1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 /* 25 ** This routine is a helper for explainIndexRange() below 26 ** 27 ** pStr holds the text of an expression that we are building up one term 28 ** at a time. This routine adds a new term to the end of the expression. 29 ** Terms are separated by AND so add the "AND" text for second and subsequent 30 ** terms only. 31 */ 32 static void explainAppendTerm( 33 StrAccum *pStr, /* The text expression being built */ 34 int iTerm, /* Index of this term. First is zero */ 35 const char *zColumn, /* Name of the column */ 36 const char *zOp /* Name of the operator */ 37 ){ 38 if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5); 39 sqlite3StrAccumAppendAll(pStr, zColumn); 40 sqlite3StrAccumAppend(pStr, zOp, 1); 41 sqlite3StrAccumAppend(pStr, "?", 1); 42 } 43 44 /* 45 ** Argument pLevel describes a strategy for scanning table pTab. This 46 ** function appends text to pStr that describes the subset of table 47 ** rows scanned by the strategy in the form of an SQL expression. 48 ** 49 ** For example, if the query: 50 ** 51 ** SELECT * FROM t1 WHERE a=1 AND b>2; 52 ** 53 ** is run and there is an index on (a, b), then this function returns a 54 ** string similar to: 55 ** 56 ** "a=? AND b>?" 57 */ 58 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop, Table *pTab){ 59 Index *pIndex = pLoop->u.btree.pIndex; 60 u16 nEq = pLoop->u.btree.nEq; 61 u16 nSkip = pLoop->nSkip; 62 int i, j; 63 Column *aCol = pTab->aCol; 64 i16 *aiColumn = pIndex->aiColumn; 65 66 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 67 sqlite3StrAccumAppend(pStr, " (", 2); 68 for(i=0; i<nEq; i++){ 69 char *z = aiColumn[i] < 0 ? "rowid" : aCol[aiColumn[i]].zName; 70 if( i>=nSkip ){ 71 explainAppendTerm(pStr, i, z, "="); 72 }else{ 73 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5); 74 sqlite3XPrintf(pStr, 0, "ANY(%s)", z); 75 } 76 } 77 78 j = i; 79 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 80 char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName; 81 explainAppendTerm(pStr, i++, z, ">"); 82 } 83 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 84 char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName; 85 explainAppendTerm(pStr, i, z, "<"); 86 } 87 sqlite3StrAccumAppend(pStr, ")", 1); 88 } 89 90 /* 91 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 92 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 93 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 94 ** is added to the output to describe the table scan strategy in pLevel. 95 ** 96 ** If an OP_Explain opcode is added to the VM, its address is returned. 97 ** Otherwise, if no OP_Explain is coded, zero is returned. 98 */ 99 int sqlite3WhereExplainOneScan( 100 Parse *pParse, /* Parse context */ 101 SrcList *pTabList, /* Table list this loop refers to */ 102 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 103 int iLevel, /* Value for "level" column of output */ 104 int iFrom, /* Value for "from" column of output */ 105 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 106 ){ 107 int ret = 0; 108 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 109 if( pParse->explain==2 ) 110 #endif 111 { 112 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 113 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 114 sqlite3 *db = pParse->db; /* Database handle */ 115 int iId = pParse->iSelectId; /* Select id (left-most output column) */ 116 int isSearch; /* True for a SEARCH. False for SCAN. */ 117 WhereLoop *pLoop; /* The controlling WhereLoop object */ 118 u32 flags; /* Flags that describe this loop */ 119 char *zMsg; /* Text to add to EQP output */ 120 StrAccum str; /* EQP output string */ 121 char zBuf[100]; /* Initial space for EQP output string */ 122 123 pLoop = pLevel->pWLoop; 124 flags = pLoop->wsFlags; 125 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return 0; 126 127 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 128 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 129 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 130 131 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 132 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN"); 133 if( pItem->pSelect ){ 134 sqlite3XPrintf(&str, 0, " SUBQUERY %d", pItem->iSelectId); 135 }else{ 136 sqlite3XPrintf(&str, 0, " TABLE %s", pItem->zName); 137 } 138 139 if( pItem->zAlias ){ 140 sqlite3XPrintf(&str, 0, " AS %s", pItem->zAlias); 141 } 142 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 143 const char *zFmt = 0; 144 Index *pIdx; 145 146 assert( pLoop->u.btree.pIndex!=0 ); 147 pIdx = pLoop->u.btree.pIndex; 148 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 149 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 150 if( isSearch ){ 151 zFmt = "PRIMARY KEY"; 152 } 153 }else if( flags & WHERE_PARTIALIDX ){ 154 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 155 }else if( flags & WHERE_AUTO_INDEX ){ 156 zFmt = "AUTOMATIC COVERING INDEX"; 157 }else if( flags & WHERE_IDX_ONLY ){ 158 zFmt = "COVERING INDEX %s"; 159 }else{ 160 zFmt = "INDEX %s"; 161 } 162 if( zFmt ){ 163 sqlite3StrAccumAppend(&str, " USING ", 7); 164 sqlite3XPrintf(&str, 0, zFmt, pIdx->zName); 165 explainIndexRange(&str, pLoop, pItem->pTab); 166 } 167 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 168 const char *zRange; 169 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 170 zRange = "(rowid=?)"; 171 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 172 zRange = "(rowid>? AND rowid<?)"; 173 }else if( flags&WHERE_BTM_LIMIT ){ 174 zRange = "(rowid>?)"; 175 }else{ 176 assert( flags&WHERE_TOP_LIMIT); 177 zRange = "(rowid<?)"; 178 } 179 sqlite3StrAccumAppendAll(&str, " USING INTEGER PRIMARY KEY "); 180 sqlite3StrAccumAppendAll(&str, zRange); 181 } 182 #ifndef SQLITE_OMIT_VIRTUALTABLE 183 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 184 sqlite3XPrintf(&str, 0, " VIRTUAL TABLE INDEX %d:%s", 185 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 186 } 187 #endif 188 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 189 if( pLoop->nOut>=10 ){ 190 sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); 191 }else{ 192 sqlite3StrAccumAppend(&str, " (~1 row)", 9); 193 } 194 #endif 195 zMsg = sqlite3StrAccumFinish(&str); 196 ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC); 197 } 198 return ret; 199 } 200 #endif /* SQLITE_OMIT_EXPLAIN */ 201 202 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 203 /* 204 ** Configure the VM passed as the first argument with an 205 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 206 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 207 ** clause that the scan reads data from. 208 ** 209 ** If argument addrExplain is not 0, it must be the address of an 210 ** OP_Explain instruction that describes the same loop. 211 */ 212 void sqlite3WhereAddScanStatus( 213 Vdbe *v, /* Vdbe to add scanstatus entry to */ 214 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 215 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 216 int addrExplain /* Address of OP_Explain (or 0) */ 217 ){ 218 const char *zObj = 0; 219 WhereLoop *pLoop = pLvl->pWLoop; 220 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 221 zObj = pLoop->u.btree.pIndex->zName; 222 }else{ 223 zObj = pSrclist->a[pLvl->iFrom].zName; 224 } 225 sqlite3VdbeScanStatus( 226 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 227 ); 228 } 229 #endif 230 231 232 /* 233 ** Disable a term in the WHERE clause. Except, do not disable the term 234 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 235 ** or USING clause of that join. 236 ** 237 ** Consider the term t2.z='ok' in the following queries: 238 ** 239 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 240 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 241 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 242 ** 243 ** The t2.z='ok' is disabled in the in (2) because it originates 244 ** in the ON clause. The term is disabled in (3) because it is not part 245 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 246 ** 247 ** Disabling a term causes that term to not be tested in the inner loop 248 ** of the join. Disabling is an optimization. When terms are satisfied 249 ** by indices, we disable them to prevent redundant tests in the inner 250 ** loop. We would get the correct results if nothing were ever disabled, 251 ** but joins might run a little slower. The trick is to disable as much 252 ** as we can without disabling too much. If we disabled in (1), we'd get 253 ** the wrong answer. See ticket #813. 254 ** 255 ** If all the children of a term are disabled, then that term is also 256 ** automatically disabled. In this way, terms get disabled if derived 257 ** virtual terms are tested first. For example: 258 ** 259 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 260 ** \___________/ \______/ \_____/ 261 ** parent child1 child2 262 ** 263 ** Only the parent term was in the original WHERE clause. The child1 264 ** and child2 terms were added by the LIKE optimization. If both of 265 ** the virtual child terms are valid, then testing of the parent can be 266 ** skipped. 267 ** 268 ** Usually the parent term is marked as TERM_CODED. But if the parent 269 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 270 ** The TERM_LIKECOND marking indicates that the term should be coded inside 271 ** a conditional such that is only evaluated on the second pass of a 272 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 273 */ 274 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 275 int nLoop = 0; 276 while( pTerm 277 && (pTerm->wtFlags & TERM_CODED)==0 278 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 279 && (pLevel->notReady & pTerm->prereqAll)==0 280 ){ 281 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 282 pTerm->wtFlags |= TERM_LIKECOND; 283 }else{ 284 pTerm->wtFlags |= TERM_CODED; 285 } 286 if( pTerm->iParent<0 ) break; 287 pTerm = &pTerm->pWC->a[pTerm->iParent]; 288 pTerm->nChild--; 289 if( pTerm->nChild!=0 ) break; 290 nLoop++; 291 } 292 } 293 294 /* 295 ** Code an OP_Affinity opcode to apply the column affinity string zAff 296 ** to the n registers starting at base. 297 ** 298 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the 299 ** beginning and end of zAff are ignored. If all entries in zAff are 300 ** SQLITE_AFF_BLOB, then no code gets generated. 301 ** 302 ** This routine makes its own copy of zAff so that the caller is free 303 ** to modify zAff after this routine returns. 304 */ 305 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 306 Vdbe *v = pParse->pVdbe; 307 if( zAff==0 ){ 308 assert( pParse->db->mallocFailed ); 309 return; 310 } 311 assert( v!=0 ); 312 313 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning 314 ** and end of the affinity string. 315 */ 316 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){ 317 n--; 318 base++; 319 zAff++; 320 } 321 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){ 322 n--; 323 } 324 325 /* Code the OP_Affinity opcode if there is anything left to do. */ 326 if( n>0 ){ 327 sqlite3VdbeAddOp2(v, OP_Affinity, base, n); 328 sqlite3VdbeChangeP4(v, -1, zAff, n); 329 sqlite3ExprCacheAffinityChange(pParse, base, n); 330 } 331 } 332 333 334 /* 335 ** Generate code for a single equality term of the WHERE clause. An equality 336 ** term can be either X=expr or X IN (...). pTerm is the term to be 337 ** coded. 338 ** 339 ** The current value for the constraint is left in register iReg. 340 ** 341 ** For a constraint of the form X=expr, the expression is evaluated and its 342 ** result is left on the stack. For constraints of the form X IN (...) 343 ** this routine sets up a loop that will iterate over all values of X. 344 */ 345 static int codeEqualityTerm( 346 Parse *pParse, /* The parsing context */ 347 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 348 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 349 int iEq, /* Index of the equality term within this level */ 350 int bRev, /* True for reverse-order IN operations */ 351 int iTarget /* Attempt to leave results in this register */ 352 ){ 353 Expr *pX = pTerm->pExpr; 354 Vdbe *v = pParse->pVdbe; 355 int iReg; /* Register holding results */ 356 357 assert( iTarget>0 ); 358 if( pX->op==TK_EQ || pX->op==TK_IS ){ 359 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 360 }else if( pX->op==TK_ISNULL ){ 361 iReg = iTarget; 362 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 363 #ifndef SQLITE_OMIT_SUBQUERY 364 }else{ 365 int eType; 366 int iTab; 367 struct InLoop *pIn; 368 WhereLoop *pLoop = pLevel->pWLoop; 369 370 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 371 && pLoop->u.btree.pIndex!=0 372 && pLoop->u.btree.pIndex->aSortOrder[iEq] 373 ){ 374 testcase( iEq==0 ); 375 testcase( bRev ); 376 bRev = !bRev; 377 } 378 assert( pX->op==TK_IN ); 379 iReg = iTarget; 380 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0); 381 if( eType==IN_INDEX_INDEX_DESC ){ 382 testcase( bRev ); 383 bRev = !bRev; 384 } 385 iTab = pX->iTable; 386 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 387 VdbeCoverageIf(v, bRev); 388 VdbeCoverageIf(v, !bRev); 389 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 390 pLoop->wsFlags |= WHERE_IN_ABLE; 391 if( pLevel->u.in.nIn==0 ){ 392 pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 393 } 394 pLevel->u.in.nIn++; 395 pLevel->u.in.aInLoop = 396 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 397 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 398 pIn = pLevel->u.in.aInLoop; 399 if( pIn ){ 400 pIn += pLevel->u.in.nIn - 1; 401 pIn->iCur = iTab; 402 if( eType==IN_INDEX_ROWID ){ 403 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); 404 }else{ 405 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); 406 } 407 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; 408 sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v); 409 }else{ 410 pLevel->u.in.nIn = 0; 411 } 412 #endif 413 } 414 disableTerm(pLevel, pTerm); 415 return iReg; 416 } 417 418 /* 419 ** Generate code that will evaluate all == and IN constraints for an 420 ** index scan. 421 ** 422 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 423 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 424 ** The index has as many as three equality constraints, but in this 425 ** example, the third "c" value is an inequality. So only two 426 ** constraints are coded. This routine will generate code to evaluate 427 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 428 ** in consecutive registers and the index of the first register is returned. 429 ** 430 ** In the example above nEq==2. But this subroutine works for any value 431 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 432 ** The only thing it does is allocate the pLevel->iMem memory cell and 433 ** compute the affinity string. 434 ** 435 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 436 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 437 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 438 ** occurs after the nEq quality constraints. 439 ** 440 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 441 ** the index of the first memory cell in that range. The code that 442 ** calls this routine will use that memory range to store keys for 443 ** start and termination conditions of the loop. 444 ** key value of the loop. If one or more IN operators appear, then 445 ** this routine allocates an additional nEq memory cells for internal 446 ** use. 447 ** 448 ** Before returning, *pzAff is set to point to a buffer containing a 449 ** copy of the column affinity string of the index allocated using 450 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 451 ** with equality constraints that use BLOB or NONE affinity are set to 452 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 453 ** 454 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 455 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 456 ** 457 ** In the example above, the index on t1(a) has TEXT affinity. But since 458 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 459 ** no conversion should be attempted before using a t2.b value as part of 460 ** a key to search the index. Hence the first byte in the returned affinity 461 ** string in this example would be set to SQLITE_AFF_BLOB. 462 */ 463 static int codeAllEqualityTerms( 464 Parse *pParse, /* Parsing context */ 465 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 466 int bRev, /* Reverse the order of IN operators */ 467 int nExtraReg, /* Number of extra registers to allocate */ 468 char **pzAff /* OUT: Set to point to affinity string */ 469 ){ 470 u16 nEq; /* The number of == or IN constraints to code */ 471 u16 nSkip; /* Number of left-most columns to skip */ 472 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 473 Index *pIdx; /* The index being used for this loop */ 474 WhereTerm *pTerm; /* A single constraint term */ 475 WhereLoop *pLoop; /* The WhereLoop object */ 476 int j; /* Loop counter */ 477 int regBase; /* Base register */ 478 int nReg; /* Number of registers to allocate */ 479 char *zAff; /* Affinity string to return */ 480 481 /* This module is only called on query plans that use an index. */ 482 pLoop = pLevel->pWLoop; 483 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 484 nEq = pLoop->u.btree.nEq; 485 nSkip = pLoop->nSkip; 486 pIdx = pLoop->u.btree.pIndex; 487 assert( pIdx!=0 ); 488 489 /* Figure out how many memory cells we will need then allocate them. 490 */ 491 regBase = pParse->nMem + 1; 492 nReg = pLoop->u.btree.nEq + nExtraReg; 493 pParse->nMem += nReg; 494 495 zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx)); 496 if( !zAff ){ 497 pParse->db->mallocFailed = 1; 498 } 499 500 if( nSkip ){ 501 int iIdxCur = pLevel->iIdxCur; 502 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 503 VdbeCoverageIf(v, bRev==0); 504 VdbeCoverageIf(v, bRev!=0); 505 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 506 j = sqlite3VdbeAddOp0(v, OP_Goto); 507 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 508 iIdxCur, 0, regBase, nSkip); 509 VdbeCoverageIf(v, bRev==0); 510 VdbeCoverageIf(v, bRev!=0); 511 sqlite3VdbeJumpHere(v, j); 512 for(j=0; j<nSkip; j++){ 513 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 514 assert( pIdx->aiColumn[j]>=0 ); 515 VdbeComment((v, "%s", pIdx->pTable->aCol[pIdx->aiColumn[j]].zName)); 516 } 517 } 518 519 /* Evaluate the equality constraints 520 */ 521 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 522 for(j=nSkip; j<nEq; j++){ 523 int r1; 524 pTerm = pLoop->aLTerm[j]; 525 assert( pTerm!=0 ); 526 /* The following testcase is true for indices with redundant columns. 527 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 528 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 529 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 530 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 531 if( r1!=regBase+j ){ 532 if( nReg==1 ){ 533 sqlite3ReleaseTempReg(pParse, regBase); 534 regBase = r1; 535 }else{ 536 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 537 } 538 } 539 testcase( pTerm->eOperator & WO_ISNULL ); 540 testcase( pTerm->eOperator & WO_IN ); 541 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ 542 Expr *pRight = pTerm->pExpr->pRight; 543 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 544 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 545 VdbeCoverage(v); 546 } 547 if( zAff ){ 548 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 549 zAff[j] = SQLITE_AFF_BLOB; 550 } 551 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 552 zAff[j] = SQLITE_AFF_BLOB; 553 } 554 } 555 } 556 } 557 *pzAff = zAff; 558 return regBase; 559 } 560 561 /* 562 ** If the most recently coded instruction is a constant range contraint 563 ** that originated from the LIKE optimization, then change the P3 to be 564 ** pLoop->iLikeRepCntr and set P5. 565 ** 566 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 567 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 568 ** scan loop run twice, once for strings and a second time for BLOBs. 569 ** The OP_String opcodes on the second pass convert the upper and lower 570 ** bound string contants to blobs. This routine makes the necessary changes 571 ** to the OP_String opcodes for that to happen. 572 */ 573 static void whereLikeOptimizationStringFixup( 574 Vdbe *v, /* prepared statement under construction */ 575 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 576 WhereTerm *pTerm /* The upper or lower bound just coded */ 577 ){ 578 if( pTerm->wtFlags & TERM_LIKEOPT ){ 579 VdbeOp *pOp; 580 assert( pLevel->iLikeRepCntr>0 ); 581 pOp = sqlite3VdbeGetOp(v, -1); 582 assert( pOp!=0 ); 583 assert( pOp->opcode==OP_String8 584 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 585 pOp->p3 = pLevel->iLikeRepCntr; 586 pOp->p5 = 1; 587 } 588 } 589 590 591 /* 592 ** Generate code for the start of the iLevel-th loop in the WHERE clause 593 ** implementation described by pWInfo. 594 */ 595 Bitmask sqlite3WhereCodeOneLoopStart( 596 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 597 int iLevel, /* Which level of pWInfo->a[] should be coded */ 598 Bitmask notReady /* Which tables are currently available */ 599 ){ 600 int j, k; /* Loop counters */ 601 int iCur; /* The VDBE cursor for the table */ 602 int addrNxt; /* Where to jump to continue with the next IN case */ 603 int omitTable; /* True if we use the index only */ 604 int bRev; /* True if we need to scan in reverse order */ 605 WhereLevel *pLevel; /* The where level to be coded */ 606 WhereLoop *pLoop; /* The WhereLoop object being coded */ 607 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 608 WhereTerm *pTerm; /* A WHERE clause term */ 609 Parse *pParse; /* Parsing context */ 610 sqlite3 *db; /* Database connection */ 611 Vdbe *v; /* The prepared stmt under constructions */ 612 struct SrcList_item *pTabItem; /* FROM clause term being coded */ 613 int addrBrk; /* Jump here to break out of the loop */ 614 int addrCont; /* Jump here to continue with next cycle */ 615 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 616 int iReleaseReg = 0; /* Temp register to free before returning */ 617 618 pParse = pWInfo->pParse; 619 v = pParse->pVdbe; 620 pWC = &pWInfo->sWC; 621 db = pParse->db; 622 pLevel = &pWInfo->a[iLevel]; 623 pLoop = pLevel->pWLoop; 624 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 625 iCur = pTabItem->iCursor; 626 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 627 bRev = (pWInfo->revMask>>iLevel)&1; 628 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 629 && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0; 630 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 631 632 /* Create labels for the "break" and "continue" instructions 633 ** for the current loop. Jump to addrBrk to break out of a loop. 634 ** Jump to cont to go immediately to the next iteration of the 635 ** loop. 636 ** 637 ** When there is an IN operator, we also have a "addrNxt" label that 638 ** means to continue with the next IN value combination. When 639 ** there are no IN operators in the constraints, the "addrNxt" label 640 ** is the same as "addrBrk". 641 */ 642 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 643 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); 644 645 /* If this is the right table of a LEFT OUTER JOIN, allocate and 646 ** initialize a memory cell that records if this table matches any 647 ** row of the left table of the join. 648 */ 649 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ 650 pLevel->iLeftJoin = ++pParse->nMem; 651 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 652 VdbeComment((v, "init LEFT JOIN no-match flag")); 653 } 654 655 /* Special case of a FROM clause subquery implemented as a co-routine */ 656 if( pTabItem->viaCoroutine ){ 657 int regYield = pTabItem->regReturn; 658 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 659 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 660 VdbeCoverage(v); 661 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); 662 pLevel->op = OP_Goto; 663 }else 664 665 #ifndef SQLITE_OMIT_VIRTUALTABLE 666 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 667 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 668 ** to access the data. 669 */ 670 int iReg; /* P3 Value for OP_VFilter */ 671 int addrNotFound; 672 int nConstraint = pLoop->nLTerm; 673 674 sqlite3ExprCachePush(pParse); 675 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 676 addrNotFound = pLevel->addrBrk; 677 for(j=0; j<nConstraint; j++){ 678 int iTarget = iReg+j+2; 679 pTerm = pLoop->aLTerm[j]; 680 if( pTerm==0 ) continue; 681 if( pTerm->eOperator & WO_IN ){ 682 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 683 addrNotFound = pLevel->addrNxt; 684 }else{ 685 sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget); 686 } 687 } 688 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 689 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 690 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 691 pLoop->u.vtab.idxStr, 692 pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC); 693 VdbeCoverage(v); 694 pLoop->u.vtab.needFree = 0; 695 for(j=0; j<nConstraint && j<16; j++){ 696 if( (pLoop->u.vtab.omitMask>>j)&1 ){ 697 disableTerm(pLevel, pLoop->aLTerm[j]); 698 } 699 } 700 pLevel->op = OP_VNext; 701 pLevel->p1 = iCur; 702 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 703 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 704 sqlite3ExprCachePop(pParse); 705 }else 706 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 707 708 if( (pLoop->wsFlags & WHERE_IPK)!=0 709 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 710 ){ 711 /* Case 2: We can directly reference a single row using an 712 ** equality comparison against the ROWID field. Or 713 ** we reference multiple rows using a "rowid IN (...)" 714 ** construct. 715 */ 716 assert( pLoop->u.btree.nEq==1 ); 717 pTerm = pLoop->aLTerm[0]; 718 assert( pTerm!=0 ); 719 assert( pTerm->pExpr!=0 ); 720 assert( omitTable==0 ); 721 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 722 iReleaseReg = ++pParse->nMem; 723 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 724 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 725 addrNxt = pLevel->addrNxt; 726 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v); 727 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); 728 VdbeCoverage(v); 729 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); 730 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 731 VdbeComment((v, "pk")); 732 pLevel->op = OP_Noop; 733 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 734 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 735 ){ 736 /* Case 3: We have an inequality comparison against the ROWID field. 737 */ 738 int testOp = OP_Noop; 739 int start; 740 int memEndValue = 0; 741 WhereTerm *pStart, *pEnd; 742 743 assert( omitTable==0 ); 744 j = 0; 745 pStart = pEnd = 0; 746 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 747 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 748 assert( pStart!=0 || pEnd!=0 ); 749 if( bRev ){ 750 pTerm = pStart; 751 pStart = pEnd; 752 pEnd = pTerm; 753 } 754 if( pStart ){ 755 Expr *pX; /* The expression that defines the start bound */ 756 int r1, rTemp; /* Registers for holding the start boundary */ 757 758 /* The following constant maps TK_xx codes into corresponding 759 ** seek opcodes. It depends on a particular ordering of TK_xx 760 */ 761 const u8 aMoveOp[] = { 762 /* TK_GT */ OP_SeekGT, 763 /* TK_LE */ OP_SeekLE, 764 /* TK_LT */ OP_SeekLT, 765 /* TK_GE */ OP_SeekGE 766 }; 767 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 768 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 769 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 770 771 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 772 testcase( pStart->wtFlags & TERM_VIRTUAL ); 773 pX = pStart->pExpr; 774 assert( pX!=0 ); 775 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 776 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 777 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); 778 VdbeComment((v, "pk")); 779 VdbeCoverageIf(v, pX->op==TK_GT); 780 VdbeCoverageIf(v, pX->op==TK_LE); 781 VdbeCoverageIf(v, pX->op==TK_LT); 782 VdbeCoverageIf(v, pX->op==TK_GE); 783 sqlite3ExprCacheAffinityChange(pParse, r1, 1); 784 sqlite3ReleaseTempReg(pParse, rTemp); 785 disableTerm(pLevel, pStart); 786 }else{ 787 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); 788 VdbeCoverageIf(v, bRev==0); 789 VdbeCoverageIf(v, bRev!=0); 790 } 791 if( pEnd ){ 792 Expr *pX; 793 pX = pEnd->pExpr; 794 assert( pX!=0 ); 795 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 796 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 797 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 798 memEndValue = ++pParse->nMem; 799 sqlite3ExprCode(pParse, pX->pRight, memEndValue); 800 if( pX->op==TK_LT || pX->op==TK_GT ){ 801 testOp = bRev ? OP_Le : OP_Ge; 802 }else{ 803 testOp = bRev ? OP_Lt : OP_Gt; 804 } 805 disableTerm(pLevel, pEnd); 806 } 807 start = sqlite3VdbeCurrentAddr(v); 808 pLevel->op = bRev ? OP_Prev : OP_Next; 809 pLevel->p1 = iCur; 810 pLevel->p2 = start; 811 assert( pLevel->p5==0 ); 812 if( testOp!=OP_Noop ){ 813 iRowidReg = ++pParse->nMem; 814 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 815 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 816 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 817 VdbeCoverageIf(v, testOp==OP_Le); 818 VdbeCoverageIf(v, testOp==OP_Lt); 819 VdbeCoverageIf(v, testOp==OP_Ge); 820 VdbeCoverageIf(v, testOp==OP_Gt); 821 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 822 } 823 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 824 /* Case 4: A scan using an index. 825 ** 826 ** The WHERE clause may contain zero or more equality 827 ** terms ("==" or "IN" operators) that refer to the N 828 ** left-most columns of the index. It may also contain 829 ** inequality constraints (>, <, >= or <=) on the indexed 830 ** column that immediately follows the N equalities. Only 831 ** the right-most column can be an inequality - the rest must 832 ** use the "==" and "IN" operators. For example, if the 833 ** index is on (x,y,z), then the following clauses are all 834 ** optimized: 835 ** 836 ** x=5 837 ** x=5 AND y=10 838 ** x=5 AND y<10 839 ** x=5 AND y>5 AND y<10 840 ** x=5 AND y=5 AND z<=10 841 ** 842 ** The z<10 term of the following cannot be used, only 843 ** the x=5 term: 844 ** 845 ** x=5 AND z<10 846 ** 847 ** N may be zero if there are inequality constraints. 848 ** If there are no inequality constraints, then N is at 849 ** least one. 850 ** 851 ** This case is also used when there are no WHERE clause 852 ** constraints but an index is selected anyway, in order 853 ** to force the output order to conform to an ORDER BY. 854 */ 855 static const u8 aStartOp[] = { 856 0, 857 0, 858 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 859 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 860 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 861 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 862 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 863 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 864 }; 865 static const u8 aEndOp[] = { 866 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 867 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 868 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 869 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 870 }; 871 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 872 int regBase; /* Base register holding constraint values */ 873 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 874 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 875 int startEq; /* True if range start uses ==, >= or <= */ 876 int endEq; /* True if range end uses ==, >= or <= */ 877 int start_constraints; /* Start of range is constrained */ 878 int nConstraint; /* Number of constraint terms */ 879 Index *pIdx; /* The index we will be using */ 880 int iIdxCur; /* The VDBE cursor for the index */ 881 int nExtraReg = 0; /* Number of extra registers needed */ 882 int op; /* Instruction opcode */ 883 char *zStartAff; /* Affinity for start of range constraint */ 884 char cEndAff = 0; /* Affinity for end of range constraint */ 885 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 886 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 887 888 pIdx = pLoop->u.btree.pIndex; 889 iIdxCur = pLevel->iIdxCur; 890 assert( nEq>=pLoop->nSkip ); 891 892 /* If this loop satisfies a sort order (pOrderBy) request that 893 ** was passed to this function to implement a "SELECT min(x) ..." 894 ** query, then the caller will only allow the loop to run for 895 ** a single iteration. This means that the first row returned 896 ** should not have a NULL value stored in 'x'. If column 'x' is 897 ** the first one after the nEq equality constraints in the index, 898 ** this requires some special handling. 899 */ 900 assert( pWInfo->pOrderBy==0 901 || pWInfo->pOrderBy->nExpr==1 902 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); 903 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 904 && pWInfo->nOBSat>0 905 && (pIdx->nKeyCol>nEq) 906 ){ 907 assert( pLoop->nSkip==0 ); 908 bSeekPastNull = 1; 909 nExtraReg = 1; 910 } 911 912 /* Find any inequality constraint terms for the start and end 913 ** of the range. 914 */ 915 j = nEq; 916 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 917 pRangeStart = pLoop->aLTerm[j++]; 918 nExtraReg = 1; 919 /* Like optimization range constraints always occur in pairs */ 920 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 921 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 922 } 923 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 924 pRangeEnd = pLoop->aLTerm[j++]; 925 nExtraReg = 1; 926 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 927 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 928 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 929 pLevel->iLikeRepCntr = ++pParse->nMem; 930 testcase( bRev ); 931 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 932 sqlite3VdbeAddOp2(v, OP_Integer, 933 bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC), 934 pLevel->iLikeRepCntr); 935 VdbeComment((v, "LIKE loop counter")); 936 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 937 } 938 if( pRangeStart==0 939 && (j = pIdx->aiColumn[nEq])>=0 940 && pIdx->pTable->aCol[j].notNull==0 941 ){ 942 bSeekPastNull = 1; 943 } 944 } 945 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 946 947 /* Generate code to evaluate all constraint terms using == or IN 948 ** and store the values of those terms in an array of registers 949 ** starting at regBase. 950 */ 951 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 952 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 953 if( zStartAff ) cEndAff = zStartAff[nEq]; 954 addrNxt = pLevel->addrNxt; 955 956 /* If we are doing a reverse order scan on an ascending index, or 957 ** a forward order scan on a descending index, interchange the 958 ** start and end terms (pRangeStart and pRangeEnd). 959 */ 960 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) 961 || (bRev && pIdx->nKeyCol==nEq) 962 ){ 963 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 964 SWAP(u8, bSeekPastNull, bStopAtNull); 965 } 966 967 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 968 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 969 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 970 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 971 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 972 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 973 start_constraints = pRangeStart || nEq>0; 974 975 /* Seek the index cursor to the start of the range. */ 976 nConstraint = nEq; 977 if( pRangeStart ){ 978 Expr *pRight = pRangeStart->pExpr->pRight; 979 sqlite3ExprCode(pParse, pRight, regBase+nEq); 980 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 981 if( (pRangeStart->wtFlags & TERM_VNULL)==0 982 && sqlite3ExprCanBeNull(pRight) 983 ){ 984 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 985 VdbeCoverage(v); 986 } 987 if( zStartAff ){ 988 if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_BLOB){ 989 /* Since the comparison is to be performed with no conversions 990 ** applied to the operands, set the affinity to apply to pRight to 991 ** SQLITE_AFF_BLOB. */ 992 zStartAff[nEq] = SQLITE_AFF_BLOB; 993 } 994 if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ 995 zStartAff[nEq] = SQLITE_AFF_BLOB; 996 } 997 } 998 nConstraint++; 999 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1000 }else if( bSeekPastNull ){ 1001 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1002 nConstraint++; 1003 startEq = 0; 1004 start_constraints = 1; 1005 } 1006 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1007 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 1008 assert( op!=0 ); 1009 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1010 VdbeCoverage(v); 1011 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1012 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1013 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 1014 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1015 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1016 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 1017 1018 /* Load the value for the inequality constraint at the end of the 1019 ** range (if any). 1020 */ 1021 nConstraint = nEq; 1022 if( pRangeEnd ){ 1023 Expr *pRight = pRangeEnd->pExpr->pRight; 1024 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); 1025 sqlite3ExprCode(pParse, pRight, regBase+nEq); 1026 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 1027 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 1028 && sqlite3ExprCanBeNull(pRight) 1029 ){ 1030 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1031 VdbeCoverage(v); 1032 } 1033 if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_BLOB 1034 && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff) 1035 ){ 1036 codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff); 1037 } 1038 nConstraint++; 1039 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 1040 }else if( bStopAtNull ){ 1041 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1042 endEq = 0; 1043 nConstraint++; 1044 } 1045 sqlite3DbFree(db, zStartAff); 1046 1047 /* Top of the loop body */ 1048 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1049 1050 /* Check if the index cursor is past the end of the range. */ 1051 if( nConstraint ){ 1052 op = aEndOp[bRev*2 + endEq]; 1053 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1054 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1055 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1056 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1057 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1058 } 1059 1060 /* Seek the table cursor, if required */ 1061 disableTerm(pLevel, pRangeStart); 1062 disableTerm(pLevel, pRangeEnd); 1063 if( omitTable ){ 1064 /* pIdx is a covering index. No need to access the main table. */ 1065 }else if( HasRowid(pIdx->pTable) ){ 1066 iRowidReg = ++pParse->nMem; 1067 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); 1068 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 1069 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ 1070 }else if( iCur!=iIdxCur ){ 1071 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1072 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1073 for(j=0; j<pPk->nKeyCol; j++){ 1074 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); 1075 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 1076 } 1077 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 1078 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 1079 } 1080 1081 /* Record the instruction used to terminate the loop. Disable 1082 ** WHERE clause terms made redundant by the index range scan. 1083 */ 1084 if( pLoop->wsFlags & WHERE_ONEROW ){ 1085 pLevel->op = OP_Noop; 1086 }else if( bRev ){ 1087 pLevel->op = OP_Prev; 1088 }else{ 1089 pLevel->op = OP_Next; 1090 } 1091 pLevel->p1 = iIdxCur; 1092 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 1093 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 1094 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 1095 }else{ 1096 assert( pLevel->p5==0 ); 1097 } 1098 }else 1099 1100 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 1101 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 1102 /* Case 5: Two or more separately indexed terms connected by OR 1103 ** 1104 ** Example: 1105 ** 1106 ** CREATE TABLE t1(a,b,c,d); 1107 ** CREATE INDEX i1 ON t1(a); 1108 ** CREATE INDEX i2 ON t1(b); 1109 ** CREATE INDEX i3 ON t1(c); 1110 ** 1111 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 1112 ** 1113 ** In the example, there are three indexed terms connected by OR. 1114 ** The top of the loop looks like this: 1115 ** 1116 ** Null 1 # Zero the rowset in reg 1 1117 ** 1118 ** Then, for each indexed term, the following. The arguments to 1119 ** RowSetTest are such that the rowid of the current row is inserted 1120 ** into the RowSet. If it is already present, control skips the 1121 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 1122 ** 1123 ** sqlite3WhereBegin(<term>) 1124 ** RowSetTest # Insert rowid into rowset 1125 ** Gosub 2 A 1126 ** sqlite3WhereEnd() 1127 ** 1128 ** Following the above, code to terminate the loop. Label A, the target 1129 ** of the Gosub above, jumps to the instruction right after the Goto. 1130 ** 1131 ** Null 1 # Zero the rowset in reg 1 1132 ** Goto B # The loop is finished. 1133 ** 1134 ** A: <loop body> # Return data, whatever. 1135 ** 1136 ** Return 2 # Jump back to the Gosub 1137 ** 1138 ** B: <after the loop> 1139 ** 1140 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 1141 ** use an ephemeral index instead of a RowSet to record the primary 1142 ** keys of the rows we have already seen. 1143 ** 1144 */ 1145 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 1146 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 1147 Index *pCov = 0; /* Potential covering index (or NULL) */ 1148 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 1149 1150 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 1151 int regRowset = 0; /* Register for RowSet object */ 1152 int regRowid = 0; /* Register holding rowid */ 1153 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ 1154 int iRetInit; /* Address of regReturn init */ 1155 int untestedTerms = 0; /* Some terms not completely tested */ 1156 int ii; /* Loop counter */ 1157 u16 wctrlFlags; /* Flags for sub-WHERE clause */ 1158 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 1159 Table *pTab = pTabItem->pTab; 1160 1161 pTerm = pLoop->aLTerm[0]; 1162 assert( pTerm!=0 ); 1163 assert( pTerm->eOperator & WO_OR ); 1164 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 1165 pOrWc = &pTerm->u.pOrInfo->wc; 1166 pLevel->op = OP_Return; 1167 pLevel->p1 = regReturn; 1168 1169 /* Set up a new SrcList in pOrTab containing the table being scanned 1170 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 1171 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 1172 */ 1173 if( pWInfo->nLevel>1 ){ 1174 int nNotReady; /* The number of notReady tables */ 1175 struct SrcList_item *origSrc; /* Original list of tables */ 1176 nNotReady = pWInfo->nLevel - iLevel - 1; 1177 pOrTab = sqlite3StackAllocRaw(db, 1178 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 1179 if( pOrTab==0 ) return notReady; 1180 pOrTab->nAlloc = (u8)(nNotReady + 1); 1181 pOrTab->nSrc = pOrTab->nAlloc; 1182 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 1183 origSrc = pWInfo->pTabList->a; 1184 for(k=1; k<=nNotReady; k++){ 1185 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 1186 } 1187 }else{ 1188 pOrTab = pWInfo->pTabList; 1189 } 1190 1191 /* Initialize the rowset register to contain NULL. An SQL NULL is 1192 ** equivalent to an empty rowset. Or, create an ephemeral index 1193 ** capable of holding primary keys in the case of a WITHOUT ROWID. 1194 ** 1195 ** Also initialize regReturn to contain the address of the instruction 1196 ** immediately following the OP_Return at the bottom of the loop. This 1197 ** is required in a few obscure LEFT JOIN cases where control jumps 1198 ** over the top of the loop into the body of it. In this case the 1199 ** correct response for the end-of-loop code (the OP_Return) is to 1200 ** fall through to the next instruction, just as an OP_Next does if 1201 ** called on an uninitialized cursor. 1202 */ 1203 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 1204 if( HasRowid(pTab) ){ 1205 regRowset = ++pParse->nMem; 1206 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 1207 }else{ 1208 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1209 regRowset = pParse->nTab++; 1210 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 1211 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 1212 } 1213 regRowid = ++pParse->nMem; 1214 } 1215 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 1216 1217 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 1218 ** Then for every term xN, evaluate as the subexpression: xN AND z 1219 ** That way, terms in y that are factored into the disjunction will 1220 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 1221 ** 1222 ** Actually, each subexpression is converted to "xN AND w" where w is 1223 ** the "interesting" terms of z - terms that did not originate in the 1224 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 1225 ** indices. 1226 ** 1227 ** This optimization also only applies if the (x1 OR x2 OR ...) term 1228 ** is not contained in the ON clause of a LEFT JOIN. 1229 ** See ticket http://www.sqlite.org/src/info/f2369304e4 1230 */ 1231 if( pWC->nTerm>1 ){ 1232 int iTerm; 1233 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 1234 Expr *pExpr = pWC->a[iTerm].pExpr; 1235 if( &pWC->a[iTerm] == pTerm ) continue; 1236 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; 1237 if( (pWC->a[iTerm].wtFlags & TERM_VIRTUAL)!=0 ) continue; 1238 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 1239 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); 1240 pExpr = sqlite3ExprDup(db, pExpr, 0); 1241 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); 1242 } 1243 if( pAndExpr ){ 1244 pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0); 1245 } 1246 } 1247 1248 /* Run a separate WHERE clause for each term of the OR clause. After 1249 ** eliminating duplicates from other WHERE clauses, the action for each 1250 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 1251 */ 1252 wctrlFlags = WHERE_OMIT_OPEN_CLOSE 1253 | WHERE_FORCE_TABLE 1254 | WHERE_ONETABLE_ONLY 1255 | WHERE_NO_AUTOINDEX; 1256 for(ii=0; ii<pOrWc->nTerm; ii++){ 1257 WhereTerm *pOrTerm = &pOrWc->a[ii]; 1258 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 1259 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 1260 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 1261 int j1 = 0; /* Address of jump operation */ 1262 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){ 1263 pAndExpr->pLeft = pOrExpr; 1264 pOrExpr = pAndExpr; 1265 } 1266 /* Loop through table entries that match term pOrTerm. */ 1267 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 1268 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 1269 wctrlFlags, iCovCur); 1270 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); 1271 if( pSubWInfo ){ 1272 WhereLoop *pSubLoop; 1273 int addrExplain = sqlite3WhereExplainOneScan( 1274 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 1275 ); 1276 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 1277 1278 /* This is the sub-WHERE clause body. First skip over 1279 ** duplicate rows from prior sub-WHERE clauses, and record the 1280 ** rowid (or PRIMARY KEY) for the current row so that the same 1281 ** row will be skipped in subsequent sub-WHERE clauses. 1282 */ 1283 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 1284 int r; 1285 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 1286 if( HasRowid(pTab) ){ 1287 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0); 1288 j1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, r,iSet); 1289 VdbeCoverage(v); 1290 }else{ 1291 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1292 int nPk = pPk->nKeyCol; 1293 int iPk; 1294 1295 /* Read the PK into an array of temp registers. */ 1296 r = sqlite3GetTempRange(pParse, nPk); 1297 for(iPk=0; iPk<nPk; iPk++){ 1298 int iCol = pPk->aiColumn[iPk]; 1299 int rx; 1300 rx = sqlite3ExprCodeGetColumn(pParse, pTab, iCol, iCur,r+iPk,0); 1301 if( rx!=r+iPk ){ 1302 sqlite3VdbeAddOp2(v, OP_SCopy, rx, r+iPk); 1303 } 1304 } 1305 1306 /* Check if the temp table already contains this key. If so, 1307 ** the row has already been included in the result set and 1308 ** can be ignored (by jumping past the Gosub below). Otherwise, 1309 ** insert the key into the temp table and proceed with processing 1310 ** the row. 1311 ** 1312 ** Use some of the same optimizations as OP_RowSetTest: If iSet 1313 ** is zero, assume that the key cannot already be present in 1314 ** the temp table. And if iSet is -1, assume that there is no 1315 ** need to insert the key into the temp table, as it will never 1316 ** be tested for. */ 1317 if( iSet ){ 1318 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 1319 VdbeCoverage(v); 1320 } 1321 if( iSet>=0 ){ 1322 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 1323 sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0); 1324 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1325 } 1326 1327 /* Release the array of temp registers */ 1328 sqlite3ReleaseTempRange(pParse, r, nPk); 1329 } 1330 } 1331 1332 /* Invoke the main loop body as a subroutine */ 1333 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 1334 1335 /* Jump here (skipping the main loop body subroutine) if the 1336 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 1337 if( j1 ) sqlite3VdbeJumpHere(v, j1); 1338 1339 /* The pSubWInfo->untestedTerms flag means that this OR term 1340 ** contained one or more AND term from a notReady table. The 1341 ** terms from the notReady table could not be tested and will 1342 ** need to be tested later. 1343 */ 1344 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 1345 1346 /* If all of the OR-connected terms are optimized using the same 1347 ** index, and the index is opened using the same cursor number 1348 ** by each call to sqlite3WhereBegin() made by this loop, it may 1349 ** be possible to use that index as a covering index. 1350 ** 1351 ** If the call to sqlite3WhereBegin() above resulted in a scan that 1352 ** uses an index, and this is either the first OR-connected term 1353 ** processed or the index is the same as that used by all previous 1354 ** terms, set pCov to the candidate covering index. Otherwise, set 1355 ** pCov to NULL to indicate that no candidate covering index will 1356 ** be available. 1357 */ 1358 pSubLoop = pSubWInfo->a[0].pWLoop; 1359 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 1360 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 1361 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 1362 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 1363 ){ 1364 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 1365 pCov = pSubLoop->u.btree.pIndex; 1366 wctrlFlags |= WHERE_REOPEN_IDX; 1367 }else{ 1368 pCov = 0; 1369 } 1370 1371 /* Finish the loop through table entries that match term pOrTerm. */ 1372 sqlite3WhereEnd(pSubWInfo); 1373 } 1374 } 1375 } 1376 pLevel->u.pCovidx = pCov; 1377 if( pCov ) pLevel->iIdxCur = iCovCur; 1378 if( pAndExpr ){ 1379 pAndExpr->pLeft = 0; 1380 sqlite3ExprDelete(db, pAndExpr); 1381 } 1382 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 1383 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk); 1384 sqlite3VdbeResolveLabel(v, iLoopBody); 1385 1386 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab); 1387 if( !untestedTerms ) disableTerm(pLevel, pTerm); 1388 }else 1389 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1390 1391 { 1392 /* Case 6: There is no usable index. We must do a complete 1393 ** scan of the entire table. 1394 */ 1395 static const u8 aStep[] = { OP_Next, OP_Prev }; 1396 static const u8 aStart[] = { OP_Rewind, OP_Last }; 1397 assert( bRev==0 || bRev==1 ); 1398 if( pTabItem->isRecursive ){ 1399 /* Tables marked isRecursive have only a single row that is stored in 1400 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 1401 pLevel->op = OP_Noop; 1402 }else{ 1403 pLevel->op = aStep[bRev]; 1404 pLevel->p1 = iCur; 1405 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); 1406 VdbeCoverageIf(v, bRev==0); 1407 VdbeCoverageIf(v, bRev!=0); 1408 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 1409 } 1410 } 1411 1412 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1413 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 1414 #endif 1415 1416 /* Insert code to test every subexpression that can be completely 1417 ** computed using the current set of tables. 1418 */ 1419 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 1420 Expr *pE; 1421 int skipLikeAddr = 0; 1422 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1423 testcase( pTerm->wtFlags & TERM_CODED ); 1424 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1425 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 1426 testcase( pWInfo->untestedTerms==0 1427 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); 1428 pWInfo->untestedTerms = 1; 1429 continue; 1430 } 1431 pE = pTerm->pExpr; 1432 assert( pE!=0 ); 1433 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 1434 continue; 1435 } 1436 if( pTerm->wtFlags & TERM_LIKECOND ){ 1437 assert( pLevel->iLikeRepCntr>0 ); 1438 skipLikeAddr = sqlite3VdbeAddOp1(v, OP_IfNot, pLevel->iLikeRepCntr); 1439 VdbeCoverage(v); 1440 } 1441 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 1442 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 1443 pTerm->wtFlags |= TERM_CODED; 1444 } 1445 1446 /* Insert code to test for implied constraints based on transitivity 1447 ** of the "==" operator. 1448 ** 1449 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 1450 ** and we are coding the t1 loop and the t2 loop has not yet coded, 1451 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 1452 ** the implied "t1.a=123" constraint. 1453 */ 1454 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 1455 Expr *pE, *pEAlt; 1456 WhereTerm *pAlt; 1457 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1458 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 1459 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 1460 if( pTerm->leftCursor!=iCur ) continue; 1461 if( pLevel->iLeftJoin ) continue; 1462 pE = pTerm->pExpr; 1463 assert( !ExprHasProperty(pE, EP_FromJoin) ); 1464 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 1465 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady, 1466 WO_EQ|WO_IN|WO_IS, 0); 1467 if( pAlt==0 ) continue; 1468 if( pAlt->wtFlags & (TERM_CODED) ) continue; 1469 testcase( pAlt->eOperator & WO_EQ ); 1470 testcase( pAlt->eOperator & WO_IS ); 1471 testcase( pAlt->eOperator & WO_IN ); 1472 VdbeModuleComment((v, "begin transitive constraint")); 1473 pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt)); 1474 if( pEAlt ){ 1475 *pEAlt = *pAlt->pExpr; 1476 pEAlt->pLeft = pE->pLeft; 1477 sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL); 1478 sqlite3StackFree(db, pEAlt); 1479 } 1480 } 1481 1482 /* For a LEFT OUTER JOIN, generate code that will record the fact that 1483 ** at least one row of the right table has matched the left table. 1484 */ 1485 if( pLevel->iLeftJoin ){ 1486 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 1487 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 1488 VdbeComment((v, "record LEFT JOIN hit")); 1489 sqlite3ExprCacheClear(pParse); 1490 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 1491 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1492 testcase( pTerm->wtFlags & TERM_CODED ); 1493 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1494 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 1495 assert( pWInfo->untestedTerms ); 1496 continue; 1497 } 1498 assert( pTerm->pExpr ); 1499 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 1500 pTerm->wtFlags |= TERM_CODED; 1501 } 1502 } 1503 1504 return pLevel->notReady; 1505 } 1506