xref: /sqlite-3.40.0/src/wherecode.c (revision dee0359d)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 
25 /*
26 ** Return the name of the i-th column of the pIdx index.
27 */
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29   i = pIdx->aiColumn[i];
30   if( i==XN_EXPR ) return "<expr>";
31   if( i==XN_ROWID ) return "rowid";
32   return pIdx->pTable->aCol[i].zCnName;
33 }
34 
35 /*
36 ** This routine is a helper for explainIndexRange() below
37 **
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time.  This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
42 */
43 static void explainAppendTerm(
44   StrAccum *pStr,             /* The text expression being built */
45   Index *pIdx,                /* Index to read column names from */
46   int nTerm,                  /* Number of terms */
47   int iTerm,                  /* Zero-based index of first term. */
48   int bAnd,                   /* Non-zero to append " AND " */
49   const char *zOp             /* Name of the operator */
50 ){
51   int i;
52 
53   assert( nTerm>=1 );
54   if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
55 
56   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
57   for(i=0; i<nTerm; i++){
58     if( i ) sqlite3_str_append(pStr, ",", 1);
59     sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
60   }
61   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
62 
63   sqlite3_str_append(pStr, zOp, 1);
64 
65   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
66   for(i=0; i<nTerm; i++){
67     if( i ) sqlite3_str_append(pStr, ",", 1);
68     sqlite3_str_append(pStr, "?", 1);
69   }
70   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
71 }
72 
73 /*
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
77 **
78 ** For example, if the query:
79 **
80 **   SELECT * FROM t1 WHERE a=1 AND b>2;
81 **
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
84 **
85 **   "a=? AND b>?"
86 */
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88   Index *pIndex = pLoop->u.btree.pIndex;
89   u16 nEq = pLoop->u.btree.nEq;
90   u16 nSkip = pLoop->nSkip;
91   int i, j;
92 
93   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94   sqlite3_str_append(pStr, " (", 2);
95   for(i=0; i<nEq; i++){
96     const char *z = explainIndexColumnName(pIndex, i);
97     if( i ) sqlite3_str_append(pStr, " AND ", 5);
98     sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
99   }
100 
101   j = i;
102   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104     i = 1;
105   }
106   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
108   }
109   sqlite3_str_append(pStr, ")", 1);
110 }
111 
112 /*
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
117 **
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
120 */
121 int sqlite3WhereExplainOneScan(
122   Parse *pParse,                  /* Parse context */
123   SrcList *pTabList,              /* Table list this loop refers to */
124   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
125   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
126 ){
127   int ret = 0;
128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
129   if( sqlite3ParseToplevel(pParse)->explain==2 )
130 #endif
131   {
132     SrcItem *pItem = &pTabList->a[pLevel->iFrom];
133     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
134     sqlite3 *db = pParse->db;     /* Database handle */
135     int isSearch;                 /* True for a SEARCH. False for SCAN. */
136     WhereLoop *pLoop;             /* The controlling WhereLoop object */
137     u32 flags;                    /* Flags that describe this loop */
138     char *zMsg;                   /* Text to add to EQP output */
139     StrAccum str;                 /* EQP output string */
140     char zBuf[100];               /* Initial space for EQP output string */
141 
142     pLoop = pLevel->pWLoop;
143     flags = pLoop->wsFlags;
144     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
145 
146     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
147             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
148             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
149 
150     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
151     str.printfFlags = SQLITE_PRINTF_INTERNAL;
152     sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem);
153     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
154       const char *zFmt = 0;
155       Index *pIdx;
156 
157       assert( pLoop->u.btree.pIndex!=0 );
158       pIdx = pLoop->u.btree.pIndex;
159       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
160       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
161         if( isSearch ){
162           zFmt = "PRIMARY KEY";
163         }
164       }else if( flags & WHERE_PARTIALIDX ){
165         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
166       }else if( flags & WHERE_AUTO_INDEX ){
167         zFmt = "AUTOMATIC COVERING INDEX";
168       }else if( flags & WHERE_IDX_ONLY ){
169         zFmt = "COVERING INDEX %s";
170       }else{
171         zFmt = "INDEX %s";
172       }
173       if( zFmt ){
174         sqlite3_str_append(&str, " USING ", 7);
175         sqlite3_str_appendf(&str, zFmt, pIdx->zName);
176         explainIndexRange(&str, pLoop);
177       }
178     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
179       const char *zRangeOp;
180       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
181         zRangeOp = "=";
182       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
183         zRangeOp = ">? AND rowid<";
184       }else if( flags&WHERE_BTM_LIMIT ){
185         zRangeOp = ">";
186       }else{
187         assert( flags&WHERE_TOP_LIMIT);
188         zRangeOp = "<";
189       }
190       sqlite3_str_appendf(&str,
191           " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
192     }
193 #ifndef SQLITE_OMIT_VIRTUALTABLE
194     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
195       sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
196                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
197     }
198 #endif
199 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
200     if( pLoop->nOut>=10 ){
201       sqlite3_str_appendf(&str, " (~%llu rows)",
202              sqlite3LogEstToInt(pLoop->nOut));
203     }else{
204       sqlite3_str_append(&str, " (~1 row)", 9);
205     }
206 #endif
207     zMsg = sqlite3StrAccumFinish(&str);
208     sqlite3ExplainBreakpoint("",zMsg);
209     ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
210                             pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
211   }
212   return ret;
213 }
214 #endif /* SQLITE_OMIT_EXPLAIN */
215 
216 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
217 /*
218 ** Configure the VM passed as the first argument with an
219 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
220 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
221 ** clause that the scan reads data from.
222 **
223 ** If argument addrExplain is not 0, it must be the address of an
224 ** OP_Explain instruction that describes the same loop.
225 */
226 void sqlite3WhereAddScanStatus(
227   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
228   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
229   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
230   int addrExplain                 /* Address of OP_Explain (or 0) */
231 ){
232   const char *zObj = 0;
233   WhereLoop *pLoop = pLvl->pWLoop;
234   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
235     zObj = pLoop->u.btree.pIndex->zName;
236   }else{
237     zObj = pSrclist->a[pLvl->iFrom].zName;
238   }
239   sqlite3VdbeScanStatus(
240       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
241   );
242 }
243 #endif
244 
245 
246 /*
247 ** Disable a term in the WHERE clause.  Except, do not disable the term
248 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
249 ** or USING clause of that join.
250 **
251 ** Consider the term t2.z='ok' in the following queries:
252 **
253 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
254 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
255 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
256 **
257 ** The t2.z='ok' is disabled in the in (2) because it originates
258 ** in the ON clause.  The term is disabled in (3) because it is not part
259 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
260 **
261 ** Disabling a term causes that term to not be tested in the inner loop
262 ** of the join.  Disabling is an optimization.  When terms are satisfied
263 ** by indices, we disable them to prevent redundant tests in the inner
264 ** loop.  We would get the correct results if nothing were ever disabled,
265 ** but joins might run a little slower.  The trick is to disable as much
266 ** as we can without disabling too much.  If we disabled in (1), we'd get
267 ** the wrong answer.  See ticket #813.
268 **
269 ** If all the children of a term are disabled, then that term is also
270 ** automatically disabled.  In this way, terms get disabled if derived
271 ** virtual terms are tested first.  For example:
272 **
273 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
274 **      \___________/     \______/     \_____/
275 **         parent          child1       child2
276 **
277 ** Only the parent term was in the original WHERE clause.  The child1
278 ** and child2 terms were added by the LIKE optimization.  If both of
279 ** the virtual child terms are valid, then testing of the parent can be
280 ** skipped.
281 **
282 ** Usually the parent term is marked as TERM_CODED.  But if the parent
283 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
284 ** The TERM_LIKECOND marking indicates that the term should be coded inside
285 ** a conditional such that is only evaluated on the second pass of a
286 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
287 */
288 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
289   int nLoop = 0;
290   assert( pTerm!=0 );
291   while( (pTerm->wtFlags & TERM_CODED)==0
292       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
293       && (pLevel->notReady & pTerm->prereqAll)==0
294   ){
295     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
296       pTerm->wtFlags |= TERM_LIKECOND;
297     }else{
298       pTerm->wtFlags |= TERM_CODED;
299     }
300 #ifdef WHERETRACE_ENABLED
301     if( sqlite3WhereTrace & 0x20000 ){
302       sqlite3DebugPrintf("DISABLE-");
303       sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a)));
304     }
305 #endif
306     if( pTerm->iParent<0 ) break;
307     pTerm = &pTerm->pWC->a[pTerm->iParent];
308     assert( pTerm!=0 );
309     pTerm->nChild--;
310     if( pTerm->nChild!=0 ) break;
311     nLoop++;
312   }
313 }
314 
315 /*
316 ** Code an OP_Affinity opcode to apply the column affinity string zAff
317 ** to the n registers starting at base.
318 **
319 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
320 ** are no-ops) at the beginning and end of zAff are ignored.  If all entries
321 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
322 **
323 ** This routine makes its own copy of zAff so that the caller is free
324 ** to modify zAff after this routine returns.
325 */
326 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
327   Vdbe *v = pParse->pVdbe;
328   if( zAff==0 ){
329     assert( pParse->db->mallocFailed );
330     return;
331   }
332   assert( v!=0 );
333 
334   /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
335   ** entries at the beginning and end of the affinity string.
336   */
337   assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB );
338   while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){
339     n--;
340     base++;
341     zAff++;
342   }
343   while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){
344     n--;
345   }
346 
347   /* Code the OP_Affinity opcode if there is anything left to do. */
348   if( n>0 ){
349     sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
350   }
351 }
352 
353 /*
354 ** Expression pRight, which is the RHS of a comparison operation, is
355 ** either a vector of n elements or, if n==1, a scalar expression.
356 ** Before the comparison operation, affinity zAff is to be applied
357 ** to the pRight values. This function modifies characters within the
358 ** affinity string to SQLITE_AFF_BLOB if either:
359 **
360 **   * the comparison will be performed with no affinity, or
361 **   * the affinity change in zAff is guaranteed not to change the value.
362 */
363 static void updateRangeAffinityStr(
364   Expr *pRight,                   /* RHS of comparison */
365   int n,                          /* Number of vector elements in comparison */
366   char *zAff                      /* Affinity string to modify */
367 ){
368   int i;
369   for(i=0; i<n; i++){
370     Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
371     if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
372      || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
373     ){
374       zAff[i] = SQLITE_AFF_BLOB;
375     }
376   }
377 }
378 
379 
380 /*
381 ** pX is an expression of the form:  (vector) IN (SELECT ...)
382 ** In other words, it is a vector IN operator with a SELECT clause on the
383 ** LHS.  But not all terms in the vector are indexable and the terms might
384 ** not be in the correct order for indexing.
385 **
386 ** This routine makes a copy of the input pX expression and then adjusts
387 ** the vector on the LHS with corresponding changes to the SELECT so that
388 ** the vector contains only index terms and those terms are in the correct
389 ** order.  The modified IN expression is returned.  The caller is responsible
390 ** for deleting the returned expression.
391 **
392 ** Example:
393 **
394 **    CREATE TABLE t1(a,b,c,d,e,f);
395 **    CREATE INDEX t1x1 ON t1(e,c);
396 **    SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
397 **                           \_______________________________________/
398 **                                     The pX expression
399 **
400 ** Since only columns e and c can be used with the index, in that order,
401 ** the modified IN expression that is returned will be:
402 **
403 **        (e,c) IN (SELECT z,x FROM t2)
404 **
405 ** The reduced pX is different from the original (obviously) and thus is
406 ** only used for indexing, to improve performance.  The original unaltered
407 ** IN expression must also be run on each output row for correctness.
408 */
409 static Expr *removeUnindexableInClauseTerms(
410   Parse *pParse,        /* The parsing context */
411   int iEq,              /* Look at loop terms starting here */
412   WhereLoop *pLoop,     /* The current loop */
413   Expr *pX              /* The IN expression to be reduced */
414 ){
415   sqlite3 *db = pParse->db;
416   Expr *pNew;
417   pNew = sqlite3ExprDup(db, pX, 0);
418   if( db->mallocFailed==0 ){
419     ExprList *pOrigRhs;         /* Original unmodified RHS */
420     ExprList *pOrigLhs;         /* Original unmodified LHS */
421     ExprList *pRhs = 0;         /* New RHS after modifications */
422     ExprList *pLhs = 0;         /* New LHS after mods */
423     int i;                      /* Loop counter */
424     Select *pSelect;            /* Pointer to the SELECT on the RHS */
425 
426     assert( ExprUseXSelect(pNew) );
427     pOrigRhs = pNew->x.pSelect->pEList;
428     assert( pNew->pLeft!=0 );
429     assert( ExprUseXList(pNew->pLeft) );
430     pOrigLhs = pNew->pLeft->x.pList;
431     for(i=iEq; i<pLoop->nLTerm; i++){
432       if( pLoop->aLTerm[i]->pExpr==pX ){
433         int iField = pLoop->aLTerm[i]->u.x.iField - 1;
434         if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
435         pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
436         pOrigRhs->a[iField].pExpr = 0;
437         assert( pOrigLhs->a[iField].pExpr!=0 );
438         pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
439         pOrigLhs->a[iField].pExpr = 0;
440       }
441     }
442     sqlite3ExprListDelete(db, pOrigRhs);
443     sqlite3ExprListDelete(db, pOrigLhs);
444     pNew->pLeft->x.pList = pLhs;
445     pNew->x.pSelect->pEList = pRhs;
446     if( pLhs && pLhs->nExpr==1 ){
447       /* Take care here not to generate a TK_VECTOR containing only a
448       ** single value. Since the parser never creates such a vector, some
449       ** of the subroutines do not handle this case.  */
450       Expr *p = pLhs->a[0].pExpr;
451       pLhs->a[0].pExpr = 0;
452       sqlite3ExprDelete(db, pNew->pLeft);
453       pNew->pLeft = p;
454     }
455     pSelect = pNew->x.pSelect;
456     if( pSelect->pOrderBy ){
457       /* If the SELECT statement has an ORDER BY clause, zero the
458       ** iOrderByCol variables. These are set to non-zero when an
459       ** ORDER BY term exactly matches one of the terms of the
460       ** result-set. Since the result-set of the SELECT statement may
461       ** have been modified or reordered, these variables are no longer
462       ** set correctly.  Since setting them is just an optimization,
463       ** it's easiest just to zero them here.  */
464       ExprList *pOrderBy = pSelect->pOrderBy;
465       for(i=0; i<pOrderBy->nExpr; i++){
466         pOrderBy->a[i].u.x.iOrderByCol = 0;
467       }
468     }
469 
470 #if 0
471     printf("For indexing, change the IN expr:\n");
472     sqlite3TreeViewExpr(0, pX, 0);
473     printf("Into:\n");
474     sqlite3TreeViewExpr(0, pNew, 0);
475 #endif
476   }
477   return pNew;
478 }
479 
480 
481 /*
482 ** Generate code for a single equality term of the WHERE clause.  An equality
483 ** term can be either X=expr or X IN (...).   pTerm is the term to be
484 ** coded.
485 **
486 ** The current value for the constraint is left in a register, the index
487 ** of which is returned.  An attempt is made store the result in iTarget but
488 ** this is only guaranteed for TK_ISNULL and TK_IN constraints.  If the
489 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
490 ** some other register and it is the caller's responsibility to compensate.
491 **
492 ** For a constraint of the form X=expr, the expression is evaluated in
493 ** straight-line code.  For constraints of the form X IN (...)
494 ** this routine sets up a loop that will iterate over all values of X.
495 */
496 static int codeEqualityTerm(
497   Parse *pParse,      /* The parsing context */
498   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
499   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
500   int iEq,            /* Index of the equality term within this level */
501   int bRev,           /* True for reverse-order IN operations */
502   int iTarget         /* Attempt to leave results in this register */
503 ){
504   Expr *pX = pTerm->pExpr;
505   Vdbe *v = pParse->pVdbe;
506   int iReg;                  /* Register holding results */
507 
508   assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
509   assert( iTarget>0 );
510   if( pX->op==TK_EQ || pX->op==TK_IS ){
511     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
512   }else if( pX->op==TK_ISNULL ){
513     iReg = iTarget;
514     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
515 #ifndef SQLITE_OMIT_SUBQUERY
516   }else{
517     int eType = IN_INDEX_NOOP;
518     int iTab;
519     struct InLoop *pIn;
520     WhereLoop *pLoop = pLevel->pWLoop;
521     int i;
522     int nEq = 0;
523     int *aiMap = 0;
524 
525     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
526       && pLoop->u.btree.pIndex!=0
527       && pLoop->u.btree.pIndex->aSortOrder[iEq]
528     ){
529       testcase( iEq==0 );
530       testcase( bRev );
531       bRev = !bRev;
532     }
533     assert( pX->op==TK_IN );
534     iReg = iTarget;
535 
536     for(i=0; i<iEq; i++){
537       if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
538         disableTerm(pLevel, pTerm);
539         return iTarget;
540       }
541     }
542     for(i=iEq;i<pLoop->nLTerm; i++){
543       assert( pLoop->aLTerm[i]!=0 );
544       if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
545     }
546 
547     iTab = 0;
548     if( !ExprUseXSelect(pX) || pX->x.pSelect->pEList->nExpr==1 ){
549       eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab);
550     }else{
551       sqlite3 *db = pParse->db;
552       pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
553 
554       if( !db->mallocFailed ){
555         aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
556         eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab);
557         pTerm->pExpr->iTable = iTab;
558       }
559       sqlite3ExprDelete(db, pX);
560       pX = pTerm->pExpr;
561     }
562 
563     if( eType==IN_INDEX_INDEX_DESC ){
564       testcase( bRev );
565       bRev = !bRev;
566     }
567     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
568     VdbeCoverageIf(v, bRev);
569     VdbeCoverageIf(v, !bRev);
570     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
571 
572     pLoop->wsFlags |= WHERE_IN_ABLE;
573     if( pLevel->u.in.nIn==0 ){
574       pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
575     }
576     if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){
577       pLoop->wsFlags |= WHERE_IN_EARLYOUT;
578     }
579 
580     i = pLevel->u.in.nIn;
581     pLevel->u.in.nIn += nEq;
582     pLevel->u.in.aInLoop =
583        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
584                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
585     pIn = pLevel->u.in.aInLoop;
586     if( pIn ){
587       int iMap = 0;               /* Index in aiMap[] */
588       pIn += i;
589       for(i=iEq;i<pLoop->nLTerm; i++){
590         if( pLoop->aLTerm[i]->pExpr==pX ){
591           int iOut = iReg + i - iEq;
592           if( eType==IN_INDEX_ROWID ){
593             pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
594           }else{
595             int iCol = aiMap ? aiMap[iMap++] : 0;
596             pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
597           }
598           sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
599           if( i==iEq ){
600             pIn->iCur = iTab;
601             pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
602             if( iEq>0 ){
603               pIn->iBase = iReg - i;
604               pIn->nPrefix = i;
605             }else{
606               pIn->nPrefix = 0;
607             }
608           }else{
609             pIn->eEndLoopOp = OP_Noop;
610           }
611           pIn++;
612         }
613       }
614       testcase( iEq>0
615                 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
616                 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 );
617       if( iEq>0
618        && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0
619       ){
620         sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq);
621       }
622     }else{
623       pLevel->u.in.nIn = 0;
624     }
625     sqlite3DbFree(pParse->db, aiMap);
626 #endif
627   }
628 
629   /* As an optimization, try to disable the WHERE clause term that is
630   ** driving the index as it will always be true.  The correct answer is
631   ** obtained regardless, but we might get the answer with fewer CPU cycles
632   ** by omitting the term.
633   **
634   ** But do not disable the term unless we are certain that the term is
635   ** not a transitive constraint.  For an example of where that does not
636   ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04)
637   */
638   if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0
639    || (pTerm->eOperator & WO_EQUIV)==0
640   ){
641     disableTerm(pLevel, pTerm);
642   }
643 
644   return iReg;
645 }
646 
647 /*
648 ** Generate code that will evaluate all == and IN constraints for an
649 ** index scan.
650 **
651 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
652 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
653 ** The index has as many as three equality constraints, but in this
654 ** example, the third "c" value is an inequality.  So only two
655 ** constraints are coded.  This routine will generate code to evaluate
656 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
657 ** in consecutive registers and the index of the first register is returned.
658 **
659 ** In the example above nEq==2.  But this subroutine works for any value
660 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
661 ** The only thing it does is allocate the pLevel->iMem memory cell and
662 ** compute the affinity string.
663 **
664 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
665 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
666 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
667 ** occurs after the nEq quality constraints.
668 **
669 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
670 ** the index of the first memory cell in that range. The code that
671 ** calls this routine will use that memory range to store keys for
672 ** start and termination conditions of the loop.
673 ** key value of the loop.  If one or more IN operators appear, then
674 ** this routine allocates an additional nEq memory cells for internal
675 ** use.
676 **
677 ** Before returning, *pzAff is set to point to a buffer containing a
678 ** copy of the column affinity string of the index allocated using
679 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
680 ** with equality constraints that use BLOB or NONE affinity are set to
681 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
682 **
683 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
684 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
685 **
686 ** In the example above, the index on t1(a) has TEXT affinity. But since
687 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
688 ** no conversion should be attempted before using a t2.b value as part of
689 ** a key to search the index. Hence the first byte in the returned affinity
690 ** string in this example would be set to SQLITE_AFF_BLOB.
691 */
692 static int codeAllEqualityTerms(
693   Parse *pParse,        /* Parsing context */
694   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
695   int bRev,             /* Reverse the order of IN operators */
696   int nExtraReg,        /* Number of extra registers to allocate */
697   char **pzAff          /* OUT: Set to point to affinity string */
698 ){
699   u16 nEq;                      /* The number of == or IN constraints to code */
700   u16 nSkip;                    /* Number of left-most columns to skip */
701   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
702   Index *pIdx;                  /* The index being used for this loop */
703   WhereTerm *pTerm;             /* A single constraint term */
704   WhereLoop *pLoop;             /* The WhereLoop object */
705   int j;                        /* Loop counter */
706   int regBase;                  /* Base register */
707   int nReg;                     /* Number of registers to allocate */
708   char *zAff;                   /* Affinity string to return */
709 
710   /* This module is only called on query plans that use an index. */
711   pLoop = pLevel->pWLoop;
712   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
713   nEq = pLoop->u.btree.nEq;
714   nSkip = pLoop->nSkip;
715   pIdx = pLoop->u.btree.pIndex;
716   assert( pIdx!=0 );
717 
718   /* Figure out how many memory cells we will need then allocate them.
719   */
720   regBase = pParse->nMem + 1;
721   nReg = pLoop->u.btree.nEq + nExtraReg;
722   pParse->nMem += nReg;
723 
724   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
725   assert( zAff!=0 || pParse->db->mallocFailed );
726 
727   if( nSkip ){
728     int iIdxCur = pLevel->iIdxCur;
729     sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1);
730     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
731     VdbeCoverageIf(v, bRev==0);
732     VdbeCoverageIf(v, bRev!=0);
733     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
734     j = sqlite3VdbeAddOp0(v, OP_Goto);
735     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
736                             iIdxCur, 0, regBase, nSkip);
737     VdbeCoverageIf(v, bRev==0);
738     VdbeCoverageIf(v, bRev!=0);
739     sqlite3VdbeJumpHere(v, j);
740     for(j=0; j<nSkip; j++){
741       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
742       testcase( pIdx->aiColumn[j]==XN_EXPR );
743       VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
744     }
745   }
746 
747   /* Evaluate the equality constraints
748   */
749   assert( zAff==0 || (int)strlen(zAff)>=nEq );
750   for(j=nSkip; j<nEq; j++){
751     int r1;
752     pTerm = pLoop->aLTerm[j];
753     assert( pTerm!=0 );
754     /* The following testcase is true for indices with redundant columns.
755     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
756     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
757     testcase( pTerm->wtFlags & TERM_VIRTUAL );
758     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
759     if( r1!=regBase+j ){
760       if( nReg==1 ){
761         sqlite3ReleaseTempReg(pParse, regBase);
762         regBase = r1;
763       }else{
764         sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j);
765       }
766     }
767     if( pTerm->eOperator & WO_IN ){
768       if( pTerm->pExpr->flags & EP_xIsSelect ){
769         /* No affinity ever needs to be (or should be) applied to a value
770         ** from the RHS of an "? IN (SELECT ...)" expression. The
771         ** sqlite3FindInIndex() routine has already ensured that the
772         ** affinity of the comparison has been applied to the value.  */
773         if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
774       }
775     }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
776       Expr *pRight = pTerm->pExpr->pRight;
777       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
778         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
779         VdbeCoverage(v);
780       }
781       if( pParse->db->mallocFailed==0 && pParse->nErr==0 ){
782         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
783           zAff[j] = SQLITE_AFF_BLOB;
784         }
785         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
786           zAff[j] = SQLITE_AFF_BLOB;
787         }
788       }
789     }
790   }
791   *pzAff = zAff;
792   return regBase;
793 }
794 
795 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
796 /*
797 ** If the most recently coded instruction is a constant range constraint
798 ** (a string literal) that originated from the LIKE optimization, then
799 ** set P3 and P5 on the OP_String opcode so that the string will be cast
800 ** to a BLOB at appropriate times.
801 **
802 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
803 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
804 ** scan loop run twice, once for strings and a second time for BLOBs.
805 ** The OP_String opcodes on the second pass convert the upper and lower
806 ** bound string constants to blobs.  This routine makes the necessary changes
807 ** to the OP_String opcodes for that to happen.
808 **
809 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
810 ** only the one pass through the string space is required, so this routine
811 ** becomes a no-op.
812 */
813 static void whereLikeOptimizationStringFixup(
814   Vdbe *v,                /* prepared statement under construction */
815   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
816   WhereTerm *pTerm        /* The upper or lower bound just coded */
817 ){
818   if( pTerm->wtFlags & TERM_LIKEOPT ){
819     VdbeOp *pOp;
820     assert( pLevel->iLikeRepCntr>0 );
821     pOp = sqlite3VdbeGetOp(v, -1);
822     assert( pOp!=0 );
823     assert( pOp->opcode==OP_String8
824             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
825     pOp->p3 = (int)(pLevel->iLikeRepCntr>>1);  /* Register holding counter */
826     pOp->p5 = (u8)(pLevel->iLikeRepCntr&1);    /* ASC or DESC */
827   }
828 }
829 #else
830 # define whereLikeOptimizationStringFixup(A,B,C)
831 #endif
832 
833 #ifdef SQLITE_ENABLE_CURSOR_HINTS
834 /*
835 ** Information is passed from codeCursorHint() down to individual nodes of
836 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
837 ** structure.
838 */
839 struct CCurHint {
840   int iTabCur;    /* Cursor for the main table */
841   int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
842   Index *pIdx;    /* The index used to access the table */
843 };
844 
845 /*
846 ** This function is called for every node of an expression that is a candidate
847 ** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
848 ** the table CCurHint.iTabCur, verify that the same column can be
849 ** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
850 */
851 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
852   struct CCurHint *pHint = pWalker->u.pCCurHint;
853   assert( pHint->pIdx!=0 );
854   if( pExpr->op==TK_COLUMN
855    && pExpr->iTable==pHint->iTabCur
856    && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0
857   ){
858     pWalker->eCode = 1;
859   }
860   return WRC_Continue;
861 }
862 
863 /*
864 ** Test whether or not expression pExpr, which was part of a WHERE clause,
865 ** should be included in the cursor-hint for a table that is on the rhs
866 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
867 ** expression is not suitable.
868 **
869 ** An expression is unsuitable if it might evaluate to non NULL even if
870 ** a TK_COLUMN node that does affect the value of the expression is set
871 ** to NULL. For example:
872 **
873 **   col IS NULL
874 **   col IS NOT NULL
875 **   coalesce(col, 1)
876 **   CASE WHEN col THEN 0 ELSE 1 END
877 */
878 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
879   if( pExpr->op==TK_IS
880    || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
881    || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
882   ){
883     pWalker->eCode = 1;
884   }else if( pExpr->op==TK_FUNCTION ){
885     int d1;
886     char d2[4];
887     if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
888       pWalker->eCode = 1;
889     }
890   }
891 
892   return WRC_Continue;
893 }
894 
895 
896 /*
897 ** This function is called on every node of an expression tree used as an
898 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
899 ** that accesses any table other than the one identified by
900 ** CCurHint.iTabCur, then do the following:
901 **
902 **   1) allocate a register and code an OP_Column instruction to read
903 **      the specified column into the new register, and
904 **
905 **   2) transform the expression node to a TK_REGISTER node that reads
906 **      from the newly populated register.
907 **
908 ** Also, if the node is a TK_COLUMN that does access the table idenified
909 ** by pCCurHint.iTabCur, and an index is being used (which we will
910 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
911 ** an access of the index rather than the original table.
912 */
913 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
914   int rc = WRC_Continue;
915   struct CCurHint *pHint = pWalker->u.pCCurHint;
916   if( pExpr->op==TK_COLUMN ){
917     if( pExpr->iTable!=pHint->iTabCur ){
918       int reg = ++pWalker->pParse->nMem;   /* Register for column value */
919       sqlite3ExprCode(pWalker->pParse, pExpr, reg);
920       pExpr->op = TK_REGISTER;
921       pExpr->iTable = reg;
922     }else if( pHint->pIdx!=0 ){
923       pExpr->iTable = pHint->iIdxCur;
924       pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn);
925       assert( pExpr->iColumn>=0 );
926     }
927   }else if( pExpr->op==TK_AGG_FUNCTION ){
928     /* An aggregate function in the WHERE clause of a query means this must
929     ** be a correlated sub-query, and expression pExpr is an aggregate from
930     ** the parent context. Do not walk the function arguments in this case.
931     **
932     ** todo: It should be possible to replace this node with a TK_REGISTER
933     ** expression, as the result of the expression must be stored in a
934     ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
935     rc = WRC_Prune;
936   }
937   return rc;
938 }
939 
940 /*
941 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
942 */
943 static void codeCursorHint(
944   SrcItem *pTabItem,  /* FROM clause item */
945   WhereInfo *pWInfo,    /* The where clause */
946   WhereLevel *pLevel,   /* Which loop to provide hints for */
947   WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
948 ){
949   Parse *pParse = pWInfo->pParse;
950   sqlite3 *db = pParse->db;
951   Vdbe *v = pParse->pVdbe;
952   Expr *pExpr = 0;
953   WhereLoop *pLoop = pLevel->pWLoop;
954   int iCur;
955   WhereClause *pWC;
956   WhereTerm *pTerm;
957   int i, j;
958   struct CCurHint sHint;
959   Walker sWalker;
960 
961   if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
962   iCur = pLevel->iTabCur;
963   assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
964   sHint.iTabCur = iCur;
965   sHint.iIdxCur = pLevel->iIdxCur;
966   sHint.pIdx = pLoop->u.btree.pIndex;
967   memset(&sWalker, 0, sizeof(sWalker));
968   sWalker.pParse = pParse;
969   sWalker.u.pCCurHint = &sHint;
970   pWC = &pWInfo->sWC;
971   for(i=0; i<pWC->nTerm; i++){
972     pTerm = &pWC->a[i];
973     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
974     if( pTerm->prereqAll & pLevel->notReady ) continue;
975 
976     /* Any terms specified as part of the ON(...) clause for any LEFT
977     ** JOIN for which the current table is not the rhs are omitted
978     ** from the cursor-hint.
979     **
980     ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
981     ** that were specified as part of the WHERE clause must be excluded.
982     ** This is to address the following:
983     **
984     **   SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
985     **
986     ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
987     ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
988     ** pushed down to the cursor, this row is filtered out, causing
989     ** SQLite to synthesize a row of NULL values. Which does match the
990     ** WHERE clause, and so the query returns a row. Which is incorrect.
991     **
992     ** For the same reason, WHERE terms such as:
993     **
994     **   WHERE 1 = (t2.c IS NULL)
995     **
996     ** are also excluded. See codeCursorHintIsOrFunction() for details.
997     */
998     if( pTabItem->fg.jointype & JT_LEFT ){
999       Expr *pExpr = pTerm->pExpr;
1000       if( !ExprHasProperty(pExpr, EP_FromJoin)
1001        || pExpr->iRightJoinTable!=pTabItem->iCursor
1002       ){
1003         sWalker.eCode = 0;
1004         sWalker.xExprCallback = codeCursorHintIsOrFunction;
1005         sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1006         if( sWalker.eCode ) continue;
1007       }
1008     }else{
1009       if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
1010     }
1011 
1012     /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
1013     ** the cursor.  These terms are not needed as hints for a pure range
1014     ** scan (that has no == terms) so omit them. */
1015     if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
1016       for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
1017       if( j<pLoop->nLTerm ) continue;
1018     }
1019 
1020     /* No subqueries or non-deterministic functions allowed */
1021     if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
1022 
1023     /* For an index scan, make sure referenced columns are actually in
1024     ** the index. */
1025     if( sHint.pIdx!=0 ){
1026       sWalker.eCode = 0;
1027       sWalker.xExprCallback = codeCursorHintCheckExpr;
1028       sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1029       if( sWalker.eCode ) continue;
1030     }
1031 
1032     /* If we survive all prior tests, that means this term is worth hinting */
1033     pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
1034   }
1035   if( pExpr!=0 ){
1036     sWalker.xExprCallback = codeCursorHintFixExpr;
1037     sqlite3WalkExpr(&sWalker, pExpr);
1038     sqlite3VdbeAddOp4(v, OP_CursorHint,
1039                       (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
1040                       (const char*)pExpr, P4_EXPR);
1041   }
1042 }
1043 #else
1044 # define codeCursorHint(A,B,C,D)  /* No-op */
1045 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1046 
1047 /*
1048 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1049 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1050 ** function generates code to do a deferred seek of cursor iCur to the
1051 ** rowid stored in register iRowid.
1052 **
1053 ** Normally, this is just:
1054 **
1055 **   OP_DeferredSeek $iCur $iRowid
1056 **
1057 ** However, if the scan currently being coded is a branch of an OR-loop and
1058 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek
1059 ** is set to iIdxCur and P4 is set to point to an array of integers
1060 ** containing one entry for each column of the table cursor iCur is open
1061 ** on. For each table column, if the column is the i'th column of the
1062 ** index, then the corresponding array entry is set to (i+1). If the column
1063 ** does not appear in the index at all, the array entry is set to 0.
1064 */
1065 static void codeDeferredSeek(
1066   WhereInfo *pWInfo,              /* Where clause context */
1067   Index *pIdx,                    /* Index scan is using */
1068   int iCur,                       /* Cursor for IPK b-tree */
1069   int iIdxCur                     /* Index cursor */
1070 ){
1071   Parse *pParse = pWInfo->pParse; /* Parse context */
1072   Vdbe *v = pParse->pVdbe;        /* Vdbe to generate code within */
1073 
1074   assert( iIdxCur>0 );
1075   assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1076 
1077   pWInfo->bDeferredSeek = 1;
1078   sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1079   if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1080    && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1081   ){
1082     int i;
1083     Table *pTab = pIdx->pTable;
1084     u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1));
1085     if( ai ){
1086       ai[0] = pTab->nCol;
1087       for(i=0; i<pIdx->nColumn-1; i++){
1088         int x1, x2;
1089         assert( pIdx->aiColumn[i]<pTab->nCol );
1090         x1 = pIdx->aiColumn[i];
1091         x2 = sqlite3TableColumnToStorage(pTab, x1);
1092         testcase( x1!=x2 );
1093         if( x1>=0 ) ai[x2+1] = i+1;
1094       }
1095       sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1096     }
1097   }
1098 }
1099 
1100 /*
1101 ** If the expression passed as the second argument is a vector, generate
1102 ** code to write the first nReg elements of the vector into an array
1103 ** of registers starting with iReg.
1104 **
1105 ** If the expression is not a vector, then nReg must be passed 1. In
1106 ** this case, generate code to evaluate the expression and leave the
1107 ** result in register iReg.
1108 */
1109 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1110   assert( nReg>0 );
1111   if( p && sqlite3ExprIsVector(p) ){
1112 #ifndef SQLITE_OMIT_SUBQUERY
1113     if( ExprUseXSelect(p) ){
1114       Vdbe *v = pParse->pVdbe;
1115       int iSelect;
1116       assert( p->op==TK_SELECT );
1117       iSelect = sqlite3CodeSubselect(pParse, p);
1118       sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1119     }else
1120 #endif
1121     {
1122       int i;
1123       const ExprList *pList;
1124       assert( ExprUseXList(p) );
1125       pList = p->x.pList;
1126       assert( nReg<=pList->nExpr );
1127       for(i=0; i<nReg; i++){
1128         sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1129       }
1130     }
1131   }else{
1132     assert( nReg==1 || pParse->nErr );
1133     sqlite3ExprCode(pParse, p, iReg);
1134   }
1135 }
1136 
1137 /* An instance of the IdxExprTrans object carries information about a
1138 ** mapping from an expression on table columns into a column in an index
1139 ** down through the Walker.
1140 */
1141 typedef struct IdxExprTrans {
1142   Expr *pIdxExpr;    /* The index expression */
1143   int iTabCur;       /* The cursor of the corresponding table */
1144   int iIdxCur;       /* The cursor for the index */
1145   int iIdxCol;       /* The column for the index */
1146   int iTabCol;       /* The column for the table */
1147   WhereInfo *pWInfo; /* Complete WHERE clause information */
1148   sqlite3 *db;       /* Database connection (for malloc()) */
1149 } IdxExprTrans;
1150 
1151 /*
1152 ** Preserve pExpr on the WhereETrans list of the WhereInfo.
1153 */
1154 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){
1155   WhereExprMod *pNew;
1156   pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew));
1157   if( pNew==0 ) return;
1158   pNew->pNext = pTrans->pWInfo->pExprMods;
1159   pTrans->pWInfo->pExprMods = pNew;
1160   pNew->pExpr = pExpr;
1161   memcpy(&pNew->orig, pExpr, sizeof(*pExpr));
1162 }
1163 
1164 /* The walker node callback used to transform matching expressions into
1165 ** a reference to an index column for an index on an expression.
1166 **
1167 ** If pExpr matches, then transform it into a reference to the index column
1168 ** that contains the value of pExpr.
1169 */
1170 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1171   IdxExprTrans *pX = p->u.pIdxTrans;
1172   if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1173     preserveExpr(pX, pExpr);
1174     pExpr->affExpr = sqlite3ExprAffinity(pExpr);
1175     pExpr->op = TK_COLUMN;
1176     pExpr->iTable = pX->iIdxCur;
1177     pExpr->iColumn = pX->iIdxCol;
1178     testcase( ExprHasProperty(pExpr, EP_Skip) );
1179     testcase( ExprHasProperty(pExpr, EP_Unlikely) );
1180     ExprClearProperty(pExpr, EP_Skip|EP_Unlikely|EP_WinFunc|EP_Subrtn);
1181     pExpr->y.pTab = 0;
1182     return WRC_Prune;
1183   }else{
1184     return WRC_Continue;
1185   }
1186 }
1187 
1188 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1189 /* A walker node callback that translates a column reference to a table
1190 ** into a corresponding column reference of an index.
1191 */
1192 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){
1193   if( pExpr->op==TK_COLUMN ){
1194     IdxExprTrans *pX = p->u.pIdxTrans;
1195     if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){
1196       assert( ExprUseYTab(pExpr) && pExpr->y.pTab!=0 );
1197       preserveExpr(pX, pExpr);
1198       pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn);
1199       pExpr->iTable = pX->iIdxCur;
1200       pExpr->iColumn = pX->iIdxCol;
1201       pExpr->y.pTab = 0;
1202     }
1203   }
1204   return WRC_Continue;
1205 }
1206 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1207 
1208 /*
1209 ** For an indexes on expression X, locate every instance of expression X
1210 ** in pExpr and change that subexpression into a reference to the appropriate
1211 ** column of the index.
1212 **
1213 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in
1214 ** the table into references to the corresponding (stored) column of the
1215 ** index.
1216 */
1217 static void whereIndexExprTrans(
1218   Index *pIdx,      /* The Index */
1219   int iTabCur,      /* Cursor of the table that is being indexed */
1220   int iIdxCur,      /* Cursor of the index itself */
1221   WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1222 ){
1223   int iIdxCol;               /* Column number of the index */
1224   ExprList *aColExpr;        /* Expressions that are indexed */
1225   Table *pTab;
1226   Walker w;
1227   IdxExprTrans x;
1228   aColExpr = pIdx->aColExpr;
1229   if( aColExpr==0 && !pIdx->bHasVCol ){
1230     /* The index does not reference any expressions or virtual columns
1231     ** so no translations are needed. */
1232     return;
1233   }
1234   pTab = pIdx->pTable;
1235   memset(&w, 0, sizeof(w));
1236   w.u.pIdxTrans = &x;
1237   x.iTabCur = iTabCur;
1238   x.iIdxCur = iIdxCur;
1239   x.pWInfo = pWInfo;
1240   x.db = pWInfo->pParse->db;
1241   for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){
1242     i16 iRef = pIdx->aiColumn[iIdxCol];
1243     if( iRef==XN_EXPR ){
1244       assert( aColExpr!=0 && aColExpr->a[iIdxCol].pExpr!=0 );
1245       x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1246       if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue;
1247       w.xExprCallback = whereIndexExprTransNode;
1248 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1249     }else if( iRef>=0
1250        && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0
1251        && ((pTab->aCol[iRef].colFlags & COLFLAG_HASCOLL)==0
1252            || sqlite3StrICmp(sqlite3ColumnColl(&pTab->aCol[iRef]),
1253                                                sqlite3StrBINARY)==0)
1254     ){
1255       /* Check to see if there are direct references to generated columns
1256       ** that are contained in the index.  Pulling the generated column
1257       ** out of the index is an optimization only - the main table is always
1258       ** available if the index cannot be used.  To avoid unnecessary
1259       ** complication, omit this optimization if the collating sequence for
1260       ** the column is non-standard */
1261       x.iTabCol = iRef;
1262       w.xExprCallback = whereIndexExprTransColumn;
1263 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1264     }else{
1265       continue;
1266     }
1267     x.iIdxCol = iIdxCol;
1268     sqlite3WalkExpr(&w, pWInfo->pWhere);
1269     sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1270     sqlite3WalkExprList(&w, pWInfo->pResultSet);
1271   }
1272 }
1273 
1274 /*
1275 ** The pTruth expression is always true because it is the WHERE clause
1276 ** a partial index that is driving a query loop.  Look through all of the
1277 ** WHERE clause terms on the query, and if any of those terms must be
1278 ** true because pTruth is true, then mark those WHERE clause terms as
1279 ** coded.
1280 */
1281 static void whereApplyPartialIndexConstraints(
1282   Expr *pTruth,
1283   int iTabCur,
1284   WhereClause *pWC
1285 ){
1286   int i;
1287   WhereTerm *pTerm;
1288   while( pTruth->op==TK_AND ){
1289     whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC);
1290     pTruth = pTruth->pRight;
1291   }
1292   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1293     Expr *pExpr;
1294     if( pTerm->wtFlags & TERM_CODED ) continue;
1295     pExpr = pTerm->pExpr;
1296     if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){
1297       pTerm->wtFlags |= TERM_CODED;
1298     }
1299   }
1300 }
1301 
1302 /*
1303 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1304 ** implementation described by pWInfo.
1305 */
1306 Bitmask sqlite3WhereCodeOneLoopStart(
1307   Parse *pParse,       /* Parsing context */
1308   Vdbe *v,             /* Prepared statement under construction */
1309   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1310   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1311   WhereLevel *pLevel,  /* The current level pointer */
1312   Bitmask notReady     /* Which tables are currently available */
1313 ){
1314   int j, k;            /* Loop counters */
1315   int iCur;            /* The VDBE cursor for the table */
1316   int addrNxt;         /* Where to jump to continue with the next IN case */
1317   int bRev;            /* True if we need to scan in reverse order */
1318   WhereLoop *pLoop;    /* The WhereLoop object being coded */
1319   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
1320   WhereTerm *pTerm;               /* A WHERE clause term */
1321   sqlite3 *db;                    /* Database connection */
1322   SrcItem *pTabItem;              /* FROM clause term being coded */
1323   int addrBrk;                    /* Jump here to break out of the loop */
1324   int addrHalt;                   /* addrBrk for the outermost loop */
1325   int addrCont;                   /* Jump here to continue with next cycle */
1326   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
1327   int iReleaseReg = 0;      /* Temp register to free before returning */
1328   Index *pIdx = 0;          /* Index used by loop (if any) */
1329   int iLoop;                /* Iteration of constraint generator loop */
1330 
1331   pWC = &pWInfo->sWC;
1332   db = pParse->db;
1333   pLoop = pLevel->pWLoop;
1334   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1335   iCur = pTabItem->iCursor;
1336   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1337   bRev = (pWInfo->revMask>>iLevel)&1;
1338   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1339 #if WHERETRACE_ENABLED /* 0x20800 */
1340   if( sqlite3WhereTrace & 0x800 ){
1341     sqlite3DebugPrintf("Coding level %d of %d:  notReady=%llx  iFrom=%d\n",
1342        iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom);
1343     sqlite3WhereLoopPrint(pLoop, pWC);
1344   }
1345   if( sqlite3WhereTrace & 0x20000 ){
1346     if( iLevel==0 ){
1347       sqlite3DebugPrintf("WHERE clause being coded:\n");
1348       sqlite3TreeViewExpr(0, pWInfo->pWhere, 0);
1349     }
1350     sqlite3DebugPrintf("All WHERE-clause terms before coding:\n");
1351     sqlite3WhereClausePrint(pWC);
1352   }
1353 #endif
1354 
1355   /* Create labels for the "break" and "continue" instructions
1356   ** for the current loop.  Jump to addrBrk to break out of a loop.
1357   ** Jump to cont to go immediately to the next iteration of the
1358   ** loop.
1359   **
1360   ** When there is an IN operator, we also have a "addrNxt" label that
1361   ** means to continue with the next IN value combination.  When
1362   ** there are no IN operators in the constraints, the "addrNxt" label
1363   ** is the same as "addrBrk".
1364   */
1365   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
1366   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse);
1367 
1368   /* If this is the right table of a LEFT OUTER JOIN, allocate and
1369   ** initialize a memory cell that records if this table matches any
1370   ** row of the left table of the join.
1371   */
1372   assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1373        || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
1374   );
1375   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1376     pLevel->iLeftJoin = ++pParse->nMem;
1377     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1378     VdbeComment((v, "init LEFT JOIN no-match flag"));
1379   }
1380 
1381   /* Compute a safe address to jump to if we discover that the table for
1382   ** this loop is empty and can never contribute content. */
1383   for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){}
1384   addrHalt = pWInfo->a[j].addrBrk;
1385 
1386   /* Special case of a FROM clause subquery implemented as a co-routine */
1387   if( pTabItem->fg.viaCoroutine ){
1388     int regYield = pTabItem->regReturn;
1389     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1390     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1391     VdbeCoverage(v);
1392     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
1393     pLevel->op = OP_Goto;
1394   }else
1395 
1396 #ifndef SQLITE_OMIT_VIRTUALTABLE
1397   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1398     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
1399     **          to access the data.
1400     */
1401     int iReg;   /* P3 Value for OP_VFilter */
1402     int addrNotFound;
1403     int nConstraint = pLoop->nLTerm;
1404     int iIn;    /* Counter for IN constraints */
1405 
1406     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1407     addrNotFound = pLevel->addrBrk;
1408     for(j=0; j<nConstraint; j++){
1409       int iTarget = iReg+j+2;
1410       pTerm = pLoop->aLTerm[j];
1411       if( NEVER(pTerm==0) ) continue;
1412       if( pTerm->eOperator & WO_IN ){
1413         codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1414         addrNotFound = pLevel->addrNxt;
1415       }else{
1416         Expr *pRight = pTerm->pExpr->pRight;
1417         codeExprOrVector(pParse, pRight, iTarget, 1);
1418       }
1419     }
1420     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1421     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1422     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1423                       pLoop->u.vtab.idxStr,
1424                       pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1425     VdbeCoverage(v);
1426     pLoop->u.vtab.needFree = 0;
1427     /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed
1428     ** the u.vtab.idxStr.  NULL it out to prevent a use-after-free */
1429     if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0;
1430     pLevel->p1 = iCur;
1431     pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1432     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1433     iIn = pLevel->u.in.nIn;
1434     for(j=nConstraint-1; j>=0; j--){
1435       pTerm = pLoop->aLTerm[j];
1436       if( (pTerm->eOperator & WO_IN)!=0 ) iIn--;
1437       if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1438         disableTerm(pLevel, pTerm);
1439       }else if( (pTerm->eOperator & WO_IN)!=0
1440         && sqlite3ExprVectorSize(pTerm->pExpr->pLeft)==1
1441       ){
1442         Expr *pCompare;  /* The comparison operator */
1443         Expr *pRight;    /* RHS of the comparison */
1444         VdbeOp *pOp;     /* Opcode to access the value of the IN constraint */
1445 
1446         /* Reload the constraint value into reg[iReg+j+2].  The same value
1447         ** was loaded into the same register prior to the OP_VFilter, but
1448         ** the xFilter implementation might have changed the datatype or
1449         ** encoding of the value in the register, so it *must* be reloaded. */
1450         assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed );
1451         if( !db->mallocFailed ){
1452           assert( iIn>=0 && iIn<pLevel->u.in.nIn );
1453           pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop);
1454           assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid );
1455           assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 );
1456           assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 );
1457           testcase( pOp->opcode==OP_Rowid );
1458           sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1459         }
1460 
1461         /* Generate code that will continue to the next row if
1462         ** the IN constraint is not satisfied */
1463         pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1464         assert( pCompare!=0 || db->mallocFailed );
1465         if( pCompare ){
1466           pCompare->pLeft = pTerm->pExpr->pLeft;
1467           pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1468           if( pRight ){
1469             pRight->iTable = iReg+j+2;
1470             sqlite3ExprIfFalse(
1471                 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL
1472             );
1473           }
1474           pCompare->pLeft = 0;
1475           sqlite3ExprDelete(db, pCompare);
1476         }
1477       }
1478     }
1479     assert( iIn==0 || db->mallocFailed );
1480     /* These registers need to be preserved in case there is an IN operator
1481     ** loop.  So we could deallocate the registers here (and potentially
1482     ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0.  But it seems
1483     ** simpler and safer to simply not reuse the registers.
1484     **
1485     **    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1486     */
1487   }else
1488 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1489 
1490   if( (pLoop->wsFlags & WHERE_IPK)!=0
1491    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1492   ){
1493     /* Case 2:  We can directly reference a single row using an
1494     **          equality comparison against the ROWID field.  Or
1495     **          we reference multiple rows using a "rowid IN (...)"
1496     **          construct.
1497     */
1498     assert( pLoop->u.btree.nEq==1 );
1499     pTerm = pLoop->aLTerm[0];
1500     assert( pTerm!=0 );
1501     assert( pTerm->pExpr!=0 );
1502     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1503     iReleaseReg = ++pParse->nMem;
1504     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1505     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1506     addrNxt = pLevel->addrNxt;
1507     sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1508     VdbeCoverage(v);
1509     pLevel->op = OP_Noop;
1510   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1511          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1512   ){
1513     /* Case 3:  We have an inequality comparison against the ROWID field.
1514     */
1515     int testOp = OP_Noop;
1516     int start;
1517     int memEndValue = 0;
1518     WhereTerm *pStart, *pEnd;
1519 
1520     j = 0;
1521     pStart = pEnd = 0;
1522     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1523     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1524     assert( pStart!=0 || pEnd!=0 );
1525     if( bRev ){
1526       pTerm = pStart;
1527       pStart = pEnd;
1528       pEnd = pTerm;
1529     }
1530     codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1531     if( pStart ){
1532       Expr *pX;             /* The expression that defines the start bound */
1533       int r1, rTemp;        /* Registers for holding the start boundary */
1534       int op;               /* Cursor seek operation */
1535 
1536       /* The following constant maps TK_xx codes into corresponding
1537       ** seek opcodes.  It depends on a particular ordering of TK_xx
1538       */
1539       const u8 aMoveOp[] = {
1540            /* TK_GT */  OP_SeekGT,
1541            /* TK_LE */  OP_SeekLE,
1542            /* TK_LT */  OP_SeekLT,
1543            /* TK_GE */  OP_SeekGE
1544       };
1545       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
1546       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
1547       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
1548 
1549       assert( (pStart->wtFlags & TERM_VNULL)==0 );
1550       testcase( pStart->wtFlags & TERM_VIRTUAL );
1551       pX = pStart->pExpr;
1552       assert( pX!=0 );
1553       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1554       if( sqlite3ExprIsVector(pX->pRight) ){
1555         r1 = rTemp = sqlite3GetTempReg(pParse);
1556         codeExprOrVector(pParse, pX->pRight, r1, 1);
1557         testcase( pX->op==TK_GT );
1558         testcase( pX->op==TK_GE );
1559         testcase( pX->op==TK_LT );
1560         testcase( pX->op==TK_LE );
1561         op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
1562         assert( pX->op!=TK_GT || op==OP_SeekGE );
1563         assert( pX->op!=TK_GE || op==OP_SeekGE );
1564         assert( pX->op!=TK_LT || op==OP_SeekLE );
1565         assert( pX->op!=TK_LE || op==OP_SeekLE );
1566       }else{
1567         r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1568         disableTerm(pLevel, pStart);
1569         op = aMoveOp[(pX->op - TK_GT)];
1570       }
1571       sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1572       VdbeComment((v, "pk"));
1573       VdbeCoverageIf(v, pX->op==TK_GT);
1574       VdbeCoverageIf(v, pX->op==TK_LE);
1575       VdbeCoverageIf(v, pX->op==TK_LT);
1576       VdbeCoverageIf(v, pX->op==TK_GE);
1577       sqlite3ReleaseTempReg(pParse, rTemp);
1578     }else{
1579       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1580       VdbeCoverageIf(v, bRev==0);
1581       VdbeCoverageIf(v, bRev!=0);
1582     }
1583     if( pEnd ){
1584       Expr *pX;
1585       pX = pEnd->pExpr;
1586       assert( pX!=0 );
1587       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1588       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1589       testcase( pEnd->wtFlags & TERM_VIRTUAL );
1590       memEndValue = ++pParse->nMem;
1591       codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1592       if( 0==sqlite3ExprIsVector(pX->pRight)
1593        && (pX->op==TK_LT || pX->op==TK_GT)
1594       ){
1595         testOp = bRev ? OP_Le : OP_Ge;
1596       }else{
1597         testOp = bRev ? OP_Lt : OP_Gt;
1598       }
1599       if( 0==sqlite3ExprIsVector(pX->pRight) ){
1600         disableTerm(pLevel, pEnd);
1601       }
1602     }
1603     start = sqlite3VdbeCurrentAddr(v);
1604     pLevel->op = bRev ? OP_Prev : OP_Next;
1605     pLevel->p1 = iCur;
1606     pLevel->p2 = start;
1607     assert( pLevel->p5==0 );
1608     if( testOp!=OP_Noop ){
1609       iRowidReg = ++pParse->nMem;
1610       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1611       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1612       VdbeCoverageIf(v, testOp==OP_Le);
1613       VdbeCoverageIf(v, testOp==OP_Lt);
1614       VdbeCoverageIf(v, testOp==OP_Ge);
1615       VdbeCoverageIf(v, testOp==OP_Gt);
1616       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1617     }
1618   }else if( pLoop->wsFlags & WHERE_INDEXED ){
1619     /* Case 4: A scan using an index.
1620     **
1621     **         The WHERE clause may contain zero or more equality
1622     **         terms ("==" or "IN" operators) that refer to the N
1623     **         left-most columns of the index. It may also contain
1624     **         inequality constraints (>, <, >= or <=) on the indexed
1625     **         column that immediately follows the N equalities. Only
1626     **         the right-most column can be an inequality - the rest must
1627     **         use the "==" and "IN" operators. For example, if the
1628     **         index is on (x,y,z), then the following clauses are all
1629     **         optimized:
1630     **
1631     **            x=5
1632     **            x=5 AND y=10
1633     **            x=5 AND y<10
1634     **            x=5 AND y>5 AND y<10
1635     **            x=5 AND y=5 AND z<=10
1636     **
1637     **         The z<10 term of the following cannot be used, only
1638     **         the x=5 term:
1639     **
1640     **            x=5 AND z<10
1641     **
1642     **         N may be zero if there are inequality constraints.
1643     **         If there are no inequality constraints, then N is at
1644     **         least one.
1645     **
1646     **         This case is also used when there are no WHERE clause
1647     **         constraints but an index is selected anyway, in order
1648     **         to force the output order to conform to an ORDER BY.
1649     */
1650     static const u8 aStartOp[] = {
1651       0,
1652       0,
1653       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
1654       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
1655       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
1656       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
1657       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
1658       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
1659     };
1660     static const u8 aEndOp[] = {
1661       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
1662       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
1663       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
1664       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
1665     };
1666     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
1667     u16 nBtm = pLoop->u.btree.nBtm;   /* Length of BTM vector */
1668     u16 nTop = pLoop->u.btree.nTop;   /* Length of TOP vector */
1669     int regBase;                 /* Base register holding constraint values */
1670     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
1671     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
1672     int startEq;                 /* True if range start uses ==, >= or <= */
1673     int endEq;                   /* True if range end uses ==, >= or <= */
1674     int start_constraints;       /* Start of range is constrained */
1675     int nConstraint;             /* Number of constraint terms */
1676     int iIdxCur;                 /* The VDBE cursor for the index */
1677     int nExtraReg = 0;           /* Number of extra registers needed */
1678     int op;                      /* Instruction opcode */
1679     char *zStartAff;             /* Affinity for start of range constraint */
1680     char *zEndAff = 0;           /* Affinity for end of range constraint */
1681     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
1682     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
1683     int omitTable;               /* True if we use the index only */
1684     int regBignull = 0;          /* big-null flag register */
1685     int addrSeekScan = 0;        /* Opcode of the OP_SeekScan, if any */
1686 
1687     pIdx = pLoop->u.btree.pIndex;
1688     iIdxCur = pLevel->iIdxCur;
1689     assert( nEq>=pLoop->nSkip );
1690 
1691     /* Find any inequality constraint terms for the start and end
1692     ** of the range.
1693     */
1694     j = nEq;
1695     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1696       pRangeStart = pLoop->aLTerm[j++];
1697       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1698       /* Like optimization range constraints always occur in pairs */
1699       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1700               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1701     }
1702     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1703       pRangeEnd = pLoop->aLTerm[j++];
1704       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1705 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1706       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1707         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
1708         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
1709         pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1710         sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1711         VdbeComment((v, "LIKE loop counter"));
1712         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1713         /* iLikeRepCntr actually stores 2x the counter register number.  The
1714         ** bottom bit indicates whether the search order is ASC or DESC. */
1715         testcase( bRev );
1716         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1717         assert( (bRev & ~1)==0 );
1718         pLevel->iLikeRepCntr <<=1;
1719         pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1720       }
1721 #endif
1722       if( pRangeStart==0 ){
1723         j = pIdx->aiColumn[nEq];
1724         if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1725           bSeekPastNull = 1;
1726         }
1727       }
1728     }
1729     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1730 
1731     /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
1732     ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
1733     ** FIRST). In both cases separate ordered scans are made of those
1734     ** index entries for which the column is null and for those for which
1735     ** it is not. For an ASC sort, the non-NULL entries are scanned first.
1736     ** For DESC, NULL entries are scanned first.
1737     */
1738     if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0
1739      && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0
1740     ){
1741       assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 );
1742       assert( pRangeEnd==0 && pRangeStart==0 );
1743       testcase( pLoop->nSkip>0 );
1744       nExtraReg = 1;
1745       bSeekPastNull = 1;
1746       pLevel->regBignull = regBignull = ++pParse->nMem;
1747       if( pLevel->iLeftJoin ){
1748         sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull);
1749       }
1750       pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse);
1751     }
1752 
1753     /* If we are doing a reverse order scan on an ascending index, or
1754     ** a forward order scan on a descending index, interchange the
1755     ** start and end terms (pRangeStart and pRangeEnd).
1756     */
1757     if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){
1758       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1759       SWAP(u8, bSeekPastNull, bStopAtNull);
1760       SWAP(u8, nBtm, nTop);
1761     }
1762 
1763     if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){
1764       /* In case OP_SeekScan is used, ensure that the index cursor does not
1765       ** point to a valid row for the first iteration of this loop. */
1766       sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
1767     }
1768 
1769     /* Generate code to evaluate all constraint terms using == or IN
1770     ** and store the values of those terms in an array of registers
1771     ** starting at regBase.
1772     */
1773     codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1774     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1775     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1776     if( zStartAff && nTop ){
1777       zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1778     }
1779     addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt);
1780 
1781     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1782     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1783     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1784     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1785     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1786     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1787     start_constraints = pRangeStart || nEq>0;
1788 
1789     /* Seek the index cursor to the start of the range. */
1790     nConstraint = nEq;
1791     if( pRangeStart ){
1792       Expr *pRight = pRangeStart->pExpr->pRight;
1793       codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1794       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1795       if( (pRangeStart->wtFlags & TERM_VNULL)==0
1796        && sqlite3ExprCanBeNull(pRight)
1797       ){
1798         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1799         VdbeCoverage(v);
1800       }
1801       if( zStartAff ){
1802         updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1803       }
1804       nConstraint += nBtm;
1805       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1806       if( sqlite3ExprIsVector(pRight)==0 ){
1807         disableTerm(pLevel, pRangeStart);
1808       }else{
1809         startEq = 1;
1810       }
1811       bSeekPastNull = 0;
1812     }else if( bSeekPastNull ){
1813       startEq = 0;
1814       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1815       start_constraints = 1;
1816       nConstraint++;
1817     }else if( regBignull ){
1818       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1819       start_constraints = 1;
1820       nConstraint++;
1821     }
1822     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1823     if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1824       /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1825       ** above has already left the cursor sitting on the correct row,
1826       ** so no further seeking is needed */
1827     }else{
1828       if( regBignull ){
1829         sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull);
1830         VdbeComment((v, "NULL-scan pass ctr"));
1831       }
1832 
1833       op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1834       assert( op!=0 );
1835       if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){
1836         assert( regBignull==0 );
1837         /* TUNING:  The OP_SeekScan opcode seeks to reduce the number
1838         ** of expensive seek operations by replacing a single seek with
1839         ** 1 or more step operations.  The question is, how many steps
1840         ** should we try before giving up and going with a seek.  The cost
1841         ** of a seek is proportional to the logarithm of the of the number
1842         ** of entries in the tree, so basing the number of steps to try
1843         ** on the estimated number of rows in the btree seems like a good
1844         ** guess. */
1845         addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan,
1846                                          (pIdx->aiRowLogEst[0]+9)/10);
1847         VdbeCoverage(v);
1848       }
1849       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1850       VdbeCoverage(v);
1851       VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1852       VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1853       VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
1854       VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1855       VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1856       VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
1857 
1858       assert( bSeekPastNull==0 || bStopAtNull==0 );
1859       if( regBignull ){
1860         assert( bSeekPastNull==1 || bStopAtNull==1 );
1861         assert( bSeekPastNull==!bStopAtNull );
1862         assert( bStopAtNull==startEq );
1863         sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2);
1864         op = aStartOp[(nConstraint>1)*4 + 2 + bRev];
1865         sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1866                              nConstraint-startEq);
1867         VdbeCoverage(v);
1868         VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1869         VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1870         VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1871         VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1872         assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE);
1873       }
1874     }
1875 
1876     /* Load the value for the inequality constraint at the end of the
1877     ** range (if any).
1878     */
1879     nConstraint = nEq;
1880     if( pRangeEnd ){
1881       Expr *pRight = pRangeEnd->pExpr->pRight;
1882       codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
1883       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1884       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1885        && sqlite3ExprCanBeNull(pRight)
1886       ){
1887         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1888         VdbeCoverage(v);
1889       }
1890       if( zEndAff ){
1891         updateRangeAffinityStr(pRight, nTop, zEndAff);
1892         codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1893       }else{
1894         assert( pParse->db->mallocFailed );
1895       }
1896       nConstraint += nTop;
1897       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1898 
1899       if( sqlite3ExprIsVector(pRight)==0 ){
1900         disableTerm(pLevel, pRangeEnd);
1901       }else{
1902         endEq = 1;
1903       }
1904     }else if( bStopAtNull ){
1905       if( regBignull==0 ){
1906         sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1907         endEq = 0;
1908       }
1909       nConstraint++;
1910     }
1911     sqlite3DbFree(db, zStartAff);
1912     sqlite3DbFree(db, zEndAff);
1913 
1914     /* Top of the loop body */
1915     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1916 
1917     /* Check if the index cursor is past the end of the range. */
1918     if( nConstraint ){
1919       if( regBignull ){
1920         /* Except, skip the end-of-range check while doing the NULL-scan */
1921         sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3);
1922         VdbeComment((v, "If NULL-scan 2nd pass"));
1923         VdbeCoverage(v);
1924       }
1925       op = aEndOp[bRev*2 + endEq];
1926       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1927       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1928       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1929       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1930       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1931       if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan);
1932     }
1933     if( regBignull ){
1934       /* During a NULL-scan, check to see if we have reached the end of
1935       ** the NULLs */
1936       assert( bSeekPastNull==!bStopAtNull );
1937       assert( bSeekPastNull+bStopAtNull==1 );
1938       assert( nConstraint+bSeekPastNull>0 );
1939       sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2);
1940       VdbeComment((v, "If NULL-scan 1st pass"));
1941       VdbeCoverage(v);
1942       op = aEndOp[bRev*2 + bSeekPastNull];
1943       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1944                            nConstraint+bSeekPastNull);
1945       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1946       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1947       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1948       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1949     }
1950 
1951     if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){
1952       sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq);
1953     }
1954 
1955     /* Seek the table cursor, if required */
1956     omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
1957            && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
1958     if( omitTable ){
1959       /* pIdx is a covering index.  No need to access the main table. */
1960     }else if( HasRowid(pIdx->pTable) ){
1961       codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
1962     }else if( iCur!=iIdxCur ){
1963       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1964       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1965       for(j=0; j<pPk->nKeyCol; j++){
1966         k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
1967         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1968       }
1969       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1970                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1971     }
1972 
1973     if( pLevel->iLeftJoin==0 ){
1974       /* If pIdx is an index on one or more expressions, then look through
1975       ** all the expressions in pWInfo and try to transform matching expressions
1976       ** into reference to index columns.  Also attempt to translate references
1977       ** to virtual columns in the table into references to (stored) columns
1978       ** of the index.
1979       **
1980       ** Do not do this for the RHS of a LEFT JOIN. This is because the
1981       ** expression may be evaluated after OP_NullRow has been executed on
1982       ** the cursor. In this case it is important to do the full evaluation,
1983       ** as the result of the expression may not be NULL, even if all table
1984       ** column values are.  https://www.sqlite.org/src/info/7fa8049685b50b5a
1985       **
1986       ** Also, do not do this when processing one index an a multi-index
1987       ** OR clause, since the transformation will become invalid once we
1988       ** move forward to the next index.
1989       ** https://sqlite.org/src/info/4e8e4857d32d401f
1990       */
1991       if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
1992         whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
1993       }
1994 
1995       /* If a partial index is driving the loop, try to eliminate WHERE clause
1996       ** terms from the query that must be true due to the WHERE clause of
1997       ** the partial index.
1998       **
1999       ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
2000       ** for a LEFT JOIN.
2001       */
2002       if( pIdx->pPartIdxWhere ){
2003         whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC);
2004       }
2005     }else{
2006       testcase( pIdx->pPartIdxWhere );
2007       /* The following assert() is not a requirement, merely an observation:
2008       ** The OR-optimization doesn't work for the right hand table of
2009       ** a LEFT JOIN: */
2010       assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 );
2011     }
2012 
2013     /* Record the instruction used to terminate the loop. */
2014     if( pLoop->wsFlags & WHERE_ONEROW ){
2015       pLevel->op = OP_Noop;
2016     }else if( bRev ){
2017       pLevel->op = OP_Prev;
2018     }else{
2019       pLevel->op = OP_Next;
2020     }
2021     pLevel->p1 = iIdxCur;
2022     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
2023     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
2024       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2025     }else{
2026       assert( pLevel->p5==0 );
2027     }
2028     if( omitTable ) pIdx = 0;
2029   }else
2030 
2031 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
2032   if( pLoop->wsFlags & WHERE_MULTI_OR ){
2033     /* Case 5:  Two or more separately indexed terms connected by OR
2034     **
2035     ** Example:
2036     **
2037     **   CREATE TABLE t1(a,b,c,d);
2038     **   CREATE INDEX i1 ON t1(a);
2039     **   CREATE INDEX i2 ON t1(b);
2040     **   CREATE INDEX i3 ON t1(c);
2041     **
2042     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
2043     **
2044     ** In the example, there are three indexed terms connected by OR.
2045     ** The top of the loop looks like this:
2046     **
2047     **          Null       1                # Zero the rowset in reg 1
2048     **
2049     ** Then, for each indexed term, the following. The arguments to
2050     ** RowSetTest are such that the rowid of the current row is inserted
2051     ** into the RowSet. If it is already present, control skips the
2052     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
2053     **
2054     **        sqlite3WhereBegin(<term>)
2055     **          RowSetTest                  # Insert rowid into rowset
2056     **          Gosub      2 A
2057     **        sqlite3WhereEnd()
2058     **
2059     ** Following the above, code to terminate the loop. Label A, the target
2060     ** of the Gosub above, jumps to the instruction right after the Goto.
2061     **
2062     **          Null       1                # Zero the rowset in reg 1
2063     **          Goto       B                # The loop is finished.
2064     **
2065     **       A: <loop body>                 # Return data, whatever.
2066     **
2067     **          Return     2                # Jump back to the Gosub
2068     **
2069     **       B: <after the loop>
2070     **
2071     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
2072     ** use an ephemeral index instead of a RowSet to record the primary
2073     ** keys of the rows we have already seen.
2074     **
2075     */
2076     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
2077     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
2078     Index *pCov = 0;             /* Potential covering index (or NULL) */
2079     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
2080 
2081     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
2082     int regRowset = 0;                        /* Register for RowSet object */
2083     int regRowid = 0;                         /* Register holding rowid */
2084     int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */
2085     int iRetInit;                             /* Address of regReturn init */
2086     int untestedTerms = 0;             /* Some terms not completely tested */
2087     int ii;                            /* Loop counter */
2088     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
2089     Table *pTab = pTabItem->pTab;
2090 
2091     pTerm = pLoop->aLTerm[0];
2092     assert( pTerm!=0 );
2093     assert( pTerm->eOperator & WO_OR );
2094     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
2095     pOrWc = &pTerm->u.pOrInfo->wc;
2096     pLevel->op = OP_Return;
2097     pLevel->p1 = regReturn;
2098 
2099     /* Set up a new SrcList in pOrTab containing the table being scanned
2100     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
2101     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
2102     */
2103     if( pWInfo->nLevel>1 ){
2104       int nNotReady;                 /* The number of notReady tables */
2105       SrcItem *origSrc;              /* Original list of tables */
2106       nNotReady = pWInfo->nLevel - iLevel - 1;
2107       pOrTab = sqlite3StackAllocRaw(db,
2108                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
2109       if( pOrTab==0 ) return notReady;
2110       pOrTab->nAlloc = (u8)(nNotReady + 1);
2111       pOrTab->nSrc = pOrTab->nAlloc;
2112       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
2113       origSrc = pWInfo->pTabList->a;
2114       for(k=1; k<=nNotReady; k++){
2115         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
2116       }
2117     }else{
2118       pOrTab = pWInfo->pTabList;
2119     }
2120 
2121     /* Initialize the rowset register to contain NULL. An SQL NULL is
2122     ** equivalent to an empty rowset.  Or, create an ephemeral index
2123     ** capable of holding primary keys in the case of a WITHOUT ROWID.
2124     **
2125     ** Also initialize regReturn to contain the address of the instruction
2126     ** immediately following the OP_Return at the bottom of the loop. This
2127     ** is required in a few obscure LEFT JOIN cases where control jumps
2128     ** over the top of the loop into the body of it. In this case the
2129     ** correct response for the end-of-loop code (the OP_Return) is to
2130     ** fall through to the next instruction, just as an OP_Next does if
2131     ** called on an uninitialized cursor.
2132     */
2133     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2134       if( HasRowid(pTab) ){
2135         regRowset = ++pParse->nMem;
2136         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
2137       }else{
2138         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2139         regRowset = pParse->nTab++;
2140         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
2141         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
2142       }
2143       regRowid = ++pParse->nMem;
2144     }
2145     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
2146 
2147     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
2148     ** Then for every term xN, evaluate as the subexpression: xN AND z
2149     ** That way, terms in y that are factored into the disjunction will
2150     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
2151     **
2152     ** Actually, each subexpression is converted to "xN AND w" where w is
2153     ** the "interesting" terms of z - terms that did not originate in the
2154     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
2155     ** indices.
2156     **
2157     ** This optimization also only applies if the (x1 OR x2 OR ...) term
2158     ** is not contained in the ON clause of a LEFT JOIN.
2159     ** See ticket http://www.sqlite.org/src/info/f2369304e4
2160     */
2161     if( pWC->nTerm>1 ){
2162       int iTerm;
2163       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
2164         Expr *pExpr = pWC->a[iTerm].pExpr;
2165         if( &pWC->a[iTerm] == pTerm ) continue;
2166         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
2167         testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
2168         if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
2169         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
2170         testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
2171         pExpr = sqlite3ExprDup(db, pExpr, 0);
2172         pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr);
2173       }
2174       if( pAndExpr ){
2175         /* The extra 0x10000 bit on the opcode is masked off and does not
2176         ** become part of the new Expr.op.  However, it does make the
2177         ** op==TK_AND comparison inside of sqlite3PExpr() false, and this
2178         ** prevents sqlite3PExpr() from applying the AND short-circuit
2179         ** optimization, which we do not want here. */
2180         pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr);
2181       }
2182     }
2183 
2184     /* Run a separate WHERE clause for each term of the OR clause.  After
2185     ** eliminating duplicates from other WHERE clauses, the action for each
2186     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
2187     */
2188     ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
2189     for(ii=0; ii<pOrWc->nTerm; ii++){
2190       WhereTerm *pOrTerm = &pOrWc->a[ii];
2191       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
2192         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
2193         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
2194         Expr *pDelete;                  /* Local copy of OR clause term */
2195         int jmp1 = 0;                   /* Address of jump operation */
2196         testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0
2197                && !ExprHasProperty(pOrExpr, EP_FromJoin)
2198         ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */
2199         pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0);
2200         if( db->mallocFailed ){
2201           sqlite3ExprDelete(db, pDelete);
2202           continue;
2203         }
2204         if( pAndExpr ){
2205           pAndExpr->pLeft = pOrExpr;
2206           pOrExpr = pAndExpr;
2207         }
2208         /* Loop through table entries that match term pOrTerm. */
2209         ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1));
2210         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
2211         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
2212                                       WHERE_OR_SUBCLAUSE, iCovCur);
2213         assert( pSubWInfo || pParse->nErr || db->mallocFailed );
2214         if( pSubWInfo ){
2215           WhereLoop *pSubLoop;
2216           int addrExplain = sqlite3WhereExplainOneScan(
2217               pParse, pOrTab, &pSubWInfo->a[0], 0
2218           );
2219           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
2220 
2221           /* This is the sub-WHERE clause body.  First skip over
2222           ** duplicate rows from prior sub-WHERE clauses, and record the
2223           ** rowid (or PRIMARY KEY) for the current row so that the same
2224           ** row will be skipped in subsequent sub-WHERE clauses.
2225           */
2226           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2227             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
2228             if( HasRowid(pTab) ){
2229               sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid);
2230               jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
2231                                           regRowid, iSet);
2232               VdbeCoverage(v);
2233             }else{
2234               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2235               int nPk = pPk->nKeyCol;
2236               int iPk;
2237               int r;
2238 
2239               /* Read the PK into an array of temp registers. */
2240               r = sqlite3GetTempRange(pParse, nPk);
2241               for(iPk=0; iPk<nPk; iPk++){
2242                 int iCol = pPk->aiColumn[iPk];
2243                 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2244               }
2245 
2246               /* Check if the temp table already contains this key. If so,
2247               ** the row has already been included in the result set and
2248               ** can be ignored (by jumping past the Gosub below). Otherwise,
2249               ** insert the key into the temp table and proceed with processing
2250               ** the row.
2251               **
2252               ** Use some of the same optimizations as OP_RowSetTest: If iSet
2253               ** is zero, assume that the key cannot already be present in
2254               ** the temp table. And if iSet is -1, assume that there is no
2255               ** need to insert the key into the temp table, as it will never
2256               ** be tested for.  */
2257               if( iSet ){
2258                 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
2259                 VdbeCoverage(v);
2260               }
2261               if( iSet>=0 ){
2262                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
2263                 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
2264                                      r, nPk);
2265                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2266               }
2267 
2268               /* Release the array of temp registers */
2269               sqlite3ReleaseTempRange(pParse, r, nPk);
2270             }
2271           }
2272 
2273           /* Invoke the main loop body as a subroutine */
2274           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2275 
2276           /* Jump here (skipping the main loop body subroutine) if the
2277           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2278           if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
2279 
2280           /* The pSubWInfo->untestedTerms flag means that this OR term
2281           ** contained one or more AND term from a notReady table.  The
2282           ** terms from the notReady table could not be tested and will
2283           ** need to be tested later.
2284           */
2285           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
2286 
2287           /* If all of the OR-connected terms are optimized using the same
2288           ** index, and the index is opened using the same cursor number
2289           ** by each call to sqlite3WhereBegin() made by this loop, it may
2290           ** be possible to use that index as a covering index.
2291           **
2292           ** If the call to sqlite3WhereBegin() above resulted in a scan that
2293           ** uses an index, and this is either the first OR-connected term
2294           ** processed or the index is the same as that used by all previous
2295           ** terms, set pCov to the candidate covering index. Otherwise, set
2296           ** pCov to NULL to indicate that no candidate covering index will
2297           ** be available.
2298           */
2299           pSubLoop = pSubWInfo->a[0].pWLoop;
2300           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2301           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2302            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2303            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2304           ){
2305             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2306             pCov = pSubLoop->u.btree.pIndex;
2307           }else{
2308             pCov = 0;
2309           }
2310           if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){
2311             pWInfo->bDeferredSeek = 1;
2312           }
2313 
2314           /* Finish the loop through table entries that match term pOrTerm. */
2315           sqlite3WhereEnd(pSubWInfo);
2316           ExplainQueryPlanPop(pParse);
2317         }
2318         sqlite3ExprDelete(db, pDelete);
2319       }
2320     }
2321     ExplainQueryPlanPop(pParse);
2322     pLevel->u.pCovidx = pCov;
2323     if( pCov ) pLevel->iIdxCur = iCovCur;
2324     if( pAndExpr ){
2325       pAndExpr->pLeft = 0;
2326       sqlite3ExprDelete(db, pAndExpr);
2327     }
2328     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2329     sqlite3VdbeGoto(v, pLevel->addrBrk);
2330     sqlite3VdbeResolveLabel(v, iLoopBody);
2331 
2332     if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); }
2333     if( !untestedTerms ) disableTerm(pLevel, pTerm);
2334   }else
2335 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2336 
2337   {
2338     /* Case 6:  There is no usable index.  We must do a complete
2339     **          scan of the entire table.
2340     */
2341     static const u8 aStep[] = { OP_Next, OP_Prev };
2342     static const u8 aStart[] = { OP_Rewind, OP_Last };
2343     assert( bRev==0 || bRev==1 );
2344     if( pTabItem->fg.isRecursive ){
2345       /* Tables marked isRecursive have only a single row that is stored in
2346       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
2347       pLevel->op = OP_Noop;
2348     }else{
2349       codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2350       pLevel->op = aStep[bRev];
2351       pLevel->p1 = iCur;
2352       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2353       VdbeCoverageIf(v, bRev==0);
2354       VdbeCoverageIf(v, bRev!=0);
2355       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2356     }
2357   }
2358 
2359 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2360   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2361 #endif
2362 
2363   /* Insert code to test every subexpression that can be completely
2364   ** computed using the current set of tables.
2365   **
2366   ** This loop may run between one and three times, depending on the
2367   ** constraints to be generated. The value of stack variable iLoop
2368   ** determines the constraints coded by each iteration, as follows:
2369   **
2370   ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2371   ** iLoop==2: Code remaining expressions that do not contain correlated
2372   **           sub-queries.
2373   ** iLoop==3: Code all remaining expressions.
2374   **
2375   ** An effort is made to skip unnecessary iterations of the loop.
2376   */
2377   iLoop = (pIdx ? 1 : 2);
2378   do{
2379     int iNext = 0;                /* Next value for iLoop */
2380     for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2381       Expr *pE;
2382       int skipLikeAddr = 0;
2383       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2384       testcase( pTerm->wtFlags & TERM_CODED );
2385       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2386       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2387         testcase( pWInfo->untestedTerms==0
2388             && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2389         pWInfo->untestedTerms = 1;
2390         continue;
2391       }
2392       pE = pTerm->pExpr;
2393       assert( pE!=0 );
2394       if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){
2395         continue;
2396       }
2397 
2398       if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2399         iNext = 2;
2400         continue;
2401       }
2402       if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2403         if( iNext==0 ) iNext = 3;
2404         continue;
2405       }
2406 
2407       if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
2408         /* If the TERM_LIKECOND flag is set, that means that the range search
2409         ** is sufficient to guarantee that the LIKE operator is true, so we
2410         ** can skip the call to the like(A,B) function.  But this only works
2411         ** for strings.  So do not skip the call to the function on the pass
2412         ** that compares BLOBs. */
2413 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2414         continue;
2415 #else
2416         u32 x = pLevel->iLikeRepCntr;
2417         if( x>0 ){
2418           skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
2419           VdbeCoverageIf(v, (x&1)==1);
2420           VdbeCoverageIf(v, (x&1)==0);
2421         }
2422 #endif
2423       }
2424 #ifdef WHERETRACE_ENABLED /* 0xffff */
2425       if( sqlite3WhereTrace ){
2426         VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2427                          pWC->nTerm-j, pTerm, iLoop));
2428       }
2429       if( sqlite3WhereTrace & 0x800 ){
2430         sqlite3DebugPrintf("Coding auxiliary constraint:\n");
2431         sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2432       }
2433 #endif
2434       sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2435       if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2436       pTerm->wtFlags |= TERM_CODED;
2437     }
2438     iLoop = iNext;
2439   }while( iLoop>0 );
2440 
2441   /* Insert code to test for implied constraints based on transitivity
2442   ** of the "==" operator.
2443   **
2444   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2445   ** and we are coding the t1 loop and the t2 loop has not yet coded,
2446   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2447   ** the implied "t1.a=123" constraint.
2448   */
2449   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2450     Expr *pE, sEAlt;
2451     WhereTerm *pAlt;
2452     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2453     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2454     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2455     if( pTerm->leftCursor!=iCur ) continue;
2456     if( pTabItem->fg.jointype & JT_LEFT ) continue;
2457     pE = pTerm->pExpr;
2458 #ifdef WHERETRACE_ENABLED /* 0x800 */
2459     if( sqlite3WhereTrace & 0x800 ){
2460       sqlite3DebugPrintf("Coding transitive constraint:\n");
2461       sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2462     }
2463 #endif
2464     assert( !ExprHasProperty(pE, EP_FromJoin) );
2465     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2466     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady,
2467                     WO_EQ|WO_IN|WO_IS, 0);
2468     if( pAlt==0 ) continue;
2469     if( pAlt->wtFlags & (TERM_CODED) ) continue;
2470     if( (pAlt->eOperator & WO_IN)
2471      && ExprUseXSelect(pAlt->pExpr)
2472      && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
2473     ){
2474       continue;
2475     }
2476     testcase( pAlt->eOperator & WO_EQ );
2477     testcase( pAlt->eOperator & WO_IS );
2478     testcase( pAlt->eOperator & WO_IN );
2479     VdbeModuleComment((v, "begin transitive constraint"));
2480     sEAlt = *pAlt->pExpr;
2481     sEAlt.pLeft = pE->pLeft;
2482     sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2483     pAlt->wtFlags |= TERM_CODED;
2484   }
2485 
2486   /* For a LEFT OUTER JOIN, generate code that will record the fact that
2487   ** at least one row of the right table has matched the left table.
2488   */
2489   if( pLevel->iLeftJoin ){
2490     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2491     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2492     VdbeComment((v, "record LEFT JOIN hit"));
2493     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
2494       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2495       testcase( pTerm->wtFlags & TERM_CODED );
2496       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2497       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2498         assert( pWInfo->untestedTerms );
2499         continue;
2500       }
2501       assert( pTerm->pExpr );
2502       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2503       pTerm->wtFlags |= TERM_CODED;
2504     }
2505   }
2506 
2507 #if WHERETRACE_ENABLED /* 0x20800 */
2508   if( sqlite3WhereTrace & 0x20000 ){
2509     sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n",
2510                        iLevel);
2511     sqlite3WhereClausePrint(pWC);
2512   }
2513   if( sqlite3WhereTrace & 0x800 ){
2514     sqlite3DebugPrintf("End Coding level %d:  notReady=%llx\n",
2515        iLevel, (u64)pLevel->notReady);
2516   }
2517 #endif
2518   return pLevel->notReady;
2519 }
2520