes a strategy for scanning table pTab. This 56 ** function appends text to pStr that describes the subset of table 57 ** rows scanned by the strategy in the form of an SQL expression. 58 ** 59 ** For example, if the query: 60 ** 61 ** SELECT * FROM t1 WHERE a=1 AND b>2; 62 ** 63 ** is run and there is an index on (a, b), then this function returns a 64 ** string similar to: 65 ** 66 ** "a=? AND b>?" 67 */ 68 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 69 Index *pIndex = pLoop->u.btree.pIndex; 70 u16 nEq = pLoop->u.btree.nEq; 71 u16 nSkip = pLoop->nSkip; 72 int i, j; 73 74 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 75 sqlite3StrAccumAppend(pStr, " (", 2); 76 for(i=0; i<nEq; i++){ 77 const char *z = explainIndexColumnName(pIndex, i); 78 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5); 79 sqlite3XPrintf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); 80 } 81 82 j = i; 83 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 84 const char *z = explainIndexColumnName(pIndex, i); 85 explainAppendTerm(pStr, i++, z, ">"); 86 } 87 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 88 const char *z = explainIndexColumnName(pIndex, j); 89 explainAppendTerm(pStr, i, z, "<"); 90 } 91 sqlite3StrAccumAppend(pStr, ")", 1); 92 } 93 94 /* 95 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 96 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 97 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 98 ** is added to the output to describe the table scan strategy in pLevel. 99 ** 100 ** If an OP_Explain opcode is added to the VM, its address is returned. 101 ** Otherwise, if no OP_Explain is coded, zero is returned. 102 */ 103 int sqlite3WhereExplainOneScan( 104 Parse *pParse, /* Parse context */ 105 SrcList *pTabList, /* Table list this loop refers to */ 106 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 107 int iLevel, /* Value for "level" column of output */ 108 int iFrom, /* Value for "from" column of output */ 109 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 110 ){ 111 int ret = 0; 112 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 113 if( pParse->explain==2 ) 114 #endif 115 { 116 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 117 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 118 sqlite3 *db = pParse->db; /* Database handle */ 119 int iId = pParse->iSelectId; /* Select id (left-most output column) */ 120 int isSearch; /* True for a SEARCH. False for SCAN. */ 121 WhereLoop *pLoop; /* The controlling WhereLoop object */ 122 u32 flags; /* Flags that describe this loop */ 123 char *zMsg; /* Text to add to EQP output */ 124 StrAccum str; /* EQP output string */ 125 char zBuf[100]; /* Initial space for EQP output string */ 126 127 pLoop = pLevel->pWLoop; 128 flags = pLoop->wsFlags; 129 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; 130 131 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 132 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 133 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 134 135 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 136 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN"); 137 if( pItem->pSelect ){ 138 sqlite3XPrintf(&str, " SUBQUERY %d", pItem->iSelectId); 139 }else{ 140 sqlite3XPrintf(&str, " TABLE %s", pItem->zName); 141 } 142 143 if( pItem->zAlias ){ 144 sqlite3XPrintf(&str, " AS %s", pItem->zAlias); 145 } 146 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 147 const char *zFmt = 0; 148 Index *pIdx; 149 150 assert( pLoop->u.btree.pIndex!=0 ); 151 pIdx = pLoop->u.btree.pIndex; 152 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 153 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 154 if( isSearch ){ 155 zFmt = "PRIMARY KEY"; 156 } 157 }else if( flags & WHERE_PARTIALIDX ){ 158 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 159 }else if( flags & WHERE_AUTO_INDEX ){ 160 zFmt = "AUTOMATIC COVERING INDEX"; 161 }else if( flags & WHERE_IDX_ONLY ){ 162 zFmt = "COVERING INDEX %s"; 163 }else{ 164 zFmt = "INDEX %s"; 165 } 166 if( zFmt ){ 167 sqlite3StrAccumAppend(&str, " USING ", 7); 168 sqlite3XPrintf(&str, zFmt, pIdx->zName); 169 explainIndexRange(&str, pLoop); 170 } 171 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 172 const char *zRangeOp; 173 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 174 zRangeOp = "="; 175 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 176 zRangeOp = ">? AND rowid<"; 177 }else if( flags&WHERE_BTM_LIMIT ){ 178 zRangeOp = ">"; 179 }else{ 180 assert( flags&WHERE_TOP_LIMIT); 181 zRangeOp = "<"; 182 } 183 sqlite3XPrintf(&str, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp); 184 } 185 #ifndef SQLITE_OMIT_VIRTUALTABLE 186 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 187 sqlite3XPrintf(&str, " VIRTUAL TABLE INDEX %d:%s", 188 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 189 } 190 #endif 191 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 192 if( pLoop->nOut>=10 ){ 193 sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); 194 }else{ 195 sqlite3StrAccumAppend(&str, " (~1 row)", 9); 196 } 197 #endif 198 zMsg = sqlite3StrAccumFinish(&str); 199 ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC); 200 } 201 return ret; 202 } 203 #endif /* SQLITE_OMIT_EXPLAIN */ 204 205 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 206 /* 207 ** Configure the VM passed as the first argument with an 208 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 209 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 210 ** clause that the scan reads data from. 211 ** 212 ** If argument addrExplain is not 0, it must be the address of an 213 ** OP_Explain instruction that describes the same loop. 214 */ 215 void sqlite3WhereAddScanStatus( 216 Vdbe *v, /* Vdbe to add scanstatus entry to */ 217 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 218 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 219 int addrExplain /* Address of OP_Explain (or 0) */ 220 ){ 221 const char *zObj = 0; 222 WhereLoop *pLoop = pLvl->pWLoop; 223 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 224 zObj = pLoop->u.btree.pIndex->zName; 225 }else{ 226 zObj = pSrclist->a[pLvl->iFrom].zName; 227 } 228 sqlite3VdbeScanStatus( 229 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 230 ); 231 } 232 #endif 233 234 235 /* 236 ** Disable a term in the WHERE clause. Except, do not disable the term 237 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 238 ** or USING clause of that join. 239 ** 240 ** Consider the term t2.z='ok' in the following queries: 241 ** 242 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 243 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 244 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 245 ** 246 ** The t2.z='ok' is disabled in the in (2) because it originates 247 ** in the ON clause. The term is disabled in (3) because it is not part 248 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 249 ** 250 ** Disabling a term causes that term to not be tested in the inner loop 251 ** of the join. Disabling is an optimization. When terms are satisfied 252 ** by indices, we disable them to prevent redundant tests in the inner 253 ** loop. We would get the correct results if nothing were ever disabled, 254 ** but joins might run a little slower. The trick is to disable as much 255 ** as we can without disabling too much. If we disabled in (1), we'd get 256 ** the wrong answer. See ticket #813. 257 ** 258 ** If all the children of a term are disabled, then that term is also 259 ** automatically disabled. In this way, terms get disabled if derived 260 ** virtual terms are tested first. For example: 261 ** 262 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 263 ** \___________/ \______/ \_____/ 264 ** parent child1 child2 265 ** 266 ** Only the parent term was in the original WHERE clause. The child1 267 ** and child2 terms were added by the LIKE optimization. If both of 268 ** the virtual child terms are valid, then testing of the parent can be 269 ** skipped. 270 ** 271 ** Usually the parent term is marked as TERM_CODED. But if the parent 272 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 273 ** The TERM_LIKECOND marking indicates that the term should be coded inside 274 ** a conditional such that is only evaluated on the second pass of a 275 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 276 */ 277 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 278 int nLoop = 0; 279 while( pTerm 280 && (pTerm->wtFlags & TERM_CODED)==0 281 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 282 && (pLevel->notReady & pTerm->prereqAll)==0 283 ){ 284 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 285 pTerm->wtFlags |= TERM_LIKECOND; 286 }else{ 287 pTerm->wtFlags |= TERM_CODED; 288 } 289 if( pTerm->iParent<0 ) break; 290 pTerm = &pTerm->pWC->a[pTerm->iParent]; 291 pTerm->nChild--; 292 if( pTerm->nChild!=0 ) break; 293 nLoop++; 294 } 295 } 296 297 /* 298 ** Code an OP_Affinity opcode to apply the column affinity string zAff 299 ** to the n registers starting at base. 300 ** 301 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the 302 ** beginning and end of zAff are ignored. If all entries in zAff are 303 ** SQLITE_AFF_BLOB, then no code gets generated. 304 ** 305 ** This routine makes its own copy of zAff so that the caller is free 306 ** to modify zAff after this routine returns. 307 */ 308 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 309 Vdbe *v = pParse->pVdbe; 310 if( zAff==0 ){ 311 assert( pParse->db->mallocFailed ); 312 return; 313 } 314 assert( v!=0 ); 315 316 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning 317 ** and end of the affinity string. 318 */ 319 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){ 320 n--; 321 base++; 322 zAff++; 323 } 324 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){ 325 n--; 326 } 327 328 /* Code the OP_Affinity opcode if there is anything left to do. */ 329 if( n>0 ){ 330 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 331 sqlite3ExprCacheAffinityChange(pParse, base, n); 332 } 333 } 334 335 336 /* 337 ** Generate code for a single equality term of the WHERE clause. An equality 338 ** term can be either X=expr or X IN (...). pTerm is the term to be 339 ** coded. 340 ** 341 ** The current value for the constraint is left in register iReg. 342 ** 343 ** For a constraint of the form X=expr, the expression is evaluated and its 344 ** result is left on the stack. For constraints of the form X IN (...) 345 ** this routine sets up a loop that will iterate over all values of X. 346 */ 347 static int codeEqualityTerm( 348 Parse *pParse, /* The parsing context */ 349 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 350 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 351 int iEq, /* Index of the equality term within this level */ 352 int bRev, /* True for reverse-order IN operations */ 353 int iTarget /* Attempt to leave results in this register */ 354 ){ 355 Expr *pX = pTerm->pExpr; 356 Vdbe *v = pParse->pVdbe; 357 int iReg; /* Register holding results */ 358 359 assert( iTarget>0 ); 360 if( pX->op==TK_EQ || pX->op==TK_IS ){ 361 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 362 }else if( pX->op==TK_ISNULL ){ 363 iReg = iTarget; 364 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 365 #ifndef SQLITE_OMIT_SUBQUERY 366 }else{ 367 int eType; 368 int iTab; 369 struct InLoop *pIn; 370 WhereLoop *pLoop = pLevel->pWLoop; 371 372 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 373 && pLoop->u.btree.pIndex!=0 374 && pLoop->u.btree.pIndex->aSortOrder[iEq] 375 ){ 376 testcase( iEq==0 ); 377 testcase( bRev ); 378 bRev = !bRev; 379 } 380 assert( pX->op==TK_IN ); 381 iReg = iTarget; 382 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0); 383 if( eType==IN_INDEX_INDEX_DESC ){ 384 testcase( bRev ); 385 bRev = !bRev; 386 } 387 iTab = pX->iTable; 388 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 389 VdbeCoverageIf(v, bRev); 390 VdbeCoverageIf(v, !bRev); 391 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 392 pLoop->wsFlags |= WHERE_IN_ABLE; 393 if( pLevel->u.in.nIn==0 ){ 394 pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 395 } 396 pLevel->u.in.nIn++; 397 pLevel->u.in.aInLoop = 398 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 399 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 400 pIn = pLevel->u.in.aInLoop; 401 if( pIn ){ 402 pIn += pLevel->u.in.nIn - 1; 403 pIn->iCur = iTab; 404 if( eType==IN_INDEX_ROWID ){ 405 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); 406 }else{ 407 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); 408 } 409 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; 410 sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v); 411 }else{ 412 pLevel->u.in.nIn = 0; 413 } 414 #endif 415 } 416 disableTerm(pLevel, pTerm); 417 return iReg; 418 } 419 420 /* 421 ** Generate code that will evaluate all == and IN constraints for an 422 ** index scan. 423 ** 424 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 425 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 426 ** The index has as many as three equality constraints, but in this 427 ** example, the third "c" value is an inequality. So only two 428 ** constraints are coded. This routine will generate code to evaluate 429 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 430 ** in consecutive registers and the index of the first register is returned. 431 ** 432 ** In the example above nEq==2. But this subroutine works for any value 433 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 434 ** The only thing it does is allocate the pLevel->iMem memory cell and 435 ** compute the affinity string. 436 ** 437 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 438 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 439 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 440 ** occurs after the nEq quality constraints. 441 ** 442 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 443 ** the index of the first memory cell in that range. The code that 444 ** calls this routine will use that memory range to store keys for 445 ** start and termination conditions of the loop. 446 ** key value of the loop. If one or more IN operators appear, then 447 ** this routine allocates an additional nEq memory cells for internal 448 ** use. 449 ** 450 ** Before returning, *pzAff is set to point to a buffer containing a 451 ** copy of the column affinity string of the index allocated using 452 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 453 ** with equality constraints that use BLOB or NONE affinity are set to 454 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 455 ** 456 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 457 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 458 ** 459 ** In the example above, the index on t1(a) has TEXT affinity. But since 460 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 461 ** no conversion should be attempted before using a t2.b value as part of 462 ** a key to search the index. Hence the first byte in the returned affinity 463 ** string in this example would be set to SQLITE_AFF_BLOB. 464 */ 465 static int codeAllEqualityTerms( 466 Parse *pParse, /* Parsing context */ 467 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 468 int bRev, /* Reverse the order of IN operators */ 469 int nExtraReg, /* Number of extra registers to allocate */ 470 char **pzAff /* OUT: Set to point to affinity string */ 471 ){ 472 u16 nEq; /* The number of == or IN constraints to code */ 473 u16 nSkip; /* Number of left-most columns to skip */ 474 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 475 Index *pIdx; /* The index being used for this loop */ 476 WhereTerm *pTerm; /* A single constraint term */ 477 WhereLoop *pLoop; /* The WhereLoop object */ 478 int j; /* Loop counter */ 479 int regBase; /* Base register */ 480 int nReg; /* Number of registers to allocate */ 481 char *zAff; /* Affinity string to return */ 482 483 /* This module is only called on query plans that use an index. */ 484 pLoop = pLevel->pWLoop; 485 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 486 nEq = pLoop->u.btree.nEq; 487 nSkip = pLoop->nSkip; 488 pIdx = pLoop->u.btree.pIndex; 489 assert( pIdx!=0 ); 490 491 /* Figure out how many memory cells we will need then allocate them. 492 */ 493 regBase = pParse->nMem + 1; 494 nReg = pLoop->u.btree.nEq + nExtraReg; 495 pParse->nMem += nReg; 496 497 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 498 assert( zAff!=0 || pParse->db->mallocFailed ); 499 500 if( nSkip ){ 501 int iIdxCur = pLevel->iIdxCur; 502 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 503 VdbeCoverageIf(v, bRev==0); 504 VdbeCoverageIf(v, bRev!=0); 505 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 506 j = sqlite3VdbeAddOp0(v, OP_Goto); 507 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 508 iIdxCur, 0, regBase, nSkip); 509 VdbeCoverageIf(v, bRev==0); 510 VdbeCoverageIf(v, bRev!=0); 511 sqlite3VdbeJumpHere(v, j); 512 for(j=0; j<nSkip; j++){ 513 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 514 testcase( pIdx->aiColumn[j]==XN_EXPR ); 515 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 516 } 517 } 518 519 /* Evaluate the equality constraints 520 */ 521 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 522 for(j=nSkip; j<nEq; j++){ 523 int r1; 524 pTerm = pLoop->aLTerm[j]; 525 assert( pTerm!=0 ); 526 /* The following testcase is true for indices with redundant columns. 527 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 528 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 529 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 530 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 531 if( r1!=regBase+j ){ 532 if( nReg==1 ){ 533 sqlite3ReleaseTempReg(pParse, regBase); 534 regBase = r1; 535 }else{ 536 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 537 } 538 } 539 testcase( pTerm->eOperator & WO_ISNULL ); 540 testcase( pTerm->eOperator & WO_IN ); 541 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ 542 Expr *pRight = pTerm->pExpr->pRight; 543 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 544 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 545 VdbeCoverage(v); 546 } 547 if( zAff ){ 548 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 549 zAff[j] = SQLITE_AFF_BLOB; 550 } 551 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 552 zAff[j] = SQLITE_AFF_BLOB; 553 } 554 } 555 } 556 } 557 *pzAff = zAff; 558 return regBase; 559 } 560 561 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 562 /* 563 ** If the most recently coded instruction is a constant range constraint 564 ** (a string literal) that originated from the LIKE optimization, then 565 ** set P3 and P5 on the OP_String opcode so that the string will be cast 566 ** to a BLOB at appropriate times. 567 ** 568 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 569 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 570 ** scan loop run twice, once for strings and a second time for BLOBs. 571 ** The OP_String opcodes on the second pass convert the upper and lower 572 ** bound string constants to blobs. This routine makes the necessary changes 573 ** to the OP_String opcodes for that to happen. 574 ** 575 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 576 ** only the one pass through the string space is required, so this routine 577 ** becomes a no-op. 578 */ 579 static void whereLikeOptimizationStringFixup( 580 Vdbe *v, /* prepared statement under construction */ 581 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 582 WhereTerm *pTerm /* The upper or lower bound just coded */ 583 ){ 584 if( pTerm->wtFlags & TERM_LIKEOPT ){ 585 VdbeOp *pOp; 586 assert( pLevel->iLikeRepCntr>0 ); 587 pOp = sqlite3VdbeGetOp(v, -1); 588 assert( pOp!=0 ); 589 assert( pOp->opcode==OP_String8 590 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 591 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ 592 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ 593 } 594 } 595 #else 596 # define whereLikeOptimizationStringFixup(A,B,C) 597 #endif 598 599 #ifdef SQLITE_ENABLE_CURSOR_HINTS 600 /* 601 ** Information is passed from codeCursorHint() down to individual nodes of 602 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 603 ** structure. 604 */ 605 struct CCurHint { 606 int iTabCur; /* Cursor for the main table */ 607 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 608 Index *pIdx; /* The index used to access the table */ 609 }; 610 611 /* 612 ** This function is called for every node of an expression that is a candidate 613 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 614 ** the table CCurHint.iTabCur, verify that the same column can be 615 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 616 */ 617 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 618 struct CCurHint *pHint = pWalker->u.pCCurHint; 619 assert( pHint->pIdx!=0 ); 620 if( pExpr->op==TK_COLUMN 621 && pExpr->iTable==pHint->iTabCur 622 && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0 623 ){ 624 pWalker->eCode = 1; 625 } 626 return WRC_Continue; 627 } 628 629 /* 630 ** Test whether or not expression pExpr, which was part of a WHERE clause, 631 ** should be included in the cursor-hint for a table that is on the rhs 632 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the 633 ** expression is not suitable. 634 ** 635 ** An expression is unsuitable if it might evaluate to non NULL even if 636 ** a TK_COLUMN node that does affect the value of the expression is set 637 ** to NULL. For example: 638 ** 639 ** col IS NULL 640 ** col IS NOT NULL 641 ** coalesce(col, 1) 642 ** CASE WHEN col THEN 0 ELSE 1 END 643 */ 644 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ 645 if( pExpr->op==TK_IS 646 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT 647 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE 648 ){ 649 pWalker->eCode = 1; 650 }else if( pExpr->op==TK_FUNCTION ){ 651 int d1; 652 char d2[3]; 653 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ 654 pWalker->eCode = 1; 655 } 656 } 657 658 return WRC_Continue; 659 } 660 661 662 /* 663 ** This function is called on every node of an expression tree used as an 664 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 665 ** that accesses any table other than the one identified by 666 ** CCurHint.iTabCur, then do the following: 667 ** 668 ** 1) allocate a register and code an OP_Column instruction to read 669 ** the specified column into the new register, and 670 ** 671 ** 2) transform the expression node to a TK_REGISTER node that reads 672 ** from the newly populated register. 673 ** 674 ** Also, if the node is a TK_COLUMN that does access the table idenified 675 ** by pCCurHint.iTabCur, and an index is being used (which we will 676 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 677 ** an access of the index rather than the original table. 678 */ 679 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 680 int rc = WRC_Continue; 681 struct CCurHint *pHint = pWalker->u.pCCurHint; 682 if( pExpr->op==TK_COLUMN ){ 683 if( pExpr->iTable!=pHint->iTabCur ){ 684 Vdbe *v = pWalker->pParse->pVdbe; 685 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 686 sqlite3ExprCodeGetColumnOfTable( 687 v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg 688 ); 689 pExpr->op = TK_REGISTER; 690 pExpr->iTable = reg; 691 }else if( pHint->pIdx!=0 ){ 692 pExpr->iTable = pHint->iIdxCur; 693 pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn); 694 assert( pExpr->iColumn>=0 ); 695 } 696 }else if( pExpr->op==TK_AGG_FUNCTION ){ 697 /* An aggregate function in the WHERE clause of a query means this must 698 ** be a correlated sub-query, and expression pExpr is an aggregate from 699 ** the parent context. Do not walk the function arguments in this case. 700 ** 701 ** todo: It should be possible to replace this node with a TK_REGISTER 702 ** expression, as the result of the expression must be stored in a 703 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 704 rc = WRC_Prune; 705 } 706 return rc; 707 } 708 709 /* 710 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 711 */ 712 static void codeCursorHint( 713 struct SrcList_item *pTabItem, /* FROM clause item */ 714 WhereInfo *pWInfo, /* The where clause */ 715 WhereLevel *pLevel, /* Which loop to provide hints for */ 716 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 717 ){ 718 Parse *pParse = pWInfo->pParse; 719 sqlite3 *db = pParse->db; 720 Vdbe *v = pParse->pVdbe; 721 Expr *pExpr = 0; 722 WhereLoop *pLoop = pLevel->pWLoop; 723 int iCur; 724 WhereClause *pWC; 725 WhereTerm *pTerm; 726 int i, j; 727 struct CCurHint sHint; 728 Walker sWalker; 729 730 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 731 iCur = pLevel->iTabCur; 732 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 733 sHint.iTabCur = iCur; 734 sHint.iIdxCur = pLevel->iIdxCur; 735 sHint.pIdx = pLoop->u.btree.pIndex; 736 memset(&sWalker, 0, sizeof(sWalker)); 737 sWalker.pParse = pParse; 738 sWalker.u.pCCurHint = &sHint; 739 pWC = &pWInfo->sWC; 740 for(i=0; i<pWC->nTerm; i++){ 741 pTerm = &pWC->a[i]; 742 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 743 if( pTerm->prereqAll & pLevel->notReady ) continue; 744 745 /* Any terms specified as part of the ON(...) clause for any LEFT 746 ** JOIN for which the current table is not the rhs are omitted 747 ** from the cursor-hint. 748 ** 749 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms 750 ** that were specified as part of the WHERE clause must be excluded. 751 ** This is to address the following: 752 ** 753 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; 754 ** 755 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its 756 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is 757 ** pushed down to the cursor, this row is filtered out, causing 758 ** SQLite to synthesize a row of NULL values. Which does match the 759 ** WHERE clause, and so the query returns a row. Which is incorrect. 760 ** 761 ** For the same reason, WHERE terms such as: 762 ** 763 ** WHERE 1 = (t2.c IS NULL) 764 ** 765 ** are also excluded. See codeCursorHintIsOrFunction() for details. 766 */ 767 if( pTabItem->fg.jointype & JT_LEFT ){ 768 Expr *pExpr = pTerm->pExpr; 769 if( !ExprHasProperty(pExpr, EP_FromJoin) 770 || pExpr->iRightJoinTable!=pTabItem->iCursor 771 ){ 772 sWalker.eCode = 0; 773 sWalker.xExprCallback = codeCursorHintIsOrFunction; 774 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 775 if( sWalker.eCode ) continue; 776 } 777 }else{ 778 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; 779 } 780 781 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 782 ** the cursor. These terms are not needed as hints for a pure range 783 ** scan (that has no == terms) so omit them. */ 784 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 785 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 786 if( j<pLoop->nLTerm ) continue; 787 } 788 789 /* No subqueries or non-deterministic functions allowed */ 790 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 791 792 /* For an index scan, make sure referenced columns are actually in 793 ** the index. */ 794 if( sHint.pIdx!=0 ){ 795 sWalker.eCode = 0; 796 sWalker.xExprCallback = codeCursorHintCheckExpr; 797 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 798 if( sWalker.eCode ) continue; 799 } 800 801 /* If we survive all prior tests, that means this term is worth hinting */ 802 pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 803 } 804 if( pExpr!=0 ){ 805 sWalker.xExprCallback = codeCursorHintFixExpr; 806 sqlite3WalkExpr(&sWalker, pExpr); 807 sqlite3VdbeAddOp4(v, OP_CursorHint, 808 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 809 (const char*)pExpr, P4_EXPR); 810 } 811 } 812 #else 813 # define codeCursorHint(A,B,C,D) /* No-op */ 814 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 815 816 /* 817 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains 818 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This 819 ** function generates code to do a deferred seek of cursor iCur to the 820 ** rowid stored in register iRowid. 821 ** 822 ** Normally, this is just: 823 ** 824 ** OP_Seek $iCur $iRowid 825 ** 826 ** However, if the scan currently being coded is a branch of an OR-loop and 827 ** the statement currently being coded is a SELECT, then P3 of the OP_Seek 828 ** is set to iIdxCur and P4 is set to point to an array of integers 829 ** containing one entry for each column of the table cursor iCur is open 830 ** on. For each table column, if the column is the i'th column of the 831 ** index, then the corresponding array entry is set to (i+1). If the column 832 ** does not appear in the index at all, the array entry is set to 0. 833 */ 834 static void codeDeferredSeek( 835 WhereInfo *pWInfo, /* Where clause context */ 836 Index *pIdx, /* Index scan is using */ 837 int iCur, /* Cursor for IPK b-tree */ 838 int iIdxCur /* Index cursor */ 839 ){ 840 Parse *pParse = pWInfo->pParse; /* Parse context */ 841 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ 842 843 assert( iIdxCur>0 ); 844 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); 845 846 sqlite3VdbeAddOp3(v, OP_Seek, iIdxCur, 0, iCur); 847 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 848 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) 849 ){ 850 int i; 851 Table *pTab = pIdx->pTable; 852 int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1)); 853 if( ai ){ 854 ai[0] = pTab->nCol; 855 for(i=0; i<pIdx->nColumn-1; i++){ 856 assert( pIdx->aiColumn[i]<pTab->nCol ); 857 if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1; 858 } 859 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); 860 } 861 } 862 } 863 864 /* 865 ** Generate code for the start of the iLevel-th loop in the WHERE clause 866 ** implementation described by pWInfo. 867 */ 868 Bitmask sqlite3WhereCodeOneLoopStart( 869 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 870 int iLevel, /* Which level of pWInfo->a[] should be coded */ 871 Bitmask notReady /* Which tables are currently available */ 872 ){ 873 int j, k; /* Loop counters */ 874 int iCur; /* The VDBE cursor for the table */ 875 int addrNxt; /* Where to jump to continue with the next IN case */ 876 int omitTable; /* True if we use the index only */ 877 int bRev; /* True if we need to scan in reverse order */ 878 WhereLevel *pLevel; /* The where level to be coded */ 879 WhereLoop *pLoop; /* The WhereLoop object being coded */ 880 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 881 WhereTerm *pTerm; /* A WHERE clause term */ 882 Parse *pParse; /* Parsing context */ 883 sqlite3 *db; /* Database connection */ 884 Vdbe *v; /* The prepared stmt under constructions */ 885 struct SrcList_item *pTabItem; /* FROM clause term being coded */ 886 int addrBrk; /* Jump here to break out of the loop */ 887 int addrCont; /* Jump here to continue with next cycle */ 888 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 889 int iReleaseReg = 0; /* Temp register to free before returning */ 890 891 pParse = pWInfo->pParse; 892 v = pParse->pVdbe; 893 pWC = &pWInfo->sWC; 894 db = pParse->db; 895 pLevel = &pWInfo->a[iLevel]; 896 pLoop = pLevel->pWLoop; 897 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 898 iCur = pTabItem->iCursor; 899 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 900 bRev = (pWInfo->revMask>>iLevel)&1; 901 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 902 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0; 903 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 904 905 /* Create labels for the "break" and "continue" instructions 906 ** for the current loop. Jump to addrBrk to break out of a loop. 907 ** Jump to cont to go immediately to the next iteration of the 908 ** loop. 909 ** 910 ** When there is an IN operator, we also have a "addrNxt" label that 911 ** means to continue with the next IN value combination. When 912 ** there are no IN operators in the constraints, the "addrNxt" label 913 ** is the same as "addrBrk". 914 */ 915 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 916 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); 917 918 /* If this is the right table of a LEFT OUTER JOIN, allocate and 919 ** initialize a memory cell that records if this table matches any 920 ** row of the left table of the join. 921 */ 922 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 923 pLevel->iLeftJoin = ++pParse->nMem; 924 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 925 VdbeComment((v, "init LEFT JOIN no-match flag")); 926 } 927 928 /* Special case of a FROM clause subquery implemented as a co-routine */ 929 if( pTabItem->fg.viaCoroutine ){ 930 int regYield = pTabItem->regReturn; 931 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 932 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 933 VdbeCoverage(v); 934 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); 935 pLevel->op = OP_Goto; 936 }else 937 938 #ifndef SQLITE_OMIT_VIRTUALTABLE 939 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 940 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 941 ** to access the data. 942 */ 943 int iReg; /* P3 Value for OP_VFilter */ 944 int addrNotFound; 945 int nConstraint = pLoop->nLTerm; 946 int iIn; /* Counter for IN constraints */ 947 948 sqlite3ExprCachePush(pParse); 949 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 950 addrNotFound = pLevel->addrBrk; 951 for(j=0; j<nConstraint; j++){ 952 int iTarget = iReg+j+2; 953 pTerm = pLoop->aLTerm[j]; 954 if( NEVER(pTerm==0) ) continue; 955 if( pTerm->eOperator & WO_IN ){ 956 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 957 addrNotFound = pLevel->addrNxt; 958 }else{ 959 sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget); 960 } 961 } 962 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 963 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 964 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 965 pLoop->u.vtab.idxStr, 966 pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC); 967 VdbeCoverage(v); 968 pLoop->u.vtab.needFree = 0; 969 pLevel->p1 = iCur; 970 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 971 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 972 iIn = pLevel->u.in.nIn; 973 for(j=nConstraint-1; j>=0; j--){ 974 pTerm = pLoop->aLTerm[j]; 975 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ 976 disableTerm(pLevel, pTerm); 977 }else if( (pTerm->eOperator & WO_IN)!=0 ){ 978 Expr *pCompare; /* The comparison operator */ 979 Expr *pRight; /* RHS of the comparison */ 980 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ 981 982 /* Reload the constraint value into reg[iReg+j+2]. The same value 983 ** was loaded into the same register prior to the OP_VFilter, but 984 ** the xFilter implementation might have changed the datatype or 985 ** encoding of the value in the register, so it *must* be reloaded. */ 986 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed ); 987 if( !db->mallocFailed ){ 988 assert( iIn>0 ); 989 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[--iIn].addrInTop); 990 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid ); 991 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 ); 992 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 ); 993 testcase( pOp->opcode==OP_Rowid ); 994 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); 995 } 996 997 /* Generate code that will continue to the next row if 998 ** the IN constraint is not satisfied */ 999 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0, 0); 1000 assert( pCompare!=0 || db->mallocFailed ); 1001 if( pCompare ){ 1002 pCompare->pLeft = pTerm->pExpr->pLeft; 1003 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); 1004 if( pRight ){ 1005 pRight->iTable = iReg+j+2; 1006 sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0); 1007 } 1008 pCompare->pLeft = 0; 1009 sqlite3ExprDelete(db, pCompare); 1010 } 1011 } 1012 } 1013 /* These registers need to be preserved in case there is an IN operator 1014 ** loop. So we could deallocate the registers here (and potentially 1015 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems 1016 ** simpler and safer to simply not reuse the registers. 1017 ** 1018 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 1019 */ 1020 sqlite3ExprCachePop(pParse); 1021 }else 1022 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1023 1024 if( (pLoop->wsFlags & WHERE_IPK)!=0 1025 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 1026 ){ 1027 /* Case 2: We can directly reference a single row using an 1028 ** equality comparison against the ROWID field. Or 1029 ** we reference multiple rows using a "rowid IN (...)" 1030 ** construct. 1031 */ 1032 assert( pLoop->u.btree.nEq==1 ); 1033 pTerm = pLoop->aLTerm[0]; 1034 assert( pTerm!=0 ); 1035 assert( pTerm->pExpr!=0 ); 1036 assert( omitTable==0 ); 1037 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1038 iReleaseReg = ++pParse->nMem; 1039 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 1040 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 1041 addrNxt = pLevel->addrNxt; 1042 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); 1043 VdbeCoverage(v); 1044 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); 1045 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 1046 VdbeComment((v, "pk")); 1047 pLevel->op = OP_Noop; 1048 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 1049 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 1050 ){ 1051 /* Case 3: We have an inequality comparison against the ROWID field. 1052 */ 1053 int testOp = OP_Noop; 1054 int start; 1055 int memEndValue = 0; 1056 WhereTerm *pStart, *pEnd; 1057 1058 assert( omitTable==0 ); 1059 j = 0; 1060 pStart = pEnd = 0; 1061 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 1062 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 1063 assert( pStart!=0 || pEnd!=0 ); 1064 if( bRev ){ 1065 pTerm = pStart; 1066 pStart = pEnd; 1067 pEnd = pTerm; 1068 } 1069 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); 1070 if( pStart ){ 1071 Expr *pX; /* The expression that defines the start bound */ 1072 int r1, rTemp; /* Registers for holding the start boundary */ 1073 1074 /* The following constant maps TK_xx codes into corresponding 1075 ** seek opcodes. It depends on a particular ordering of TK_xx 1076 */ 1077 const u8 aMoveOp[] = { 1078 /* TK_GT */ OP_SeekGT, 1079 /* TK_LE */ OP_SeekLE, 1080 /* TK_LT */ OP_SeekLT, 1081 /* TK_GE */ OP_SeekGE 1082 }; 1083 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 1084 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 1085 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 1086 1087 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 1088 testcase( pStart->wtFlags & TERM_VIRTUAL ); 1089 pX = pStart->pExpr; 1090 assert( pX!=0 ); 1091 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 1092 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 1093 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); 1094 VdbeComment((v, "pk")); 1095 VdbeCoverageIf(v, pX->op==TK_GT); 1096 VdbeCoverageIf(v, pX->op==TK_LE); 1097 VdbeCoverageIf(v, pX->op==TK_LT); 1098 VdbeCoverageIf(v, pX->op==TK_GE); 1099 sqlite3ExprCacheAffinityChange(pParse, r1, 1); 1100 sqlite3ReleaseTempReg(pParse, rTemp); 1101 disableTerm(pLevel, pStart); 1102 }else{ 1103 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); 1104 VdbeCoverageIf(v, bRev==0); 1105 VdbeCoverageIf(v, bRev!=0); 1106 } 1107 if( pEnd ){ 1108 Expr *pX; 1109 pX = pEnd->pExpr; 1110 assert( pX!=0 ); 1111 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 1112 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 1113 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 1114 memEndValue = ++pParse->nMem; 1115 sqlite3ExprCode(pParse, pX->pRight, memEndValue); 1116 if( pX->op==TK_LT || pX->op==TK_GT ){ 1117 testOp = bRev ? OP_Le : OP_Ge; 1118 }else{ 1119 testOp = bRev ? OP_Lt : OP_Gt; 1120 } 1121 disableTerm(pLevel, pEnd); 1122 } 1123 start = sqlite3VdbeCurrentAddr(v); 1124 pLevel->op = bRev ? OP_Prev : OP_Next; 1125 pLevel->p1 = iCur; 1126 pLevel->p2 = start; 1127 assert( pLevel->p5==0 ); 1128 if( testOp!=OP_Noop ){ 1129 iRowidReg = ++pParse->nMem; 1130 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 1131 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 1132 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 1133 VdbeCoverageIf(v, testOp==OP_Le); 1134 VdbeCoverageIf(v, testOp==OP_Lt); 1135 VdbeCoverageIf(v, testOp==OP_Ge); 1136 VdbeCoverageIf(v, testOp==OP_Gt); 1137 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 1138 } 1139 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 1140 /* Case 4: A scan using an index. 1141 ** 1142 ** The WHERE clause may contain zero or more equality 1143 ** terms ("==" or "IN" operators) that refer to the N 1144 ** left-most columns of the index. It may also contain 1145 ** inequality constraints (>, <, >= or <=) on the indexed 1146 ** column that immediately follows the N equalities. Only 1147 ** the right-most column can be an inequality - the rest must 1148 ** use the "==" and "IN" operators. For example, if the 1149 ** index is on (x,y,z), then the following clauses are all 1150 ** optimized: 1151 ** 1152 ** x=5 1153 ** x=5 AND y=10 1154 ** x=5 AND y<10 1155 ** x=5 AND y>5 AND y<10 1156 ** x=5 AND y=5 AND z<=10 1157 ** 1158 ** The z<10 term of the following cannot be used, only 1159 ** the x=5 term: 1160 ** 1161 ** x=5 AND z<10 1162 ** 1163 ** N may be zero if there are inequality constraints. 1164 ** If there are no inequality constraints, then N is at 1165 ** least one. 1166 ** 1167 ** This case is also used when there are no WHERE clause 1168 ** constraints but an index is selected anyway, in order 1169 ** to force the output order to conform to an ORDER BY. 1170 */ 1171 static const u8 aStartOp[] = { 1172 0, 1173 0, 1174 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1175 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1176 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1177 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1178 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1179 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1180 }; 1181 static const u8 aEndOp[] = { 1182 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1183 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1184 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1185 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1186 }; 1187 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1188 int regBase; /* Base register holding constraint values */ 1189 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1190 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1191 int startEq; /* True if range start uses ==, >= or <= */ 1192 int endEq; /* True if range end uses ==, >= or <= */ 1193 int start_constraints; /* Start of range is constrained */ 1194 int nConstraint; /* Number of constraint terms */ 1195 Index *pIdx; /* The index we will be using */ 1196 int iIdxCur; /* The VDBE cursor for the index */ 1197 int nExtraReg = 0; /* Number of extra registers needed */ 1198 int op; /* Instruction opcode */ 1199 char *zStartAff; /* Affinity for start of range constraint */ 1200 char cEndAff = 0; /* Affinity for end of range constraint */ 1201 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1202 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1203 1204 pIdx = pLoop->u.btree.pIndex; 1205 iIdxCur = pLevel->iIdxCur; 1206 assert( nEq>=pLoop->nSkip ); 1207 1208 /* If this loop satisfies a sort order (pOrderBy) request that 1209 ** was passed to this function to implement a "SELECT min(x) ..." 1210 ** query, then the caller will only allow the loop to run for 1211 ** a single iteration. This means that the first row returned 1212 ** should not have a NULL value stored in 'x'. If column 'x' is 1213 ** the first one after the nEq equality constraints in the index, 1214 ** this requires some special handling. 1215 */ 1216 assert( pWInfo->pOrderBy==0 1217 || pWInfo->pOrderBy->nExpr==1 1218 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); 1219 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 1220 && pWInfo->nOBSat>0 1221 && (pIdx->nKeyCol>nEq) 1222 ){ 1223 assert( pLoop->nSkip==0 ); 1224 bSeekPastNull = 1; 1225 nExtraReg = 1; 1226 } 1227 1228 /* Find any inequality constraint terms for the start and end 1229 ** of the range. 1230 */ 1231 j = nEq; 1232 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1233 pRangeStart = pLoop->aLTerm[j++]; 1234 nExtraReg = 1; 1235 /* Like optimization range constraints always occur in pairs */ 1236 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1237 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1238 } 1239 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1240 pRangeEnd = pLoop->aLTerm[j++]; 1241 nExtraReg = 1; 1242 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1243 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1244 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1245 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1246 pLevel->iLikeRepCntr = (u32)++pParse->nMem; 1247 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); 1248 VdbeComment((v, "LIKE loop counter")); 1249 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1250 /* iLikeRepCntr actually stores 2x the counter register number. The 1251 ** bottom bit indicates whether the search order is ASC or DESC. */ 1252 testcase( bRev ); 1253 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1254 assert( (bRev & ~1)==0 ); 1255 pLevel->iLikeRepCntr <<=1; 1256 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); 1257 } 1258 #endif 1259 if( pRangeStart==0 1260 && (j = pIdx->aiColumn[nEq])>=0 1261 && pIdx->pTable->aCol[j].notNull==0 1262 ){ 1263 bSeekPastNull = 1; 1264 } 1265 } 1266 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1267 1268 /* If we are doing a reverse order scan on an ascending index, or 1269 ** a forward order scan on a descending index, interchange the 1270 ** start and end terms (pRangeStart and pRangeEnd). 1271 */ 1272 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) 1273 || (bRev && pIdx->nKeyCol==nEq) 1274 ){ 1275 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1276 SWAP(u8, bSeekPastNull, bStopAtNull); 1277 } 1278 1279 /* Generate code to evaluate all constraint terms using == or IN 1280 ** and store the values of those terms in an array of registers 1281 ** starting at regBase. 1282 */ 1283 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); 1284 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1285 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1286 if( zStartAff ) cEndAff = zStartAff[nEq]; 1287 addrNxt = pLevel->addrNxt; 1288 1289 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1290 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1291 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1292 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1293 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1294 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1295 start_constraints = pRangeStart || nEq>0; 1296 1297 /* Seek the index cursor to the start of the range. */ 1298 nConstraint = nEq; 1299 if( pRangeStart ){ 1300 Expr *pRight = pRangeStart->pExpr->pRight; 1301 sqlite3ExprCode(pParse, pRight, regBase+nEq); 1302 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1303 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1304 && sqlite3ExprCanBeNull(pRight) 1305 ){ 1306 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1307 VdbeCoverage(v); 1308 } 1309 if( zStartAff ){ 1310 if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_BLOB){ 1311 /* Since the comparison is to be performed with no conversions 1312 ** applied to the operands, set the affinity to apply to pRight to 1313 ** SQLITE_AFF_BLOB. */ 1314 zStartAff[nEq] = SQLITE_AFF_BLOB; 1315 } 1316 if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ 1317 zStartAff[nEq] = SQLITE_AFF_BLOB; 1318 } 1319 } 1320 nConstraint++; 1321 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1322 bSeekPastNull = 0; 1323 }else if( bSeekPastNull ){ 1324 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1325 nConstraint++; 1326 startEq = 0; 1327 start_constraints = 1; 1328 } 1329 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1330 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ 1331 /* The skip-scan logic inside the call to codeAllEqualityConstraints() 1332 ** above has already left the cursor sitting on the correct row, 1333 ** so no further seeking is needed */ 1334 }else{ 1335 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 1336 assert( op!=0 ); 1337 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1338 VdbeCoverage(v); 1339 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1340 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1341 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 1342 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1343 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1344 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 1345 } 1346 1347 /* Load the value for the inequality constraint at the end of the 1348 ** range (if any). 1349 */ 1350 nConstraint = nEq; 1351 if( pRangeEnd ){ 1352 Expr *pRight = pRangeEnd->pExpr->pRight; 1353 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); 1354 sqlite3ExprCode(pParse, pRight, regBase+nEq); 1355 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 1356 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 1357 && sqlite3ExprCanBeNull(pRight) 1358 ){ 1359 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1360 VdbeCoverage(v); 1361 } 1362 if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_BLOB 1363 && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff) 1364 ){ 1365 codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff); 1366 } 1367 nConstraint++; 1368 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 1369 }else if( bStopAtNull ){ 1370 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1371 endEq = 0; 1372 nConstraint++; 1373 } 1374 sqlite3DbFree(db, zStartAff); 1375 1376 /* Top of the loop body */ 1377 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1378 1379 /* Check if the index cursor is past the end of the range. */ 1380 if( nConstraint ){ 1381 op = aEndOp[bRev*2 + endEq]; 1382 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1383 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1384 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1385 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1386 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1387 } 1388 1389 /* Seek the table cursor, if required */ 1390 disableTerm(pLevel, pRangeStart); 1391 disableTerm(pLevel, pRangeEnd); 1392 if( omitTable ){ 1393 /* pIdx is a covering index. No need to access the main table. */ 1394 }else if( HasRowid(pIdx->pTable) ){ 1395 if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE)!=0 ){ 1396 iRowidReg = ++pParse->nMem; 1397 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); 1398 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 1399 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg); 1400 VdbeCoverage(v); 1401 }else{ 1402 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); 1403 } 1404 }else if( iCur!=iIdxCur ){ 1405 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1406 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1407 for(j=0; j<pPk->nKeyCol; j++){ 1408 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); 1409 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 1410 } 1411 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 1412 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 1413 } 1414 1415 /* Record the instruction used to terminate the loop. Disable 1416 ** WHERE clause terms made redundant by the index range scan. 1417 */ 1418 if( pLoop->wsFlags & WHERE_ONEROW ){ 1419 pLevel->op = OP_Noop; 1420 }else if( bRev ){ 1421 pLevel->op = OP_Prev; 1422 }else{ 1423 pLevel->op = OP_Next; 1424 } 1425 pLevel->p1 = iIdxCur; 1426 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 1427 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 1428 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 1429 }else{ 1430 assert( pLevel->p5==0 ); 1431 } 1432 }else 1433 1434 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 1435 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 1436 /* Case 5: Two or more separately indexed terms connected by OR 1437 ** 1438 ** Example: 1439 ** 1440 ** CREATE TABLE t1(a,b,c,d); 1441 ** CREATE INDEX i1 ON t1(a); 1442 ** CREATE INDEX i2 ON t1(b); 1443 ** CREATE INDEX i3 ON t1(c); 1444 ** 1445 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 1446 ** 1447 ** In the example, there are three indexed terms connected by OR. 1448 ** The top of the loop looks like this: 1449 ** 1450 ** Null 1 # Zero the rowset in reg 1 1451 ** 1452 ** Then, for each indexed term, the following. The arguments to 1453 ** RowSetTest are such that the rowid of the current row is inserted 1454 ** into the RowSet. If it is already present, control skips the 1455 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 1456 ** 1457 ** sqlite3WhereBegin(<term>) 1458 ** RowSetTest # Insert rowid into rowset 1459 ** Gosub 2 A 1460 ** sqlite3WhereEnd() 1461 ** 1462 ** Following the above, code to terminate the loop. Label A, the target 1463 ** of the Gosub above, jumps to the instruction right after the Goto. 1464 ** 1465 ** Null 1 # Zero the rowset in reg 1 1466 ** Goto B # The loop is finished. 1467 ** 1468 ** A: <loop body> # Return data, whatever. 1469 ** 1470 ** Return 2 # Jump back to the Gosub 1471 ** 1472 ** B: <after the loop> 1473 ** 1474 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 1475 ** use an ephemeral index instead of a RowSet to record the primary 1476 ** keys of the rows we have already seen. 1477 ** 1478 */ 1479 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 1480 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 1481 Index *pCov = 0; /* Potential covering index (or NULL) */ 1482 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 1483 1484 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 1485 int regRowset = 0; /* Register for RowSet object */ 1486 int regRowid = 0; /* Register holding rowid */ 1487 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ 1488 int iRetInit; /* Address of regReturn init */ 1489 int untestedTerms = 0; /* Some terms not completely tested */ 1490 int ii; /* Loop counter */ 1491 u16 wctrlFlags; /* Flags for sub-WHERE clause */ 1492 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 1493 Table *pTab = pTabItem->pTab; 1494 1495 pTerm = pLoop->aLTerm[0]; 1496 assert( pTerm!=0 ); 1497 assert( pTerm->eOperator & WO_OR ); 1498 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 1499 pOrWc = &pTerm->u.pOrInfo->wc; 1500 pLevel->op = OP_Return; 1501 pLevel->p1 = regReturn; 1502 1503 /* Set up a new SrcList in pOrTab containing the table being scanned 1504 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 1505 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 1506 */ 1507 if( pWInfo->nLevel>1 ){ 1508 int nNotReady; /* The number of notReady tables */ 1509 struct SrcList_item *origSrc; /* Original list of tables */ 1510 nNotReady = pWInfo->nLevel - iLevel - 1; 1511 pOrTab = sqlite3StackAllocRaw(db, 1512 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 1513 if( pOrTab==0 ) return notReady; 1514 pOrTab->nAlloc = (u8)(nNotReady + 1); 1515 pOrTab->nSrc = pOrTab->nAlloc; 1516 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 1517 origSrc = pWInfo->pTabList->a; 1518 for(k=1; k<=nNotReady; k++){ 1519 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 1520 } 1521 }else{ 1522 pOrTab = pWInfo->pTabList; 1523 } 1524 1525 /* Initialize the rowset register to contain NULL. An SQL NULL is 1526 ** equivalent to an empty rowset. Or, create an ephemeral index 1527 ** capable of holding primary keys in the case of a WITHOUT ROWID. 1528 ** 1529 ** Also initialize regReturn to contain the address of the instruction 1530 ** immediately following the OP_Return at the bottom of the loop. This 1531 ** is required in a few obscure LEFT JOIN cases where control jumps 1532 ** over the top of the loop into the body of it. In this case the 1533 ** correct response for the end-of-loop code (the OP_Return) is to 1534 ** fall through to the next instruction, just as an OP_Next does if 1535 ** called on an uninitialized cursor. 1536 */ 1537 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 1538 if( HasRowid(pTab) ){ 1539 regRowset = ++pParse->nMem; 1540 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 1541 }else{ 1542 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1543 regRowset = pParse->nTab++; 1544 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 1545 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 1546 } 1547 regRowid = ++pParse->nMem; 1548 } 1549 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 1550 1551 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 1552 ** Then for every term xN, evaluate as the subexpression: xN AND z 1553 ** That way, terms in y that are factored into the disjunction will 1554 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 1555 ** 1556 ** Actually, each subexpression is converted to "xN AND w" where w is 1557 ** the "interesting" terms of z - terms that did not originate in the 1558 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 1559 ** indices. 1560 ** 1561 ** This optimization also only applies if the (x1 OR x2 OR ...) term 1562 ** is not contained in the ON clause of a LEFT JOIN. 1563 ** See ticket http://www.sqlite.org/src/info/f2369304e4 1564 */ 1565 if( pWC->nTerm>1 ){ 1566 int iTerm; 1567 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 1568 Expr *pExpr = pWC->a[iTerm].pExpr; 1569 if( &pWC->a[iTerm] == pTerm ) continue; 1570 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; 1571 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); 1572 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); 1573 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue; 1574 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 1575 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); 1576 pExpr = sqlite3ExprDup(db, pExpr, 0); 1577 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); 1578 } 1579 if( pAndExpr ){ 1580 pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr, 0); 1581 } 1582 } 1583 1584 /* Run a separate WHERE clause for each term of the OR clause. After 1585 ** eliminating duplicates from other WHERE clauses, the action for each 1586 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 1587 */ 1588 wctrlFlags = WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE); 1589 for(ii=0; ii<pOrWc->nTerm; ii++){ 1590 WhereTerm *pOrTerm = &pOrWc->a[ii]; 1591 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 1592 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 1593 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 1594 int jmp1 = 0; /* Address of jump operation */ 1595 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){ 1596 pAndExpr->pLeft = pOrExpr; 1597 pOrExpr = pAndExpr; 1598 } 1599 /* Loop through table entries that match term pOrTerm. */ 1600 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 1601 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 1602 wctrlFlags, iCovCur); 1603 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); 1604 if( pSubWInfo ){ 1605 WhereLoop *pSubLoop; 1606 int addrExplain = sqlite3WhereExplainOneScan( 1607 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 1608 ); 1609 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 1610 1611 /* This is the sub-WHERE clause body. First skip over 1612 ** duplicate rows from prior sub-WHERE clauses, and record the 1613 ** rowid (or PRIMARY KEY) for the current row so that the same 1614 ** row will be skipped in subsequent sub-WHERE clauses. 1615 */ 1616 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 1617 int r; 1618 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 1619 if( HasRowid(pTab) ){ 1620 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0); 1621 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 1622 r,iSet); 1623 VdbeCoverage(v); 1624 }else{ 1625 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1626 int nPk = pPk->nKeyCol; 1627 int iPk; 1628 1629 /* Read the PK into an array of temp registers. */ 1630 r = sqlite3GetTempRange(pParse, nPk); 1631 for(iPk=0; iPk<nPk; iPk++){ 1632 int iCol = pPk->aiColumn[iPk]; 1633 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk); 1634 } 1635 1636 /* Check if the temp table already contains this key. If so, 1637 ** the row has already been included in the result set and 1638 ** can be ignored (by jumping past the Gosub below). Otherwise, 1639 ** insert the key into the temp table and proceed with processing 1640 ** the row. 1641 ** 1642 ** Use some of the same optimizations as OP_RowSetTest: If iSet 1643 ** is zero, assume that the key cannot already be present in 1644 ** the temp table. And if iSet is -1, assume that there is no 1645 ** need to insert the key into the temp table, as it will never 1646 ** be tested for. */ 1647 if( iSet ){ 1648 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 1649 VdbeCoverage(v); 1650 } 1651 if( iSet>=0 ){ 1652 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 1653 sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0); 1654 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1655 } 1656 1657 /* Release the array of temp registers */ 1658 sqlite3ReleaseTempRange(pParse, r, nPk); 1659 } 1660 } 1661 1662 /* Invoke the main loop body as a subroutine */ 1663 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 1664 1665 /* Jump here (skipping the main loop body subroutine) if the 1666 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 1667 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 1668 1669 /* The pSubWInfo->untestedTerms flag means that this OR term 1670 ** contained one or more AND term from a notReady table. The 1671 ** terms from the notReady table could not be tested and will 1672 ** need to be tested later. 1673 */ 1674 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 1675 1676 /* If all of the OR-connected terms are optimized using the same 1677 ** index, and the index is opened using the same cursor number 1678 ** by each call to sqlite3WhereBegin() made by this loop, it may 1679 ** be possible to use that index as a covering index. 1680 ** 1681 ** If the call to sqlite3WhereBegin() above resulted in a scan that 1682 ** uses an index, and this is either the first OR-connected term 1683 ** processed or the index is the same as that used by all previous 1684 ** terms, set pCov to the candidate covering index. Otherwise, set 1685 ** pCov to NULL to indicate that no candidate covering index will 1686 ** be available. 1687 */ 1688 pSubLoop = pSubWInfo->a[0].pWLoop; 1689 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 1690 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 1691 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 1692 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 1693 ){ 1694 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 1695 pCov = pSubLoop->u.btree.pIndex; 1696 }else{ 1697 pCov = 0; 1698 } 1699 1700 /* Finish the loop through table entries that match term pOrTerm. */ 1701 sqlite3WhereEnd(pSubWInfo); 1702 } 1703 } 1704 } 1705 pLevel->u.pCovidx = pCov; 1706 if( pCov ) pLevel->iIdxCur = iCovCur; 1707 if( pAndExpr ){ 1708 pAndExpr->pLeft = 0; 1709 sqlite3ExprDelete(db, pAndExpr); 1710 } 1711 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 1712 sqlite3VdbeGoto(v, pLevel->addrBrk); 1713 sqlite3VdbeResolveLabel(v, iLoopBody); 1714 1715 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab); 1716 if( !untestedTerms ) disableTerm(pLevel, pTerm); 1717 }else 1718 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1719 1720 { 1721 /* Case 6: There is no usable index. We must do a complete 1722 ** scan of the entire table. 1723 */ 1724 static const u8 aStep[] = { OP_Next, OP_Prev }; 1725 static const u8 aStart[] = { OP_Rewind, OP_Last }; 1726 assert( bRev==0 || bRev==1 ); 1727 if( pTabItem->fg.isRecursive ){ 1728 /* Tables marked isRecursive have only a single row that is stored in 1729 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 1730 pLevel->op = OP_Noop; 1731 }else{ 1732 codeCursorHint(pTabItem, pWInfo, pLevel, 0); 1733 pLevel->op = aStep[bRev]; 1734 pLevel->p1 = iCur; 1735 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); 1736 VdbeCoverageIf(v, bRev==0); 1737 VdbeCoverageIf(v, bRev!=0); 1738 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 1739 } 1740 } 1741 1742 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1743 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 1744 #endif 1745 1746 /* Insert code to test every subexpression that can be completely 1747 ** computed using the current set of tables. 1748 */ 1749 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 1750 Expr *pE; 1751 int skipLikeAddr = 0; 1752 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1753 testcase( pTerm->wtFlags & TERM_CODED ); 1754 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1755 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 1756 testcase( pWInfo->untestedTerms==0 1757 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); 1758 pWInfo->untestedTerms = 1; 1759 continue; 1760 } 1761 pE = pTerm->pExpr; 1762 assert( pE!=0 ); 1763 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 1764 continue; 1765 } 1766 if( pTerm->wtFlags & TERM_LIKECOND ){ 1767 /* If the TERM_LIKECOND flag is set, that means that the range search 1768 ** is sufficient to guarantee that the LIKE operator is true, so we 1769 ** can skip the call to the like(A,B) function. But this only works 1770 ** for strings. So do not skip the call to the function on the pass 1771 ** that compares BLOBs. */ 1772 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1773 continue; 1774 #else 1775 u32 x = pLevel->iLikeRepCntr; 1776 assert( x>0 ); 1777 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)? OP_IfNot : OP_If, (int)(x>>1)); 1778 VdbeCoverage(v); 1779 #endif 1780 } 1781 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 1782 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 1783 pTerm->wtFlags |= TERM_CODED; 1784 } 1785 1786 /* Insert code to test for implied constraints based on transitivity 1787 ** of the "==" operator. 1788 ** 1789 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 1790 ** and we are coding the t1 loop and the t2 loop has not yet coded, 1791 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 1792 ** the implied "t1.a=123" constraint. 1793 */ 1794 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 1795 Expr *pE, *pEAlt; 1796 WhereTerm *pAlt; 1797 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1798 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 1799 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 1800 if( pTerm->leftCursor!=iCur ) continue; 1801 if( pLevel->iLeftJoin ) continue; 1802 pE = pTerm->pExpr; 1803 assert( !ExprHasProperty(pE, EP_FromJoin) ); 1804 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 1805 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady, 1806 WO_EQ|WO_IN|WO_IS, 0); 1807 if( pAlt==0 ) continue; 1808 if( pAlt->wtFlags & (TERM_CODED) ) continue; 1809 testcase( pAlt->eOperator & WO_EQ ); 1810 testcase( pAlt->eOperator & WO_IS ); 1811 testcase( pAlt->eOperator & WO_IN ); 1812 VdbeModuleComment((v, "begin transitive constraint")); 1813 pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt)); 1814 if( pEAlt ){ 1815 *pEAlt = *pAlt->pExpr; 1816 pEAlt->pLeft = pE->pLeft; 1817 sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL); 1818 sqlite3StackFree(db, pEAlt); 1819 } 1820 } 1821 1822 /* For a LEFT OUTER JOIN, generate code that will record the fact that 1823 ** at least one row of the right table has matched the left table. 1824 */ 1825 if( pLevel->iLeftJoin ){ 1826 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 1827 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 1828 VdbeComment((v, "record LEFT JOIN hit")); 1829 sqlite3ExprCacheClear(pParse); 1830 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 1831 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1832 testcase( pTerm->wtFlags & TERM_CODED ); 1833 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1834 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 1835 assert( pWInfo->untestedTerms ); 1836 continue; 1837 } 1838 assert( pTerm->pExpr ); 1839 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 1840 pTerm->wtFlags |= TERM_CODED; 1841 } 1842 } 1843 1844 return pLevel->notReady; 1845 } 1846