1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 /* 25 ** This routine is a helper for explainIndexRange() below 26 ** 27 ** pStr holds the text of an expression that we are building up one term 28 ** at a time. This routine adds a new term to the end of the expression. 29 ** Terms are separated by AND so add the "AND" text for second and subsequent 30 ** terms only. 31 */ 32 static void explainAppendTerm( 33 StrAccum *pStr, /* The text expression being built */ 34 int iTerm, /* Index of this term. First is zero */ 35 const char *zColumn, /* Name of the column */ 36 const char *zOp /* Name of the operator */ 37 ){ 38 if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5); 39 sqlite3StrAccumAppendAll(pStr, zColumn); 40 sqlite3StrAccumAppend(pStr, zOp, 1); 41 sqlite3StrAccumAppend(pStr, "?", 1); 42 } 43 44 /* 45 ** Return the name of the i-th column of the pIdx index. 46 */ 47 static const char *explainIndexColumnName(Index *pIdx, int i){ 48 i = pIdx->aiColumn[i]; 49 if( i==XN_EXPR ) return "<expr>"; 50 if( i==XN_ROWID ) return "rowid"; 51 return pIdx->pTable->aCol[i].zName; 52 } 53 54 /* 55 ** Argument pLevel describes a strategy for scanning table pTab. This 56 ** function appends text to pStr that describes the subset of table 57 ** rows scanned by the strategy in the form of an SQL expression. 58 ** 59 ** For example, if the query: 60 ** 61 ** SELECT * FROM t1 WHERE a=1 AND b>2; 62 ** 63 ** is run and there is an index on (a, b), then this function returns a 64 ** string similar to: 65 ** 66 ** "a=? AND b>?" 67 */ 68 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 69 Index *pIndex = pLoop->u.btree.pIndex; 70 u16 nEq = pLoop->u.btree.nEq; 71 u16 nSkip = pLoop->nSkip; 72 int i, j; 73 74 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 75 sqlite3StrAccumAppend(pStr, " (", 2); 76 for(i=0; i<nEq; i++){ 77 const char *z = explainIndexColumnName(pIndex, i); 78 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5); 79 sqlite3XPrintf(pStr, 0, i>=nSkip ? "%s=?" : "ANY(%s)", z); 80 } 81 82 j = i; 83 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 84 const char *z = explainIndexColumnName(pIndex, i); 85 explainAppendTerm(pStr, i++, z, ">"); 86 } 87 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 88 const char *z = explainIndexColumnName(pIndex, j); 89 explainAppendTerm(pStr, i, z, "<"); 90 } 91 sqlite3StrAccumAppend(pStr, ")", 1); 92 } 93 94 /* 95 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 96 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 97 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 98 ** is added to the output to describe the table scan strategy in pLevel. 99 ** 100 ** If an OP_Explain opcode is added to the VM, its address is returned. 101 ** Otherwise, if no OP_Explain is coded, zero is returned. 102 */ 103 int sqlite3WhereExplainOneScan( 104 Parse *pParse, /* Parse context */ 105 SrcList *pTabList, /* Table list this loop refers to */ 106 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 107 int iLevel, /* Value for "level" column of output */ 108 int iFrom, /* Value for "from" column of output */ 109 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 110 ){ 111 int ret = 0; 112 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 113 if( pParse->explain==2 ) 114 #endif 115 { 116 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 117 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 118 sqlite3 *db = pParse->db; /* Database handle */ 119 int iId = pParse->iSelectId; /* Select id (left-most output column) */ 120 int isSearch; /* True for a SEARCH. False for SCAN. */ 121 WhereLoop *pLoop; /* The controlling WhereLoop object */ 122 u32 flags; /* Flags that describe this loop */ 123 char *zMsg; /* Text to add to EQP output */ 124 StrAccum str; /* EQP output string */ 125 char zBuf[100]; /* Initial space for EQP output string */ 126 127 pLoop = pLevel->pWLoop; 128 flags = pLoop->wsFlags; 129 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return 0; 130 131 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 132 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 133 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 134 135 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 136 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN"); 137 if( pItem->pSelect ){ 138 sqlite3XPrintf(&str, 0, " SUBQUERY %d", pItem->iSelectId); 139 }else{ 140 sqlite3XPrintf(&str, 0, " TABLE %s", pItem->zName); 141 } 142 143 if( pItem->zAlias ){ 144 sqlite3XPrintf(&str, 0, " AS %s", pItem->zAlias); 145 } 146 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 147 const char *zFmt = 0; 148 Index *pIdx; 149 150 assert( pLoop->u.btree.pIndex!=0 ); 151 pIdx = pLoop->u.btree.pIndex; 152 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 153 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 154 if( isSearch ){ 155 zFmt = "PRIMARY KEY"; 156 } 157 }else if( flags & WHERE_PARTIALIDX ){ 158 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 159 }else if( flags & WHERE_AUTO_INDEX ){ 160 zFmt = "AUTOMATIC COVERING INDEX"; 161 }else if( flags & WHERE_IDX_ONLY ){ 162 zFmt = "COVERING INDEX %s"; 163 }else{ 164 zFmt = "INDEX %s"; 165 } 166 if( zFmt ){ 167 sqlite3StrAccumAppend(&str, " USING ", 7); 168 sqlite3XPrintf(&str, 0, zFmt, pIdx->zName); 169 explainIndexRange(&str, pLoop); 170 } 171 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 172 const char *zRangeOp; 173 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 174 zRangeOp = "="; 175 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 176 zRangeOp = ">? AND rowid<"; 177 }else if( flags&WHERE_BTM_LIMIT ){ 178 zRangeOp = ">"; 179 }else{ 180 assert( flags&WHERE_TOP_LIMIT); 181 zRangeOp = "<"; 182 } 183 sqlite3XPrintf(&str, 0, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp); 184 } 185 #ifndef SQLITE_OMIT_VIRTUALTABLE 186 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 187 sqlite3XPrintf(&str, 0, " VIRTUAL TABLE INDEX %d:%s", 188 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 189 } 190 #endif 191 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 192 if( pLoop->nOut>=10 ){ 193 sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); 194 }else{ 195 sqlite3StrAccumAppend(&str, " (~1 row)", 9); 196 } 197 #endif 198 zMsg = sqlite3StrAccumFinish(&str); 199 ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC); 200 } 201 return ret; 202 } 203 #endif /* SQLITE_OMIT_EXPLAIN */ 204 205 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 206 /* 207 ** Configure the VM passed as the first argument with an 208 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 209 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 210 ** clause that the scan reads data from. 211 ** 212 ** If argument addrExplain is not 0, it must be the address of an 213 ** OP_Explain instruction that describes the same loop. 214 */ 215 void sqlite3WhereAddScanStatus( 216 Vdbe *v, /* Vdbe to add scanstatus entry to */ 217 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 218 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 219 int addrExplain /* Address of OP_Explain (or 0) */ 220 ){ 221 const char *zObj = 0; 222 WhereLoop *pLoop = pLvl->pWLoop; 223 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 224 zObj = pLoop->u.btree.pIndex->zName; 225 }else{ 226 zObj = pSrclist->a[pLvl->iFrom].zName; 227 } 228 sqlite3VdbeScanStatus( 229 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 230 ); 231 } 232 #endif 233 234 235 /* 236 ** Disable a term in the WHERE clause. Except, do not disable the term 237 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 238 ** or USING clause of that join. 239 ** 240 ** Consider the term t2.z='ok' in the following queries: 241 ** 242 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 243 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 244 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 245 ** 246 ** The t2.z='ok' is disabled in the in (2) because it originates 247 ** in the ON clause. The term is disabled in (3) because it is not part 248 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 249 ** 250 ** Disabling a term causes that term to not be tested in the inner loop 251 ** of the join. Disabling is an optimization. When terms are satisfied 252 ** by indices, we disable them to prevent redundant tests in the inner 253 ** loop. We would get the correct results if nothing were ever disabled, 254 ** but joins might run a little slower. The trick is to disable as much 255 ** as we can without disabling too much. If we disabled in (1), we'd get 256 ** the wrong answer. See ticket #813. 257 ** 258 ** If all the children of a term are disabled, then that term is also 259 ** automatically disabled. In this way, terms get disabled if derived 260 ** virtual terms are tested first. For example: 261 ** 262 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 263 ** \___________/ \______/ \_____/ 264 ** parent child1 child2 265 ** 266 ** Only the parent term was in the original WHERE clause. The child1 267 ** and child2 terms were added by the LIKE optimization. If both of 268 ** the virtual child terms are valid, then testing of the parent can be 269 ** skipped. 270 ** 271 ** Usually the parent term is marked as TERM_CODED. But if the parent 272 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 273 ** The TERM_LIKECOND marking indicates that the term should be coded inside 274 ** a conditional such that is only evaluated on the second pass of a 275 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 276 */ 277 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 278 int nLoop = 0; 279 while( pTerm 280 && (pTerm->wtFlags & TERM_CODED)==0 281 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 282 && (pLevel->notReady & pTerm->prereqAll)==0 283 ){ 284 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 285 pTerm->wtFlags |= TERM_LIKECOND; 286 }else{ 287 pTerm->wtFlags |= TERM_CODED; 288 } 289 if( pTerm->iParent<0 ) break; 290 pTerm = &pTerm->pWC->a[pTerm->iParent]; 291 pTerm->nChild--; 292 if( pTerm->nChild!=0 ) break; 293 nLoop++; 294 } 295 } 296 297 /* 298 ** Code an OP_Affinity opcode to apply the column affinity string zAff 299 ** to the n registers starting at base. 300 ** 301 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the 302 ** beginning and end of zAff are ignored. If all entries in zAff are 303 ** SQLITE_AFF_BLOB, then no code gets generated. 304 ** 305 ** This routine makes its own copy of zAff so that the caller is free 306 ** to modify zAff after this routine returns. 307 */ 308 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 309 Vdbe *v = pParse->pVdbe; 310 if( zAff==0 ){ 311 assert( pParse->db->mallocFailed ); 312 return; 313 } 314 assert( v!=0 ); 315 316 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning 317 ** and end of the affinity string. 318 */ 319 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){ 320 n--; 321 base++; 322 zAff++; 323 } 324 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){ 325 n--; 326 } 327 328 /* Code the OP_Affinity opcode if there is anything left to do. */ 329 if( n>0 ){ 330 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 331 sqlite3ExprCacheAffinityChange(pParse, base, n); 332 } 333 } 334 335 336 /* 337 ** Generate code for a single equality term of the WHERE clause. An equality 338 ** term can be either X=expr or X IN (...). pTerm is the term to be 339 ** coded. 340 ** 341 ** The current value for the constraint is left in register iReg. 342 ** 343 ** For a constraint of the form X=expr, the expression is evaluated and its 344 ** result is left on the stack. For constraints of the form X IN (...) 345 ** this routine sets up a loop that will iterate over all values of X. 346 */ 347 static int codeEqualityTerm( 348 Parse *pParse, /* The parsing context */ 349 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 350 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 351 int iEq, /* Index of the equality term within this level */ 352 int bRev, /* True for reverse-order IN operations */ 353 int iTarget /* Attempt to leave results in this register */ 354 ){ 355 Expr *pX = pTerm->pExpr; 356 Vdbe *v = pParse->pVdbe; 357 int iReg; /* Register holding results */ 358 359 assert( iTarget>0 ); 360 if( pX->op==TK_EQ || pX->op==TK_IS ){ 361 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 362 }else if( pX->op==TK_ISNULL ){ 363 iReg = iTarget; 364 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 365 #ifndef SQLITE_OMIT_SUBQUERY 366 }else{ 367 int eType; 368 int iTab; 369 struct InLoop *pIn; 370 WhereLoop *pLoop = pLevel->pWLoop; 371 372 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 373 && pLoop->u.btree.pIndex!=0 374 && pLoop->u.btree.pIndex->aSortOrder[iEq] 375 ){ 376 testcase( iEq==0 ); 377 testcase( bRev ); 378 bRev = !bRev; 379 } 380 assert( pX->op==TK_IN ); 381 iReg = iTarget; 382 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0); 383 if( eType==IN_INDEX_INDEX_DESC ){ 384 testcase( bRev ); 385 bRev = !bRev; 386 } 387 iTab = pX->iTable; 388 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 389 VdbeCoverageIf(v, bRev); 390 VdbeCoverageIf(v, !bRev); 391 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 392 pLoop->wsFlags |= WHERE_IN_ABLE; 393 if( pLevel->u.in.nIn==0 ){ 394 pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 395 } 396 pLevel->u.in.nIn++; 397 pLevel->u.in.aInLoop = 398 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 399 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 400 pIn = pLevel->u.in.aInLoop; 401 if( pIn ){ 402 pIn += pLevel->u.in.nIn - 1; 403 pIn->iCur = iTab; 404 if( eType==IN_INDEX_ROWID ){ 405 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); 406 }else{ 407 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); 408 } 409 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; 410 sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v); 411 }else{ 412 pLevel->u.in.nIn = 0; 413 } 414 #endif 415 } 416 disableTerm(pLevel, pTerm); 417 return iReg; 418 } 419 420 /* 421 ** Generate code that will evaluate all == and IN constraints for an 422 ** index scan. 423 ** 424 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 425 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 426 ** The index has as many as three equality constraints, but in this 427 ** example, the third "c" value is an inequality. So only two 428 ** constraints are coded. This routine will generate code to evaluate 429 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 430 ** in consecutive registers and the index of the first register is returned. 431 ** 432 ** In the example above nEq==2. But this subroutine works for any value 433 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 434 ** The only thing it does is allocate the pLevel->iMem memory cell and 435 ** compute the affinity string. 436 ** 437 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 438 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 439 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 440 ** occurs after the nEq quality constraints. 441 ** 442 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 443 ** the index of the first memory cell in that range. The code that 444 ** calls this routine will use that memory range to store keys for 445 ** start and termination conditions of the loop. 446 ** key value of the loop. If one or more IN operators appear, then 447 ** this routine allocates an additional nEq memory cells for internal 448 ** use. 449 ** 450 ** Before returning, *pzAff is set to point to a buffer containing a 451 ** copy of the column affinity string of the index allocated using 452 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 453 ** with equality constraints that use BLOB or NONE affinity are set to 454 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 455 ** 456 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 457 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 458 ** 459 ** In the example above, the index on t1(a) has TEXT affinity. But since 460 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 461 ** no conversion should be attempted before using a t2.b value as part of 462 ** a key to search the index. Hence the first byte in the returned affinity 463 ** string in this example would be set to SQLITE_AFF_BLOB. 464 */ 465 static int codeAllEqualityTerms( 466 Parse *pParse, /* Parsing context */ 467 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 468 int bRev, /* Reverse the order of IN operators */ 469 int nExtraReg, /* Number of extra registers to allocate */ 470 char **pzAff /* OUT: Set to point to affinity string */ 471 ){ 472 u16 nEq; /* The number of == or IN constraints to code */ 473 u16 nSkip; /* Number of left-most columns to skip */ 474 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 475 Index *pIdx; /* The index being used for this loop */ 476 WhereTerm *pTerm; /* A single constraint term */ 477 WhereLoop *pLoop; /* The WhereLoop object */ 478 int j; /* Loop counter */ 479 int regBase; /* Base register */ 480 int nReg; /* Number of registers to allocate */ 481 char *zAff; /* Affinity string to return */ 482 483 /* This module is only called on query plans that use an index. */ 484 pLoop = pLevel->pWLoop; 485 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 486 nEq = pLoop->u.btree.nEq; 487 nSkip = pLoop->nSkip; 488 pIdx = pLoop->u.btree.pIndex; 489 assert( pIdx!=0 ); 490 491 /* Figure out how many memory cells we will need then allocate them. 492 */ 493 regBase = pParse->nMem + 1; 494 nReg = pLoop->u.btree.nEq + nExtraReg; 495 pParse->nMem += nReg; 496 497 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 498 if( !zAff ){ 499 pParse->db->mallocFailed = 1; 500 } 501 502 if( nSkip ){ 503 int iIdxCur = pLevel->iIdxCur; 504 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 505 VdbeCoverageIf(v, bRev==0); 506 VdbeCoverageIf(v, bRev!=0); 507 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 508 j = sqlite3VdbeAddOp0(v, OP_Goto); 509 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 510 iIdxCur, 0, regBase, nSkip); 511 VdbeCoverageIf(v, bRev==0); 512 VdbeCoverageIf(v, bRev!=0); 513 sqlite3VdbeJumpHere(v, j); 514 for(j=0; j<nSkip; j++){ 515 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 516 testcase( pIdx->aiColumn[j]==XN_EXPR ); 517 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 518 } 519 } 520 521 /* Evaluate the equality constraints 522 */ 523 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 524 for(j=nSkip; j<nEq; j++){ 525 int r1; 526 pTerm = pLoop->aLTerm[j]; 527 assert( pTerm!=0 ); 528 /* The following testcase is true for indices with redundant columns. 529 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 530 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 531 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 532 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 533 if( r1!=regBase+j ){ 534 if( nReg==1 ){ 535 sqlite3ReleaseTempReg(pParse, regBase); 536 regBase = r1; 537 }else{ 538 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 539 } 540 } 541 testcase( pTerm->eOperator & WO_ISNULL ); 542 testcase( pTerm->eOperator & WO_IN ); 543 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ 544 Expr *pRight = pTerm->pExpr->pRight; 545 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 546 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 547 VdbeCoverage(v); 548 } 549 if( zAff ){ 550 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 551 zAff[j] = SQLITE_AFF_BLOB; 552 } 553 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 554 zAff[j] = SQLITE_AFF_BLOB; 555 } 556 } 557 } 558 } 559 *pzAff = zAff; 560 return regBase; 561 } 562 563 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 564 /* 565 ** If the most recently coded instruction is a constant range contraint 566 ** that originated from the LIKE optimization, then change the P3 to be 567 ** pLoop->iLikeRepCntr and set P5. 568 ** 569 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 570 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 571 ** scan loop run twice, once for strings and a second time for BLOBs. 572 ** The OP_String opcodes on the second pass convert the upper and lower 573 ** bound string contants to blobs. This routine makes the necessary changes 574 ** to the OP_String opcodes for that to happen. 575 ** 576 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 577 ** only the one pass through the string space is required, so this routine 578 ** becomes a no-op. 579 */ 580 static void whereLikeOptimizationStringFixup( 581 Vdbe *v, /* prepared statement under construction */ 582 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 583 WhereTerm *pTerm /* The upper or lower bound just coded */ 584 ){ 585 if( pTerm->wtFlags & TERM_LIKEOPT ){ 586 VdbeOp *pOp; 587 assert( pLevel->iLikeRepCntr>0 ); 588 pOp = sqlite3VdbeGetOp(v, -1); 589 assert( pOp!=0 ); 590 assert( pOp->opcode==OP_String8 591 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 592 pOp->p3 = pLevel->iLikeRepCntr; 593 pOp->p5 = 1; 594 } 595 } 596 #else 597 # define whereLikeOptimizationStringFixup(A,B,C) 598 #endif 599 600 #ifdef SQLITE_ENABLE_CURSOR_HINTS 601 /* 602 ** Information is passed from codeCursorHint() down to individual nodes of 603 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 604 ** structure. 605 */ 606 struct CCurHint { 607 int iTabCur; /* Cursor for the main table */ 608 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 609 Index *pIdx; /* The index used to access the table */ 610 }; 611 612 /* 613 ** This function is called for every node of an expression that is a candidate 614 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 615 ** the table CCurHint.iTabCur, verify that the same column can be 616 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 617 */ 618 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 619 struct CCurHint *pHint = pWalker->u.pCCurHint; 620 assert( pHint->pIdx!=0 ); 621 if( pExpr->op==TK_COLUMN 622 && pExpr->iTable==pHint->iTabCur 623 && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0 624 ){ 625 pWalker->eCode = 1; 626 } 627 return WRC_Continue; 628 } 629 630 631 /* 632 ** This function is called on every node of an expression tree used as an 633 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 634 ** that accesses any table other than the one identified by 635 ** CCurHint.iTabCur, then do the following: 636 ** 637 ** 1) allocate a register and code an OP_Column instruction to read 638 ** the specified column into the new register, and 639 ** 640 ** 2) transform the expression node to a TK_REGISTER node that reads 641 ** from the newly populated register. 642 ** 643 ** Also, if the node is a TK_COLUMN that does access the table idenified 644 ** by pCCurHint.iTabCur, and an index is being used (which we will 645 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 646 ** an access of the index rather than the original table. 647 */ 648 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 649 int rc = WRC_Continue; 650 struct CCurHint *pHint = pWalker->u.pCCurHint; 651 if( pExpr->op==TK_COLUMN ){ 652 if( pExpr->iTable!=pHint->iTabCur ){ 653 Vdbe *v = pWalker->pParse->pVdbe; 654 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 655 sqlite3ExprCodeGetColumnOfTable( 656 v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg 657 ); 658 pExpr->op = TK_REGISTER; 659 pExpr->iTable = reg; 660 }else if( pHint->pIdx!=0 ){ 661 pExpr->iTable = pHint->iIdxCur; 662 pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn); 663 assert( pExpr->iColumn>=0 ); 664 } 665 }else if( pExpr->op==TK_AGG_FUNCTION ){ 666 /* An aggregate function in the WHERE clause of a query means this must 667 ** be a correlated sub-query, and expression pExpr is an aggregate from 668 ** the parent context. Do not walk the function arguments in this case. 669 ** 670 ** todo: It should be possible to replace this node with a TK_REGISTER 671 ** expression, as the result of the expression must be stored in a 672 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 673 rc = WRC_Prune; 674 } 675 return rc; 676 } 677 678 /* 679 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 680 */ 681 static void codeCursorHint( 682 WhereInfo *pWInfo, /* The where clause */ 683 WhereLevel *pLevel, /* Which loop to provide hints for */ 684 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 685 ){ 686 Parse *pParse = pWInfo->pParse; 687 sqlite3 *db = pParse->db; 688 Vdbe *v = pParse->pVdbe; 689 Expr *pExpr = 0; 690 WhereLoop *pLoop = pLevel->pWLoop; 691 int iCur; 692 WhereClause *pWC; 693 WhereTerm *pTerm; 694 int i, j; 695 struct CCurHint sHint; 696 Walker sWalker; 697 698 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 699 iCur = pLevel->iTabCur; 700 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 701 sHint.iTabCur = iCur; 702 sHint.iIdxCur = pLevel->iIdxCur; 703 sHint.pIdx = pLoop->u.btree.pIndex; 704 memset(&sWalker, 0, sizeof(sWalker)); 705 sWalker.pParse = pParse; 706 sWalker.u.pCCurHint = &sHint; 707 pWC = &pWInfo->sWC; 708 for(i=0; i<pWC->nTerm; i++){ 709 pTerm = &pWC->a[i]; 710 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 711 if( pTerm->prereqAll & pLevel->notReady ) continue; 712 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; 713 714 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 715 ** the cursor. These terms are not needed as hints for a pure range 716 ** scan (that has no == terms) so omit them. */ 717 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 718 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 719 if( j<pLoop->nLTerm ) continue; 720 } 721 722 /* No subqueries or non-deterministic functions allowed */ 723 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 724 725 /* For an index scan, make sure referenced columns are actually in 726 ** the index. */ 727 if( sHint.pIdx!=0 ){ 728 sWalker.eCode = 0; 729 sWalker.xExprCallback = codeCursorHintCheckExpr; 730 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 731 if( sWalker.eCode ) continue; 732 } 733 734 /* If we survive all prior tests, that means this term is worth hinting */ 735 pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 736 } 737 if( pExpr!=0 ){ 738 sWalker.xExprCallback = codeCursorHintFixExpr; 739 sqlite3WalkExpr(&sWalker, pExpr); 740 sqlite3VdbeAddOp4(v, OP_CursorHint, 741 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 742 (const char*)pExpr, P4_EXPR); 743 } 744 } 745 #else 746 # define codeCursorHint(A,B,C) /* No-op */ 747 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 748 749 /* 750 ** Generate code for the start of the iLevel-th loop in the WHERE clause 751 ** implementation described by pWInfo. 752 */ 753 Bitmask sqlite3WhereCodeOneLoopStart( 754 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 755 int iLevel, /* Which level of pWInfo->a[] should be coded */ 756 Bitmask notReady /* Which tables are currently available */ 757 ){ 758 int j, k; /* Loop counters */ 759 int iCur; /* The VDBE cursor for the table */ 760 int addrNxt; /* Where to jump to continue with the next IN case */ 761 int omitTable; /* True if we use the index only */ 762 int bRev; /* True if we need to scan in reverse order */ 763 WhereLevel *pLevel; /* The where level to be coded */ 764 WhereLoop *pLoop; /* The WhereLoop object being coded */ 765 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 766 WhereTerm *pTerm; /* A WHERE clause term */ 767 Parse *pParse; /* Parsing context */ 768 sqlite3 *db; /* Database connection */ 769 Vdbe *v; /* The prepared stmt under constructions */ 770 struct SrcList_item *pTabItem; /* FROM clause term being coded */ 771 int addrBrk; /* Jump here to break out of the loop */ 772 int addrCont; /* Jump here to continue with next cycle */ 773 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 774 int iReleaseReg = 0; /* Temp register to free before returning */ 775 776 pParse = pWInfo->pParse; 777 v = pParse->pVdbe; 778 pWC = &pWInfo->sWC; 779 db = pParse->db; 780 pLevel = &pWInfo->a[iLevel]; 781 pLoop = pLevel->pWLoop; 782 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 783 iCur = pTabItem->iCursor; 784 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 785 bRev = (pWInfo->revMask>>iLevel)&1; 786 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 787 && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0; 788 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 789 790 /* Create labels for the "break" and "continue" instructions 791 ** for the current loop. Jump to addrBrk to break out of a loop. 792 ** Jump to cont to go immediately to the next iteration of the 793 ** loop. 794 ** 795 ** When there is an IN operator, we also have a "addrNxt" label that 796 ** means to continue with the next IN value combination. When 797 ** there are no IN operators in the constraints, the "addrNxt" label 798 ** is the same as "addrBrk". 799 */ 800 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 801 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); 802 803 /* If this is the right table of a LEFT OUTER JOIN, allocate and 804 ** initialize a memory cell that records if this table matches any 805 ** row of the left table of the join. 806 */ 807 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 808 pLevel->iLeftJoin = ++pParse->nMem; 809 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 810 VdbeComment((v, "init LEFT JOIN no-match flag")); 811 } 812 813 /* Special case of a FROM clause subquery implemented as a co-routine */ 814 if( pTabItem->fg.viaCoroutine ){ 815 int regYield = pTabItem->regReturn; 816 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 817 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 818 VdbeCoverage(v); 819 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); 820 pLevel->op = OP_Goto; 821 }else 822 823 #ifndef SQLITE_OMIT_VIRTUALTABLE 824 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 825 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 826 ** to access the data. 827 */ 828 int iReg; /* P3 Value for OP_VFilter */ 829 int addrNotFound; 830 int nConstraint = pLoop->nLTerm; 831 832 sqlite3ExprCachePush(pParse); 833 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 834 addrNotFound = pLevel->addrBrk; 835 for(j=0; j<nConstraint; j++){ 836 int iTarget = iReg+j+2; 837 pTerm = pLoop->aLTerm[j]; 838 if( pTerm==0 ) continue; 839 if( pTerm->eOperator & WO_IN ){ 840 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 841 addrNotFound = pLevel->addrNxt; 842 }else{ 843 sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget); 844 } 845 } 846 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 847 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 848 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 849 pLoop->u.vtab.idxStr, 850 pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC); 851 VdbeCoverage(v); 852 pLoop->u.vtab.needFree = 0; 853 for(j=0; j<nConstraint && j<16; j++){ 854 if( (pLoop->u.vtab.omitMask>>j)&1 ){ 855 disableTerm(pLevel, pLoop->aLTerm[j]); 856 } 857 } 858 pLevel->p1 = iCur; 859 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 860 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 861 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 862 sqlite3ExprCachePop(pParse); 863 }else 864 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 865 866 if( (pLoop->wsFlags & WHERE_IPK)!=0 867 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 868 ){ 869 /* Case 2: We can directly reference a single row using an 870 ** equality comparison against the ROWID field. Or 871 ** we reference multiple rows using a "rowid IN (...)" 872 ** construct. 873 */ 874 assert( pLoop->u.btree.nEq==1 ); 875 pTerm = pLoop->aLTerm[0]; 876 assert( pTerm!=0 ); 877 assert( pTerm->pExpr!=0 ); 878 assert( omitTable==0 ); 879 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 880 iReleaseReg = ++pParse->nMem; 881 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 882 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 883 addrNxt = pLevel->addrNxt; 884 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v); 885 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); 886 VdbeCoverage(v); 887 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); 888 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 889 VdbeComment((v, "pk")); 890 pLevel->op = OP_Noop; 891 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 892 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 893 ){ 894 /* Case 3: We have an inequality comparison against the ROWID field. 895 */ 896 int testOp = OP_Noop; 897 int start; 898 int memEndValue = 0; 899 WhereTerm *pStart, *pEnd; 900 901 assert( omitTable==0 ); 902 j = 0; 903 pStart = pEnd = 0; 904 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 905 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 906 assert( pStart!=0 || pEnd!=0 ); 907 if( bRev ){ 908 pTerm = pStart; 909 pStart = pEnd; 910 pEnd = pTerm; 911 } 912 codeCursorHint(pWInfo, pLevel, pEnd); 913 if( pStart ){ 914 Expr *pX; /* The expression that defines the start bound */ 915 int r1, rTemp; /* Registers for holding the start boundary */ 916 917 /* The following constant maps TK_xx codes into corresponding 918 ** seek opcodes. It depends on a particular ordering of TK_xx 919 */ 920 const u8 aMoveOp[] = { 921 /* TK_GT */ OP_SeekGT, 922 /* TK_LE */ OP_SeekLE, 923 /* TK_LT */ OP_SeekLT, 924 /* TK_GE */ OP_SeekGE 925 }; 926 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 927 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 928 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 929 930 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 931 testcase( pStart->wtFlags & TERM_VIRTUAL ); 932 pX = pStart->pExpr; 933 assert( pX!=0 ); 934 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 935 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 936 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); 937 VdbeComment((v, "pk")); 938 VdbeCoverageIf(v, pX->op==TK_GT); 939 VdbeCoverageIf(v, pX->op==TK_LE); 940 VdbeCoverageIf(v, pX->op==TK_LT); 941 VdbeCoverageIf(v, pX->op==TK_GE); 942 sqlite3ExprCacheAffinityChange(pParse, r1, 1); 943 sqlite3ReleaseTempReg(pParse, rTemp); 944 disableTerm(pLevel, pStart); 945 }else{ 946 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); 947 VdbeCoverageIf(v, bRev==0); 948 VdbeCoverageIf(v, bRev!=0); 949 } 950 if( pEnd ){ 951 Expr *pX; 952 pX = pEnd->pExpr; 953 assert( pX!=0 ); 954 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 955 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 956 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 957 memEndValue = ++pParse->nMem; 958 sqlite3ExprCode(pParse, pX->pRight, memEndValue); 959 if( pX->op==TK_LT || pX->op==TK_GT ){ 960 testOp = bRev ? OP_Le : OP_Ge; 961 }else{ 962 testOp = bRev ? OP_Lt : OP_Gt; 963 } 964 disableTerm(pLevel, pEnd); 965 } 966 start = sqlite3VdbeCurrentAddr(v); 967 pLevel->op = bRev ? OP_Prev : OP_Next; 968 pLevel->p1 = iCur; 969 pLevel->p2 = start; 970 assert( pLevel->p5==0 ); 971 if( testOp!=OP_Noop ){ 972 iRowidReg = ++pParse->nMem; 973 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 974 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 975 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 976 VdbeCoverageIf(v, testOp==OP_Le); 977 VdbeCoverageIf(v, testOp==OP_Lt); 978 VdbeCoverageIf(v, testOp==OP_Ge); 979 VdbeCoverageIf(v, testOp==OP_Gt); 980 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 981 } 982 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 983 /* Case 4: A scan using an index. 984 ** 985 ** The WHERE clause may contain zero or more equality 986 ** terms ("==" or "IN" operators) that refer to the N 987 ** left-most columns of the index. It may also contain 988 ** inequality constraints (>, <, >= or <=) on the indexed 989 ** column that immediately follows the N equalities. Only 990 ** the right-most column can be an inequality - the rest must 991 ** use the "==" and "IN" operators. For example, if the 992 ** index is on (x,y,z), then the following clauses are all 993 ** optimized: 994 ** 995 ** x=5 996 ** x=5 AND y=10 997 ** x=5 AND y<10 998 ** x=5 AND y>5 AND y<10 999 ** x=5 AND y=5 AND z<=10 1000 ** 1001 ** The z<10 term of the following cannot be used, only 1002 ** the x=5 term: 1003 ** 1004 ** x=5 AND z<10 1005 ** 1006 ** N may be zero if there are inequality constraints. 1007 ** If there are no inequality constraints, then N is at 1008 ** least one. 1009 ** 1010 ** This case is also used when there are no WHERE clause 1011 ** constraints but an index is selected anyway, in order 1012 ** to force the output order to conform to an ORDER BY. 1013 */ 1014 static const u8 aStartOp[] = { 1015 0, 1016 0, 1017 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1018 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1019 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1020 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1021 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1022 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1023 }; 1024 static const u8 aEndOp[] = { 1025 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1026 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1027 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1028 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1029 }; 1030 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1031 int regBase; /* Base register holding constraint values */ 1032 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1033 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1034 int startEq; /* True if range start uses ==, >= or <= */ 1035 int endEq; /* True if range end uses ==, >= or <= */ 1036 int start_constraints; /* Start of range is constrained */ 1037 int nConstraint; /* Number of constraint terms */ 1038 Index *pIdx; /* The index we will be using */ 1039 int iIdxCur; /* The VDBE cursor for the index */ 1040 int nExtraReg = 0; /* Number of extra registers needed */ 1041 int op; /* Instruction opcode */ 1042 char *zStartAff; /* Affinity for start of range constraint */ 1043 char cEndAff = 0; /* Affinity for end of range constraint */ 1044 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1045 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1046 1047 pIdx = pLoop->u.btree.pIndex; 1048 iIdxCur = pLevel->iIdxCur; 1049 assert( nEq>=pLoop->nSkip ); 1050 1051 /* If this loop satisfies a sort order (pOrderBy) request that 1052 ** was passed to this function to implement a "SELECT min(x) ..." 1053 ** query, then the caller will only allow the loop to run for 1054 ** a single iteration. This means that the first row returned 1055 ** should not have a NULL value stored in 'x'. If column 'x' is 1056 ** the first one after the nEq equality constraints in the index, 1057 ** this requires some special handling. 1058 */ 1059 assert( pWInfo->pOrderBy==0 1060 || pWInfo->pOrderBy->nExpr==1 1061 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); 1062 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 1063 && pWInfo->nOBSat>0 1064 && (pIdx->nKeyCol>nEq) 1065 ){ 1066 assert( pLoop->nSkip==0 ); 1067 bSeekPastNull = 1; 1068 nExtraReg = 1; 1069 } 1070 1071 /* Find any inequality constraint terms for the start and end 1072 ** of the range. 1073 */ 1074 j = nEq; 1075 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1076 pRangeStart = pLoop->aLTerm[j++]; 1077 nExtraReg = 1; 1078 /* Like optimization range constraints always occur in pairs */ 1079 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1080 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1081 } 1082 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1083 pRangeEnd = pLoop->aLTerm[j++]; 1084 nExtraReg = 1; 1085 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1086 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1087 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1088 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1089 pLevel->iLikeRepCntr = ++pParse->nMem; 1090 testcase( bRev ); 1091 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1092 sqlite3VdbeAddOp2(v, OP_Integer, 1093 bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC), 1094 pLevel->iLikeRepCntr); 1095 VdbeComment((v, "LIKE loop counter")); 1096 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1097 } 1098 #endif 1099 if( pRangeStart==0 1100 && (j = pIdx->aiColumn[nEq])>=0 1101 && pIdx->pTable->aCol[j].notNull==0 1102 ){ 1103 bSeekPastNull = 1; 1104 } 1105 } 1106 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1107 1108 /* If we are doing a reverse order scan on an ascending index, or 1109 ** a forward order scan on a descending index, interchange the 1110 ** start and end terms (pRangeStart and pRangeEnd). 1111 */ 1112 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) 1113 || (bRev && pIdx->nKeyCol==nEq) 1114 ){ 1115 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1116 SWAP(u8, bSeekPastNull, bStopAtNull); 1117 } 1118 1119 /* Generate code to evaluate all constraint terms using == or IN 1120 ** and store the values of those terms in an array of registers 1121 ** starting at regBase. 1122 */ 1123 codeCursorHint(pWInfo, pLevel, pRangeEnd); 1124 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1125 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1126 if( zStartAff ) cEndAff = zStartAff[nEq]; 1127 addrNxt = pLevel->addrNxt; 1128 1129 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1130 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1131 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1132 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1133 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1134 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1135 start_constraints = pRangeStart || nEq>0; 1136 1137 /* Seek the index cursor to the start of the range. */ 1138 nConstraint = nEq; 1139 if( pRangeStart ){ 1140 Expr *pRight = pRangeStart->pExpr->pRight; 1141 sqlite3ExprCode(pParse, pRight, regBase+nEq); 1142 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1143 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1144 && sqlite3ExprCanBeNull(pRight) 1145 ){ 1146 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1147 VdbeCoverage(v); 1148 } 1149 if( zStartAff ){ 1150 if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_BLOB){ 1151 /* Since the comparison is to be performed with no conversions 1152 ** applied to the operands, set the affinity to apply to pRight to 1153 ** SQLITE_AFF_BLOB. */ 1154 zStartAff[nEq] = SQLITE_AFF_BLOB; 1155 } 1156 if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ 1157 zStartAff[nEq] = SQLITE_AFF_BLOB; 1158 } 1159 } 1160 nConstraint++; 1161 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1162 }else if( bSeekPastNull ){ 1163 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1164 nConstraint++; 1165 startEq = 0; 1166 start_constraints = 1; 1167 } 1168 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1169 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 1170 assert( op!=0 ); 1171 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1172 VdbeCoverage(v); 1173 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1174 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1175 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 1176 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1177 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1178 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 1179 1180 /* Load the value for the inequality constraint at the end of the 1181 ** range (if any). 1182 */ 1183 nConstraint = nEq; 1184 if( pRangeEnd ){ 1185 Expr *pRight = pRangeEnd->pExpr->pRight; 1186 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); 1187 sqlite3ExprCode(pParse, pRight, regBase+nEq); 1188 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 1189 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 1190 && sqlite3ExprCanBeNull(pRight) 1191 ){ 1192 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1193 VdbeCoverage(v); 1194 } 1195 if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_BLOB 1196 && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff) 1197 ){ 1198 codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff); 1199 } 1200 nConstraint++; 1201 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 1202 }else if( bStopAtNull ){ 1203 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1204 endEq = 0; 1205 nConstraint++; 1206 } 1207 sqlite3DbFree(db, zStartAff); 1208 1209 /* Top of the loop body */ 1210 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1211 1212 /* Check if the index cursor is past the end of the range. */ 1213 if( nConstraint ){ 1214 op = aEndOp[bRev*2 + endEq]; 1215 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1216 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1217 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1218 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1219 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1220 } 1221 1222 /* Seek the table cursor, if required */ 1223 disableTerm(pLevel, pRangeStart); 1224 disableTerm(pLevel, pRangeEnd); 1225 if( omitTable ){ 1226 /* pIdx is a covering index. No need to access the main table. */ 1227 }else if( HasRowid(pIdx->pTable) ){ 1228 iRowidReg = ++pParse->nMem; 1229 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); 1230 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 1231 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 1232 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg); 1233 VdbeCoverage(v); 1234 }else{ 1235 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ 1236 } 1237 }else if( iCur!=iIdxCur ){ 1238 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1239 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1240 for(j=0; j<pPk->nKeyCol; j++){ 1241 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); 1242 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 1243 } 1244 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 1245 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 1246 } 1247 1248 /* Record the instruction used to terminate the loop. Disable 1249 ** WHERE clause terms made redundant by the index range scan. 1250 */ 1251 if( pLoop->wsFlags & WHERE_ONEROW ){ 1252 pLevel->op = OP_Noop; 1253 }else if( bRev ){ 1254 pLevel->op = OP_Prev; 1255 }else{ 1256 pLevel->op = OP_Next; 1257 } 1258 pLevel->p1 = iIdxCur; 1259 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 1260 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 1261 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 1262 }else{ 1263 assert( pLevel->p5==0 ); 1264 } 1265 }else 1266 1267 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 1268 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 1269 /* Case 5: Two or more separately indexed terms connected by OR 1270 ** 1271 ** Example: 1272 ** 1273 ** CREATE TABLE t1(a,b,c,d); 1274 ** CREATE INDEX i1 ON t1(a); 1275 ** CREATE INDEX i2 ON t1(b); 1276 ** CREATE INDEX i3 ON t1(c); 1277 ** 1278 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 1279 ** 1280 ** In the example, there are three indexed terms connected by OR. 1281 ** The top of the loop looks like this: 1282 ** 1283 ** Null 1 # Zero the rowset in reg 1 1284 ** 1285 ** Then, for each indexed term, the following. The arguments to 1286 ** RowSetTest are such that the rowid of the current row is inserted 1287 ** into the RowSet. If it is already present, control skips the 1288 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 1289 ** 1290 ** sqlite3WhereBegin(<term>) 1291 ** RowSetTest # Insert rowid into rowset 1292 ** Gosub 2 A 1293 ** sqlite3WhereEnd() 1294 ** 1295 ** Following the above, code to terminate the loop. Label A, the target 1296 ** of the Gosub above, jumps to the instruction right after the Goto. 1297 ** 1298 ** Null 1 # Zero the rowset in reg 1 1299 ** Goto B # The loop is finished. 1300 ** 1301 ** A: <loop body> # Return data, whatever. 1302 ** 1303 ** Return 2 # Jump back to the Gosub 1304 ** 1305 ** B: <after the loop> 1306 ** 1307 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 1308 ** use an ephemeral index instead of a RowSet to record the primary 1309 ** keys of the rows we have already seen. 1310 ** 1311 */ 1312 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 1313 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 1314 Index *pCov = 0; /* Potential covering index (or NULL) */ 1315 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 1316 1317 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 1318 int regRowset = 0; /* Register for RowSet object */ 1319 int regRowid = 0; /* Register holding rowid */ 1320 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ 1321 int iRetInit; /* Address of regReturn init */ 1322 int untestedTerms = 0; /* Some terms not completely tested */ 1323 int ii; /* Loop counter */ 1324 u16 wctrlFlags; /* Flags for sub-WHERE clause */ 1325 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 1326 Table *pTab = pTabItem->pTab; 1327 1328 pTerm = pLoop->aLTerm[0]; 1329 assert( pTerm!=0 ); 1330 assert( pTerm->eOperator & WO_OR ); 1331 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 1332 pOrWc = &pTerm->u.pOrInfo->wc; 1333 pLevel->op = OP_Return; 1334 pLevel->p1 = regReturn; 1335 1336 /* Set up a new SrcList in pOrTab containing the table being scanned 1337 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 1338 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 1339 */ 1340 if( pWInfo->nLevel>1 ){ 1341 int nNotReady; /* The number of notReady tables */ 1342 struct SrcList_item *origSrc; /* Original list of tables */ 1343 nNotReady = pWInfo->nLevel - iLevel - 1; 1344 pOrTab = sqlite3StackAllocRaw(db, 1345 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 1346 if( pOrTab==0 ) return notReady; 1347 pOrTab->nAlloc = (u8)(nNotReady + 1); 1348 pOrTab->nSrc = pOrTab->nAlloc; 1349 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 1350 origSrc = pWInfo->pTabList->a; 1351 for(k=1; k<=nNotReady; k++){ 1352 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 1353 } 1354 }else{ 1355 pOrTab = pWInfo->pTabList; 1356 } 1357 1358 /* Initialize the rowset register to contain NULL. An SQL NULL is 1359 ** equivalent to an empty rowset. Or, create an ephemeral index 1360 ** capable of holding primary keys in the case of a WITHOUT ROWID. 1361 ** 1362 ** Also initialize regReturn to contain the address of the instruction 1363 ** immediately following the OP_Return at the bottom of the loop. This 1364 ** is required in a few obscure LEFT JOIN cases where control jumps 1365 ** over the top of the loop into the body of it. In this case the 1366 ** correct response for the end-of-loop code (the OP_Return) is to 1367 ** fall through to the next instruction, just as an OP_Next does if 1368 ** called on an uninitialized cursor. 1369 */ 1370 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 1371 if( HasRowid(pTab) ){ 1372 regRowset = ++pParse->nMem; 1373 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 1374 }else{ 1375 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1376 regRowset = pParse->nTab++; 1377 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 1378 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 1379 } 1380 regRowid = ++pParse->nMem; 1381 } 1382 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 1383 1384 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 1385 ** Then for every term xN, evaluate as the subexpression: xN AND z 1386 ** That way, terms in y that are factored into the disjunction will 1387 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 1388 ** 1389 ** Actually, each subexpression is converted to "xN AND w" where w is 1390 ** the "interesting" terms of z - terms that did not originate in the 1391 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 1392 ** indices. 1393 ** 1394 ** This optimization also only applies if the (x1 OR x2 OR ...) term 1395 ** is not contained in the ON clause of a LEFT JOIN. 1396 ** See ticket http://www.sqlite.org/src/info/f2369304e4 1397 */ 1398 if( pWC->nTerm>1 ){ 1399 int iTerm; 1400 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 1401 Expr *pExpr = pWC->a[iTerm].pExpr; 1402 if( &pWC->a[iTerm] == pTerm ) continue; 1403 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; 1404 if( (pWC->a[iTerm].wtFlags & TERM_VIRTUAL)!=0 ) continue; 1405 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 1406 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); 1407 pExpr = sqlite3ExprDup(db, pExpr, 0); 1408 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); 1409 } 1410 if( pAndExpr ){ 1411 pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr, 0); 1412 } 1413 } 1414 1415 /* Run a separate WHERE clause for each term of the OR clause. After 1416 ** eliminating duplicates from other WHERE clauses, the action for each 1417 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 1418 */ 1419 wctrlFlags = WHERE_OMIT_OPEN_CLOSE 1420 | WHERE_FORCE_TABLE 1421 | WHERE_ONETABLE_ONLY 1422 | WHERE_NO_AUTOINDEX; 1423 for(ii=0; ii<pOrWc->nTerm; ii++){ 1424 WhereTerm *pOrTerm = &pOrWc->a[ii]; 1425 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 1426 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 1427 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 1428 int jmp1 = 0; /* Address of jump operation */ 1429 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){ 1430 pAndExpr->pLeft = pOrExpr; 1431 pOrExpr = pAndExpr; 1432 } 1433 /* Loop through table entries that match term pOrTerm. */ 1434 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 1435 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 1436 wctrlFlags, iCovCur); 1437 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); 1438 if( pSubWInfo ){ 1439 WhereLoop *pSubLoop; 1440 int addrExplain = sqlite3WhereExplainOneScan( 1441 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 1442 ); 1443 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 1444 1445 /* This is the sub-WHERE clause body. First skip over 1446 ** duplicate rows from prior sub-WHERE clauses, and record the 1447 ** rowid (or PRIMARY KEY) for the current row so that the same 1448 ** row will be skipped in subsequent sub-WHERE clauses. 1449 */ 1450 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 1451 int r; 1452 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 1453 if( HasRowid(pTab) ){ 1454 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0); 1455 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 1456 r,iSet); 1457 VdbeCoverage(v); 1458 }else{ 1459 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1460 int nPk = pPk->nKeyCol; 1461 int iPk; 1462 1463 /* Read the PK into an array of temp registers. */ 1464 r = sqlite3GetTempRange(pParse, nPk); 1465 for(iPk=0; iPk<nPk; iPk++){ 1466 int iCol = pPk->aiColumn[iPk]; 1467 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk); 1468 } 1469 1470 /* Check if the temp table already contains this key. If so, 1471 ** the row has already been included in the result set and 1472 ** can be ignored (by jumping past the Gosub below). Otherwise, 1473 ** insert the key into the temp table and proceed with processing 1474 ** the row. 1475 ** 1476 ** Use some of the same optimizations as OP_RowSetTest: If iSet 1477 ** is zero, assume that the key cannot already be present in 1478 ** the temp table. And if iSet is -1, assume that there is no 1479 ** need to insert the key into the temp table, as it will never 1480 ** be tested for. */ 1481 if( iSet ){ 1482 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 1483 VdbeCoverage(v); 1484 } 1485 if( iSet>=0 ){ 1486 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 1487 sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0); 1488 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1489 } 1490 1491 /* Release the array of temp registers */ 1492 sqlite3ReleaseTempRange(pParse, r, nPk); 1493 } 1494 } 1495 1496 /* Invoke the main loop body as a subroutine */ 1497 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 1498 1499 /* Jump here (skipping the main loop body subroutine) if the 1500 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 1501 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 1502 1503 /* The pSubWInfo->untestedTerms flag means that this OR term 1504 ** contained one or more AND term from a notReady table. The 1505 ** terms from the notReady table could not be tested and will 1506 ** need to be tested later. 1507 */ 1508 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 1509 1510 /* If all of the OR-connected terms are optimized using the same 1511 ** index, and the index is opened using the same cursor number 1512 ** by each call to sqlite3WhereBegin() made by this loop, it may 1513 ** be possible to use that index as a covering index. 1514 ** 1515 ** If the call to sqlite3WhereBegin() above resulted in a scan that 1516 ** uses an index, and this is either the first OR-connected term 1517 ** processed or the index is the same as that used by all previous 1518 ** terms, set pCov to the candidate covering index. Otherwise, set 1519 ** pCov to NULL to indicate that no candidate covering index will 1520 ** be available. 1521 */ 1522 pSubLoop = pSubWInfo->a[0].pWLoop; 1523 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 1524 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 1525 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 1526 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 1527 ){ 1528 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 1529 pCov = pSubLoop->u.btree.pIndex; 1530 wctrlFlags |= WHERE_REOPEN_IDX; 1531 }else{ 1532 pCov = 0; 1533 } 1534 1535 /* Finish the loop through table entries that match term pOrTerm. */ 1536 sqlite3WhereEnd(pSubWInfo); 1537 } 1538 } 1539 } 1540 pLevel->u.pCovidx = pCov; 1541 if( pCov ) pLevel->iIdxCur = iCovCur; 1542 if( pAndExpr ){ 1543 pAndExpr->pLeft = 0; 1544 sqlite3ExprDelete(db, pAndExpr); 1545 } 1546 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 1547 sqlite3VdbeGoto(v, pLevel->addrBrk); 1548 sqlite3VdbeResolveLabel(v, iLoopBody); 1549 1550 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab); 1551 if( !untestedTerms ) disableTerm(pLevel, pTerm); 1552 }else 1553 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1554 1555 { 1556 /* Case 6: There is no usable index. We must do a complete 1557 ** scan of the entire table. 1558 */ 1559 static const u8 aStep[] = { OP_Next, OP_Prev }; 1560 static const u8 aStart[] = { OP_Rewind, OP_Last }; 1561 assert( bRev==0 || bRev==1 ); 1562 if( pTabItem->fg.isRecursive ){ 1563 /* Tables marked isRecursive have only a single row that is stored in 1564 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 1565 pLevel->op = OP_Noop; 1566 }else{ 1567 codeCursorHint(pWInfo, pLevel, 0); 1568 pLevel->op = aStep[bRev]; 1569 pLevel->p1 = iCur; 1570 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); 1571 VdbeCoverageIf(v, bRev==0); 1572 VdbeCoverageIf(v, bRev!=0); 1573 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 1574 } 1575 } 1576 1577 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1578 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 1579 #endif 1580 1581 /* Insert code to test every subexpression that can be completely 1582 ** computed using the current set of tables. 1583 */ 1584 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 1585 Expr *pE; 1586 int skipLikeAddr = 0; 1587 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1588 testcase( pTerm->wtFlags & TERM_CODED ); 1589 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1590 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 1591 testcase( pWInfo->untestedTerms==0 1592 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); 1593 pWInfo->untestedTerms = 1; 1594 continue; 1595 } 1596 pE = pTerm->pExpr; 1597 assert( pE!=0 ); 1598 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 1599 continue; 1600 } 1601 if( pTerm->wtFlags & TERM_LIKECOND ){ 1602 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1603 continue; 1604 #else 1605 assert( pLevel->iLikeRepCntr>0 ); 1606 skipLikeAddr = sqlite3VdbeAddOp1(v, OP_IfNot, pLevel->iLikeRepCntr); 1607 VdbeCoverage(v); 1608 #endif 1609 } 1610 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 1611 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 1612 pTerm->wtFlags |= TERM_CODED; 1613 } 1614 1615 /* Insert code to test for implied constraints based on transitivity 1616 ** of the "==" operator. 1617 ** 1618 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 1619 ** and we are coding the t1 loop and the t2 loop has not yet coded, 1620 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 1621 ** the implied "t1.a=123" constraint. 1622 */ 1623 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 1624 Expr *pE, *pEAlt; 1625 WhereTerm *pAlt; 1626 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1627 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 1628 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 1629 if( pTerm->leftCursor!=iCur ) continue; 1630 if( pLevel->iLeftJoin ) continue; 1631 pE = pTerm->pExpr; 1632 assert( !ExprHasProperty(pE, EP_FromJoin) ); 1633 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 1634 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady, 1635 WO_EQ|WO_IN|WO_IS, 0); 1636 if( pAlt==0 ) continue; 1637 if( pAlt->wtFlags & (TERM_CODED) ) continue; 1638 testcase( pAlt->eOperator & WO_EQ ); 1639 testcase( pAlt->eOperator & WO_IS ); 1640 testcase( pAlt->eOperator & WO_IN ); 1641 VdbeModuleComment((v, "begin transitive constraint")); 1642 pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt)); 1643 if( pEAlt ){ 1644 *pEAlt = *pAlt->pExpr; 1645 pEAlt->pLeft = pE->pLeft; 1646 sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL); 1647 sqlite3StackFree(db, pEAlt); 1648 } 1649 } 1650 1651 /* For a LEFT OUTER JOIN, generate code that will record the fact that 1652 ** at least one row of the right table has matched the left table. 1653 */ 1654 if( pLevel->iLeftJoin ){ 1655 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 1656 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 1657 VdbeComment((v, "record LEFT JOIN hit")); 1658 sqlite3ExprCacheClear(pParse); 1659 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 1660 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1661 testcase( pTerm->wtFlags & TERM_CODED ); 1662 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1663 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 1664 assert( pWInfo->untestedTerms ); 1665 continue; 1666 } 1667 assert( pTerm->pExpr ); 1668 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 1669 pTerm->wtFlags |= TERM_CODED; 1670 } 1671 } 1672 1673 return pLevel->notReady; 1674 } 1675