1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 25 /* 26 ** Return the name of the i-th column of the pIdx index. 27 */ 28 static const char *explainIndexColumnName(Index *pIdx, int i){ 29 i = pIdx->aiColumn[i]; 30 if( i==XN_EXPR ) return "<expr>"; 31 if( i==XN_ROWID ) return "rowid"; 32 return pIdx->pTable->aCol[i].zCnName; 33 } 34 35 /* 36 ** This routine is a helper for explainIndexRange() below 37 ** 38 ** pStr holds the text of an expression that we are building up one term 39 ** at a time. This routine adds a new term to the end of the expression. 40 ** Terms are separated by AND so add the "AND" text for second and subsequent 41 ** terms only. 42 */ 43 static void explainAppendTerm( 44 StrAccum *pStr, /* The text expression being built */ 45 Index *pIdx, /* Index to read column names from */ 46 int nTerm, /* Number of terms */ 47 int iTerm, /* Zero-based index of first term. */ 48 int bAnd, /* Non-zero to append " AND " */ 49 const char *zOp /* Name of the operator */ 50 ){ 51 int i; 52 53 assert( nTerm>=1 ); 54 if( bAnd ) sqlite3_str_append(pStr, " AND ", 5); 55 56 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 57 for(i=0; i<nTerm; i++){ 58 if( i ) sqlite3_str_append(pStr, ",", 1); 59 sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i)); 60 } 61 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 62 63 sqlite3_str_append(pStr, zOp, 1); 64 65 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 66 for(i=0; i<nTerm; i++){ 67 if( i ) sqlite3_str_append(pStr, ",", 1); 68 sqlite3_str_append(pStr, "?", 1); 69 } 70 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 71 } 72 73 /* 74 ** Argument pLevel describes a strategy for scanning table pTab. This 75 ** function appends text to pStr that describes the subset of table 76 ** rows scanned by the strategy in the form of an SQL expression. 77 ** 78 ** For example, if the query: 79 ** 80 ** SELECT * FROM t1 WHERE a=1 AND b>2; 81 ** 82 ** is run and there is an index on (a, b), then this function returns a 83 ** string similar to: 84 ** 85 ** "a=? AND b>?" 86 */ 87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 88 Index *pIndex = pLoop->u.btree.pIndex; 89 u16 nEq = pLoop->u.btree.nEq; 90 u16 nSkip = pLoop->nSkip; 91 int i, j; 92 93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 94 sqlite3_str_append(pStr, " (", 2); 95 for(i=0; i<nEq; i++){ 96 const char *z = explainIndexColumnName(pIndex, i); 97 if( i ) sqlite3_str_append(pStr, " AND ", 5); 98 sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); 99 } 100 101 j = i; 102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); 104 i = 1; 105 } 106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); 108 } 109 sqlite3_str_append(pStr, ")", 1); 110 } 111 112 /* 113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 116 ** is added to the output to describe the table scan strategy in pLevel. 117 ** 118 ** If an OP_Explain opcode is added to the VM, its address is returned. 119 ** Otherwise, if no OP_Explain is coded, zero is returned. 120 */ 121 int sqlite3WhereExplainOneScan( 122 Parse *pParse, /* Parse context */ 123 SrcList *pTabList, /* Table list this loop refers to */ 124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 125 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 126 ){ 127 int ret = 0; 128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 129 if( sqlite3ParseToplevel(pParse)->explain==2 ) 130 #endif 131 { 132 SrcItem *pItem = &pTabList->a[pLevel->iFrom]; 133 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 134 sqlite3 *db = pParse->db; /* Database handle */ 135 int isSearch; /* True for a SEARCH. False for SCAN. */ 136 WhereLoop *pLoop; /* The controlling WhereLoop object */ 137 u32 flags; /* Flags that describe this loop */ 138 char *zMsg; /* Text to add to EQP output */ 139 StrAccum str; /* EQP output string */ 140 char zBuf[100]; /* Initial space for EQP output string */ 141 142 pLoop = pLevel->pWLoop; 143 flags = pLoop->wsFlags; 144 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; 145 146 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 147 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 148 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 149 150 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 151 str.printfFlags = SQLITE_PRINTF_INTERNAL; 152 sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem); 153 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 154 const char *zFmt = 0; 155 Index *pIdx; 156 157 assert( pLoop->u.btree.pIndex!=0 ); 158 pIdx = pLoop->u.btree.pIndex; 159 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 160 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 161 if( isSearch ){ 162 zFmt = "PRIMARY KEY"; 163 } 164 }else if( flags & WHERE_PARTIALIDX ){ 165 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 166 }else if( flags & WHERE_AUTO_INDEX ){ 167 zFmt = "AUTOMATIC COVERING INDEX"; 168 }else if( flags & WHERE_IDX_ONLY ){ 169 zFmt = "COVERING INDEX %s"; 170 }else{ 171 zFmt = "INDEX %s"; 172 } 173 if( zFmt ){ 174 sqlite3_str_append(&str, " USING ", 7); 175 sqlite3_str_appendf(&str, zFmt, pIdx->zName); 176 explainIndexRange(&str, pLoop); 177 } 178 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 179 char cRangeOp; 180 #if 0 /* Better output, but breaks many tests */ 181 const Table *pTab = pItem->pTab; 182 const char *zRowid = pTab->iPKey>=0 ? pTab->aCol[pTab->iPKey].zCnName: 183 "rowid"; 184 #else 185 const char *zRowid = "rowid"; 186 #endif 187 sqlite3_str_appendf(&str, " USING INTEGER PRIMARY KEY (%s", zRowid); 188 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 189 cRangeOp = '='; 190 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 191 sqlite3_str_appendf(&str, ">? AND %s", zRowid); 192 cRangeOp = '<'; 193 }else if( flags&WHERE_BTM_LIMIT ){ 194 cRangeOp = '>'; 195 }else{ 196 assert( flags&WHERE_TOP_LIMIT); 197 cRangeOp = '<'; 198 } 199 sqlite3_str_appendf(&str, "%c?)", cRangeOp); 200 } 201 #ifndef SQLITE_OMIT_VIRTUALTABLE 202 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 203 sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s", 204 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 205 } 206 #endif 207 if( pItem->fg.jointype & JT_LEFT ){ 208 sqlite3_str_appendf(&str, " LEFT-JOIN"); 209 } 210 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 211 if( pLoop->nOut>=10 ){ 212 sqlite3_str_appendf(&str, " (~%llu rows)", 213 sqlite3LogEstToInt(pLoop->nOut)); 214 }else{ 215 sqlite3_str_append(&str, " (~1 row)", 9); 216 } 217 #endif 218 zMsg = sqlite3StrAccumFinish(&str); 219 sqlite3ExplainBreakpoint("",zMsg); 220 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), 221 pParse->addrExplain, 0, zMsg,P4_DYNAMIC); 222 } 223 return ret; 224 } 225 226 /* 227 ** Add a single OP_Explain opcode that describes a Bloom filter. 228 ** 229 ** Or if not processing EXPLAIN QUERY PLAN and not in a SQLITE_DEBUG and/or 230 ** SQLITE_ENABLE_STMT_SCANSTATUS build, then OP_Explain opcodes are not 231 ** required and this routine is a no-op. 232 ** 233 ** If an OP_Explain opcode is added to the VM, its address is returned. 234 ** Otherwise, if no OP_Explain is coded, zero is returned. 235 */ 236 int sqlite3WhereExplainBloomFilter( 237 const Parse *pParse, /* Parse context */ 238 const WhereInfo *pWInfo, /* WHERE clause */ 239 const WhereLevel *pLevel /* Bloom filter on this level */ 240 ){ 241 int ret = 0; 242 SrcItem *pItem = &pWInfo->pTabList->a[pLevel->iFrom]; 243 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 244 sqlite3 *db = pParse->db; /* Database handle */ 245 char *zMsg; /* Text to add to EQP output */ 246 int i; /* Loop counter */ 247 WhereLoop *pLoop; /* The where loop */ 248 StrAccum str; /* EQP output string */ 249 char zBuf[100]; /* Initial space for EQP output string */ 250 251 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 252 str.printfFlags = SQLITE_PRINTF_INTERNAL; 253 sqlite3_str_appendf(&str, "BLOOM FILTER ON %S (", pItem); 254 pLoop = pLevel->pWLoop; 255 if( pLoop->wsFlags & WHERE_IPK ){ 256 const Table *pTab = pItem->pTab; 257 if( pTab->iPKey>=0 ){ 258 sqlite3_str_appendf(&str, "%s=?", pTab->aCol[pTab->iPKey].zCnName); 259 }else{ 260 sqlite3_str_appendf(&str, "rowid=?"); 261 } 262 }else{ 263 for(i=pLoop->nSkip; i<pLoop->u.btree.nEq; i++){ 264 const char *z = explainIndexColumnName(pLoop->u.btree.pIndex, i); 265 if( i>pLoop->nSkip ) sqlite3_str_append(&str, " AND ", 5); 266 sqlite3_str_appendf(&str, "%s=?", z); 267 } 268 } 269 sqlite3_str_append(&str, ")", 1); 270 zMsg = sqlite3StrAccumFinish(&str); 271 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), 272 pParse->addrExplain, 0, zMsg,P4_DYNAMIC); 273 return ret; 274 } 275 #endif /* SQLITE_OMIT_EXPLAIN */ 276 277 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 278 /* 279 ** Configure the VM passed as the first argument with an 280 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 281 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 282 ** clause that the scan reads data from. 283 ** 284 ** If argument addrExplain is not 0, it must be the address of an 285 ** OP_Explain instruction that describes the same loop. 286 */ 287 void sqlite3WhereAddScanStatus( 288 Vdbe *v, /* Vdbe to add scanstatus entry to */ 289 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 290 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 291 int addrExplain /* Address of OP_Explain (or 0) */ 292 ){ 293 const char *zObj = 0; 294 WhereLoop *pLoop = pLvl->pWLoop; 295 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 296 zObj = pLoop->u.btree.pIndex->zName; 297 }else{ 298 zObj = pSrclist->a[pLvl->iFrom].zName; 299 } 300 sqlite3VdbeScanStatus( 301 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 302 ); 303 } 304 #endif 305 306 307 /* 308 ** Disable a term in the WHERE clause. Except, do not disable the term 309 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 310 ** or USING clause of that join. 311 ** 312 ** Consider the term t2.z='ok' in the following queries: 313 ** 314 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 315 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 316 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 317 ** 318 ** The t2.z='ok' is disabled in the in (2) because it originates 319 ** in the ON clause. The term is disabled in (3) because it is not part 320 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 321 ** 322 ** Disabling a term causes that term to not be tested in the inner loop 323 ** of the join. Disabling is an optimization. When terms are satisfied 324 ** by indices, we disable them to prevent redundant tests in the inner 325 ** loop. We would get the correct results if nothing were ever disabled, 326 ** but joins might run a little slower. The trick is to disable as much 327 ** as we can without disabling too much. If we disabled in (1), we'd get 328 ** the wrong answer. See ticket #813. 329 ** 330 ** If all the children of a term are disabled, then that term is also 331 ** automatically disabled. In this way, terms get disabled if derived 332 ** virtual terms are tested first. For example: 333 ** 334 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 335 ** \___________/ \______/ \_____/ 336 ** parent child1 child2 337 ** 338 ** Only the parent term was in the original WHERE clause. The child1 339 ** and child2 terms were added by the LIKE optimization. If both of 340 ** the virtual child terms are valid, then testing of the parent can be 341 ** skipped. 342 ** 343 ** Usually the parent term is marked as TERM_CODED. But if the parent 344 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 345 ** The TERM_LIKECOND marking indicates that the term should be coded inside 346 ** a conditional such that is only evaluated on the second pass of a 347 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 348 */ 349 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 350 int nLoop = 0; 351 assert( pTerm!=0 ); 352 while( (pTerm->wtFlags & TERM_CODED)==0 353 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 354 && (pLevel->notReady & pTerm->prereqAll)==0 355 ){ 356 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 357 pTerm->wtFlags |= TERM_LIKECOND; 358 }else{ 359 pTerm->wtFlags |= TERM_CODED; 360 } 361 #ifdef WHERETRACE_ENABLED 362 if( sqlite3WhereTrace & 0x20000 ){ 363 sqlite3DebugPrintf("DISABLE-"); 364 sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a))); 365 } 366 #endif 367 if( pTerm->iParent<0 ) break; 368 pTerm = &pTerm->pWC->a[pTerm->iParent]; 369 assert( pTerm!=0 ); 370 pTerm->nChild--; 371 if( pTerm->nChild!=0 ) break; 372 nLoop++; 373 } 374 } 375 376 /* 377 ** Code an OP_Affinity opcode to apply the column affinity string zAff 378 ** to the n registers starting at base. 379 ** 380 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which 381 ** are no-ops) at the beginning and end of zAff are ignored. If all entries 382 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated. 383 ** 384 ** This routine makes its own copy of zAff so that the caller is free 385 ** to modify zAff after this routine returns. 386 */ 387 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 388 Vdbe *v = pParse->pVdbe; 389 if( zAff==0 ){ 390 assert( pParse->db->mallocFailed ); 391 return; 392 } 393 assert( v!=0 ); 394 395 /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE 396 ** entries at the beginning and end of the affinity string. 397 */ 398 assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB ); 399 while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){ 400 n--; 401 base++; 402 zAff++; 403 } 404 while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){ 405 n--; 406 } 407 408 /* Code the OP_Affinity opcode if there is anything left to do. */ 409 if( n>0 ){ 410 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 411 } 412 } 413 414 /* 415 ** Expression pRight, which is the RHS of a comparison operation, is 416 ** either a vector of n elements or, if n==1, a scalar expression. 417 ** Before the comparison operation, affinity zAff is to be applied 418 ** to the pRight values. This function modifies characters within the 419 ** affinity string to SQLITE_AFF_BLOB if either: 420 ** 421 ** * the comparison will be performed with no affinity, or 422 ** * the affinity change in zAff is guaranteed not to change the value. 423 */ 424 static void updateRangeAffinityStr( 425 Expr *pRight, /* RHS of comparison */ 426 int n, /* Number of vector elements in comparison */ 427 char *zAff /* Affinity string to modify */ 428 ){ 429 int i; 430 for(i=0; i<n; i++){ 431 Expr *p = sqlite3VectorFieldSubexpr(pRight, i); 432 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB 433 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) 434 ){ 435 zAff[i] = SQLITE_AFF_BLOB; 436 } 437 } 438 } 439 440 441 /* 442 ** pX is an expression of the form: (vector) IN (SELECT ...) 443 ** In other words, it is a vector IN operator with a SELECT clause on the 444 ** LHS. But not all terms in the vector are indexable and the terms might 445 ** not be in the correct order for indexing. 446 ** 447 ** This routine makes a copy of the input pX expression and then adjusts 448 ** the vector on the LHS with corresponding changes to the SELECT so that 449 ** the vector contains only index terms and those terms are in the correct 450 ** order. The modified IN expression is returned. The caller is responsible 451 ** for deleting the returned expression. 452 ** 453 ** Example: 454 ** 455 ** CREATE TABLE t1(a,b,c,d,e,f); 456 ** CREATE INDEX t1x1 ON t1(e,c); 457 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2) 458 ** \_______________________________________/ 459 ** The pX expression 460 ** 461 ** Since only columns e and c can be used with the index, in that order, 462 ** the modified IN expression that is returned will be: 463 ** 464 ** (e,c) IN (SELECT z,x FROM t2) 465 ** 466 ** The reduced pX is different from the original (obviously) and thus is 467 ** only used for indexing, to improve performance. The original unaltered 468 ** IN expression must also be run on each output row for correctness. 469 */ 470 static Expr *removeUnindexableInClauseTerms( 471 Parse *pParse, /* The parsing context */ 472 int iEq, /* Look at loop terms starting here */ 473 WhereLoop *pLoop, /* The current loop */ 474 Expr *pX /* The IN expression to be reduced */ 475 ){ 476 sqlite3 *db = pParse->db; 477 Expr *pNew; 478 pNew = sqlite3ExprDup(db, pX, 0); 479 if( db->mallocFailed==0 ){ 480 ExprList *pOrigRhs; /* Original unmodified RHS */ 481 ExprList *pOrigLhs; /* Original unmodified LHS */ 482 ExprList *pRhs = 0; /* New RHS after modifications */ 483 ExprList *pLhs = 0; /* New LHS after mods */ 484 int i; /* Loop counter */ 485 Select *pSelect; /* Pointer to the SELECT on the RHS */ 486 487 assert( ExprUseXSelect(pNew) ); 488 pOrigRhs = pNew->x.pSelect->pEList; 489 assert( pNew->pLeft!=0 ); 490 assert( ExprUseXList(pNew->pLeft) ); 491 pOrigLhs = pNew->pLeft->x.pList; 492 for(i=iEq; i<pLoop->nLTerm; i++){ 493 if( pLoop->aLTerm[i]->pExpr==pX ){ 494 int iField; 495 assert( (pLoop->aLTerm[i]->eOperator & (WO_OR|WO_AND))==0 ); 496 iField = pLoop->aLTerm[i]->u.x.iField - 1; 497 if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */ 498 pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr); 499 pOrigRhs->a[iField].pExpr = 0; 500 assert( pOrigLhs->a[iField].pExpr!=0 ); 501 pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr); 502 pOrigLhs->a[iField].pExpr = 0; 503 } 504 } 505 sqlite3ExprListDelete(db, pOrigRhs); 506 sqlite3ExprListDelete(db, pOrigLhs); 507 pNew->pLeft->x.pList = pLhs; 508 pNew->x.pSelect->pEList = pRhs; 509 if( pLhs && pLhs->nExpr==1 ){ 510 /* Take care here not to generate a TK_VECTOR containing only a 511 ** single value. Since the parser never creates such a vector, some 512 ** of the subroutines do not handle this case. */ 513 Expr *p = pLhs->a[0].pExpr; 514 pLhs->a[0].pExpr = 0; 515 sqlite3ExprDelete(db, pNew->pLeft); 516 pNew->pLeft = p; 517 } 518 pSelect = pNew->x.pSelect; 519 if( pSelect->pOrderBy ){ 520 /* If the SELECT statement has an ORDER BY clause, zero the 521 ** iOrderByCol variables. These are set to non-zero when an 522 ** ORDER BY term exactly matches one of the terms of the 523 ** result-set. Since the result-set of the SELECT statement may 524 ** have been modified or reordered, these variables are no longer 525 ** set correctly. Since setting them is just an optimization, 526 ** it's easiest just to zero them here. */ 527 ExprList *pOrderBy = pSelect->pOrderBy; 528 for(i=0; i<pOrderBy->nExpr; i++){ 529 pOrderBy->a[i].u.x.iOrderByCol = 0; 530 } 531 } 532 533 #if 0 534 printf("For indexing, change the IN expr:\n"); 535 sqlite3TreeViewExpr(0, pX, 0); 536 printf("Into:\n"); 537 sqlite3TreeViewExpr(0, pNew, 0); 538 #endif 539 } 540 return pNew; 541 } 542 543 544 /* 545 ** Generate code for a single equality term of the WHERE clause. An equality 546 ** term can be either X=expr or X IN (...). pTerm is the term to be 547 ** coded. 548 ** 549 ** The current value for the constraint is left in a register, the index 550 ** of which is returned. An attempt is made store the result in iTarget but 551 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the 552 ** constraint is a TK_EQ or TK_IS, then the current value might be left in 553 ** some other register and it is the caller's responsibility to compensate. 554 ** 555 ** For a constraint of the form X=expr, the expression is evaluated in 556 ** straight-line code. For constraints of the form X IN (...) 557 ** this routine sets up a loop that will iterate over all values of X. 558 */ 559 static int codeEqualityTerm( 560 Parse *pParse, /* The parsing context */ 561 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 562 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 563 int iEq, /* Index of the equality term within this level */ 564 int bRev, /* True for reverse-order IN operations */ 565 int iTarget /* Attempt to leave results in this register */ 566 ){ 567 Expr *pX = pTerm->pExpr; 568 Vdbe *v = pParse->pVdbe; 569 int iReg; /* Register holding results */ 570 571 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); 572 assert( iTarget>0 ); 573 if( pX->op==TK_EQ || pX->op==TK_IS ){ 574 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 575 }else if( pX->op==TK_ISNULL ){ 576 iReg = iTarget; 577 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 578 #ifndef SQLITE_OMIT_SUBQUERY 579 }else{ 580 int eType = IN_INDEX_NOOP; 581 int iTab; 582 struct InLoop *pIn; 583 WhereLoop *pLoop = pLevel->pWLoop; 584 int i; 585 int nEq = 0; 586 int *aiMap = 0; 587 588 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 589 && pLoop->u.btree.pIndex!=0 590 && pLoop->u.btree.pIndex->aSortOrder[iEq] 591 ){ 592 testcase( iEq==0 ); 593 testcase( bRev ); 594 bRev = !bRev; 595 } 596 assert( pX->op==TK_IN ); 597 iReg = iTarget; 598 599 for(i=0; i<iEq; i++){ 600 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ 601 disableTerm(pLevel, pTerm); 602 return iTarget; 603 } 604 } 605 for(i=iEq;i<pLoop->nLTerm; i++){ 606 assert( pLoop->aLTerm[i]!=0 ); 607 if( pLoop->aLTerm[i]->pExpr==pX ) nEq++; 608 } 609 610 iTab = 0; 611 if( !ExprUseXSelect(pX) || pX->x.pSelect->pEList->nExpr==1 ){ 612 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab); 613 }else{ 614 sqlite3 *db = pParse->db; 615 pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX); 616 617 if( !db->mallocFailed ){ 618 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq); 619 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab); 620 pTerm->pExpr->iTable = iTab; 621 } 622 sqlite3ExprDelete(db, pX); 623 pX = pTerm->pExpr; 624 } 625 626 if( eType==IN_INDEX_INDEX_DESC ){ 627 testcase( bRev ); 628 bRev = !bRev; 629 } 630 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 631 VdbeCoverageIf(v, bRev); 632 VdbeCoverageIf(v, !bRev); 633 634 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 635 pLoop->wsFlags |= WHERE_IN_ABLE; 636 if( pLevel->u.in.nIn==0 ){ 637 pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 638 } 639 if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){ 640 pLoop->wsFlags |= WHERE_IN_EARLYOUT; 641 } 642 643 i = pLevel->u.in.nIn; 644 pLevel->u.in.nIn += nEq; 645 pLevel->u.in.aInLoop = 646 sqlite3WhereRealloc(pTerm->pWC->pWInfo, 647 pLevel->u.in.aInLoop, 648 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 649 pIn = pLevel->u.in.aInLoop; 650 if( pIn ){ 651 int iMap = 0; /* Index in aiMap[] */ 652 pIn += i; 653 for(i=iEq;i<pLoop->nLTerm; i++){ 654 if( pLoop->aLTerm[i]->pExpr==pX ){ 655 int iOut = iReg + i - iEq; 656 if( eType==IN_INDEX_ROWID ){ 657 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); 658 }else{ 659 int iCol = aiMap ? aiMap[iMap++] : 0; 660 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); 661 } 662 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); 663 if( i==iEq ){ 664 pIn->iCur = iTab; 665 pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next; 666 if( iEq>0 ){ 667 pIn->iBase = iReg - i; 668 pIn->nPrefix = i; 669 }else{ 670 pIn->nPrefix = 0; 671 } 672 }else{ 673 pIn->eEndLoopOp = OP_Noop; 674 } 675 pIn++; 676 } 677 } 678 testcase( iEq>0 679 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 680 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ); 681 if( iEq>0 682 && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0 683 ){ 684 sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq); 685 } 686 }else{ 687 pLevel->u.in.nIn = 0; 688 } 689 sqlite3DbFree(pParse->db, aiMap); 690 #endif 691 } 692 693 /* As an optimization, try to disable the WHERE clause term that is 694 ** driving the index as it will always be true. The correct answer is 695 ** obtained regardless, but we might get the answer with fewer CPU cycles 696 ** by omitting the term. 697 ** 698 ** But do not disable the term unless we are certain that the term is 699 ** not a transitive constraint. For an example of where that does not 700 ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04) 701 */ 702 if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0 703 || (pTerm->eOperator & WO_EQUIV)==0 704 ){ 705 disableTerm(pLevel, pTerm); 706 } 707 708 return iReg; 709 } 710 711 /* 712 ** Generate code that will evaluate all == and IN constraints for an 713 ** index scan. 714 ** 715 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 716 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 717 ** The index has as many as three equality constraints, but in this 718 ** example, the third "c" value is an inequality. So only two 719 ** constraints are coded. This routine will generate code to evaluate 720 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 721 ** in consecutive registers and the index of the first register is returned. 722 ** 723 ** In the example above nEq==2. But this subroutine works for any value 724 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 725 ** The only thing it does is allocate the pLevel->iMem memory cell and 726 ** compute the affinity string. 727 ** 728 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 729 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 730 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 731 ** occurs after the nEq quality constraints. 732 ** 733 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 734 ** the index of the first memory cell in that range. The code that 735 ** calls this routine will use that memory range to store keys for 736 ** start and termination conditions of the loop. 737 ** key value of the loop. If one or more IN operators appear, then 738 ** this routine allocates an additional nEq memory cells for internal 739 ** use. 740 ** 741 ** Before returning, *pzAff is set to point to a buffer containing a 742 ** copy of the column affinity string of the index allocated using 743 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 744 ** with equality constraints that use BLOB or NONE affinity are set to 745 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 746 ** 747 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 748 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 749 ** 750 ** In the example above, the index on t1(a) has TEXT affinity. But since 751 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 752 ** no conversion should be attempted before using a t2.b value as part of 753 ** a key to search the index. Hence the first byte in the returned affinity 754 ** string in this example would be set to SQLITE_AFF_BLOB. 755 */ 756 static int codeAllEqualityTerms( 757 Parse *pParse, /* Parsing context */ 758 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 759 int bRev, /* Reverse the order of IN operators */ 760 int nExtraReg, /* Number of extra registers to allocate */ 761 char **pzAff /* OUT: Set to point to affinity string */ 762 ){ 763 u16 nEq; /* The number of == or IN constraints to code */ 764 u16 nSkip; /* Number of left-most columns to skip */ 765 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 766 Index *pIdx; /* The index being used for this loop */ 767 WhereTerm *pTerm; /* A single constraint term */ 768 WhereLoop *pLoop; /* The WhereLoop object */ 769 int j; /* Loop counter */ 770 int regBase; /* Base register */ 771 int nReg; /* Number of registers to allocate */ 772 char *zAff; /* Affinity string to return */ 773 774 /* This module is only called on query plans that use an index. */ 775 pLoop = pLevel->pWLoop; 776 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 777 nEq = pLoop->u.btree.nEq; 778 nSkip = pLoop->nSkip; 779 pIdx = pLoop->u.btree.pIndex; 780 assert( pIdx!=0 ); 781 782 /* Figure out how many memory cells we will need then allocate them. 783 */ 784 regBase = pParse->nMem + 1; 785 nReg = pLoop->u.btree.nEq + nExtraReg; 786 pParse->nMem += nReg; 787 788 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 789 assert( zAff!=0 || pParse->db->mallocFailed ); 790 791 if( nSkip ){ 792 int iIdxCur = pLevel->iIdxCur; 793 sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1); 794 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 795 VdbeCoverageIf(v, bRev==0); 796 VdbeCoverageIf(v, bRev!=0); 797 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 798 j = sqlite3VdbeAddOp0(v, OP_Goto); 799 assert( pLevel->addrSkip==0 ); 800 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 801 iIdxCur, 0, regBase, nSkip); 802 VdbeCoverageIf(v, bRev==0); 803 VdbeCoverageIf(v, bRev!=0); 804 sqlite3VdbeJumpHere(v, j); 805 for(j=0; j<nSkip; j++){ 806 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 807 testcase( pIdx->aiColumn[j]==XN_EXPR ); 808 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 809 } 810 } 811 812 /* Evaluate the equality constraints 813 */ 814 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 815 for(j=nSkip; j<nEq; j++){ 816 int r1; 817 pTerm = pLoop->aLTerm[j]; 818 assert( pTerm!=0 ); 819 /* The following testcase is true for indices with redundant columns. 820 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 821 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 822 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 823 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 824 if( r1!=regBase+j ){ 825 if( nReg==1 ){ 826 sqlite3ReleaseTempReg(pParse, regBase); 827 regBase = r1; 828 }else{ 829 sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j); 830 } 831 } 832 } 833 for(j=nSkip; j<nEq; j++){ 834 pTerm = pLoop->aLTerm[j]; 835 if( pTerm->eOperator & WO_IN ){ 836 if( pTerm->pExpr->flags & EP_xIsSelect ){ 837 /* No affinity ever needs to be (or should be) applied to a value 838 ** from the RHS of an "? IN (SELECT ...)" expression. The 839 ** sqlite3FindInIndex() routine has already ensured that the 840 ** affinity of the comparison has been applied to the value. */ 841 if( zAff ) zAff[j] = SQLITE_AFF_BLOB; 842 } 843 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ 844 Expr *pRight = pTerm->pExpr->pRight; 845 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 846 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 847 VdbeCoverage(v); 848 } 849 if( pParse->nErr==0 ){ 850 assert( pParse->db->mallocFailed==0 ); 851 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 852 zAff[j] = SQLITE_AFF_BLOB; 853 } 854 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 855 zAff[j] = SQLITE_AFF_BLOB; 856 } 857 } 858 } 859 } 860 *pzAff = zAff; 861 return regBase; 862 } 863 864 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 865 /* 866 ** If the most recently coded instruction is a constant range constraint 867 ** (a string literal) that originated from the LIKE optimization, then 868 ** set P3 and P5 on the OP_String opcode so that the string will be cast 869 ** to a BLOB at appropriate times. 870 ** 871 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 872 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 873 ** scan loop run twice, once for strings and a second time for BLOBs. 874 ** The OP_String opcodes on the second pass convert the upper and lower 875 ** bound string constants to blobs. This routine makes the necessary changes 876 ** to the OP_String opcodes for that to happen. 877 ** 878 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 879 ** only the one pass through the string space is required, so this routine 880 ** becomes a no-op. 881 */ 882 static void whereLikeOptimizationStringFixup( 883 Vdbe *v, /* prepared statement under construction */ 884 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 885 WhereTerm *pTerm /* The upper or lower bound just coded */ 886 ){ 887 if( pTerm->wtFlags & TERM_LIKEOPT ){ 888 VdbeOp *pOp; 889 assert( pLevel->iLikeRepCntr>0 ); 890 pOp = sqlite3VdbeGetOp(v, -1); 891 assert( pOp!=0 ); 892 assert( pOp->opcode==OP_String8 893 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 894 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ 895 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ 896 } 897 } 898 #else 899 # define whereLikeOptimizationStringFixup(A,B,C) 900 #endif 901 902 #ifdef SQLITE_ENABLE_CURSOR_HINTS 903 /* 904 ** Information is passed from codeCursorHint() down to individual nodes of 905 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 906 ** structure. 907 */ 908 struct CCurHint { 909 int iTabCur; /* Cursor for the main table */ 910 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 911 Index *pIdx; /* The index used to access the table */ 912 }; 913 914 /* 915 ** This function is called for every node of an expression that is a candidate 916 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 917 ** the table CCurHint.iTabCur, verify that the same column can be 918 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 919 */ 920 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 921 struct CCurHint *pHint = pWalker->u.pCCurHint; 922 assert( pHint->pIdx!=0 ); 923 if( pExpr->op==TK_COLUMN 924 && pExpr->iTable==pHint->iTabCur 925 && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0 926 ){ 927 pWalker->eCode = 1; 928 } 929 return WRC_Continue; 930 } 931 932 /* 933 ** Test whether or not expression pExpr, which was part of a WHERE clause, 934 ** should be included in the cursor-hint for a table that is on the rhs 935 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the 936 ** expression is not suitable. 937 ** 938 ** An expression is unsuitable if it might evaluate to non NULL even if 939 ** a TK_COLUMN node that does affect the value of the expression is set 940 ** to NULL. For example: 941 ** 942 ** col IS NULL 943 ** col IS NOT NULL 944 ** coalesce(col, 1) 945 ** CASE WHEN col THEN 0 ELSE 1 END 946 */ 947 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ 948 if( pExpr->op==TK_IS 949 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT 950 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE 951 ){ 952 pWalker->eCode = 1; 953 }else if( pExpr->op==TK_FUNCTION ){ 954 int d1; 955 char d2[4]; 956 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ 957 pWalker->eCode = 1; 958 } 959 } 960 961 return WRC_Continue; 962 } 963 964 965 /* 966 ** This function is called on every node of an expression tree used as an 967 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 968 ** that accesses any table other than the one identified by 969 ** CCurHint.iTabCur, then do the following: 970 ** 971 ** 1) allocate a register and code an OP_Column instruction to read 972 ** the specified column into the new register, and 973 ** 974 ** 2) transform the expression node to a TK_REGISTER node that reads 975 ** from the newly populated register. 976 ** 977 ** Also, if the node is a TK_COLUMN that does access the table idenified 978 ** by pCCurHint.iTabCur, and an index is being used (which we will 979 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 980 ** an access of the index rather than the original table. 981 */ 982 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 983 int rc = WRC_Continue; 984 struct CCurHint *pHint = pWalker->u.pCCurHint; 985 if( pExpr->op==TK_COLUMN ){ 986 if( pExpr->iTable!=pHint->iTabCur ){ 987 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 988 sqlite3ExprCode(pWalker->pParse, pExpr, reg); 989 pExpr->op = TK_REGISTER; 990 pExpr->iTable = reg; 991 }else if( pHint->pIdx!=0 ){ 992 pExpr->iTable = pHint->iIdxCur; 993 pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn); 994 assert( pExpr->iColumn>=0 ); 995 } 996 }else if( pExpr->op==TK_AGG_FUNCTION ){ 997 /* An aggregate function in the WHERE clause of a query means this must 998 ** be a correlated sub-query, and expression pExpr is an aggregate from 999 ** the parent context. Do not walk the function arguments in this case. 1000 ** 1001 ** todo: It should be possible to replace this node with a TK_REGISTER 1002 ** expression, as the result of the expression must be stored in a 1003 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 1004 rc = WRC_Prune; 1005 } 1006 return rc; 1007 } 1008 1009 /* 1010 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 1011 */ 1012 static void codeCursorHint( 1013 SrcItem *pTabItem, /* FROM clause item */ 1014 WhereInfo *pWInfo, /* The where clause */ 1015 WhereLevel *pLevel, /* Which loop to provide hints for */ 1016 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 1017 ){ 1018 Parse *pParse = pWInfo->pParse; 1019 sqlite3 *db = pParse->db; 1020 Vdbe *v = pParse->pVdbe; 1021 Expr *pExpr = 0; 1022 WhereLoop *pLoop = pLevel->pWLoop; 1023 int iCur; 1024 WhereClause *pWC; 1025 WhereTerm *pTerm; 1026 int i, j; 1027 struct CCurHint sHint; 1028 Walker sWalker; 1029 1030 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 1031 iCur = pLevel->iTabCur; 1032 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 1033 sHint.iTabCur = iCur; 1034 sHint.iIdxCur = pLevel->iIdxCur; 1035 sHint.pIdx = pLoop->u.btree.pIndex; 1036 memset(&sWalker, 0, sizeof(sWalker)); 1037 sWalker.pParse = pParse; 1038 sWalker.u.pCCurHint = &sHint; 1039 pWC = &pWInfo->sWC; 1040 for(i=0; i<pWC->nBase; i++){ 1041 pTerm = &pWC->a[i]; 1042 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1043 if( pTerm->prereqAll & pLevel->notReady ) continue; 1044 1045 /* Any terms specified as part of the ON(...) clause for any LEFT 1046 ** JOIN for which the current table is not the rhs are omitted 1047 ** from the cursor-hint. 1048 ** 1049 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms 1050 ** that were specified as part of the WHERE clause must be excluded. 1051 ** This is to address the following: 1052 ** 1053 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; 1054 ** 1055 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its 1056 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is 1057 ** pushed down to the cursor, this row is filtered out, causing 1058 ** SQLite to synthesize a row of NULL values. Which does match the 1059 ** WHERE clause, and so the query returns a row. Which is incorrect. 1060 ** 1061 ** For the same reason, WHERE terms such as: 1062 ** 1063 ** WHERE 1 = (t2.c IS NULL) 1064 ** 1065 ** are also excluded. See codeCursorHintIsOrFunction() for details. 1066 */ 1067 if( pTabItem->fg.jointype & JT_LEFT ){ 1068 Expr *pExpr = pTerm->pExpr; 1069 if( !ExprHasProperty(pExpr, EP_FromJoin) 1070 || pExpr->w.iJoin!=pTabItem->iCursor 1071 ){ 1072 sWalker.eCode = 0; 1073 sWalker.xExprCallback = codeCursorHintIsOrFunction; 1074 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 1075 if( sWalker.eCode ) continue; 1076 } 1077 }else{ 1078 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; 1079 } 1080 1081 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 1082 ** the cursor. These terms are not needed as hints for a pure range 1083 ** scan (that has no == terms) so omit them. */ 1084 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 1085 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 1086 if( j<pLoop->nLTerm ) continue; 1087 } 1088 1089 /* No subqueries or non-deterministic functions allowed */ 1090 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 1091 1092 /* For an index scan, make sure referenced columns are actually in 1093 ** the index. */ 1094 if( sHint.pIdx!=0 ){ 1095 sWalker.eCode = 0; 1096 sWalker.xExprCallback = codeCursorHintCheckExpr; 1097 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 1098 if( sWalker.eCode ) continue; 1099 } 1100 1101 /* If we survive all prior tests, that means this term is worth hinting */ 1102 pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 1103 } 1104 if( pExpr!=0 ){ 1105 sWalker.xExprCallback = codeCursorHintFixExpr; 1106 sqlite3WalkExpr(&sWalker, pExpr); 1107 sqlite3VdbeAddOp4(v, OP_CursorHint, 1108 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 1109 (const char*)pExpr, P4_EXPR); 1110 } 1111 } 1112 #else 1113 # define codeCursorHint(A,B,C,D) /* No-op */ 1114 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 1115 1116 /* 1117 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains 1118 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This 1119 ** function generates code to do a deferred seek of cursor iCur to the 1120 ** rowid stored in register iRowid. 1121 ** 1122 ** Normally, this is just: 1123 ** 1124 ** OP_DeferredSeek $iCur $iRowid 1125 ** 1126 ** Which causes a seek on $iCur to the row with rowid $iRowid. 1127 ** 1128 ** However, if the scan currently being coded is a branch of an OR-loop and 1129 ** the statement currently being coded is a SELECT, then additional information 1130 ** is added that might allow OP_Column to omit the seek and instead do its 1131 ** lookup on the index, thus avoiding an expensive seek operation. To 1132 ** enable this optimization, the P3 of OP_DeferredSeek is set to iIdxCur 1133 ** and P4 is set to an array of integers containing one entry for each column 1134 ** in the table. For each table column, if the column is the i'th 1135 ** column of the index, then the corresponding array entry is set to (i+1). 1136 ** If the column does not appear in the index at all, the array entry is set 1137 ** to 0. The OP_Column opcode can check this array to see if the column it 1138 ** wants is in the index and if it is, it will substitute the index cursor 1139 ** and column number and continue with those new values, rather than seeking 1140 ** the table cursor. 1141 */ 1142 static void codeDeferredSeek( 1143 WhereInfo *pWInfo, /* Where clause context */ 1144 Index *pIdx, /* Index scan is using */ 1145 int iCur, /* Cursor for IPK b-tree */ 1146 int iIdxCur /* Index cursor */ 1147 ){ 1148 Parse *pParse = pWInfo->pParse; /* Parse context */ 1149 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ 1150 1151 assert( iIdxCur>0 ); 1152 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); 1153 1154 pWInfo->bDeferredSeek = 1; 1155 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur); 1156 if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN)) 1157 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) 1158 ){ 1159 int i; 1160 Table *pTab = pIdx->pTable; 1161 u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1)); 1162 if( ai ){ 1163 ai[0] = pTab->nCol; 1164 for(i=0; i<pIdx->nColumn-1; i++){ 1165 int x1, x2; 1166 assert( pIdx->aiColumn[i]<pTab->nCol ); 1167 x1 = pIdx->aiColumn[i]; 1168 x2 = sqlite3TableColumnToStorage(pTab, x1); 1169 testcase( x1!=x2 ); 1170 if( x1>=0 ) ai[x2+1] = i+1; 1171 } 1172 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); 1173 } 1174 } 1175 } 1176 1177 /* 1178 ** If the expression passed as the second argument is a vector, generate 1179 ** code to write the first nReg elements of the vector into an array 1180 ** of registers starting with iReg. 1181 ** 1182 ** If the expression is not a vector, then nReg must be passed 1. In 1183 ** this case, generate code to evaluate the expression and leave the 1184 ** result in register iReg. 1185 */ 1186 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ 1187 assert( nReg>0 ); 1188 if( p && sqlite3ExprIsVector(p) ){ 1189 #ifndef SQLITE_OMIT_SUBQUERY 1190 if( ExprUseXSelect(p) ){ 1191 Vdbe *v = pParse->pVdbe; 1192 int iSelect; 1193 assert( p->op==TK_SELECT ); 1194 iSelect = sqlite3CodeSubselect(pParse, p); 1195 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); 1196 }else 1197 #endif 1198 { 1199 int i; 1200 const ExprList *pList; 1201 assert( ExprUseXList(p) ); 1202 pList = p->x.pList; 1203 assert( nReg<=pList->nExpr ); 1204 for(i=0; i<nReg; i++){ 1205 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i); 1206 } 1207 } 1208 }else{ 1209 assert( nReg==1 || pParse->nErr ); 1210 sqlite3ExprCode(pParse, p, iReg); 1211 } 1212 } 1213 1214 /* An instance of the IdxExprTrans object carries information about a 1215 ** mapping from an expression on table columns into a column in an index 1216 ** down through the Walker. 1217 */ 1218 typedef struct IdxExprTrans { 1219 Expr *pIdxExpr; /* The index expression */ 1220 int iTabCur; /* The cursor of the corresponding table */ 1221 int iIdxCur; /* The cursor for the index */ 1222 int iIdxCol; /* The column for the index */ 1223 int iTabCol; /* The column for the table */ 1224 WhereInfo *pWInfo; /* Complete WHERE clause information */ 1225 sqlite3 *db; /* Database connection (for malloc()) */ 1226 } IdxExprTrans; 1227 1228 /* 1229 ** Preserve pExpr on the WhereETrans list of the WhereInfo. 1230 */ 1231 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){ 1232 WhereExprMod *pNew; 1233 pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew)); 1234 if( pNew==0 ) return; 1235 pNew->pNext = pTrans->pWInfo->pExprMods; 1236 pTrans->pWInfo->pExprMods = pNew; 1237 pNew->pExpr = pExpr; 1238 memcpy(&pNew->orig, pExpr, sizeof(*pExpr)); 1239 } 1240 1241 /* The walker node callback used to transform matching expressions into 1242 ** a reference to an index column for an index on an expression. 1243 ** 1244 ** If pExpr matches, then transform it into a reference to the index column 1245 ** that contains the value of pExpr. 1246 */ 1247 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){ 1248 IdxExprTrans *pX = p->u.pIdxTrans; 1249 if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){ 1250 preserveExpr(pX, pExpr); 1251 pExpr->affExpr = sqlite3ExprAffinity(pExpr); 1252 pExpr->op = TK_COLUMN; 1253 pExpr->iTable = pX->iIdxCur; 1254 pExpr->iColumn = pX->iIdxCol; 1255 testcase( ExprHasProperty(pExpr, EP_Skip) ); 1256 testcase( ExprHasProperty(pExpr, EP_Unlikely) ); 1257 ExprClearProperty(pExpr, EP_Skip|EP_Unlikely|EP_WinFunc|EP_Subrtn); 1258 pExpr->y.pTab = 0; 1259 return WRC_Prune; 1260 }else{ 1261 return WRC_Continue; 1262 } 1263 } 1264 1265 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1266 /* A walker node callback that translates a column reference to a table 1267 ** into a corresponding column reference of an index. 1268 */ 1269 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){ 1270 if( pExpr->op==TK_COLUMN ){ 1271 IdxExprTrans *pX = p->u.pIdxTrans; 1272 if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){ 1273 assert( ExprUseYTab(pExpr) && pExpr->y.pTab!=0 ); 1274 preserveExpr(pX, pExpr); 1275 pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn); 1276 pExpr->iTable = pX->iIdxCur; 1277 pExpr->iColumn = pX->iIdxCol; 1278 pExpr->y.pTab = 0; 1279 } 1280 } 1281 return WRC_Continue; 1282 } 1283 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1284 1285 /* 1286 ** For an indexes on expression X, locate every instance of expression X 1287 ** in pExpr and change that subexpression into a reference to the appropriate 1288 ** column of the index. 1289 ** 1290 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in 1291 ** the table into references to the corresponding (stored) column of the 1292 ** index. 1293 */ 1294 static void whereIndexExprTrans( 1295 Index *pIdx, /* The Index */ 1296 int iTabCur, /* Cursor of the table that is being indexed */ 1297 int iIdxCur, /* Cursor of the index itself */ 1298 WhereInfo *pWInfo /* Transform expressions in this WHERE clause */ 1299 ){ 1300 int iIdxCol; /* Column number of the index */ 1301 ExprList *aColExpr; /* Expressions that are indexed */ 1302 Table *pTab; 1303 Walker w; 1304 IdxExprTrans x; 1305 aColExpr = pIdx->aColExpr; 1306 if( aColExpr==0 && !pIdx->bHasVCol ){ 1307 /* The index does not reference any expressions or virtual columns 1308 ** so no translations are needed. */ 1309 return; 1310 } 1311 pTab = pIdx->pTable; 1312 memset(&w, 0, sizeof(w)); 1313 w.u.pIdxTrans = &x; 1314 x.iTabCur = iTabCur; 1315 x.iIdxCur = iIdxCur; 1316 x.pWInfo = pWInfo; 1317 x.db = pWInfo->pParse->db; 1318 for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){ 1319 i16 iRef = pIdx->aiColumn[iIdxCol]; 1320 if( iRef==XN_EXPR ){ 1321 assert( aColExpr!=0 && aColExpr->a[iIdxCol].pExpr!=0 ); 1322 x.pIdxExpr = aColExpr->a[iIdxCol].pExpr; 1323 if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue; 1324 w.xExprCallback = whereIndexExprTransNode; 1325 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1326 }else if( iRef>=0 1327 && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0 1328 && ((pTab->aCol[iRef].colFlags & COLFLAG_HASCOLL)==0 1329 || sqlite3StrICmp(sqlite3ColumnColl(&pTab->aCol[iRef]), 1330 sqlite3StrBINARY)==0) 1331 ){ 1332 /* Check to see if there are direct references to generated columns 1333 ** that are contained in the index. Pulling the generated column 1334 ** out of the index is an optimization only - the main table is always 1335 ** available if the index cannot be used. To avoid unnecessary 1336 ** complication, omit this optimization if the collating sequence for 1337 ** the column is non-standard */ 1338 x.iTabCol = iRef; 1339 w.xExprCallback = whereIndexExprTransColumn; 1340 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1341 }else{ 1342 continue; 1343 } 1344 x.iIdxCol = iIdxCol; 1345 sqlite3WalkExpr(&w, pWInfo->pWhere); 1346 sqlite3WalkExprList(&w, pWInfo->pOrderBy); 1347 sqlite3WalkExprList(&w, pWInfo->pResultSet); 1348 } 1349 } 1350 1351 /* 1352 ** The pTruth expression is always true because it is the WHERE clause 1353 ** a partial index that is driving a query loop. Look through all of the 1354 ** WHERE clause terms on the query, and if any of those terms must be 1355 ** true because pTruth is true, then mark those WHERE clause terms as 1356 ** coded. 1357 */ 1358 static void whereApplyPartialIndexConstraints( 1359 Expr *pTruth, 1360 int iTabCur, 1361 WhereClause *pWC 1362 ){ 1363 int i; 1364 WhereTerm *pTerm; 1365 while( pTruth->op==TK_AND ){ 1366 whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC); 1367 pTruth = pTruth->pRight; 1368 } 1369 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1370 Expr *pExpr; 1371 if( pTerm->wtFlags & TERM_CODED ) continue; 1372 pExpr = pTerm->pExpr; 1373 if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){ 1374 pTerm->wtFlags |= TERM_CODED; 1375 } 1376 } 1377 } 1378 1379 /* 1380 ** This routine is called right after An OP_Filter has been generated and 1381 ** before the corresponding index search has been performed. This routine 1382 ** checks to see if there are additional Bloom filters in inner loops that 1383 ** can be checked prior to doing the index lookup. If there are available 1384 ** inner-loop Bloom filters, then evaluate those filters now, before the 1385 ** index lookup. The idea is that a Bloom filter check is way faster than 1386 ** an index lookup, and the Bloom filter might return false, meaning that 1387 ** the index lookup can be skipped. 1388 ** 1389 ** We know that an inner loop uses a Bloom filter because it has the 1390 ** WhereLevel.regFilter set. If an inner-loop Bloom filter is checked, 1391 ** then clear the WhereLevel.regFilter value to prevent the Bloom filter 1392 ** from being checked a second time when the inner loop is evaluated. 1393 */ 1394 static SQLITE_NOINLINE void filterPullDown( 1395 Parse *pParse, /* Parsing context */ 1396 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1397 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1398 int addrNxt, /* Jump here to bypass inner loops */ 1399 Bitmask notReady /* Loops that are not ready */ 1400 ){ 1401 while( ++iLevel < pWInfo->nLevel ){ 1402 WhereLevel *pLevel = &pWInfo->a[iLevel]; 1403 WhereLoop *pLoop = pLevel->pWLoop; 1404 if( pLevel->regFilter==0 ) continue; 1405 if( pLevel->pWLoop->nSkip ) continue; 1406 /* ,--- Because sqlite3ConstructBloomFilter() has will not have set 1407 ** vvvvv--' pLevel->regFilter if this were true. */ 1408 if( NEVER(pLoop->prereq & notReady) ) continue; 1409 if( pLoop->wsFlags & WHERE_IPK ){ 1410 WhereTerm *pTerm = pLoop->aLTerm[0]; 1411 int regRowid; 1412 assert( pTerm!=0 ); 1413 assert( pTerm->pExpr!=0 ); 1414 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1415 regRowid = sqlite3GetTempReg(pParse); 1416 regRowid = codeEqualityTerm(pParse, pTerm, pLevel, 0, 0, regRowid); 1417 sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter, 1418 addrNxt, regRowid, 1); 1419 VdbeCoverage(pParse->pVdbe); 1420 }else{ 1421 u16 nEq = pLoop->u.btree.nEq; 1422 int r1; 1423 char *zStartAff; 1424 1425 assert( pLoop->wsFlags & WHERE_INDEXED ); 1426 assert( (pLoop->wsFlags & WHERE_COLUMN_IN)==0 ); 1427 r1 = codeAllEqualityTerms(pParse,pLevel,0,0,&zStartAff); 1428 codeApplyAffinity(pParse, r1, nEq, zStartAff); 1429 sqlite3DbFree(pParse->db, zStartAff); 1430 sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter, 1431 addrNxt, r1, nEq); 1432 VdbeCoverage(pParse->pVdbe); 1433 } 1434 pLevel->regFilter = 0; 1435 } 1436 } 1437 1438 /* 1439 ** Generate code for the start of the iLevel-th loop in the WHERE clause 1440 ** implementation described by pWInfo. 1441 */ 1442 Bitmask sqlite3WhereCodeOneLoopStart( 1443 Parse *pParse, /* Parsing context */ 1444 Vdbe *v, /* Prepared statement under construction */ 1445 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1446 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1447 WhereLevel *pLevel, /* The current level pointer */ 1448 Bitmask notReady /* Which tables are currently available */ 1449 ){ 1450 int j, k; /* Loop counters */ 1451 int iCur; /* The VDBE cursor for the table */ 1452 int addrNxt; /* Where to jump to continue with the next IN case */ 1453 int bRev; /* True if we need to scan in reverse order */ 1454 WhereLoop *pLoop; /* The WhereLoop object being coded */ 1455 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 1456 WhereTerm *pTerm; /* A WHERE clause term */ 1457 sqlite3 *db; /* Database connection */ 1458 SrcItem *pTabItem; /* FROM clause term being coded */ 1459 int addrBrk; /* Jump here to break out of the loop */ 1460 int addrHalt; /* addrBrk for the outermost loop */ 1461 int addrCont; /* Jump here to continue with next cycle */ 1462 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 1463 int iReleaseReg = 0; /* Temp register to free before returning */ 1464 Index *pIdx = 0; /* Index used by loop (if any) */ 1465 int iLoop; /* Iteration of constraint generator loop */ 1466 1467 pWC = &pWInfo->sWC; 1468 db = pParse->db; 1469 pLoop = pLevel->pWLoop; 1470 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1471 iCur = pTabItem->iCursor; 1472 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 1473 bRev = (pWInfo->revMask>>iLevel)&1; 1474 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 1475 #if WHERETRACE_ENABLED /* 0x20800 */ 1476 if( sqlite3WhereTrace & 0x800 ){ 1477 sqlite3DebugPrintf("Coding level %d of %d: notReady=%llx iFrom=%d\n", 1478 iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom); 1479 sqlite3WhereLoopPrint(pLoop, pWC); 1480 } 1481 if( sqlite3WhereTrace & 0x20000 ){ 1482 if( iLevel==0 ){ 1483 sqlite3DebugPrintf("WHERE clause being coded:\n"); 1484 sqlite3TreeViewExpr(0, pWInfo->pWhere, 0); 1485 } 1486 sqlite3DebugPrintf("All WHERE-clause terms before coding:\n"); 1487 sqlite3WhereClausePrint(pWC); 1488 } 1489 #endif 1490 1491 /* Create labels for the "break" and "continue" instructions 1492 ** for the current loop. Jump to addrBrk to break out of a loop. 1493 ** Jump to cont to go immediately to the next iteration of the 1494 ** loop. 1495 ** 1496 ** When there is an IN operator, we also have a "addrNxt" label that 1497 ** means to continue with the next IN value combination. When 1498 ** there are no IN operators in the constraints, the "addrNxt" label 1499 ** is the same as "addrBrk". 1500 */ 1501 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 1502 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse); 1503 1504 /* If this is the right table of a LEFT OUTER JOIN, allocate and 1505 ** initialize a memory cell that records if this table matches any 1506 ** row of the left table of the join. 1507 */ 1508 assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN)) 1509 || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0 1510 ); 1511 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 1512 pLevel->iLeftJoin = ++pParse->nMem; 1513 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 1514 VdbeComment((v, "init LEFT JOIN no-match flag")); 1515 } 1516 1517 /* Compute a safe address to jump to if we discover that the table for 1518 ** this loop is empty and can never contribute content. */ 1519 for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){} 1520 addrHalt = pWInfo->a[j].addrBrk; 1521 1522 /* Special case of a FROM clause subquery implemented as a co-routine */ 1523 if( pTabItem->fg.viaCoroutine ){ 1524 int regYield = pTabItem->regReturn; 1525 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 1526 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 1527 VdbeCoverage(v); 1528 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 1529 pLevel->op = OP_Goto; 1530 }else 1531 1532 #ifndef SQLITE_OMIT_VIRTUALTABLE 1533 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 1534 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 1535 ** to access the data. 1536 */ 1537 int iReg; /* P3 Value for OP_VFilter */ 1538 int addrNotFound; 1539 int nConstraint = pLoop->nLTerm; 1540 1541 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 1542 addrNotFound = pLevel->addrBrk; 1543 for(j=0; j<nConstraint; j++){ 1544 int iTarget = iReg+j+2; 1545 pTerm = pLoop->aLTerm[j]; 1546 if( NEVER(pTerm==0) ) continue; 1547 if( pTerm->eOperator & WO_IN ){ 1548 if( SMASKBIT32(j) & pLoop->u.vtab.mHandleIn ){ 1549 int iTab = pParse->nTab++; 1550 int iCache = ++pParse->nMem; 1551 sqlite3CodeRhsOfIN(pParse, pTerm->pExpr, iTab); 1552 sqlite3VdbeAddOp3(v, OP_VInitIn, iTab, iTarget, iCache); 1553 }else{ 1554 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 1555 addrNotFound = pLevel->addrNxt; 1556 } 1557 }else{ 1558 Expr *pRight = pTerm->pExpr->pRight; 1559 codeExprOrVector(pParse, pRight, iTarget, 1); 1560 if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET 1561 && pLoop->u.vtab.bOmitOffset 1562 ){ 1563 assert( pTerm->eOperator==WO_AUX ); 1564 assert( pWInfo->pLimit!=0 ); 1565 assert( pWInfo->pLimit->iOffset>0 ); 1566 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWInfo->pLimit->iOffset); 1567 VdbeComment((v,"Zero OFFSET counter")); 1568 } 1569 } 1570 } 1571 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 1572 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 1573 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 1574 pLoop->u.vtab.idxStr, 1575 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); 1576 VdbeCoverage(v); 1577 pLoop->u.vtab.needFree = 0; 1578 /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed 1579 ** the u.vtab.idxStr. NULL it out to prevent a use-after-free */ 1580 if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0; 1581 pLevel->p1 = iCur; 1582 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 1583 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1584 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 1585 1586 for(j=0; j<nConstraint; j++){ 1587 pTerm = pLoop->aLTerm[j]; 1588 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ 1589 disableTerm(pLevel, pTerm); 1590 continue; 1591 } 1592 if( (pTerm->eOperator & WO_IN)!=0 1593 && (SMASKBIT32(j) & pLoop->u.vtab.mHandleIn)==0 1594 && !db->mallocFailed 1595 ){ 1596 Expr *pCompare; /* The comparison operator */ 1597 Expr *pRight; /* RHS of the comparison */ 1598 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ 1599 int iIn; /* IN loop corresponding to the j-th constraint */ 1600 1601 /* Reload the constraint value into reg[iReg+j+2]. The same value 1602 ** was loaded into the same register prior to the OP_VFilter, but 1603 ** the xFilter implementation might have changed the datatype or 1604 ** encoding of the value in the register, so it *must* be reloaded. 1605 */ 1606 for(iIn=0; ALWAYS(iIn<pLevel->u.in.nIn); iIn++){ 1607 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop); 1608 if( (pOp->opcode==OP_Column && pOp->p3==iReg+j+2) 1609 || (pOp->opcode==OP_Rowid && pOp->p2==iReg+j+2) 1610 ){ 1611 testcase( pOp->opcode==OP_Rowid ); 1612 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); 1613 break; 1614 } 1615 } 1616 1617 /* Generate code that will continue to the next row if 1618 ** the IN constraint is not satisfied 1619 */ 1620 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); 1621 if( !db->mallocFailed ){ 1622 int iFld = pTerm->u.x.iField; 1623 Expr *pLeft = pTerm->pExpr->pLeft; 1624 assert( pLeft!=0 ); 1625 if( iFld>0 ){ 1626 assert( pLeft->op==TK_VECTOR ); 1627 assert( ExprUseXList(pLeft) ); 1628 assert( iFld<=pLeft->x.pList->nExpr ); 1629 pCompare->pLeft = pLeft->x.pList->a[iFld-1].pExpr; 1630 }else{ 1631 pCompare->pLeft = pLeft; 1632 } 1633 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); 1634 if( pRight ){ 1635 pRight->iTable = iReg+j+2; 1636 sqlite3ExprIfFalse( 1637 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL 1638 ); 1639 } 1640 pCompare->pLeft = 0; 1641 } 1642 sqlite3ExprDelete(db, pCompare); 1643 } 1644 } 1645 1646 /* These registers need to be preserved in case there is an IN operator 1647 ** loop. So we could deallocate the registers here (and potentially 1648 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems 1649 ** simpler and safer to simply not reuse the registers. 1650 ** 1651 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 1652 */ 1653 }else 1654 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1655 1656 if( (pLoop->wsFlags & WHERE_IPK)!=0 1657 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 1658 ){ 1659 /* Case 2: We can directly reference a single row using an 1660 ** equality comparison against the ROWID field. Or 1661 ** we reference multiple rows using a "rowid IN (...)" 1662 ** construct. 1663 */ 1664 assert( pLoop->u.btree.nEq==1 ); 1665 pTerm = pLoop->aLTerm[0]; 1666 assert( pTerm!=0 ); 1667 assert( pTerm->pExpr!=0 ); 1668 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1669 iReleaseReg = ++pParse->nMem; 1670 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 1671 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 1672 addrNxt = pLevel->addrNxt; 1673 if( pLevel->regFilter ){ 1674 sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt, 1675 iRowidReg, 1); 1676 VdbeCoverage(v); 1677 filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady); 1678 } 1679 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); 1680 VdbeCoverage(v); 1681 pLevel->op = OP_Noop; 1682 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 1683 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 1684 ){ 1685 /* Case 3: We have an inequality comparison against the ROWID field. 1686 */ 1687 int testOp = OP_Noop; 1688 int start; 1689 int memEndValue = 0; 1690 WhereTerm *pStart, *pEnd; 1691 1692 j = 0; 1693 pStart = pEnd = 0; 1694 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 1695 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 1696 assert( pStart!=0 || pEnd!=0 ); 1697 if( bRev ){ 1698 pTerm = pStart; 1699 pStart = pEnd; 1700 pEnd = pTerm; 1701 } 1702 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); 1703 if( pStart ){ 1704 Expr *pX; /* The expression that defines the start bound */ 1705 int r1, rTemp; /* Registers for holding the start boundary */ 1706 int op; /* Cursor seek operation */ 1707 1708 /* The following constant maps TK_xx codes into corresponding 1709 ** seek opcodes. It depends on a particular ordering of TK_xx 1710 */ 1711 const u8 aMoveOp[] = { 1712 /* TK_GT */ OP_SeekGT, 1713 /* TK_LE */ OP_SeekLE, 1714 /* TK_LT */ OP_SeekLT, 1715 /* TK_GE */ OP_SeekGE 1716 }; 1717 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 1718 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 1719 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 1720 1721 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 1722 testcase( pStart->wtFlags & TERM_VIRTUAL ); 1723 pX = pStart->pExpr; 1724 assert( pX!=0 ); 1725 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 1726 if( sqlite3ExprIsVector(pX->pRight) ){ 1727 r1 = rTemp = sqlite3GetTempReg(pParse); 1728 codeExprOrVector(pParse, pX->pRight, r1, 1); 1729 testcase( pX->op==TK_GT ); 1730 testcase( pX->op==TK_GE ); 1731 testcase( pX->op==TK_LT ); 1732 testcase( pX->op==TK_LE ); 1733 op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1]; 1734 assert( pX->op!=TK_GT || op==OP_SeekGE ); 1735 assert( pX->op!=TK_GE || op==OP_SeekGE ); 1736 assert( pX->op!=TK_LT || op==OP_SeekLE ); 1737 assert( pX->op!=TK_LE || op==OP_SeekLE ); 1738 }else{ 1739 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 1740 disableTerm(pLevel, pStart); 1741 op = aMoveOp[(pX->op - TK_GT)]; 1742 } 1743 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); 1744 VdbeComment((v, "pk")); 1745 VdbeCoverageIf(v, pX->op==TK_GT); 1746 VdbeCoverageIf(v, pX->op==TK_LE); 1747 VdbeCoverageIf(v, pX->op==TK_LT); 1748 VdbeCoverageIf(v, pX->op==TK_GE); 1749 sqlite3ReleaseTempReg(pParse, rTemp); 1750 }else{ 1751 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt); 1752 VdbeCoverageIf(v, bRev==0); 1753 VdbeCoverageIf(v, bRev!=0); 1754 } 1755 if( pEnd ){ 1756 Expr *pX; 1757 pX = pEnd->pExpr; 1758 assert( pX!=0 ); 1759 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 1760 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 1761 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 1762 memEndValue = ++pParse->nMem; 1763 codeExprOrVector(pParse, pX->pRight, memEndValue, 1); 1764 if( 0==sqlite3ExprIsVector(pX->pRight) 1765 && (pX->op==TK_LT || pX->op==TK_GT) 1766 ){ 1767 testOp = bRev ? OP_Le : OP_Ge; 1768 }else{ 1769 testOp = bRev ? OP_Lt : OP_Gt; 1770 } 1771 if( 0==sqlite3ExprIsVector(pX->pRight) ){ 1772 disableTerm(pLevel, pEnd); 1773 } 1774 } 1775 start = sqlite3VdbeCurrentAddr(v); 1776 pLevel->op = bRev ? OP_Prev : OP_Next; 1777 pLevel->p1 = iCur; 1778 pLevel->p2 = start; 1779 assert( pLevel->p5==0 ); 1780 if( testOp!=OP_Noop ){ 1781 iRowidReg = ++pParse->nMem; 1782 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 1783 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 1784 VdbeCoverageIf(v, testOp==OP_Le); 1785 VdbeCoverageIf(v, testOp==OP_Lt); 1786 VdbeCoverageIf(v, testOp==OP_Ge); 1787 VdbeCoverageIf(v, testOp==OP_Gt); 1788 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 1789 } 1790 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 1791 /* Case 4: A scan using an index. 1792 ** 1793 ** The WHERE clause may contain zero or more equality 1794 ** terms ("==" or "IN" operators) that refer to the N 1795 ** left-most columns of the index. It may also contain 1796 ** inequality constraints (>, <, >= or <=) on the indexed 1797 ** column that immediately follows the N equalities. Only 1798 ** the right-most column can be an inequality - the rest must 1799 ** use the "==" and "IN" operators. For example, if the 1800 ** index is on (x,y,z), then the following clauses are all 1801 ** optimized: 1802 ** 1803 ** x=5 1804 ** x=5 AND y=10 1805 ** x=5 AND y<10 1806 ** x=5 AND y>5 AND y<10 1807 ** x=5 AND y=5 AND z<=10 1808 ** 1809 ** The z<10 term of the following cannot be used, only 1810 ** the x=5 term: 1811 ** 1812 ** x=5 AND z<10 1813 ** 1814 ** N may be zero if there are inequality constraints. 1815 ** If there are no inequality constraints, then N is at 1816 ** least one. 1817 ** 1818 ** This case is also used when there are no WHERE clause 1819 ** constraints but an index is selected anyway, in order 1820 ** to force the output order to conform to an ORDER BY. 1821 */ 1822 static const u8 aStartOp[] = { 1823 0, 1824 0, 1825 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1826 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1827 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1828 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1829 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1830 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1831 }; 1832 static const u8 aEndOp[] = { 1833 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1834 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1835 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1836 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1837 }; 1838 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1839 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ 1840 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ 1841 int regBase; /* Base register holding constraint values */ 1842 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1843 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1844 int startEq; /* True if range start uses ==, >= or <= */ 1845 int endEq; /* True if range end uses ==, >= or <= */ 1846 int start_constraints; /* Start of range is constrained */ 1847 int nConstraint; /* Number of constraint terms */ 1848 int iIdxCur; /* The VDBE cursor for the index */ 1849 int nExtraReg = 0; /* Number of extra registers needed */ 1850 int op; /* Instruction opcode */ 1851 char *zStartAff; /* Affinity for start of range constraint */ 1852 char *zEndAff = 0; /* Affinity for end of range constraint */ 1853 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1854 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1855 int omitTable; /* True if we use the index only */ 1856 int regBignull = 0; /* big-null flag register */ 1857 int addrSeekScan = 0; /* Opcode of the OP_SeekScan, if any */ 1858 1859 pIdx = pLoop->u.btree.pIndex; 1860 iIdxCur = pLevel->iIdxCur; 1861 assert( nEq>=pLoop->nSkip ); 1862 1863 /* Find any inequality constraint terms for the start and end 1864 ** of the range. 1865 */ 1866 j = nEq; 1867 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1868 pRangeStart = pLoop->aLTerm[j++]; 1869 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); 1870 /* Like optimization range constraints always occur in pairs */ 1871 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1872 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1873 } 1874 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1875 pRangeEnd = pLoop->aLTerm[j++]; 1876 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); 1877 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1878 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1879 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1880 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1881 pLevel->iLikeRepCntr = (u32)++pParse->nMem; 1882 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); 1883 VdbeComment((v, "LIKE loop counter")); 1884 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1885 /* iLikeRepCntr actually stores 2x the counter register number. The 1886 ** bottom bit indicates whether the search order is ASC or DESC. */ 1887 testcase( bRev ); 1888 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1889 assert( (bRev & ~1)==0 ); 1890 pLevel->iLikeRepCntr <<=1; 1891 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); 1892 } 1893 #endif 1894 if( pRangeStart==0 ){ 1895 j = pIdx->aiColumn[nEq]; 1896 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){ 1897 bSeekPastNull = 1; 1898 } 1899 } 1900 } 1901 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1902 1903 /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses 1904 ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS 1905 ** FIRST). In both cases separate ordered scans are made of those 1906 ** index entries for which the column is null and for those for which 1907 ** it is not. For an ASC sort, the non-NULL entries are scanned first. 1908 ** For DESC, NULL entries are scanned first. 1909 */ 1910 if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0 1911 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0 1912 ){ 1913 assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 ); 1914 assert( pRangeEnd==0 && pRangeStart==0 ); 1915 testcase( pLoop->nSkip>0 ); 1916 nExtraReg = 1; 1917 bSeekPastNull = 1; 1918 pLevel->regBignull = regBignull = ++pParse->nMem; 1919 if( pLevel->iLeftJoin ){ 1920 sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull); 1921 } 1922 pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse); 1923 } 1924 1925 /* If we are doing a reverse order scan on an ascending index, or 1926 ** a forward order scan on a descending index, interchange the 1927 ** start and end terms (pRangeStart and pRangeEnd). 1928 */ 1929 if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){ 1930 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1931 SWAP(u8, bSeekPastNull, bStopAtNull); 1932 SWAP(u8, nBtm, nTop); 1933 } 1934 1935 if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){ 1936 /* In case OP_SeekScan is used, ensure that the index cursor does not 1937 ** point to a valid row for the first iteration of this loop. */ 1938 sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur); 1939 } 1940 1941 /* Generate code to evaluate all constraint terms using == or IN 1942 ** and store the values of those terms in an array of registers 1943 ** starting at regBase. 1944 */ 1945 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); 1946 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1947 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1948 if( zStartAff && nTop ){ 1949 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); 1950 } 1951 addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt); 1952 1953 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1954 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1955 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1956 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1957 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1958 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1959 start_constraints = pRangeStart || nEq>0; 1960 1961 /* Seek the index cursor to the start of the range. */ 1962 nConstraint = nEq; 1963 if( pRangeStart ){ 1964 Expr *pRight = pRangeStart->pExpr->pRight; 1965 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); 1966 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1967 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1968 && sqlite3ExprCanBeNull(pRight) 1969 ){ 1970 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1971 VdbeCoverage(v); 1972 } 1973 if( zStartAff ){ 1974 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); 1975 } 1976 nConstraint += nBtm; 1977 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1978 if( sqlite3ExprIsVector(pRight)==0 ){ 1979 disableTerm(pLevel, pRangeStart); 1980 }else{ 1981 startEq = 1; 1982 } 1983 bSeekPastNull = 0; 1984 }else if( bSeekPastNull ){ 1985 startEq = 0; 1986 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1987 start_constraints = 1; 1988 nConstraint++; 1989 }else if( regBignull ){ 1990 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1991 start_constraints = 1; 1992 nConstraint++; 1993 } 1994 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1995 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ 1996 /* The skip-scan logic inside the call to codeAllEqualityConstraints() 1997 ** above has already left the cursor sitting on the correct row, 1998 ** so no further seeking is needed */ 1999 }else{ 2000 if( regBignull ){ 2001 sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull); 2002 VdbeComment((v, "NULL-scan pass ctr")); 2003 } 2004 if( pLevel->regFilter ){ 2005 sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt, 2006 regBase, nEq); 2007 VdbeCoverage(v); 2008 filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady); 2009 } 2010 2011 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 2012 assert( op!=0 ); 2013 if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){ 2014 assert( regBignull==0 ); 2015 /* TUNING: The OP_SeekScan opcode seeks to reduce the number 2016 ** of expensive seek operations by replacing a single seek with 2017 ** 1 or more step operations. The question is, how many steps 2018 ** should we try before giving up and going with a seek. The cost 2019 ** of a seek is proportional to the logarithm of the of the number 2020 ** of entries in the tree, so basing the number of steps to try 2021 ** on the estimated number of rows in the btree seems like a good 2022 ** guess. */ 2023 addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan, 2024 (pIdx->aiRowLogEst[0]+9)/10); 2025 VdbeCoverage(v); 2026 } 2027 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 2028 VdbeCoverage(v); 2029 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 2030 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 2031 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 2032 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 2033 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 2034 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 2035 2036 assert( bSeekPastNull==0 || bStopAtNull==0 ); 2037 if( regBignull ){ 2038 assert( bSeekPastNull==1 || bStopAtNull==1 ); 2039 assert( bSeekPastNull==!bStopAtNull ); 2040 assert( bStopAtNull==startEq ); 2041 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2); 2042 op = aStartOp[(nConstraint>1)*4 + 2 + bRev]; 2043 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 2044 nConstraint-startEq); 2045 VdbeCoverage(v); 2046 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 2047 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 2048 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 2049 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 2050 assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE); 2051 } 2052 } 2053 2054 /* Load the value for the inequality constraint at the end of the 2055 ** range (if any). 2056 */ 2057 nConstraint = nEq; 2058 assert( pLevel->p2==0 ); 2059 if( pRangeEnd ){ 2060 Expr *pRight = pRangeEnd->pExpr->pRight; 2061 if( addrSeekScan ){ 2062 /* For a seek-scan that has a range on the lowest term of the index, 2063 ** we have to make the top of the loop be code that sets the end 2064 ** condition of the range. Otherwise, the OP_SeekScan might jump 2065 ** over that initialization, leaving the range-end value set to the 2066 ** range-start value, resulting in a wrong answer. 2067 ** See ticket 5981a8c041a3c2f3 (2021-11-02). 2068 */ 2069 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2070 } 2071 codeExprOrVector(pParse, pRight, regBase+nEq, nTop); 2072 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 2073 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 2074 && sqlite3ExprCanBeNull(pRight) 2075 ){ 2076 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 2077 VdbeCoverage(v); 2078 } 2079 if( zEndAff ){ 2080 updateRangeAffinityStr(pRight, nTop, zEndAff); 2081 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); 2082 }else{ 2083 assert( pParse->db->mallocFailed ); 2084 } 2085 nConstraint += nTop; 2086 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 2087 2088 if( sqlite3ExprIsVector(pRight)==0 ){ 2089 disableTerm(pLevel, pRangeEnd); 2090 }else{ 2091 endEq = 1; 2092 } 2093 }else if( bStopAtNull ){ 2094 if( regBignull==0 ){ 2095 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 2096 endEq = 0; 2097 } 2098 nConstraint++; 2099 } 2100 sqlite3DbFree(db, zStartAff); 2101 sqlite3DbFree(db, zEndAff); 2102 2103 /* Top of the loop body */ 2104 if( pLevel->p2==0 ) pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2105 2106 /* Check if the index cursor is past the end of the range. */ 2107 if( nConstraint ){ 2108 if( regBignull ){ 2109 /* Except, skip the end-of-range check while doing the NULL-scan */ 2110 sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3); 2111 VdbeComment((v, "If NULL-scan 2nd pass")); 2112 VdbeCoverage(v); 2113 } 2114 op = aEndOp[bRev*2 + endEq]; 2115 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 2116 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 2117 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 2118 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 2119 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 2120 if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan); 2121 } 2122 if( regBignull ){ 2123 /* During a NULL-scan, check to see if we have reached the end of 2124 ** the NULLs */ 2125 assert( bSeekPastNull==!bStopAtNull ); 2126 assert( bSeekPastNull+bStopAtNull==1 ); 2127 assert( nConstraint+bSeekPastNull>0 ); 2128 sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2); 2129 VdbeComment((v, "If NULL-scan 1st pass")); 2130 VdbeCoverage(v); 2131 op = aEndOp[bRev*2 + bSeekPastNull]; 2132 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 2133 nConstraint+bSeekPastNull); 2134 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 2135 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 2136 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 2137 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 2138 } 2139 2140 if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){ 2141 sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq); 2142 } 2143 2144 /* Seek the table cursor, if required */ 2145 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 2146 && (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0; 2147 if( omitTable ){ 2148 /* pIdx is a covering index. No need to access the main table. */ 2149 }else if( HasRowid(pIdx->pTable) ){ 2150 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); 2151 }else if( iCur!=iIdxCur ){ 2152 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 2153 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 2154 for(j=0; j<pPk->nKeyCol; j++){ 2155 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]); 2156 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 2157 } 2158 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 2159 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 2160 } 2161 2162 if( pLevel->iLeftJoin==0 ){ 2163 /* If pIdx is an index on one or more expressions, then look through 2164 ** all the expressions in pWInfo and try to transform matching expressions 2165 ** into reference to index columns. Also attempt to translate references 2166 ** to virtual columns in the table into references to (stored) columns 2167 ** of the index. 2168 ** 2169 ** Do not do this for the RHS of a LEFT JOIN. This is because the 2170 ** expression may be evaluated after OP_NullRow has been executed on 2171 ** the cursor. In this case it is important to do the full evaluation, 2172 ** as the result of the expression may not be NULL, even if all table 2173 ** column values are. https://www.sqlite.org/src/info/7fa8049685b50b5a 2174 ** 2175 ** Also, do not do this when processing one index an a multi-index 2176 ** OR clause, since the transformation will become invalid once we 2177 ** move forward to the next index. 2178 ** https://sqlite.org/src/info/4e8e4857d32d401f 2179 */ 2180 if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 ){ 2181 whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo); 2182 } 2183 2184 /* If a partial index is driving the loop, try to eliminate WHERE clause 2185 ** terms from the query that must be true due to the WHERE clause of 2186 ** the partial index. 2187 ** 2188 ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work 2189 ** for a LEFT JOIN. 2190 */ 2191 if( pIdx->pPartIdxWhere ){ 2192 whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC); 2193 } 2194 }else{ 2195 testcase( pIdx->pPartIdxWhere ); 2196 /* The following assert() is not a requirement, merely an observation: 2197 ** The OR-optimization doesn't work for the right hand table of 2198 ** a LEFT JOIN: */ 2199 assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 ); 2200 } 2201 2202 /* Record the instruction used to terminate the loop. */ 2203 if( pLoop->wsFlags & WHERE_ONEROW ){ 2204 pLevel->op = OP_Noop; 2205 }else if( bRev ){ 2206 pLevel->op = OP_Prev; 2207 }else{ 2208 pLevel->op = OP_Next; 2209 } 2210 pLevel->p1 = iIdxCur; 2211 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 2212 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 2213 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2214 }else{ 2215 assert( pLevel->p5==0 ); 2216 } 2217 if( omitTable ) pIdx = 0; 2218 }else 2219 2220 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 2221 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 2222 /* Case 5: Two or more separately indexed terms connected by OR 2223 ** 2224 ** Example: 2225 ** 2226 ** CREATE TABLE t1(a,b,c,d); 2227 ** CREATE INDEX i1 ON t1(a); 2228 ** CREATE INDEX i2 ON t1(b); 2229 ** CREATE INDEX i3 ON t1(c); 2230 ** 2231 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 2232 ** 2233 ** In the example, there are three indexed terms connected by OR. 2234 ** The top of the loop looks like this: 2235 ** 2236 ** Null 1 # Zero the rowset in reg 1 2237 ** 2238 ** Then, for each indexed term, the following. The arguments to 2239 ** RowSetTest are such that the rowid of the current row is inserted 2240 ** into the RowSet. If it is already present, control skips the 2241 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 2242 ** 2243 ** sqlite3WhereBegin(<term>) 2244 ** RowSetTest # Insert rowid into rowset 2245 ** Gosub 2 A 2246 ** sqlite3WhereEnd() 2247 ** 2248 ** Following the above, code to terminate the loop. Label A, the target 2249 ** of the Gosub above, jumps to the instruction right after the Goto. 2250 ** 2251 ** Null 1 # Zero the rowset in reg 1 2252 ** Goto B # The loop is finished. 2253 ** 2254 ** A: <loop body> # Return data, whatever. 2255 ** 2256 ** Return 2 # Jump back to the Gosub 2257 ** 2258 ** B: <after the loop> 2259 ** 2260 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 2261 ** use an ephemeral index instead of a RowSet to record the primary 2262 ** keys of the rows we have already seen. 2263 ** 2264 */ 2265 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 2266 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 2267 Index *pCov = 0; /* Potential covering index (or NULL) */ 2268 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 2269 2270 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 2271 int regRowset = 0; /* Register for RowSet object */ 2272 int regRowid = 0; /* Register holding rowid */ 2273 int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */ 2274 int iRetInit; /* Address of regReturn init */ 2275 int untestedTerms = 0; /* Some terms not completely tested */ 2276 int ii; /* Loop counter */ 2277 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 2278 Table *pTab = pTabItem->pTab; 2279 2280 pTerm = pLoop->aLTerm[0]; 2281 assert( pTerm!=0 ); 2282 assert( pTerm->eOperator & WO_OR ); 2283 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 2284 pOrWc = &pTerm->u.pOrInfo->wc; 2285 pLevel->op = OP_Return; 2286 pLevel->p1 = regReturn; 2287 2288 /* Set up a new SrcList in pOrTab containing the table being scanned 2289 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 2290 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 2291 */ 2292 if( pWInfo->nLevel>1 ){ 2293 int nNotReady; /* The number of notReady tables */ 2294 SrcItem *origSrc; /* Original list of tables */ 2295 nNotReady = pWInfo->nLevel - iLevel - 1; 2296 pOrTab = sqlite3StackAllocRaw(db, 2297 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 2298 if( pOrTab==0 ) return notReady; 2299 pOrTab->nAlloc = (u8)(nNotReady + 1); 2300 pOrTab->nSrc = pOrTab->nAlloc; 2301 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 2302 origSrc = pWInfo->pTabList->a; 2303 for(k=1; k<=nNotReady; k++){ 2304 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 2305 } 2306 }else{ 2307 pOrTab = pWInfo->pTabList; 2308 } 2309 2310 /* Initialize the rowset register to contain NULL. An SQL NULL is 2311 ** equivalent to an empty rowset. Or, create an ephemeral index 2312 ** capable of holding primary keys in the case of a WITHOUT ROWID. 2313 ** 2314 ** Also initialize regReturn to contain the address of the instruction 2315 ** immediately following the OP_Return at the bottom of the loop. This 2316 ** is required in a few obscure LEFT JOIN cases where control jumps 2317 ** over the top of the loop into the body of it. In this case the 2318 ** correct response for the end-of-loop code (the OP_Return) is to 2319 ** fall through to the next instruction, just as an OP_Next does if 2320 ** called on an uninitialized cursor. 2321 */ 2322 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2323 if( HasRowid(pTab) ){ 2324 regRowset = ++pParse->nMem; 2325 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 2326 }else{ 2327 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2328 regRowset = pParse->nTab++; 2329 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 2330 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 2331 } 2332 regRowid = ++pParse->nMem; 2333 } 2334 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 2335 2336 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 2337 ** Then for every term xN, evaluate as the subexpression: xN AND y 2338 ** That way, terms in y that are factored into the disjunction will 2339 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 2340 ** 2341 ** Actually, each subexpression is converted to "xN AND w" where w is 2342 ** the "interesting" terms of z - terms that did not originate in the 2343 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 2344 ** indices. 2345 ** 2346 ** This optimization also only applies if the (x1 OR x2 OR ...) term 2347 ** is not contained in the ON clause of a LEFT JOIN. 2348 ** See ticket http://www.sqlite.org/src/info/f2369304e4 2349 ** 2350 ** 2022-02-04: Do not push down slices of a row-value comparison. 2351 ** In other words, "w" or "y" may not be a slice of a vector. Otherwise, 2352 ** the initialization of the right-hand operand of the vector comparison 2353 ** might not occur, or might occur only in an OR branch that is not 2354 ** taken. dbsqlfuzz 80a9fade844b4fb43564efc972bcb2c68270f5d1. 2355 ** 2356 ** 2022-03-03: Do not push down expressions that involve subqueries. 2357 ** The subquery might get coded as a subroutine. Any table-references 2358 ** in the subquery might be resolved to index-references for the index on 2359 ** the OR branch in which the subroutine is coded. But if the subroutine 2360 ** is invoked from a different OR branch that uses a different index, such 2361 ** index-references will not work. tag-20220303a 2362 ** https://sqlite.org/forum/forumpost/36937b197273d403 2363 */ 2364 if( pWC->nTerm>1 ){ 2365 int iTerm; 2366 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 2367 Expr *pExpr = pWC->a[iTerm].pExpr; 2368 if( &pWC->a[iTerm] == pTerm ) continue; 2369 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); 2370 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); 2371 testcase( pWC->a[iTerm].wtFlags & TERM_SLICE ); 2372 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED|TERM_SLICE))!=0 ){ 2373 continue; 2374 } 2375 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 2376 if( ExprHasProperty(pExpr, EP_Subquery) ) continue; /* tag-20220303a */ 2377 pExpr = sqlite3ExprDup(db, pExpr, 0); 2378 pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr); 2379 } 2380 if( pAndExpr ){ 2381 /* The extra 0x10000 bit on the opcode is masked off and does not 2382 ** become part of the new Expr.op. However, it does make the 2383 ** op==TK_AND comparison inside of sqlite3PExpr() false, and this 2384 ** prevents sqlite3PExpr() from applying the AND short-circuit 2385 ** optimization, which we do not want here. */ 2386 pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr); 2387 } 2388 } 2389 2390 /* Run a separate WHERE clause for each term of the OR clause. After 2391 ** eliminating duplicates from other WHERE clauses, the action for each 2392 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 2393 */ 2394 ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR")); 2395 for(ii=0; ii<pOrWc->nTerm; ii++){ 2396 WhereTerm *pOrTerm = &pOrWc->a[ii]; 2397 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 2398 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 2399 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 2400 Expr *pDelete; /* Local copy of OR clause term */ 2401 int jmp1 = 0; /* Address of jump operation */ 2402 testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0 2403 && !ExprHasProperty(pOrExpr, EP_FromJoin) 2404 ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */ 2405 pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0); 2406 if( db->mallocFailed ){ 2407 sqlite3ExprDelete(db, pDelete); 2408 continue; 2409 } 2410 if( pAndExpr ){ 2411 pAndExpr->pLeft = pOrExpr; 2412 pOrExpr = pAndExpr; 2413 } 2414 /* Loop through table entries that match term pOrTerm. */ 2415 ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1)); 2416 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 2417 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 0, 2418 WHERE_OR_SUBCLAUSE, iCovCur); 2419 assert( pSubWInfo || pParse->nErr ); 2420 if( pSubWInfo ){ 2421 WhereLoop *pSubLoop; 2422 int addrExplain = sqlite3WhereExplainOneScan( 2423 pParse, pOrTab, &pSubWInfo->a[0], 0 2424 ); 2425 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 2426 2427 /* This is the sub-WHERE clause body. First skip over 2428 ** duplicate rows from prior sub-WHERE clauses, and record the 2429 ** rowid (or PRIMARY KEY) for the current row so that the same 2430 ** row will be skipped in subsequent sub-WHERE clauses. 2431 */ 2432 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2433 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 2434 if( HasRowid(pTab) ){ 2435 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid); 2436 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 2437 regRowid, iSet); 2438 VdbeCoverage(v); 2439 }else{ 2440 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2441 int nPk = pPk->nKeyCol; 2442 int iPk; 2443 int r; 2444 2445 /* Read the PK into an array of temp registers. */ 2446 r = sqlite3GetTempRange(pParse, nPk); 2447 for(iPk=0; iPk<nPk; iPk++){ 2448 int iCol = pPk->aiColumn[iPk]; 2449 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk); 2450 } 2451 2452 /* Check if the temp table already contains this key. If so, 2453 ** the row has already been included in the result set and 2454 ** can be ignored (by jumping past the Gosub below). Otherwise, 2455 ** insert the key into the temp table and proceed with processing 2456 ** the row. 2457 ** 2458 ** Use some of the same optimizations as OP_RowSetTest: If iSet 2459 ** is zero, assume that the key cannot already be present in 2460 ** the temp table. And if iSet is -1, assume that there is no 2461 ** need to insert the key into the temp table, as it will never 2462 ** be tested for. */ 2463 if( iSet ){ 2464 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 2465 VdbeCoverage(v); 2466 } 2467 if( iSet>=0 ){ 2468 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 2469 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid, 2470 r, nPk); 2471 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2472 } 2473 2474 /* Release the array of temp registers */ 2475 sqlite3ReleaseTempRange(pParse, r, nPk); 2476 } 2477 } 2478 2479 /* Invoke the main loop body as a subroutine */ 2480 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 2481 2482 /* Jump here (skipping the main loop body subroutine) if the 2483 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 2484 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 2485 2486 /* The pSubWInfo->untestedTerms flag means that this OR term 2487 ** contained one or more AND term from a notReady table. The 2488 ** terms from the notReady table could not be tested and will 2489 ** need to be tested later. 2490 */ 2491 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 2492 2493 /* If all of the OR-connected terms are optimized using the same 2494 ** index, and the index is opened using the same cursor number 2495 ** by each call to sqlite3WhereBegin() made by this loop, it may 2496 ** be possible to use that index as a covering index. 2497 ** 2498 ** If the call to sqlite3WhereBegin() above resulted in a scan that 2499 ** uses an index, and this is either the first OR-connected term 2500 ** processed or the index is the same as that used by all previous 2501 ** terms, set pCov to the candidate covering index. Otherwise, set 2502 ** pCov to NULL to indicate that no candidate covering index will 2503 ** be available. 2504 */ 2505 pSubLoop = pSubWInfo->a[0].pWLoop; 2506 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2507 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 2508 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 2509 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 2510 ){ 2511 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 2512 pCov = pSubLoop->u.btree.pIndex; 2513 }else{ 2514 pCov = 0; 2515 } 2516 if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){ 2517 pWInfo->bDeferredSeek = 1; 2518 } 2519 2520 /* Finish the loop through table entries that match term pOrTerm. */ 2521 sqlite3WhereEnd(pSubWInfo); 2522 ExplainQueryPlanPop(pParse); 2523 } 2524 sqlite3ExprDelete(db, pDelete); 2525 } 2526 } 2527 ExplainQueryPlanPop(pParse); 2528 assert( pLevel->pWLoop==pLoop ); 2529 assert( (pLoop->wsFlags & WHERE_MULTI_OR)!=0 ); 2530 assert( (pLoop->wsFlags & WHERE_IN_ABLE)==0 ); 2531 pLevel->u.pCoveringIdx = pCov; 2532 if( pCov ) pLevel->iIdxCur = iCovCur; 2533 if( pAndExpr ){ 2534 pAndExpr->pLeft = 0; 2535 sqlite3ExprDelete(db, pAndExpr); 2536 } 2537 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 2538 sqlite3VdbeGoto(v, pLevel->addrBrk); 2539 sqlite3VdbeResolveLabel(v, iLoopBody); 2540 2541 /* Set the P2 operand of the OP_Return opcode that will end the current 2542 ** loop to point to this spot, which is the top of the next containing 2543 ** loop. The byte-code formatter will use that P2 value as a hint to 2544 ** indent everything in between the this point and the final OP_Return. 2545 ** See tag-20220407a in vdbe.c and shell.c */ 2546 assert( pLevel->op==OP_Return ); 2547 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2548 2549 if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); } 2550 if( !untestedTerms ) disableTerm(pLevel, pTerm); 2551 }else 2552 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 2553 2554 { 2555 /* Case 6: There is no usable index. We must do a complete 2556 ** scan of the entire table. 2557 */ 2558 static const u8 aStep[] = { OP_Next, OP_Prev }; 2559 static const u8 aStart[] = { OP_Rewind, OP_Last }; 2560 assert( bRev==0 || bRev==1 ); 2561 if( pTabItem->fg.isRecursive ){ 2562 /* Tables marked isRecursive have only a single row that is stored in 2563 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 2564 pLevel->op = OP_Noop; 2565 }else{ 2566 codeCursorHint(pTabItem, pWInfo, pLevel, 0); 2567 pLevel->op = aStep[bRev]; 2568 pLevel->p1 = iCur; 2569 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt); 2570 VdbeCoverageIf(v, bRev==0); 2571 VdbeCoverageIf(v, bRev!=0); 2572 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2573 } 2574 } 2575 2576 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2577 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 2578 #endif 2579 2580 /* Insert code to test every subexpression that can be completely 2581 ** computed using the current set of tables. 2582 ** 2583 ** This loop may run between one and three times, depending on the 2584 ** constraints to be generated. The value of stack variable iLoop 2585 ** determines the constraints coded by each iteration, as follows: 2586 ** 2587 ** iLoop==1: Code only expressions that are entirely covered by pIdx. 2588 ** iLoop==2: Code remaining expressions that do not contain correlated 2589 ** sub-queries. 2590 ** iLoop==3: Code all remaining expressions. 2591 ** 2592 ** An effort is made to skip unnecessary iterations of the loop. 2593 */ 2594 iLoop = (pIdx ? 1 : 2); 2595 do{ 2596 int iNext = 0; /* Next value for iLoop */ 2597 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2598 Expr *pE; 2599 int skipLikeAddr = 0; 2600 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2601 testcase( pTerm->wtFlags & TERM_CODED ); 2602 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2603 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2604 testcase( pWInfo->untestedTerms==0 2605 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); 2606 pWInfo->untestedTerms = 1; 2607 continue; 2608 } 2609 pE = pTerm->pExpr; 2610 assert( pE!=0 ); 2611 if( (pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ)) 2612 && !ExprHasProperty(pE,EP_FromJoin) 2613 ){ 2614 continue; 2615 } 2616 2617 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){ 2618 iNext = 2; 2619 continue; 2620 } 2621 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){ 2622 if( iNext==0 ) iNext = 3; 2623 continue; 2624 } 2625 2626 if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){ 2627 /* If the TERM_LIKECOND flag is set, that means that the range search 2628 ** is sufficient to guarantee that the LIKE operator is true, so we 2629 ** can skip the call to the like(A,B) function. But this only works 2630 ** for strings. So do not skip the call to the function on the pass 2631 ** that compares BLOBs. */ 2632 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 2633 continue; 2634 #else 2635 u32 x = pLevel->iLikeRepCntr; 2636 if( x>0 ){ 2637 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1)); 2638 VdbeCoverageIf(v, (x&1)==1); 2639 VdbeCoverageIf(v, (x&1)==0); 2640 } 2641 #endif 2642 } 2643 #ifdef WHERETRACE_ENABLED /* 0xffff */ 2644 if( sqlite3WhereTrace ){ 2645 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d", 2646 pWC->nTerm-j, pTerm, iLoop)); 2647 } 2648 if( sqlite3WhereTrace & 0x800 ){ 2649 sqlite3DebugPrintf("Coding auxiliary constraint:\n"); 2650 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2651 } 2652 #endif 2653 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 2654 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 2655 pTerm->wtFlags |= TERM_CODED; 2656 } 2657 iLoop = iNext; 2658 }while( iLoop>0 ); 2659 2660 /* Insert code to test for implied constraints based on transitivity 2661 ** of the "==" operator. 2662 ** 2663 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 2664 ** and we are coding the t1 loop and the t2 loop has not yet coded, 2665 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 2666 ** the implied "t1.a=123" constraint. 2667 */ 2668 for(pTerm=pWC->a, j=pWC->nBase; j>0; j--, pTerm++){ 2669 Expr *pE, sEAlt; 2670 WhereTerm *pAlt; 2671 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2672 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 2673 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 2674 if( pTerm->leftCursor!=iCur ) continue; 2675 if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ) ) continue; 2676 pE = pTerm->pExpr; 2677 #ifdef WHERETRACE_ENABLED /* 0x800 */ 2678 if( sqlite3WhereTrace & 0x800 ){ 2679 sqlite3DebugPrintf("Coding transitive constraint:\n"); 2680 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2681 } 2682 #endif 2683 assert( !ExprHasProperty(pE, EP_FromJoin) ); 2684 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 2685 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 2686 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady, 2687 WO_EQ|WO_IN|WO_IS, 0); 2688 if( pAlt==0 ) continue; 2689 if( pAlt->wtFlags & (TERM_CODED) ) continue; 2690 if( (pAlt->eOperator & WO_IN) 2691 && ExprUseXSelect(pAlt->pExpr) 2692 && (pAlt->pExpr->x.pSelect->pEList->nExpr>1) 2693 ){ 2694 continue; 2695 } 2696 testcase( pAlt->eOperator & WO_EQ ); 2697 testcase( pAlt->eOperator & WO_IS ); 2698 testcase( pAlt->eOperator & WO_IN ); 2699 VdbeModuleComment((v, "begin transitive constraint")); 2700 sEAlt = *pAlt->pExpr; 2701 sEAlt.pLeft = pE->pLeft; 2702 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); 2703 pAlt->wtFlags |= TERM_CODED; 2704 } 2705 2706 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2707 ** at least one row of the right table has matched the left table. 2708 */ 2709 if( pLevel->iLeftJoin ){ 2710 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2711 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2712 VdbeComment((v, "record LEFT JOIN hit")); 2713 for(pTerm=pWC->a, j=0; j<pWC->nBase; j++, pTerm++){ 2714 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2715 testcase( pTerm->wtFlags & TERM_CODED ); 2716 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2717 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2718 assert( pWInfo->untestedTerms ); 2719 continue; 2720 } 2721 assert( pTerm->pExpr ); 2722 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 2723 pTerm->wtFlags |= TERM_CODED; 2724 } 2725 } 2726 2727 /* For a RIGHT OUTER JOIN, record the fact that the current row has 2728 ** been matched at least once. 2729 */ 2730 if( pLevel->pRJ ){ 2731 Table *pTab; 2732 int nPk; 2733 int r; 2734 int jmp1 = 0; 2735 WhereRightJoin *pRJ = pLevel->pRJ; 2736 2737 /* pTab is the right-hand table of the RIGHT JOIN. Generate code that 2738 ** will record that the current row of that table has been matched at 2739 ** least once. This is accomplished by storing the PK for the row in 2740 ** both the iMatch index and the regBloom Bloom filter. 2741 */ 2742 pTab = pWInfo->pTabList->a[pLevel->iFrom].pTab; 2743 if( HasRowid(pTab) ){ 2744 r = sqlite3GetTempRange(pParse, 2); 2745 sqlite3ExprCodeGetColumnOfTable(v, pTab, pLevel->iTabCur, -1, r+1); 2746 nPk = 1; 2747 }else{ 2748 int iPk; 2749 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2750 nPk = pPk->nKeyCol; 2751 r = sqlite3GetTempRange(pParse, nPk+1); 2752 for(iPk=0; iPk<nPk; iPk++){ 2753 int iCol = pPk->aiColumn[iPk]; 2754 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+1+iPk); 2755 } 2756 } 2757 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, 0, r+1, nPk); 2758 VdbeCoverage(v); 2759 sqlite3VdbeAddOp3(v, OP_MakeRecord, r+1, nPk, r); 2760 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pRJ->iMatch, r, r+1, nPk); 2761 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pRJ->regBloom, 0, r+1, nPk); 2762 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2763 sqlite3VdbeJumpHere(v, jmp1); 2764 sqlite3ReleaseTempRange(pParse, r, nPk+1); 2765 2766 /* Create a subroutine used to process all interior loops and code 2767 ** of the RIGHT JOIN. During normal operation, the subroutine will 2768 ** be in-line with the rest of the code. But at the end, a separate 2769 ** loop will run that invokes this subroutine for unmatched rows 2770 ** of pTab, with all tables to left begin set to NULL. 2771 */ 2772 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pRJ->regReturn); 2773 pRJ->addrSubrtn = sqlite3VdbeCurrentAddr(v); 2774 } 2775 2776 #if WHERETRACE_ENABLED /* 0x20800 */ 2777 if( sqlite3WhereTrace & 0x20000 ){ 2778 sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n", 2779 iLevel); 2780 sqlite3WhereClausePrint(pWC); 2781 } 2782 if( sqlite3WhereTrace & 0x800 ){ 2783 sqlite3DebugPrintf("End Coding level %d: notReady=%llx\n", 2784 iLevel, (u64)pLevel->notReady); 2785 } 2786 #endif 2787 return pLevel->notReady; 2788 } 2789