1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 25 /* 26 ** Return the name of the i-th column of the pIdx index. 27 */ 28 static const char *explainIndexColumnName(Index *pIdx, int i){ 29 i = pIdx->aiColumn[i]; 30 if( i==XN_EXPR ) return "<expr>"; 31 if( i==XN_ROWID ) return "rowid"; 32 return pIdx->pTable->aCol[i].zName; 33 } 34 35 /* 36 ** This routine is a helper for explainIndexRange() below 37 ** 38 ** pStr holds the text of an expression that we are building up one term 39 ** at a time. This routine adds a new term to the end of the expression. 40 ** Terms are separated by AND so add the "AND" text for second and subsequent 41 ** terms only. 42 */ 43 static void explainAppendTerm( 44 StrAccum *pStr, /* The text expression being built */ 45 Index *pIdx, /* Index to read column names from */ 46 int nTerm, /* Number of terms */ 47 int iTerm, /* Zero-based index of first term. */ 48 int bAnd, /* Non-zero to append " AND " */ 49 const char *zOp /* Name of the operator */ 50 ){ 51 int i; 52 53 assert( nTerm>=1 ); 54 if( bAnd ) sqlite3StrAccumAppend(pStr, " AND ", 5); 55 56 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1); 57 for(i=0; i<nTerm; i++){ 58 if( i ) sqlite3StrAccumAppend(pStr, ",", 1); 59 sqlite3StrAccumAppendAll(pStr, explainIndexColumnName(pIdx, iTerm+i)); 60 } 61 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1); 62 63 sqlite3StrAccumAppend(pStr, zOp, 1); 64 65 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1); 66 for(i=0; i<nTerm; i++){ 67 if( i ) sqlite3StrAccumAppend(pStr, ",", 1); 68 sqlite3StrAccumAppend(pStr, "?", 1); 69 } 70 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1); 71 } 72 73 /* 74 ** Argument pLevel describes a strategy for scanning table pTab. This 75 ** function appends text to pStr that describes the subset of table 76 ** rows scanned by the strategy in the form of an SQL expression. 77 ** 78 ** For example, if the query: 79 ** 80 ** SELECT * FROM t1 WHERE a=1 AND b>2; 81 ** 82 ** is run and there is an index on (a, b), then this function returns a 83 ** string similar to: 84 ** 85 ** "a=? AND b>?" 86 */ 87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 88 Index *pIndex = pLoop->u.btree.pIndex; 89 u16 nEq = pLoop->u.btree.nEq; 90 u16 nSkip = pLoop->nSkip; 91 int i, j; 92 93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 94 sqlite3StrAccumAppend(pStr, " (", 2); 95 for(i=0; i<nEq; i++){ 96 const char *z = explainIndexColumnName(pIndex, i); 97 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5); 98 sqlite3XPrintf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); 99 } 100 101 j = i; 102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); 104 i = 1; 105 } 106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); 108 } 109 sqlite3StrAccumAppend(pStr, ")", 1); 110 } 111 112 /* 113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 116 ** is added to the output to describe the table scan strategy in pLevel. 117 ** 118 ** If an OP_Explain opcode is added to the VM, its address is returned. 119 ** Otherwise, if no OP_Explain is coded, zero is returned. 120 */ 121 int sqlite3WhereExplainOneScan( 122 Parse *pParse, /* Parse context */ 123 SrcList *pTabList, /* Table list this loop refers to */ 124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 125 int iLevel, /* Value for "level" column of output */ 126 int iFrom, /* Value for "from" column of output */ 127 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 128 ){ 129 int ret = 0; 130 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 131 if( pParse->explain==2 ) 132 #endif 133 { 134 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 135 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 136 sqlite3 *db = pParse->db; /* Database handle */ 137 int iId = pParse->iSelectId; /* Select id (left-most output column) */ 138 int isSearch; /* True for a SEARCH. False for SCAN. */ 139 WhereLoop *pLoop; /* The controlling WhereLoop object */ 140 u32 flags; /* Flags that describe this loop */ 141 char *zMsg; /* Text to add to EQP output */ 142 StrAccum str; /* EQP output string */ 143 char zBuf[100]; /* Initial space for EQP output string */ 144 145 pLoop = pLevel->pWLoop; 146 flags = pLoop->wsFlags; 147 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; 148 149 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 150 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 151 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 152 153 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 154 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN"); 155 if( pItem->pSelect ){ 156 sqlite3XPrintf(&str, " SUBQUERY %d", pItem->iSelectId); 157 }else{ 158 sqlite3XPrintf(&str, " TABLE %s", pItem->zName); 159 } 160 161 if( pItem->zAlias ){ 162 sqlite3XPrintf(&str, " AS %s", pItem->zAlias); 163 } 164 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 165 const char *zFmt = 0; 166 Index *pIdx; 167 168 assert( pLoop->u.btree.pIndex!=0 ); 169 pIdx = pLoop->u.btree.pIndex; 170 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 171 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 172 if( isSearch ){ 173 zFmt = "PRIMARY KEY"; 174 } 175 }else if( flags & WHERE_PARTIALIDX ){ 176 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 177 }else if( flags & WHERE_AUTO_INDEX ){ 178 zFmt = "AUTOMATIC COVERING INDEX"; 179 }else if( flags & WHERE_IDX_ONLY ){ 180 zFmt = "COVERING INDEX %s"; 181 }else{ 182 zFmt = "INDEX %s"; 183 } 184 if( zFmt ){ 185 sqlite3StrAccumAppend(&str, " USING ", 7); 186 sqlite3XPrintf(&str, zFmt, pIdx->zName); 187 explainIndexRange(&str, pLoop); 188 } 189 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 190 const char *zRangeOp; 191 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 192 zRangeOp = "="; 193 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 194 zRangeOp = ">? AND rowid<"; 195 }else if( flags&WHERE_BTM_LIMIT ){ 196 zRangeOp = ">"; 197 }else{ 198 assert( flags&WHERE_TOP_LIMIT); 199 zRangeOp = "<"; 200 } 201 sqlite3XPrintf(&str, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp); 202 } 203 #ifndef SQLITE_OMIT_VIRTUALTABLE 204 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 205 sqlite3XPrintf(&str, " VIRTUAL TABLE INDEX %d:%s", 206 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 207 } 208 #endif 209 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 210 if( pLoop->nOut>=10 ){ 211 sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); 212 }else{ 213 sqlite3StrAccumAppend(&str, " (~1 row)", 9); 214 } 215 #endif 216 zMsg = sqlite3StrAccumFinish(&str); 217 ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC); 218 } 219 return ret; 220 } 221 #endif /* SQLITE_OMIT_EXPLAIN */ 222 223 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 224 /* 225 ** Configure the VM passed as the first argument with an 226 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 227 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 228 ** clause that the scan reads data from. 229 ** 230 ** If argument addrExplain is not 0, it must be the address of an 231 ** OP_Explain instruction that describes the same loop. 232 */ 233 void sqlite3WhereAddScanStatus( 234 Vdbe *v, /* Vdbe to add scanstatus entry to */ 235 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 236 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 237 int addrExplain /* Address of OP_Explain (or 0) */ 238 ){ 239 const char *zObj = 0; 240 WhereLoop *pLoop = pLvl->pWLoop; 241 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 242 zObj = pLoop->u.btree.pIndex->zName; 243 }else{ 244 zObj = pSrclist->a[pLvl->iFrom].zName; 245 } 246 sqlite3VdbeScanStatus( 247 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 248 ); 249 } 250 #endif 251 252 253 /* 254 ** Disable a term in the WHERE clause. Except, do not disable the term 255 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 256 ** or USING clause of that join. 257 ** 258 ** Consider the term t2.z='ok' in the following queries: 259 ** 260 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 261 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 262 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 263 ** 264 ** The t2.z='ok' is disabled in the in (2) because it originates 265 ** in the ON clause. The term is disabled in (3) because it is not part 266 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 267 ** 268 ** Disabling a term causes that term to not be tested in the inner loop 269 ** of the join. Disabling is an optimization. When terms are satisfied 270 ** by indices, we disable them to prevent redundant tests in the inner 271 ** loop. We would get the correct results if nothing were ever disabled, 272 ** but joins might run a little slower. The trick is to disable as much 273 ** as we can without disabling too much. If we disabled in (1), we'd get 274 ** the wrong answer. See ticket #813. 275 ** 276 ** If all the children of a term are disabled, then that term is also 277 ** automatically disabled. In this way, terms get disabled if derived 278 ** virtual terms are tested first. For example: 279 ** 280 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 281 ** \___________/ \______/ \_____/ 282 ** parent child1 child2 283 ** 284 ** Only the parent term was in the original WHERE clause. The child1 285 ** and child2 terms were added by the LIKE optimization. If both of 286 ** the virtual child terms are valid, then testing of the parent can be 287 ** skipped. 288 ** 289 ** Usually the parent term is marked as TERM_CODED. But if the parent 290 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 291 ** The TERM_LIKECOND marking indicates that the term should be coded inside 292 ** a conditional such that is only evaluated on the second pass of a 293 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 294 */ 295 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 296 int nLoop = 0; 297 assert( pTerm!=0 ); 298 while( (pTerm->wtFlags & TERM_CODED)==0 299 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 300 && (pLevel->notReady & pTerm->prereqAll)==0 301 ){ 302 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 303 pTerm->wtFlags |= TERM_LIKECOND; 304 }else{ 305 pTerm->wtFlags |= TERM_CODED; 306 } 307 if( pTerm->iParent<0 ) break; 308 pTerm = &pTerm->pWC->a[pTerm->iParent]; 309 assert( pTerm!=0 ); 310 pTerm->nChild--; 311 if( pTerm->nChild!=0 ) break; 312 nLoop++; 313 } 314 } 315 316 /* 317 ** Code an OP_Affinity opcode to apply the column affinity string zAff 318 ** to the n registers starting at base. 319 ** 320 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the 321 ** beginning and end of zAff are ignored. If all entries in zAff are 322 ** SQLITE_AFF_BLOB, then no code gets generated. 323 ** 324 ** This routine makes its own copy of zAff so that the caller is free 325 ** to modify zAff after this routine returns. 326 */ 327 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 328 Vdbe *v = pParse->pVdbe; 329 if( zAff==0 ){ 330 assert( pParse->db->mallocFailed ); 331 return; 332 } 333 assert( v!=0 ); 334 335 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning 336 ** and end of the affinity string. 337 */ 338 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){ 339 n--; 340 base++; 341 zAff++; 342 } 343 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){ 344 n--; 345 } 346 347 /* Code the OP_Affinity opcode if there is anything left to do. */ 348 if( n>0 ){ 349 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 350 sqlite3ExprCacheAffinityChange(pParse, base, n); 351 } 352 } 353 354 /* 355 ** Expression pRight, which is the RHS of a comparison operation, is 356 ** either a vector of n elements or, if n==1, a scalar expression. 357 ** Before the comparison operation, affinity zAff is to be applied 358 ** to the pRight values. This function modifies characters within the 359 ** affinity string to SQLITE_AFF_BLOB if either: 360 ** 361 ** * the comparison will be performed with no affinity, or 362 ** * the affinity change in zAff is guaranteed not to change the value. 363 */ 364 static void updateRangeAffinityStr( 365 Expr *pRight, /* RHS of comparison */ 366 int n, /* Number of vector elements in comparison */ 367 char *zAff /* Affinity string to modify */ 368 ){ 369 int i; 370 for(i=0; i<n; i++){ 371 Expr *p = sqlite3VectorFieldSubexpr(pRight, i); 372 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB 373 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) 374 ){ 375 zAff[i] = SQLITE_AFF_BLOB; 376 } 377 } 378 } 379 380 381 /* 382 ** pX is an expression of the form: (vector) IN (SELECT ...) 383 ** In other words, it is a vector IN operator with a SELECT clause on the 384 ** LHS. But not all terms in the vector are indexable and the terms might 385 ** not be in the correct order for indexing. 386 ** 387 ** This routine makes a copy of the input pX expression and then adjusts 388 ** the vector on the LHS with corresponding changes to the SELECT so that 389 ** the vector contains only index terms and those terms are in the correct 390 ** order. The modified IN expression is returned. The caller is responsible 391 ** for deleting the returned expression. 392 ** 393 ** Example: 394 ** 395 ** CREATE TABLE t1(a,b,c,d,e,f); 396 ** CREATE INDEX t1x1 ON t1(e,c); 397 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2) 398 ** \_______________________________________/ 399 ** The pX expression 400 ** 401 ** Since only columns e and c can be used with the index, in that order, 402 ** the modified IN expression that is returned will be: 403 ** 404 ** (e,c) IN (SELECT z,x FROM t2) 405 ** 406 ** The reduced pX is different from the original (obviously) and thus is 407 ** only used for indexing, to improve performance. The original unaltered 408 ** IN expression must also be run on each output row for correctness. 409 */ 410 static Expr *removeUnindexableInClauseTerms( 411 Parse *pParse, /* The parsing context */ 412 int iEq, /* Look at loop terms starting here */ 413 WhereLoop *pLoop, /* The current loop */ 414 Expr *pX /* The IN expression to be reduced */ 415 ){ 416 sqlite3 *db = pParse->db; 417 Expr *pNew = sqlite3ExprDup(db, pX, 0); 418 if( db->mallocFailed==0 ){ 419 ExprList *pOrigRhs = pNew->x.pSelect->pEList; /* Original unmodified RHS */ 420 ExprList *pOrigLhs = pNew->pLeft->x.pList; /* Original unmodified LHS */ 421 ExprList *pRhs = 0; /* New RHS after modifications */ 422 ExprList *pLhs = 0; /* New LHS after mods */ 423 int i; /* Loop counter */ 424 Select *pSelect; /* Pointer to the SELECT on the RHS */ 425 426 for(i=iEq; i<pLoop->nLTerm; i++){ 427 if( pLoop->aLTerm[i]->pExpr==pX ){ 428 int iField = pLoop->aLTerm[i]->iField - 1; 429 assert( pOrigRhs->a[iField].pExpr!=0 ); 430 pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr); 431 pOrigRhs->a[iField].pExpr = 0; 432 assert( pOrigLhs->a[iField].pExpr!=0 ); 433 pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr); 434 pOrigLhs->a[iField].pExpr = 0; 435 } 436 } 437 sqlite3ExprListDelete(db, pOrigRhs); 438 sqlite3ExprListDelete(db, pOrigLhs); 439 pNew->pLeft->x.pList = pLhs; 440 pNew->x.pSelect->pEList = pRhs; 441 if( pLhs && pLhs->nExpr==1 ){ 442 /* Take care here not to generate a TK_VECTOR containing only a 443 ** single value. Since the parser never creates such a vector, some 444 ** of the subroutines do not handle this case. */ 445 Expr *p = pLhs->a[0].pExpr; 446 pLhs->a[0].pExpr = 0; 447 sqlite3ExprDelete(db, pNew->pLeft); 448 pNew->pLeft = p; 449 } 450 pSelect = pNew->x.pSelect; 451 if( pSelect->pOrderBy ){ 452 /* If the SELECT statement has an ORDER BY clause, zero the 453 ** iOrderByCol variables. These are set to non-zero when an 454 ** ORDER BY term exactly matches one of the terms of the 455 ** result-set. Since the result-set of the SELECT statement may 456 ** have been modified or reordered, these variables are no longer 457 ** set correctly. Since setting them is just an optimization, 458 ** it's easiest just to zero them here. */ 459 ExprList *pOrderBy = pSelect->pOrderBy; 460 for(i=0; i<pOrderBy->nExpr; i++){ 461 pOrderBy->a[i].u.x.iOrderByCol = 0; 462 } 463 } 464 465 #if 0 466 printf("For indexing, change the IN expr:\n"); 467 sqlite3TreeViewExpr(0, pX, 0); 468 printf("Into:\n"); 469 sqlite3TreeViewExpr(0, pNew, 0); 470 #endif 471 } 472 return pNew; 473 } 474 475 476 /* 477 ** Generate code for a single equality term of the WHERE clause. An equality 478 ** term can be either X=expr or X IN (...). pTerm is the term to be 479 ** coded. 480 ** 481 ** The current value for the constraint is left in a register, the index 482 ** of which is returned. An attempt is made store the result in iTarget but 483 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the 484 ** constraint is a TK_EQ or TK_IS, then the current value might be left in 485 ** some other register and it is the caller's responsibility to compensate. 486 ** 487 ** For a constraint of the form X=expr, the expression is evaluated in 488 ** straight-line code. For constraints of the form X IN (...) 489 ** this routine sets up a loop that will iterate over all values of X. 490 */ 491 static int codeEqualityTerm( 492 Parse *pParse, /* The parsing context */ 493 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 494 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 495 int iEq, /* Index of the equality term within this level */ 496 int bRev, /* True for reverse-order IN operations */ 497 int iTarget /* Attempt to leave results in this register */ 498 ){ 499 Expr *pX = pTerm->pExpr; 500 Vdbe *v = pParse->pVdbe; 501 int iReg; /* Register holding results */ 502 503 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); 504 assert( iTarget>0 ); 505 if( pX->op==TK_EQ || pX->op==TK_IS ){ 506 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 507 }else if( pX->op==TK_ISNULL ){ 508 iReg = iTarget; 509 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 510 #ifndef SQLITE_OMIT_SUBQUERY 511 }else{ 512 int eType = IN_INDEX_NOOP; 513 int iTab; 514 struct InLoop *pIn; 515 WhereLoop *pLoop = pLevel->pWLoop; 516 int i; 517 int nEq = 0; 518 int *aiMap = 0; 519 520 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 521 && pLoop->u.btree.pIndex!=0 522 && pLoop->u.btree.pIndex->aSortOrder[iEq] 523 ){ 524 testcase( iEq==0 ); 525 testcase( bRev ); 526 bRev = !bRev; 527 } 528 assert( pX->op==TK_IN ); 529 iReg = iTarget; 530 531 for(i=0; i<iEq; i++){ 532 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ 533 disableTerm(pLevel, pTerm); 534 return iTarget; 535 } 536 } 537 for(i=iEq;i<pLoop->nLTerm; i++){ 538 assert( pLoop->aLTerm[i]!=0 ); 539 if( pLoop->aLTerm[i]->pExpr==pX ) nEq++; 540 } 541 542 if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){ 543 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0); 544 }else{ 545 sqlite3 *db = pParse->db; 546 pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX); 547 548 if( !db->mallocFailed ){ 549 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq); 550 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap); 551 pTerm->pExpr->iTable = pX->iTable; 552 } 553 sqlite3ExprDelete(db, pX); 554 pX = pTerm->pExpr; 555 } 556 557 if( eType==IN_INDEX_INDEX_DESC ){ 558 testcase( bRev ); 559 bRev = !bRev; 560 } 561 iTab = pX->iTable; 562 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 563 VdbeCoverageIf(v, bRev); 564 VdbeCoverageIf(v, !bRev); 565 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 566 567 pLoop->wsFlags |= WHERE_IN_ABLE; 568 if( pLevel->u.in.nIn==0 ){ 569 pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 570 } 571 572 i = pLevel->u.in.nIn; 573 pLevel->u.in.nIn += nEq; 574 pLevel->u.in.aInLoop = 575 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 576 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 577 pIn = pLevel->u.in.aInLoop; 578 if( pIn ){ 579 int iMap = 0; /* Index in aiMap[] */ 580 pIn += i; 581 for(i=iEq;i<pLoop->nLTerm; i++){ 582 if( pLoop->aLTerm[i]->pExpr==pX ){ 583 int iOut = iReg + i - iEq; 584 if( eType==IN_INDEX_ROWID ){ 585 testcase( nEq>1 ); /* Happens with a UNIQUE index on ROWID */ 586 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); 587 }else{ 588 int iCol = aiMap ? aiMap[iMap++] : 0; 589 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); 590 } 591 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); 592 if( i==iEq ){ 593 pIn->iCur = iTab; 594 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; 595 }else{ 596 pIn->eEndLoopOp = OP_Noop; 597 } 598 pIn++; 599 } 600 } 601 }else{ 602 pLevel->u.in.nIn = 0; 603 } 604 sqlite3DbFree(pParse->db, aiMap); 605 #endif 606 } 607 disableTerm(pLevel, pTerm); 608 return iReg; 609 } 610 611 /* 612 ** Generate code that will evaluate all == and IN constraints for an 613 ** index scan. 614 ** 615 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 616 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 617 ** The index has as many as three equality constraints, but in this 618 ** example, the third "c" value is an inequality. So only two 619 ** constraints are coded. This routine will generate code to evaluate 620 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 621 ** in consecutive registers and the index of the first register is returned. 622 ** 623 ** In the example above nEq==2. But this subroutine works for any value 624 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 625 ** The only thing it does is allocate the pLevel->iMem memory cell and 626 ** compute the affinity string. 627 ** 628 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 629 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 630 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 631 ** occurs after the nEq quality constraints. 632 ** 633 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 634 ** the index of the first memory cell in that range. The code that 635 ** calls this routine will use that memory range to store keys for 636 ** start and termination conditions of the loop. 637 ** key value of the loop. If one or more IN operators appear, then 638 ** this routine allocates an additional nEq memory cells for internal 639 ** use. 640 ** 641 ** Before returning, *pzAff is set to point to a buffer containing a 642 ** copy of the column affinity string of the index allocated using 643 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 644 ** with equality constraints that use BLOB or NONE affinity are set to 645 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 646 ** 647 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 648 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 649 ** 650 ** In the example above, the index on t1(a) has TEXT affinity. But since 651 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 652 ** no conversion should be attempted before using a t2.b value as part of 653 ** a key to search the index. Hence the first byte in the returned affinity 654 ** string in this example would be set to SQLITE_AFF_BLOB. 655 */ 656 static int codeAllEqualityTerms( 657 Parse *pParse, /* Parsing context */ 658 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 659 int bRev, /* Reverse the order of IN operators */ 660 int nExtraReg, /* Number of extra registers to allocate */ 661 char **pzAff /* OUT: Set to point to affinity string */ 662 ){ 663 u16 nEq; /* The number of == or IN constraints to code */ 664 u16 nSkip; /* Number of left-most columns to skip */ 665 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 666 Index *pIdx; /* The index being used for this loop */ 667 WhereTerm *pTerm; /* A single constraint term */ 668 WhereLoop *pLoop; /* The WhereLoop object */ 669 int j; /* Loop counter */ 670 int regBase; /* Base register */ 671 int nReg; /* Number of registers to allocate */ 672 char *zAff; /* Affinity string to return */ 673 674 /* This module is only called on query plans that use an index. */ 675 pLoop = pLevel->pWLoop; 676 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 677 nEq = pLoop->u.btree.nEq; 678 nSkip = pLoop->nSkip; 679 pIdx = pLoop->u.btree.pIndex; 680 assert( pIdx!=0 ); 681 682 /* Figure out how many memory cells we will need then allocate them. 683 */ 684 regBase = pParse->nMem + 1; 685 nReg = pLoop->u.btree.nEq + nExtraReg; 686 pParse->nMem += nReg; 687 688 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 689 assert( zAff!=0 || pParse->db->mallocFailed ); 690 691 if( nSkip ){ 692 int iIdxCur = pLevel->iIdxCur; 693 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 694 VdbeCoverageIf(v, bRev==0); 695 VdbeCoverageIf(v, bRev!=0); 696 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 697 j = sqlite3VdbeAddOp0(v, OP_Goto); 698 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 699 iIdxCur, 0, regBase, nSkip); 700 VdbeCoverageIf(v, bRev==0); 701 VdbeCoverageIf(v, bRev!=0); 702 sqlite3VdbeJumpHere(v, j); 703 for(j=0; j<nSkip; j++){ 704 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 705 testcase( pIdx->aiColumn[j]==XN_EXPR ); 706 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 707 } 708 } 709 710 /* Evaluate the equality constraints 711 */ 712 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 713 for(j=nSkip; j<nEq; j++){ 714 int r1; 715 pTerm = pLoop->aLTerm[j]; 716 assert( pTerm!=0 ); 717 /* The following testcase is true for indices with redundant columns. 718 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 719 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 720 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 721 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 722 if( r1!=regBase+j ){ 723 if( nReg==1 ){ 724 sqlite3ReleaseTempReg(pParse, regBase); 725 regBase = r1; 726 }else{ 727 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 728 } 729 } 730 if( pTerm->eOperator & WO_IN ){ 731 if( pTerm->pExpr->flags & EP_xIsSelect ){ 732 /* No affinity ever needs to be (or should be) applied to a value 733 ** from the RHS of an "? IN (SELECT ...)" expression. The 734 ** sqlite3FindInIndex() routine has already ensured that the 735 ** affinity of the comparison has been applied to the value. */ 736 if( zAff ) zAff[j] = SQLITE_AFF_BLOB; 737 } 738 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ 739 Expr *pRight = pTerm->pExpr->pRight; 740 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 741 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 742 VdbeCoverage(v); 743 } 744 if( zAff ){ 745 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 746 zAff[j] = SQLITE_AFF_BLOB; 747 } 748 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 749 zAff[j] = SQLITE_AFF_BLOB; 750 } 751 } 752 } 753 } 754 *pzAff = zAff; 755 return regBase; 756 } 757 758 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 759 /* 760 ** If the most recently coded instruction is a constant range constraint 761 ** (a string literal) that originated from the LIKE optimization, then 762 ** set P3 and P5 on the OP_String opcode so that the string will be cast 763 ** to a BLOB at appropriate times. 764 ** 765 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 766 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 767 ** scan loop run twice, once for strings and a second time for BLOBs. 768 ** The OP_String opcodes on the second pass convert the upper and lower 769 ** bound string constants to blobs. This routine makes the necessary changes 770 ** to the OP_String opcodes for that to happen. 771 ** 772 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 773 ** only the one pass through the string space is required, so this routine 774 ** becomes a no-op. 775 */ 776 static void whereLikeOptimizationStringFixup( 777 Vdbe *v, /* prepared statement under construction */ 778 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 779 WhereTerm *pTerm /* The upper or lower bound just coded */ 780 ){ 781 if( pTerm->wtFlags & TERM_LIKEOPT ){ 782 VdbeOp *pOp; 783 assert( pLevel->iLikeRepCntr>0 ); 784 pOp = sqlite3VdbeGetOp(v, -1); 785 assert( pOp!=0 ); 786 assert( pOp->opcode==OP_String8 787 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 788 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ 789 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ 790 } 791 } 792 #else 793 # define whereLikeOptimizationStringFixup(A,B,C) 794 #endif 795 796 #ifdef SQLITE_ENABLE_CURSOR_HINTS 797 /* 798 ** Information is passed from codeCursorHint() down to individual nodes of 799 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 800 ** structure. 801 */ 802 struct CCurHint { 803 int iTabCur; /* Cursor for the main table */ 804 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 805 Index *pIdx; /* The index used to access the table */ 806 }; 807 808 /* 809 ** This function is called for every node of an expression that is a candidate 810 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 811 ** the table CCurHint.iTabCur, verify that the same column can be 812 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 813 */ 814 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 815 struct CCurHint *pHint = pWalker->u.pCCurHint; 816 assert( pHint->pIdx!=0 ); 817 if( pExpr->op==TK_COLUMN 818 && pExpr->iTable==pHint->iTabCur 819 && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0 820 ){ 821 pWalker->eCode = 1; 822 } 823 return WRC_Continue; 824 } 825 826 /* 827 ** Test whether or not expression pExpr, which was part of a WHERE clause, 828 ** should be included in the cursor-hint for a table that is on the rhs 829 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the 830 ** expression is not suitable. 831 ** 832 ** An expression is unsuitable if it might evaluate to non NULL even if 833 ** a TK_COLUMN node that does affect the value of the expression is set 834 ** to NULL. For example: 835 ** 836 ** col IS NULL 837 ** col IS NOT NULL 838 ** coalesce(col, 1) 839 ** CASE WHEN col THEN 0 ELSE 1 END 840 */ 841 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ 842 if( pExpr->op==TK_IS 843 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT 844 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE 845 ){ 846 pWalker->eCode = 1; 847 }else if( pExpr->op==TK_FUNCTION ){ 848 int d1; 849 char d2[4]; 850 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ 851 pWalker->eCode = 1; 852 } 853 } 854 855 return WRC_Continue; 856 } 857 858 859 /* 860 ** This function is called on every node of an expression tree used as an 861 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 862 ** that accesses any table other than the one identified by 863 ** CCurHint.iTabCur, then do the following: 864 ** 865 ** 1) allocate a register and code an OP_Column instruction to read 866 ** the specified column into the new register, and 867 ** 868 ** 2) transform the expression node to a TK_REGISTER node that reads 869 ** from the newly populated register. 870 ** 871 ** Also, if the node is a TK_COLUMN that does access the table idenified 872 ** by pCCurHint.iTabCur, and an index is being used (which we will 873 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 874 ** an access of the index rather than the original table. 875 */ 876 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 877 int rc = WRC_Continue; 878 struct CCurHint *pHint = pWalker->u.pCCurHint; 879 if( pExpr->op==TK_COLUMN ){ 880 if( pExpr->iTable!=pHint->iTabCur ){ 881 Vdbe *v = pWalker->pParse->pVdbe; 882 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 883 sqlite3ExprCodeGetColumnOfTable( 884 v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg 885 ); 886 pExpr->op = TK_REGISTER; 887 pExpr->iTable = reg; 888 }else if( pHint->pIdx!=0 ){ 889 pExpr->iTable = pHint->iIdxCur; 890 pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn); 891 assert( pExpr->iColumn>=0 ); 892 } 893 }else if( pExpr->op==TK_AGG_FUNCTION ){ 894 /* An aggregate function in the WHERE clause of a query means this must 895 ** be a correlated sub-query, and expression pExpr is an aggregate from 896 ** the parent context. Do not walk the function arguments in this case. 897 ** 898 ** todo: It should be possible to replace this node with a TK_REGISTER 899 ** expression, as the result of the expression must be stored in a 900 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 901 rc = WRC_Prune; 902 } 903 return rc; 904 } 905 906 /* 907 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 908 */ 909 static void codeCursorHint( 910 struct SrcList_item *pTabItem, /* FROM clause item */ 911 WhereInfo *pWInfo, /* The where clause */ 912 WhereLevel *pLevel, /* Which loop to provide hints for */ 913 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 914 ){ 915 Parse *pParse = pWInfo->pParse; 916 sqlite3 *db = pParse->db; 917 Vdbe *v = pParse->pVdbe; 918 Expr *pExpr = 0; 919 WhereLoop *pLoop = pLevel->pWLoop; 920 int iCur; 921 WhereClause *pWC; 922 WhereTerm *pTerm; 923 int i, j; 924 struct CCurHint sHint; 925 Walker sWalker; 926 927 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 928 iCur = pLevel->iTabCur; 929 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 930 sHint.iTabCur = iCur; 931 sHint.iIdxCur = pLevel->iIdxCur; 932 sHint.pIdx = pLoop->u.btree.pIndex; 933 memset(&sWalker, 0, sizeof(sWalker)); 934 sWalker.pParse = pParse; 935 sWalker.u.pCCurHint = &sHint; 936 pWC = &pWInfo->sWC; 937 for(i=0; i<pWC->nTerm; i++){ 938 pTerm = &pWC->a[i]; 939 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 940 if( pTerm->prereqAll & pLevel->notReady ) continue; 941 942 /* Any terms specified as part of the ON(...) clause for any LEFT 943 ** JOIN for which the current table is not the rhs are omitted 944 ** from the cursor-hint. 945 ** 946 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms 947 ** that were specified as part of the WHERE clause must be excluded. 948 ** This is to address the following: 949 ** 950 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; 951 ** 952 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its 953 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is 954 ** pushed down to the cursor, this row is filtered out, causing 955 ** SQLite to synthesize a row of NULL values. Which does match the 956 ** WHERE clause, and so the query returns a row. Which is incorrect. 957 ** 958 ** For the same reason, WHERE terms such as: 959 ** 960 ** WHERE 1 = (t2.c IS NULL) 961 ** 962 ** are also excluded. See codeCursorHintIsOrFunction() for details. 963 */ 964 if( pTabItem->fg.jointype & JT_LEFT ){ 965 Expr *pExpr = pTerm->pExpr; 966 if( !ExprHasProperty(pExpr, EP_FromJoin) 967 || pExpr->iRightJoinTable!=pTabItem->iCursor 968 ){ 969 sWalker.eCode = 0; 970 sWalker.xExprCallback = codeCursorHintIsOrFunction; 971 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 972 if( sWalker.eCode ) continue; 973 } 974 }else{ 975 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; 976 } 977 978 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 979 ** the cursor. These terms are not needed as hints for a pure range 980 ** scan (that has no == terms) so omit them. */ 981 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 982 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 983 if( j<pLoop->nLTerm ) continue; 984 } 985 986 /* No subqueries or non-deterministic functions allowed */ 987 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 988 989 /* For an index scan, make sure referenced columns are actually in 990 ** the index. */ 991 if( sHint.pIdx!=0 ){ 992 sWalker.eCode = 0; 993 sWalker.xExprCallback = codeCursorHintCheckExpr; 994 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 995 if( sWalker.eCode ) continue; 996 } 997 998 /* If we survive all prior tests, that means this term is worth hinting */ 999 pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 1000 } 1001 if( pExpr!=0 ){ 1002 sWalker.xExprCallback = codeCursorHintFixExpr; 1003 sqlite3WalkExpr(&sWalker, pExpr); 1004 sqlite3VdbeAddOp4(v, OP_CursorHint, 1005 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 1006 (const char*)pExpr, P4_EXPR); 1007 } 1008 } 1009 #else 1010 # define codeCursorHint(A,B,C,D) /* No-op */ 1011 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 1012 1013 /* 1014 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains 1015 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This 1016 ** function generates code to do a deferred seek of cursor iCur to the 1017 ** rowid stored in register iRowid. 1018 ** 1019 ** Normally, this is just: 1020 ** 1021 ** OP_DeferredSeek $iCur $iRowid 1022 ** 1023 ** However, if the scan currently being coded is a branch of an OR-loop and 1024 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek 1025 ** is set to iIdxCur and P4 is set to point to an array of integers 1026 ** containing one entry for each column of the table cursor iCur is open 1027 ** on. For each table column, if the column is the i'th column of the 1028 ** index, then the corresponding array entry is set to (i+1). If the column 1029 ** does not appear in the index at all, the array entry is set to 0. 1030 */ 1031 static void codeDeferredSeek( 1032 WhereInfo *pWInfo, /* Where clause context */ 1033 Index *pIdx, /* Index scan is using */ 1034 int iCur, /* Cursor for IPK b-tree */ 1035 int iIdxCur /* Index cursor */ 1036 ){ 1037 Parse *pParse = pWInfo->pParse; /* Parse context */ 1038 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ 1039 1040 assert( iIdxCur>0 ); 1041 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); 1042 1043 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur); 1044 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 1045 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) 1046 ){ 1047 int i; 1048 Table *pTab = pIdx->pTable; 1049 int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1)); 1050 if( ai ){ 1051 ai[0] = pTab->nCol; 1052 for(i=0; i<pIdx->nColumn-1; i++){ 1053 assert( pIdx->aiColumn[i]<pTab->nCol ); 1054 if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1; 1055 } 1056 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); 1057 } 1058 } 1059 } 1060 1061 /* 1062 ** If the expression passed as the second argument is a vector, generate 1063 ** code to write the first nReg elements of the vector into an array 1064 ** of registers starting with iReg. 1065 ** 1066 ** If the expression is not a vector, then nReg must be passed 1. In 1067 ** this case, generate code to evaluate the expression and leave the 1068 ** result in register iReg. 1069 */ 1070 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ 1071 assert( nReg>0 ); 1072 if( p && sqlite3ExprIsVector(p) ){ 1073 #ifndef SQLITE_OMIT_SUBQUERY 1074 if( (p->flags & EP_xIsSelect) ){ 1075 Vdbe *v = pParse->pVdbe; 1076 int iSelect = sqlite3CodeSubselect(pParse, p, 0, 0); 1077 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); 1078 }else 1079 #endif 1080 { 1081 int i; 1082 ExprList *pList = p->x.pList; 1083 assert( nReg<=pList->nExpr ); 1084 for(i=0; i<nReg; i++){ 1085 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i); 1086 } 1087 } 1088 }else{ 1089 assert( nReg==1 ); 1090 sqlite3ExprCode(pParse, p, iReg); 1091 } 1092 } 1093 1094 /* An instance of the IdxExprTrans object carries information about a 1095 ** mapping from an expression on table columns into a column in an index 1096 ** down through the Walker. 1097 */ 1098 typedef struct IdxExprTrans { 1099 Expr *pIdxExpr; /* The index expression */ 1100 int iTabCur; /* The cursor of the corresponding table */ 1101 int iIdxCur; /* The cursor for the index */ 1102 int iIdxCol; /* The column for the index */ 1103 } IdxExprTrans; 1104 1105 /* The walker node callback used to transform matching expressions into 1106 ** a reference to an index column for an index on an expression. 1107 ** 1108 ** If pExpr matches, then transform it into a reference to the index column 1109 ** that contains the value of pExpr. 1110 */ 1111 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){ 1112 IdxExprTrans *pX = p->u.pIdxTrans; 1113 if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){ 1114 pExpr->op = TK_COLUMN; 1115 pExpr->iTable = pX->iIdxCur; 1116 pExpr->iColumn = pX->iIdxCol; 1117 pExpr->pTab = 0; 1118 return WRC_Prune; 1119 }else{ 1120 return WRC_Continue; 1121 } 1122 } 1123 1124 /* 1125 ** For an indexes on expression X, locate every instance of expression X 1126 ** in pExpr and change that subexpression into a reference to the appropriate 1127 ** column of the index. 1128 */ 1129 static void whereIndexExprTrans( 1130 Index *pIdx, /* The Index */ 1131 int iTabCur, /* Cursor of the table that is being indexed */ 1132 int iIdxCur, /* Cursor of the index itself */ 1133 WhereInfo *pWInfo /* Transform expressions in this WHERE clause */ 1134 ){ 1135 int iIdxCol; /* Column number of the index */ 1136 ExprList *aColExpr; /* Expressions that are indexed */ 1137 Walker w; 1138 IdxExprTrans x; 1139 aColExpr = pIdx->aColExpr; 1140 if( aColExpr==0 ) return; /* Not an index on expressions */ 1141 memset(&w, 0, sizeof(w)); 1142 w.xExprCallback = whereIndexExprTransNode; 1143 w.u.pIdxTrans = &x; 1144 x.iTabCur = iTabCur; 1145 x.iIdxCur = iIdxCur; 1146 for(iIdxCol=0; iIdxCol<aColExpr->nExpr; iIdxCol++){ 1147 if( pIdx->aiColumn[iIdxCol]!=XN_EXPR ) continue; 1148 assert( aColExpr->a[iIdxCol].pExpr!=0 ); 1149 x.iIdxCol = iIdxCol; 1150 x.pIdxExpr = aColExpr->a[iIdxCol].pExpr; 1151 sqlite3WalkExpr(&w, pWInfo->pWhere); 1152 sqlite3WalkExprList(&w, pWInfo->pOrderBy); 1153 sqlite3WalkExprList(&w, pWInfo->pResultSet); 1154 } 1155 } 1156 1157 /* 1158 ** Generate code for the start of the iLevel-th loop in the WHERE clause 1159 ** implementation described by pWInfo. 1160 */ 1161 Bitmask sqlite3WhereCodeOneLoopStart( 1162 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1163 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1164 Bitmask notReady /* Which tables are currently available */ 1165 ){ 1166 int j, k; /* Loop counters */ 1167 int iCur; /* The VDBE cursor for the table */ 1168 int addrNxt; /* Where to jump to continue with the next IN case */ 1169 int omitTable; /* True if we use the index only */ 1170 int bRev; /* True if we need to scan in reverse order */ 1171 WhereLevel *pLevel; /* The where level to be coded */ 1172 WhereLoop *pLoop; /* The WhereLoop object being coded */ 1173 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 1174 WhereTerm *pTerm; /* A WHERE clause term */ 1175 Parse *pParse; /* Parsing context */ 1176 sqlite3 *db; /* Database connection */ 1177 Vdbe *v; /* The prepared stmt under constructions */ 1178 struct SrcList_item *pTabItem; /* FROM clause term being coded */ 1179 int addrBrk; /* Jump here to break out of the loop */ 1180 int addrHalt; /* addrBrk for the outermost loop */ 1181 int addrCont; /* Jump here to continue with next cycle */ 1182 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 1183 int iReleaseReg = 0; /* Temp register to free before returning */ 1184 Index *pIdx = 0; /* Index used by loop (if any) */ 1185 int iLoop; /* Iteration of constraint generator loop */ 1186 1187 pParse = pWInfo->pParse; 1188 v = pParse->pVdbe; 1189 pWC = &pWInfo->sWC; 1190 db = pParse->db; 1191 pLevel = &pWInfo->a[iLevel]; 1192 pLoop = pLevel->pWLoop; 1193 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1194 iCur = pTabItem->iCursor; 1195 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 1196 bRev = (pWInfo->revMask>>iLevel)&1; 1197 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 1198 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0; 1199 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 1200 1201 /* Create labels for the "break" and "continue" instructions 1202 ** for the current loop. Jump to addrBrk to break out of a loop. 1203 ** Jump to cont to go immediately to the next iteration of the 1204 ** loop. 1205 ** 1206 ** When there is an IN operator, we also have a "addrNxt" label that 1207 ** means to continue with the next IN value combination. When 1208 ** there are no IN operators in the constraints, the "addrNxt" label 1209 ** is the same as "addrBrk". 1210 */ 1211 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 1212 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); 1213 1214 /* If this is the right table of a LEFT OUTER JOIN, allocate and 1215 ** initialize a memory cell that records if this table matches any 1216 ** row of the left table of the join. 1217 */ 1218 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 1219 pLevel->iLeftJoin = ++pParse->nMem; 1220 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 1221 VdbeComment((v, "init LEFT JOIN no-match flag")); 1222 } 1223 1224 /* Compute a safe address to jump to if we discover that the table for 1225 ** this loop is empty and can never contribute content. */ 1226 for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){} 1227 addrHalt = pWInfo->a[j].addrBrk; 1228 1229 /* Special case of a FROM clause subquery implemented as a co-routine */ 1230 if( pTabItem->fg.viaCoroutine ){ 1231 int regYield = pTabItem->regReturn; 1232 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 1233 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 1234 VdbeCoverage(v); 1235 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); 1236 pLevel->op = OP_Goto; 1237 }else 1238 1239 #ifndef SQLITE_OMIT_VIRTUALTABLE 1240 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 1241 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 1242 ** to access the data. 1243 */ 1244 int iReg; /* P3 Value for OP_VFilter */ 1245 int addrNotFound; 1246 int nConstraint = pLoop->nLTerm; 1247 int iIn; /* Counter for IN constraints */ 1248 1249 sqlite3ExprCachePush(pParse); 1250 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 1251 addrNotFound = pLevel->addrBrk; 1252 for(j=0; j<nConstraint; j++){ 1253 int iTarget = iReg+j+2; 1254 pTerm = pLoop->aLTerm[j]; 1255 if( NEVER(pTerm==0) ) continue; 1256 if( pTerm->eOperator & WO_IN ){ 1257 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 1258 addrNotFound = pLevel->addrNxt; 1259 }else{ 1260 Expr *pRight = pTerm->pExpr->pRight; 1261 codeExprOrVector(pParse, pRight, iTarget, 1); 1262 } 1263 } 1264 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 1265 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 1266 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 1267 pLoop->u.vtab.idxStr, 1268 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); 1269 VdbeCoverage(v); 1270 pLoop->u.vtab.needFree = 0; 1271 pLevel->p1 = iCur; 1272 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 1273 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1274 iIn = pLevel->u.in.nIn; 1275 for(j=nConstraint-1; j>=0; j--){ 1276 pTerm = pLoop->aLTerm[j]; 1277 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ 1278 disableTerm(pLevel, pTerm); 1279 }else if( (pTerm->eOperator & WO_IN)!=0 ){ 1280 Expr *pCompare; /* The comparison operator */ 1281 Expr *pRight; /* RHS of the comparison */ 1282 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ 1283 1284 /* Reload the constraint value into reg[iReg+j+2]. The same value 1285 ** was loaded into the same register prior to the OP_VFilter, but 1286 ** the xFilter implementation might have changed the datatype or 1287 ** encoding of the value in the register, so it *must* be reloaded. */ 1288 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed ); 1289 if( !db->mallocFailed ){ 1290 assert( iIn>0 ); 1291 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[--iIn].addrInTop); 1292 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid ); 1293 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 ); 1294 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 ); 1295 testcase( pOp->opcode==OP_Rowid ); 1296 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); 1297 } 1298 1299 /* Generate code that will continue to the next row if 1300 ** the IN constraint is not satisfied */ 1301 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); 1302 assert( pCompare!=0 || db->mallocFailed ); 1303 if( pCompare ){ 1304 pCompare->pLeft = pTerm->pExpr->pLeft; 1305 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); 1306 if( pRight ){ 1307 pRight->iTable = iReg+j+2; 1308 sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0); 1309 } 1310 pCompare->pLeft = 0; 1311 sqlite3ExprDelete(db, pCompare); 1312 } 1313 } 1314 } 1315 /* These registers need to be preserved in case there is an IN operator 1316 ** loop. So we could deallocate the registers here (and potentially 1317 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems 1318 ** simpler and safer to simply not reuse the registers. 1319 ** 1320 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 1321 */ 1322 sqlite3ExprCachePop(pParse); 1323 }else 1324 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1325 1326 if( (pLoop->wsFlags & WHERE_IPK)!=0 1327 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 1328 ){ 1329 /* Case 2: We can directly reference a single row using an 1330 ** equality comparison against the ROWID field. Or 1331 ** we reference multiple rows using a "rowid IN (...)" 1332 ** construct. 1333 */ 1334 assert( pLoop->u.btree.nEq==1 ); 1335 pTerm = pLoop->aLTerm[0]; 1336 assert( pTerm!=0 ); 1337 assert( pTerm->pExpr!=0 ); 1338 assert( omitTable==0 ); 1339 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1340 iReleaseReg = ++pParse->nMem; 1341 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 1342 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 1343 addrNxt = pLevel->addrNxt; 1344 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); 1345 VdbeCoverage(v); 1346 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); 1347 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 1348 VdbeComment((v, "pk")); 1349 pLevel->op = OP_Noop; 1350 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 1351 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 1352 ){ 1353 /* Case 3: We have an inequality comparison against the ROWID field. 1354 */ 1355 int testOp = OP_Noop; 1356 int start; 1357 int memEndValue = 0; 1358 WhereTerm *pStart, *pEnd; 1359 1360 assert( omitTable==0 ); 1361 j = 0; 1362 pStart = pEnd = 0; 1363 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 1364 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 1365 assert( pStart!=0 || pEnd!=0 ); 1366 if( bRev ){ 1367 pTerm = pStart; 1368 pStart = pEnd; 1369 pEnd = pTerm; 1370 } 1371 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); 1372 if( pStart ){ 1373 Expr *pX; /* The expression that defines the start bound */ 1374 int r1, rTemp; /* Registers for holding the start boundary */ 1375 int op; /* Cursor seek operation */ 1376 1377 /* The following constant maps TK_xx codes into corresponding 1378 ** seek opcodes. It depends on a particular ordering of TK_xx 1379 */ 1380 const u8 aMoveOp[] = { 1381 /* TK_GT */ OP_SeekGT, 1382 /* TK_LE */ OP_SeekLE, 1383 /* TK_LT */ OP_SeekLT, 1384 /* TK_GE */ OP_SeekGE 1385 }; 1386 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 1387 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 1388 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 1389 1390 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 1391 testcase( pStart->wtFlags & TERM_VIRTUAL ); 1392 pX = pStart->pExpr; 1393 assert( pX!=0 ); 1394 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 1395 if( sqlite3ExprIsVector(pX->pRight) ){ 1396 r1 = rTemp = sqlite3GetTempReg(pParse); 1397 codeExprOrVector(pParse, pX->pRight, r1, 1); 1398 op = aMoveOp[(pX->op - TK_GT) | 0x0001]; 1399 }else{ 1400 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 1401 disableTerm(pLevel, pStart); 1402 op = aMoveOp[(pX->op - TK_GT)]; 1403 } 1404 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); 1405 VdbeComment((v, "pk")); 1406 VdbeCoverageIf(v, pX->op==TK_GT); 1407 VdbeCoverageIf(v, pX->op==TK_LE); 1408 VdbeCoverageIf(v, pX->op==TK_LT); 1409 VdbeCoverageIf(v, pX->op==TK_GE); 1410 sqlite3ExprCacheAffinityChange(pParse, r1, 1); 1411 sqlite3ReleaseTempReg(pParse, rTemp); 1412 }else{ 1413 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt); 1414 VdbeCoverageIf(v, bRev==0); 1415 VdbeCoverageIf(v, bRev!=0); 1416 } 1417 if( pEnd ){ 1418 Expr *pX; 1419 pX = pEnd->pExpr; 1420 assert( pX!=0 ); 1421 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 1422 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 1423 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 1424 memEndValue = ++pParse->nMem; 1425 codeExprOrVector(pParse, pX->pRight, memEndValue, 1); 1426 if( 0==sqlite3ExprIsVector(pX->pRight) 1427 && (pX->op==TK_LT || pX->op==TK_GT) 1428 ){ 1429 testOp = bRev ? OP_Le : OP_Ge; 1430 }else{ 1431 testOp = bRev ? OP_Lt : OP_Gt; 1432 } 1433 if( 0==sqlite3ExprIsVector(pX->pRight) ){ 1434 disableTerm(pLevel, pEnd); 1435 } 1436 } 1437 start = sqlite3VdbeCurrentAddr(v); 1438 pLevel->op = bRev ? OP_Prev : OP_Next; 1439 pLevel->p1 = iCur; 1440 pLevel->p2 = start; 1441 assert( pLevel->p5==0 ); 1442 if( testOp!=OP_Noop ){ 1443 iRowidReg = ++pParse->nMem; 1444 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 1445 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 1446 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 1447 VdbeCoverageIf(v, testOp==OP_Le); 1448 VdbeCoverageIf(v, testOp==OP_Lt); 1449 VdbeCoverageIf(v, testOp==OP_Ge); 1450 VdbeCoverageIf(v, testOp==OP_Gt); 1451 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 1452 } 1453 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 1454 /* Case 4: A scan using an index. 1455 ** 1456 ** The WHERE clause may contain zero or more equality 1457 ** terms ("==" or "IN" operators) that refer to the N 1458 ** left-most columns of the index. It may also contain 1459 ** inequality constraints (>, <, >= or <=) on the indexed 1460 ** column that immediately follows the N equalities. Only 1461 ** the right-most column can be an inequality - the rest must 1462 ** use the "==" and "IN" operators. For example, if the 1463 ** index is on (x,y,z), then the following clauses are all 1464 ** optimized: 1465 ** 1466 ** x=5 1467 ** x=5 AND y=10 1468 ** x=5 AND y<10 1469 ** x=5 AND y>5 AND y<10 1470 ** x=5 AND y=5 AND z<=10 1471 ** 1472 ** The z<10 term of the following cannot be used, only 1473 ** the x=5 term: 1474 ** 1475 ** x=5 AND z<10 1476 ** 1477 ** N may be zero if there are inequality constraints. 1478 ** If there are no inequality constraints, then N is at 1479 ** least one. 1480 ** 1481 ** This case is also used when there are no WHERE clause 1482 ** constraints but an index is selected anyway, in order 1483 ** to force the output order to conform to an ORDER BY. 1484 */ 1485 static const u8 aStartOp[] = { 1486 0, 1487 0, 1488 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1489 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1490 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1491 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1492 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1493 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1494 }; 1495 static const u8 aEndOp[] = { 1496 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1497 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1498 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1499 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1500 }; 1501 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1502 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ 1503 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ 1504 int regBase; /* Base register holding constraint values */ 1505 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1506 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1507 int startEq; /* True if range start uses ==, >= or <= */ 1508 int endEq; /* True if range end uses ==, >= or <= */ 1509 int start_constraints; /* Start of range is constrained */ 1510 int nConstraint; /* Number of constraint terms */ 1511 int iIdxCur; /* The VDBE cursor for the index */ 1512 int nExtraReg = 0; /* Number of extra registers needed */ 1513 int op; /* Instruction opcode */ 1514 char *zStartAff; /* Affinity for start of range constraint */ 1515 char *zEndAff = 0; /* Affinity for end of range constraint */ 1516 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1517 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1518 1519 pIdx = pLoop->u.btree.pIndex; 1520 iIdxCur = pLevel->iIdxCur; 1521 assert( nEq>=pLoop->nSkip ); 1522 1523 /* If this loop satisfies a sort order (pOrderBy) request that 1524 ** was passed to this function to implement a "SELECT min(x) ..." 1525 ** query, then the caller will only allow the loop to run for 1526 ** a single iteration. This means that the first row returned 1527 ** should not have a NULL value stored in 'x'. If column 'x' is 1528 ** the first one after the nEq equality constraints in the index, 1529 ** this requires some special handling. 1530 */ 1531 assert( pWInfo->pOrderBy==0 1532 || pWInfo->pOrderBy->nExpr==1 1533 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); 1534 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 1535 && pWInfo->nOBSat>0 1536 && (pIdx->nKeyCol>nEq) 1537 ){ 1538 assert( pLoop->nSkip==0 ); 1539 bSeekPastNull = 1; 1540 nExtraReg = 1; 1541 } 1542 1543 /* Find any inequality constraint terms for the start and end 1544 ** of the range. 1545 */ 1546 j = nEq; 1547 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1548 pRangeStart = pLoop->aLTerm[j++]; 1549 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); 1550 /* Like optimization range constraints always occur in pairs */ 1551 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1552 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1553 } 1554 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1555 pRangeEnd = pLoop->aLTerm[j++]; 1556 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); 1557 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1558 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1559 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1560 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1561 pLevel->iLikeRepCntr = (u32)++pParse->nMem; 1562 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); 1563 VdbeComment((v, "LIKE loop counter")); 1564 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1565 /* iLikeRepCntr actually stores 2x the counter register number. The 1566 ** bottom bit indicates whether the search order is ASC or DESC. */ 1567 testcase( bRev ); 1568 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1569 assert( (bRev & ~1)==0 ); 1570 pLevel->iLikeRepCntr <<=1; 1571 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); 1572 } 1573 #endif 1574 if( pRangeStart==0 ){ 1575 j = pIdx->aiColumn[nEq]; 1576 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){ 1577 bSeekPastNull = 1; 1578 } 1579 } 1580 } 1581 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1582 1583 /* If we are doing a reverse order scan on an ascending index, or 1584 ** a forward order scan on a descending index, interchange the 1585 ** start and end terms (pRangeStart and pRangeEnd). 1586 */ 1587 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) 1588 || (bRev && pIdx->nKeyCol==nEq) 1589 ){ 1590 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1591 SWAP(u8, bSeekPastNull, bStopAtNull); 1592 SWAP(u8, nBtm, nTop); 1593 } 1594 1595 /* Generate code to evaluate all constraint terms using == or IN 1596 ** and store the values of those terms in an array of registers 1597 ** starting at regBase. 1598 */ 1599 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); 1600 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1601 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1602 if( zStartAff && nTop ){ 1603 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); 1604 } 1605 addrNxt = pLevel->addrNxt; 1606 1607 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1608 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1609 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1610 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1611 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1612 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1613 start_constraints = pRangeStart || nEq>0; 1614 1615 /* Seek the index cursor to the start of the range. */ 1616 nConstraint = nEq; 1617 if( pRangeStart ){ 1618 Expr *pRight = pRangeStart->pExpr->pRight; 1619 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); 1620 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1621 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1622 && sqlite3ExprCanBeNull(pRight) 1623 ){ 1624 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1625 VdbeCoverage(v); 1626 } 1627 if( zStartAff ){ 1628 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); 1629 } 1630 nConstraint += nBtm; 1631 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1632 if( sqlite3ExprIsVector(pRight)==0 ){ 1633 disableTerm(pLevel, pRangeStart); 1634 }else{ 1635 startEq = 1; 1636 } 1637 bSeekPastNull = 0; 1638 }else if( bSeekPastNull ){ 1639 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1640 nConstraint++; 1641 startEq = 0; 1642 start_constraints = 1; 1643 } 1644 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1645 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ 1646 /* The skip-scan logic inside the call to codeAllEqualityConstraints() 1647 ** above has already left the cursor sitting on the correct row, 1648 ** so no further seeking is needed */ 1649 }else{ 1650 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 1651 assert( op!=0 ); 1652 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1653 VdbeCoverage(v); 1654 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1655 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1656 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 1657 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1658 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1659 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 1660 } 1661 1662 /* Load the value for the inequality constraint at the end of the 1663 ** range (if any). 1664 */ 1665 nConstraint = nEq; 1666 if( pRangeEnd ){ 1667 Expr *pRight = pRangeEnd->pExpr->pRight; 1668 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); 1669 codeExprOrVector(pParse, pRight, regBase+nEq, nTop); 1670 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 1671 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 1672 && sqlite3ExprCanBeNull(pRight) 1673 ){ 1674 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1675 VdbeCoverage(v); 1676 } 1677 if( zEndAff ){ 1678 updateRangeAffinityStr(pRight, nTop, zEndAff); 1679 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); 1680 }else{ 1681 assert( pParse->db->mallocFailed ); 1682 } 1683 nConstraint += nTop; 1684 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 1685 1686 if( sqlite3ExprIsVector(pRight)==0 ){ 1687 disableTerm(pLevel, pRangeEnd); 1688 }else{ 1689 endEq = 1; 1690 } 1691 }else if( bStopAtNull ){ 1692 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1693 endEq = 0; 1694 nConstraint++; 1695 } 1696 sqlite3DbFree(db, zStartAff); 1697 sqlite3DbFree(db, zEndAff); 1698 1699 /* Top of the loop body */ 1700 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1701 1702 /* Check if the index cursor is past the end of the range. */ 1703 if( nConstraint ){ 1704 op = aEndOp[bRev*2 + endEq]; 1705 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1706 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1707 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1708 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1709 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1710 } 1711 1712 /* Seek the table cursor, if required */ 1713 if( omitTable ){ 1714 /* pIdx is a covering index. No need to access the main table. */ 1715 }else if( HasRowid(pIdx->pTable) ){ 1716 if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE) || ( 1717 (pWInfo->wctrlFlags & WHERE_SEEK_UNIQ_TABLE) 1718 && (pWInfo->eOnePass==ONEPASS_SINGLE) 1719 )){ 1720 iRowidReg = ++pParse->nMem; 1721 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); 1722 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 1723 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg); 1724 VdbeCoverage(v); 1725 }else{ 1726 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); 1727 } 1728 }else if( iCur!=iIdxCur ){ 1729 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1730 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1731 for(j=0; j<pPk->nKeyCol; j++){ 1732 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); 1733 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 1734 } 1735 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 1736 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 1737 } 1738 1739 /* If pIdx is an index on one or more expressions, then look through 1740 ** all the expressions in pWInfo and try to transform matching expressions 1741 ** into reference to index columns. 1742 */ 1743 whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo); 1744 1745 1746 /* Record the instruction used to terminate the loop. */ 1747 if( pLoop->wsFlags & WHERE_ONEROW ){ 1748 pLevel->op = OP_Noop; 1749 }else if( bRev ){ 1750 pLevel->op = OP_Prev; 1751 }else{ 1752 pLevel->op = OP_Next; 1753 } 1754 pLevel->p1 = iIdxCur; 1755 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 1756 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 1757 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 1758 }else{ 1759 assert( pLevel->p5==0 ); 1760 } 1761 if( omitTable ) pIdx = 0; 1762 }else 1763 1764 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 1765 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 1766 /* Case 5: Two or more separately indexed terms connected by OR 1767 ** 1768 ** Example: 1769 ** 1770 ** CREATE TABLE t1(a,b,c,d); 1771 ** CREATE INDEX i1 ON t1(a); 1772 ** CREATE INDEX i2 ON t1(b); 1773 ** CREATE INDEX i3 ON t1(c); 1774 ** 1775 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 1776 ** 1777 ** In the example, there are three indexed terms connected by OR. 1778 ** The top of the loop looks like this: 1779 ** 1780 ** Null 1 # Zero the rowset in reg 1 1781 ** 1782 ** Then, for each indexed term, the following. The arguments to 1783 ** RowSetTest are such that the rowid of the current row is inserted 1784 ** into the RowSet. If it is already present, control skips the 1785 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 1786 ** 1787 ** sqlite3WhereBegin(<term>) 1788 ** RowSetTest # Insert rowid into rowset 1789 ** Gosub 2 A 1790 ** sqlite3WhereEnd() 1791 ** 1792 ** Following the above, code to terminate the loop. Label A, the target 1793 ** of the Gosub above, jumps to the instruction right after the Goto. 1794 ** 1795 ** Null 1 # Zero the rowset in reg 1 1796 ** Goto B # The loop is finished. 1797 ** 1798 ** A: <loop body> # Return data, whatever. 1799 ** 1800 ** Return 2 # Jump back to the Gosub 1801 ** 1802 ** B: <after the loop> 1803 ** 1804 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 1805 ** use an ephemeral index instead of a RowSet to record the primary 1806 ** keys of the rows we have already seen. 1807 ** 1808 */ 1809 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 1810 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 1811 Index *pCov = 0; /* Potential covering index (or NULL) */ 1812 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 1813 1814 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 1815 int regRowset = 0; /* Register for RowSet object */ 1816 int regRowid = 0; /* Register holding rowid */ 1817 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ 1818 int iRetInit; /* Address of regReturn init */ 1819 int untestedTerms = 0; /* Some terms not completely tested */ 1820 int ii; /* Loop counter */ 1821 u16 wctrlFlags; /* Flags for sub-WHERE clause */ 1822 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 1823 Table *pTab = pTabItem->pTab; 1824 1825 pTerm = pLoop->aLTerm[0]; 1826 assert( pTerm!=0 ); 1827 assert( pTerm->eOperator & WO_OR ); 1828 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 1829 pOrWc = &pTerm->u.pOrInfo->wc; 1830 pLevel->op = OP_Return; 1831 pLevel->p1 = regReturn; 1832 1833 /* Set up a new SrcList in pOrTab containing the table being scanned 1834 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 1835 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 1836 */ 1837 if( pWInfo->nLevel>1 ){ 1838 int nNotReady; /* The number of notReady tables */ 1839 struct SrcList_item *origSrc; /* Original list of tables */ 1840 nNotReady = pWInfo->nLevel - iLevel - 1; 1841 pOrTab = sqlite3StackAllocRaw(db, 1842 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 1843 if( pOrTab==0 ) return notReady; 1844 pOrTab->nAlloc = (u8)(nNotReady + 1); 1845 pOrTab->nSrc = pOrTab->nAlloc; 1846 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 1847 origSrc = pWInfo->pTabList->a; 1848 for(k=1; k<=nNotReady; k++){ 1849 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 1850 } 1851 }else{ 1852 pOrTab = pWInfo->pTabList; 1853 } 1854 1855 /* Initialize the rowset register to contain NULL. An SQL NULL is 1856 ** equivalent to an empty rowset. Or, create an ephemeral index 1857 ** capable of holding primary keys in the case of a WITHOUT ROWID. 1858 ** 1859 ** Also initialize regReturn to contain the address of the instruction 1860 ** immediately following the OP_Return at the bottom of the loop. This 1861 ** is required in a few obscure LEFT JOIN cases where control jumps 1862 ** over the top of the loop into the body of it. In this case the 1863 ** correct response for the end-of-loop code (the OP_Return) is to 1864 ** fall through to the next instruction, just as an OP_Next does if 1865 ** called on an uninitialized cursor. 1866 */ 1867 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 1868 if( HasRowid(pTab) ){ 1869 regRowset = ++pParse->nMem; 1870 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 1871 }else{ 1872 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1873 regRowset = pParse->nTab++; 1874 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 1875 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 1876 } 1877 regRowid = ++pParse->nMem; 1878 } 1879 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 1880 1881 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 1882 ** Then for every term xN, evaluate as the subexpression: xN AND z 1883 ** That way, terms in y that are factored into the disjunction will 1884 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 1885 ** 1886 ** Actually, each subexpression is converted to "xN AND w" where w is 1887 ** the "interesting" terms of z - terms that did not originate in the 1888 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 1889 ** indices. 1890 ** 1891 ** This optimization also only applies if the (x1 OR x2 OR ...) term 1892 ** is not contained in the ON clause of a LEFT JOIN. 1893 ** See ticket http://www.sqlite.org/src/info/f2369304e4 1894 */ 1895 if( pWC->nTerm>1 ){ 1896 int iTerm; 1897 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 1898 Expr *pExpr = pWC->a[iTerm].pExpr; 1899 if( &pWC->a[iTerm] == pTerm ) continue; 1900 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; 1901 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); 1902 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); 1903 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue; 1904 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 1905 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); 1906 pExpr = sqlite3ExprDup(db, pExpr, 0); 1907 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); 1908 } 1909 if( pAndExpr ){ 1910 pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr); 1911 } 1912 } 1913 1914 /* Run a separate WHERE clause for each term of the OR clause. After 1915 ** eliminating duplicates from other WHERE clauses, the action for each 1916 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 1917 */ 1918 wctrlFlags = WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE); 1919 for(ii=0; ii<pOrWc->nTerm; ii++){ 1920 WhereTerm *pOrTerm = &pOrWc->a[ii]; 1921 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 1922 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 1923 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 1924 int jmp1 = 0; /* Address of jump operation */ 1925 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){ 1926 pAndExpr->pLeft = pOrExpr; 1927 pOrExpr = pAndExpr; 1928 } 1929 /* Loop through table entries that match term pOrTerm. */ 1930 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 1931 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 1932 wctrlFlags, iCovCur); 1933 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); 1934 if( pSubWInfo ){ 1935 WhereLoop *pSubLoop; 1936 int addrExplain = sqlite3WhereExplainOneScan( 1937 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 1938 ); 1939 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 1940 1941 /* This is the sub-WHERE clause body. First skip over 1942 ** duplicate rows from prior sub-WHERE clauses, and record the 1943 ** rowid (or PRIMARY KEY) for the current row so that the same 1944 ** row will be skipped in subsequent sub-WHERE clauses. 1945 */ 1946 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 1947 int r; 1948 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 1949 if( HasRowid(pTab) ){ 1950 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0); 1951 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 1952 r,iSet); 1953 VdbeCoverage(v); 1954 }else{ 1955 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1956 int nPk = pPk->nKeyCol; 1957 int iPk; 1958 1959 /* Read the PK into an array of temp registers. */ 1960 r = sqlite3GetTempRange(pParse, nPk); 1961 for(iPk=0; iPk<nPk; iPk++){ 1962 int iCol = pPk->aiColumn[iPk]; 1963 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk); 1964 } 1965 1966 /* Check if the temp table already contains this key. If so, 1967 ** the row has already been included in the result set and 1968 ** can be ignored (by jumping past the Gosub below). Otherwise, 1969 ** insert the key into the temp table and proceed with processing 1970 ** the row. 1971 ** 1972 ** Use some of the same optimizations as OP_RowSetTest: If iSet 1973 ** is zero, assume that the key cannot already be present in 1974 ** the temp table. And if iSet is -1, assume that there is no 1975 ** need to insert the key into the temp table, as it will never 1976 ** be tested for. */ 1977 if( iSet ){ 1978 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 1979 VdbeCoverage(v); 1980 } 1981 if( iSet>=0 ){ 1982 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 1983 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid, 1984 r, nPk); 1985 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1986 } 1987 1988 /* Release the array of temp registers */ 1989 sqlite3ReleaseTempRange(pParse, r, nPk); 1990 } 1991 } 1992 1993 /* Invoke the main loop body as a subroutine */ 1994 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 1995 1996 /* Jump here (skipping the main loop body subroutine) if the 1997 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 1998 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 1999 2000 /* The pSubWInfo->untestedTerms flag means that this OR term 2001 ** contained one or more AND term from a notReady table. The 2002 ** terms from the notReady table could not be tested and will 2003 ** need to be tested later. 2004 */ 2005 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 2006 2007 /* If all of the OR-connected terms are optimized using the same 2008 ** index, and the index is opened using the same cursor number 2009 ** by each call to sqlite3WhereBegin() made by this loop, it may 2010 ** be possible to use that index as a covering index. 2011 ** 2012 ** If the call to sqlite3WhereBegin() above resulted in a scan that 2013 ** uses an index, and this is either the first OR-connected term 2014 ** processed or the index is the same as that used by all previous 2015 ** terms, set pCov to the candidate covering index. Otherwise, set 2016 ** pCov to NULL to indicate that no candidate covering index will 2017 ** be available. 2018 */ 2019 pSubLoop = pSubWInfo->a[0].pWLoop; 2020 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2021 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 2022 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 2023 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 2024 ){ 2025 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 2026 pCov = pSubLoop->u.btree.pIndex; 2027 }else{ 2028 pCov = 0; 2029 } 2030 2031 /* Finish the loop through table entries that match term pOrTerm. */ 2032 sqlite3WhereEnd(pSubWInfo); 2033 } 2034 } 2035 } 2036 pLevel->u.pCovidx = pCov; 2037 if( pCov ) pLevel->iIdxCur = iCovCur; 2038 if( pAndExpr ){ 2039 pAndExpr->pLeft = 0; 2040 sqlite3ExprDelete(db, pAndExpr); 2041 } 2042 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 2043 sqlite3VdbeGoto(v, pLevel->addrBrk); 2044 sqlite3VdbeResolveLabel(v, iLoopBody); 2045 2046 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab); 2047 if( !untestedTerms ) disableTerm(pLevel, pTerm); 2048 }else 2049 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 2050 2051 { 2052 /* Case 6: There is no usable index. We must do a complete 2053 ** scan of the entire table. 2054 */ 2055 static const u8 aStep[] = { OP_Next, OP_Prev }; 2056 static const u8 aStart[] = { OP_Rewind, OP_Last }; 2057 assert( bRev==0 || bRev==1 ); 2058 if( pTabItem->fg.isRecursive ){ 2059 /* Tables marked isRecursive have only a single row that is stored in 2060 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 2061 pLevel->op = OP_Noop; 2062 }else{ 2063 codeCursorHint(pTabItem, pWInfo, pLevel, 0); 2064 pLevel->op = aStep[bRev]; 2065 pLevel->p1 = iCur; 2066 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt); 2067 VdbeCoverageIf(v, bRev==0); 2068 VdbeCoverageIf(v, bRev!=0); 2069 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2070 } 2071 } 2072 2073 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2074 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 2075 #endif 2076 2077 /* Insert code to test every subexpression that can be completely 2078 ** computed using the current set of tables. 2079 ** 2080 ** This loop may run between one and three times, depending on the 2081 ** constraints to be generated. The value of stack variable iLoop 2082 ** determines the constraints coded by each iteration, as follows: 2083 ** 2084 ** iLoop==1: Code only expressions that are entirely covered by pIdx. 2085 ** iLoop==2: Code remaining expressions that do not contain correlated 2086 ** sub-queries. 2087 ** iLoop==3: Code all remaining expressions. 2088 ** 2089 ** An effort is made to skip unnecessary iterations of the loop. 2090 */ 2091 iLoop = (pIdx ? 1 : 2); 2092 do{ 2093 int iNext = 0; /* Next value for iLoop */ 2094 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2095 Expr *pE; 2096 int skipLikeAddr = 0; 2097 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2098 testcase( pTerm->wtFlags & TERM_CODED ); 2099 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2100 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2101 testcase( pWInfo->untestedTerms==0 2102 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); 2103 pWInfo->untestedTerms = 1; 2104 continue; 2105 } 2106 pE = pTerm->pExpr; 2107 assert( pE!=0 ); 2108 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 2109 continue; 2110 } 2111 2112 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){ 2113 iNext = 2; 2114 continue; 2115 } 2116 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){ 2117 if( iNext==0 ) iNext = 3; 2118 continue; 2119 } 2120 2121 if( pTerm->wtFlags & TERM_LIKECOND ){ 2122 /* If the TERM_LIKECOND flag is set, that means that the range search 2123 ** is sufficient to guarantee that the LIKE operator is true, so we 2124 ** can skip the call to the like(A,B) function. But this only works 2125 ** for strings. So do not skip the call to the function on the pass 2126 ** that compares BLOBs. */ 2127 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 2128 continue; 2129 #else 2130 u32 x = pLevel->iLikeRepCntr; 2131 assert( x>0 ); 2132 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If, (int)(x>>1)); 2133 VdbeCoverage(v); 2134 #endif 2135 } 2136 #ifdef WHERETRACE_ENABLED /* 0xffff */ 2137 if( sqlite3WhereTrace ){ 2138 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d", 2139 pWC->nTerm-j, pTerm, iLoop)); 2140 } 2141 #endif 2142 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 2143 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 2144 pTerm->wtFlags |= TERM_CODED; 2145 } 2146 iLoop = iNext; 2147 }while( iLoop>0 ); 2148 2149 /* Insert code to test for implied constraints based on transitivity 2150 ** of the "==" operator. 2151 ** 2152 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 2153 ** and we are coding the t1 loop and the t2 loop has not yet coded, 2154 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 2155 ** the implied "t1.a=123" constraint. 2156 */ 2157 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2158 Expr *pE, sEAlt; 2159 WhereTerm *pAlt; 2160 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2161 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 2162 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 2163 if( pTerm->leftCursor!=iCur ) continue; 2164 if( pLevel->iLeftJoin ) continue; 2165 pE = pTerm->pExpr; 2166 assert( !ExprHasProperty(pE, EP_FromJoin) ); 2167 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 2168 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady, 2169 WO_EQ|WO_IN|WO_IS, 0); 2170 if( pAlt==0 ) continue; 2171 if( pAlt->wtFlags & (TERM_CODED) ) continue; 2172 testcase( pAlt->eOperator & WO_EQ ); 2173 testcase( pAlt->eOperator & WO_IS ); 2174 testcase( pAlt->eOperator & WO_IN ); 2175 VdbeModuleComment((v, "begin transitive constraint")); 2176 sEAlt = *pAlt->pExpr; 2177 sEAlt.pLeft = pE->pLeft; 2178 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); 2179 } 2180 2181 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2182 ** at least one row of the right table has matched the left table. 2183 */ 2184 if( pLevel->iLeftJoin ){ 2185 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2186 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2187 VdbeComment((v, "record LEFT JOIN hit")); 2188 sqlite3ExprCacheClear(pParse); 2189 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 2190 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2191 testcase( pTerm->wtFlags & TERM_CODED ); 2192 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2193 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2194 assert( pWInfo->untestedTerms ); 2195 continue; 2196 } 2197 assert( pTerm->pExpr ); 2198 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 2199 pTerm->wtFlags |= TERM_CODED; 2200 } 2201 } 2202 2203 return pLevel->notReady; 2204 } 2205