xref: /sqlite-3.40.0/src/wherecode.c (revision c583719b)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 
25 /*
26 ** Return the name of the i-th column of the pIdx index.
27 */
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29   i = pIdx->aiColumn[i];
30   if( i==XN_EXPR ) return "<expr>";
31   if( i==XN_ROWID ) return "rowid";
32   return pIdx->pTable->aCol[i].zCnName;
33 }
34 
35 /*
36 ** This routine is a helper for explainIndexRange() below
37 **
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time.  This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
42 */
43 static void explainAppendTerm(
44   StrAccum *pStr,             /* The text expression being built */
45   Index *pIdx,                /* Index to read column names from */
46   int nTerm,                  /* Number of terms */
47   int iTerm,                  /* Zero-based index of first term. */
48   int bAnd,                   /* Non-zero to append " AND " */
49   const char *zOp             /* Name of the operator */
50 ){
51   int i;
52 
53   assert( nTerm>=1 );
54   if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
55 
56   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
57   for(i=0; i<nTerm; i++){
58     if( i ) sqlite3_str_append(pStr, ",", 1);
59     sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
60   }
61   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
62 
63   sqlite3_str_append(pStr, zOp, 1);
64 
65   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
66   for(i=0; i<nTerm; i++){
67     if( i ) sqlite3_str_append(pStr, ",", 1);
68     sqlite3_str_append(pStr, "?", 1);
69   }
70   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
71 }
72 
73 /*
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
77 **
78 ** For example, if the query:
79 **
80 **   SELECT * FROM t1 WHERE a=1 AND b>2;
81 **
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
84 **
85 **   "a=? AND b>?"
86 */
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88   Index *pIndex = pLoop->u.btree.pIndex;
89   u16 nEq = pLoop->u.btree.nEq;
90   u16 nSkip = pLoop->nSkip;
91   int i, j;
92 
93   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94   sqlite3_str_append(pStr, " (", 2);
95   for(i=0; i<nEq; i++){
96     const char *z = explainIndexColumnName(pIndex, i);
97     if( i ) sqlite3_str_append(pStr, " AND ", 5);
98     sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
99   }
100 
101   j = i;
102   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104     i = 1;
105   }
106   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
108   }
109   sqlite3_str_append(pStr, ")", 1);
110 }
111 
112 /*
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
117 **
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
120 */
121 int sqlite3WhereExplainOneScan(
122   Parse *pParse,                  /* Parse context */
123   SrcList *pTabList,              /* Table list this loop refers to */
124   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
125   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
126 ){
127   int ret = 0;
128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
129   if( sqlite3ParseToplevel(pParse)->explain==2 )
130 #endif
131   {
132     SrcItem *pItem = &pTabList->a[pLevel->iFrom];
133     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
134     sqlite3 *db = pParse->db;     /* Database handle */
135     int isSearch;                 /* True for a SEARCH. False for SCAN. */
136     WhereLoop *pLoop;             /* The controlling WhereLoop object */
137     u32 flags;                    /* Flags that describe this loop */
138     char *zMsg;                   /* Text to add to EQP output */
139     StrAccum str;                 /* EQP output string */
140     char zBuf[100];               /* Initial space for EQP output string */
141 
142     pLoop = pLevel->pWLoop;
143     flags = pLoop->wsFlags;
144     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
145 
146     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
147             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
148             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
149 
150     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
151     str.printfFlags = SQLITE_PRINTF_INTERNAL;
152     sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem);
153     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
154       const char *zFmt = 0;
155       Index *pIdx;
156 
157       assert( pLoop->u.btree.pIndex!=0 );
158       pIdx = pLoop->u.btree.pIndex;
159       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
160       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
161         if( isSearch ){
162           zFmt = "PRIMARY KEY";
163         }
164       }else if( flags & WHERE_PARTIALIDX ){
165         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
166       }else if( flags & WHERE_AUTO_INDEX ){
167         zFmt = "AUTOMATIC COVERING INDEX";
168       }else if( flags & WHERE_IDX_ONLY ){
169         zFmt = "COVERING INDEX %s";
170       }else{
171         zFmt = "INDEX %s";
172       }
173       if( zFmt ){
174         sqlite3_str_append(&str, " USING ", 7);
175         sqlite3_str_appendf(&str, zFmt, pIdx->zName);
176         explainIndexRange(&str, pLoop);
177       }
178     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
179       char cRangeOp;
180 #if 0  /* Better output, but breaks many tests */
181       const Table *pTab = pItem->pTab;
182       const char *zRowid = pTab->iPKey>=0 ? pTab->aCol[pTab->iPKey].zCnName:
183                               "rowid";
184 #else
185       const char *zRowid = "rowid";
186 #endif
187       sqlite3_str_appendf(&str, " USING INTEGER PRIMARY KEY (%s", zRowid);
188       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
189         cRangeOp = '=';
190       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
191         sqlite3_str_appendf(&str, ">? AND %s", zRowid);
192         cRangeOp = '<';
193       }else if( flags&WHERE_BTM_LIMIT ){
194         cRangeOp = '>';
195       }else{
196         assert( flags&WHERE_TOP_LIMIT);
197         cRangeOp = '<';
198       }
199       sqlite3_str_appendf(&str, "%c?)", cRangeOp);
200     }
201 #ifndef SQLITE_OMIT_VIRTUALTABLE
202     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
203       sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
204                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
205     }
206 #endif
207     if( pItem->fg.jointype & JT_LEFT ){
208       sqlite3_str_appendf(&str, " LEFT-JOIN");
209     }
210 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
211     if( pLoop->nOut>=10 ){
212       sqlite3_str_appendf(&str, " (~%llu rows)",
213              sqlite3LogEstToInt(pLoop->nOut));
214     }else{
215       sqlite3_str_append(&str, " (~1 row)", 9);
216     }
217 #endif
218     zMsg = sqlite3StrAccumFinish(&str);
219     sqlite3ExplainBreakpoint("",zMsg);
220     ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
221                             pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
222   }
223   return ret;
224 }
225 
226 /*
227 ** Add a single OP_Explain opcode that describes a Bloom filter.
228 **
229 ** Or if not processing EXPLAIN QUERY PLAN and not in a SQLITE_DEBUG and/or
230 ** SQLITE_ENABLE_STMT_SCANSTATUS build, then OP_Explain opcodes are not
231 ** required and this routine is a no-op.
232 **
233 ** If an OP_Explain opcode is added to the VM, its address is returned.
234 ** Otherwise, if no OP_Explain is coded, zero is returned.
235 */
236 int sqlite3WhereExplainBloomFilter(
237   const Parse *pParse,               /* Parse context */
238   const WhereInfo *pWInfo,           /* WHERE clause */
239   const WhereLevel *pLevel           /* Bloom filter on this level */
240 ){
241   int ret = 0;
242   SrcItem *pItem = &pWInfo->pTabList->a[pLevel->iFrom];
243   Vdbe *v = pParse->pVdbe;      /* VM being constructed */
244   sqlite3 *db = pParse->db;     /* Database handle */
245   char *zMsg;                   /* Text to add to EQP output */
246   int i;                        /* Loop counter */
247   WhereLoop *pLoop;             /* The where loop */
248   StrAccum str;                 /* EQP output string */
249   char zBuf[100];               /* Initial space for EQP output string */
250 
251   sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
252   str.printfFlags = SQLITE_PRINTF_INTERNAL;
253   sqlite3_str_appendf(&str, "BLOOM FILTER ON %S (", pItem);
254   pLoop = pLevel->pWLoop;
255   if( pLoop->wsFlags & WHERE_IPK ){
256     const Table *pTab = pItem->pTab;
257     if( pTab->iPKey>=0 ){
258       sqlite3_str_appendf(&str, "%s=?", pTab->aCol[pTab->iPKey].zCnName);
259     }else{
260       sqlite3_str_appendf(&str, "rowid=?");
261     }
262   }else{
263     for(i=pLoop->nSkip; i<pLoop->u.btree.nEq; i++){
264       const char *z = explainIndexColumnName(pLoop->u.btree.pIndex, i);
265       if( i>pLoop->nSkip ) sqlite3_str_append(&str, " AND ", 5);
266       sqlite3_str_appendf(&str, "%s=?", z);
267     }
268   }
269   sqlite3_str_append(&str, ")", 1);
270   zMsg = sqlite3StrAccumFinish(&str);
271   ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
272                           pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
273   return ret;
274 }
275 #endif /* SQLITE_OMIT_EXPLAIN */
276 
277 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
278 /*
279 ** Configure the VM passed as the first argument with an
280 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
281 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
282 ** clause that the scan reads data from.
283 **
284 ** If argument addrExplain is not 0, it must be the address of an
285 ** OP_Explain instruction that describes the same loop.
286 */
287 void sqlite3WhereAddScanStatus(
288   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
289   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
290   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
291   int addrExplain                 /* Address of OP_Explain (or 0) */
292 ){
293   const char *zObj = 0;
294   WhereLoop *pLoop = pLvl->pWLoop;
295   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
296     zObj = pLoop->u.btree.pIndex->zName;
297   }else{
298     zObj = pSrclist->a[pLvl->iFrom].zName;
299   }
300   sqlite3VdbeScanStatus(
301       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
302   );
303 }
304 #endif
305 
306 
307 /*
308 ** Disable a term in the WHERE clause.  Except, do not disable the term
309 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
310 ** or USING clause of that join.
311 **
312 ** Consider the term t2.z='ok' in the following queries:
313 **
314 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
315 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
316 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
317 **
318 ** The t2.z='ok' is disabled in the in (2) because it originates
319 ** in the ON clause.  The term is disabled in (3) because it is not part
320 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
321 **
322 ** Disabling a term causes that term to not be tested in the inner loop
323 ** of the join.  Disabling is an optimization.  When terms are satisfied
324 ** by indices, we disable them to prevent redundant tests in the inner
325 ** loop.  We would get the correct results if nothing were ever disabled,
326 ** but joins might run a little slower.  The trick is to disable as much
327 ** as we can without disabling too much.  If we disabled in (1), we'd get
328 ** the wrong answer.  See ticket #813.
329 **
330 ** If all the children of a term are disabled, then that term is also
331 ** automatically disabled.  In this way, terms get disabled if derived
332 ** virtual terms are tested first.  For example:
333 **
334 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
335 **      \___________/     \______/     \_____/
336 **         parent          child1       child2
337 **
338 ** Only the parent term was in the original WHERE clause.  The child1
339 ** and child2 terms were added by the LIKE optimization.  If both of
340 ** the virtual child terms are valid, then testing of the parent can be
341 ** skipped.
342 **
343 ** Usually the parent term is marked as TERM_CODED.  But if the parent
344 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
345 ** The TERM_LIKECOND marking indicates that the term should be coded inside
346 ** a conditional such that is only evaluated on the second pass of a
347 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
348 */
349 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
350   int nLoop = 0;
351   assert( pTerm!=0 );
352   while( (pTerm->wtFlags & TERM_CODED)==0
353       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
354       && (pLevel->notReady & pTerm->prereqAll)==0
355   ){
356     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
357       pTerm->wtFlags |= TERM_LIKECOND;
358     }else{
359       pTerm->wtFlags |= TERM_CODED;
360     }
361 #ifdef WHERETRACE_ENABLED
362     if( sqlite3WhereTrace & 0x20000 ){
363       sqlite3DebugPrintf("DISABLE-");
364       sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a)));
365     }
366 #endif
367     if( pTerm->iParent<0 ) break;
368     pTerm = &pTerm->pWC->a[pTerm->iParent];
369     assert( pTerm!=0 );
370     pTerm->nChild--;
371     if( pTerm->nChild!=0 ) break;
372     nLoop++;
373   }
374 }
375 
376 /*
377 ** Code an OP_Affinity opcode to apply the column affinity string zAff
378 ** to the n registers starting at base.
379 **
380 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
381 ** are no-ops) at the beginning and end of zAff are ignored.  If all entries
382 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
383 **
384 ** This routine makes its own copy of zAff so that the caller is free
385 ** to modify zAff after this routine returns.
386 */
387 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
388   Vdbe *v = pParse->pVdbe;
389   if( zAff==0 ){
390     assert( pParse->db->mallocFailed );
391     return;
392   }
393   assert( v!=0 );
394 
395   /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
396   ** entries at the beginning and end of the affinity string.
397   */
398   assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB );
399   while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){
400     n--;
401     base++;
402     zAff++;
403   }
404   while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){
405     n--;
406   }
407 
408   /* Code the OP_Affinity opcode if there is anything left to do. */
409   if( n>0 ){
410     sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
411   }
412 }
413 
414 /*
415 ** Expression pRight, which is the RHS of a comparison operation, is
416 ** either a vector of n elements or, if n==1, a scalar expression.
417 ** Before the comparison operation, affinity zAff is to be applied
418 ** to the pRight values. This function modifies characters within the
419 ** affinity string to SQLITE_AFF_BLOB if either:
420 **
421 **   * the comparison will be performed with no affinity, or
422 **   * the affinity change in zAff is guaranteed not to change the value.
423 */
424 static void updateRangeAffinityStr(
425   Expr *pRight,                   /* RHS of comparison */
426   int n,                          /* Number of vector elements in comparison */
427   char *zAff                      /* Affinity string to modify */
428 ){
429   int i;
430   for(i=0; i<n; i++){
431     Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
432     if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
433      || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
434     ){
435       zAff[i] = SQLITE_AFF_BLOB;
436     }
437   }
438 }
439 
440 
441 /*
442 ** pX is an expression of the form:  (vector) IN (SELECT ...)
443 ** In other words, it is a vector IN operator with a SELECT clause on the
444 ** LHS.  But not all terms in the vector are indexable and the terms might
445 ** not be in the correct order for indexing.
446 **
447 ** This routine makes a copy of the input pX expression and then adjusts
448 ** the vector on the LHS with corresponding changes to the SELECT so that
449 ** the vector contains only index terms and those terms are in the correct
450 ** order.  The modified IN expression is returned.  The caller is responsible
451 ** for deleting the returned expression.
452 **
453 ** Example:
454 **
455 **    CREATE TABLE t1(a,b,c,d,e,f);
456 **    CREATE INDEX t1x1 ON t1(e,c);
457 **    SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
458 **                           \_______________________________________/
459 **                                     The pX expression
460 **
461 ** Since only columns e and c can be used with the index, in that order,
462 ** the modified IN expression that is returned will be:
463 **
464 **        (e,c) IN (SELECT z,x FROM t2)
465 **
466 ** The reduced pX is different from the original (obviously) and thus is
467 ** only used for indexing, to improve performance.  The original unaltered
468 ** IN expression must also be run on each output row for correctness.
469 */
470 static Expr *removeUnindexableInClauseTerms(
471   Parse *pParse,        /* The parsing context */
472   int iEq,              /* Look at loop terms starting here */
473   WhereLoop *pLoop,     /* The current loop */
474   Expr *pX              /* The IN expression to be reduced */
475 ){
476   sqlite3 *db = pParse->db;
477   Expr *pNew;
478   pNew = sqlite3ExprDup(db, pX, 0);
479   if( db->mallocFailed==0 ){
480     ExprList *pOrigRhs;         /* Original unmodified RHS */
481     ExprList *pOrigLhs;         /* Original unmodified LHS */
482     ExprList *pRhs = 0;         /* New RHS after modifications */
483     ExprList *pLhs = 0;         /* New LHS after mods */
484     int i;                      /* Loop counter */
485     Select *pSelect;            /* Pointer to the SELECT on the RHS */
486 
487     assert( ExprUseXSelect(pNew) );
488     pOrigRhs = pNew->x.pSelect->pEList;
489     assert( pNew->pLeft!=0 );
490     assert( ExprUseXList(pNew->pLeft) );
491     pOrigLhs = pNew->pLeft->x.pList;
492     for(i=iEq; i<pLoop->nLTerm; i++){
493       if( pLoop->aLTerm[i]->pExpr==pX ){
494         int iField;
495         assert( (pLoop->aLTerm[i]->eOperator & (WO_OR|WO_AND))==0 );
496         iField = pLoop->aLTerm[i]->u.x.iField - 1;
497         if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
498         pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
499         pOrigRhs->a[iField].pExpr = 0;
500         assert( pOrigLhs->a[iField].pExpr!=0 );
501         pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
502         pOrigLhs->a[iField].pExpr = 0;
503       }
504     }
505     sqlite3ExprListDelete(db, pOrigRhs);
506     sqlite3ExprListDelete(db, pOrigLhs);
507     pNew->pLeft->x.pList = pLhs;
508     pNew->x.pSelect->pEList = pRhs;
509     if( pLhs && pLhs->nExpr==1 ){
510       /* Take care here not to generate a TK_VECTOR containing only a
511       ** single value. Since the parser never creates such a vector, some
512       ** of the subroutines do not handle this case.  */
513       Expr *p = pLhs->a[0].pExpr;
514       pLhs->a[0].pExpr = 0;
515       sqlite3ExprDelete(db, pNew->pLeft);
516       pNew->pLeft = p;
517     }
518     pSelect = pNew->x.pSelect;
519     if( pSelect->pOrderBy ){
520       /* If the SELECT statement has an ORDER BY clause, zero the
521       ** iOrderByCol variables. These are set to non-zero when an
522       ** ORDER BY term exactly matches one of the terms of the
523       ** result-set. Since the result-set of the SELECT statement may
524       ** have been modified or reordered, these variables are no longer
525       ** set correctly.  Since setting them is just an optimization,
526       ** it's easiest just to zero them here.  */
527       ExprList *pOrderBy = pSelect->pOrderBy;
528       for(i=0; i<pOrderBy->nExpr; i++){
529         pOrderBy->a[i].u.x.iOrderByCol = 0;
530       }
531     }
532 
533 #if 0
534     printf("For indexing, change the IN expr:\n");
535     sqlite3TreeViewExpr(0, pX, 0);
536     printf("Into:\n");
537     sqlite3TreeViewExpr(0, pNew, 0);
538 #endif
539   }
540   return pNew;
541 }
542 
543 
544 /*
545 ** Generate code for a single equality term of the WHERE clause.  An equality
546 ** term can be either X=expr or X IN (...).   pTerm is the term to be
547 ** coded.
548 **
549 ** The current value for the constraint is left in a register, the index
550 ** of which is returned.  An attempt is made store the result in iTarget but
551 ** this is only guaranteed for TK_ISNULL and TK_IN constraints.  If the
552 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
553 ** some other register and it is the caller's responsibility to compensate.
554 **
555 ** For a constraint of the form X=expr, the expression is evaluated in
556 ** straight-line code.  For constraints of the form X IN (...)
557 ** this routine sets up a loop that will iterate over all values of X.
558 */
559 static int codeEqualityTerm(
560   Parse *pParse,      /* The parsing context */
561   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
562   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
563   int iEq,            /* Index of the equality term within this level */
564   int bRev,           /* True for reverse-order IN operations */
565   int iTarget         /* Attempt to leave results in this register */
566 ){
567   Expr *pX = pTerm->pExpr;
568   Vdbe *v = pParse->pVdbe;
569   int iReg;                  /* Register holding results */
570 
571   assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
572   assert( iTarget>0 );
573   if( pX->op==TK_EQ || pX->op==TK_IS ){
574     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
575   }else if( pX->op==TK_ISNULL ){
576     iReg = iTarget;
577     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
578 #ifndef SQLITE_OMIT_SUBQUERY
579   }else{
580     int eType = IN_INDEX_NOOP;
581     int iTab;
582     struct InLoop *pIn;
583     WhereLoop *pLoop = pLevel->pWLoop;
584     int i;
585     int nEq = 0;
586     int *aiMap = 0;
587 
588     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
589       && pLoop->u.btree.pIndex!=0
590       && pLoop->u.btree.pIndex->aSortOrder[iEq]
591     ){
592       testcase( iEq==0 );
593       testcase( bRev );
594       bRev = !bRev;
595     }
596     assert( pX->op==TK_IN );
597     iReg = iTarget;
598 
599     for(i=0; i<iEq; i++){
600       if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
601         disableTerm(pLevel, pTerm);
602         return iTarget;
603       }
604     }
605     for(i=iEq;i<pLoop->nLTerm; i++){
606       assert( pLoop->aLTerm[i]!=0 );
607       if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
608     }
609 
610     iTab = 0;
611     if( !ExprUseXSelect(pX) || pX->x.pSelect->pEList->nExpr==1 ){
612       eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab);
613     }else{
614       sqlite3 *db = pParse->db;
615       pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
616 
617       if( !db->mallocFailed ){
618         aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
619         eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab);
620         pTerm->pExpr->iTable = iTab;
621       }
622       sqlite3ExprDelete(db, pX);
623       pX = pTerm->pExpr;
624     }
625 
626     if( eType==IN_INDEX_INDEX_DESC ){
627       testcase( bRev );
628       bRev = !bRev;
629     }
630     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
631     VdbeCoverageIf(v, bRev);
632     VdbeCoverageIf(v, !bRev);
633 
634     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
635     pLoop->wsFlags |= WHERE_IN_ABLE;
636     if( pLevel->u.in.nIn==0 ){
637       pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
638     }
639     if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){
640       pLoop->wsFlags |= WHERE_IN_EARLYOUT;
641     }
642 
643     i = pLevel->u.in.nIn;
644     pLevel->u.in.nIn += nEq;
645     pLevel->u.in.aInLoop =
646        sqlite3WhereRealloc(pTerm->pWC->pWInfo,
647                            pLevel->u.in.aInLoop,
648                            sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
649     pIn = pLevel->u.in.aInLoop;
650     if( pIn ){
651       int iMap = 0;               /* Index in aiMap[] */
652       pIn += i;
653       for(i=iEq;i<pLoop->nLTerm; i++){
654         if( pLoop->aLTerm[i]->pExpr==pX ){
655           int iOut = iReg + i - iEq;
656           if( eType==IN_INDEX_ROWID ){
657             pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
658           }else{
659             int iCol = aiMap ? aiMap[iMap++] : 0;
660             pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
661           }
662           sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
663           if( i==iEq ){
664             pIn->iCur = iTab;
665             pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
666             if( iEq>0 ){
667               pIn->iBase = iReg - i;
668               pIn->nPrefix = i;
669             }else{
670               pIn->nPrefix = 0;
671             }
672           }else{
673             pIn->eEndLoopOp = OP_Noop;
674           }
675           pIn++;
676         }
677       }
678       testcase( iEq>0
679                 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
680                 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 );
681       if( iEq>0
682        && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0
683       ){
684         sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq);
685       }
686     }else{
687       pLevel->u.in.nIn = 0;
688     }
689     sqlite3DbFree(pParse->db, aiMap);
690 #endif
691   }
692 
693   /* As an optimization, try to disable the WHERE clause term that is
694   ** driving the index as it will always be true.  The correct answer is
695   ** obtained regardless, but we might get the answer with fewer CPU cycles
696   ** by omitting the term.
697   **
698   ** But do not disable the term unless we are certain that the term is
699   ** not a transitive constraint.  For an example of where that does not
700   ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04)
701   */
702   if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0
703    || (pTerm->eOperator & WO_EQUIV)==0
704   ){
705     disableTerm(pLevel, pTerm);
706   }
707 
708   return iReg;
709 }
710 
711 /*
712 ** Generate code that will evaluate all == and IN constraints for an
713 ** index scan.
714 **
715 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
716 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
717 ** The index has as many as three equality constraints, but in this
718 ** example, the third "c" value is an inequality.  So only two
719 ** constraints are coded.  This routine will generate code to evaluate
720 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
721 ** in consecutive registers and the index of the first register is returned.
722 **
723 ** In the example above nEq==2.  But this subroutine works for any value
724 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
725 ** The only thing it does is allocate the pLevel->iMem memory cell and
726 ** compute the affinity string.
727 **
728 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
729 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
730 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
731 ** occurs after the nEq quality constraints.
732 **
733 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
734 ** the index of the first memory cell in that range. The code that
735 ** calls this routine will use that memory range to store keys for
736 ** start and termination conditions of the loop.
737 ** key value of the loop.  If one or more IN operators appear, then
738 ** this routine allocates an additional nEq memory cells for internal
739 ** use.
740 **
741 ** Before returning, *pzAff is set to point to a buffer containing a
742 ** copy of the column affinity string of the index allocated using
743 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
744 ** with equality constraints that use BLOB or NONE affinity are set to
745 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
746 **
747 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
748 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
749 **
750 ** In the example above, the index on t1(a) has TEXT affinity. But since
751 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
752 ** no conversion should be attempted before using a t2.b value as part of
753 ** a key to search the index. Hence the first byte in the returned affinity
754 ** string in this example would be set to SQLITE_AFF_BLOB.
755 */
756 static int codeAllEqualityTerms(
757   Parse *pParse,        /* Parsing context */
758   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
759   int bRev,             /* Reverse the order of IN operators */
760   int nExtraReg,        /* Number of extra registers to allocate */
761   char **pzAff          /* OUT: Set to point to affinity string */
762 ){
763   u16 nEq;                      /* The number of == or IN constraints to code */
764   u16 nSkip;                    /* Number of left-most columns to skip */
765   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
766   Index *pIdx;                  /* The index being used for this loop */
767   WhereTerm *pTerm;             /* A single constraint term */
768   WhereLoop *pLoop;             /* The WhereLoop object */
769   int j;                        /* Loop counter */
770   int regBase;                  /* Base register */
771   int nReg;                     /* Number of registers to allocate */
772   char *zAff;                   /* Affinity string to return */
773 
774   /* This module is only called on query plans that use an index. */
775   pLoop = pLevel->pWLoop;
776   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
777   nEq = pLoop->u.btree.nEq;
778   nSkip = pLoop->nSkip;
779   pIdx = pLoop->u.btree.pIndex;
780   assert( pIdx!=0 );
781 
782   /* Figure out how many memory cells we will need then allocate them.
783   */
784   regBase = pParse->nMem + 1;
785   nReg = pLoop->u.btree.nEq + nExtraReg;
786   pParse->nMem += nReg;
787 
788   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
789   assert( zAff!=0 || pParse->db->mallocFailed );
790 
791   if( nSkip ){
792     int iIdxCur = pLevel->iIdxCur;
793     sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1);
794     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
795     VdbeCoverageIf(v, bRev==0);
796     VdbeCoverageIf(v, bRev!=0);
797     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
798     j = sqlite3VdbeAddOp0(v, OP_Goto);
799     assert( pLevel->addrSkip==0 );
800     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
801                             iIdxCur, 0, regBase, nSkip);
802     VdbeCoverageIf(v, bRev==0);
803     VdbeCoverageIf(v, bRev!=0);
804     sqlite3VdbeJumpHere(v, j);
805     for(j=0; j<nSkip; j++){
806       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
807       testcase( pIdx->aiColumn[j]==XN_EXPR );
808       VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
809     }
810   }
811 
812   /* Evaluate the equality constraints
813   */
814   assert( zAff==0 || (int)strlen(zAff)>=nEq );
815   for(j=nSkip; j<nEq; j++){
816     int r1;
817     pTerm = pLoop->aLTerm[j];
818     assert( pTerm!=0 );
819     /* The following testcase is true for indices with redundant columns.
820     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
821     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
822     testcase( pTerm->wtFlags & TERM_VIRTUAL );
823     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
824     if( r1!=regBase+j ){
825       if( nReg==1 ){
826         sqlite3ReleaseTempReg(pParse, regBase);
827         regBase = r1;
828       }else{
829         sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j);
830       }
831     }
832   }
833   for(j=nSkip; j<nEq; j++){
834     pTerm = pLoop->aLTerm[j];
835     if( pTerm->eOperator & WO_IN ){
836       if( pTerm->pExpr->flags & EP_xIsSelect ){
837         /* No affinity ever needs to be (or should be) applied to a value
838         ** from the RHS of an "? IN (SELECT ...)" expression. The
839         ** sqlite3FindInIndex() routine has already ensured that the
840         ** affinity of the comparison has been applied to the value.  */
841         if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
842       }
843     }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
844       Expr *pRight = pTerm->pExpr->pRight;
845       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
846         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
847         VdbeCoverage(v);
848       }
849       if( pParse->nErr==0 ){
850         assert( pParse->db->mallocFailed==0 );
851         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
852           zAff[j] = SQLITE_AFF_BLOB;
853         }
854         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
855           zAff[j] = SQLITE_AFF_BLOB;
856         }
857       }
858     }
859   }
860   *pzAff = zAff;
861   return regBase;
862 }
863 
864 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
865 /*
866 ** If the most recently coded instruction is a constant range constraint
867 ** (a string literal) that originated from the LIKE optimization, then
868 ** set P3 and P5 on the OP_String opcode so that the string will be cast
869 ** to a BLOB at appropriate times.
870 **
871 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
872 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
873 ** scan loop run twice, once for strings and a second time for BLOBs.
874 ** The OP_String opcodes on the second pass convert the upper and lower
875 ** bound string constants to blobs.  This routine makes the necessary changes
876 ** to the OP_String opcodes for that to happen.
877 **
878 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
879 ** only the one pass through the string space is required, so this routine
880 ** becomes a no-op.
881 */
882 static void whereLikeOptimizationStringFixup(
883   Vdbe *v,                /* prepared statement under construction */
884   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
885   WhereTerm *pTerm        /* The upper or lower bound just coded */
886 ){
887   if( pTerm->wtFlags & TERM_LIKEOPT ){
888     VdbeOp *pOp;
889     assert( pLevel->iLikeRepCntr>0 );
890     pOp = sqlite3VdbeGetOp(v, -1);
891     assert( pOp!=0 );
892     assert( pOp->opcode==OP_String8
893             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
894     pOp->p3 = (int)(pLevel->iLikeRepCntr>>1);  /* Register holding counter */
895     pOp->p5 = (u8)(pLevel->iLikeRepCntr&1);    /* ASC or DESC */
896   }
897 }
898 #else
899 # define whereLikeOptimizationStringFixup(A,B,C)
900 #endif
901 
902 #ifdef SQLITE_ENABLE_CURSOR_HINTS
903 /*
904 ** Information is passed from codeCursorHint() down to individual nodes of
905 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
906 ** structure.
907 */
908 struct CCurHint {
909   int iTabCur;    /* Cursor for the main table */
910   int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
911   Index *pIdx;    /* The index used to access the table */
912 };
913 
914 /*
915 ** This function is called for every node of an expression that is a candidate
916 ** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
917 ** the table CCurHint.iTabCur, verify that the same column can be
918 ** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
919 */
920 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
921   struct CCurHint *pHint = pWalker->u.pCCurHint;
922   assert( pHint->pIdx!=0 );
923   if( pExpr->op==TK_COLUMN
924    && pExpr->iTable==pHint->iTabCur
925    && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0
926   ){
927     pWalker->eCode = 1;
928   }
929   return WRC_Continue;
930 }
931 
932 /*
933 ** Test whether or not expression pExpr, which was part of a WHERE clause,
934 ** should be included in the cursor-hint for a table that is on the rhs
935 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
936 ** expression is not suitable.
937 **
938 ** An expression is unsuitable if it might evaluate to non NULL even if
939 ** a TK_COLUMN node that does affect the value of the expression is set
940 ** to NULL. For example:
941 **
942 **   col IS NULL
943 **   col IS NOT NULL
944 **   coalesce(col, 1)
945 **   CASE WHEN col THEN 0 ELSE 1 END
946 */
947 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
948   if( pExpr->op==TK_IS
949    || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
950    || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
951   ){
952     pWalker->eCode = 1;
953   }else if( pExpr->op==TK_FUNCTION ){
954     int d1;
955     char d2[4];
956     if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
957       pWalker->eCode = 1;
958     }
959   }
960 
961   return WRC_Continue;
962 }
963 
964 
965 /*
966 ** This function is called on every node of an expression tree used as an
967 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
968 ** that accesses any table other than the one identified by
969 ** CCurHint.iTabCur, then do the following:
970 **
971 **   1) allocate a register and code an OP_Column instruction to read
972 **      the specified column into the new register, and
973 **
974 **   2) transform the expression node to a TK_REGISTER node that reads
975 **      from the newly populated register.
976 **
977 ** Also, if the node is a TK_COLUMN that does access the table idenified
978 ** by pCCurHint.iTabCur, and an index is being used (which we will
979 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
980 ** an access of the index rather than the original table.
981 */
982 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
983   int rc = WRC_Continue;
984   struct CCurHint *pHint = pWalker->u.pCCurHint;
985   if( pExpr->op==TK_COLUMN ){
986     if( pExpr->iTable!=pHint->iTabCur ){
987       int reg = ++pWalker->pParse->nMem;   /* Register for column value */
988       sqlite3ExprCode(pWalker->pParse, pExpr, reg);
989       pExpr->op = TK_REGISTER;
990       pExpr->iTable = reg;
991     }else if( pHint->pIdx!=0 ){
992       pExpr->iTable = pHint->iIdxCur;
993       pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn);
994       assert( pExpr->iColumn>=0 );
995     }
996   }else if( pExpr->op==TK_AGG_FUNCTION ){
997     /* An aggregate function in the WHERE clause of a query means this must
998     ** be a correlated sub-query, and expression pExpr is an aggregate from
999     ** the parent context. Do not walk the function arguments in this case.
1000     **
1001     ** todo: It should be possible to replace this node with a TK_REGISTER
1002     ** expression, as the result of the expression must be stored in a
1003     ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
1004     rc = WRC_Prune;
1005   }
1006   return rc;
1007 }
1008 
1009 /*
1010 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
1011 */
1012 static void codeCursorHint(
1013   SrcItem *pTabItem,  /* FROM clause item */
1014   WhereInfo *pWInfo,    /* The where clause */
1015   WhereLevel *pLevel,   /* Which loop to provide hints for */
1016   WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
1017 ){
1018   Parse *pParse = pWInfo->pParse;
1019   sqlite3 *db = pParse->db;
1020   Vdbe *v = pParse->pVdbe;
1021   Expr *pExpr = 0;
1022   WhereLoop *pLoop = pLevel->pWLoop;
1023   int iCur;
1024   WhereClause *pWC;
1025   WhereTerm *pTerm;
1026   int i, j;
1027   struct CCurHint sHint;
1028   Walker sWalker;
1029 
1030   if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
1031   iCur = pLevel->iTabCur;
1032   assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
1033   sHint.iTabCur = iCur;
1034   sHint.iIdxCur = pLevel->iIdxCur;
1035   sHint.pIdx = pLoop->u.btree.pIndex;
1036   memset(&sWalker, 0, sizeof(sWalker));
1037   sWalker.pParse = pParse;
1038   sWalker.u.pCCurHint = &sHint;
1039   pWC = &pWInfo->sWC;
1040   for(i=0; i<pWC->nBase; i++){
1041     pTerm = &pWC->a[i];
1042     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1043     if( pTerm->prereqAll & pLevel->notReady ) continue;
1044 
1045     /* Any terms specified as part of the ON(...) clause for any LEFT
1046     ** JOIN for which the current table is not the rhs are omitted
1047     ** from the cursor-hint.
1048     **
1049     ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
1050     ** that were specified as part of the WHERE clause must be excluded.
1051     ** This is to address the following:
1052     **
1053     **   SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
1054     **
1055     ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
1056     ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
1057     ** pushed down to the cursor, this row is filtered out, causing
1058     ** SQLite to synthesize a row of NULL values. Which does match the
1059     ** WHERE clause, and so the query returns a row. Which is incorrect.
1060     **
1061     ** For the same reason, WHERE terms such as:
1062     **
1063     **   WHERE 1 = (t2.c IS NULL)
1064     **
1065     ** are also excluded. See codeCursorHintIsOrFunction() for details.
1066     */
1067     if( pTabItem->fg.jointype & JT_LEFT ){
1068       Expr *pExpr = pTerm->pExpr;
1069       if( !ExprHasProperty(pExpr, EP_FromJoin)
1070        || pExpr->w.iJoin!=pTabItem->iCursor
1071       ){
1072         sWalker.eCode = 0;
1073         sWalker.xExprCallback = codeCursorHintIsOrFunction;
1074         sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1075         if( sWalker.eCode ) continue;
1076       }
1077     }else{
1078       if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
1079     }
1080 
1081     /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
1082     ** the cursor.  These terms are not needed as hints for a pure range
1083     ** scan (that has no == terms) so omit them. */
1084     if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
1085       for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
1086       if( j<pLoop->nLTerm ) continue;
1087     }
1088 
1089     /* No subqueries or non-deterministic functions allowed */
1090     if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
1091 
1092     /* For an index scan, make sure referenced columns are actually in
1093     ** the index. */
1094     if( sHint.pIdx!=0 ){
1095       sWalker.eCode = 0;
1096       sWalker.xExprCallback = codeCursorHintCheckExpr;
1097       sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1098       if( sWalker.eCode ) continue;
1099     }
1100 
1101     /* If we survive all prior tests, that means this term is worth hinting */
1102     pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
1103   }
1104   if( pExpr!=0 ){
1105     sWalker.xExprCallback = codeCursorHintFixExpr;
1106     sqlite3WalkExpr(&sWalker, pExpr);
1107     sqlite3VdbeAddOp4(v, OP_CursorHint,
1108                       (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
1109                       (const char*)pExpr, P4_EXPR);
1110   }
1111 }
1112 #else
1113 # define codeCursorHint(A,B,C,D)  /* No-op */
1114 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1115 
1116 /*
1117 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1118 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1119 ** function generates code to do a deferred seek of cursor iCur to the
1120 ** rowid stored in register iRowid.
1121 **
1122 ** Normally, this is just:
1123 **
1124 **   OP_DeferredSeek $iCur $iRowid
1125 **
1126 ** Which causes a seek on $iCur to the row with rowid $iRowid.
1127 **
1128 ** However, if the scan currently being coded is a branch of an OR-loop and
1129 ** the statement currently being coded is a SELECT, then additional information
1130 ** is added that might allow OP_Column to omit the seek and instead do its
1131 ** lookup on the index, thus avoiding an expensive seek operation.  To
1132 ** enable this optimization, the P3 of OP_DeferredSeek is set to iIdxCur
1133 ** and P4 is set to an array of integers containing one entry for each column
1134 ** in the table.  For each table column, if the column is the i'th
1135 ** column of the index, then the corresponding array entry is set to (i+1).
1136 ** If the column does not appear in the index at all, the array entry is set
1137 ** to 0.  The OP_Column opcode can check this array to see if the column it
1138 ** wants is in the index and if it is, it will substitute the index cursor
1139 ** and column number and continue with those new values, rather than seeking
1140 ** the table cursor.
1141 */
1142 static void codeDeferredSeek(
1143   WhereInfo *pWInfo,              /* Where clause context */
1144   Index *pIdx,                    /* Index scan is using */
1145   int iCur,                       /* Cursor for IPK b-tree */
1146   int iIdxCur                     /* Index cursor */
1147 ){
1148   Parse *pParse = pWInfo->pParse; /* Parse context */
1149   Vdbe *v = pParse->pVdbe;        /* Vdbe to generate code within */
1150 
1151   assert( iIdxCur>0 );
1152   assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1153 
1154   pWInfo->bDeferredSeek = 1;
1155   sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1156   if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))
1157    && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1158   ){
1159     int i;
1160     Table *pTab = pIdx->pTable;
1161     u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1));
1162     if( ai ){
1163       ai[0] = pTab->nCol;
1164       for(i=0; i<pIdx->nColumn-1; i++){
1165         int x1, x2;
1166         assert( pIdx->aiColumn[i]<pTab->nCol );
1167         x1 = pIdx->aiColumn[i];
1168         x2 = sqlite3TableColumnToStorage(pTab, x1);
1169         testcase( x1!=x2 );
1170         if( x1>=0 ) ai[x2+1] = i+1;
1171       }
1172       sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1173     }
1174   }
1175 }
1176 
1177 /*
1178 ** If the expression passed as the second argument is a vector, generate
1179 ** code to write the first nReg elements of the vector into an array
1180 ** of registers starting with iReg.
1181 **
1182 ** If the expression is not a vector, then nReg must be passed 1. In
1183 ** this case, generate code to evaluate the expression and leave the
1184 ** result in register iReg.
1185 */
1186 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1187   assert( nReg>0 );
1188   if( p && sqlite3ExprIsVector(p) ){
1189 #ifndef SQLITE_OMIT_SUBQUERY
1190     if( ExprUseXSelect(p) ){
1191       Vdbe *v = pParse->pVdbe;
1192       int iSelect;
1193       assert( p->op==TK_SELECT );
1194       iSelect = sqlite3CodeSubselect(pParse, p);
1195       sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1196     }else
1197 #endif
1198     {
1199       int i;
1200       const ExprList *pList;
1201       assert( ExprUseXList(p) );
1202       pList = p->x.pList;
1203       assert( nReg<=pList->nExpr );
1204       for(i=0; i<nReg; i++){
1205         sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1206       }
1207     }
1208   }else{
1209     assert( nReg==1 || pParse->nErr );
1210     sqlite3ExprCode(pParse, p, iReg);
1211   }
1212 }
1213 
1214 /* An instance of the IdxExprTrans object carries information about a
1215 ** mapping from an expression on table columns into a column in an index
1216 ** down through the Walker.
1217 */
1218 typedef struct IdxExprTrans {
1219   Expr *pIdxExpr;    /* The index expression */
1220   int iTabCur;       /* The cursor of the corresponding table */
1221   int iIdxCur;       /* The cursor for the index */
1222   int iIdxCol;       /* The column for the index */
1223   int iTabCol;       /* The column for the table */
1224   WhereInfo *pWInfo; /* Complete WHERE clause information */
1225   sqlite3 *db;       /* Database connection (for malloc()) */
1226 } IdxExprTrans;
1227 
1228 /*
1229 ** Preserve pExpr on the WhereETrans list of the WhereInfo.
1230 */
1231 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){
1232   WhereExprMod *pNew;
1233   pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew));
1234   if( pNew==0 ) return;
1235   pNew->pNext = pTrans->pWInfo->pExprMods;
1236   pTrans->pWInfo->pExprMods = pNew;
1237   pNew->pExpr = pExpr;
1238   memcpy(&pNew->orig, pExpr, sizeof(*pExpr));
1239 }
1240 
1241 /* The walker node callback used to transform matching expressions into
1242 ** a reference to an index column for an index on an expression.
1243 **
1244 ** If pExpr matches, then transform it into a reference to the index column
1245 ** that contains the value of pExpr.
1246 */
1247 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1248   IdxExprTrans *pX = p->u.pIdxTrans;
1249   if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1250     preserveExpr(pX, pExpr);
1251     pExpr->affExpr = sqlite3ExprAffinity(pExpr);
1252     pExpr->op = TK_COLUMN;
1253     pExpr->iTable = pX->iIdxCur;
1254     pExpr->iColumn = pX->iIdxCol;
1255     testcase( ExprHasProperty(pExpr, EP_Skip) );
1256     testcase( ExprHasProperty(pExpr, EP_Unlikely) );
1257     ExprClearProperty(pExpr, EP_Skip|EP_Unlikely|EP_WinFunc|EP_Subrtn);
1258     pExpr->y.pTab = 0;
1259     return WRC_Prune;
1260   }else{
1261     return WRC_Continue;
1262   }
1263 }
1264 
1265 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1266 /* A walker node callback that translates a column reference to a table
1267 ** into a corresponding column reference of an index.
1268 */
1269 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){
1270   if( pExpr->op==TK_COLUMN ){
1271     IdxExprTrans *pX = p->u.pIdxTrans;
1272     if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){
1273       assert( ExprUseYTab(pExpr) && pExpr->y.pTab!=0 );
1274       preserveExpr(pX, pExpr);
1275       pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn);
1276       pExpr->iTable = pX->iIdxCur;
1277       pExpr->iColumn = pX->iIdxCol;
1278       pExpr->y.pTab = 0;
1279     }
1280   }
1281   return WRC_Continue;
1282 }
1283 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1284 
1285 /*
1286 ** For an indexes on expression X, locate every instance of expression X
1287 ** in pExpr and change that subexpression into a reference to the appropriate
1288 ** column of the index.
1289 **
1290 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in
1291 ** the table into references to the corresponding (stored) column of the
1292 ** index.
1293 */
1294 static void whereIndexExprTrans(
1295   Index *pIdx,      /* The Index */
1296   int iTabCur,      /* Cursor of the table that is being indexed */
1297   int iIdxCur,      /* Cursor of the index itself */
1298   WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1299 ){
1300   int iIdxCol;               /* Column number of the index */
1301   ExprList *aColExpr;        /* Expressions that are indexed */
1302   Table *pTab;
1303   Walker w;
1304   IdxExprTrans x;
1305   aColExpr = pIdx->aColExpr;
1306   if( aColExpr==0 && !pIdx->bHasVCol ){
1307     /* The index does not reference any expressions or virtual columns
1308     ** so no translations are needed. */
1309     return;
1310   }
1311   pTab = pIdx->pTable;
1312   memset(&w, 0, sizeof(w));
1313   w.u.pIdxTrans = &x;
1314   x.iTabCur = iTabCur;
1315   x.iIdxCur = iIdxCur;
1316   x.pWInfo = pWInfo;
1317   x.db = pWInfo->pParse->db;
1318   for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){
1319     i16 iRef = pIdx->aiColumn[iIdxCol];
1320     if( iRef==XN_EXPR ){
1321       assert( aColExpr!=0 && aColExpr->a[iIdxCol].pExpr!=0 );
1322       x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1323       if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue;
1324       w.xExprCallback = whereIndexExprTransNode;
1325 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1326     }else if( iRef>=0
1327        && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0
1328        && ((pTab->aCol[iRef].colFlags & COLFLAG_HASCOLL)==0
1329            || sqlite3StrICmp(sqlite3ColumnColl(&pTab->aCol[iRef]),
1330                                                sqlite3StrBINARY)==0)
1331     ){
1332       /* Check to see if there are direct references to generated columns
1333       ** that are contained in the index.  Pulling the generated column
1334       ** out of the index is an optimization only - the main table is always
1335       ** available if the index cannot be used.  To avoid unnecessary
1336       ** complication, omit this optimization if the collating sequence for
1337       ** the column is non-standard */
1338       x.iTabCol = iRef;
1339       w.xExprCallback = whereIndexExprTransColumn;
1340 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1341     }else{
1342       continue;
1343     }
1344     x.iIdxCol = iIdxCol;
1345     sqlite3WalkExpr(&w, pWInfo->pWhere);
1346     sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1347     sqlite3WalkExprList(&w, pWInfo->pResultSet);
1348   }
1349 }
1350 
1351 /*
1352 ** The pTruth expression is always true because it is the WHERE clause
1353 ** a partial index that is driving a query loop.  Look through all of the
1354 ** WHERE clause terms on the query, and if any of those terms must be
1355 ** true because pTruth is true, then mark those WHERE clause terms as
1356 ** coded.
1357 */
1358 static void whereApplyPartialIndexConstraints(
1359   Expr *pTruth,
1360   int iTabCur,
1361   WhereClause *pWC
1362 ){
1363   int i;
1364   WhereTerm *pTerm;
1365   while( pTruth->op==TK_AND ){
1366     whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC);
1367     pTruth = pTruth->pRight;
1368   }
1369   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1370     Expr *pExpr;
1371     if( pTerm->wtFlags & TERM_CODED ) continue;
1372     pExpr = pTerm->pExpr;
1373     if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){
1374       pTerm->wtFlags |= TERM_CODED;
1375     }
1376   }
1377 }
1378 
1379 /*
1380 ** This routine is called right after An OP_Filter has been generated and
1381 ** before the corresponding index search has been performed.  This routine
1382 ** checks to see if there are additional Bloom filters in inner loops that
1383 ** can be checked prior to doing the index lookup.  If there are available
1384 ** inner-loop Bloom filters, then evaluate those filters now, before the
1385 ** index lookup.  The idea is that a Bloom filter check is way faster than
1386 ** an index lookup, and the Bloom filter might return false, meaning that
1387 ** the index lookup can be skipped.
1388 **
1389 ** We know that an inner loop uses a Bloom filter because it has the
1390 ** WhereLevel.regFilter set.  If an inner-loop Bloom filter is checked,
1391 ** then clear the WhereLevel.regFilter value to prevent the Bloom filter
1392 ** from being checked a second time when the inner loop is evaluated.
1393 */
1394 static SQLITE_NOINLINE void filterPullDown(
1395   Parse *pParse,       /* Parsing context */
1396   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1397   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1398   int addrNxt,         /* Jump here to bypass inner loops */
1399   Bitmask notReady     /* Loops that are not ready */
1400 ){
1401   while( ++iLevel < pWInfo->nLevel ){
1402     WhereLevel *pLevel = &pWInfo->a[iLevel];
1403     WhereLoop *pLoop = pLevel->pWLoop;
1404     if( pLevel->regFilter==0 ) continue;
1405     if( pLevel->pWLoop->nSkip ) continue;
1406     /*         ,--- Because sqlite3ConstructBloomFilter() has will not have set
1407     **  vvvvv--'    pLevel->regFilter if this were true. */
1408     if( NEVER(pLoop->prereq & notReady) ) continue;
1409     if( pLoop->wsFlags & WHERE_IPK ){
1410       WhereTerm *pTerm = pLoop->aLTerm[0];
1411       int regRowid;
1412       assert( pTerm!=0 );
1413       assert( pTerm->pExpr!=0 );
1414       testcase( pTerm->wtFlags & TERM_VIRTUAL );
1415       regRowid = sqlite3GetTempReg(pParse);
1416       regRowid = codeEqualityTerm(pParse, pTerm, pLevel, 0, 0, regRowid);
1417       sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter,
1418                            addrNxt, regRowid, 1);
1419       VdbeCoverage(pParse->pVdbe);
1420     }else{
1421       u16 nEq = pLoop->u.btree.nEq;
1422       int r1;
1423       char *zStartAff;
1424 
1425       assert( pLoop->wsFlags & WHERE_INDEXED );
1426       assert( (pLoop->wsFlags & WHERE_COLUMN_IN)==0 );
1427       r1 = codeAllEqualityTerms(pParse,pLevel,0,0,&zStartAff);
1428       codeApplyAffinity(pParse, r1, nEq, zStartAff);
1429       sqlite3DbFree(pParse->db, zStartAff);
1430       sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter,
1431                            addrNxt, r1, nEq);
1432       VdbeCoverage(pParse->pVdbe);
1433     }
1434     pLevel->regFilter = 0;
1435   }
1436 }
1437 
1438 /*
1439 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1440 ** implementation described by pWInfo.
1441 */
1442 Bitmask sqlite3WhereCodeOneLoopStart(
1443   Parse *pParse,       /* Parsing context */
1444   Vdbe *v,             /* Prepared statement under construction */
1445   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1446   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1447   WhereLevel *pLevel,  /* The current level pointer */
1448   Bitmask notReady     /* Which tables are currently available */
1449 ){
1450   int j, k;            /* Loop counters */
1451   int iCur;            /* The VDBE cursor for the table */
1452   int addrNxt;         /* Where to jump to continue with the next IN case */
1453   int bRev;            /* True if we need to scan in reverse order */
1454   WhereLoop *pLoop;    /* The WhereLoop object being coded */
1455   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
1456   WhereTerm *pTerm;               /* A WHERE clause term */
1457   sqlite3 *db;                    /* Database connection */
1458   SrcItem *pTabItem;              /* FROM clause term being coded */
1459   int addrBrk;                    /* Jump here to break out of the loop */
1460   int addrHalt;                   /* addrBrk for the outermost loop */
1461   int addrCont;                   /* Jump here to continue with next cycle */
1462   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
1463   int iReleaseReg = 0;      /* Temp register to free before returning */
1464   Index *pIdx = 0;          /* Index used by loop (if any) */
1465   int iLoop;                /* Iteration of constraint generator loop */
1466 
1467   pWC = &pWInfo->sWC;
1468   db = pParse->db;
1469   pLoop = pLevel->pWLoop;
1470   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1471   iCur = pTabItem->iCursor;
1472   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1473   bRev = (pWInfo->revMask>>iLevel)&1;
1474   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1475 #if WHERETRACE_ENABLED /* 0x20800 */
1476   if( sqlite3WhereTrace & 0x800 ){
1477     sqlite3DebugPrintf("Coding level %d of %d:  notReady=%llx  iFrom=%d\n",
1478        iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom);
1479     sqlite3WhereLoopPrint(pLoop, pWC);
1480   }
1481   if( sqlite3WhereTrace & 0x20000 ){
1482     if( iLevel==0 ){
1483       sqlite3DebugPrintf("WHERE clause being coded:\n");
1484       sqlite3TreeViewExpr(0, pWInfo->pWhere, 0);
1485     }
1486     sqlite3DebugPrintf("All WHERE-clause terms before coding:\n");
1487     sqlite3WhereClausePrint(pWC);
1488   }
1489 #endif
1490 
1491   /* Create labels for the "break" and "continue" instructions
1492   ** for the current loop.  Jump to addrBrk to break out of a loop.
1493   ** Jump to cont to go immediately to the next iteration of the
1494   ** loop.
1495   **
1496   ** When there is an IN operator, we also have a "addrNxt" label that
1497   ** means to continue with the next IN value combination.  When
1498   ** there are no IN operators in the constraints, the "addrNxt" label
1499   ** is the same as "addrBrk".
1500   */
1501   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
1502   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse);
1503 
1504   /* If this is the right table of a LEFT OUTER JOIN, allocate and
1505   ** initialize a memory cell that records if this table matches any
1506   ** row of the left table of the join.
1507   */
1508   assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))
1509        || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
1510   );
1511   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1512     pLevel->iLeftJoin = ++pParse->nMem;
1513     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1514     VdbeComment((v, "init LEFT JOIN no-match flag"));
1515   }
1516 
1517   /* Compute a safe address to jump to if we discover that the table for
1518   ** this loop is empty and can never contribute content. */
1519   for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){}
1520   addrHalt = pWInfo->a[j].addrBrk;
1521 
1522   /* Special case of a FROM clause subquery implemented as a co-routine */
1523   if( pTabItem->fg.viaCoroutine ){
1524     int regYield = pTabItem->regReturn;
1525     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1526     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1527     VdbeCoverage(v);
1528     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
1529     pLevel->op = OP_Goto;
1530   }else
1531 
1532 #ifndef SQLITE_OMIT_VIRTUALTABLE
1533   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1534     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
1535     **          to access the data.
1536     */
1537     int iReg;   /* P3 Value for OP_VFilter */
1538     int addrNotFound;
1539     int nConstraint = pLoop->nLTerm;
1540 
1541     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1542     addrNotFound = pLevel->addrBrk;
1543     for(j=0; j<nConstraint; j++){
1544       int iTarget = iReg+j+2;
1545       pTerm = pLoop->aLTerm[j];
1546       if( NEVER(pTerm==0) ) continue;
1547       if( pTerm->eOperator & WO_IN ){
1548         if( SMASKBIT32(j) & pLoop->u.vtab.mHandleIn ){
1549           int iTab = pParse->nTab++;
1550           int iCache = ++pParse->nMem;
1551           sqlite3CodeRhsOfIN(pParse, pTerm->pExpr, iTab);
1552           sqlite3VdbeAddOp3(v, OP_VInitIn, iTab, iTarget, iCache);
1553         }else{
1554           codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1555           addrNotFound = pLevel->addrNxt;
1556         }
1557       }else{
1558         Expr *pRight = pTerm->pExpr->pRight;
1559         codeExprOrVector(pParse, pRight, iTarget, 1);
1560         if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET
1561          && pLoop->u.vtab.bOmitOffset
1562         ){
1563           assert( pTerm->eOperator==WO_AUX );
1564           assert( pWInfo->pLimit!=0 );
1565           assert( pWInfo->pLimit->iOffset>0 );
1566           sqlite3VdbeAddOp2(v, OP_Integer, 0, pWInfo->pLimit->iOffset);
1567           VdbeComment((v,"Zero OFFSET counter"));
1568         }
1569       }
1570     }
1571     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1572     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1573     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1574                       pLoop->u.vtab.idxStr,
1575                       pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1576     VdbeCoverage(v);
1577     pLoop->u.vtab.needFree = 0;
1578     /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed
1579     ** the u.vtab.idxStr.  NULL it out to prevent a use-after-free */
1580     if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0;
1581     pLevel->p1 = iCur;
1582     pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1583     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1584     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
1585 
1586     for(j=0; j<nConstraint; j++){
1587       pTerm = pLoop->aLTerm[j];
1588       if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1589         disableTerm(pLevel, pTerm);
1590         continue;
1591       }
1592       if( (pTerm->eOperator & WO_IN)!=0
1593        && (SMASKBIT32(j) & pLoop->u.vtab.mHandleIn)==0
1594        && !db->mallocFailed
1595       ){
1596         Expr *pCompare;  /* The comparison operator */
1597         Expr *pRight;    /* RHS of the comparison */
1598         VdbeOp *pOp;     /* Opcode to access the value of the IN constraint */
1599         int iIn;         /* IN loop corresponding to the j-th constraint */
1600 
1601         /* Reload the constraint value into reg[iReg+j+2].  The same value
1602         ** was loaded into the same register prior to the OP_VFilter, but
1603         ** the xFilter implementation might have changed the datatype or
1604         ** encoding of the value in the register, so it *must* be reloaded.
1605         */
1606         for(iIn=0; ALWAYS(iIn<pLevel->u.in.nIn); iIn++){
1607           pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop);
1608           if( (pOp->opcode==OP_Column && pOp->p3==iReg+j+2)
1609            || (pOp->opcode==OP_Rowid && pOp->p2==iReg+j+2)
1610           ){
1611             testcase( pOp->opcode==OP_Rowid );
1612             sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1613             break;
1614           }
1615         }
1616 
1617         /* Generate code that will continue to the next row if
1618         ** the IN constraint is not satisfied
1619         */
1620         pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1621         if( !db->mallocFailed ){
1622           int iFld = pTerm->u.x.iField;
1623           Expr *pLeft = pTerm->pExpr->pLeft;
1624           assert( pLeft!=0 );
1625           if( iFld>0 ){
1626             assert( pLeft->op==TK_VECTOR );
1627             assert( ExprUseXList(pLeft) );
1628             assert( iFld<=pLeft->x.pList->nExpr );
1629             pCompare->pLeft = pLeft->x.pList->a[iFld-1].pExpr;
1630           }else{
1631             pCompare->pLeft = pLeft;
1632           }
1633           pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1634           if( pRight ){
1635             pRight->iTable = iReg+j+2;
1636             sqlite3ExprIfFalse(
1637                 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL
1638             );
1639           }
1640           pCompare->pLeft = 0;
1641         }
1642         sqlite3ExprDelete(db, pCompare);
1643       }
1644     }
1645 
1646     /* These registers need to be preserved in case there is an IN operator
1647     ** loop.  So we could deallocate the registers here (and potentially
1648     ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0.  But it seems
1649     ** simpler and safer to simply not reuse the registers.
1650     **
1651     **    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1652     */
1653   }else
1654 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1655 
1656   if( (pLoop->wsFlags & WHERE_IPK)!=0
1657    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1658   ){
1659     /* Case 2:  We can directly reference a single row using an
1660     **          equality comparison against the ROWID field.  Or
1661     **          we reference multiple rows using a "rowid IN (...)"
1662     **          construct.
1663     */
1664     assert( pLoop->u.btree.nEq==1 );
1665     pTerm = pLoop->aLTerm[0];
1666     assert( pTerm!=0 );
1667     assert( pTerm->pExpr!=0 );
1668     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1669     iReleaseReg = ++pParse->nMem;
1670     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1671     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1672     addrNxt = pLevel->addrNxt;
1673     if( pLevel->regFilter ){
1674       sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt,
1675                            iRowidReg, 1);
1676       VdbeCoverage(v);
1677       filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady);
1678     }
1679     sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1680     VdbeCoverage(v);
1681     pLevel->op = OP_Noop;
1682   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1683          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1684   ){
1685     /* Case 3:  We have an inequality comparison against the ROWID field.
1686     */
1687     int testOp = OP_Noop;
1688     int start;
1689     int memEndValue = 0;
1690     WhereTerm *pStart, *pEnd;
1691 
1692     j = 0;
1693     pStart = pEnd = 0;
1694     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1695     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1696     assert( pStart!=0 || pEnd!=0 );
1697     if( bRev ){
1698       pTerm = pStart;
1699       pStart = pEnd;
1700       pEnd = pTerm;
1701     }
1702     codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1703     if( pStart ){
1704       Expr *pX;             /* The expression that defines the start bound */
1705       int r1, rTemp;        /* Registers for holding the start boundary */
1706       int op;               /* Cursor seek operation */
1707 
1708       /* The following constant maps TK_xx codes into corresponding
1709       ** seek opcodes.  It depends on a particular ordering of TK_xx
1710       */
1711       const u8 aMoveOp[] = {
1712            /* TK_GT */  OP_SeekGT,
1713            /* TK_LE */  OP_SeekLE,
1714            /* TK_LT */  OP_SeekLT,
1715            /* TK_GE */  OP_SeekGE
1716       };
1717       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
1718       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
1719       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
1720 
1721       assert( (pStart->wtFlags & TERM_VNULL)==0 );
1722       testcase( pStart->wtFlags & TERM_VIRTUAL );
1723       pX = pStart->pExpr;
1724       assert( pX!=0 );
1725       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1726       if( sqlite3ExprIsVector(pX->pRight) ){
1727         r1 = rTemp = sqlite3GetTempReg(pParse);
1728         codeExprOrVector(pParse, pX->pRight, r1, 1);
1729         testcase( pX->op==TK_GT );
1730         testcase( pX->op==TK_GE );
1731         testcase( pX->op==TK_LT );
1732         testcase( pX->op==TK_LE );
1733         op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
1734         assert( pX->op!=TK_GT || op==OP_SeekGE );
1735         assert( pX->op!=TK_GE || op==OP_SeekGE );
1736         assert( pX->op!=TK_LT || op==OP_SeekLE );
1737         assert( pX->op!=TK_LE || op==OP_SeekLE );
1738       }else{
1739         r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1740         disableTerm(pLevel, pStart);
1741         op = aMoveOp[(pX->op - TK_GT)];
1742       }
1743       sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1744       VdbeComment((v, "pk"));
1745       VdbeCoverageIf(v, pX->op==TK_GT);
1746       VdbeCoverageIf(v, pX->op==TK_LE);
1747       VdbeCoverageIf(v, pX->op==TK_LT);
1748       VdbeCoverageIf(v, pX->op==TK_GE);
1749       sqlite3ReleaseTempReg(pParse, rTemp);
1750     }else{
1751       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1752       VdbeCoverageIf(v, bRev==0);
1753       VdbeCoverageIf(v, bRev!=0);
1754     }
1755     if( pEnd ){
1756       Expr *pX;
1757       pX = pEnd->pExpr;
1758       assert( pX!=0 );
1759       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1760       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1761       testcase( pEnd->wtFlags & TERM_VIRTUAL );
1762       memEndValue = ++pParse->nMem;
1763       codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1764       if( 0==sqlite3ExprIsVector(pX->pRight)
1765        && (pX->op==TK_LT || pX->op==TK_GT)
1766       ){
1767         testOp = bRev ? OP_Le : OP_Ge;
1768       }else{
1769         testOp = bRev ? OP_Lt : OP_Gt;
1770       }
1771       if( 0==sqlite3ExprIsVector(pX->pRight) ){
1772         disableTerm(pLevel, pEnd);
1773       }
1774     }
1775     start = sqlite3VdbeCurrentAddr(v);
1776     pLevel->op = bRev ? OP_Prev : OP_Next;
1777     pLevel->p1 = iCur;
1778     pLevel->p2 = start;
1779     assert( pLevel->p5==0 );
1780     if( testOp!=OP_Noop ){
1781       iRowidReg = ++pParse->nMem;
1782       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1783       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1784       VdbeCoverageIf(v, testOp==OP_Le);
1785       VdbeCoverageIf(v, testOp==OP_Lt);
1786       VdbeCoverageIf(v, testOp==OP_Ge);
1787       VdbeCoverageIf(v, testOp==OP_Gt);
1788       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1789     }
1790   }else if( pLoop->wsFlags & WHERE_INDEXED ){
1791     /* Case 4: A scan using an index.
1792     **
1793     **         The WHERE clause may contain zero or more equality
1794     **         terms ("==" or "IN" operators) that refer to the N
1795     **         left-most columns of the index. It may also contain
1796     **         inequality constraints (>, <, >= or <=) on the indexed
1797     **         column that immediately follows the N equalities. Only
1798     **         the right-most column can be an inequality - the rest must
1799     **         use the "==" and "IN" operators. For example, if the
1800     **         index is on (x,y,z), then the following clauses are all
1801     **         optimized:
1802     **
1803     **            x=5
1804     **            x=5 AND y=10
1805     **            x=5 AND y<10
1806     **            x=5 AND y>5 AND y<10
1807     **            x=5 AND y=5 AND z<=10
1808     **
1809     **         The z<10 term of the following cannot be used, only
1810     **         the x=5 term:
1811     **
1812     **            x=5 AND z<10
1813     **
1814     **         N may be zero if there are inequality constraints.
1815     **         If there are no inequality constraints, then N is at
1816     **         least one.
1817     **
1818     **         This case is also used when there are no WHERE clause
1819     **         constraints but an index is selected anyway, in order
1820     **         to force the output order to conform to an ORDER BY.
1821     */
1822     static const u8 aStartOp[] = {
1823       0,
1824       0,
1825       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
1826       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
1827       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
1828       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
1829       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
1830       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
1831     };
1832     static const u8 aEndOp[] = {
1833       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
1834       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
1835       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
1836       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
1837     };
1838     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
1839     u16 nBtm = pLoop->u.btree.nBtm;   /* Length of BTM vector */
1840     u16 nTop = pLoop->u.btree.nTop;   /* Length of TOP vector */
1841     int regBase;                 /* Base register holding constraint values */
1842     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
1843     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
1844     int startEq;                 /* True if range start uses ==, >= or <= */
1845     int endEq;                   /* True if range end uses ==, >= or <= */
1846     int start_constraints;       /* Start of range is constrained */
1847     int nConstraint;             /* Number of constraint terms */
1848     int iIdxCur;                 /* The VDBE cursor for the index */
1849     int nExtraReg = 0;           /* Number of extra registers needed */
1850     int op;                      /* Instruction opcode */
1851     char *zStartAff;             /* Affinity for start of range constraint */
1852     char *zEndAff = 0;           /* Affinity for end of range constraint */
1853     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
1854     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
1855     int omitTable;               /* True if we use the index only */
1856     int regBignull = 0;          /* big-null flag register */
1857     int addrSeekScan = 0;        /* Opcode of the OP_SeekScan, if any */
1858 
1859     pIdx = pLoop->u.btree.pIndex;
1860     iIdxCur = pLevel->iIdxCur;
1861     assert( nEq>=pLoop->nSkip );
1862 
1863     /* Find any inequality constraint terms for the start and end
1864     ** of the range.
1865     */
1866     j = nEq;
1867     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1868       pRangeStart = pLoop->aLTerm[j++];
1869       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1870       /* Like optimization range constraints always occur in pairs */
1871       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1872               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1873     }
1874     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1875       pRangeEnd = pLoop->aLTerm[j++];
1876       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1877 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1878       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1879         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
1880         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
1881         pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1882         sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1883         VdbeComment((v, "LIKE loop counter"));
1884         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1885         /* iLikeRepCntr actually stores 2x the counter register number.  The
1886         ** bottom bit indicates whether the search order is ASC or DESC. */
1887         testcase( bRev );
1888         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1889         assert( (bRev & ~1)==0 );
1890         pLevel->iLikeRepCntr <<=1;
1891         pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1892       }
1893 #endif
1894       if( pRangeStart==0 ){
1895         j = pIdx->aiColumn[nEq];
1896         if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1897           bSeekPastNull = 1;
1898         }
1899       }
1900     }
1901     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1902 
1903     /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
1904     ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
1905     ** FIRST). In both cases separate ordered scans are made of those
1906     ** index entries for which the column is null and for those for which
1907     ** it is not. For an ASC sort, the non-NULL entries are scanned first.
1908     ** For DESC, NULL entries are scanned first.
1909     */
1910     if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0
1911      && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0
1912     ){
1913       assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 );
1914       assert( pRangeEnd==0 && pRangeStart==0 );
1915       testcase( pLoop->nSkip>0 );
1916       nExtraReg = 1;
1917       bSeekPastNull = 1;
1918       pLevel->regBignull = regBignull = ++pParse->nMem;
1919       if( pLevel->iLeftJoin ){
1920         sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull);
1921       }
1922       pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse);
1923     }
1924 
1925     /* If we are doing a reverse order scan on an ascending index, or
1926     ** a forward order scan on a descending index, interchange the
1927     ** start and end terms (pRangeStart and pRangeEnd).
1928     */
1929     if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){
1930       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1931       SWAP(u8, bSeekPastNull, bStopAtNull);
1932       SWAP(u8, nBtm, nTop);
1933     }
1934 
1935     if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){
1936       /* In case OP_SeekScan is used, ensure that the index cursor does not
1937       ** point to a valid row for the first iteration of this loop. */
1938       sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
1939     }
1940 
1941     /* Generate code to evaluate all constraint terms using == or IN
1942     ** and store the values of those terms in an array of registers
1943     ** starting at regBase.
1944     */
1945     codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1946     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1947     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1948     if( zStartAff && nTop ){
1949       zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1950     }
1951     addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt);
1952 
1953     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1954     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1955     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1956     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1957     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1958     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1959     start_constraints = pRangeStart || nEq>0;
1960 
1961     /* Seek the index cursor to the start of the range. */
1962     nConstraint = nEq;
1963     if( pRangeStart ){
1964       Expr *pRight = pRangeStart->pExpr->pRight;
1965       codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1966       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1967       if( (pRangeStart->wtFlags & TERM_VNULL)==0
1968        && sqlite3ExprCanBeNull(pRight)
1969       ){
1970         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1971         VdbeCoverage(v);
1972       }
1973       if( zStartAff ){
1974         updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1975       }
1976       nConstraint += nBtm;
1977       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1978       if( sqlite3ExprIsVector(pRight)==0 ){
1979         disableTerm(pLevel, pRangeStart);
1980       }else{
1981         startEq = 1;
1982       }
1983       bSeekPastNull = 0;
1984     }else if( bSeekPastNull ){
1985       startEq = 0;
1986       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1987       start_constraints = 1;
1988       nConstraint++;
1989     }else if( regBignull ){
1990       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1991       start_constraints = 1;
1992       nConstraint++;
1993     }
1994     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1995     if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1996       /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1997       ** above has already left the cursor sitting on the correct row,
1998       ** so no further seeking is needed */
1999     }else{
2000       if( regBignull ){
2001         sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull);
2002         VdbeComment((v, "NULL-scan pass ctr"));
2003       }
2004       if( pLevel->regFilter ){
2005         sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt,
2006                              regBase, nEq);
2007         VdbeCoverage(v);
2008         filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady);
2009       }
2010 
2011       op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
2012       assert( op!=0 );
2013       if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){
2014         assert( regBignull==0 );
2015         /* TUNING:  The OP_SeekScan opcode seeks to reduce the number
2016         ** of expensive seek operations by replacing a single seek with
2017         ** 1 or more step operations.  The question is, how many steps
2018         ** should we try before giving up and going with a seek.  The cost
2019         ** of a seek is proportional to the logarithm of the of the number
2020         ** of entries in the tree, so basing the number of steps to try
2021         ** on the estimated number of rows in the btree seems like a good
2022         ** guess. */
2023         addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan,
2024                                          (pIdx->aiRowLogEst[0]+9)/10);
2025         VdbeCoverage(v);
2026       }
2027       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
2028       VdbeCoverage(v);
2029       VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
2030       VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
2031       VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
2032       VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
2033       VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
2034       VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
2035 
2036       assert( bSeekPastNull==0 || bStopAtNull==0 );
2037       if( regBignull ){
2038         assert( bSeekPastNull==1 || bStopAtNull==1 );
2039         assert( bSeekPastNull==!bStopAtNull );
2040         assert( bStopAtNull==startEq );
2041         sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2);
2042         op = aStartOp[(nConstraint>1)*4 + 2 + bRev];
2043         sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
2044                              nConstraint-startEq);
2045         VdbeCoverage(v);
2046         VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
2047         VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
2048         VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
2049         VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
2050         assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE);
2051       }
2052     }
2053 
2054     /* Load the value for the inequality constraint at the end of the
2055     ** range (if any).
2056     */
2057     nConstraint = nEq;
2058     assert( pLevel->p2==0 );
2059     if( pRangeEnd ){
2060       Expr *pRight = pRangeEnd->pExpr->pRight;
2061       if( addrSeekScan ){
2062         /* For a seek-scan that has a range on the lowest term of the index,
2063         ** we have to make the top of the loop be code that sets the end
2064         ** condition of the range.  Otherwise, the OP_SeekScan might jump
2065         ** over that initialization, leaving the range-end value set to the
2066         ** range-start value, resulting in a wrong answer.
2067         ** See ticket 5981a8c041a3c2f3 (2021-11-02).
2068         */
2069         pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2070       }
2071       codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
2072       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
2073       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
2074        && sqlite3ExprCanBeNull(pRight)
2075       ){
2076         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
2077         VdbeCoverage(v);
2078       }
2079       if( zEndAff ){
2080         updateRangeAffinityStr(pRight, nTop, zEndAff);
2081         codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
2082       }else{
2083         assert( pParse->db->mallocFailed );
2084       }
2085       nConstraint += nTop;
2086       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
2087 
2088       if( sqlite3ExprIsVector(pRight)==0 ){
2089         disableTerm(pLevel, pRangeEnd);
2090       }else{
2091         endEq = 1;
2092       }
2093     }else if( bStopAtNull ){
2094       if( regBignull==0 ){
2095         sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
2096         endEq = 0;
2097       }
2098       nConstraint++;
2099     }
2100     sqlite3DbFree(db, zStartAff);
2101     sqlite3DbFree(db, zEndAff);
2102 
2103     /* Top of the loop body */
2104     if( pLevel->p2==0 ) pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2105 
2106     /* Check if the index cursor is past the end of the range. */
2107     if( nConstraint ){
2108       if( regBignull ){
2109         /* Except, skip the end-of-range check while doing the NULL-scan */
2110         sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3);
2111         VdbeComment((v, "If NULL-scan 2nd pass"));
2112         VdbeCoverage(v);
2113       }
2114       op = aEndOp[bRev*2 + endEq];
2115       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
2116       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
2117       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
2118       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
2119       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
2120       if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan);
2121     }
2122     if( regBignull ){
2123       /* During a NULL-scan, check to see if we have reached the end of
2124       ** the NULLs */
2125       assert( bSeekPastNull==!bStopAtNull );
2126       assert( bSeekPastNull+bStopAtNull==1 );
2127       assert( nConstraint+bSeekPastNull>0 );
2128       sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2);
2129       VdbeComment((v, "If NULL-scan 1st pass"));
2130       VdbeCoverage(v);
2131       op = aEndOp[bRev*2 + bSeekPastNull];
2132       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
2133                            nConstraint+bSeekPastNull);
2134       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
2135       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
2136       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
2137       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
2138     }
2139 
2140     if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){
2141       sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq);
2142     }
2143 
2144     /* Seek the table cursor, if required */
2145     omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
2146            && (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0;
2147     if( omitTable ){
2148       /* pIdx is a covering index.  No need to access the main table. */
2149     }else if( HasRowid(pIdx->pTable) ){
2150       codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
2151     }else if( iCur!=iIdxCur ){
2152       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
2153       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
2154       for(j=0; j<pPk->nKeyCol; j++){
2155         k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
2156         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
2157       }
2158       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
2159                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
2160     }
2161 
2162     if( pLevel->iLeftJoin==0 ){
2163       /* If pIdx is an index on one or more expressions, then look through
2164       ** all the expressions in pWInfo and try to transform matching expressions
2165       ** into reference to index columns.  Also attempt to translate references
2166       ** to virtual columns in the table into references to (stored) columns
2167       ** of the index.
2168       **
2169       ** Do not do this for the RHS of a LEFT JOIN. This is because the
2170       ** expression may be evaluated after OP_NullRow has been executed on
2171       ** the cursor. In this case it is important to do the full evaluation,
2172       ** as the result of the expression may not be NULL, even if all table
2173       ** column values are.  https://www.sqlite.org/src/info/7fa8049685b50b5a
2174       **
2175       ** Also, do not do this when processing one index an a multi-index
2176       ** OR clause, since the transformation will become invalid once we
2177       ** move forward to the next index.
2178       ** https://sqlite.org/src/info/4e8e4857d32d401f
2179       */
2180       if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 ){
2181         whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
2182       }
2183 
2184       /* If a partial index is driving the loop, try to eliminate WHERE clause
2185       ** terms from the query that must be true due to the WHERE clause of
2186       ** the partial index.
2187       **
2188       ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
2189       ** for a LEFT JOIN.
2190       */
2191       if( pIdx->pPartIdxWhere ){
2192         whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC);
2193       }
2194     }else{
2195       testcase( pIdx->pPartIdxWhere );
2196       /* The following assert() is not a requirement, merely an observation:
2197       ** The OR-optimization doesn't work for the right hand table of
2198       ** a LEFT JOIN: */
2199       assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 );
2200     }
2201 
2202     /* Record the instruction used to terminate the loop. */
2203     if( pLoop->wsFlags & WHERE_ONEROW ){
2204       pLevel->op = OP_Noop;
2205     }else if( bRev ){
2206       pLevel->op = OP_Prev;
2207     }else{
2208       pLevel->op = OP_Next;
2209     }
2210     pLevel->p1 = iIdxCur;
2211     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
2212     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
2213       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2214     }else{
2215       assert( pLevel->p5==0 );
2216     }
2217     if( omitTable ) pIdx = 0;
2218   }else
2219 
2220 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
2221   if( pLoop->wsFlags & WHERE_MULTI_OR ){
2222     /* Case 5:  Two or more separately indexed terms connected by OR
2223     **
2224     ** Example:
2225     **
2226     **   CREATE TABLE t1(a,b,c,d);
2227     **   CREATE INDEX i1 ON t1(a);
2228     **   CREATE INDEX i2 ON t1(b);
2229     **   CREATE INDEX i3 ON t1(c);
2230     **
2231     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
2232     **
2233     ** In the example, there are three indexed terms connected by OR.
2234     ** The top of the loop looks like this:
2235     **
2236     **          Null       1                # Zero the rowset in reg 1
2237     **
2238     ** Then, for each indexed term, the following. The arguments to
2239     ** RowSetTest are such that the rowid of the current row is inserted
2240     ** into the RowSet. If it is already present, control skips the
2241     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
2242     **
2243     **        sqlite3WhereBegin(<term>)
2244     **          RowSetTest                  # Insert rowid into rowset
2245     **          Gosub      2 A
2246     **        sqlite3WhereEnd()
2247     **
2248     ** Following the above, code to terminate the loop. Label A, the target
2249     ** of the Gosub above, jumps to the instruction right after the Goto.
2250     **
2251     **          Null       1                # Zero the rowset in reg 1
2252     **          Goto       B                # The loop is finished.
2253     **
2254     **       A: <loop body>                 # Return data, whatever.
2255     **
2256     **          Return     2                # Jump back to the Gosub
2257     **
2258     **       B: <after the loop>
2259     **
2260     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
2261     ** use an ephemeral index instead of a RowSet to record the primary
2262     ** keys of the rows we have already seen.
2263     **
2264     */
2265     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
2266     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
2267     Index *pCov = 0;             /* Potential covering index (or NULL) */
2268     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
2269 
2270     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
2271     int regRowset = 0;                        /* Register for RowSet object */
2272     int regRowid = 0;                         /* Register holding rowid */
2273     int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */
2274     int iRetInit;                             /* Address of regReturn init */
2275     int untestedTerms = 0;             /* Some terms not completely tested */
2276     int ii;                            /* Loop counter */
2277     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
2278     Table *pTab = pTabItem->pTab;
2279 
2280     pTerm = pLoop->aLTerm[0];
2281     assert( pTerm!=0 );
2282     assert( pTerm->eOperator & WO_OR );
2283     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
2284     pOrWc = &pTerm->u.pOrInfo->wc;
2285     pLevel->op = OP_Return;
2286     pLevel->p1 = regReturn;
2287 
2288     /* Set up a new SrcList in pOrTab containing the table being scanned
2289     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
2290     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
2291     */
2292     if( pWInfo->nLevel>1 ){
2293       int nNotReady;                 /* The number of notReady tables */
2294       SrcItem *origSrc;              /* Original list of tables */
2295       nNotReady = pWInfo->nLevel - iLevel - 1;
2296       pOrTab = sqlite3StackAllocRaw(db,
2297                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
2298       if( pOrTab==0 ) return notReady;
2299       pOrTab->nAlloc = (u8)(nNotReady + 1);
2300       pOrTab->nSrc = pOrTab->nAlloc;
2301       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
2302       origSrc = pWInfo->pTabList->a;
2303       for(k=1; k<=nNotReady; k++){
2304         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
2305       }
2306     }else{
2307       pOrTab = pWInfo->pTabList;
2308     }
2309 
2310     /* Initialize the rowset register to contain NULL. An SQL NULL is
2311     ** equivalent to an empty rowset.  Or, create an ephemeral index
2312     ** capable of holding primary keys in the case of a WITHOUT ROWID.
2313     **
2314     ** Also initialize regReturn to contain the address of the instruction
2315     ** immediately following the OP_Return at the bottom of the loop. This
2316     ** is required in a few obscure LEFT JOIN cases where control jumps
2317     ** over the top of the loop into the body of it. In this case the
2318     ** correct response for the end-of-loop code (the OP_Return) is to
2319     ** fall through to the next instruction, just as an OP_Next does if
2320     ** called on an uninitialized cursor.
2321     */
2322     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2323       if( HasRowid(pTab) ){
2324         regRowset = ++pParse->nMem;
2325         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
2326       }else{
2327         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2328         regRowset = pParse->nTab++;
2329         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
2330         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
2331       }
2332       regRowid = ++pParse->nMem;
2333     }
2334     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
2335 
2336     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
2337     ** Then for every term xN, evaluate as the subexpression: xN AND y
2338     ** That way, terms in y that are factored into the disjunction will
2339     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
2340     **
2341     ** Actually, each subexpression is converted to "xN AND w" where w is
2342     ** the "interesting" terms of z - terms that did not originate in the
2343     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
2344     ** indices.
2345     **
2346     ** This optimization also only applies if the (x1 OR x2 OR ...) term
2347     ** is not contained in the ON clause of a LEFT JOIN.
2348     ** See ticket http://www.sqlite.org/src/info/f2369304e4
2349     **
2350     ** 2022-02-04:  Do not push down slices of a row-value comparison.
2351     ** In other words, "w" or "y" may not be a slice of a vector.  Otherwise,
2352     ** the initialization of the right-hand operand of the vector comparison
2353     ** might not occur, or might occur only in an OR branch that is not
2354     ** taken.  dbsqlfuzz 80a9fade844b4fb43564efc972bcb2c68270f5d1.
2355     **
2356     ** 2022-03-03:  Do not push down expressions that involve subqueries.
2357     ** The subquery might get coded as a subroutine.  Any table-references
2358     ** in the subquery might be resolved to index-references for the index on
2359     ** the OR branch in which the subroutine is coded.  But if the subroutine
2360     ** is invoked from a different OR branch that uses a different index, such
2361     ** index-references will not work.  tag-20220303a
2362     ** https://sqlite.org/forum/forumpost/36937b197273d403
2363     */
2364     if( pWC->nTerm>1 ){
2365       int iTerm;
2366       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
2367         Expr *pExpr = pWC->a[iTerm].pExpr;
2368         if( &pWC->a[iTerm] == pTerm ) continue;
2369         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
2370         testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
2371         testcase( pWC->a[iTerm].wtFlags & TERM_SLICE );
2372         if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED|TERM_SLICE))!=0 ){
2373           continue;
2374         }
2375         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
2376         if( ExprHasProperty(pExpr, EP_Subquery) ) continue;  /* tag-20220303a */
2377         pExpr = sqlite3ExprDup(db, pExpr, 0);
2378         pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr);
2379       }
2380       if( pAndExpr ){
2381         /* The extra 0x10000 bit on the opcode is masked off and does not
2382         ** become part of the new Expr.op.  However, it does make the
2383         ** op==TK_AND comparison inside of sqlite3PExpr() false, and this
2384         ** prevents sqlite3PExpr() from applying the AND short-circuit
2385         ** optimization, which we do not want here. */
2386         pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr);
2387       }
2388     }
2389 
2390     /* Run a separate WHERE clause for each term of the OR clause.  After
2391     ** eliminating duplicates from other WHERE clauses, the action for each
2392     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
2393     */
2394     ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
2395     for(ii=0; ii<pOrWc->nTerm; ii++){
2396       WhereTerm *pOrTerm = &pOrWc->a[ii];
2397       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
2398         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
2399         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
2400         Expr *pDelete;                  /* Local copy of OR clause term */
2401         int jmp1 = 0;                   /* Address of jump operation */
2402         testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0
2403                && !ExprHasProperty(pOrExpr, EP_FromJoin)
2404         ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */
2405         pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0);
2406         if( db->mallocFailed ){
2407           sqlite3ExprDelete(db, pDelete);
2408           continue;
2409         }
2410         if( pAndExpr ){
2411           pAndExpr->pLeft = pOrExpr;
2412           pOrExpr = pAndExpr;
2413         }
2414         /* Loop through table entries that match term pOrTerm. */
2415         ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1));
2416         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
2417         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 0,
2418                                       WHERE_OR_SUBCLAUSE, iCovCur);
2419         assert( pSubWInfo || pParse->nErr );
2420         if( pSubWInfo ){
2421           WhereLoop *pSubLoop;
2422           int addrExplain = sqlite3WhereExplainOneScan(
2423               pParse, pOrTab, &pSubWInfo->a[0], 0
2424           );
2425           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
2426 
2427           /* This is the sub-WHERE clause body.  First skip over
2428           ** duplicate rows from prior sub-WHERE clauses, and record the
2429           ** rowid (or PRIMARY KEY) for the current row so that the same
2430           ** row will be skipped in subsequent sub-WHERE clauses.
2431           */
2432           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2433             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
2434             if( HasRowid(pTab) ){
2435               sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid);
2436               jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
2437                                           regRowid, iSet);
2438               VdbeCoverage(v);
2439             }else{
2440               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2441               int nPk = pPk->nKeyCol;
2442               int iPk;
2443               int r;
2444 
2445               /* Read the PK into an array of temp registers. */
2446               r = sqlite3GetTempRange(pParse, nPk);
2447               for(iPk=0; iPk<nPk; iPk++){
2448                 int iCol = pPk->aiColumn[iPk];
2449                 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2450               }
2451 
2452               /* Check if the temp table already contains this key. If so,
2453               ** the row has already been included in the result set and
2454               ** can be ignored (by jumping past the Gosub below). Otherwise,
2455               ** insert the key into the temp table and proceed with processing
2456               ** the row.
2457               **
2458               ** Use some of the same optimizations as OP_RowSetTest: If iSet
2459               ** is zero, assume that the key cannot already be present in
2460               ** the temp table. And if iSet is -1, assume that there is no
2461               ** need to insert the key into the temp table, as it will never
2462               ** be tested for.  */
2463               if( iSet ){
2464                 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
2465                 VdbeCoverage(v);
2466               }
2467               if( iSet>=0 ){
2468                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
2469                 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
2470                                      r, nPk);
2471                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2472               }
2473 
2474               /* Release the array of temp registers */
2475               sqlite3ReleaseTempRange(pParse, r, nPk);
2476             }
2477           }
2478 
2479           /* Invoke the main loop body as a subroutine */
2480           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2481 
2482           /* Jump here (skipping the main loop body subroutine) if the
2483           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2484           if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
2485 
2486           /* The pSubWInfo->untestedTerms flag means that this OR term
2487           ** contained one or more AND term from a notReady table.  The
2488           ** terms from the notReady table could not be tested and will
2489           ** need to be tested later.
2490           */
2491           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
2492 
2493           /* If all of the OR-connected terms are optimized using the same
2494           ** index, and the index is opened using the same cursor number
2495           ** by each call to sqlite3WhereBegin() made by this loop, it may
2496           ** be possible to use that index as a covering index.
2497           **
2498           ** If the call to sqlite3WhereBegin() above resulted in a scan that
2499           ** uses an index, and this is either the first OR-connected term
2500           ** processed or the index is the same as that used by all previous
2501           ** terms, set pCov to the candidate covering index. Otherwise, set
2502           ** pCov to NULL to indicate that no candidate covering index will
2503           ** be available.
2504           */
2505           pSubLoop = pSubWInfo->a[0].pWLoop;
2506           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2507           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2508            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2509            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2510           ){
2511             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2512             pCov = pSubLoop->u.btree.pIndex;
2513           }else{
2514             pCov = 0;
2515           }
2516           if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){
2517             pWInfo->bDeferredSeek = 1;
2518           }
2519 
2520           /* Finish the loop through table entries that match term pOrTerm. */
2521           sqlite3WhereEnd(pSubWInfo);
2522           ExplainQueryPlanPop(pParse);
2523         }
2524         sqlite3ExprDelete(db, pDelete);
2525       }
2526     }
2527     ExplainQueryPlanPop(pParse);
2528     assert( pLevel->pWLoop==pLoop );
2529     assert( (pLoop->wsFlags & WHERE_MULTI_OR)!=0 );
2530     assert( (pLoop->wsFlags & WHERE_IN_ABLE)==0 );
2531     pLevel->u.pCoveringIdx = pCov;
2532     if( pCov ) pLevel->iIdxCur = iCovCur;
2533     if( pAndExpr ){
2534       pAndExpr->pLeft = 0;
2535       sqlite3ExprDelete(db, pAndExpr);
2536     }
2537     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2538     sqlite3VdbeGoto(v, pLevel->addrBrk);
2539     sqlite3VdbeResolveLabel(v, iLoopBody);
2540 
2541     /* Set the P2 operand of the OP_Return opcode that will end the current
2542     ** loop to point to this spot, which is the top of the next containing
2543     ** loop.  The byte-code formatter will use that P2 value as a hint to
2544     ** indent everything in between the this point and the final OP_Return.
2545     ** See tag-20220407a in vdbe.c and shell.c */
2546     assert( pLevel->op==OP_Return );
2547     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2548 
2549     if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); }
2550     if( !untestedTerms ) disableTerm(pLevel, pTerm);
2551   }else
2552 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2553 
2554   {
2555     /* Case 6:  There is no usable index.  We must do a complete
2556     **          scan of the entire table.
2557     */
2558     static const u8 aStep[] = { OP_Next, OP_Prev };
2559     static const u8 aStart[] = { OP_Rewind, OP_Last };
2560     assert( bRev==0 || bRev==1 );
2561     if( pTabItem->fg.isRecursive ){
2562       /* Tables marked isRecursive have only a single row that is stored in
2563       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
2564       pLevel->op = OP_Noop;
2565     }else{
2566       codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2567       pLevel->op = aStep[bRev];
2568       pLevel->p1 = iCur;
2569       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2570       VdbeCoverageIf(v, bRev==0);
2571       VdbeCoverageIf(v, bRev!=0);
2572       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2573     }
2574   }
2575 
2576 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2577   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2578 #endif
2579 
2580   /* Insert code to test every subexpression that can be completely
2581   ** computed using the current set of tables.
2582   **
2583   ** This loop may run between one and three times, depending on the
2584   ** constraints to be generated. The value of stack variable iLoop
2585   ** determines the constraints coded by each iteration, as follows:
2586   **
2587   ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2588   ** iLoop==2: Code remaining expressions that do not contain correlated
2589   **           sub-queries.
2590   ** iLoop==3: Code all remaining expressions.
2591   **
2592   ** An effort is made to skip unnecessary iterations of the loop.
2593   */
2594   iLoop = (pIdx ? 1 : 2);
2595   do{
2596     int iNext = 0;                /* Next value for iLoop */
2597     for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2598       Expr *pE;
2599       int skipLikeAddr = 0;
2600       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2601       testcase( pTerm->wtFlags & TERM_CODED );
2602       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2603       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2604         testcase( pWInfo->untestedTerms==0
2605             && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2606         pWInfo->untestedTerms = 1;
2607         continue;
2608       }
2609       pE = pTerm->pExpr;
2610       assert( pE!=0 );
2611       if( (pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ))
2612        && !ExprHasProperty(pE,EP_FromJoin)
2613       ){
2614         continue;
2615       }
2616 
2617       if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2618         iNext = 2;
2619         continue;
2620       }
2621       if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2622         if( iNext==0 ) iNext = 3;
2623         continue;
2624       }
2625 
2626       if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
2627         /* If the TERM_LIKECOND flag is set, that means that the range search
2628         ** is sufficient to guarantee that the LIKE operator is true, so we
2629         ** can skip the call to the like(A,B) function.  But this only works
2630         ** for strings.  So do not skip the call to the function on the pass
2631         ** that compares BLOBs. */
2632 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2633         continue;
2634 #else
2635         u32 x = pLevel->iLikeRepCntr;
2636         if( x>0 ){
2637           skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
2638           VdbeCoverageIf(v, (x&1)==1);
2639           VdbeCoverageIf(v, (x&1)==0);
2640         }
2641 #endif
2642       }
2643 #ifdef WHERETRACE_ENABLED /* 0xffff */
2644       if( sqlite3WhereTrace ){
2645         VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2646                          pWC->nTerm-j, pTerm, iLoop));
2647       }
2648       if( sqlite3WhereTrace & 0x800 ){
2649         sqlite3DebugPrintf("Coding auxiliary constraint:\n");
2650         sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2651       }
2652 #endif
2653       sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2654       if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2655       pTerm->wtFlags |= TERM_CODED;
2656     }
2657     iLoop = iNext;
2658   }while( iLoop>0 );
2659 
2660   /* Insert code to test for implied constraints based on transitivity
2661   ** of the "==" operator.
2662   **
2663   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2664   ** and we are coding the t1 loop and the t2 loop has not yet coded,
2665   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2666   ** the implied "t1.a=123" constraint.
2667   */
2668   for(pTerm=pWC->a, j=pWC->nBase; j>0; j--, pTerm++){
2669     Expr *pE, sEAlt;
2670     WhereTerm *pAlt;
2671     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2672     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2673     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2674     if( pTerm->leftCursor!=iCur ) continue;
2675     if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ) ) continue;
2676     pE = pTerm->pExpr;
2677 #ifdef WHERETRACE_ENABLED /* 0x800 */
2678     if( sqlite3WhereTrace & 0x800 ){
2679       sqlite3DebugPrintf("Coding transitive constraint:\n");
2680       sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2681     }
2682 #endif
2683     assert( !ExprHasProperty(pE, EP_FromJoin) );
2684     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2685     assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
2686     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady,
2687                     WO_EQ|WO_IN|WO_IS, 0);
2688     if( pAlt==0 ) continue;
2689     if( pAlt->wtFlags & (TERM_CODED) ) continue;
2690     if( (pAlt->eOperator & WO_IN)
2691      && ExprUseXSelect(pAlt->pExpr)
2692      && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
2693     ){
2694       continue;
2695     }
2696     testcase( pAlt->eOperator & WO_EQ );
2697     testcase( pAlt->eOperator & WO_IS );
2698     testcase( pAlt->eOperator & WO_IN );
2699     VdbeModuleComment((v, "begin transitive constraint"));
2700     sEAlt = *pAlt->pExpr;
2701     sEAlt.pLeft = pE->pLeft;
2702     sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2703     pAlt->wtFlags |= TERM_CODED;
2704   }
2705 
2706   /* For a LEFT OUTER JOIN, generate code that will record the fact that
2707   ** at least one row of the right table has matched the left table.
2708   */
2709   if( pLevel->iLeftJoin ){
2710     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2711     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2712     VdbeComment((v, "record LEFT JOIN hit"));
2713     for(pTerm=pWC->a, j=0; j<pWC->nBase; j++, pTerm++){
2714       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2715       testcase( pTerm->wtFlags & TERM_CODED );
2716       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2717       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2718         assert( pWInfo->untestedTerms );
2719         continue;
2720       }
2721       assert( pTerm->pExpr );
2722       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2723       pTerm->wtFlags |= TERM_CODED;
2724     }
2725   }
2726 
2727   /* For a RIGHT OUTER JOIN, record the fact that the current row has
2728   ** been matched at least once.
2729   */
2730   if( pLevel->pRJ ){
2731     Table *pTab;
2732     int nPk;
2733     int r;
2734     int jmp1 = 0;
2735     WhereRightJoin *pRJ = pLevel->pRJ;
2736 
2737     /* pTab is the right-hand table of the RIGHT JOIN.  Generate code that
2738     ** will record that the current row of that table has been matched at
2739     ** least once.  This is accomplished by storing the PK for the row in
2740     ** both the iMatch index and the regBloom Bloom filter.
2741     */
2742     pTab = pWInfo->pTabList->a[pLevel->iFrom].pTab;
2743     if( HasRowid(pTab) ){
2744       r = sqlite3GetTempRange(pParse, 2);
2745       sqlite3ExprCodeGetColumnOfTable(v, pTab, pLevel->iTabCur, -1, r+1);
2746       nPk = 1;
2747     }else{
2748       int iPk;
2749       Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2750       nPk = pPk->nKeyCol;
2751       r = sqlite3GetTempRange(pParse, nPk+1);
2752       for(iPk=0; iPk<nPk; iPk++){
2753         int iCol = pPk->aiColumn[iPk];
2754         sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+1+iPk);
2755       }
2756     }
2757     jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, 0, r+1, nPk);
2758     VdbeCoverage(v);
2759     sqlite3VdbeAddOp3(v, OP_MakeRecord, r+1, nPk, r);
2760     sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pRJ->iMatch, r, r+1, nPk);
2761     sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pRJ->regBloom, 0, r+1, nPk);
2762     sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2763     sqlite3VdbeJumpHere(v, jmp1);
2764     sqlite3ReleaseTempRange(pParse, r, nPk+1);
2765 
2766     /* Create a subroutine used to process all interior loops and code
2767     ** of the RIGHT JOIN.  During normal operation, the subroutine will
2768     ** be in-line with the rest of the code.  But at the end, a separate
2769     ** loop will run that invokes this subroutine for unmatched rows
2770     ** of pTab, with all tables to left begin set to NULL.
2771     */
2772     sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pRJ->regReturn);
2773     pRJ->addrSubrtn = sqlite3VdbeCurrentAddr(v);
2774   }
2775 
2776 #if WHERETRACE_ENABLED /* 0x20800 */
2777   if( sqlite3WhereTrace & 0x20000 ){
2778     sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n",
2779                        iLevel);
2780     sqlite3WhereClausePrint(pWC);
2781   }
2782   if( sqlite3WhereTrace & 0x800 ){
2783     sqlite3DebugPrintf("End Coding level %d:  notReady=%llx\n",
2784        iLevel, (u64)pLevel->notReady);
2785   }
2786 #endif
2787   return pLevel->notReady;
2788 }
2789