xref: /sqlite-3.40.0/src/wherecode.c (revision c56fac74)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 /*
25 ** This routine is a helper for explainIndexRange() below
26 **
27 ** pStr holds the text of an expression that we are building up one term
28 ** at a time.  This routine adds a new term to the end of the expression.
29 ** Terms are separated by AND so add the "AND" text for second and subsequent
30 ** terms only.
31 */
32 static void explainAppendTerm(
33   StrAccum *pStr,             /* The text expression being built */
34   int iTerm,                  /* Index of this term.  First is zero */
35   const char *zColumn,        /* Name of the column */
36   const char *zOp             /* Name of the operator */
37 ){
38   if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5);
39   sqlite3StrAccumAppendAll(pStr, zColumn);
40   sqlite3StrAccumAppend(pStr, zOp, 1);
41   sqlite3StrAccumAppend(pStr, "?", 1);
42 }
43 
44 /*
45 ** Return the name of the i-th column of the pIdx index.
46 */
47 static const char *explainIndexColumnName(Index *pIdx, int i){
48   i = pIdx->aiColumn[i];
49   if( i==XN_EXPR ) return "<expr>";
50   if( i==XN_ROWID ) return "rowid";
51   return pIdx->pTable->aCol[i].zName;
52 }
53 
54 /*
55 ** Argument pLevel describes a strategy for scanning table pTab. This
56 ** function appends text to pStr that describes the subset of table
57 ** rows scanned by the strategy in the form of an SQL expression.
58 **
59 ** For example, if the query:
60 **
61 **   SELECT * FROM t1 WHERE a=1 AND b>2;
62 **
63 ** is run and there is an index on (a, b), then this function returns a
64 ** string similar to:
65 **
66 **   "a=? AND b>?"
67 */
68 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
69   Index *pIndex = pLoop->u.btree.pIndex;
70   u16 nEq = pLoop->u.btree.nEq;
71   u16 nSkip = pLoop->nSkip;
72   int i, j;
73 
74   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
75   sqlite3StrAccumAppend(pStr, " (", 2);
76   for(i=0; i<nEq; i++){
77     const char *z = explainIndexColumnName(pIndex, i);
78     if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
79     sqlite3XPrintf(pStr, 0, i>=nSkip ? "%s=?" : "ANY(%s)", z);
80   }
81 
82   j = i;
83   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
84     const char *z = explainIndexColumnName(pIndex, i);
85     explainAppendTerm(pStr, i++, z, ">");
86   }
87   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
88     const char *z = explainIndexColumnName(pIndex, j);
89     explainAppendTerm(pStr, i, z, "<");
90   }
91   sqlite3StrAccumAppend(pStr, ")", 1);
92 }
93 
94 /*
95 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
96 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
97 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
98 ** is added to the output to describe the table scan strategy in pLevel.
99 **
100 ** If an OP_Explain opcode is added to the VM, its address is returned.
101 ** Otherwise, if no OP_Explain is coded, zero is returned.
102 */
103 int sqlite3WhereExplainOneScan(
104   Parse *pParse,                  /* Parse context */
105   SrcList *pTabList,              /* Table list this loop refers to */
106   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
107   int iLevel,                     /* Value for "level" column of output */
108   int iFrom,                      /* Value for "from" column of output */
109   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
110 ){
111   int ret = 0;
112 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
113   if( pParse->explain==2 )
114 #endif
115   {
116     struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
117     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
118     sqlite3 *db = pParse->db;     /* Database handle */
119     int iId = pParse->iSelectId;  /* Select id (left-most output column) */
120     int isSearch;                 /* True for a SEARCH. False for SCAN. */
121     WhereLoop *pLoop;             /* The controlling WhereLoop object */
122     u32 flags;                    /* Flags that describe this loop */
123     char *zMsg;                   /* Text to add to EQP output */
124     StrAccum str;                 /* EQP output string */
125     char zBuf[100];               /* Initial space for EQP output string */
126 
127     pLoop = pLevel->pWLoop;
128     flags = pLoop->wsFlags;
129     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return 0;
130 
131     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
132             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
133             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
134 
135     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
136     sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
137     if( pItem->pSelect ){
138       sqlite3XPrintf(&str, 0, " SUBQUERY %d", pItem->iSelectId);
139     }else{
140       sqlite3XPrintf(&str, 0, " TABLE %s", pItem->zName);
141     }
142 
143     if( pItem->zAlias ){
144       sqlite3XPrintf(&str, 0, " AS %s", pItem->zAlias);
145     }
146     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
147       const char *zFmt = 0;
148       Index *pIdx;
149 
150       assert( pLoop->u.btree.pIndex!=0 );
151       pIdx = pLoop->u.btree.pIndex;
152       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
153       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
154         if( isSearch ){
155           zFmt = "PRIMARY KEY";
156         }
157       }else if( flags & WHERE_PARTIALIDX ){
158         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
159       }else if( flags & WHERE_AUTO_INDEX ){
160         zFmt = "AUTOMATIC COVERING INDEX";
161       }else if( flags & WHERE_IDX_ONLY ){
162         zFmt = "COVERING INDEX %s";
163       }else{
164         zFmt = "INDEX %s";
165       }
166       if( zFmt ){
167         sqlite3StrAccumAppend(&str, " USING ", 7);
168         sqlite3XPrintf(&str, 0, zFmt, pIdx->zName);
169         explainIndexRange(&str, pLoop);
170       }
171     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
172       const char *zRangeOp;
173       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
174         zRangeOp = "=";
175       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
176         zRangeOp = ">? AND rowid<";
177       }else if( flags&WHERE_BTM_LIMIT ){
178         zRangeOp = ">";
179       }else{
180         assert( flags&WHERE_TOP_LIMIT);
181         zRangeOp = "<";
182       }
183       sqlite3XPrintf(&str, 0, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
184     }
185 #ifndef SQLITE_OMIT_VIRTUALTABLE
186     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
187       sqlite3XPrintf(&str, 0, " VIRTUAL TABLE INDEX %d:%s",
188                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
189     }
190 #endif
191 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
192     if( pLoop->nOut>=10 ){
193       sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
194     }else{
195       sqlite3StrAccumAppend(&str, " (~1 row)", 9);
196     }
197 #endif
198     zMsg = sqlite3StrAccumFinish(&str);
199     ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC);
200   }
201   return ret;
202 }
203 #endif /* SQLITE_OMIT_EXPLAIN */
204 
205 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
206 /*
207 ** Configure the VM passed as the first argument with an
208 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
209 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
210 ** clause that the scan reads data from.
211 **
212 ** If argument addrExplain is not 0, it must be the address of an
213 ** OP_Explain instruction that describes the same loop.
214 */
215 void sqlite3WhereAddScanStatus(
216   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
217   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
218   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
219   int addrExplain                 /* Address of OP_Explain (or 0) */
220 ){
221   const char *zObj = 0;
222   WhereLoop *pLoop = pLvl->pWLoop;
223   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
224     zObj = pLoop->u.btree.pIndex->zName;
225   }else{
226     zObj = pSrclist->a[pLvl->iFrom].zName;
227   }
228   sqlite3VdbeScanStatus(
229       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
230   );
231 }
232 #endif
233 
234 
235 /*
236 ** Disable a term in the WHERE clause.  Except, do not disable the term
237 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
238 ** or USING clause of that join.
239 **
240 ** Consider the term t2.z='ok' in the following queries:
241 **
242 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
243 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
244 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
245 **
246 ** The t2.z='ok' is disabled in the in (2) because it originates
247 ** in the ON clause.  The term is disabled in (3) because it is not part
248 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
249 **
250 ** Disabling a term causes that term to not be tested in the inner loop
251 ** of the join.  Disabling is an optimization.  When terms are satisfied
252 ** by indices, we disable them to prevent redundant tests in the inner
253 ** loop.  We would get the correct results if nothing were ever disabled,
254 ** but joins might run a little slower.  The trick is to disable as much
255 ** as we can without disabling too much.  If we disabled in (1), we'd get
256 ** the wrong answer.  See ticket #813.
257 **
258 ** If all the children of a term are disabled, then that term is also
259 ** automatically disabled.  In this way, terms get disabled if derived
260 ** virtual terms are tested first.  For example:
261 **
262 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
263 **      \___________/     \______/     \_____/
264 **         parent          child1       child2
265 **
266 ** Only the parent term was in the original WHERE clause.  The child1
267 ** and child2 terms were added by the LIKE optimization.  If both of
268 ** the virtual child terms are valid, then testing of the parent can be
269 ** skipped.
270 **
271 ** Usually the parent term is marked as TERM_CODED.  But if the parent
272 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
273 ** The TERM_LIKECOND marking indicates that the term should be coded inside
274 ** a conditional such that is only evaluated on the second pass of a
275 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
276 */
277 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
278   int nLoop = 0;
279   while( pTerm
280       && (pTerm->wtFlags & TERM_CODED)==0
281       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
282       && (pLevel->notReady & pTerm->prereqAll)==0
283   ){
284     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
285       pTerm->wtFlags |= TERM_LIKECOND;
286     }else{
287       pTerm->wtFlags |= TERM_CODED;
288     }
289     if( pTerm->iParent<0 ) break;
290     pTerm = &pTerm->pWC->a[pTerm->iParent];
291     pTerm->nChild--;
292     if( pTerm->nChild!=0 ) break;
293     nLoop++;
294   }
295 }
296 
297 /*
298 ** Code an OP_Affinity opcode to apply the column affinity string zAff
299 ** to the n registers starting at base.
300 **
301 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the
302 ** beginning and end of zAff are ignored.  If all entries in zAff are
303 ** SQLITE_AFF_BLOB, then no code gets generated.
304 **
305 ** This routine makes its own copy of zAff so that the caller is free
306 ** to modify zAff after this routine returns.
307 */
308 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
309   Vdbe *v = pParse->pVdbe;
310   if( zAff==0 ){
311     assert( pParse->db->mallocFailed );
312     return;
313   }
314   assert( v!=0 );
315 
316   /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning
317   ** and end of the affinity string.
318   */
319   while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){
320     n--;
321     base++;
322     zAff++;
323   }
324   while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){
325     n--;
326   }
327 
328   /* Code the OP_Affinity opcode if there is anything left to do. */
329   if( n>0 ){
330     sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
331     sqlite3VdbeChangeP4(v, -1, zAff, n);
332     sqlite3ExprCacheAffinityChange(pParse, base, n);
333   }
334 }
335 
336 
337 /*
338 ** Generate code for a single equality term of the WHERE clause.  An equality
339 ** term can be either X=expr or X IN (...).   pTerm is the term to be
340 ** coded.
341 **
342 ** The current value for the constraint is left in register iReg.
343 **
344 ** For a constraint of the form X=expr, the expression is evaluated and its
345 ** result is left on the stack.  For constraints of the form X IN (...)
346 ** this routine sets up a loop that will iterate over all values of X.
347 */
348 static int codeEqualityTerm(
349   Parse *pParse,      /* The parsing context */
350   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
351   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
352   int iEq,            /* Index of the equality term within this level */
353   int bRev,           /* True for reverse-order IN operations */
354   int iTarget         /* Attempt to leave results in this register */
355 ){
356   Expr *pX = pTerm->pExpr;
357   Vdbe *v = pParse->pVdbe;
358   int iReg;                  /* Register holding results */
359 
360   assert( iTarget>0 );
361   if( pX->op==TK_EQ || pX->op==TK_IS ){
362     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
363   }else if( pX->op==TK_ISNULL ){
364     iReg = iTarget;
365     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
366 #ifndef SQLITE_OMIT_SUBQUERY
367   }else{
368     int eType;
369     int iTab;
370     struct InLoop *pIn;
371     WhereLoop *pLoop = pLevel->pWLoop;
372 
373     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
374       && pLoop->u.btree.pIndex!=0
375       && pLoop->u.btree.pIndex->aSortOrder[iEq]
376     ){
377       testcase( iEq==0 );
378       testcase( bRev );
379       bRev = !bRev;
380     }
381     assert( pX->op==TK_IN );
382     iReg = iTarget;
383     eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0);
384     if( eType==IN_INDEX_INDEX_DESC ){
385       testcase( bRev );
386       bRev = !bRev;
387     }
388     iTab = pX->iTable;
389     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
390     VdbeCoverageIf(v, bRev);
391     VdbeCoverageIf(v, !bRev);
392     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
393     pLoop->wsFlags |= WHERE_IN_ABLE;
394     if( pLevel->u.in.nIn==0 ){
395       pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
396     }
397     pLevel->u.in.nIn++;
398     pLevel->u.in.aInLoop =
399        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
400                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
401     pIn = pLevel->u.in.aInLoop;
402     if( pIn ){
403       pIn += pLevel->u.in.nIn - 1;
404       pIn->iCur = iTab;
405       if( eType==IN_INDEX_ROWID ){
406         pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
407       }else{
408         pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
409       }
410       pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen;
411       sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v);
412     }else{
413       pLevel->u.in.nIn = 0;
414     }
415 #endif
416   }
417   disableTerm(pLevel, pTerm);
418   return iReg;
419 }
420 
421 /*
422 ** Generate code that will evaluate all == and IN constraints for an
423 ** index scan.
424 **
425 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
426 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
427 ** The index has as many as three equality constraints, but in this
428 ** example, the third "c" value is an inequality.  So only two
429 ** constraints are coded.  This routine will generate code to evaluate
430 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
431 ** in consecutive registers and the index of the first register is returned.
432 **
433 ** In the example above nEq==2.  But this subroutine works for any value
434 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
435 ** The only thing it does is allocate the pLevel->iMem memory cell and
436 ** compute the affinity string.
437 **
438 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
439 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
440 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
441 ** occurs after the nEq quality constraints.
442 **
443 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
444 ** the index of the first memory cell in that range. The code that
445 ** calls this routine will use that memory range to store keys for
446 ** start and termination conditions of the loop.
447 ** key value of the loop.  If one or more IN operators appear, then
448 ** this routine allocates an additional nEq memory cells for internal
449 ** use.
450 **
451 ** Before returning, *pzAff is set to point to a buffer containing a
452 ** copy of the column affinity string of the index allocated using
453 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
454 ** with equality constraints that use BLOB or NONE affinity are set to
455 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
456 **
457 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
458 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
459 **
460 ** In the example above, the index on t1(a) has TEXT affinity. But since
461 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
462 ** no conversion should be attempted before using a t2.b value as part of
463 ** a key to search the index. Hence the first byte in the returned affinity
464 ** string in this example would be set to SQLITE_AFF_BLOB.
465 */
466 static int codeAllEqualityTerms(
467   Parse *pParse,        /* Parsing context */
468   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
469   int bRev,             /* Reverse the order of IN operators */
470   int nExtraReg,        /* Number of extra registers to allocate */
471   char **pzAff          /* OUT: Set to point to affinity string */
472 ){
473   u16 nEq;                      /* The number of == or IN constraints to code */
474   u16 nSkip;                    /* Number of left-most columns to skip */
475   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
476   Index *pIdx;                  /* The index being used for this loop */
477   WhereTerm *pTerm;             /* A single constraint term */
478   WhereLoop *pLoop;             /* The WhereLoop object */
479   int j;                        /* Loop counter */
480   int regBase;                  /* Base register */
481   int nReg;                     /* Number of registers to allocate */
482   char *zAff;                   /* Affinity string to return */
483 
484   /* This module is only called on query plans that use an index. */
485   pLoop = pLevel->pWLoop;
486   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
487   nEq = pLoop->u.btree.nEq;
488   nSkip = pLoop->nSkip;
489   pIdx = pLoop->u.btree.pIndex;
490   assert( pIdx!=0 );
491 
492   /* Figure out how many memory cells we will need then allocate them.
493   */
494   regBase = pParse->nMem + 1;
495   nReg = pLoop->u.btree.nEq + nExtraReg;
496   pParse->nMem += nReg;
497 
498   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
499   if( !zAff ){
500     pParse->db->mallocFailed = 1;
501   }
502 
503   if( nSkip ){
504     int iIdxCur = pLevel->iIdxCur;
505     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
506     VdbeCoverageIf(v, bRev==0);
507     VdbeCoverageIf(v, bRev!=0);
508     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
509     j = sqlite3VdbeAddOp0(v, OP_Goto);
510     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
511                             iIdxCur, 0, regBase, nSkip);
512     VdbeCoverageIf(v, bRev==0);
513     VdbeCoverageIf(v, bRev!=0);
514     sqlite3VdbeJumpHere(v, j);
515     for(j=0; j<nSkip; j++){
516       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
517       testcase( pIdx->aiColumn[j]==XN_EXPR );
518       VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
519     }
520   }
521 
522   /* Evaluate the equality constraints
523   */
524   assert( zAff==0 || (int)strlen(zAff)>=nEq );
525   for(j=nSkip; j<nEq; j++){
526     int r1;
527     pTerm = pLoop->aLTerm[j];
528     assert( pTerm!=0 );
529     /* The following testcase is true for indices with redundant columns.
530     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
531     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
532     testcase( pTerm->wtFlags & TERM_VIRTUAL );
533     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
534     if( r1!=regBase+j ){
535       if( nReg==1 ){
536         sqlite3ReleaseTempReg(pParse, regBase);
537         regBase = r1;
538       }else{
539         sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
540       }
541     }
542     testcase( pTerm->eOperator & WO_ISNULL );
543     testcase( pTerm->eOperator & WO_IN );
544     if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
545       Expr *pRight = pTerm->pExpr->pRight;
546       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
547         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
548         VdbeCoverage(v);
549       }
550       if( zAff ){
551         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
552           zAff[j] = SQLITE_AFF_BLOB;
553         }
554         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
555           zAff[j] = SQLITE_AFF_BLOB;
556         }
557       }
558     }
559   }
560   *pzAff = zAff;
561   return regBase;
562 }
563 
564 /*
565 ** If the most recently coded instruction is a constant range contraint
566 ** that originated from the LIKE optimization, then change the P3 to be
567 ** pLoop->iLikeRepCntr and set P5.
568 **
569 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
570 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
571 ** scan loop run twice, once for strings and a second time for BLOBs.
572 ** The OP_String opcodes on the second pass convert the upper and lower
573 ** bound string contants to blobs.  This routine makes the necessary changes
574 ** to the OP_String opcodes for that to happen.
575 */
576 static void whereLikeOptimizationStringFixup(
577   Vdbe *v,                /* prepared statement under construction */
578   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
579   WhereTerm *pTerm        /* The upper or lower bound just coded */
580 ){
581   if( pTerm->wtFlags & TERM_LIKEOPT ){
582     VdbeOp *pOp;
583     assert( pLevel->iLikeRepCntr>0 );
584     pOp = sqlite3VdbeGetOp(v, -1);
585     assert( pOp!=0 );
586     assert( pOp->opcode==OP_String8
587             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
588     pOp->p3 = pLevel->iLikeRepCntr;
589     pOp->p5 = 1;
590   }
591 }
592 
593 #ifdef SQLITE_ENABLE_CURSOR_HINTS
594 /*
595 ** Information is passed from codeCursorHint() down to individual nodes of
596 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
597 ** structure.
598 */
599 struct CCurHint {
600   int iTabCur;    /* Cursor for the main table */
601   int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
602   Index *pIdx;    /* The index used to access the table */
603 };
604 
605 /*
606 ** This function is called for every node of an expression that is a candidate
607 ** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
608 ** the table CCurHint.iTabCur, verify that the same column can be
609 ** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
610 */
611 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
612   struct CCurHint *pHint = pWalker->u.pCCurHint;
613   assert( pHint->pIdx!=0 );
614   if( pExpr->op==TK_COLUMN
615    && pExpr->iTable==pHint->iTabCur
616    && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0
617   ){
618     pWalker->eCode = 1;
619   }
620   return WRC_Continue;
621 }
622 
623 
624 /*
625 ** This function is called on every node of an expression tree used as an
626 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
627 ** that accesses any table other than the one identified by
628 ** CCurHint.iTabCur, then do the following:
629 **
630 **   1) allocate a register and code an OP_Column instruction to read
631 **      the specified column into the new register, and
632 **
633 **   2) transform the expression node to a TK_REGISTER node that reads
634 **      from the newly populated register.
635 **
636 ** Also, if the node is a TK_COLUMN that does access the table idenified
637 ** by pCCurHint.iTabCur, and an index is being used (which we will
638 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
639 ** an access of the index rather than the original table.
640 */
641 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
642   int rc = WRC_Continue;
643   struct CCurHint *pHint = pWalker->u.pCCurHint;
644   if( pExpr->op==TK_COLUMN ){
645     if( pExpr->iTable!=pHint->iTabCur ){
646       Vdbe *v = pWalker->pParse->pVdbe;
647       int reg = ++pWalker->pParse->nMem;   /* Register for column value */
648       sqlite3ExprCodeGetColumnOfTable(
649           v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg
650       );
651       pExpr->op = TK_REGISTER;
652       pExpr->iTable = reg;
653     }else if( pHint->pIdx!=0 ){
654       pExpr->iTable = pHint->iIdxCur;
655       pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn);
656       assert( pExpr->iColumn>=0 );
657     }
658   }else if( pExpr->op==TK_AGG_FUNCTION ){
659     /* An aggregate function in the WHERE clause of a query means this must
660     ** be a correlated sub-query, and expression pExpr is an aggregate from
661     ** the parent context. Do not walk the function arguments in this case.
662     **
663     ** todo: It should be possible to replace this node with a TK_REGISTER
664     ** expression, as the result of the expression must be stored in a
665     ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
666     rc = WRC_Prune;
667   }
668   return rc;
669 }
670 
671 /*
672 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
673 */
674 static void codeCursorHint(
675   WhereInfo *pWInfo,    /* The where clause */
676   WhereLevel *pLevel,   /* Which loop to provide hints for */
677   WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
678 ){
679   Parse *pParse = pWInfo->pParse;
680   sqlite3 *db = pParse->db;
681   Vdbe *v = pParse->pVdbe;
682   Expr *pExpr = 0;
683   WhereLoop *pLoop = pLevel->pWLoop;
684   int iCur;
685   WhereClause *pWC;
686   WhereTerm *pTerm;
687   int i, j;
688   struct CCurHint sHint;
689   Walker sWalker;
690 
691   if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
692   iCur = pLevel->iTabCur;
693   assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
694   sHint.iTabCur = iCur;
695   sHint.iIdxCur = pLevel->iIdxCur;
696   sHint.pIdx = pLoop->u.btree.pIndex;
697   memset(&sWalker, 0, sizeof(sWalker));
698   sWalker.pParse = pParse;
699   sWalker.u.pCCurHint = &sHint;
700   pWC = &pWInfo->sWC;
701   for(i=0; i<pWC->nTerm; i++){
702     pTerm = &pWC->a[i];
703     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
704     if( pTerm->prereqAll & pLevel->notReady ) continue;
705     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
706 
707     /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
708     ** the cursor.  These terms are not needed as hints for a pure range
709     ** scan (that has no == terms) so omit them. */
710     if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
711       for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
712       if( j<pLoop->nLTerm ) continue;
713     }
714 
715     /* No subqueries or non-deterministic functions allowed */
716     if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
717 
718     /* For an index scan, make sure referenced columns are actually in
719     ** the index. */
720     if( sHint.pIdx!=0 ){
721       sWalker.eCode = 0;
722       sWalker.xExprCallback = codeCursorHintCheckExpr;
723       sqlite3WalkExpr(&sWalker, pTerm->pExpr);
724       if( sWalker.eCode ) continue;
725     }
726 
727     /* If we survive all prior tests, that means this term is worth hinting */
728     pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
729   }
730   if( pExpr!=0 ){
731     sWalker.xExprCallback = codeCursorHintFixExpr;
732     sqlite3WalkExpr(&sWalker, pExpr);
733     sqlite3VdbeAddOp4(v, OP_CursorHint,
734                       (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
735                       (const char*)pExpr, P4_EXPR);
736   }
737 }
738 #else
739 # define codeCursorHint(A,B,C)  /* No-op */
740 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
741 
742 /*
743 ** Generate code for the start of the iLevel-th loop in the WHERE clause
744 ** implementation described by pWInfo.
745 */
746 Bitmask sqlite3WhereCodeOneLoopStart(
747   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
748   int iLevel,          /* Which level of pWInfo->a[] should be coded */
749   Bitmask notReady     /* Which tables are currently available */
750 ){
751   int j, k;            /* Loop counters */
752   int iCur;            /* The VDBE cursor for the table */
753   int addrNxt;         /* Where to jump to continue with the next IN case */
754   int omitTable;       /* True if we use the index only */
755   int bRev;            /* True if we need to scan in reverse order */
756   WhereLevel *pLevel;  /* The where level to be coded */
757   WhereLoop *pLoop;    /* The WhereLoop object being coded */
758   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
759   WhereTerm *pTerm;               /* A WHERE clause term */
760   Parse *pParse;                  /* Parsing context */
761   sqlite3 *db;                    /* Database connection */
762   Vdbe *v;                        /* The prepared stmt under constructions */
763   struct SrcList_item *pTabItem;  /* FROM clause term being coded */
764   int addrBrk;                    /* Jump here to break out of the loop */
765   int addrCont;                   /* Jump here to continue with next cycle */
766   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
767   int iReleaseReg = 0;      /* Temp register to free before returning */
768 
769   pParse = pWInfo->pParse;
770   v = pParse->pVdbe;
771   pWC = &pWInfo->sWC;
772   db = pParse->db;
773   pLevel = &pWInfo->a[iLevel];
774   pLoop = pLevel->pWLoop;
775   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
776   iCur = pTabItem->iCursor;
777   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
778   bRev = (pWInfo->revMask>>iLevel)&1;
779   omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
780            && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0;
781   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
782 
783   /* Create labels for the "break" and "continue" instructions
784   ** for the current loop.  Jump to addrBrk to break out of a loop.
785   ** Jump to cont to go immediately to the next iteration of the
786   ** loop.
787   **
788   ** When there is an IN operator, we also have a "addrNxt" label that
789   ** means to continue with the next IN value combination.  When
790   ** there are no IN operators in the constraints, the "addrNxt" label
791   ** is the same as "addrBrk".
792   */
793   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
794   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
795 
796   /* If this is the right table of a LEFT OUTER JOIN, allocate and
797   ** initialize a memory cell that records if this table matches any
798   ** row of the left table of the join.
799   */
800   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
801     pLevel->iLeftJoin = ++pParse->nMem;
802     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
803     VdbeComment((v, "init LEFT JOIN no-match flag"));
804   }
805 
806   /* Special case of a FROM clause subquery implemented as a co-routine */
807   if( pTabItem->fg.viaCoroutine ){
808     int regYield = pTabItem->regReturn;
809     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
810     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
811     VdbeCoverage(v);
812     VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
813     pLevel->op = OP_Goto;
814   }else
815 
816 #ifndef SQLITE_OMIT_VIRTUALTABLE
817   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
818     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
819     **          to access the data.
820     */
821     int iReg;   /* P3 Value for OP_VFilter */
822     int addrNotFound;
823     int nConstraint = pLoop->nLTerm;
824 
825     sqlite3ExprCachePush(pParse);
826     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
827     addrNotFound = pLevel->addrBrk;
828     for(j=0; j<nConstraint; j++){
829       int iTarget = iReg+j+2;
830       pTerm = pLoop->aLTerm[j];
831       if( pTerm==0 ) continue;
832       if( pTerm->eOperator & WO_IN ){
833         codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
834         addrNotFound = pLevel->addrNxt;
835       }else{
836         sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget);
837       }
838     }
839     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
840     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
841     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
842                       pLoop->u.vtab.idxStr,
843                       pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC);
844     VdbeCoverage(v);
845     pLoop->u.vtab.needFree = 0;
846     for(j=0; j<nConstraint && j<16; j++){
847       if( (pLoop->u.vtab.omitMask>>j)&1 ){
848         disableTerm(pLevel, pLoop->aLTerm[j]);
849       }
850     }
851     pLevel->p1 = iCur;
852     pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
853     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
854     sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
855     sqlite3ExprCachePop(pParse);
856   }else
857 #endif /* SQLITE_OMIT_VIRTUALTABLE */
858 
859   if( (pLoop->wsFlags & WHERE_IPK)!=0
860    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
861   ){
862     /* Case 2:  We can directly reference a single row using an
863     **          equality comparison against the ROWID field.  Or
864     **          we reference multiple rows using a "rowid IN (...)"
865     **          construct.
866     */
867     assert( pLoop->u.btree.nEq==1 );
868     pTerm = pLoop->aLTerm[0];
869     assert( pTerm!=0 );
870     assert( pTerm->pExpr!=0 );
871     assert( omitTable==0 );
872     testcase( pTerm->wtFlags & TERM_VIRTUAL );
873     iReleaseReg = ++pParse->nMem;
874     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
875     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
876     addrNxt = pLevel->addrNxt;
877     sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v);
878     sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
879     VdbeCoverage(v);
880     sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
881     sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
882     VdbeComment((v, "pk"));
883     pLevel->op = OP_Noop;
884   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
885          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
886   ){
887     /* Case 3:  We have an inequality comparison against the ROWID field.
888     */
889     int testOp = OP_Noop;
890     int start;
891     int memEndValue = 0;
892     WhereTerm *pStart, *pEnd;
893 
894     assert( omitTable==0 );
895     j = 0;
896     pStart = pEnd = 0;
897     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
898     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
899     assert( pStart!=0 || pEnd!=0 );
900     if( bRev ){
901       pTerm = pStart;
902       pStart = pEnd;
903       pEnd = pTerm;
904     }
905     codeCursorHint(pWInfo, pLevel, pEnd);
906     if( pStart ){
907       Expr *pX;             /* The expression that defines the start bound */
908       int r1, rTemp;        /* Registers for holding the start boundary */
909 
910       /* The following constant maps TK_xx codes into corresponding
911       ** seek opcodes.  It depends on a particular ordering of TK_xx
912       */
913       const u8 aMoveOp[] = {
914            /* TK_GT */  OP_SeekGT,
915            /* TK_LE */  OP_SeekLE,
916            /* TK_LT */  OP_SeekLT,
917            /* TK_GE */  OP_SeekGE
918       };
919       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
920       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
921       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
922 
923       assert( (pStart->wtFlags & TERM_VNULL)==0 );
924       testcase( pStart->wtFlags & TERM_VIRTUAL );
925       pX = pStart->pExpr;
926       assert( pX!=0 );
927       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
928       r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
929       sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
930       VdbeComment((v, "pk"));
931       VdbeCoverageIf(v, pX->op==TK_GT);
932       VdbeCoverageIf(v, pX->op==TK_LE);
933       VdbeCoverageIf(v, pX->op==TK_LT);
934       VdbeCoverageIf(v, pX->op==TK_GE);
935       sqlite3ExprCacheAffinityChange(pParse, r1, 1);
936       sqlite3ReleaseTempReg(pParse, rTemp);
937       disableTerm(pLevel, pStart);
938     }else{
939       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
940       VdbeCoverageIf(v, bRev==0);
941       VdbeCoverageIf(v, bRev!=0);
942     }
943     if( pEnd ){
944       Expr *pX;
945       pX = pEnd->pExpr;
946       assert( pX!=0 );
947       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
948       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
949       testcase( pEnd->wtFlags & TERM_VIRTUAL );
950       memEndValue = ++pParse->nMem;
951       sqlite3ExprCode(pParse, pX->pRight, memEndValue);
952       if( pX->op==TK_LT || pX->op==TK_GT ){
953         testOp = bRev ? OP_Le : OP_Ge;
954       }else{
955         testOp = bRev ? OP_Lt : OP_Gt;
956       }
957       disableTerm(pLevel, pEnd);
958     }
959     start = sqlite3VdbeCurrentAddr(v);
960     pLevel->op = bRev ? OP_Prev : OP_Next;
961     pLevel->p1 = iCur;
962     pLevel->p2 = start;
963     assert( pLevel->p5==0 );
964     if( testOp!=OP_Noop ){
965       iRowidReg = ++pParse->nMem;
966       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
967       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
968       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
969       VdbeCoverageIf(v, testOp==OP_Le);
970       VdbeCoverageIf(v, testOp==OP_Lt);
971       VdbeCoverageIf(v, testOp==OP_Ge);
972       VdbeCoverageIf(v, testOp==OP_Gt);
973       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
974     }
975   }else if( pLoop->wsFlags & WHERE_INDEXED ){
976     /* Case 4: A scan using an index.
977     **
978     **         The WHERE clause may contain zero or more equality
979     **         terms ("==" or "IN" operators) that refer to the N
980     **         left-most columns of the index. It may also contain
981     **         inequality constraints (>, <, >= or <=) on the indexed
982     **         column that immediately follows the N equalities. Only
983     **         the right-most column can be an inequality - the rest must
984     **         use the "==" and "IN" operators. For example, if the
985     **         index is on (x,y,z), then the following clauses are all
986     **         optimized:
987     **
988     **            x=5
989     **            x=5 AND y=10
990     **            x=5 AND y<10
991     **            x=5 AND y>5 AND y<10
992     **            x=5 AND y=5 AND z<=10
993     **
994     **         The z<10 term of the following cannot be used, only
995     **         the x=5 term:
996     **
997     **            x=5 AND z<10
998     **
999     **         N may be zero if there are inequality constraints.
1000     **         If there are no inequality constraints, then N is at
1001     **         least one.
1002     **
1003     **         This case is also used when there are no WHERE clause
1004     **         constraints but an index is selected anyway, in order
1005     **         to force the output order to conform to an ORDER BY.
1006     */
1007     static const u8 aStartOp[] = {
1008       0,
1009       0,
1010       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
1011       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
1012       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
1013       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
1014       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
1015       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
1016     };
1017     static const u8 aEndOp[] = {
1018       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
1019       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
1020       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
1021       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
1022     };
1023     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
1024     int regBase;                 /* Base register holding constraint values */
1025     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
1026     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
1027     int startEq;                 /* True if range start uses ==, >= or <= */
1028     int endEq;                   /* True if range end uses ==, >= or <= */
1029     int start_constraints;       /* Start of range is constrained */
1030     int nConstraint;             /* Number of constraint terms */
1031     Index *pIdx;                 /* The index we will be using */
1032     int iIdxCur;                 /* The VDBE cursor for the index */
1033     int nExtraReg = 0;           /* Number of extra registers needed */
1034     int op;                      /* Instruction opcode */
1035     char *zStartAff;             /* Affinity for start of range constraint */
1036     char cEndAff = 0;            /* Affinity for end of range constraint */
1037     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
1038     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
1039 
1040     pIdx = pLoop->u.btree.pIndex;
1041     iIdxCur = pLevel->iIdxCur;
1042     assert( nEq>=pLoop->nSkip );
1043 
1044     /* If this loop satisfies a sort order (pOrderBy) request that
1045     ** was passed to this function to implement a "SELECT min(x) ..."
1046     ** query, then the caller will only allow the loop to run for
1047     ** a single iteration. This means that the first row returned
1048     ** should not have a NULL value stored in 'x'. If column 'x' is
1049     ** the first one after the nEq equality constraints in the index,
1050     ** this requires some special handling.
1051     */
1052     assert( pWInfo->pOrderBy==0
1053          || pWInfo->pOrderBy->nExpr==1
1054          || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
1055     if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
1056      && pWInfo->nOBSat>0
1057      && (pIdx->nKeyCol>nEq)
1058     ){
1059       assert( pLoop->nSkip==0 );
1060       bSeekPastNull = 1;
1061       nExtraReg = 1;
1062     }
1063 
1064     /* Find any inequality constraint terms for the start and end
1065     ** of the range.
1066     */
1067     j = nEq;
1068     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1069       pRangeStart = pLoop->aLTerm[j++];
1070       nExtraReg = 1;
1071       /* Like optimization range constraints always occur in pairs */
1072       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1073               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1074     }
1075     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1076       pRangeEnd = pLoop->aLTerm[j++];
1077       nExtraReg = 1;
1078       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1079         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
1080         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
1081         pLevel->iLikeRepCntr = ++pParse->nMem;
1082         testcase( bRev );
1083         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1084         sqlite3VdbeAddOp2(v, OP_Integer,
1085                           bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC),
1086                           pLevel->iLikeRepCntr);
1087         VdbeComment((v, "LIKE loop counter"));
1088         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1089       }
1090       if( pRangeStart==0
1091        && (j = pIdx->aiColumn[nEq])>=0
1092        && pIdx->pTable->aCol[j].notNull==0
1093       ){
1094         bSeekPastNull = 1;
1095       }
1096     }
1097     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1098 
1099     /* If we are doing a reverse order scan on an ascending index, or
1100     ** a forward order scan on a descending index, interchange the
1101     ** start and end terms (pRangeStart and pRangeEnd).
1102     */
1103     if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1104      || (bRev && pIdx->nKeyCol==nEq)
1105     ){
1106       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1107       SWAP(u8, bSeekPastNull, bStopAtNull);
1108     }
1109 
1110     /* Generate code to evaluate all constraint terms using == or IN
1111     ** and store the values of those terms in an array of registers
1112     ** starting at regBase.
1113     */
1114     codeCursorHint(pWInfo, pLevel, pRangeEnd);
1115     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1116     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1117     if( zStartAff ) cEndAff = zStartAff[nEq];
1118     addrNxt = pLevel->addrNxt;
1119 
1120     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1121     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1122     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1123     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1124     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1125     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1126     start_constraints = pRangeStart || nEq>0;
1127 
1128     /* Seek the index cursor to the start of the range. */
1129     nConstraint = nEq;
1130     if( pRangeStart ){
1131       Expr *pRight = pRangeStart->pExpr->pRight;
1132       sqlite3ExprCode(pParse, pRight, regBase+nEq);
1133       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1134       if( (pRangeStart->wtFlags & TERM_VNULL)==0
1135        && sqlite3ExprCanBeNull(pRight)
1136       ){
1137         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1138         VdbeCoverage(v);
1139       }
1140       if( zStartAff ){
1141         if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_BLOB){
1142           /* Since the comparison is to be performed with no conversions
1143           ** applied to the operands, set the affinity to apply to pRight to
1144           ** SQLITE_AFF_BLOB.  */
1145           zStartAff[nEq] = SQLITE_AFF_BLOB;
1146         }
1147         if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
1148           zStartAff[nEq] = SQLITE_AFF_BLOB;
1149         }
1150       }
1151       nConstraint++;
1152       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1153     }else if( bSeekPastNull ){
1154       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1155       nConstraint++;
1156       startEq = 0;
1157       start_constraints = 1;
1158     }
1159     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1160     op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1161     assert( op!=0 );
1162     sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1163     VdbeCoverage(v);
1164     VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1165     VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1166     VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
1167     VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1168     VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1169     VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
1170 
1171     /* Load the value for the inequality constraint at the end of the
1172     ** range (if any).
1173     */
1174     nConstraint = nEq;
1175     if( pRangeEnd ){
1176       Expr *pRight = pRangeEnd->pExpr->pRight;
1177       sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
1178       sqlite3ExprCode(pParse, pRight, regBase+nEq);
1179       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1180       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1181        && sqlite3ExprCanBeNull(pRight)
1182       ){
1183         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1184         VdbeCoverage(v);
1185       }
1186       if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_BLOB
1187        && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff)
1188       ){
1189         codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff);
1190       }
1191       nConstraint++;
1192       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1193     }else if( bStopAtNull ){
1194       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1195       endEq = 0;
1196       nConstraint++;
1197     }
1198     sqlite3DbFree(db, zStartAff);
1199 
1200     /* Top of the loop body */
1201     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1202 
1203     /* Check if the index cursor is past the end of the range. */
1204     if( nConstraint ){
1205       op = aEndOp[bRev*2 + endEq];
1206       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1207       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1208       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1209       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1210       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1211     }
1212 
1213     /* Seek the table cursor, if required */
1214     disableTerm(pLevel, pRangeStart);
1215     disableTerm(pLevel, pRangeEnd);
1216     if( omitTable ){
1217       /* pIdx is a covering index.  No need to access the main table. */
1218     }else if( HasRowid(pIdx->pTable) ){
1219       iRowidReg = ++pParse->nMem;
1220       sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
1221       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1222       if( pWInfo->eOnePass!=ONEPASS_OFF ){
1223         sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
1224         VdbeCoverage(v);
1225       }else{
1226         sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg);  /* Deferred seek */
1227       }
1228     }else if( iCur!=iIdxCur ){
1229       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1230       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1231       for(j=0; j<pPk->nKeyCol; j++){
1232         k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1233         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1234       }
1235       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1236                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1237     }
1238 
1239     /* Record the instruction used to terminate the loop. Disable
1240     ** WHERE clause terms made redundant by the index range scan.
1241     */
1242     if( pLoop->wsFlags & WHERE_ONEROW ){
1243       pLevel->op = OP_Noop;
1244     }else if( bRev ){
1245       pLevel->op = OP_Prev;
1246     }else{
1247       pLevel->op = OP_Next;
1248     }
1249     pLevel->p1 = iIdxCur;
1250     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1251     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1252       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1253     }else{
1254       assert( pLevel->p5==0 );
1255     }
1256   }else
1257 
1258 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1259   if( pLoop->wsFlags & WHERE_MULTI_OR ){
1260     /* Case 5:  Two or more separately indexed terms connected by OR
1261     **
1262     ** Example:
1263     **
1264     **   CREATE TABLE t1(a,b,c,d);
1265     **   CREATE INDEX i1 ON t1(a);
1266     **   CREATE INDEX i2 ON t1(b);
1267     **   CREATE INDEX i3 ON t1(c);
1268     **
1269     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
1270     **
1271     ** In the example, there are three indexed terms connected by OR.
1272     ** The top of the loop looks like this:
1273     **
1274     **          Null       1                # Zero the rowset in reg 1
1275     **
1276     ** Then, for each indexed term, the following. The arguments to
1277     ** RowSetTest are such that the rowid of the current row is inserted
1278     ** into the RowSet. If it is already present, control skips the
1279     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
1280     **
1281     **        sqlite3WhereBegin(<term>)
1282     **          RowSetTest                  # Insert rowid into rowset
1283     **          Gosub      2 A
1284     **        sqlite3WhereEnd()
1285     **
1286     ** Following the above, code to terminate the loop. Label A, the target
1287     ** of the Gosub above, jumps to the instruction right after the Goto.
1288     **
1289     **          Null       1                # Zero the rowset in reg 1
1290     **          Goto       B                # The loop is finished.
1291     **
1292     **       A: <loop body>                 # Return data, whatever.
1293     **
1294     **          Return     2                # Jump back to the Gosub
1295     **
1296     **       B: <after the loop>
1297     **
1298     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
1299     ** use an ephemeral index instead of a RowSet to record the primary
1300     ** keys of the rows we have already seen.
1301     **
1302     */
1303     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
1304     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
1305     Index *pCov = 0;             /* Potential covering index (or NULL) */
1306     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
1307 
1308     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
1309     int regRowset = 0;                        /* Register for RowSet object */
1310     int regRowid = 0;                         /* Register holding rowid */
1311     int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
1312     int iRetInit;                             /* Address of regReturn init */
1313     int untestedTerms = 0;             /* Some terms not completely tested */
1314     int ii;                            /* Loop counter */
1315     u16 wctrlFlags;                    /* Flags for sub-WHERE clause */
1316     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
1317     Table *pTab = pTabItem->pTab;
1318 
1319     pTerm = pLoop->aLTerm[0];
1320     assert( pTerm!=0 );
1321     assert( pTerm->eOperator & WO_OR );
1322     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
1323     pOrWc = &pTerm->u.pOrInfo->wc;
1324     pLevel->op = OP_Return;
1325     pLevel->p1 = regReturn;
1326 
1327     /* Set up a new SrcList in pOrTab containing the table being scanned
1328     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
1329     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
1330     */
1331     if( pWInfo->nLevel>1 ){
1332       int nNotReady;                 /* The number of notReady tables */
1333       struct SrcList_item *origSrc;     /* Original list of tables */
1334       nNotReady = pWInfo->nLevel - iLevel - 1;
1335       pOrTab = sqlite3StackAllocRaw(db,
1336                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
1337       if( pOrTab==0 ) return notReady;
1338       pOrTab->nAlloc = (u8)(nNotReady + 1);
1339       pOrTab->nSrc = pOrTab->nAlloc;
1340       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
1341       origSrc = pWInfo->pTabList->a;
1342       for(k=1; k<=nNotReady; k++){
1343         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
1344       }
1345     }else{
1346       pOrTab = pWInfo->pTabList;
1347     }
1348 
1349     /* Initialize the rowset register to contain NULL. An SQL NULL is
1350     ** equivalent to an empty rowset.  Or, create an ephemeral index
1351     ** capable of holding primary keys in the case of a WITHOUT ROWID.
1352     **
1353     ** Also initialize regReturn to contain the address of the instruction
1354     ** immediately following the OP_Return at the bottom of the loop. This
1355     ** is required in a few obscure LEFT JOIN cases where control jumps
1356     ** over the top of the loop into the body of it. In this case the
1357     ** correct response for the end-of-loop code (the OP_Return) is to
1358     ** fall through to the next instruction, just as an OP_Next does if
1359     ** called on an uninitialized cursor.
1360     */
1361     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1362       if( HasRowid(pTab) ){
1363         regRowset = ++pParse->nMem;
1364         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
1365       }else{
1366         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1367         regRowset = pParse->nTab++;
1368         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
1369         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
1370       }
1371       regRowid = ++pParse->nMem;
1372     }
1373     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
1374 
1375     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
1376     ** Then for every term xN, evaluate as the subexpression: xN AND z
1377     ** That way, terms in y that are factored into the disjunction will
1378     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
1379     **
1380     ** Actually, each subexpression is converted to "xN AND w" where w is
1381     ** the "interesting" terms of z - terms that did not originate in the
1382     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
1383     ** indices.
1384     **
1385     ** This optimization also only applies if the (x1 OR x2 OR ...) term
1386     ** is not contained in the ON clause of a LEFT JOIN.
1387     ** See ticket http://www.sqlite.org/src/info/f2369304e4
1388     */
1389     if( pWC->nTerm>1 ){
1390       int iTerm;
1391       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
1392         Expr *pExpr = pWC->a[iTerm].pExpr;
1393         if( &pWC->a[iTerm] == pTerm ) continue;
1394         if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
1395         if( (pWC->a[iTerm].wtFlags & TERM_VIRTUAL)!=0 ) continue;
1396         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
1397         testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
1398         pExpr = sqlite3ExprDup(db, pExpr, 0);
1399         pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
1400       }
1401       if( pAndExpr ){
1402         pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr, 0);
1403       }
1404     }
1405 
1406     /* Run a separate WHERE clause for each term of the OR clause.  After
1407     ** eliminating duplicates from other WHERE clauses, the action for each
1408     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
1409     */
1410     wctrlFlags =  WHERE_OMIT_OPEN_CLOSE
1411                 | WHERE_FORCE_TABLE
1412                 | WHERE_ONETABLE_ONLY
1413                 | WHERE_NO_AUTOINDEX;
1414     for(ii=0; ii<pOrWc->nTerm; ii++){
1415       WhereTerm *pOrTerm = &pOrWc->a[ii];
1416       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
1417         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
1418         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
1419         int jmp1 = 0;                   /* Address of jump operation */
1420         if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
1421           pAndExpr->pLeft = pOrExpr;
1422           pOrExpr = pAndExpr;
1423         }
1424         /* Loop through table entries that match term pOrTerm. */
1425         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
1426         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
1427                                       wctrlFlags, iCovCur);
1428         assert( pSubWInfo || pParse->nErr || db->mallocFailed );
1429         if( pSubWInfo ){
1430           WhereLoop *pSubLoop;
1431           int addrExplain = sqlite3WhereExplainOneScan(
1432               pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
1433           );
1434           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
1435 
1436           /* This is the sub-WHERE clause body.  First skip over
1437           ** duplicate rows from prior sub-WHERE clauses, and record the
1438           ** rowid (or PRIMARY KEY) for the current row so that the same
1439           ** row will be skipped in subsequent sub-WHERE clauses.
1440           */
1441           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1442             int r;
1443             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
1444             if( HasRowid(pTab) ){
1445               r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0);
1446               jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
1447                                            r,iSet);
1448               VdbeCoverage(v);
1449             }else{
1450               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1451               int nPk = pPk->nKeyCol;
1452               int iPk;
1453 
1454               /* Read the PK into an array of temp registers. */
1455               r = sqlite3GetTempRange(pParse, nPk);
1456               for(iPk=0; iPk<nPk; iPk++){
1457                 int iCol = pPk->aiColumn[iPk];
1458                 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk);
1459               }
1460 
1461               /* Check if the temp table already contains this key. If so,
1462               ** the row has already been included in the result set and
1463               ** can be ignored (by jumping past the Gosub below). Otherwise,
1464               ** insert the key into the temp table and proceed with processing
1465               ** the row.
1466               **
1467               ** Use some of the same optimizations as OP_RowSetTest: If iSet
1468               ** is zero, assume that the key cannot already be present in
1469               ** the temp table. And if iSet is -1, assume that there is no
1470               ** need to insert the key into the temp table, as it will never
1471               ** be tested for.  */
1472               if( iSet ){
1473                 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
1474                 VdbeCoverage(v);
1475               }
1476               if( iSet>=0 ){
1477                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
1478                 sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0);
1479                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1480               }
1481 
1482               /* Release the array of temp registers */
1483               sqlite3ReleaseTempRange(pParse, r, nPk);
1484             }
1485           }
1486 
1487           /* Invoke the main loop body as a subroutine */
1488           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
1489 
1490           /* Jump here (skipping the main loop body subroutine) if the
1491           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
1492           if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
1493 
1494           /* The pSubWInfo->untestedTerms flag means that this OR term
1495           ** contained one or more AND term from a notReady table.  The
1496           ** terms from the notReady table could not be tested and will
1497           ** need to be tested later.
1498           */
1499           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
1500 
1501           /* If all of the OR-connected terms are optimized using the same
1502           ** index, and the index is opened using the same cursor number
1503           ** by each call to sqlite3WhereBegin() made by this loop, it may
1504           ** be possible to use that index as a covering index.
1505           **
1506           ** If the call to sqlite3WhereBegin() above resulted in a scan that
1507           ** uses an index, and this is either the first OR-connected term
1508           ** processed or the index is the same as that used by all previous
1509           ** terms, set pCov to the candidate covering index. Otherwise, set
1510           ** pCov to NULL to indicate that no candidate covering index will
1511           ** be available.
1512           */
1513           pSubLoop = pSubWInfo->a[0].pWLoop;
1514           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
1515           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
1516            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
1517            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
1518           ){
1519             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
1520             pCov = pSubLoop->u.btree.pIndex;
1521             wctrlFlags |= WHERE_REOPEN_IDX;
1522           }else{
1523             pCov = 0;
1524           }
1525 
1526           /* Finish the loop through table entries that match term pOrTerm. */
1527           sqlite3WhereEnd(pSubWInfo);
1528         }
1529       }
1530     }
1531     pLevel->u.pCovidx = pCov;
1532     if( pCov ) pLevel->iIdxCur = iCovCur;
1533     if( pAndExpr ){
1534       pAndExpr->pLeft = 0;
1535       sqlite3ExprDelete(db, pAndExpr);
1536     }
1537     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
1538     sqlite3VdbeGoto(v, pLevel->addrBrk);
1539     sqlite3VdbeResolveLabel(v, iLoopBody);
1540 
1541     if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
1542     if( !untestedTerms ) disableTerm(pLevel, pTerm);
1543   }else
1544 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1545 
1546   {
1547     /* Case 6:  There is no usable index.  We must do a complete
1548     **          scan of the entire table.
1549     */
1550     static const u8 aStep[] = { OP_Next, OP_Prev };
1551     static const u8 aStart[] = { OP_Rewind, OP_Last };
1552     assert( bRev==0 || bRev==1 );
1553     if( pTabItem->fg.isRecursive ){
1554       /* Tables marked isRecursive have only a single row that is stored in
1555       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
1556       pLevel->op = OP_Noop;
1557     }else{
1558       codeCursorHint(pWInfo, pLevel, 0);
1559       pLevel->op = aStep[bRev];
1560       pLevel->p1 = iCur;
1561       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
1562       VdbeCoverageIf(v, bRev==0);
1563       VdbeCoverageIf(v, bRev!=0);
1564       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1565     }
1566   }
1567 
1568 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1569   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
1570 #endif
1571 
1572   /* Insert code to test every subexpression that can be completely
1573   ** computed using the current set of tables.
1574   */
1575   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1576     Expr *pE;
1577     int skipLikeAddr = 0;
1578     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1579     testcase( pTerm->wtFlags & TERM_CODED );
1580     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1581     if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
1582       testcase( pWInfo->untestedTerms==0
1583                && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
1584       pWInfo->untestedTerms = 1;
1585       continue;
1586     }
1587     pE = pTerm->pExpr;
1588     assert( pE!=0 );
1589     if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
1590       continue;
1591     }
1592     if( pTerm->wtFlags & TERM_LIKECOND ){
1593       assert( pLevel->iLikeRepCntr>0 );
1594       skipLikeAddr = sqlite3VdbeAddOp1(v, OP_IfNot, pLevel->iLikeRepCntr);
1595       VdbeCoverage(v);
1596     }
1597     sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
1598     if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
1599     pTerm->wtFlags |= TERM_CODED;
1600   }
1601 
1602   /* Insert code to test for implied constraints based on transitivity
1603   ** of the "==" operator.
1604   **
1605   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
1606   ** and we are coding the t1 loop and the t2 loop has not yet coded,
1607   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
1608   ** the implied "t1.a=123" constraint.
1609   */
1610   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1611     Expr *pE, *pEAlt;
1612     WhereTerm *pAlt;
1613     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1614     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
1615     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
1616     if( pTerm->leftCursor!=iCur ) continue;
1617     if( pLevel->iLeftJoin ) continue;
1618     pE = pTerm->pExpr;
1619     assert( !ExprHasProperty(pE, EP_FromJoin) );
1620     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
1621     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
1622                     WO_EQ|WO_IN|WO_IS, 0);
1623     if( pAlt==0 ) continue;
1624     if( pAlt->wtFlags & (TERM_CODED) ) continue;
1625     testcase( pAlt->eOperator & WO_EQ );
1626     testcase( pAlt->eOperator & WO_IS );
1627     testcase( pAlt->eOperator & WO_IN );
1628     VdbeModuleComment((v, "begin transitive constraint"));
1629     pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt));
1630     if( pEAlt ){
1631       *pEAlt = *pAlt->pExpr;
1632       pEAlt->pLeft = pE->pLeft;
1633       sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL);
1634       sqlite3StackFree(db, pEAlt);
1635     }
1636   }
1637 
1638   /* For a LEFT OUTER JOIN, generate code that will record the fact that
1639   ** at least one row of the right table has matched the left table.
1640   */
1641   if( pLevel->iLeftJoin ){
1642     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
1643     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
1644     VdbeComment((v, "record LEFT JOIN hit"));
1645     sqlite3ExprCacheClear(pParse);
1646     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
1647       testcase( pTerm->wtFlags & TERM_VIRTUAL );
1648       testcase( pTerm->wtFlags & TERM_CODED );
1649       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1650       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
1651         assert( pWInfo->untestedTerms );
1652         continue;
1653       }
1654       assert( pTerm->pExpr );
1655       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
1656       pTerm->wtFlags |= TERM_CODED;
1657     }
1658   }
1659 
1660   return pLevel->notReady;
1661 }
1662