1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 25 /* 26 ** Return the name of the i-th column of the pIdx index. 27 */ 28 static const char *explainIndexColumnName(Index *pIdx, int i){ 29 i = pIdx->aiColumn[i]; 30 if( i==XN_EXPR ) return "<expr>"; 31 if( i==XN_ROWID ) return "rowid"; 32 return pIdx->pTable->aCol[i].zName; 33 } 34 35 /* 36 ** This routine is a helper for explainIndexRange() below 37 ** 38 ** pStr holds the text of an expression that we are building up one term 39 ** at a time. This routine adds a new term to the end of the expression. 40 ** Terms are separated by AND so add the "AND" text for second and subsequent 41 ** terms only. 42 */ 43 static void explainAppendTerm( 44 StrAccum *pStr, /* The text expression being built */ 45 Index *pIdx, /* Index to read column names from */ 46 int nTerm, /* Number of terms */ 47 int iTerm, /* Zero-based index of first term. */ 48 int bAnd, /* Non-zero to append " AND " */ 49 const char *zOp /* Name of the operator */ 50 ){ 51 int i; 52 53 assert( nTerm>=1 ); 54 if( bAnd ) sqlite3StrAccumAppend(pStr, " AND ", 5); 55 56 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1); 57 for(i=0; i<nTerm; i++){ 58 if( i ) sqlite3StrAccumAppend(pStr, ",", 1); 59 sqlite3StrAccumAppendAll(pStr, explainIndexColumnName(pIdx, iTerm+i)); 60 } 61 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1); 62 63 sqlite3StrAccumAppend(pStr, zOp, 1); 64 65 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1); 66 for(i=0; i<nTerm; i++){ 67 if( i ) sqlite3StrAccumAppend(pStr, ",", 1); 68 sqlite3StrAccumAppend(pStr, "?", 1); 69 } 70 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1); 71 } 72 73 /* 74 ** Argument pLevel describes a strategy for scanning table pTab. This 75 ** function appends text to pStr that describes the subset of table 76 ** rows scanned by the strategy in the form of an SQL expression. 77 ** 78 ** For example, if the query: 79 ** 80 ** SELECT * FROM t1 WHERE a=1 AND b>2; 81 ** 82 ** is run and there is an index on (a, b), then this function returns a 83 ** string similar to: 84 ** 85 ** "a=? AND b>?" 86 */ 87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 88 Index *pIndex = pLoop->u.btree.pIndex; 89 u16 nEq = pLoop->u.btree.nEq; 90 u16 nSkip = pLoop->nSkip; 91 int i, j; 92 93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 94 sqlite3StrAccumAppend(pStr, " (", 2); 95 for(i=0; i<nEq; i++){ 96 const char *z = explainIndexColumnName(pIndex, i); 97 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5); 98 sqlite3XPrintf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); 99 } 100 101 j = i; 102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); 104 i = 1; 105 } 106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); 108 } 109 sqlite3StrAccumAppend(pStr, ")", 1); 110 } 111 112 /* 113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 116 ** is added to the output to describe the table scan strategy in pLevel. 117 ** 118 ** If an OP_Explain opcode is added to the VM, its address is returned. 119 ** Otherwise, if no OP_Explain is coded, zero is returned. 120 */ 121 int sqlite3WhereExplainOneScan( 122 Parse *pParse, /* Parse context */ 123 SrcList *pTabList, /* Table list this loop refers to */ 124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 125 int iLevel, /* Value for "level" column of output */ 126 int iFrom, /* Value for "from" column of output */ 127 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 128 ){ 129 int ret = 0; 130 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 131 if( pParse->explain==2 ) 132 #endif 133 { 134 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 135 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 136 sqlite3 *db = pParse->db; /* Database handle */ 137 int iId = pParse->iSelectId; /* Select id (left-most output column) */ 138 int isSearch; /* True for a SEARCH. False for SCAN. */ 139 WhereLoop *pLoop; /* The controlling WhereLoop object */ 140 u32 flags; /* Flags that describe this loop */ 141 char *zMsg; /* Text to add to EQP output */ 142 StrAccum str; /* EQP output string */ 143 char zBuf[100]; /* Initial space for EQP output string */ 144 145 pLoop = pLevel->pWLoop; 146 flags = pLoop->wsFlags; 147 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; 148 149 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 150 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 151 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 152 153 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 154 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN"); 155 if( pItem->pSelect ){ 156 sqlite3XPrintf(&str, " SUBQUERY %d", pItem->iSelectId); 157 }else{ 158 sqlite3XPrintf(&str, " TABLE %s", pItem->zName); 159 } 160 161 if( pItem->zAlias ){ 162 sqlite3XPrintf(&str, " AS %s", pItem->zAlias); 163 } 164 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 165 const char *zFmt = 0; 166 Index *pIdx; 167 168 assert( pLoop->u.btree.pIndex!=0 ); 169 pIdx = pLoop->u.btree.pIndex; 170 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 171 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 172 if( isSearch ){ 173 zFmt = "PRIMARY KEY"; 174 } 175 }else if( flags & WHERE_PARTIALIDX ){ 176 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 177 }else if( flags & WHERE_AUTO_INDEX ){ 178 zFmt = "AUTOMATIC COVERING INDEX"; 179 }else if( flags & WHERE_IDX_ONLY ){ 180 zFmt = "COVERING INDEX %s"; 181 }else{ 182 zFmt = "INDEX %s"; 183 } 184 if( zFmt ){ 185 sqlite3StrAccumAppend(&str, " USING ", 7); 186 sqlite3XPrintf(&str, zFmt, pIdx->zName); 187 explainIndexRange(&str, pLoop); 188 } 189 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 190 const char *zRangeOp; 191 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 192 zRangeOp = "="; 193 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 194 zRangeOp = ">? AND rowid<"; 195 }else if( flags&WHERE_BTM_LIMIT ){ 196 zRangeOp = ">"; 197 }else{ 198 assert( flags&WHERE_TOP_LIMIT); 199 zRangeOp = "<"; 200 } 201 sqlite3XPrintf(&str, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp); 202 } 203 #ifndef SQLITE_OMIT_VIRTUALTABLE 204 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 205 sqlite3XPrintf(&str, " VIRTUAL TABLE INDEX %d:%s", 206 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 207 } 208 #endif 209 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 210 if( pLoop->nOut>=10 ){ 211 sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); 212 }else{ 213 sqlite3StrAccumAppend(&str, " (~1 row)", 9); 214 } 215 #endif 216 zMsg = sqlite3StrAccumFinish(&str); 217 ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC); 218 } 219 return ret; 220 } 221 #endif /* SQLITE_OMIT_EXPLAIN */ 222 223 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 224 /* 225 ** Configure the VM passed as the first argument with an 226 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 227 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 228 ** clause that the scan reads data from. 229 ** 230 ** If argument addrExplain is not 0, it must be the address of an 231 ** OP_Explain instruction that describes the same loop. 232 */ 233 void sqlite3WhereAddScanStatus( 234 Vdbe *v, /* Vdbe to add scanstatus entry to */ 235 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 236 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 237 int addrExplain /* Address of OP_Explain (or 0) */ 238 ){ 239 const char *zObj = 0; 240 WhereLoop *pLoop = pLvl->pWLoop; 241 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 242 zObj = pLoop->u.btree.pIndex->zName; 243 }else{ 244 zObj = pSrclist->a[pLvl->iFrom].zName; 245 } 246 sqlite3VdbeScanStatus( 247 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 248 ); 249 } 250 #endif 251 252 253 /* 254 ** Disable a term in the WHERE clause. Except, do not disable the term 255 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 256 ** or USING clause of that join. 257 ** 258 ** Consider the term t2.z='ok' in the following queries: 259 ** 260 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 261 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 262 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 263 ** 264 ** The t2.z='ok' is disabled in the in (2) because it originates 265 ** in the ON clause. The term is disabled in (3) because it is not part 266 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 267 ** 268 ** Disabling a term causes that term to not be tested in the inner loop 269 ** of the join. Disabling is an optimization. When terms are satisfied 270 ** by indices, we disable them to prevent redundant tests in the inner 271 ** loop. We would get the correct results if nothing were ever disabled, 272 ** but joins might run a little slower. The trick is to disable as much 273 ** as we can without disabling too much. If we disabled in (1), we'd get 274 ** the wrong answer. See ticket #813. 275 ** 276 ** If all the children of a term are disabled, then that term is also 277 ** automatically disabled. In this way, terms get disabled if derived 278 ** virtual terms are tested first. For example: 279 ** 280 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 281 ** \___________/ \______/ \_____/ 282 ** parent child1 child2 283 ** 284 ** Only the parent term was in the original WHERE clause. The child1 285 ** and child2 terms were added by the LIKE optimization. If both of 286 ** the virtual child terms are valid, then testing of the parent can be 287 ** skipped. 288 ** 289 ** Usually the parent term is marked as TERM_CODED. But if the parent 290 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 291 ** The TERM_LIKECOND marking indicates that the term should be coded inside 292 ** a conditional such that is only evaluated on the second pass of a 293 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 294 */ 295 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 296 int nLoop = 0; 297 while( ALWAYS(pTerm!=0) 298 && (pTerm->wtFlags & TERM_CODED)==0 299 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 300 && (pLevel->notReady & pTerm->prereqAll)==0 301 ){ 302 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 303 pTerm->wtFlags |= TERM_LIKECOND; 304 }else{ 305 pTerm->wtFlags |= TERM_CODED; 306 } 307 if( pTerm->iParent<0 ) break; 308 pTerm = &pTerm->pWC->a[pTerm->iParent]; 309 pTerm->nChild--; 310 if( pTerm->nChild!=0 ) break; 311 nLoop++; 312 } 313 } 314 315 /* 316 ** Code an OP_Affinity opcode to apply the column affinity string zAff 317 ** to the n registers starting at base. 318 ** 319 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the 320 ** beginning and end of zAff are ignored. If all entries in zAff are 321 ** SQLITE_AFF_BLOB, then no code gets generated. 322 ** 323 ** This routine makes its own copy of zAff so that the caller is free 324 ** to modify zAff after this routine returns. 325 */ 326 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 327 Vdbe *v = pParse->pVdbe; 328 if( zAff==0 ){ 329 assert( pParse->db->mallocFailed ); 330 return; 331 } 332 assert( v!=0 ); 333 334 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning 335 ** and end of the affinity string. 336 */ 337 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){ 338 n--; 339 base++; 340 zAff++; 341 } 342 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){ 343 n--; 344 } 345 346 /* Code the OP_Affinity opcode if there is anything left to do. */ 347 if( n>0 ){ 348 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 349 sqlite3ExprCacheAffinityChange(pParse, base, n); 350 } 351 } 352 353 /* 354 ** Expression pRight, which is the RHS of a comparison operation, is 355 ** either a vector of n elements or, if n==1, a scalar expression. 356 ** Before the comparison operation, affinity zAff is to be applied 357 ** to the pRight values. This function modifies characters within the 358 ** affinity string to SQLITE_AFF_BLOB if either: 359 ** 360 ** * the comparison will be performed with no affinity, or 361 ** * the affinity change in zAff is guaranteed not to change the value. 362 */ 363 static void updateRangeAffinityStr( 364 Expr *pRight, /* RHS of comparison */ 365 int n, /* Number of vector elements in comparison */ 366 char *zAff /* Affinity string to modify */ 367 ){ 368 int i; 369 for(i=0; i<n; i++){ 370 Expr *p = sqlite3VectorFieldSubexpr(pRight, i); 371 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB 372 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) 373 ){ 374 zAff[i] = SQLITE_AFF_BLOB; 375 } 376 } 377 } 378 379 /* 380 ** Generate code for a single equality term of the WHERE clause. An equality 381 ** term can be either X=expr or X IN (...). pTerm is the term to be 382 ** coded. 383 ** 384 ** The current value for the constraint is left in a register, the index 385 ** of which is returned. An attempt is made store the result in iTarget but 386 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the 387 ** constraint is a TK_EQ or TK_IS, then the current value might be left in 388 ** some other register and it is the caller's responsibility to compensate. 389 ** 390 ** For a constraint of the form X=expr, the expression is evaluated in 391 ** straight-line code. For constraints of the form X IN (...) 392 ** this routine sets up a loop that will iterate over all values of X. 393 */ 394 static int codeEqualityTerm( 395 Parse *pParse, /* The parsing context */ 396 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 397 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 398 int iEq, /* Index of the equality term within this level */ 399 int bRev, /* True for reverse-order IN operations */ 400 int iTarget /* Attempt to leave results in this register */ 401 ){ 402 Expr *pX = pTerm->pExpr; 403 Vdbe *v = pParse->pVdbe; 404 int iReg; /* Register holding results */ 405 406 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); 407 assert( iTarget>0 ); 408 if( pX->op==TK_EQ || pX->op==TK_IS ){ 409 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 410 }else if( pX->op==TK_ISNULL ){ 411 iReg = iTarget; 412 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 413 #ifndef SQLITE_OMIT_SUBQUERY 414 }else{ 415 int eType = IN_INDEX_NOOP; 416 int iTab; 417 struct InLoop *pIn; 418 WhereLoop *pLoop = pLevel->pWLoop; 419 int i; 420 int nEq = 0; 421 int *aiMap = 0; 422 423 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 424 && pLoop->u.btree.pIndex!=0 425 && pLoop->u.btree.pIndex->aSortOrder[iEq] 426 ){ 427 testcase( iEq==0 ); 428 testcase( bRev ); 429 bRev = !bRev; 430 } 431 assert( pX->op==TK_IN ); 432 iReg = iTarget; 433 434 for(i=0; i<iEq; i++){ 435 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ 436 disableTerm(pLevel, pTerm); 437 return iTarget; 438 } 439 } 440 for(i=iEq;i<pLoop->nLTerm; i++){ 441 if( ALWAYS(pLoop->aLTerm[i]) && pLoop->aLTerm[i]->pExpr==pX ) nEq++; 442 } 443 444 if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){ 445 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0); 446 }else{ 447 Select *pSelect = pX->x.pSelect; 448 sqlite3 *db = pParse->db; 449 ExprList *pOrigRhs = pSelect->pEList; 450 ExprList *pOrigLhs = pX->pLeft->x.pList; 451 ExprList *pRhs = 0; /* New Select.pEList for RHS */ 452 ExprList *pLhs = 0; /* New pX->pLeft vector */ 453 454 for(i=iEq;i<pLoop->nLTerm; i++){ 455 if( pLoop->aLTerm[i]->pExpr==pX ){ 456 int iField = pLoop->aLTerm[i]->iField - 1; 457 Expr *pNewRhs = sqlite3ExprDup(db, pOrigRhs->a[iField].pExpr, 0); 458 Expr *pNewLhs = sqlite3ExprDup(db, pOrigLhs->a[iField].pExpr, 0); 459 460 pRhs = sqlite3ExprListAppend(pParse, pRhs, pNewRhs); 461 pLhs = sqlite3ExprListAppend(pParse, pLhs, pNewLhs); 462 } 463 } 464 if( !db->mallocFailed ){ 465 Expr *pLeft = pX->pLeft; 466 467 if( pSelect->pOrderBy ){ 468 /* If the SELECT statement has an ORDER BY clause, zero the 469 ** iOrderByCol variables. These are set to non-zero when an 470 ** ORDER BY term exactly matches one of the terms of the 471 ** result-set. Since the result-set of the SELECT statement may 472 ** have been modified or reordered, these variables are no longer 473 ** set correctly. Since setting them is just an optimization, 474 ** it's easiest just to zero them here. */ 475 ExprList *pOrderBy = pSelect->pOrderBy; 476 for(i=0; i<pOrderBy->nExpr; i++){ 477 pOrderBy->a[i].u.x.iOrderByCol = 0; 478 } 479 } 480 481 /* Take care here not to generate a TK_VECTOR containing only a 482 ** single value. Since the parser never creates such a vector, some 483 ** of the subroutines do not handle this case. */ 484 if( pLhs->nExpr==1 ){ 485 pX->pLeft = pLhs->a[0].pExpr; 486 }else{ 487 pLeft->x.pList = pLhs; 488 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int) * nEq); 489 testcase( aiMap==0 ); 490 } 491 pSelect->pEList = pRhs; 492 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap); 493 testcase( aiMap!=0 && aiMap[0]!=0 ); 494 pSelect->pEList = pOrigRhs; 495 pLeft->x.pList = pOrigLhs; 496 pX->pLeft = pLeft; 497 } 498 sqlite3ExprListDelete(pParse->db, pLhs); 499 sqlite3ExprListDelete(pParse->db, pRhs); 500 } 501 502 if( eType==IN_INDEX_INDEX_DESC ){ 503 testcase( bRev ); 504 bRev = !bRev; 505 } 506 iTab = pX->iTable; 507 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 508 VdbeCoverageIf(v, bRev); 509 VdbeCoverageIf(v, !bRev); 510 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 511 512 pLoop->wsFlags |= WHERE_IN_ABLE; 513 if( pLevel->u.in.nIn==0 ){ 514 pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 515 } 516 517 i = pLevel->u.in.nIn; 518 pLevel->u.in.nIn += nEq; 519 pLevel->u.in.aInLoop = 520 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 521 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 522 pIn = pLevel->u.in.aInLoop; 523 if( pIn ){ 524 int iMap = 0; /* Index in aiMap[] */ 525 pIn += i; 526 for(i=iEq;i<pLoop->nLTerm; i++){ 527 if( pLoop->aLTerm[i]->pExpr==pX ){ 528 int iOut = iReg + i - iEq; 529 if( eType==IN_INDEX_ROWID ){ 530 testcase( nEq>1 ); /* Happens with a UNIQUE index on ROWID */ 531 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); 532 }else{ 533 int iCol = aiMap ? aiMap[iMap++] : 0; 534 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); 535 } 536 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); 537 if( i==iEq ){ 538 pIn->iCur = iTab; 539 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; 540 }else{ 541 pIn->eEndLoopOp = OP_Noop; 542 } 543 pIn++; 544 } 545 } 546 }else{ 547 pLevel->u.in.nIn = 0; 548 } 549 sqlite3DbFree(pParse->db, aiMap); 550 #endif 551 } 552 disableTerm(pLevel, pTerm); 553 return iReg; 554 } 555 556 /* 557 ** Generate code that will evaluate all == and IN constraints for an 558 ** index scan. 559 ** 560 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 561 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 562 ** The index has as many as three equality constraints, but in this 563 ** example, the third "c" value is an inequality. So only two 564 ** constraints are coded. This routine will generate code to evaluate 565 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 566 ** in consecutive registers and the index of the first register is returned. 567 ** 568 ** In the example above nEq==2. But this subroutine works for any value 569 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 570 ** The only thing it does is allocate the pLevel->iMem memory cell and 571 ** compute the affinity string. 572 ** 573 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 574 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 575 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 576 ** occurs after the nEq quality constraints. 577 ** 578 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 579 ** the index of the first memory cell in that range. The code that 580 ** calls this routine will use that memory range to store keys for 581 ** start and termination conditions of the loop. 582 ** key value of the loop. If one or more IN operators appear, then 583 ** this routine allocates an additional nEq memory cells for internal 584 ** use. 585 ** 586 ** Before returning, *pzAff is set to point to a buffer containing a 587 ** copy of the column affinity string of the index allocated using 588 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 589 ** with equality constraints that use BLOB or NONE affinity are set to 590 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 591 ** 592 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 593 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 594 ** 595 ** In the example above, the index on t1(a) has TEXT affinity. But since 596 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 597 ** no conversion should be attempted before using a t2.b value as part of 598 ** a key to search the index. Hence the first byte in the returned affinity 599 ** string in this example would be set to SQLITE_AFF_BLOB. 600 */ 601 static int codeAllEqualityTerms( 602 Parse *pParse, /* Parsing context */ 603 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 604 int bRev, /* Reverse the order of IN operators */ 605 int nExtraReg, /* Number of extra registers to allocate */ 606 char **pzAff /* OUT: Set to point to affinity string */ 607 ){ 608 u16 nEq; /* The number of == or IN constraints to code */ 609 u16 nSkip; /* Number of left-most columns to skip */ 610 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 611 Index *pIdx; /* The index being used for this loop */ 612 WhereTerm *pTerm; /* A single constraint term */ 613 WhereLoop *pLoop; /* The WhereLoop object */ 614 int j; /* Loop counter */ 615 int regBase; /* Base register */ 616 int nReg; /* Number of registers to allocate */ 617 char *zAff; /* Affinity string to return */ 618 619 /* This module is only called on query plans that use an index. */ 620 pLoop = pLevel->pWLoop; 621 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 622 nEq = pLoop->u.btree.nEq; 623 nSkip = pLoop->nSkip; 624 pIdx = pLoop->u.btree.pIndex; 625 assert( pIdx!=0 ); 626 627 /* Figure out how many memory cells we will need then allocate them. 628 */ 629 regBase = pParse->nMem + 1; 630 nReg = pLoop->u.btree.nEq + nExtraReg; 631 pParse->nMem += nReg; 632 633 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 634 assert( zAff!=0 || pParse->db->mallocFailed ); 635 636 if( nSkip ){ 637 int iIdxCur = pLevel->iIdxCur; 638 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 639 VdbeCoverageIf(v, bRev==0); 640 VdbeCoverageIf(v, bRev!=0); 641 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 642 j = sqlite3VdbeAddOp0(v, OP_Goto); 643 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 644 iIdxCur, 0, regBase, nSkip); 645 VdbeCoverageIf(v, bRev==0); 646 VdbeCoverageIf(v, bRev!=0); 647 sqlite3VdbeJumpHere(v, j); 648 for(j=0; j<nSkip; j++){ 649 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 650 testcase( pIdx->aiColumn[j]==XN_EXPR ); 651 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 652 } 653 } 654 655 /* Evaluate the equality constraints 656 */ 657 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 658 for(j=nSkip; j<nEq; j++){ 659 int r1; 660 pTerm = pLoop->aLTerm[j]; 661 assert( pTerm!=0 ); 662 /* The following testcase is true for indices with redundant columns. 663 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 664 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 665 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 666 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 667 if( r1!=regBase+j ){ 668 if( nReg==1 ){ 669 sqlite3ReleaseTempReg(pParse, regBase); 670 regBase = r1; 671 }else{ 672 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 673 } 674 } 675 if( pTerm->eOperator & WO_IN ){ 676 if( pTerm->pExpr->flags & EP_xIsSelect ){ 677 /* No affinity ever needs to be (or should be) applied to a value 678 ** from the RHS of an "? IN (SELECT ...)" expression. The 679 ** sqlite3FindInIndex() routine has already ensured that the 680 ** affinity of the comparison has been applied to the value. */ 681 if( zAff ) zAff[j] = SQLITE_AFF_BLOB; 682 } 683 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ 684 Expr *pRight = pTerm->pExpr->pRight; 685 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 686 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 687 VdbeCoverage(v); 688 } 689 if( zAff ){ 690 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 691 zAff[j] = SQLITE_AFF_BLOB; 692 } 693 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 694 zAff[j] = SQLITE_AFF_BLOB; 695 } 696 } 697 } 698 } 699 *pzAff = zAff; 700 return regBase; 701 } 702 703 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 704 /* 705 ** If the most recently coded instruction is a constant range constraint 706 ** (a string literal) that originated from the LIKE optimization, then 707 ** set P3 and P5 on the OP_String opcode so that the string will be cast 708 ** to a BLOB at appropriate times. 709 ** 710 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 711 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 712 ** scan loop run twice, once for strings and a second time for BLOBs. 713 ** The OP_String opcodes on the second pass convert the upper and lower 714 ** bound string constants to blobs. This routine makes the necessary changes 715 ** to the OP_String opcodes for that to happen. 716 ** 717 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 718 ** only the one pass through the string space is required, so this routine 719 ** becomes a no-op. 720 */ 721 static void whereLikeOptimizationStringFixup( 722 Vdbe *v, /* prepared statement under construction */ 723 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 724 WhereTerm *pTerm /* The upper or lower bound just coded */ 725 ){ 726 if( pTerm->wtFlags & TERM_LIKEOPT ){ 727 VdbeOp *pOp; 728 assert( pLevel->iLikeRepCntr>0 ); 729 pOp = sqlite3VdbeGetOp(v, -1); 730 assert( pOp!=0 ); 731 assert( pOp->opcode==OP_String8 732 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 733 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ 734 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ 735 } 736 } 737 #else 738 # define whereLikeOptimizationStringFixup(A,B,C) 739 #endif 740 741 #ifdef SQLITE_ENABLE_CURSOR_HINTS 742 /* 743 ** Information is passed from codeCursorHint() down to individual nodes of 744 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 745 ** structure. 746 */ 747 struct CCurHint { 748 int iTabCur; /* Cursor for the main table */ 749 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 750 Index *pIdx; /* The index used to access the table */ 751 }; 752 753 /* 754 ** This function is called for every node of an expression that is a candidate 755 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 756 ** the table CCurHint.iTabCur, verify that the same column can be 757 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 758 */ 759 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 760 struct CCurHint *pHint = pWalker->u.pCCurHint; 761 assert( pHint->pIdx!=0 ); 762 if( pExpr->op==TK_COLUMN 763 && pExpr->iTable==pHint->iTabCur 764 && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0 765 ){ 766 pWalker->eCode = 1; 767 } 768 return WRC_Continue; 769 } 770 771 /* 772 ** Test whether or not expression pExpr, which was part of a WHERE clause, 773 ** should be included in the cursor-hint for a table that is on the rhs 774 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the 775 ** expression is not suitable. 776 ** 777 ** An expression is unsuitable if it might evaluate to non NULL even if 778 ** a TK_COLUMN node that does affect the value of the expression is set 779 ** to NULL. For example: 780 ** 781 ** col IS NULL 782 ** col IS NOT NULL 783 ** coalesce(col, 1) 784 ** CASE WHEN col THEN 0 ELSE 1 END 785 */ 786 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ 787 if( pExpr->op==TK_IS 788 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT 789 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE 790 ){ 791 pWalker->eCode = 1; 792 }else if( pExpr->op==TK_FUNCTION ){ 793 int d1; 794 char d2[3]; 795 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ 796 pWalker->eCode = 1; 797 } 798 } 799 800 return WRC_Continue; 801 } 802 803 804 /* 805 ** This function is called on every node of an expression tree used as an 806 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 807 ** that accesses any table other than the one identified by 808 ** CCurHint.iTabCur, then do the following: 809 ** 810 ** 1) allocate a register and code an OP_Column instruction to read 811 ** the specified column into the new register, and 812 ** 813 ** 2) transform the expression node to a TK_REGISTER node that reads 814 ** from the newly populated register. 815 ** 816 ** Also, if the node is a TK_COLUMN that does access the table idenified 817 ** by pCCurHint.iTabCur, and an index is being used (which we will 818 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 819 ** an access of the index rather than the original table. 820 */ 821 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 822 int rc = WRC_Continue; 823 struct CCurHint *pHint = pWalker->u.pCCurHint; 824 if( pExpr->op==TK_COLUMN ){ 825 if( pExpr->iTable!=pHint->iTabCur ){ 826 Vdbe *v = pWalker->pParse->pVdbe; 827 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 828 sqlite3ExprCodeGetColumnOfTable( 829 v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg 830 ); 831 pExpr->op = TK_REGISTER; 832 pExpr->iTable = reg; 833 }else if( pHint->pIdx!=0 ){ 834 pExpr->iTable = pHint->iIdxCur; 835 pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn); 836 assert( pExpr->iColumn>=0 ); 837 } 838 }else if( pExpr->op==TK_AGG_FUNCTION ){ 839 /* An aggregate function in the WHERE clause of a query means this must 840 ** be a correlated sub-query, and expression pExpr is an aggregate from 841 ** the parent context. Do not walk the function arguments in this case. 842 ** 843 ** todo: It should be possible to replace this node with a TK_REGISTER 844 ** expression, as the result of the expression must be stored in a 845 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 846 rc = WRC_Prune; 847 } 848 return rc; 849 } 850 851 /* 852 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 853 */ 854 static void codeCursorHint( 855 struct SrcList_item *pTabItem, /* FROM clause item */ 856 WhereInfo *pWInfo, /* The where clause */ 857 WhereLevel *pLevel, /* Which loop to provide hints for */ 858 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 859 ){ 860 Parse *pParse = pWInfo->pParse; 861 sqlite3 *db = pParse->db; 862 Vdbe *v = pParse->pVdbe; 863 Expr *pExpr = 0; 864 WhereLoop *pLoop = pLevel->pWLoop; 865 int iCur; 866 WhereClause *pWC; 867 WhereTerm *pTerm; 868 int i, j; 869 struct CCurHint sHint; 870 Walker sWalker; 871 872 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 873 iCur = pLevel->iTabCur; 874 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 875 sHint.iTabCur = iCur; 876 sHint.iIdxCur = pLevel->iIdxCur; 877 sHint.pIdx = pLoop->u.btree.pIndex; 878 memset(&sWalker, 0, sizeof(sWalker)); 879 sWalker.pParse = pParse; 880 sWalker.u.pCCurHint = &sHint; 881 pWC = &pWInfo->sWC; 882 for(i=0; i<pWC->nTerm; i++){ 883 pTerm = &pWC->a[i]; 884 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 885 if( pTerm->prereqAll & pLevel->notReady ) continue; 886 887 /* Any terms specified as part of the ON(...) clause for any LEFT 888 ** JOIN for which the current table is not the rhs are omitted 889 ** from the cursor-hint. 890 ** 891 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms 892 ** that were specified as part of the WHERE clause must be excluded. 893 ** This is to address the following: 894 ** 895 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; 896 ** 897 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its 898 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is 899 ** pushed down to the cursor, this row is filtered out, causing 900 ** SQLite to synthesize a row of NULL values. Which does match the 901 ** WHERE clause, and so the query returns a row. Which is incorrect. 902 ** 903 ** For the same reason, WHERE terms such as: 904 ** 905 ** WHERE 1 = (t2.c IS NULL) 906 ** 907 ** are also excluded. See codeCursorHintIsOrFunction() for details. 908 */ 909 if( pTabItem->fg.jointype & JT_LEFT ){ 910 Expr *pExpr = pTerm->pExpr; 911 if( !ExprHasProperty(pExpr, EP_FromJoin) 912 || pExpr->iRightJoinTable!=pTabItem->iCursor 913 ){ 914 sWalker.eCode = 0; 915 sWalker.xExprCallback = codeCursorHintIsOrFunction; 916 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 917 if( sWalker.eCode ) continue; 918 } 919 }else{ 920 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; 921 } 922 923 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 924 ** the cursor. These terms are not needed as hints for a pure range 925 ** scan (that has no == terms) so omit them. */ 926 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 927 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 928 if( j<pLoop->nLTerm ) continue; 929 } 930 931 /* No subqueries or non-deterministic functions allowed */ 932 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 933 934 /* For an index scan, make sure referenced columns are actually in 935 ** the index. */ 936 if( sHint.pIdx!=0 ){ 937 sWalker.eCode = 0; 938 sWalker.xExprCallback = codeCursorHintCheckExpr; 939 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 940 if( sWalker.eCode ) continue; 941 } 942 943 /* If we survive all prior tests, that means this term is worth hinting */ 944 pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 945 } 946 if( pExpr!=0 ){ 947 sWalker.xExprCallback = codeCursorHintFixExpr; 948 sqlite3WalkExpr(&sWalker, pExpr); 949 sqlite3VdbeAddOp4(v, OP_CursorHint, 950 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 951 (const char*)pExpr, P4_EXPR); 952 } 953 } 954 #else 955 # define codeCursorHint(A,B,C,D) /* No-op */ 956 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 957 958 /* 959 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains 960 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This 961 ** function generates code to do a deferred seek of cursor iCur to the 962 ** rowid stored in register iRowid. 963 ** 964 ** Normally, this is just: 965 ** 966 ** OP_Seek $iCur $iRowid 967 ** 968 ** However, if the scan currently being coded is a branch of an OR-loop and 969 ** the statement currently being coded is a SELECT, then P3 of the OP_Seek 970 ** is set to iIdxCur and P4 is set to point to an array of integers 971 ** containing one entry for each column of the table cursor iCur is open 972 ** on. For each table column, if the column is the i'th column of the 973 ** index, then the corresponding array entry is set to (i+1). If the column 974 ** does not appear in the index at all, the array entry is set to 0. 975 */ 976 static void codeDeferredSeek( 977 WhereInfo *pWInfo, /* Where clause context */ 978 Index *pIdx, /* Index scan is using */ 979 int iCur, /* Cursor for IPK b-tree */ 980 int iIdxCur /* Index cursor */ 981 ){ 982 Parse *pParse = pWInfo->pParse; /* Parse context */ 983 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ 984 985 assert( iIdxCur>0 ); 986 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); 987 988 sqlite3VdbeAddOp3(v, OP_Seek, iIdxCur, 0, iCur); 989 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 990 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) 991 ){ 992 int i; 993 Table *pTab = pIdx->pTable; 994 int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1)); 995 if( ai ){ 996 ai[0] = pTab->nCol; 997 for(i=0; i<pIdx->nColumn-1; i++){ 998 assert( pIdx->aiColumn[i]<pTab->nCol ); 999 if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1; 1000 } 1001 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); 1002 } 1003 } 1004 } 1005 1006 /* 1007 ** If the expression passed as the second argument is a vector, generate 1008 ** code to write the first nReg elements of the vector into an array 1009 ** of registers starting with iReg. 1010 ** 1011 ** If the expression is not a vector, then nReg must be passed 1. In 1012 ** this case, generate code to evaluate the expression and leave the 1013 ** result in register iReg. 1014 */ 1015 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ 1016 assert( nReg>0 ); 1017 if( sqlite3ExprIsVector(p) ){ 1018 #ifndef SQLITE_OMIT_SUBQUERY 1019 if( (p->flags & EP_xIsSelect) ){ 1020 Vdbe *v = pParse->pVdbe; 1021 int iSelect = sqlite3CodeSubselect(pParse, p, 0, 0); 1022 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); 1023 }else 1024 #endif 1025 { 1026 int i; 1027 ExprList *pList = p->x.pList; 1028 assert( nReg<=pList->nExpr ); 1029 for(i=0; i<nReg; i++){ 1030 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i); 1031 } 1032 } 1033 }else{ 1034 assert( nReg==1 ); 1035 sqlite3ExprCode(pParse, p, iReg); 1036 } 1037 } 1038 1039 /* 1040 ** Generate code for the start of the iLevel-th loop in the WHERE clause 1041 ** implementation described by pWInfo. 1042 */ 1043 Bitmask sqlite3WhereCodeOneLoopStart( 1044 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1045 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1046 Bitmask notReady /* Which tables are currently available */ 1047 ){ 1048 int j, k; /* Loop counters */ 1049 int iCur; /* The VDBE cursor for the table */ 1050 int addrNxt; /* Where to jump to continue with the next IN case */ 1051 int omitTable; /* True if we use the index only */ 1052 int bRev; /* True if we need to scan in reverse order */ 1053 WhereLevel *pLevel; /* The where level to be coded */ 1054 WhereLoop *pLoop; /* The WhereLoop object being coded */ 1055 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 1056 WhereTerm *pTerm; /* A WHERE clause term */ 1057 Parse *pParse; /* Parsing context */ 1058 sqlite3 *db; /* Database connection */ 1059 Vdbe *v; /* The prepared stmt under constructions */ 1060 struct SrcList_item *pTabItem; /* FROM clause term being coded */ 1061 int addrBrk; /* Jump here to break out of the loop */ 1062 int addrCont; /* Jump here to continue with next cycle */ 1063 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 1064 int iReleaseReg = 0; /* Temp register to free before returning */ 1065 1066 pParse = pWInfo->pParse; 1067 v = pParse->pVdbe; 1068 pWC = &pWInfo->sWC; 1069 db = pParse->db; 1070 pLevel = &pWInfo->a[iLevel]; 1071 pLoop = pLevel->pWLoop; 1072 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1073 iCur = pTabItem->iCursor; 1074 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 1075 bRev = (pWInfo->revMask>>iLevel)&1; 1076 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 1077 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0; 1078 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 1079 1080 /* Create labels for the "break" and "continue" instructions 1081 ** for the current loop. Jump to addrBrk to break out of a loop. 1082 ** Jump to cont to go immediately to the next iteration of the 1083 ** loop. 1084 ** 1085 ** When there is an IN operator, we also have a "addrNxt" label that 1086 ** means to continue with the next IN value combination. When 1087 ** there are no IN operators in the constraints, the "addrNxt" label 1088 ** is the same as "addrBrk". 1089 */ 1090 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 1091 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); 1092 1093 /* If this is the right table of a LEFT OUTER JOIN, allocate and 1094 ** initialize a memory cell that records if this table matches any 1095 ** row of the left table of the join. 1096 */ 1097 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 1098 pLevel->iLeftJoin = ++pParse->nMem; 1099 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 1100 VdbeComment((v, "init LEFT JOIN no-match flag")); 1101 } 1102 1103 /* Special case of a FROM clause subquery implemented as a co-routine */ 1104 if( pTabItem->fg.viaCoroutine ){ 1105 int regYield = pTabItem->regReturn; 1106 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 1107 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 1108 VdbeCoverage(v); 1109 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); 1110 pLevel->op = OP_Goto; 1111 }else 1112 1113 #ifndef SQLITE_OMIT_VIRTUALTABLE 1114 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 1115 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 1116 ** to access the data. 1117 */ 1118 int iReg; /* P3 Value for OP_VFilter */ 1119 int addrNotFound; 1120 int nConstraint = pLoop->nLTerm; 1121 int iIn; /* Counter for IN constraints */ 1122 1123 sqlite3ExprCachePush(pParse); 1124 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 1125 addrNotFound = pLevel->addrBrk; 1126 for(j=0; j<nConstraint; j++){ 1127 int iTarget = iReg+j+2; 1128 pTerm = pLoop->aLTerm[j]; 1129 if( NEVER(pTerm==0) ) continue; 1130 if( pTerm->eOperator & WO_IN ){ 1131 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 1132 addrNotFound = pLevel->addrNxt; 1133 }else{ 1134 Expr *pRight = pTerm->pExpr->pRight; 1135 codeExprOrVector(pParse, pRight, iTarget, 1); 1136 } 1137 } 1138 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 1139 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 1140 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 1141 pLoop->u.vtab.idxStr, 1142 pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC); 1143 VdbeCoverage(v); 1144 pLoop->u.vtab.needFree = 0; 1145 pLevel->p1 = iCur; 1146 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 1147 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1148 iIn = pLevel->u.in.nIn; 1149 for(j=nConstraint-1; j>=0; j--){ 1150 pTerm = pLoop->aLTerm[j]; 1151 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ 1152 disableTerm(pLevel, pTerm); 1153 }else if( (pTerm->eOperator & WO_IN)!=0 ){ 1154 Expr *pCompare; /* The comparison operator */ 1155 Expr *pRight; /* RHS of the comparison */ 1156 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ 1157 1158 /* Reload the constraint value into reg[iReg+j+2]. The same value 1159 ** was loaded into the same register prior to the OP_VFilter, but 1160 ** the xFilter implementation might have changed the datatype or 1161 ** encoding of the value in the register, so it *must* be reloaded. */ 1162 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed ); 1163 if( !db->mallocFailed ){ 1164 assert( iIn>0 ); 1165 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[--iIn].addrInTop); 1166 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid ); 1167 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 ); 1168 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 ); 1169 testcase( pOp->opcode==OP_Rowid ); 1170 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); 1171 } 1172 1173 /* Generate code that will continue to the next row if 1174 ** the IN constraint is not satisfied */ 1175 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0, 0); 1176 assert( pCompare!=0 || db->mallocFailed ); 1177 if( pCompare ){ 1178 pCompare->pLeft = pTerm->pExpr->pLeft; 1179 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); 1180 if( pRight ){ 1181 pRight->iTable = iReg+j+2; 1182 sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0); 1183 } 1184 pCompare->pLeft = 0; 1185 sqlite3ExprDelete(db, pCompare); 1186 } 1187 } 1188 } 1189 /* These registers need to be preserved in case there is an IN operator 1190 ** loop. So we could deallocate the registers here (and potentially 1191 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems 1192 ** simpler and safer to simply not reuse the registers. 1193 ** 1194 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 1195 */ 1196 sqlite3ExprCachePop(pParse); 1197 }else 1198 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1199 1200 if( (pLoop->wsFlags & WHERE_IPK)!=0 1201 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 1202 ){ 1203 /* Case 2: We can directly reference a single row using an 1204 ** equality comparison against the ROWID field. Or 1205 ** we reference multiple rows using a "rowid IN (...)" 1206 ** construct. 1207 */ 1208 assert( pLoop->u.btree.nEq==1 ); 1209 pTerm = pLoop->aLTerm[0]; 1210 assert( pTerm!=0 ); 1211 assert( pTerm->pExpr!=0 ); 1212 assert( omitTable==0 ); 1213 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1214 iReleaseReg = ++pParse->nMem; 1215 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 1216 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 1217 addrNxt = pLevel->addrNxt; 1218 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); 1219 VdbeCoverage(v); 1220 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); 1221 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 1222 VdbeComment((v, "pk")); 1223 pLevel->op = OP_Noop; 1224 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 1225 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 1226 ){ 1227 /* Case 3: We have an inequality comparison against the ROWID field. 1228 */ 1229 int testOp = OP_Noop; 1230 int start; 1231 int memEndValue = 0; 1232 WhereTerm *pStart, *pEnd; 1233 1234 assert( omitTable==0 ); 1235 j = 0; 1236 pStart = pEnd = 0; 1237 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 1238 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 1239 assert( pStart!=0 || pEnd!=0 ); 1240 if( bRev ){ 1241 pTerm = pStart; 1242 pStart = pEnd; 1243 pEnd = pTerm; 1244 } 1245 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); 1246 if( pStart ){ 1247 Expr *pX; /* The expression that defines the start bound */ 1248 int r1, rTemp; /* Registers for holding the start boundary */ 1249 int op; /* Cursor seek operation */ 1250 1251 /* The following constant maps TK_xx codes into corresponding 1252 ** seek opcodes. It depends on a particular ordering of TK_xx 1253 */ 1254 const u8 aMoveOp[] = { 1255 /* TK_GT */ OP_SeekGT, 1256 /* TK_LE */ OP_SeekLE, 1257 /* TK_LT */ OP_SeekLT, 1258 /* TK_GE */ OP_SeekGE 1259 }; 1260 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 1261 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 1262 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 1263 1264 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 1265 testcase( pStart->wtFlags & TERM_VIRTUAL ); 1266 pX = pStart->pExpr; 1267 assert( pX!=0 ); 1268 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 1269 if( sqlite3ExprIsVector(pX->pRight) ){ 1270 r1 = rTemp = sqlite3GetTempReg(pParse); 1271 codeExprOrVector(pParse, pX->pRight, r1, 1); 1272 op = aMoveOp[(pX->op - TK_GT) | 0x0001]; 1273 }else{ 1274 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 1275 disableTerm(pLevel, pStart); 1276 op = aMoveOp[(pX->op - TK_GT)]; 1277 } 1278 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); 1279 VdbeComment((v, "pk")); 1280 VdbeCoverageIf(v, pX->op==TK_GT); 1281 VdbeCoverageIf(v, pX->op==TK_LE); 1282 VdbeCoverageIf(v, pX->op==TK_LT); 1283 VdbeCoverageIf(v, pX->op==TK_GE); 1284 sqlite3ExprCacheAffinityChange(pParse, r1, 1); 1285 sqlite3ReleaseTempReg(pParse, rTemp); 1286 }else{ 1287 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); 1288 VdbeCoverageIf(v, bRev==0); 1289 VdbeCoverageIf(v, bRev!=0); 1290 } 1291 if( pEnd ){ 1292 Expr *pX; 1293 pX = pEnd->pExpr; 1294 assert( pX!=0 ); 1295 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 1296 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 1297 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 1298 memEndValue = ++pParse->nMem; 1299 codeExprOrVector(pParse, pX->pRight, memEndValue, 1); 1300 if( 0==sqlite3ExprIsVector(pX->pRight) 1301 && (pX->op==TK_LT || pX->op==TK_GT) 1302 ){ 1303 testOp = bRev ? OP_Le : OP_Ge; 1304 }else{ 1305 testOp = bRev ? OP_Lt : OP_Gt; 1306 } 1307 if( 0==sqlite3ExprIsVector(pX->pRight) ){ 1308 disableTerm(pLevel, pEnd); 1309 } 1310 } 1311 start = sqlite3VdbeCurrentAddr(v); 1312 pLevel->op = bRev ? OP_Prev : OP_Next; 1313 pLevel->p1 = iCur; 1314 pLevel->p2 = start; 1315 assert( pLevel->p5==0 ); 1316 if( testOp!=OP_Noop ){ 1317 iRowidReg = ++pParse->nMem; 1318 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 1319 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 1320 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 1321 VdbeCoverageIf(v, testOp==OP_Le); 1322 VdbeCoverageIf(v, testOp==OP_Lt); 1323 VdbeCoverageIf(v, testOp==OP_Ge); 1324 VdbeCoverageIf(v, testOp==OP_Gt); 1325 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 1326 } 1327 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 1328 /* Case 4: A scan using an index. 1329 ** 1330 ** The WHERE clause may contain zero or more equality 1331 ** terms ("==" or "IN" operators) that refer to the N 1332 ** left-most columns of the index. It may also contain 1333 ** inequality constraints (>, <, >= or <=) on the indexed 1334 ** column that immediately follows the N equalities. Only 1335 ** the right-most column can be an inequality - the rest must 1336 ** use the "==" and "IN" operators. For example, if the 1337 ** index is on (x,y,z), then the following clauses are all 1338 ** optimized: 1339 ** 1340 ** x=5 1341 ** x=5 AND y=10 1342 ** x=5 AND y<10 1343 ** x=5 AND y>5 AND y<10 1344 ** x=5 AND y=5 AND z<=10 1345 ** 1346 ** The z<10 term of the following cannot be used, only 1347 ** the x=5 term: 1348 ** 1349 ** x=5 AND z<10 1350 ** 1351 ** N may be zero if there are inequality constraints. 1352 ** If there are no inequality constraints, then N is at 1353 ** least one. 1354 ** 1355 ** This case is also used when there are no WHERE clause 1356 ** constraints but an index is selected anyway, in order 1357 ** to force the output order to conform to an ORDER BY. 1358 */ 1359 static const u8 aStartOp[] = { 1360 0, 1361 0, 1362 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1363 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1364 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1365 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1366 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1367 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1368 }; 1369 static const u8 aEndOp[] = { 1370 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1371 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1372 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1373 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1374 }; 1375 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1376 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ 1377 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ 1378 int regBase; /* Base register holding constraint values */ 1379 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1380 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1381 int startEq; /* True if range start uses ==, >= or <= */ 1382 int endEq; /* True if range end uses ==, >= or <= */ 1383 int start_constraints; /* Start of range is constrained */ 1384 int nConstraint; /* Number of constraint terms */ 1385 Index *pIdx; /* The index we will be using */ 1386 int iIdxCur; /* The VDBE cursor for the index */ 1387 int nExtraReg = 0; /* Number of extra registers needed */ 1388 int op; /* Instruction opcode */ 1389 char *zStartAff; /* Affinity for start of range constraint */ 1390 char *zEndAff = 0; /* Affinity for end of range constraint */ 1391 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1392 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1393 1394 pIdx = pLoop->u.btree.pIndex; 1395 iIdxCur = pLevel->iIdxCur; 1396 assert( nEq>=pLoop->nSkip ); 1397 1398 /* If this loop satisfies a sort order (pOrderBy) request that 1399 ** was passed to this function to implement a "SELECT min(x) ..." 1400 ** query, then the caller will only allow the loop to run for 1401 ** a single iteration. This means that the first row returned 1402 ** should not have a NULL value stored in 'x'. If column 'x' is 1403 ** the first one after the nEq equality constraints in the index, 1404 ** this requires some special handling. 1405 */ 1406 assert( pWInfo->pOrderBy==0 1407 || pWInfo->pOrderBy->nExpr==1 1408 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); 1409 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 1410 && pWInfo->nOBSat>0 1411 && (pIdx->nKeyCol>nEq) 1412 ){ 1413 assert( pLoop->nSkip==0 ); 1414 bSeekPastNull = 1; 1415 nExtraReg = 1; 1416 } 1417 1418 /* Find any inequality constraint terms for the start and end 1419 ** of the range. 1420 */ 1421 j = nEq; 1422 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1423 pRangeStart = pLoop->aLTerm[j++]; 1424 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); 1425 /* Like optimization range constraints always occur in pairs */ 1426 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1427 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1428 } 1429 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1430 pRangeEnd = pLoop->aLTerm[j++]; 1431 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); 1432 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1433 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1434 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1435 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1436 pLevel->iLikeRepCntr = (u32)++pParse->nMem; 1437 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); 1438 VdbeComment((v, "LIKE loop counter")); 1439 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1440 /* iLikeRepCntr actually stores 2x the counter register number. The 1441 ** bottom bit indicates whether the search order is ASC or DESC. */ 1442 testcase( bRev ); 1443 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1444 assert( (bRev & ~1)==0 ); 1445 pLevel->iLikeRepCntr <<=1; 1446 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); 1447 } 1448 #endif 1449 if( pRangeStart==0 1450 && (j = pIdx->aiColumn[nEq])>=0 1451 && pIdx->pTable->aCol[j].notNull==0 1452 ){ 1453 bSeekPastNull = 1; 1454 } 1455 } 1456 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1457 1458 /* If we are doing a reverse order scan on an ascending index, or 1459 ** a forward order scan on a descending index, interchange the 1460 ** start and end terms (pRangeStart and pRangeEnd). 1461 */ 1462 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) 1463 || (bRev && pIdx->nKeyCol==nEq) 1464 ){ 1465 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1466 SWAP(u8, bSeekPastNull, bStopAtNull); 1467 SWAP(u8, nBtm, nTop); 1468 } 1469 1470 /* Generate code to evaluate all constraint terms using == or IN 1471 ** and store the values of those terms in an array of registers 1472 ** starting at regBase. 1473 */ 1474 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); 1475 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1476 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1477 if( zStartAff && nTop ){ 1478 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); 1479 } 1480 addrNxt = pLevel->addrNxt; 1481 1482 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1483 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1484 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1485 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1486 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1487 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1488 start_constraints = pRangeStart || nEq>0; 1489 1490 /* Seek the index cursor to the start of the range. */ 1491 nConstraint = nEq; 1492 if( pRangeStart ){ 1493 Expr *pRight = pRangeStart->pExpr->pRight; 1494 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); 1495 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1496 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1497 && sqlite3ExprCanBeNull(pRight) 1498 ){ 1499 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1500 VdbeCoverage(v); 1501 } 1502 if( zStartAff ){ 1503 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); 1504 } 1505 nConstraint += nBtm; 1506 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1507 if( sqlite3ExprIsVector(pRight)==0 ){ 1508 disableTerm(pLevel, pRangeStart); 1509 }else{ 1510 startEq = 1; 1511 } 1512 bSeekPastNull = 0; 1513 }else if( bSeekPastNull ){ 1514 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1515 nConstraint++; 1516 startEq = 0; 1517 start_constraints = 1; 1518 } 1519 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1520 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ 1521 /* The skip-scan logic inside the call to codeAllEqualityConstraints() 1522 ** above has already left the cursor sitting on the correct row, 1523 ** so no further seeking is needed */ 1524 }else{ 1525 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 1526 assert( op!=0 ); 1527 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1528 VdbeCoverage(v); 1529 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1530 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1531 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 1532 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1533 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1534 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 1535 } 1536 1537 /* Load the value for the inequality constraint at the end of the 1538 ** range (if any). 1539 */ 1540 nConstraint = nEq; 1541 if( pRangeEnd ){ 1542 Expr *pRight = pRangeEnd->pExpr->pRight; 1543 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); 1544 codeExprOrVector(pParse, pRight, regBase+nEq, nTop); 1545 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 1546 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 1547 && sqlite3ExprCanBeNull(pRight) 1548 ){ 1549 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1550 VdbeCoverage(v); 1551 } 1552 if( zEndAff ){ 1553 updateRangeAffinityStr(pRight, nTop, zEndAff); 1554 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); 1555 }else{ 1556 assert( pParse->db->mallocFailed ); 1557 } 1558 nConstraint += nTop; 1559 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 1560 1561 if( sqlite3ExprIsVector(pRight)==0 ){ 1562 disableTerm(pLevel, pRangeEnd); 1563 }else{ 1564 endEq = 1; 1565 } 1566 }else if( bStopAtNull ){ 1567 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1568 endEq = 0; 1569 nConstraint++; 1570 } 1571 sqlite3DbFree(db, zStartAff); 1572 sqlite3DbFree(db, zEndAff); 1573 1574 /* Top of the loop body */ 1575 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1576 1577 /* Check if the index cursor is past the end of the range. */ 1578 if( nConstraint ){ 1579 op = aEndOp[bRev*2 + endEq]; 1580 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1581 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1582 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1583 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1584 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1585 } 1586 1587 /* Seek the table cursor, if required */ 1588 if( omitTable ){ 1589 /* pIdx is a covering index. No need to access the main table. */ 1590 }else if( HasRowid(pIdx->pTable) ){ 1591 if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE)!=0 ){ 1592 iRowidReg = ++pParse->nMem; 1593 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); 1594 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 1595 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg); 1596 VdbeCoverage(v); 1597 }else{ 1598 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); 1599 } 1600 }else if( iCur!=iIdxCur ){ 1601 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1602 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1603 for(j=0; j<pPk->nKeyCol; j++){ 1604 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); 1605 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 1606 } 1607 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 1608 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 1609 } 1610 1611 /* Record the instruction used to terminate the loop. */ 1612 if( pLoop->wsFlags & WHERE_ONEROW ){ 1613 pLevel->op = OP_Noop; 1614 }else if( bRev ){ 1615 pLevel->op = OP_Prev; 1616 }else{ 1617 pLevel->op = OP_Next; 1618 } 1619 pLevel->p1 = iIdxCur; 1620 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 1621 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 1622 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 1623 }else{ 1624 assert( pLevel->p5==0 ); 1625 } 1626 }else 1627 1628 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 1629 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 1630 /* Case 5: Two or more separately indexed terms connected by OR 1631 ** 1632 ** Example: 1633 ** 1634 ** CREATE TABLE t1(a,b,c,d); 1635 ** CREATE INDEX i1 ON t1(a); 1636 ** CREATE INDEX i2 ON t1(b); 1637 ** CREATE INDEX i3 ON t1(c); 1638 ** 1639 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 1640 ** 1641 ** In the example, there are three indexed terms connected by OR. 1642 ** The top of the loop looks like this: 1643 ** 1644 ** Null 1 # Zero the rowset in reg 1 1645 ** 1646 ** Then, for each indexed term, the following. The arguments to 1647 ** RowSetTest are such that the rowid of the current row is inserted 1648 ** into the RowSet. If it is already present, control skips the 1649 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 1650 ** 1651 ** sqlite3WhereBegin(<term>) 1652 ** RowSetTest # Insert rowid into rowset 1653 ** Gosub 2 A 1654 ** sqlite3WhereEnd() 1655 ** 1656 ** Following the above, code to terminate the loop. Label A, the target 1657 ** of the Gosub above, jumps to the instruction right after the Goto. 1658 ** 1659 ** Null 1 # Zero the rowset in reg 1 1660 ** Goto B # The loop is finished. 1661 ** 1662 ** A: <loop body> # Return data, whatever. 1663 ** 1664 ** Return 2 # Jump back to the Gosub 1665 ** 1666 ** B: <after the loop> 1667 ** 1668 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 1669 ** use an ephemeral index instead of a RowSet to record the primary 1670 ** keys of the rows we have already seen. 1671 ** 1672 */ 1673 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 1674 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 1675 Index *pCov = 0; /* Potential covering index (or NULL) */ 1676 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 1677 1678 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 1679 int regRowset = 0; /* Register for RowSet object */ 1680 int regRowid = 0; /* Register holding rowid */ 1681 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ 1682 int iRetInit; /* Address of regReturn init */ 1683 int untestedTerms = 0; /* Some terms not completely tested */ 1684 int ii; /* Loop counter */ 1685 u16 wctrlFlags; /* Flags for sub-WHERE clause */ 1686 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 1687 Table *pTab = pTabItem->pTab; 1688 1689 pTerm = pLoop->aLTerm[0]; 1690 assert( pTerm!=0 ); 1691 assert( pTerm->eOperator & WO_OR ); 1692 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 1693 pOrWc = &pTerm->u.pOrInfo->wc; 1694 pLevel->op = OP_Return; 1695 pLevel->p1 = regReturn; 1696 1697 /* Set up a new SrcList in pOrTab containing the table being scanned 1698 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 1699 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 1700 */ 1701 if( pWInfo->nLevel>1 ){ 1702 int nNotReady; /* The number of notReady tables */ 1703 struct SrcList_item *origSrc; /* Original list of tables */ 1704 nNotReady = pWInfo->nLevel - iLevel - 1; 1705 pOrTab = sqlite3StackAllocRaw(db, 1706 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 1707 if( pOrTab==0 ) return notReady; 1708 pOrTab->nAlloc = (u8)(nNotReady + 1); 1709 pOrTab->nSrc = pOrTab->nAlloc; 1710 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 1711 origSrc = pWInfo->pTabList->a; 1712 for(k=1; k<=nNotReady; k++){ 1713 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 1714 } 1715 }else{ 1716 pOrTab = pWInfo->pTabList; 1717 } 1718 1719 /* Initialize the rowset register to contain NULL. An SQL NULL is 1720 ** equivalent to an empty rowset. Or, create an ephemeral index 1721 ** capable of holding primary keys in the case of a WITHOUT ROWID. 1722 ** 1723 ** Also initialize regReturn to contain the address of the instruction 1724 ** immediately following the OP_Return at the bottom of the loop. This 1725 ** is required in a few obscure LEFT JOIN cases where control jumps 1726 ** over the top of the loop into the body of it. In this case the 1727 ** correct response for the end-of-loop code (the OP_Return) is to 1728 ** fall through to the next instruction, just as an OP_Next does if 1729 ** called on an uninitialized cursor. 1730 */ 1731 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 1732 if( HasRowid(pTab) ){ 1733 regRowset = ++pParse->nMem; 1734 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 1735 }else{ 1736 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1737 regRowset = pParse->nTab++; 1738 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 1739 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 1740 } 1741 regRowid = ++pParse->nMem; 1742 } 1743 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 1744 1745 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 1746 ** Then for every term xN, evaluate as the subexpression: xN AND z 1747 ** That way, terms in y that are factored into the disjunction will 1748 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 1749 ** 1750 ** Actually, each subexpression is converted to "xN AND w" where w is 1751 ** the "interesting" terms of z - terms that did not originate in the 1752 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 1753 ** indices. 1754 ** 1755 ** This optimization also only applies if the (x1 OR x2 OR ...) term 1756 ** is not contained in the ON clause of a LEFT JOIN. 1757 ** See ticket http://www.sqlite.org/src/info/f2369304e4 1758 */ 1759 if( pWC->nTerm>1 ){ 1760 int iTerm; 1761 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 1762 Expr *pExpr = pWC->a[iTerm].pExpr; 1763 if( &pWC->a[iTerm] == pTerm ) continue; 1764 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; 1765 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); 1766 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); 1767 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue; 1768 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 1769 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); 1770 pExpr = sqlite3ExprDup(db, pExpr, 0); 1771 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); 1772 } 1773 if( pAndExpr ){ 1774 pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr, 0); 1775 } 1776 } 1777 1778 /* Run a separate WHERE clause for each term of the OR clause. After 1779 ** eliminating duplicates from other WHERE clauses, the action for each 1780 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 1781 */ 1782 wctrlFlags = WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE); 1783 for(ii=0; ii<pOrWc->nTerm; ii++){ 1784 WhereTerm *pOrTerm = &pOrWc->a[ii]; 1785 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 1786 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 1787 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 1788 int jmp1 = 0; /* Address of jump operation */ 1789 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){ 1790 pAndExpr->pLeft = pOrExpr; 1791 pOrExpr = pAndExpr; 1792 } 1793 /* Loop through table entries that match term pOrTerm. */ 1794 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 1795 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 1796 wctrlFlags, iCovCur); 1797 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); 1798 if( pSubWInfo ){ 1799 WhereLoop *pSubLoop; 1800 int addrExplain = sqlite3WhereExplainOneScan( 1801 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 1802 ); 1803 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 1804 1805 /* This is the sub-WHERE clause body. First skip over 1806 ** duplicate rows from prior sub-WHERE clauses, and record the 1807 ** rowid (or PRIMARY KEY) for the current row so that the same 1808 ** row will be skipped in subsequent sub-WHERE clauses. 1809 */ 1810 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 1811 int r; 1812 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 1813 if( HasRowid(pTab) ){ 1814 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0); 1815 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 1816 r,iSet); 1817 VdbeCoverage(v); 1818 }else{ 1819 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1820 int nPk = pPk->nKeyCol; 1821 int iPk; 1822 1823 /* Read the PK into an array of temp registers. */ 1824 r = sqlite3GetTempRange(pParse, nPk); 1825 for(iPk=0; iPk<nPk; iPk++){ 1826 int iCol = pPk->aiColumn[iPk]; 1827 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk); 1828 } 1829 1830 /* Check if the temp table already contains this key. If so, 1831 ** the row has already been included in the result set and 1832 ** can be ignored (by jumping past the Gosub below). Otherwise, 1833 ** insert the key into the temp table and proceed with processing 1834 ** the row. 1835 ** 1836 ** Use some of the same optimizations as OP_RowSetTest: If iSet 1837 ** is zero, assume that the key cannot already be present in 1838 ** the temp table. And if iSet is -1, assume that there is no 1839 ** need to insert the key into the temp table, as it will never 1840 ** be tested for. */ 1841 if( iSet ){ 1842 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 1843 VdbeCoverage(v); 1844 } 1845 if( iSet>=0 ){ 1846 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 1847 sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0); 1848 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1849 } 1850 1851 /* Release the array of temp registers */ 1852 sqlite3ReleaseTempRange(pParse, r, nPk); 1853 } 1854 } 1855 1856 /* Invoke the main loop body as a subroutine */ 1857 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 1858 1859 /* Jump here (skipping the main loop body subroutine) if the 1860 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 1861 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 1862 1863 /* The pSubWInfo->untestedTerms flag means that this OR term 1864 ** contained one or more AND term from a notReady table. The 1865 ** terms from the notReady table could not be tested and will 1866 ** need to be tested later. 1867 */ 1868 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 1869 1870 /* If all of the OR-connected terms are optimized using the same 1871 ** index, and the index is opened using the same cursor number 1872 ** by each call to sqlite3WhereBegin() made by this loop, it may 1873 ** be possible to use that index as a covering index. 1874 ** 1875 ** If the call to sqlite3WhereBegin() above resulted in a scan that 1876 ** uses an index, and this is either the first OR-connected term 1877 ** processed or the index is the same as that used by all previous 1878 ** terms, set pCov to the candidate covering index. Otherwise, set 1879 ** pCov to NULL to indicate that no candidate covering index will 1880 ** be available. 1881 */ 1882 pSubLoop = pSubWInfo->a[0].pWLoop; 1883 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 1884 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 1885 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 1886 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 1887 ){ 1888 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 1889 pCov = pSubLoop->u.btree.pIndex; 1890 }else{ 1891 pCov = 0; 1892 } 1893 1894 /* Finish the loop through table entries that match term pOrTerm. */ 1895 sqlite3WhereEnd(pSubWInfo); 1896 } 1897 } 1898 } 1899 pLevel->u.pCovidx = pCov; 1900 if( pCov ) pLevel->iIdxCur = iCovCur; 1901 if( pAndExpr ){ 1902 pAndExpr->pLeft = 0; 1903 sqlite3ExprDelete(db, pAndExpr); 1904 } 1905 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 1906 sqlite3VdbeGoto(v, pLevel->addrBrk); 1907 sqlite3VdbeResolveLabel(v, iLoopBody); 1908 1909 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab); 1910 if( !untestedTerms ) disableTerm(pLevel, pTerm); 1911 }else 1912 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1913 1914 { 1915 /* Case 6: There is no usable index. We must do a complete 1916 ** scan of the entire table. 1917 */ 1918 static const u8 aStep[] = { OP_Next, OP_Prev }; 1919 static const u8 aStart[] = { OP_Rewind, OP_Last }; 1920 assert( bRev==0 || bRev==1 ); 1921 if( pTabItem->fg.isRecursive ){ 1922 /* Tables marked isRecursive have only a single row that is stored in 1923 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 1924 pLevel->op = OP_Noop; 1925 }else{ 1926 codeCursorHint(pTabItem, pWInfo, pLevel, 0); 1927 pLevel->op = aStep[bRev]; 1928 pLevel->p1 = iCur; 1929 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); 1930 VdbeCoverageIf(v, bRev==0); 1931 VdbeCoverageIf(v, bRev!=0); 1932 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 1933 } 1934 } 1935 1936 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1937 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 1938 #endif 1939 1940 /* Insert code to test every subexpression that can be completely 1941 ** computed using the current set of tables. 1942 */ 1943 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 1944 Expr *pE; 1945 int skipLikeAddr = 0; 1946 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1947 testcase( pTerm->wtFlags & TERM_CODED ); 1948 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1949 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 1950 testcase( pWInfo->untestedTerms==0 1951 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); 1952 pWInfo->untestedTerms = 1; 1953 continue; 1954 } 1955 pE = pTerm->pExpr; 1956 assert( pE!=0 ); 1957 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 1958 continue; 1959 } 1960 if( pTerm->wtFlags & TERM_LIKECOND ){ 1961 /* If the TERM_LIKECOND flag is set, that means that the range search 1962 ** is sufficient to guarantee that the LIKE operator is true, so we 1963 ** can skip the call to the like(A,B) function. But this only works 1964 ** for strings. So do not skip the call to the function on the pass 1965 ** that compares BLOBs. */ 1966 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1967 continue; 1968 #else 1969 u32 x = pLevel->iLikeRepCntr; 1970 assert( x>0 ); 1971 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)? OP_IfNot : OP_If, (int)(x>>1)); 1972 VdbeCoverage(v); 1973 #endif 1974 } 1975 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 1976 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 1977 pTerm->wtFlags |= TERM_CODED; 1978 } 1979 1980 /* Insert code to test for implied constraints based on transitivity 1981 ** of the "==" operator. 1982 ** 1983 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 1984 ** and we are coding the t1 loop and the t2 loop has not yet coded, 1985 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 1986 ** the implied "t1.a=123" constraint. 1987 */ 1988 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 1989 Expr *pE, sEAlt; 1990 WhereTerm *pAlt; 1991 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1992 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 1993 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 1994 if( pTerm->leftCursor!=iCur ) continue; 1995 if( pLevel->iLeftJoin ) continue; 1996 pE = pTerm->pExpr; 1997 assert( !ExprHasProperty(pE, EP_FromJoin) ); 1998 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 1999 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady, 2000 WO_EQ|WO_IN|WO_IS, 0); 2001 if( pAlt==0 ) continue; 2002 if( pAlt->wtFlags & (TERM_CODED) ) continue; 2003 testcase( pAlt->eOperator & WO_EQ ); 2004 testcase( pAlt->eOperator & WO_IS ); 2005 testcase( pAlt->eOperator & WO_IN ); 2006 VdbeModuleComment((v, "begin transitive constraint")); 2007 sEAlt = *pAlt->pExpr; 2008 sEAlt.pLeft = pE->pLeft; 2009 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); 2010 } 2011 2012 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2013 ** at least one row of the right table has matched the left table. 2014 */ 2015 if( pLevel->iLeftJoin ){ 2016 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2017 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2018 VdbeComment((v, "record LEFT JOIN hit")); 2019 sqlite3ExprCacheClear(pParse); 2020 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 2021 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2022 testcase( pTerm->wtFlags & TERM_CODED ); 2023 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2024 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2025 assert( pWInfo->untestedTerms ); 2026 continue; 2027 } 2028 assert( pTerm->pExpr ); 2029 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 2030 pTerm->wtFlags |= TERM_CODED; 2031 } 2032 } 2033 2034 return pLevel->notReady; 2035 } 2036