xref: /sqlite-3.40.0/src/wherecode.c (revision dfe4e6bb)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 
25 /*
26 ** Return the name of the i-th column of the pIdx index.
27 */
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29   i = pIdx->aiColumn[i];
30   if( i==XN_EXPR ) return "<expr>";
31   if( i==XN_ROWID ) return "rowid";
32   return pIdx->pTable->aCol[i].zName;
33 }
34 
35 /*
36 ** This routine is a helper for explainIndexRange() below
37 **
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time.  This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
42 */
43 static void explainAppendTerm(
44   StrAccum *pStr,             /* The text expression being built */
45   Index *pIdx,                /* Index to read column names from */
46   int nTerm,                  /* Number of terms */
47   int iTerm,                  /* Zero-based index of first term. */
48   int bAnd,                   /* Non-zero to append " AND " */
49   const char *zOp             /* Name of the operator */
50 ){
51   int i;
52 
53   assert( nTerm>=1 );
54   if( bAnd ) sqlite3StrAccumAppend(pStr, " AND ", 5);
55 
56   if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1);
57   for(i=0; i<nTerm; i++){
58     if( i ) sqlite3StrAccumAppend(pStr, ",", 1);
59     sqlite3StrAccumAppendAll(pStr, explainIndexColumnName(pIdx, iTerm+i));
60   }
61   if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1);
62 
63   sqlite3StrAccumAppend(pStr, zOp, 1);
64 
65   if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1);
66   for(i=0; i<nTerm; i++){
67     if( i ) sqlite3StrAccumAppend(pStr, ",", 1);
68     sqlite3StrAccumAppend(pStr, "?", 1);
69   }
70   if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1);
71 }
72 
73 /*
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
77 **
78 ** For example, if the query:
79 **
80 **   SELECT * FROM t1 WHERE a=1 AND b>2;
81 **
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
84 **
85 **   "a=? AND b>?"
86 */
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88   Index *pIndex = pLoop->u.btree.pIndex;
89   u16 nEq = pLoop->u.btree.nEq;
90   u16 nSkip = pLoop->nSkip;
91   int i, j;
92 
93   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94   sqlite3StrAccumAppend(pStr, " (", 2);
95   for(i=0; i<nEq; i++){
96     const char *z = explainIndexColumnName(pIndex, i);
97     if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
98     sqlite3XPrintf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
99   }
100 
101   j = i;
102   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104     i = 1;
105   }
106   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
108   }
109   sqlite3StrAccumAppend(pStr, ")", 1);
110 }
111 
112 /*
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
117 **
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
120 */
121 int sqlite3WhereExplainOneScan(
122   Parse *pParse,                  /* Parse context */
123   SrcList *pTabList,              /* Table list this loop refers to */
124   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
125   int iLevel,                     /* Value for "level" column of output */
126   int iFrom,                      /* Value for "from" column of output */
127   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
128 ){
129   int ret = 0;
130 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
131   if( pParse->explain==2 )
132 #endif
133   {
134     struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
135     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
136     sqlite3 *db = pParse->db;     /* Database handle */
137     int iId = pParse->iSelectId;  /* Select id (left-most output column) */
138     int isSearch;                 /* True for a SEARCH. False for SCAN. */
139     WhereLoop *pLoop;             /* The controlling WhereLoop object */
140     u32 flags;                    /* Flags that describe this loop */
141     char *zMsg;                   /* Text to add to EQP output */
142     StrAccum str;                 /* EQP output string */
143     char zBuf[100];               /* Initial space for EQP output string */
144 
145     pLoop = pLevel->pWLoop;
146     flags = pLoop->wsFlags;
147     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
148 
149     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
150             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
151             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
152 
153     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
154     sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
155     if( pItem->pSelect ){
156       sqlite3XPrintf(&str, " SUBQUERY %d", pItem->iSelectId);
157     }else{
158       sqlite3XPrintf(&str, " TABLE %s", pItem->zName);
159     }
160 
161     if( pItem->zAlias ){
162       sqlite3XPrintf(&str, " AS %s", pItem->zAlias);
163     }
164     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
165       const char *zFmt = 0;
166       Index *pIdx;
167 
168       assert( pLoop->u.btree.pIndex!=0 );
169       pIdx = pLoop->u.btree.pIndex;
170       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
171       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
172         if( isSearch ){
173           zFmt = "PRIMARY KEY";
174         }
175       }else if( flags & WHERE_PARTIALIDX ){
176         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
177       }else if( flags & WHERE_AUTO_INDEX ){
178         zFmt = "AUTOMATIC COVERING INDEX";
179       }else if( flags & WHERE_IDX_ONLY ){
180         zFmt = "COVERING INDEX %s";
181       }else{
182         zFmt = "INDEX %s";
183       }
184       if( zFmt ){
185         sqlite3StrAccumAppend(&str, " USING ", 7);
186         sqlite3XPrintf(&str, zFmt, pIdx->zName);
187         explainIndexRange(&str, pLoop);
188       }
189     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
190       const char *zRangeOp;
191       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
192         zRangeOp = "=";
193       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
194         zRangeOp = ">? AND rowid<";
195       }else if( flags&WHERE_BTM_LIMIT ){
196         zRangeOp = ">";
197       }else{
198         assert( flags&WHERE_TOP_LIMIT);
199         zRangeOp = "<";
200       }
201       sqlite3XPrintf(&str, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
202     }
203 #ifndef SQLITE_OMIT_VIRTUALTABLE
204     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
205       sqlite3XPrintf(&str, " VIRTUAL TABLE INDEX %d:%s",
206                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
207     }
208 #endif
209 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
210     if( pLoop->nOut>=10 ){
211       sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
212     }else{
213       sqlite3StrAccumAppend(&str, " (~1 row)", 9);
214     }
215 #endif
216     zMsg = sqlite3StrAccumFinish(&str);
217     ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC);
218   }
219   return ret;
220 }
221 #endif /* SQLITE_OMIT_EXPLAIN */
222 
223 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
224 /*
225 ** Configure the VM passed as the first argument with an
226 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
227 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
228 ** clause that the scan reads data from.
229 **
230 ** If argument addrExplain is not 0, it must be the address of an
231 ** OP_Explain instruction that describes the same loop.
232 */
233 void sqlite3WhereAddScanStatus(
234   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
235   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
236   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
237   int addrExplain                 /* Address of OP_Explain (or 0) */
238 ){
239   const char *zObj = 0;
240   WhereLoop *pLoop = pLvl->pWLoop;
241   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
242     zObj = pLoop->u.btree.pIndex->zName;
243   }else{
244     zObj = pSrclist->a[pLvl->iFrom].zName;
245   }
246   sqlite3VdbeScanStatus(
247       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
248   );
249 }
250 #endif
251 
252 
253 /*
254 ** Disable a term in the WHERE clause.  Except, do not disable the term
255 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
256 ** or USING clause of that join.
257 **
258 ** Consider the term t2.z='ok' in the following queries:
259 **
260 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
261 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
262 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
263 **
264 ** The t2.z='ok' is disabled in the in (2) because it originates
265 ** in the ON clause.  The term is disabled in (3) because it is not part
266 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
267 **
268 ** Disabling a term causes that term to not be tested in the inner loop
269 ** of the join.  Disabling is an optimization.  When terms are satisfied
270 ** by indices, we disable them to prevent redundant tests in the inner
271 ** loop.  We would get the correct results if nothing were ever disabled,
272 ** but joins might run a little slower.  The trick is to disable as much
273 ** as we can without disabling too much.  If we disabled in (1), we'd get
274 ** the wrong answer.  See ticket #813.
275 **
276 ** If all the children of a term are disabled, then that term is also
277 ** automatically disabled.  In this way, terms get disabled if derived
278 ** virtual terms are tested first.  For example:
279 **
280 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
281 **      \___________/     \______/     \_____/
282 **         parent          child1       child2
283 **
284 ** Only the parent term was in the original WHERE clause.  The child1
285 ** and child2 terms were added by the LIKE optimization.  If both of
286 ** the virtual child terms are valid, then testing of the parent can be
287 ** skipped.
288 **
289 ** Usually the parent term is marked as TERM_CODED.  But if the parent
290 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
291 ** The TERM_LIKECOND marking indicates that the term should be coded inside
292 ** a conditional such that is only evaluated on the second pass of a
293 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
294 */
295 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
296   int nLoop = 0;
297   while( ALWAYS(pTerm!=0)
298       && (pTerm->wtFlags & TERM_CODED)==0
299       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
300       && (pLevel->notReady & pTerm->prereqAll)==0
301   ){
302     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
303       pTerm->wtFlags |= TERM_LIKECOND;
304     }else{
305       pTerm->wtFlags |= TERM_CODED;
306     }
307     if( pTerm->iParent<0 ) break;
308     pTerm = &pTerm->pWC->a[pTerm->iParent];
309     pTerm->nChild--;
310     if( pTerm->nChild!=0 ) break;
311     nLoop++;
312   }
313 }
314 
315 /*
316 ** Code an OP_Affinity opcode to apply the column affinity string zAff
317 ** to the n registers starting at base.
318 **
319 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the
320 ** beginning and end of zAff are ignored.  If all entries in zAff are
321 ** SQLITE_AFF_BLOB, then no code gets generated.
322 **
323 ** This routine makes its own copy of zAff so that the caller is free
324 ** to modify zAff after this routine returns.
325 */
326 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
327   Vdbe *v = pParse->pVdbe;
328   if( zAff==0 ){
329     assert( pParse->db->mallocFailed );
330     return;
331   }
332   assert( v!=0 );
333 
334   /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning
335   ** and end of the affinity string.
336   */
337   while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){
338     n--;
339     base++;
340     zAff++;
341   }
342   while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){
343     n--;
344   }
345 
346   /* Code the OP_Affinity opcode if there is anything left to do. */
347   if( n>0 ){
348     sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
349     sqlite3ExprCacheAffinityChange(pParse, base, n);
350   }
351 }
352 
353 /*
354 ** Expression pRight, which is the RHS of a comparison operation, is
355 ** either a vector of n elements or, if n==1, a scalar expression.
356 ** Before the comparison operation, affinity zAff is to be applied
357 ** to the pRight values. This function modifies characters within the
358 ** affinity string to SQLITE_AFF_BLOB if either:
359 **
360 **   * the comparison will be performed with no affinity, or
361 **   * the affinity change in zAff is guaranteed not to change the value.
362 */
363 static void updateRangeAffinityStr(
364   Expr *pRight,                   /* RHS of comparison */
365   int n,                          /* Number of vector elements in comparison */
366   char *zAff                      /* Affinity string to modify */
367 ){
368   int i;
369   for(i=0; i<n; i++){
370     Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
371     if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
372      || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
373     ){
374       zAff[i] = SQLITE_AFF_BLOB;
375     }
376   }
377 }
378 
379 /*
380 ** Generate code for a single equality term of the WHERE clause.  An equality
381 ** term can be either X=expr or X IN (...).   pTerm is the term to be
382 ** coded.
383 **
384 ** The current value for the constraint is left in a register, the index
385 ** of which is returned.  An attempt is made store the result in iTarget but
386 ** this is only guaranteed for TK_ISNULL and TK_IN constraints.  If the
387 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
388 ** some other register and it is the caller's responsibility to compensate.
389 **
390 ** For a constraint of the form X=expr, the expression is evaluated in
391 ** straight-line code.  For constraints of the form X IN (...)
392 ** this routine sets up a loop that will iterate over all values of X.
393 */
394 static int codeEqualityTerm(
395   Parse *pParse,      /* The parsing context */
396   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
397   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
398   int iEq,            /* Index of the equality term within this level */
399   int bRev,           /* True for reverse-order IN operations */
400   int iTarget         /* Attempt to leave results in this register */
401 ){
402   Expr *pX = pTerm->pExpr;
403   Vdbe *v = pParse->pVdbe;
404   int iReg;                  /* Register holding results */
405 
406   assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
407   assert( iTarget>0 );
408   if( pX->op==TK_EQ || pX->op==TK_IS ){
409     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
410   }else if( pX->op==TK_ISNULL ){
411     iReg = iTarget;
412     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
413 #ifndef SQLITE_OMIT_SUBQUERY
414   }else{
415     int eType = IN_INDEX_NOOP;
416     int iTab;
417     struct InLoop *pIn;
418     WhereLoop *pLoop = pLevel->pWLoop;
419     int i;
420     int nEq = 0;
421     int *aiMap = 0;
422 
423     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
424       && pLoop->u.btree.pIndex!=0
425       && pLoop->u.btree.pIndex->aSortOrder[iEq]
426     ){
427       testcase( iEq==0 );
428       testcase( bRev );
429       bRev = !bRev;
430     }
431     assert( pX->op==TK_IN );
432     iReg = iTarget;
433 
434     for(i=0; i<iEq; i++){
435       if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
436         disableTerm(pLevel, pTerm);
437         return iTarget;
438       }
439     }
440     for(i=iEq;i<pLoop->nLTerm; i++){
441       if( ALWAYS(pLoop->aLTerm[i]) && pLoop->aLTerm[i]->pExpr==pX ) nEq++;
442     }
443 
444     if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){
445       eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0);
446     }else{
447       Select *pSelect = pX->x.pSelect;
448       sqlite3 *db = pParse->db;
449       ExprList *pOrigRhs = pSelect->pEList;
450       ExprList *pOrigLhs = pX->pLeft->x.pList;
451       ExprList *pRhs = 0;         /* New Select.pEList for RHS */
452       ExprList *pLhs = 0;         /* New pX->pLeft vector */
453 
454       for(i=iEq;i<pLoop->nLTerm; i++){
455         if( pLoop->aLTerm[i]->pExpr==pX ){
456           int iField = pLoop->aLTerm[i]->iField - 1;
457           Expr *pNewRhs = sqlite3ExprDup(db, pOrigRhs->a[iField].pExpr, 0);
458           Expr *pNewLhs = sqlite3ExprDup(db, pOrigLhs->a[iField].pExpr, 0);
459 
460           pRhs = sqlite3ExprListAppend(pParse, pRhs, pNewRhs);
461           pLhs = sqlite3ExprListAppend(pParse, pLhs, pNewLhs);
462         }
463       }
464       if( !db->mallocFailed ){
465         Expr *pLeft = pX->pLeft;
466 
467         if( pSelect->pOrderBy ){
468           /* If the SELECT statement has an ORDER BY clause, zero the
469           ** iOrderByCol variables. These are set to non-zero when an
470           ** ORDER BY term exactly matches one of the terms of the
471           ** result-set. Since the result-set of the SELECT statement may
472           ** have been modified or reordered, these variables are no longer
473           ** set correctly.  Since setting them is just an optimization,
474           ** it's easiest just to zero them here.  */
475           ExprList *pOrderBy = pSelect->pOrderBy;
476           for(i=0; i<pOrderBy->nExpr; i++){
477             pOrderBy->a[i].u.x.iOrderByCol = 0;
478           }
479         }
480 
481         /* Take care here not to generate a TK_VECTOR containing only a
482         ** single value. Since the parser never creates such a vector, some
483         ** of the subroutines do not handle this case.  */
484         if( pLhs->nExpr==1 ){
485           pX->pLeft = pLhs->a[0].pExpr;
486         }else{
487           pLeft->x.pList = pLhs;
488           aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int) * nEq);
489           testcase( aiMap==0 );
490         }
491         pSelect->pEList = pRhs;
492         eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap);
493         testcase( aiMap!=0 && aiMap[0]!=0 );
494         pSelect->pEList = pOrigRhs;
495         pLeft->x.pList = pOrigLhs;
496         pX->pLeft = pLeft;
497       }
498       sqlite3ExprListDelete(pParse->db, pLhs);
499       sqlite3ExprListDelete(pParse->db, pRhs);
500     }
501 
502     if( eType==IN_INDEX_INDEX_DESC ){
503       testcase( bRev );
504       bRev = !bRev;
505     }
506     iTab = pX->iTable;
507     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
508     VdbeCoverageIf(v, bRev);
509     VdbeCoverageIf(v, !bRev);
510     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
511 
512     pLoop->wsFlags |= WHERE_IN_ABLE;
513     if( pLevel->u.in.nIn==0 ){
514       pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
515     }
516 
517     i = pLevel->u.in.nIn;
518     pLevel->u.in.nIn += nEq;
519     pLevel->u.in.aInLoop =
520        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
521                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
522     pIn = pLevel->u.in.aInLoop;
523     if( pIn ){
524       int iMap = 0;               /* Index in aiMap[] */
525       pIn += i;
526       for(i=iEq;i<pLoop->nLTerm; i++){
527         if( pLoop->aLTerm[i]->pExpr==pX ){
528           int iOut = iReg + i - iEq;
529           if( eType==IN_INDEX_ROWID ){
530             testcase( nEq>1 );  /* Happens with a UNIQUE index on ROWID */
531             pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
532           }else{
533             int iCol = aiMap ? aiMap[iMap++] : 0;
534             pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
535           }
536           sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
537           if( i==iEq ){
538             pIn->iCur = iTab;
539             pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen;
540           }else{
541             pIn->eEndLoopOp = OP_Noop;
542           }
543           pIn++;
544         }
545       }
546     }else{
547       pLevel->u.in.nIn = 0;
548     }
549     sqlite3DbFree(pParse->db, aiMap);
550 #endif
551   }
552   disableTerm(pLevel, pTerm);
553   return iReg;
554 }
555 
556 /*
557 ** Generate code that will evaluate all == and IN constraints for an
558 ** index scan.
559 **
560 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
561 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
562 ** The index has as many as three equality constraints, but in this
563 ** example, the third "c" value is an inequality.  So only two
564 ** constraints are coded.  This routine will generate code to evaluate
565 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
566 ** in consecutive registers and the index of the first register is returned.
567 **
568 ** In the example above nEq==2.  But this subroutine works for any value
569 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
570 ** The only thing it does is allocate the pLevel->iMem memory cell and
571 ** compute the affinity string.
572 **
573 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
574 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
575 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
576 ** occurs after the nEq quality constraints.
577 **
578 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
579 ** the index of the first memory cell in that range. The code that
580 ** calls this routine will use that memory range to store keys for
581 ** start and termination conditions of the loop.
582 ** key value of the loop.  If one or more IN operators appear, then
583 ** this routine allocates an additional nEq memory cells for internal
584 ** use.
585 **
586 ** Before returning, *pzAff is set to point to a buffer containing a
587 ** copy of the column affinity string of the index allocated using
588 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
589 ** with equality constraints that use BLOB or NONE affinity are set to
590 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
591 **
592 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
593 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
594 **
595 ** In the example above, the index on t1(a) has TEXT affinity. But since
596 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
597 ** no conversion should be attempted before using a t2.b value as part of
598 ** a key to search the index. Hence the first byte in the returned affinity
599 ** string in this example would be set to SQLITE_AFF_BLOB.
600 */
601 static int codeAllEqualityTerms(
602   Parse *pParse,        /* Parsing context */
603   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
604   int bRev,             /* Reverse the order of IN operators */
605   int nExtraReg,        /* Number of extra registers to allocate */
606   char **pzAff          /* OUT: Set to point to affinity string */
607 ){
608   u16 nEq;                      /* The number of == or IN constraints to code */
609   u16 nSkip;                    /* Number of left-most columns to skip */
610   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
611   Index *pIdx;                  /* The index being used for this loop */
612   WhereTerm *pTerm;             /* A single constraint term */
613   WhereLoop *pLoop;             /* The WhereLoop object */
614   int j;                        /* Loop counter */
615   int regBase;                  /* Base register */
616   int nReg;                     /* Number of registers to allocate */
617   char *zAff;                   /* Affinity string to return */
618 
619   /* This module is only called on query plans that use an index. */
620   pLoop = pLevel->pWLoop;
621   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
622   nEq = pLoop->u.btree.nEq;
623   nSkip = pLoop->nSkip;
624   pIdx = pLoop->u.btree.pIndex;
625   assert( pIdx!=0 );
626 
627   /* Figure out how many memory cells we will need then allocate them.
628   */
629   regBase = pParse->nMem + 1;
630   nReg = pLoop->u.btree.nEq + nExtraReg;
631   pParse->nMem += nReg;
632 
633   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
634   assert( zAff!=0 || pParse->db->mallocFailed );
635 
636   if( nSkip ){
637     int iIdxCur = pLevel->iIdxCur;
638     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
639     VdbeCoverageIf(v, bRev==0);
640     VdbeCoverageIf(v, bRev!=0);
641     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
642     j = sqlite3VdbeAddOp0(v, OP_Goto);
643     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
644                             iIdxCur, 0, regBase, nSkip);
645     VdbeCoverageIf(v, bRev==0);
646     VdbeCoverageIf(v, bRev!=0);
647     sqlite3VdbeJumpHere(v, j);
648     for(j=0; j<nSkip; j++){
649       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
650       testcase( pIdx->aiColumn[j]==XN_EXPR );
651       VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
652     }
653   }
654 
655   /* Evaluate the equality constraints
656   */
657   assert( zAff==0 || (int)strlen(zAff)>=nEq );
658   for(j=nSkip; j<nEq; j++){
659     int r1;
660     pTerm = pLoop->aLTerm[j];
661     assert( pTerm!=0 );
662     /* The following testcase is true for indices with redundant columns.
663     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
664     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
665     testcase( pTerm->wtFlags & TERM_VIRTUAL );
666     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
667     if( r1!=regBase+j ){
668       if( nReg==1 ){
669         sqlite3ReleaseTempReg(pParse, regBase);
670         regBase = r1;
671       }else{
672         sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
673       }
674     }
675     if( pTerm->eOperator & WO_IN ){
676       if( pTerm->pExpr->flags & EP_xIsSelect ){
677         /* No affinity ever needs to be (or should be) applied to a value
678         ** from the RHS of an "? IN (SELECT ...)" expression. The
679         ** sqlite3FindInIndex() routine has already ensured that the
680         ** affinity of the comparison has been applied to the value.  */
681         if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
682       }
683     }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
684       Expr *pRight = pTerm->pExpr->pRight;
685       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
686         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
687         VdbeCoverage(v);
688       }
689       if( zAff ){
690         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
691           zAff[j] = SQLITE_AFF_BLOB;
692         }
693         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
694           zAff[j] = SQLITE_AFF_BLOB;
695         }
696       }
697     }
698   }
699   *pzAff = zAff;
700   return regBase;
701 }
702 
703 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
704 /*
705 ** If the most recently coded instruction is a constant range constraint
706 ** (a string literal) that originated from the LIKE optimization, then
707 ** set P3 and P5 on the OP_String opcode so that the string will be cast
708 ** to a BLOB at appropriate times.
709 **
710 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
711 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
712 ** scan loop run twice, once for strings and a second time for BLOBs.
713 ** The OP_String opcodes on the second pass convert the upper and lower
714 ** bound string constants to blobs.  This routine makes the necessary changes
715 ** to the OP_String opcodes for that to happen.
716 **
717 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
718 ** only the one pass through the string space is required, so this routine
719 ** becomes a no-op.
720 */
721 static void whereLikeOptimizationStringFixup(
722   Vdbe *v,                /* prepared statement under construction */
723   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
724   WhereTerm *pTerm        /* The upper or lower bound just coded */
725 ){
726   if( pTerm->wtFlags & TERM_LIKEOPT ){
727     VdbeOp *pOp;
728     assert( pLevel->iLikeRepCntr>0 );
729     pOp = sqlite3VdbeGetOp(v, -1);
730     assert( pOp!=0 );
731     assert( pOp->opcode==OP_String8
732             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
733     pOp->p3 = (int)(pLevel->iLikeRepCntr>>1);  /* Register holding counter */
734     pOp->p5 = (u8)(pLevel->iLikeRepCntr&1);    /* ASC or DESC */
735   }
736 }
737 #else
738 # define whereLikeOptimizationStringFixup(A,B,C)
739 #endif
740 
741 #ifdef SQLITE_ENABLE_CURSOR_HINTS
742 /*
743 ** Information is passed from codeCursorHint() down to individual nodes of
744 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
745 ** structure.
746 */
747 struct CCurHint {
748   int iTabCur;    /* Cursor for the main table */
749   int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
750   Index *pIdx;    /* The index used to access the table */
751 };
752 
753 /*
754 ** This function is called for every node of an expression that is a candidate
755 ** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
756 ** the table CCurHint.iTabCur, verify that the same column can be
757 ** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
758 */
759 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
760   struct CCurHint *pHint = pWalker->u.pCCurHint;
761   assert( pHint->pIdx!=0 );
762   if( pExpr->op==TK_COLUMN
763    && pExpr->iTable==pHint->iTabCur
764    && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0
765   ){
766     pWalker->eCode = 1;
767   }
768   return WRC_Continue;
769 }
770 
771 /*
772 ** Test whether or not expression pExpr, which was part of a WHERE clause,
773 ** should be included in the cursor-hint for a table that is on the rhs
774 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
775 ** expression is not suitable.
776 **
777 ** An expression is unsuitable if it might evaluate to non NULL even if
778 ** a TK_COLUMN node that does affect the value of the expression is set
779 ** to NULL. For example:
780 **
781 **   col IS NULL
782 **   col IS NOT NULL
783 **   coalesce(col, 1)
784 **   CASE WHEN col THEN 0 ELSE 1 END
785 */
786 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
787   if( pExpr->op==TK_IS
788    || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
789    || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
790   ){
791     pWalker->eCode = 1;
792   }else if( pExpr->op==TK_FUNCTION ){
793     int d1;
794     char d2[3];
795     if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
796       pWalker->eCode = 1;
797     }
798   }
799 
800   return WRC_Continue;
801 }
802 
803 
804 /*
805 ** This function is called on every node of an expression tree used as an
806 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
807 ** that accesses any table other than the one identified by
808 ** CCurHint.iTabCur, then do the following:
809 **
810 **   1) allocate a register and code an OP_Column instruction to read
811 **      the specified column into the new register, and
812 **
813 **   2) transform the expression node to a TK_REGISTER node that reads
814 **      from the newly populated register.
815 **
816 ** Also, if the node is a TK_COLUMN that does access the table idenified
817 ** by pCCurHint.iTabCur, and an index is being used (which we will
818 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
819 ** an access of the index rather than the original table.
820 */
821 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
822   int rc = WRC_Continue;
823   struct CCurHint *pHint = pWalker->u.pCCurHint;
824   if( pExpr->op==TK_COLUMN ){
825     if( pExpr->iTable!=pHint->iTabCur ){
826       Vdbe *v = pWalker->pParse->pVdbe;
827       int reg = ++pWalker->pParse->nMem;   /* Register for column value */
828       sqlite3ExprCodeGetColumnOfTable(
829           v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg
830       );
831       pExpr->op = TK_REGISTER;
832       pExpr->iTable = reg;
833     }else if( pHint->pIdx!=0 ){
834       pExpr->iTable = pHint->iIdxCur;
835       pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn);
836       assert( pExpr->iColumn>=0 );
837     }
838   }else if( pExpr->op==TK_AGG_FUNCTION ){
839     /* An aggregate function in the WHERE clause of a query means this must
840     ** be a correlated sub-query, and expression pExpr is an aggregate from
841     ** the parent context. Do not walk the function arguments in this case.
842     **
843     ** todo: It should be possible to replace this node with a TK_REGISTER
844     ** expression, as the result of the expression must be stored in a
845     ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
846     rc = WRC_Prune;
847   }
848   return rc;
849 }
850 
851 /*
852 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
853 */
854 static void codeCursorHint(
855   struct SrcList_item *pTabItem,  /* FROM clause item */
856   WhereInfo *pWInfo,    /* The where clause */
857   WhereLevel *pLevel,   /* Which loop to provide hints for */
858   WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
859 ){
860   Parse *pParse = pWInfo->pParse;
861   sqlite3 *db = pParse->db;
862   Vdbe *v = pParse->pVdbe;
863   Expr *pExpr = 0;
864   WhereLoop *pLoop = pLevel->pWLoop;
865   int iCur;
866   WhereClause *pWC;
867   WhereTerm *pTerm;
868   int i, j;
869   struct CCurHint sHint;
870   Walker sWalker;
871 
872   if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
873   iCur = pLevel->iTabCur;
874   assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
875   sHint.iTabCur = iCur;
876   sHint.iIdxCur = pLevel->iIdxCur;
877   sHint.pIdx = pLoop->u.btree.pIndex;
878   memset(&sWalker, 0, sizeof(sWalker));
879   sWalker.pParse = pParse;
880   sWalker.u.pCCurHint = &sHint;
881   pWC = &pWInfo->sWC;
882   for(i=0; i<pWC->nTerm; i++){
883     pTerm = &pWC->a[i];
884     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
885     if( pTerm->prereqAll & pLevel->notReady ) continue;
886 
887     /* Any terms specified as part of the ON(...) clause for any LEFT
888     ** JOIN for which the current table is not the rhs are omitted
889     ** from the cursor-hint.
890     **
891     ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
892     ** that were specified as part of the WHERE clause must be excluded.
893     ** This is to address the following:
894     **
895     **   SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
896     **
897     ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
898     ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
899     ** pushed down to the cursor, this row is filtered out, causing
900     ** SQLite to synthesize a row of NULL values. Which does match the
901     ** WHERE clause, and so the query returns a row. Which is incorrect.
902     **
903     ** For the same reason, WHERE terms such as:
904     **
905     **   WHERE 1 = (t2.c IS NULL)
906     **
907     ** are also excluded. See codeCursorHintIsOrFunction() for details.
908     */
909     if( pTabItem->fg.jointype & JT_LEFT ){
910       Expr *pExpr = pTerm->pExpr;
911       if( !ExprHasProperty(pExpr, EP_FromJoin)
912        || pExpr->iRightJoinTable!=pTabItem->iCursor
913       ){
914         sWalker.eCode = 0;
915         sWalker.xExprCallback = codeCursorHintIsOrFunction;
916         sqlite3WalkExpr(&sWalker, pTerm->pExpr);
917         if( sWalker.eCode ) continue;
918       }
919     }else{
920       if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
921     }
922 
923     /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
924     ** the cursor.  These terms are not needed as hints for a pure range
925     ** scan (that has no == terms) so omit them. */
926     if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
927       for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
928       if( j<pLoop->nLTerm ) continue;
929     }
930 
931     /* No subqueries or non-deterministic functions allowed */
932     if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
933 
934     /* For an index scan, make sure referenced columns are actually in
935     ** the index. */
936     if( sHint.pIdx!=0 ){
937       sWalker.eCode = 0;
938       sWalker.xExprCallback = codeCursorHintCheckExpr;
939       sqlite3WalkExpr(&sWalker, pTerm->pExpr);
940       if( sWalker.eCode ) continue;
941     }
942 
943     /* If we survive all prior tests, that means this term is worth hinting */
944     pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
945   }
946   if( pExpr!=0 ){
947     sWalker.xExprCallback = codeCursorHintFixExpr;
948     sqlite3WalkExpr(&sWalker, pExpr);
949     sqlite3VdbeAddOp4(v, OP_CursorHint,
950                       (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
951                       (const char*)pExpr, P4_EXPR);
952   }
953 }
954 #else
955 # define codeCursorHint(A,B,C,D)  /* No-op */
956 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
957 
958 /*
959 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
960 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
961 ** function generates code to do a deferred seek of cursor iCur to the
962 ** rowid stored in register iRowid.
963 **
964 ** Normally, this is just:
965 **
966 **   OP_Seek $iCur $iRowid
967 **
968 ** However, if the scan currently being coded is a branch of an OR-loop and
969 ** the statement currently being coded is a SELECT, then P3 of the OP_Seek
970 ** is set to iIdxCur and P4 is set to point to an array of integers
971 ** containing one entry for each column of the table cursor iCur is open
972 ** on. For each table column, if the column is the i'th column of the
973 ** index, then the corresponding array entry is set to (i+1). If the column
974 ** does not appear in the index at all, the array entry is set to 0.
975 */
976 static void codeDeferredSeek(
977   WhereInfo *pWInfo,              /* Where clause context */
978   Index *pIdx,                    /* Index scan is using */
979   int iCur,                       /* Cursor for IPK b-tree */
980   int iIdxCur                     /* Index cursor */
981 ){
982   Parse *pParse = pWInfo->pParse; /* Parse context */
983   Vdbe *v = pParse->pVdbe;        /* Vdbe to generate code within */
984 
985   assert( iIdxCur>0 );
986   assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
987 
988   sqlite3VdbeAddOp3(v, OP_Seek, iIdxCur, 0, iCur);
989   if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
990    && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
991   ){
992     int i;
993     Table *pTab = pIdx->pTable;
994     int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1));
995     if( ai ){
996       ai[0] = pTab->nCol;
997       for(i=0; i<pIdx->nColumn-1; i++){
998         assert( pIdx->aiColumn[i]<pTab->nCol );
999         if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1;
1000       }
1001       sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1002     }
1003   }
1004 }
1005 
1006 /*
1007 ** If the expression passed as the second argument is a vector, generate
1008 ** code to write the first nReg elements of the vector into an array
1009 ** of registers starting with iReg.
1010 **
1011 ** If the expression is not a vector, then nReg must be passed 1. In
1012 ** this case, generate code to evaluate the expression and leave the
1013 ** result in register iReg.
1014 */
1015 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1016   assert( nReg>0 );
1017   if( sqlite3ExprIsVector(p) ){
1018 #ifndef SQLITE_OMIT_SUBQUERY
1019     if( (p->flags & EP_xIsSelect) ){
1020       Vdbe *v = pParse->pVdbe;
1021       int iSelect = sqlite3CodeSubselect(pParse, p, 0, 0);
1022       sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1023     }else
1024 #endif
1025     {
1026       int i;
1027       ExprList *pList = p->x.pList;
1028       assert( nReg<=pList->nExpr );
1029       for(i=0; i<nReg; i++){
1030         sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1031       }
1032     }
1033   }else{
1034     assert( nReg==1 );
1035     sqlite3ExprCode(pParse, p, iReg);
1036   }
1037 }
1038 
1039 /*
1040 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1041 ** implementation described by pWInfo.
1042 */
1043 Bitmask sqlite3WhereCodeOneLoopStart(
1044   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1045   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1046   Bitmask notReady     /* Which tables are currently available */
1047 ){
1048   int j, k;            /* Loop counters */
1049   int iCur;            /* The VDBE cursor for the table */
1050   int addrNxt;         /* Where to jump to continue with the next IN case */
1051   int omitTable;       /* True if we use the index only */
1052   int bRev;            /* True if we need to scan in reverse order */
1053   WhereLevel *pLevel;  /* The where level to be coded */
1054   WhereLoop *pLoop;    /* The WhereLoop object being coded */
1055   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
1056   WhereTerm *pTerm;               /* A WHERE clause term */
1057   Parse *pParse;                  /* Parsing context */
1058   sqlite3 *db;                    /* Database connection */
1059   Vdbe *v;                        /* The prepared stmt under constructions */
1060   struct SrcList_item *pTabItem;  /* FROM clause term being coded */
1061   int addrBrk;                    /* Jump here to break out of the loop */
1062   int addrCont;                   /* Jump here to continue with next cycle */
1063   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
1064   int iReleaseReg = 0;      /* Temp register to free before returning */
1065 
1066   pParse = pWInfo->pParse;
1067   v = pParse->pVdbe;
1068   pWC = &pWInfo->sWC;
1069   db = pParse->db;
1070   pLevel = &pWInfo->a[iLevel];
1071   pLoop = pLevel->pWLoop;
1072   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1073   iCur = pTabItem->iCursor;
1074   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1075   bRev = (pWInfo->revMask>>iLevel)&1;
1076   omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
1077            && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
1078   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1079 
1080   /* Create labels for the "break" and "continue" instructions
1081   ** for the current loop.  Jump to addrBrk to break out of a loop.
1082   ** Jump to cont to go immediately to the next iteration of the
1083   ** loop.
1084   **
1085   ** When there is an IN operator, we also have a "addrNxt" label that
1086   ** means to continue with the next IN value combination.  When
1087   ** there are no IN operators in the constraints, the "addrNxt" label
1088   ** is the same as "addrBrk".
1089   */
1090   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
1091   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
1092 
1093   /* If this is the right table of a LEFT OUTER JOIN, allocate and
1094   ** initialize a memory cell that records if this table matches any
1095   ** row of the left table of the join.
1096   */
1097   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1098     pLevel->iLeftJoin = ++pParse->nMem;
1099     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1100     VdbeComment((v, "init LEFT JOIN no-match flag"));
1101   }
1102 
1103   /* Special case of a FROM clause subquery implemented as a co-routine */
1104   if( pTabItem->fg.viaCoroutine ){
1105     int regYield = pTabItem->regReturn;
1106     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1107     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1108     VdbeCoverage(v);
1109     VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
1110     pLevel->op = OP_Goto;
1111   }else
1112 
1113 #ifndef SQLITE_OMIT_VIRTUALTABLE
1114   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1115     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
1116     **          to access the data.
1117     */
1118     int iReg;   /* P3 Value for OP_VFilter */
1119     int addrNotFound;
1120     int nConstraint = pLoop->nLTerm;
1121     int iIn;    /* Counter for IN constraints */
1122 
1123     sqlite3ExprCachePush(pParse);
1124     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1125     addrNotFound = pLevel->addrBrk;
1126     for(j=0; j<nConstraint; j++){
1127       int iTarget = iReg+j+2;
1128       pTerm = pLoop->aLTerm[j];
1129       if( NEVER(pTerm==0) ) continue;
1130       if( pTerm->eOperator & WO_IN ){
1131         codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1132         addrNotFound = pLevel->addrNxt;
1133       }else{
1134         Expr *pRight = pTerm->pExpr->pRight;
1135         codeExprOrVector(pParse, pRight, iTarget, 1);
1136       }
1137     }
1138     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1139     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1140     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1141                       pLoop->u.vtab.idxStr,
1142                       pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC);
1143     VdbeCoverage(v);
1144     pLoop->u.vtab.needFree = 0;
1145     pLevel->p1 = iCur;
1146     pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1147     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1148     iIn = pLevel->u.in.nIn;
1149     for(j=nConstraint-1; j>=0; j--){
1150       pTerm = pLoop->aLTerm[j];
1151       if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1152         disableTerm(pLevel, pTerm);
1153       }else if( (pTerm->eOperator & WO_IN)!=0 ){
1154         Expr *pCompare;  /* The comparison operator */
1155         Expr *pRight;    /* RHS of the comparison */
1156         VdbeOp *pOp;     /* Opcode to access the value of the IN constraint */
1157 
1158         /* Reload the constraint value into reg[iReg+j+2].  The same value
1159         ** was loaded into the same register prior to the OP_VFilter, but
1160         ** the xFilter implementation might have changed the datatype or
1161         ** encoding of the value in the register, so it *must* be reloaded. */
1162         assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed );
1163         if( !db->mallocFailed ){
1164           assert( iIn>0 );
1165           pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[--iIn].addrInTop);
1166           assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid );
1167           assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 );
1168           assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 );
1169           testcase( pOp->opcode==OP_Rowid );
1170           sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1171         }
1172 
1173         /* Generate code that will continue to the next row if
1174         ** the IN constraint is not satisfied */
1175         pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0, 0);
1176         assert( pCompare!=0 || db->mallocFailed );
1177         if( pCompare ){
1178           pCompare->pLeft = pTerm->pExpr->pLeft;
1179           pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1180           if( pRight ){
1181             pRight->iTable = iReg+j+2;
1182             sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0);
1183           }
1184           pCompare->pLeft = 0;
1185           sqlite3ExprDelete(db, pCompare);
1186         }
1187       }
1188     }
1189     /* These registers need to be preserved in case there is an IN operator
1190     ** loop.  So we could deallocate the registers here (and potentially
1191     ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0.  But it seems
1192     ** simpler and safer to simply not reuse the registers.
1193     **
1194     **    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1195     */
1196     sqlite3ExprCachePop(pParse);
1197   }else
1198 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1199 
1200   if( (pLoop->wsFlags & WHERE_IPK)!=0
1201    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1202   ){
1203     /* Case 2:  We can directly reference a single row using an
1204     **          equality comparison against the ROWID field.  Or
1205     **          we reference multiple rows using a "rowid IN (...)"
1206     **          construct.
1207     */
1208     assert( pLoop->u.btree.nEq==1 );
1209     pTerm = pLoop->aLTerm[0];
1210     assert( pTerm!=0 );
1211     assert( pTerm->pExpr!=0 );
1212     assert( omitTable==0 );
1213     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1214     iReleaseReg = ++pParse->nMem;
1215     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1216     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1217     addrNxt = pLevel->addrNxt;
1218     sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1219     VdbeCoverage(v);
1220     sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
1221     sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1222     VdbeComment((v, "pk"));
1223     pLevel->op = OP_Noop;
1224   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1225          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1226   ){
1227     /* Case 3:  We have an inequality comparison against the ROWID field.
1228     */
1229     int testOp = OP_Noop;
1230     int start;
1231     int memEndValue = 0;
1232     WhereTerm *pStart, *pEnd;
1233 
1234     assert( omitTable==0 );
1235     j = 0;
1236     pStart = pEnd = 0;
1237     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1238     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1239     assert( pStart!=0 || pEnd!=0 );
1240     if( bRev ){
1241       pTerm = pStart;
1242       pStart = pEnd;
1243       pEnd = pTerm;
1244     }
1245     codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1246     if( pStart ){
1247       Expr *pX;             /* The expression that defines the start bound */
1248       int r1, rTemp;        /* Registers for holding the start boundary */
1249       int op;               /* Cursor seek operation */
1250 
1251       /* The following constant maps TK_xx codes into corresponding
1252       ** seek opcodes.  It depends on a particular ordering of TK_xx
1253       */
1254       const u8 aMoveOp[] = {
1255            /* TK_GT */  OP_SeekGT,
1256            /* TK_LE */  OP_SeekLE,
1257            /* TK_LT */  OP_SeekLT,
1258            /* TK_GE */  OP_SeekGE
1259       };
1260       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
1261       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
1262       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
1263 
1264       assert( (pStart->wtFlags & TERM_VNULL)==0 );
1265       testcase( pStart->wtFlags & TERM_VIRTUAL );
1266       pX = pStart->pExpr;
1267       assert( pX!=0 );
1268       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1269       if( sqlite3ExprIsVector(pX->pRight) ){
1270         r1 = rTemp = sqlite3GetTempReg(pParse);
1271         codeExprOrVector(pParse, pX->pRight, r1, 1);
1272         op = aMoveOp[(pX->op - TK_GT) | 0x0001];
1273       }else{
1274         r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1275         disableTerm(pLevel, pStart);
1276         op = aMoveOp[(pX->op - TK_GT)];
1277       }
1278       sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1279       VdbeComment((v, "pk"));
1280       VdbeCoverageIf(v, pX->op==TK_GT);
1281       VdbeCoverageIf(v, pX->op==TK_LE);
1282       VdbeCoverageIf(v, pX->op==TK_LT);
1283       VdbeCoverageIf(v, pX->op==TK_GE);
1284       sqlite3ExprCacheAffinityChange(pParse, r1, 1);
1285       sqlite3ReleaseTempReg(pParse, rTemp);
1286     }else{
1287       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
1288       VdbeCoverageIf(v, bRev==0);
1289       VdbeCoverageIf(v, bRev!=0);
1290     }
1291     if( pEnd ){
1292       Expr *pX;
1293       pX = pEnd->pExpr;
1294       assert( pX!=0 );
1295       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1296       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1297       testcase( pEnd->wtFlags & TERM_VIRTUAL );
1298       memEndValue = ++pParse->nMem;
1299       codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1300       if( 0==sqlite3ExprIsVector(pX->pRight)
1301        && (pX->op==TK_LT || pX->op==TK_GT)
1302       ){
1303         testOp = bRev ? OP_Le : OP_Ge;
1304       }else{
1305         testOp = bRev ? OP_Lt : OP_Gt;
1306       }
1307       if( 0==sqlite3ExprIsVector(pX->pRight) ){
1308         disableTerm(pLevel, pEnd);
1309       }
1310     }
1311     start = sqlite3VdbeCurrentAddr(v);
1312     pLevel->op = bRev ? OP_Prev : OP_Next;
1313     pLevel->p1 = iCur;
1314     pLevel->p2 = start;
1315     assert( pLevel->p5==0 );
1316     if( testOp!=OP_Noop ){
1317       iRowidReg = ++pParse->nMem;
1318       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1319       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1320       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1321       VdbeCoverageIf(v, testOp==OP_Le);
1322       VdbeCoverageIf(v, testOp==OP_Lt);
1323       VdbeCoverageIf(v, testOp==OP_Ge);
1324       VdbeCoverageIf(v, testOp==OP_Gt);
1325       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1326     }
1327   }else if( pLoop->wsFlags & WHERE_INDEXED ){
1328     /* Case 4: A scan using an index.
1329     **
1330     **         The WHERE clause may contain zero or more equality
1331     **         terms ("==" or "IN" operators) that refer to the N
1332     **         left-most columns of the index. It may also contain
1333     **         inequality constraints (>, <, >= or <=) on the indexed
1334     **         column that immediately follows the N equalities. Only
1335     **         the right-most column can be an inequality - the rest must
1336     **         use the "==" and "IN" operators. For example, if the
1337     **         index is on (x,y,z), then the following clauses are all
1338     **         optimized:
1339     **
1340     **            x=5
1341     **            x=5 AND y=10
1342     **            x=5 AND y<10
1343     **            x=5 AND y>5 AND y<10
1344     **            x=5 AND y=5 AND z<=10
1345     **
1346     **         The z<10 term of the following cannot be used, only
1347     **         the x=5 term:
1348     **
1349     **            x=5 AND z<10
1350     **
1351     **         N may be zero if there are inequality constraints.
1352     **         If there are no inequality constraints, then N is at
1353     **         least one.
1354     **
1355     **         This case is also used when there are no WHERE clause
1356     **         constraints but an index is selected anyway, in order
1357     **         to force the output order to conform to an ORDER BY.
1358     */
1359     static const u8 aStartOp[] = {
1360       0,
1361       0,
1362       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
1363       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
1364       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
1365       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
1366       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
1367       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
1368     };
1369     static const u8 aEndOp[] = {
1370       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
1371       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
1372       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
1373       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
1374     };
1375     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
1376     u16 nBtm = pLoop->u.btree.nBtm;   /* Length of BTM vector */
1377     u16 nTop = pLoop->u.btree.nTop;   /* Length of TOP vector */
1378     int regBase;                 /* Base register holding constraint values */
1379     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
1380     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
1381     int startEq;                 /* True if range start uses ==, >= or <= */
1382     int endEq;                   /* True if range end uses ==, >= or <= */
1383     int start_constraints;       /* Start of range is constrained */
1384     int nConstraint;             /* Number of constraint terms */
1385     Index *pIdx;                 /* The index we will be using */
1386     int iIdxCur;                 /* The VDBE cursor for the index */
1387     int nExtraReg = 0;           /* Number of extra registers needed */
1388     int op;                      /* Instruction opcode */
1389     char *zStartAff;             /* Affinity for start of range constraint */
1390     char *zEndAff = 0;           /* Affinity for end of range constraint */
1391     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
1392     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
1393 
1394     pIdx = pLoop->u.btree.pIndex;
1395     iIdxCur = pLevel->iIdxCur;
1396     assert( nEq>=pLoop->nSkip );
1397 
1398     /* If this loop satisfies a sort order (pOrderBy) request that
1399     ** was passed to this function to implement a "SELECT min(x) ..."
1400     ** query, then the caller will only allow the loop to run for
1401     ** a single iteration. This means that the first row returned
1402     ** should not have a NULL value stored in 'x'. If column 'x' is
1403     ** the first one after the nEq equality constraints in the index,
1404     ** this requires some special handling.
1405     */
1406     assert( pWInfo->pOrderBy==0
1407          || pWInfo->pOrderBy->nExpr==1
1408          || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
1409     if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
1410      && pWInfo->nOBSat>0
1411      && (pIdx->nKeyCol>nEq)
1412     ){
1413       assert( pLoop->nSkip==0 );
1414       bSeekPastNull = 1;
1415       nExtraReg = 1;
1416     }
1417 
1418     /* Find any inequality constraint terms for the start and end
1419     ** of the range.
1420     */
1421     j = nEq;
1422     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1423       pRangeStart = pLoop->aLTerm[j++];
1424       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1425       /* Like optimization range constraints always occur in pairs */
1426       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1427               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1428     }
1429     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1430       pRangeEnd = pLoop->aLTerm[j++];
1431       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1432 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1433       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1434         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
1435         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
1436         pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1437         sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1438         VdbeComment((v, "LIKE loop counter"));
1439         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1440         /* iLikeRepCntr actually stores 2x the counter register number.  The
1441         ** bottom bit indicates whether the search order is ASC or DESC. */
1442         testcase( bRev );
1443         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1444         assert( (bRev & ~1)==0 );
1445         pLevel->iLikeRepCntr <<=1;
1446         pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1447       }
1448 #endif
1449       if( pRangeStart==0
1450        && (j = pIdx->aiColumn[nEq])>=0
1451        && pIdx->pTable->aCol[j].notNull==0
1452       ){
1453         bSeekPastNull = 1;
1454       }
1455     }
1456     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1457 
1458     /* If we are doing a reverse order scan on an ascending index, or
1459     ** a forward order scan on a descending index, interchange the
1460     ** start and end terms (pRangeStart and pRangeEnd).
1461     */
1462     if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1463      || (bRev && pIdx->nKeyCol==nEq)
1464     ){
1465       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1466       SWAP(u8, bSeekPastNull, bStopAtNull);
1467       SWAP(u8, nBtm, nTop);
1468     }
1469 
1470     /* Generate code to evaluate all constraint terms using == or IN
1471     ** and store the values of those terms in an array of registers
1472     ** starting at regBase.
1473     */
1474     codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1475     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1476     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1477     if( zStartAff && nTop ){
1478       zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1479     }
1480     addrNxt = pLevel->addrNxt;
1481 
1482     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1483     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1484     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1485     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1486     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1487     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1488     start_constraints = pRangeStart || nEq>0;
1489 
1490     /* Seek the index cursor to the start of the range. */
1491     nConstraint = nEq;
1492     if( pRangeStart ){
1493       Expr *pRight = pRangeStart->pExpr->pRight;
1494       codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1495       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1496       if( (pRangeStart->wtFlags & TERM_VNULL)==0
1497        && sqlite3ExprCanBeNull(pRight)
1498       ){
1499         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1500         VdbeCoverage(v);
1501       }
1502       if( zStartAff ){
1503         updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1504       }
1505       nConstraint += nBtm;
1506       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1507       if( sqlite3ExprIsVector(pRight)==0 ){
1508         disableTerm(pLevel, pRangeStart);
1509       }else{
1510         startEq = 1;
1511       }
1512       bSeekPastNull = 0;
1513     }else if( bSeekPastNull ){
1514       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1515       nConstraint++;
1516       startEq = 0;
1517       start_constraints = 1;
1518     }
1519     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1520     if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1521       /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1522       ** above has already left the cursor sitting on the correct row,
1523       ** so no further seeking is needed */
1524     }else{
1525       op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1526       assert( op!=0 );
1527       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1528       VdbeCoverage(v);
1529       VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1530       VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1531       VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
1532       VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1533       VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1534       VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
1535     }
1536 
1537     /* Load the value for the inequality constraint at the end of the
1538     ** range (if any).
1539     */
1540     nConstraint = nEq;
1541     if( pRangeEnd ){
1542       Expr *pRight = pRangeEnd->pExpr->pRight;
1543       sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
1544       codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
1545       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1546       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1547        && sqlite3ExprCanBeNull(pRight)
1548       ){
1549         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1550         VdbeCoverage(v);
1551       }
1552       if( zEndAff ){
1553         updateRangeAffinityStr(pRight, nTop, zEndAff);
1554         codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1555       }else{
1556         assert( pParse->db->mallocFailed );
1557       }
1558       nConstraint += nTop;
1559       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1560 
1561       if( sqlite3ExprIsVector(pRight)==0 ){
1562         disableTerm(pLevel, pRangeEnd);
1563       }else{
1564         endEq = 1;
1565       }
1566     }else if( bStopAtNull ){
1567       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1568       endEq = 0;
1569       nConstraint++;
1570     }
1571     sqlite3DbFree(db, zStartAff);
1572     sqlite3DbFree(db, zEndAff);
1573 
1574     /* Top of the loop body */
1575     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1576 
1577     /* Check if the index cursor is past the end of the range. */
1578     if( nConstraint ){
1579       op = aEndOp[bRev*2 + endEq];
1580       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1581       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1582       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1583       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1584       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1585     }
1586 
1587     /* Seek the table cursor, if required */
1588     if( omitTable ){
1589       /* pIdx is a covering index.  No need to access the main table. */
1590     }else if( HasRowid(pIdx->pTable) ){
1591       if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE)!=0 ){
1592         iRowidReg = ++pParse->nMem;
1593         sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
1594         sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1595         sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
1596         VdbeCoverage(v);
1597       }else{
1598         codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
1599       }
1600     }else if( iCur!=iIdxCur ){
1601       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1602       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1603       for(j=0; j<pPk->nKeyCol; j++){
1604         k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1605         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1606       }
1607       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1608                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1609     }
1610 
1611     /* Record the instruction used to terminate the loop. */
1612     if( pLoop->wsFlags & WHERE_ONEROW ){
1613       pLevel->op = OP_Noop;
1614     }else if( bRev ){
1615       pLevel->op = OP_Prev;
1616     }else{
1617       pLevel->op = OP_Next;
1618     }
1619     pLevel->p1 = iIdxCur;
1620     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1621     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1622       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1623     }else{
1624       assert( pLevel->p5==0 );
1625     }
1626   }else
1627 
1628 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1629   if( pLoop->wsFlags & WHERE_MULTI_OR ){
1630     /* Case 5:  Two or more separately indexed terms connected by OR
1631     **
1632     ** Example:
1633     **
1634     **   CREATE TABLE t1(a,b,c,d);
1635     **   CREATE INDEX i1 ON t1(a);
1636     **   CREATE INDEX i2 ON t1(b);
1637     **   CREATE INDEX i3 ON t1(c);
1638     **
1639     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
1640     **
1641     ** In the example, there are three indexed terms connected by OR.
1642     ** The top of the loop looks like this:
1643     **
1644     **          Null       1                # Zero the rowset in reg 1
1645     **
1646     ** Then, for each indexed term, the following. The arguments to
1647     ** RowSetTest are such that the rowid of the current row is inserted
1648     ** into the RowSet. If it is already present, control skips the
1649     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
1650     **
1651     **        sqlite3WhereBegin(<term>)
1652     **          RowSetTest                  # Insert rowid into rowset
1653     **          Gosub      2 A
1654     **        sqlite3WhereEnd()
1655     **
1656     ** Following the above, code to terminate the loop. Label A, the target
1657     ** of the Gosub above, jumps to the instruction right after the Goto.
1658     **
1659     **          Null       1                # Zero the rowset in reg 1
1660     **          Goto       B                # The loop is finished.
1661     **
1662     **       A: <loop body>                 # Return data, whatever.
1663     **
1664     **          Return     2                # Jump back to the Gosub
1665     **
1666     **       B: <after the loop>
1667     **
1668     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
1669     ** use an ephemeral index instead of a RowSet to record the primary
1670     ** keys of the rows we have already seen.
1671     **
1672     */
1673     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
1674     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
1675     Index *pCov = 0;             /* Potential covering index (or NULL) */
1676     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
1677 
1678     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
1679     int regRowset = 0;                        /* Register for RowSet object */
1680     int regRowid = 0;                         /* Register holding rowid */
1681     int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
1682     int iRetInit;                             /* Address of regReturn init */
1683     int untestedTerms = 0;             /* Some terms not completely tested */
1684     int ii;                            /* Loop counter */
1685     u16 wctrlFlags;                    /* Flags for sub-WHERE clause */
1686     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
1687     Table *pTab = pTabItem->pTab;
1688 
1689     pTerm = pLoop->aLTerm[0];
1690     assert( pTerm!=0 );
1691     assert( pTerm->eOperator & WO_OR );
1692     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
1693     pOrWc = &pTerm->u.pOrInfo->wc;
1694     pLevel->op = OP_Return;
1695     pLevel->p1 = regReturn;
1696 
1697     /* Set up a new SrcList in pOrTab containing the table being scanned
1698     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
1699     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
1700     */
1701     if( pWInfo->nLevel>1 ){
1702       int nNotReady;                 /* The number of notReady tables */
1703       struct SrcList_item *origSrc;     /* Original list of tables */
1704       nNotReady = pWInfo->nLevel - iLevel - 1;
1705       pOrTab = sqlite3StackAllocRaw(db,
1706                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
1707       if( pOrTab==0 ) return notReady;
1708       pOrTab->nAlloc = (u8)(nNotReady + 1);
1709       pOrTab->nSrc = pOrTab->nAlloc;
1710       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
1711       origSrc = pWInfo->pTabList->a;
1712       for(k=1; k<=nNotReady; k++){
1713         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
1714       }
1715     }else{
1716       pOrTab = pWInfo->pTabList;
1717     }
1718 
1719     /* Initialize the rowset register to contain NULL. An SQL NULL is
1720     ** equivalent to an empty rowset.  Or, create an ephemeral index
1721     ** capable of holding primary keys in the case of a WITHOUT ROWID.
1722     **
1723     ** Also initialize regReturn to contain the address of the instruction
1724     ** immediately following the OP_Return at the bottom of the loop. This
1725     ** is required in a few obscure LEFT JOIN cases where control jumps
1726     ** over the top of the loop into the body of it. In this case the
1727     ** correct response for the end-of-loop code (the OP_Return) is to
1728     ** fall through to the next instruction, just as an OP_Next does if
1729     ** called on an uninitialized cursor.
1730     */
1731     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1732       if( HasRowid(pTab) ){
1733         regRowset = ++pParse->nMem;
1734         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
1735       }else{
1736         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1737         regRowset = pParse->nTab++;
1738         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
1739         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
1740       }
1741       regRowid = ++pParse->nMem;
1742     }
1743     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
1744 
1745     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
1746     ** Then for every term xN, evaluate as the subexpression: xN AND z
1747     ** That way, terms in y that are factored into the disjunction will
1748     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
1749     **
1750     ** Actually, each subexpression is converted to "xN AND w" where w is
1751     ** the "interesting" terms of z - terms that did not originate in the
1752     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
1753     ** indices.
1754     **
1755     ** This optimization also only applies if the (x1 OR x2 OR ...) term
1756     ** is not contained in the ON clause of a LEFT JOIN.
1757     ** See ticket http://www.sqlite.org/src/info/f2369304e4
1758     */
1759     if( pWC->nTerm>1 ){
1760       int iTerm;
1761       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
1762         Expr *pExpr = pWC->a[iTerm].pExpr;
1763         if( &pWC->a[iTerm] == pTerm ) continue;
1764         if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
1765         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
1766         testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
1767         if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
1768         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
1769         testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
1770         pExpr = sqlite3ExprDup(db, pExpr, 0);
1771         pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
1772       }
1773       if( pAndExpr ){
1774         pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr, 0);
1775       }
1776     }
1777 
1778     /* Run a separate WHERE clause for each term of the OR clause.  After
1779     ** eliminating duplicates from other WHERE clauses, the action for each
1780     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
1781     */
1782     wctrlFlags =  WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE);
1783     for(ii=0; ii<pOrWc->nTerm; ii++){
1784       WhereTerm *pOrTerm = &pOrWc->a[ii];
1785       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
1786         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
1787         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
1788         int jmp1 = 0;                   /* Address of jump operation */
1789         if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
1790           pAndExpr->pLeft = pOrExpr;
1791           pOrExpr = pAndExpr;
1792         }
1793         /* Loop through table entries that match term pOrTerm. */
1794         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
1795         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
1796                                       wctrlFlags, iCovCur);
1797         assert( pSubWInfo || pParse->nErr || db->mallocFailed );
1798         if( pSubWInfo ){
1799           WhereLoop *pSubLoop;
1800           int addrExplain = sqlite3WhereExplainOneScan(
1801               pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
1802           );
1803           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
1804 
1805           /* This is the sub-WHERE clause body.  First skip over
1806           ** duplicate rows from prior sub-WHERE clauses, and record the
1807           ** rowid (or PRIMARY KEY) for the current row so that the same
1808           ** row will be skipped in subsequent sub-WHERE clauses.
1809           */
1810           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1811             int r;
1812             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
1813             if( HasRowid(pTab) ){
1814               r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0);
1815               jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
1816                                            r,iSet);
1817               VdbeCoverage(v);
1818             }else{
1819               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1820               int nPk = pPk->nKeyCol;
1821               int iPk;
1822 
1823               /* Read the PK into an array of temp registers. */
1824               r = sqlite3GetTempRange(pParse, nPk);
1825               for(iPk=0; iPk<nPk; iPk++){
1826                 int iCol = pPk->aiColumn[iPk];
1827                 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk);
1828               }
1829 
1830               /* Check if the temp table already contains this key. If so,
1831               ** the row has already been included in the result set and
1832               ** can be ignored (by jumping past the Gosub below). Otherwise,
1833               ** insert the key into the temp table and proceed with processing
1834               ** the row.
1835               **
1836               ** Use some of the same optimizations as OP_RowSetTest: If iSet
1837               ** is zero, assume that the key cannot already be present in
1838               ** the temp table. And if iSet is -1, assume that there is no
1839               ** need to insert the key into the temp table, as it will never
1840               ** be tested for.  */
1841               if( iSet ){
1842                 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
1843                 VdbeCoverage(v);
1844               }
1845               if( iSet>=0 ){
1846                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
1847                 sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0);
1848                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1849               }
1850 
1851               /* Release the array of temp registers */
1852               sqlite3ReleaseTempRange(pParse, r, nPk);
1853             }
1854           }
1855 
1856           /* Invoke the main loop body as a subroutine */
1857           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
1858 
1859           /* Jump here (skipping the main loop body subroutine) if the
1860           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
1861           if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
1862 
1863           /* The pSubWInfo->untestedTerms flag means that this OR term
1864           ** contained one or more AND term from a notReady table.  The
1865           ** terms from the notReady table could not be tested and will
1866           ** need to be tested later.
1867           */
1868           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
1869 
1870           /* If all of the OR-connected terms are optimized using the same
1871           ** index, and the index is opened using the same cursor number
1872           ** by each call to sqlite3WhereBegin() made by this loop, it may
1873           ** be possible to use that index as a covering index.
1874           **
1875           ** If the call to sqlite3WhereBegin() above resulted in a scan that
1876           ** uses an index, and this is either the first OR-connected term
1877           ** processed or the index is the same as that used by all previous
1878           ** terms, set pCov to the candidate covering index. Otherwise, set
1879           ** pCov to NULL to indicate that no candidate covering index will
1880           ** be available.
1881           */
1882           pSubLoop = pSubWInfo->a[0].pWLoop;
1883           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
1884           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
1885            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
1886            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
1887           ){
1888             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
1889             pCov = pSubLoop->u.btree.pIndex;
1890           }else{
1891             pCov = 0;
1892           }
1893 
1894           /* Finish the loop through table entries that match term pOrTerm. */
1895           sqlite3WhereEnd(pSubWInfo);
1896         }
1897       }
1898     }
1899     pLevel->u.pCovidx = pCov;
1900     if( pCov ) pLevel->iIdxCur = iCovCur;
1901     if( pAndExpr ){
1902       pAndExpr->pLeft = 0;
1903       sqlite3ExprDelete(db, pAndExpr);
1904     }
1905     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
1906     sqlite3VdbeGoto(v, pLevel->addrBrk);
1907     sqlite3VdbeResolveLabel(v, iLoopBody);
1908 
1909     if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
1910     if( !untestedTerms ) disableTerm(pLevel, pTerm);
1911   }else
1912 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1913 
1914   {
1915     /* Case 6:  There is no usable index.  We must do a complete
1916     **          scan of the entire table.
1917     */
1918     static const u8 aStep[] = { OP_Next, OP_Prev };
1919     static const u8 aStart[] = { OP_Rewind, OP_Last };
1920     assert( bRev==0 || bRev==1 );
1921     if( pTabItem->fg.isRecursive ){
1922       /* Tables marked isRecursive have only a single row that is stored in
1923       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
1924       pLevel->op = OP_Noop;
1925     }else{
1926       codeCursorHint(pTabItem, pWInfo, pLevel, 0);
1927       pLevel->op = aStep[bRev];
1928       pLevel->p1 = iCur;
1929       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
1930       VdbeCoverageIf(v, bRev==0);
1931       VdbeCoverageIf(v, bRev!=0);
1932       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1933     }
1934   }
1935 
1936 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1937   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
1938 #endif
1939 
1940   /* Insert code to test every subexpression that can be completely
1941   ** computed using the current set of tables.
1942   */
1943   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1944     Expr *pE;
1945     int skipLikeAddr = 0;
1946     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1947     testcase( pTerm->wtFlags & TERM_CODED );
1948     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1949     if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
1950       testcase( pWInfo->untestedTerms==0
1951                && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
1952       pWInfo->untestedTerms = 1;
1953       continue;
1954     }
1955     pE = pTerm->pExpr;
1956     assert( pE!=0 );
1957     if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
1958       continue;
1959     }
1960     if( pTerm->wtFlags & TERM_LIKECOND ){
1961       /* If the TERM_LIKECOND flag is set, that means that the range search
1962       ** is sufficient to guarantee that the LIKE operator is true, so we
1963       ** can skip the call to the like(A,B) function.  But this only works
1964       ** for strings.  So do not skip the call to the function on the pass
1965       ** that compares BLOBs. */
1966 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1967       continue;
1968 #else
1969       u32 x = pLevel->iLikeRepCntr;
1970       assert( x>0 );
1971       skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)? OP_IfNot : OP_If, (int)(x>>1));
1972       VdbeCoverage(v);
1973 #endif
1974     }
1975     sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
1976     if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
1977     pTerm->wtFlags |= TERM_CODED;
1978   }
1979 
1980   /* Insert code to test for implied constraints based on transitivity
1981   ** of the "==" operator.
1982   **
1983   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
1984   ** and we are coding the t1 loop and the t2 loop has not yet coded,
1985   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
1986   ** the implied "t1.a=123" constraint.
1987   */
1988   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1989     Expr *pE, sEAlt;
1990     WhereTerm *pAlt;
1991     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1992     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
1993     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
1994     if( pTerm->leftCursor!=iCur ) continue;
1995     if( pLevel->iLeftJoin ) continue;
1996     pE = pTerm->pExpr;
1997     assert( !ExprHasProperty(pE, EP_FromJoin) );
1998     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
1999     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
2000                     WO_EQ|WO_IN|WO_IS, 0);
2001     if( pAlt==0 ) continue;
2002     if( pAlt->wtFlags & (TERM_CODED) ) continue;
2003     testcase( pAlt->eOperator & WO_EQ );
2004     testcase( pAlt->eOperator & WO_IS );
2005     testcase( pAlt->eOperator & WO_IN );
2006     VdbeModuleComment((v, "begin transitive constraint"));
2007     sEAlt = *pAlt->pExpr;
2008     sEAlt.pLeft = pE->pLeft;
2009     sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2010   }
2011 
2012   /* For a LEFT OUTER JOIN, generate code that will record the fact that
2013   ** at least one row of the right table has matched the left table.
2014   */
2015   if( pLevel->iLeftJoin ){
2016     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2017     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2018     VdbeComment((v, "record LEFT JOIN hit"));
2019     sqlite3ExprCacheClear(pParse);
2020     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
2021       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2022       testcase( pTerm->wtFlags & TERM_CODED );
2023       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2024       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2025         assert( pWInfo->untestedTerms );
2026         continue;
2027       }
2028       assert( pTerm->pExpr );
2029       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2030       pTerm->wtFlags |= TERM_CODED;
2031     }
2032   }
2033 
2034   return pLevel->notReady;
2035 }
2036