1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 25 /* 26 ** Return the name of the i-th column of the pIdx index. 27 */ 28 static const char *explainIndexColumnName(Index *pIdx, int i){ 29 i = pIdx->aiColumn[i]; 30 if( i==XN_EXPR ) return "<expr>"; 31 if( i==XN_ROWID ) return "rowid"; 32 return pIdx->pTable->aCol[i].zCnName; 33 } 34 35 /* 36 ** This routine is a helper for explainIndexRange() below 37 ** 38 ** pStr holds the text of an expression that we are building up one term 39 ** at a time. This routine adds a new term to the end of the expression. 40 ** Terms are separated by AND so add the "AND" text for second and subsequent 41 ** terms only. 42 */ 43 static void explainAppendTerm( 44 StrAccum *pStr, /* The text expression being built */ 45 Index *pIdx, /* Index to read column names from */ 46 int nTerm, /* Number of terms */ 47 int iTerm, /* Zero-based index of first term. */ 48 int bAnd, /* Non-zero to append " AND " */ 49 const char *zOp /* Name of the operator */ 50 ){ 51 int i; 52 53 assert( nTerm>=1 ); 54 if( bAnd ) sqlite3_str_append(pStr, " AND ", 5); 55 56 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 57 for(i=0; i<nTerm; i++){ 58 if( i ) sqlite3_str_append(pStr, ",", 1); 59 sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i)); 60 } 61 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 62 63 sqlite3_str_append(pStr, zOp, 1); 64 65 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 66 for(i=0; i<nTerm; i++){ 67 if( i ) sqlite3_str_append(pStr, ",", 1); 68 sqlite3_str_append(pStr, "?", 1); 69 } 70 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 71 } 72 73 /* 74 ** Argument pLevel describes a strategy for scanning table pTab. This 75 ** function appends text to pStr that describes the subset of table 76 ** rows scanned by the strategy in the form of an SQL expression. 77 ** 78 ** For example, if the query: 79 ** 80 ** SELECT * FROM t1 WHERE a=1 AND b>2; 81 ** 82 ** is run and there is an index on (a, b), then this function returns a 83 ** string similar to: 84 ** 85 ** "a=? AND b>?" 86 */ 87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 88 Index *pIndex = pLoop->u.btree.pIndex; 89 u16 nEq = pLoop->u.btree.nEq; 90 u16 nSkip = pLoop->nSkip; 91 int i, j; 92 93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 94 sqlite3_str_append(pStr, " (", 2); 95 for(i=0; i<nEq; i++){ 96 const char *z = explainIndexColumnName(pIndex, i); 97 if( i ) sqlite3_str_append(pStr, " AND ", 5); 98 sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); 99 } 100 101 j = i; 102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); 104 i = 1; 105 } 106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); 108 } 109 sqlite3_str_append(pStr, ")", 1); 110 } 111 112 /* 113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 116 ** is added to the output to describe the table scan strategy in pLevel. 117 ** 118 ** If an OP_Explain opcode is added to the VM, its address is returned. 119 ** Otherwise, if no OP_Explain is coded, zero is returned. 120 */ 121 int sqlite3WhereExplainOneScan( 122 Parse *pParse, /* Parse context */ 123 SrcList *pTabList, /* Table list this loop refers to */ 124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 125 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 126 ){ 127 int ret = 0; 128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 129 if( sqlite3ParseToplevel(pParse)->explain==2 ) 130 #endif 131 { 132 SrcItem *pItem = &pTabList->a[pLevel->iFrom]; 133 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 134 sqlite3 *db = pParse->db; /* Database handle */ 135 int isSearch; /* True for a SEARCH. False for SCAN. */ 136 WhereLoop *pLoop; /* The controlling WhereLoop object */ 137 u32 flags; /* Flags that describe this loop */ 138 char *zMsg; /* Text to add to EQP output */ 139 StrAccum str; /* EQP output string */ 140 char zBuf[100]; /* Initial space for EQP output string */ 141 142 pLoop = pLevel->pWLoop; 143 flags = pLoop->wsFlags; 144 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; 145 146 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 147 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 148 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 149 150 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 151 str.printfFlags = SQLITE_PRINTF_INTERNAL; 152 sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem); 153 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 154 const char *zFmt = 0; 155 Index *pIdx; 156 157 assert( pLoop->u.btree.pIndex!=0 ); 158 pIdx = pLoop->u.btree.pIndex; 159 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 160 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 161 if( isSearch ){ 162 zFmt = "PRIMARY KEY"; 163 } 164 }else if( flags & WHERE_PARTIALIDX ){ 165 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 166 }else if( flags & WHERE_AUTO_INDEX ){ 167 zFmt = "AUTOMATIC COVERING INDEX"; 168 }else if( flags & WHERE_IDX_ONLY ){ 169 zFmt = "COVERING INDEX %s"; 170 }else{ 171 zFmt = "INDEX %s"; 172 } 173 if( zFmt ){ 174 sqlite3_str_append(&str, " USING ", 7); 175 sqlite3_str_appendf(&str, zFmt, pIdx->zName); 176 explainIndexRange(&str, pLoop); 177 } 178 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 179 char cRangeOp; 180 #if 0 /* Better output, but breaks many tests */ 181 const Table *pTab = pItem->pTab; 182 const char *zRowid = pTab->iPKey>=0 ? pTab->aCol[pTab->iPKey].zCnName: 183 "rowid"; 184 #else 185 const char *zRowid = "rowid"; 186 #endif 187 sqlite3_str_appendf(&str, " USING INTEGER PRIMARY KEY (%s", zRowid); 188 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 189 cRangeOp = '='; 190 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 191 sqlite3_str_appendf(&str, ">? AND %s", zRowid); 192 cRangeOp = '<'; 193 }else if( flags&WHERE_BTM_LIMIT ){ 194 cRangeOp = '>'; 195 }else{ 196 assert( flags&WHERE_TOP_LIMIT); 197 cRangeOp = '<'; 198 } 199 sqlite3_str_appendf(&str, "%c?)", cRangeOp); 200 } 201 #ifndef SQLITE_OMIT_VIRTUALTABLE 202 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 203 sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s", 204 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 205 } 206 #endif 207 if( pItem->fg.jointype & JT_LEFT ){ 208 sqlite3_str_appendf(&str, " LEFT-JOIN"); 209 } 210 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 211 if( pLoop->nOut>=10 ){ 212 sqlite3_str_appendf(&str, " (~%llu rows)", 213 sqlite3LogEstToInt(pLoop->nOut)); 214 }else{ 215 sqlite3_str_append(&str, " (~1 row)", 9); 216 } 217 #endif 218 zMsg = sqlite3StrAccumFinish(&str); 219 sqlite3ExplainBreakpoint("",zMsg); 220 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), 221 pParse->addrExplain, 0, zMsg,P4_DYNAMIC); 222 } 223 return ret; 224 } 225 226 /* 227 ** Add a single OP_Explain opcode that describes a Bloom filter. 228 ** 229 ** Or if not processing EXPLAIN QUERY PLAN and not in a SQLITE_DEBUG and/or 230 ** SQLITE_ENABLE_STMT_SCANSTATUS build, then OP_Explain opcodes are not 231 ** required and this routine is a no-op. 232 ** 233 ** If an OP_Explain opcode is added to the VM, its address is returned. 234 ** Otherwise, if no OP_Explain is coded, zero is returned. 235 */ 236 int sqlite3WhereExplainBloomFilter( 237 const Parse *pParse, /* Parse context */ 238 const WhereInfo *pWInfo, /* WHERE clause */ 239 const WhereLevel *pLevel /* Bloom filter on this level */ 240 ){ 241 int ret = 0; 242 SrcItem *pItem = &pWInfo->pTabList->a[pLevel->iFrom]; 243 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 244 sqlite3 *db = pParse->db; /* Database handle */ 245 char *zMsg; /* Text to add to EQP output */ 246 int i; /* Loop counter */ 247 WhereLoop *pLoop; /* The where loop */ 248 StrAccum str; /* EQP output string */ 249 char zBuf[100]; /* Initial space for EQP output string */ 250 251 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 252 str.printfFlags = SQLITE_PRINTF_INTERNAL; 253 sqlite3_str_appendf(&str, "BLOOM FILTER ON %S (", pItem); 254 pLoop = pLevel->pWLoop; 255 if( pLoop->wsFlags & WHERE_IPK ){ 256 const Table *pTab = pItem->pTab; 257 if( pTab->iPKey>=0 ){ 258 sqlite3_str_appendf(&str, "%s=?", pTab->aCol[pTab->iPKey].zCnName); 259 }else{ 260 sqlite3_str_appendf(&str, "rowid=?"); 261 } 262 }else{ 263 for(i=pLoop->nSkip; i<pLoop->u.btree.nEq; i++){ 264 const char *z = explainIndexColumnName(pLoop->u.btree.pIndex, i); 265 if( i>pLoop->nSkip ) sqlite3_str_append(&str, " AND ", 5); 266 sqlite3_str_appendf(&str, "%s=?", z); 267 } 268 } 269 sqlite3_str_append(&str, ")", 1); 270 zMsg = sqlite3StrAccumFinish(&str); 271 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), 272 pParse->addrExplain, 0, zMsg,P4_DYNAMIC); 273 return ret; 274 } 275 #endif /* SQLITE_OMIT_EXPLAIN */ 276 277 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 278 /* 279 ** Configure the VM passed as the first argument with an 280 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 281 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 282 ** clause that the scan reads data from. 283 ** 284 ** If argument addrExplain is not 0, it must be the address of an 285 ** OP_Explain instruction that describes the same loop. 286 */ 287 void sqlite3WhereAddScanStatus( 288 Vdbe *v, /* Vdbe to add scanstatus entry to */ 289 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 290 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 291 int addrExplain /* Address of OP_Explain (or 0) */ 292 ){ 293 const char *zObj = 0; 294 WhereLoop *pLoop = pLvl->pWLoop; 295 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 296 zObj = pLoop->u.btree.pIndex->zName; 297 }else{ 298 zObj = pSrclist->a[pLvl->iFrom].zName; 299 } 300 sqlite3VdbeScanStatus( 301 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 302 ); 303 } 304 #endif 305 306 307 /* 308 ** Disable a term in the WHERE clause. Except, do not disable the term 309 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 310 ** or USING clause of that join. 311 ** 312 ** Consider the term t2.z='ok' in the following queries: 313 ** 314 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 315 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 316 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 317 ** 318 ** The t2.z='ok' is disabled in the in (2) because it originates 319 ** in the ON clause. The term is disabled in (3) because it is not part 320 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 321 ** 322 ** Disabling a term causes that term to not be tested in the inner loop 323 ** of the join. Disabling is an optimization. When terms are satisfied 324 ** by indices, we disable them to prevent redundant tests in the inner 325 ** loop. We would get the correct results if nothing were ever disabled, 326 ** but joins might run a little slower. The trick is to disable as much 327 ** as we can without disabling too much. If we disabled in (1), we'd get 328 ** the wrong answer. See ticket #813. 329 ** 330 ** If all the children of a term are disabled, then that term is also 331 ** automatically disabled. In this way, terms get disabled if derived 332 ** virtual terms are tested first. For example: 333 ** 334 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 335 ** \___________/ \______/ \_____/ 336 ** parent child1 child2 337 ** 338 ** Only the parent term was in the original WHERE clause. The child1 339 ** and child2 terms were added by the LIKE optimization. If both of 340 ** the virtual child terms are valid, then testing of the parent can be 341 ** skipped. 342 ** 343 ** Usually the parent term is marked as TERM_CODED. But if the parent 344 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 345 ** The TERM_LIKECOND marking indicates that the term should be coded inside 346 ** a conditional such that is only evaluated on the second pass of a 347 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 348 */ 349 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 350 int nLoop = 0; 351 assert( pTerm!=0 ); 352 while( (pTerm->wtFlags & TERM_CODED)==0 353 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_OuterON)) 354 && (pLevel->notReady & pTerm->prereqAll)==0 355 ){ 356 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 357 pTerm->wtFlags |= TERM_LIKECOND; 358 }else{ 359 pTerm->wtFlags |= TERM_CODED; 360 } 361 #ifdef WHERETRACE_ENABLED 362 if( sqlite3WhereTrace & 0x20000 ){ 363 sqlite3DebugPrintf("DISABLE-"); 364 sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a))); 365 } 366 #endif 367 if( pTerm->iParent<0 ) break; 368 pTerm = &pTerm->pWC->a[pTerm->iParent]; 369 assert( pTerm!=0 ); 370 pTerm->nChild--; 371 if( pTerm->nChild!=0 ) break; 372 nLoop++; 373 } 374 } 375 376 /* 377 ** Code an OP_Affinity opcode to apply the column affinity string zAff 378 ** to the n registers starting at base. 379 ** 380 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which 381 ** are no-ops) at the beginning and end of zAff are ignored. If all entries 382 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated. 383 ** 384 ** This routine makes its own copy of zAff so that the caller is free 385 ** to modify zAff after this routine returns. 386 */ 387 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 388 Vdbe *v = pParse->pVdbe; 389 if( zAff==0 ){ 390 assert( pParse->db->mallocFailed ); 391 return; 392 } 393 assert( v!=0 ); 394 395 /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE 396 ** entries at the beginning and end of the affinity string. 397 */ 398 assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB ); 399 while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){ 400 n--; 401 base++; 402 zAff++; 403 } 404 while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){ 405 n--; 406 } 407 408 /* Code the OP_Affinity opcode if there is anything left to do. */ 409 if( n>0 ){ 410 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 411 } 412 } 413 414 /* 415 ** Expression pRight, which is the RHS of a comparison operation, is 416 ** either a vector of n elements or, if n==1, a scalar expression. 417 ** Before the comparison operation, affinity zAff is to be applied 418 ** to the pRight values. This function modifies characters within the 419 ** affinity string to SQLITE_AFF_BLOB if either: 420 ** 421 ** * the comparison will be performed with no affinity, or 422 ** * the affinity change in zAff is guaranteed not to change the value. 423 */ 424 static void updateRangeAffinityStr( 425 Expr *pRight, /* RHS of comparison */ 426 int n, /* Number of vector elements in comparison */ 427 char *zAff /* Affinity string to modify */ 428 ){ 429 int i; 430 for(i=0; i<n; i++){ 431 Expr *p = sqlite3VectorFieldSubexpr(pRight, i); 432 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB 433 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) 434 ){ 435 zAff[i] = SQLITE_AFF_BLOB; 436 } 437 } 438 } 439 440 441 /* 442 ** pX is an expression of the form: (vector) IN (SELECT ...) 443 ** In other words, it is a vector IN operator with a SELECT clause on the 444 ** LHS. But not all terms in the vector are indexable and the terms might 445 ** not be in the correct order for indexing. 446 ** 447 ** This routine makes a copy of the input pX expression and then adjusts 448 ** the vector on the LHS with corresponding changes to the SELECT so that 449 ** the vector contains only index terms and those terms are in the correct 450 ** order. The modified IN expression is returned. The caller is responsible 451 ** for deleting the returned expression. 452 ** 453 ** Example: 454 ** 455 ** CREATE TABLE t1(a,b,c,d,e,f); 456 ** CREATE INDEX t1x1 ON t1(e,c); 457 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2) 458 ** \_______________________________________/ 459 ** The pX expression 460 ** 461 ** Since only columns e and c can be used with the index, in that order, 462 ** the modified IN expression that is returned will be: 463 ** 464 ** (e,c) IN (SELECT z,x FROM t2) 465 ** 466 ** The reduced pX is different from the original (obviously) and thus is 467 ** only used for indexing, to improve performance. The original unaltered 468 ** IN expression must also be run on each output row for correctness. 469 */ 470 static Expr *removeUnindexableInClauseTerms( 471 Parse *pParse, /* The parsing context */ 472 int iEq, /* Look at loop terms starting here */ 473 WhereLoop *pLoop, /* The current loop */ 474 Expr *pX /* The IN expression to be reduced */ 475 ){ 476 sqlite3 *db = pParse->db; 477 Expr *pNew; 478 pNew = sqlite3ExprDup(db, pX, 0); 479 if( db->mallocFailed==0 ){ 480 ExprList *pOrigRhs; /* Original unmodified RHS */ 481 ExprList *pOrigLhs; /* Original unmodified LHS */ 482 ExprList *pRhs = 0; /* New RHS after modifications */ 483 ExprList *pLhs = 0; /* New LHS after mods */ 484 int i; /* Loop counter */ 485 Select *pSelect; /* Pointer to the SELECT on the RHS */ 486 487 assert( ExprUseXSelect(pNew) ); 488 pOrigRhs = pNew->x.pSelect->pEList; 489 assert( pNew->pLeft!=0 ); 490 assert( ExprUseXList(pNew->pLeft) ); 491 pOrigLhs = pNew->pLeft->x.pList; 492 for(i=iEq; i<pLoop->nLTerm; i++){ 493 if( pLoop->aLTerm[i]->pExpr==pX ){ 494 int iField; 495 assert( (pLoop->aLTerm[i]->eOperator & (WO_OR|WO_AND))==0 ); 496 iField = pLoop->aLTerm[i]->u.x.iField - 1; 497 if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */ 498 pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr); 499 pOrigRhs->a[iField].pExpr = 0; 500 assert( pOrigLhs->a[iField].pExpr!=0 ); 501 pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr); 502 pOrigLhs->a[iField].pExpr = 0; 503 } 504 } 505 sqlite3ExprListDelete(db, pOrigRhs); 506 sqlite3ExprListDelete(db, pOrigLhs); 507 pNew->pLeft->x.pList = pLhs; 508 pNew->x.pSelect->pEList = pRhs; 509 if( pLhs && pLhs->nExpr==1 ){ 510 /* Take care here not to generate a TK_VECTOR containing only a 511 ** single value. Since the parser never creates such a vector, some 512 ** of the subroutines do not handle this case. */ 513 Expr *p = pLhs->a[0].pExpr; 514 pLhs->a[0].pExpr = 0; 515 sqlite3ExprDelete(db, pNew->pLeft); 516 pNew->pLeft = p; 517 } 518 pSelect = pNew->x.pSelect; 519 if( pSelect->pOrderBy ){ 520 /* If the SELECT statement has an ORDER BY clause, zero the 521 ** iOrderByCol variables. These are set to non-zero when an 522 ** ORDER BY term exactly matches one of the terms of the 523 ** result-set. Since the result-set of the SELECT statement may 524 ** have been modified or reordered, these variables are no longer 525 ** set correctly. Since setting them is just an optimization, 526 ** it's easiest just to zero them here. */ 527 ExprList *pOrderBy = pSelect->pOrderBy; 528 for(i=0; i<pOrderBy->nExpr; i++){ 529 pOrderBy->a[i].u.x.iOrderByCol = 0; 530 } 531 } 532 533 #if 0 534 printf("For indexing, change the IN expr:\n"); 535 sqlite3TreeViewExpr(0, pX, 0); 536 printf("Into:\n"); 537 sqlite3TreeViewExpr(0, pNew, 0); 538 #endif 539 } 540 return pNew; 541 } 542 543 544 /* 545 ** Generate code for a single equality term of the WHERE clause. An equality 546 ** term can be either X=expr or X IN (...). pTerm is the term to be 547 ** coded. 548 ** 549 ** The current value for the constraint is left in a register, the index 550 ** of which is returned. An attempt is made store the result in iTarget but 551 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the 552 ** constraint is a TK_EQ or TK_IS, then the current value might be left in 553 ** some other register and it is the caller's responsibility to compensate. 554 ** 555 ** For a constraint of the form X=expr, the expression is evaluated in 556 ** straight-line code. For constraints of the form X IN (...) 557 ** this routine sets up a loop that will iterate over all values of X. 558 */ 559 static int codeEqualityTerm( 560 Parse *pParse, /* The parsing context */ 561 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 562 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 563 int iEq, /* Index of the equality term within this level */ 564 int bRev, /* True for reverse-order IN operations */ 565 int iTarget /* Attempt to leave results in this register */ 566 ){ 567 Expr *pX = pTerm->pExpr; 568 Vdbe *v = pParse->pVdbe; 569 int iReg; /* Register holding results */ 570 571 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); 572 assert( iTarget>0 ); 573 if( pX->op==TK_EQ || pX->op==TK_IS ){ 574 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 575 }else if( pX->op==TK_ISNULL ){ 576 iReg = iTarget; 577 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 578 #ifndef SQLITE_OMIT_SUBQUERY 579 }else{ 580 int eType = IN_INDEX_NOOP; 581 int iTab; 582 struct InLoop *pIn; 583 WhereLoop *pLoop = pLevel->pWLoop; 584 int i; 585 int nEq = 0; 586 int *aiMap = 0; 587 588 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 589 && pLoop->u.btree.pIndex!=0 590 && pLoop->u.btree.pIndex->aSortOrder[iEq] 591 ){ 592 testcase( iEq==0 ); 593 testcase( bRev ); 594 bRev = !bRev; 595 } 596 assert( pX->op==TK_IN ); 597 iReg = iTarget; 598 599 for(i=0; i<iEq; i++){ 600 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ 601 disableTerm(pLevel, pTerm); 602 return iTarget; 603 } 604 } 605 for(i=iEq;i<pLoop->nLTerm; i++){ 606 assert( pLoop->aLTerm[i]!=0 ); 607 if( pLoop->aLTerm[i]->pExpr==pX ) nEq++; 608 } 609 610 iTab = 0; 611 if( !ExprUseXSelect(pX) || pX->x.pSelect->pEList->nExpr==1 ){ 612 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab); 613 }else{ 614 Expr *pExpr = pTerm->pExpr; 615 if( pExpr->iTable==0 || !ExprHasProperty(pExpr, EP_Subrtn) ){ 616 sqlite3 *db = pParse->db; 617 pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX); 618 if( !db->mallocFailed ){ 619 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq); 620 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap,&iTab); 621 pExpr->iTable = iTab; 622 } 623 sqlite3ExprDelete(db, pX); 624 }else{ 625 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq); 626 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab); 627 } 628 pX = pExpr; 629 } 630 631 if( eType==IN_INDEX_INDEX_DESC ){ 632 testcase( bRev ); 633 bRev = !bRev; 634 } 635 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 636 VdbeCoverageIf(v, bRev); 637 VdbeCoverageIf(v, !bRev); 638 639 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 640 pLoop->wsFlags |= WHERE_IN_ABLE; 641 if( pLevel->u.in.nIn==0 ){ 642 pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 643 } 644 if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){ 645 pLoop->wsFlags |= WHERE_IN_EARLYOUT; 646 } 647 648 i = pLevel->u.in.nIn; 649 pLevel->u.in.nIn += nEq; 650 pLevel->u.in.aInLoop = 651 sqlite3WhereRealloc(pTerm->pWC->pWInfo, 652 pLevel->u.in.aInLoop, 653 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 654 pIn = pLevel->u.in.aInLoop; 655 if( pIn ){ 656 int iMap = 0; /* Index in aiMap[] */ 657 pIn += i; 658 for(i=iEq;i<pLoop->nLTerm; i++){ 659 if( pLoop->aLTerm[i]->pExpr==pX ){ 660 int iOut = iReg + i - iEq; 661 if( eType==IN_INDEX_ROWID ){ 662 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); 663 }else{ 664 int iCol = aiMap ? aiMap[iMap++] : 0; 665 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); 666 } 667 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); 668 if( i==iEq ){ 669 pIn->iCur = iTab; 670 pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next; 671 if( iEq>0 ){ 672 pIn->iBase = iReg - i; 673 pIn->nPrefix = i; 674 }else{ 675 pIn->nPrefix = 0; 676 } 677 }else{ 678 pIn->eEndLoopOp = OP_Noop; 679 } 680 pIn++; 681 } 682 } 683 testcase( iEq>0 684 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 685 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ); 686 if( iEq>0 687 && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0 688 ){ 689 sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq); 690 } 691 }else{ 692 pLevel->u.in.nIn = 0; 693 } 694 sqlite3DbFree(pParse->db, aiMap); 695 #endif 696 } 697 698 /* As an optimization, try to disable the WHERE clause term that is 699 ** driving the index as it will always be true. The correct answer is 700 ** obtained regardless, but we might get the answer with fewer CPU cycles 701 ** by omitting the term. 702 ** 703 ** But do not disable the term unless we are certain that the term is 704 ** not a transitive constraint. For an example of where that does not 705 ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04) 706 */ 707 if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0 708 || (pTerm->eOperator & WO_EQUIV)==0 709 ){ 710 disableTerm(pLevel, pTerm); 711 } 712 713 return iReg; 714 } 715 716 /* 717 ** Generate code that will evaluate all == and IN constraints for an 718 ** index scan. 719 ** 720 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 721 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 722 ** The index has as many as three equality constraints, but in this 723 ** example, the third "c" value is an inequality. So only two 724 ** constraints are coded. This routine will generate code to evaluate 725 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 726 ** in consecutive registers and the index of the first register is returned. 727 ** 728 ** In the example above nEq==2. But this subroutine works for any value 729 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 730 ** The only thing it does is allocate the pLevel->iMem memory cell and 731 ** compute the affinity string. 732 ** 733 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 734 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 735 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 736 ** occurs after the nEq quality constraints. 737 ** 738 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 739 ** the index of the first memory cell in that range. The code that 740 ** calls this routine will use that memory range to store keys for 741 ** start and termination conditions of the loop. 742 ** key value of the loop. If one or more IN operators appear, then 743 ** this routine allocates an additional nEq memory cells for internal 744 ** use. 745 ** 746 ** Before returning, *pzAff is set to point to a buffer containing a 747 ** copy of the column affinity string of the index allocated using 748 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 749 ** with equality constraints that use BLOB or NONE affinity are set to 750 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 751 ** 752 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 753 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 754 ** 755 ** In the example above, the index on t1(a) has TEXT affinity. But since 756 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 757 ** no conversion should be attempted before using a t2.b value as part of 758 ** a key to search the index. Hence the first byte in the returned affinity 759 ** string in this example would be set to SQLITE_AFF_BLOB. 760 */ 761 static int codeAllEqualityTerms( 762 Parse *pParse, /* Parsing context */ 763 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 764 int bRev, /* Reverse the order of IN operators */ 765 int nExtraReg, /* Number of extra registers to allocate */ 766 char **pzAff /* OUT: Set to point to affinity string */ 767 ){ 768 u16 nEq; /* The number of == or IN constraints to code */ 769 u16 nSkip; /* Number of left-most columns to skip */ 770 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 771 Index *pIdx; /* The index being used for this loop */ 772 WhereTerm *pTerm; /* A single constraint term */ 773 WhereLoop *pLoop; /* The WhereLoop object */ 774 int j; /* Loop counter */ 775 int regBase; /* Base register */ 776 int nReg; /* Number of registers to allocate */ 777 char *zAff; /* Affinity string to return */ 778 779 /* This module is only called on query plans that use an index. */ 780 pLoop = pLevel->pWLoop; 781 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 782 nEq = pLoop->u.btree.nEq; 783 nSkip = pLoop->nSkip; 784 pIdx = pLoop->u.btree.pIndex; 785 assert( pIdx!=0 ); 786 787 /* Figure out how many memory cells we will need then allocate them. 788 */ 789 regBase = pParse->nMem + 1; 790 nReg = pLoop->u.btree.nEq + nExtraReg; 791 pParse->nMem += nReg; 792 793 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 794 assert( zAff!=0 || pParse->db->mallocFailed ); 795 796 if( nSkip ){ 797 int iIdxCur = pLevel->iIdxCur; 798 sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1); 799 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 800 VdbeCoverageIf(v, bRev==0); 801 VdbeCoverageIf(v, bRev!=0); 802 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 803 j = sqlite3VdbeAddOp0(v, OP_Goto); 804 assert( pLevel->addrSkip==0 ); 805 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 806 iIdxCur, 0, regBase, nSkip); 807 VdbeCoverageIf(v, bRev==0); 808 VdbeCoverageIf(v, bRev!=0); 809 sqlite3VdbeJumpHere(v, j); 810 for(j=0; j<nSkip; j++){ 811 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 812 testcase( pIdx->aiColumn[j]==XN_EXPR ); 813 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 814 } 815 } 816 817 /* Evaluate the equality constraints 818 */ 819 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 820 for(j=nSkip; j<nEq; j++){ 821 int r1; 822 pTerm = pLoop->aLTerm[j]; 823 assert( pTerm!=0 ); 824 /* The following testcase is true for indices with redundant columns. 825 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 826 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 827 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 828 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 829 if( r1!=regBase+j ){ 830 if( nReg==1 ){ 831 sqlite3ReleaseTempReg(pParse, regBase); 832 regBase = r1; 833 }else{ 834 sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j); 835 } 836 } 837 } 838 for(j=nSkip; j<nEq; j++){ 839 pTerm = pLoop->aLTerm[j]; 840 if( pTerm->eOperator & WO_IN ){ 841 if( pTerm->pExpr->flags & EP_xIsSelect ){ 842 /* No affinity ever needs to be (or should be) applied to a value 843 ** from the RHS of an "? IN (SELECT ...)" expression. The 844 ** sqlite3FindInIndex() routine has already ensured that the 845 ** affinity of the comparison has been applied to the value. */ 846 if( zAff ) zAff[j] = SQLITE_AFF_BLOB; 847 } 848 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ 849 Expr *pRight = pTerm->pExpr->pRight; 850 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 851 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 852 VdbeCoverage(v); 853 } 854 if( pParse->nErr==0 ){ 855 assert( pParse->db->mallocFailed==0 ); 856 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 857 zAff[j] = SQLITE_AFF_BLOB; 858 } 859 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 860 zAff[j] = SQLITE_AFF_BLOB; 861 } 862 } 863 } 864 } 865 *pzAff = zAff; 866 return regBase; 867 } 868 869 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 870 /* 871 ** If the most recently coded instruction is a constant range constraint 872 ** (a string literal) that originated from the LIKE optimization, then 873 ** set P3 and P5 on the OP_String opcode so that the string will be cast 874 ** to a BLOB at appropriate times. 875 ** 876 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 877 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 878 ** scan loop run twice, once for strings and a second time for BLOBs. 879 ** The OP_String opcodes on the second pass convert the upper and lower 880 ** bound string constants to blobs. This routine makes the necessary changes 881 ** to the OP_String opcodes for that to happen. 882 ** 883 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 884 ** only the one pass through the string space is required, so this routine 885 ** becomes a no-op. 886 */ 887 static void whereLikeOptimizationStringFixup( 888 Vdbe *v, /* prepared statement under construction */ 889 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 890 WhereTerm *pTerm /* The upper or lower bound just coded */ 891 ){ 892 if( pTerm->wtFlags & TERM_LIKEOPT ){ 893 VdbeOp *pOp; 894 assert( pLevel->iLikeRepCntr>0 ); 895 pOp = sqlite3VdbeGetOp(v, -1); 896 assert( pOp!=0 ); 897 assert( pOp->opcode==OP_String8 898 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 899 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ 900 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ 901 } 902 } 903 #else 904 # define whereLikeOptimizationStringFixup(A,B,C) 905 #endif 906 907 #ifdef SQLITE_ENABLE_CURSOR_HINTS 908 /* 909 ** Information is passed from codeCursorHint() down to individual nodes of 910 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 911 ** structure. 912 */ 913 struct CCurHint { 914 int iTabCur; /* Cursor for the main table */ 915 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 916 Index *pIdx; /* The index used to access the table */ 917 }; 918 919 /* 920 ** This function is called for every node of an expression that is a candidate 921 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 922 ** the table CCurHint.iTabCur, verify that the same column can be 923 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 924 */ 925 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 926 struct CCurHint *pHint = pWalker->u.pCCurHint; 927 assert( pHint->pIdx!=0 ); 928 if( pExpr->op==TK_COLUMN 929 && pExpr->iTable==pHint->iTabCur 930 && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0 931 ){ 932 pWalker->eCode = 1; 933 } 934 return WRC_Continue; 935 } 936 937 /* 938 ** Test whether or not expression pExpr, which was part of a WHERE clause, 939 ** should be included in the cursor-hint for a table that is on the rhs 940 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the 941 ** expression is not suitable. 942 ** 943 ** An expression is unsuitable if it might evaluate to non NULL even if 944 ** a TK_COLUMN node that does affect the value of the expression is set 945 ** to NULL. For example: 946 ** 947 ** col IS NULL 948 ** col IS NOT NULL 949 ** coalesce(col, 1) 950 ** CASE WHEN col THEN 0 ELSE 1 END 951 */ 952 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ 953 if( pExpr->op==TK_IS 954 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT 955 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE 956 ){ 957 pWalker->eCode = 1; 958 }else if( pExpr->op==TK_FUNCTION ){ 959 int d1; 960 char d2[4]; 961 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ 962 pWalker->eCode = 1; 963 } 964 } 965 966 return WRC_Continue; 967 } 968 969 970 /* 971 ** This function is called on every node of an expression tree used as an 972 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 973 ** that accesses any table other than the one identified by 974 ** CCurHint.iTabCur, then do the following: 975 ** 976 ** 1) allocate a register and code an OP_Column instruction to read 977 ** the specified column into the new register, and 978 ** 979 ** 2) transform the expression node to a TK_REGISTER node that reads 980 ** from the newly populated register. 981 ** 982 ** Also, if the node is a TK_COLUMN that does access the table idenified 983 ** by pCCurHint.iTabCur, and an index is being used (which we will 984 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 985 ** an access of the index rather than the original table. 986 */ 987 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 988 int rc = WRC_Continue; 989 struct CCurHint *pHint = pWalker->u.pCCurHint; 990 if( pExpr->op==TK_COLUMN ){ 991 if( pExpr->iTable!=pHint->iTabCur ){ 992 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 993 sqlite3ExprCode(pWalker->pParse, pExpr, reg); 994 pExpr->op = TK_REGISTER; 995 pExpr->iTable = reg; 996 }else if( pHint->pIdx!=0 ){ 997 pExpr->iTable = pHint->iIdxCur; 998 pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn); 999 assert( pExpr->iColumn>=0 ); 1000 } 1001 }else if( pExpr->op==TK_AGG_FUNCTION ){ 1002 /* An aggregate function in the WHERE clause of a query means this must 1003 ** be a correlated sub-query, and expression pExpr is an aggregate from 1004 ** the parent context. Do not walk the function arguments in this case. 1005 ** 1006 ** todo: It should be possible to replace this node with a TK_REGISTER 1007 ** expression, as the result of the expression must be stored in a 1008 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 1009 rc = WRC_Prune; 1010 } 1011 return rc; 1012 } 1013 1014 /* 1015 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 1016 */ 1017 static void codeCursorHint( 1018 SrcItem *pTabItem, /* FROM clause item */ 1019 WhereInfo *pWInfo, /* The where clause */ 1020 WhereLevel *pLevel, /* Which loop to provide hints for */ 1021 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 1022 ){ 1023 Parse *pParse = pWInfo->pParse; 1024 sqlite3 *db = pParse->db; 1025 Vdbe *v = pParse->pVdbe; 1026 Expr *pExpr = 0; 1027 WhereLoop *pLoop = pLevel->pWLoop; 1028 int iCur; 1029 WhereClause *pWC; 1030 WhereTerm *pTerm; 1031 int i, j; 1032 struct CCurHint sHint; 1033 Walker sWalker; 1034 1035 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 1036 iCur = pLevel->iTabCur; 1037 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 1038 sHint.iTabCur = iCur; 1039 sHint.iIdxCur = pLevel->iIdxCur; 1040 sHint.pIdx = pLoop->u.btree.pIndex; 1041 memset(&sWalker, 0, sizeof(sWalker)); 1042 sWalker.pParse = pParse; 1043 sWalker.u.pCCurHint = &sHint; 1044 pWC = &pWInfo->sWC; 1045 for(i=0; i<pWC->nBase; i++){ 1046 pTerm = &pWC->a[i]; 1047 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1048 if( pTerm->prereqAll & pLevel->notReady ) continue; 1049 1050 /* Any terms specified as part of the ON(...) clause for any LEFT 1051 ** JOIN for which the current table is not the rhs are omitted 1052 ** from the cursor-hint. 1053 ** 1054 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms 1055 ** that were specified as part of the WHERE clause must be excluded. 1056 ** This is to address the following: 1057 ** 1058 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; 1059 ** 1060 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its 1061 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is 1062 ** pushed down to the cursor, this row is filtered out, causing 1063 ** SQLite to synthesize a row of NULL values. Which does match the 1064 ** WHERE clause, and so the query returns a row. Which is incorrect. 1065 ** 1066 ** For the same reason, WHERE terms such as: 1067 ** 1068 ** WHERE 1 = (t2.c IS NULL) 1069 ** 1070 ** are also excluded. See codeCursorHintIsOrFunction() for details. 1071 */ 1072 if( pTabItem->fg.jointype & JT_LEFT ){ 1073 Expr *pExpr = pTerm->pExpr; 1074 if( !ExprHasProperty(pExpr, EP_OuterON) 1075 || pExpr->w.iJoin!=pTabItem->iCursor 1076 ){ 1077 sWalker.eCode = 0; 1078 sWalker.xExprCallback = codeCursorHintIsOrFunction; 1079 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 1080 if( sWalker.eCode ) continue; 1081 } 1082 }else{ 1083 if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) continue; 1084 } 1085 1086 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 1087 ** the cursor. These terms are not needed as hints for a pure range 1088 ** scan (that has no == terms) so omit them. */ 1089 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 1090 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 1091 if( j<pLoop->nLTerm ) continue; 1092 } 1093 1094 /* No subqueries or non-deterministic functions allowed */ 1095 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 1096 1097 /* For an index scan, make sure referenced columns are actually in 1098 ** the index. */ 1099 if( sHint.pIdx!=0 ){ 1100 sWalker.eCode = 0; 1101 sWalker.xExprCallback = codeCursorHintCheckExpr; 1102 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 1103 if( sWalker.eCode ) continue; 1104 } 1105 1106 /* If we survive all prior tests, that means this term is worth hinting */ 1107 pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 1108 } 1109 if( pExpr!=0 ){ 1110 sWalker.xExprCallback = codeCursorHintFixExpr; 1111 sqlite3WalkExpr(&sWalker, pExpr); 1112 sqlite3VdbeAddOp4(v, OP_CursorHint, 1113 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 1114 (const char*)pExpr, P4_EXPR); 1115 } 1116 } 1117 #else 1118 # define codeCursorHint(A,B,C,D) /* No-op */ 1119 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 1120 1121 /* 1122 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains 1123 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This 1124 ** function generates code to do a deferred seek of cursor iCur to the 1125 ** rowid stored in register iRowid. 1126 ** 1127 ** Normally, this is just: 1128 ** 1129 ** OP_DeferredSeek $iCur $iRowid 1130 ** 1131 ** Which causes a seek on $iCur to the row with rowid $iRowid. 1132 ** 1133 ** However, if the scan currently being coded is a branch of an OR-loop and 1134 ** the statement currently being coded is a SELECT, then additional information 1135 ** is added that might allow OP_Column to omit the seek and instead do its 1136 ** lookup on the index, thus avoiding an expensive seek operation. To 1137 ** enable this optimization, the P3 of OP_DeferredSeek is set to iIdxCur 1138 ** and P4 is set to an array of integers containing one entry for each column 1139 ** in the table. For each table column, if the column is the i'th 1140 ** column of the index, then the corresponding array entry is set to (i+1). 1141 ** If the column does not appear in the index at all, the array entry is set 1142 ** to 0. The OP_Column opcode can check this array to see if the column it 1143 ** wants is in the index and if it is, it will substitute the index cursor 1144 ** and column number and continue with those new values, rather than seeking 1145 ** the table cursor. 1146 */ 1147 static void codeDeferredSeek( 1148 WhereInfo *pWInfo, /* Where clause context */ 1149 Index *pIdx, /* Index scan is using */ 1150 int iCur, /* Cursor for IPK b-tree */ 1151 int iIdxCur /* Index cursor */ 1152 ){ 1153 Parse *pParse = pWInfo->pParse; /* Parse context */ 1154 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ 1155 1156 assert( iIdxCur>0 ); 1157 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); 1158 1159 pWInfo->bDeferredSeek = 1; 1160 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur); 1161 if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN)) 1162 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) 1163 ){ 1164 int i; 1165 Table *pTab = pIdx->pTable; 1166 u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1)); 1167 if( ai ){ 1168 ai[0] = pTab->nCol; 1169 for(i=0; i<pIdx->nColumn-1; i++){ 1170 int x1, x2; 1171 assert( pIdx->aiColumn[i]<pTab->nCol ); 1172 x1 = pIdx->aiColumn[i]; 1173 x2 = sqlite3TableColumnToStorage(pTab, x1); 1174 testcase( x1!=x2 ); 1175 if( x1>=0 ) ai[x2+1] = i+1; 1176 } 1177 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); 1178 } 1179 } 1180 } 1181 1182 /* 1183 ** If the expression passed as the second argument is a vector, generate 1184 ** code to write the first nReg elements of the vector into an array 1185 ** of registers starting with iReg. 1186 ** 1187 ** If the expression is not a vector, then nReg must be passed 1. In 1188 ** this case, generate code to evaluate the expression and leave the 1189 ** result in register iReg. 1190 */ 1191 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ 1192 assert( nReg>0 ); 1193 if( p && sqlite3ExprIsVector(p) ){ 1194 #ifndef SQLITE_OMIT_SUBQUERY 1195 if( ExprUseXSelect(p) ){ 1196 Vdbe *v = pParse->pVdbe; 1197 int iSelect; 1198 assert( p->op==TK_SELECT ); 1199 iSelect = sqlite3CodeSubselect(pParse, p); 1200 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); 1201 }else 1202 #endif 1203 { 1204 int i; 1205 const ExprList *pList; 1206 assert( ExprUseXList(p) ); 1207 pList = p->x.pList; 1208 assert( nReg<=pList->nExpr ); 1209 for(i=0; i<nReg; i++){ 1210 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i); 1211 } 1212 } 1213 }else{ 1214 assert( nReg==1 || pParse->nErr ); 1215 sqlite3ExprCode(pParse, p, iReg); 1216 } 1217 } 1218 1219 /* An instance of the IdxExprTrans object carries information about a 1220 ** mapping from an expression on table columns into a column in an index 1221 ** down through the Walker. 1222 */ 1223 typedef struct IdxExprTrans { 1224 Expr *pIdxExpr; /* The index expression */ 1225 int iTabCur; /* The cursor of the corresponding table */ 1226 int iIdxCur; /* The cursor for the index */ 1227 int iIdxCol; /* The column for the index */ 1228 int iTabCol; /* The column for the table */ 1229 WhereInfo *pWInfo; /* Complete WHERE clause information */ 1230 sqlite3 *db; /* Database connection (for malloc()) */ 1231 } IdxExprTrans; 1232 1233 /* 1234 ** Preserve pExpr on the WhereETrans list of the WhereInfo. 1235 */ 1236 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){ 1237 WhereExprMod *pNew; 1238 pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew)); 1239 if( pNew==0 ) return; 1240 pNew->pNext = pTrans->pWInfo->pExprMods; 1241 pTrans->pWInfo->pExprMods = pNew; 1242 pNew->pExpr = pExpr; 1243 memcpy(&pNew->orig, pExpr, sizeof(*pExpr)); 1244 } 1245 1246 /* The walker node callback used to transform matching expressions into 1247 ** a reference to an index column for an index on an expression. 1248 ** 1249 ** If pExpr matches, then transform it into a reference to the index column 1250 ** that contains the value of pExpr. 1251 */ 1252 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){ 1253 IdxExprTrans *pX = p->u.pIdxTrans; 1254 if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){ 1255 pExpr = sqlite3ExprSkipCollate(pExpr); 1256 preserveExpr(pX, pExpr); 1257 pExpr->affExpr = sqlite3ExprAffinity(pExpr); 1258 pExpr->op = TK_COLUMN; 1259 pExpr->iTable = pX->iIdxCur; 1260 pExpr->iColumn = pX->iIdxCol; 1261 testcase( ExprHasProperty(pExpr, EP_Unlikely) ); 1262 ExprClearProperty(pExpr, EP_Skip|EP_Unlikely|EP_WinFunc|EP_Subrtn); 1263 pExpr->y.pTab = 0; 1264 return WRC_Prune; 1265 }else{ 1266 return WRC_Continue; 1267 } 1268 } 1269 1270 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1271 /* A walker node callback that translates a column reference to a table 1272 ** into a corresponding column reference of an index. 1273 */ 1274 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){ 1275 if( pExpr->op==TK_COLUMN ){ 1276 IdxExprTrans *pX = p->u.pIdxTrans; 1277 if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){ 1278 assert( ExprUseYTab(pExpr) && pExpr->y.pTab!=0 ); 1279 preserveExpr(pX, pExpr); 1280 pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn); 1281 pExpr->iTable = pX->iIdxCur; 1282 pExpr->iColumn = pX->iIdxCol; 1283 pExpr->y.pTab = 0; 1284 } 1285 } 1286 return WRC_Continue; 1287 } 1288 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1289 1290 /* 1291 ** For an indexes on expression X, locate every instance of expression X 1292 ** in pExpr and change that subexpression into a reference to the appropriate 1293 ** column of the index. 1294 ** 1295 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in 1296 ** the table into references to the corresponding (stored) column of the 1297 ** index. 1298 */ 1299 static void whereIndexExprTrans( 1300 Index *pIdx, /* The Index */ 1301 int iTabCur, /* Cursor of the table that is being indexed */ 1302 int iIdxCur, /* Cursor of the index itself */ 1303 WhereInfo *pWInfo /* Transform expressions in this WHERE clause */ 1304 ){ 1305 int iIdxCol; /* Column number of the index */ 1306 ExprList *aColExpr; /* Expressions that are indexed */ 1307 Table *pTab; 1308 Walker w; 1309 IdxExprTrans x; 1310 aColExpr = pIdx->aColExpr; 1311 if( aColExpr==0 && !pIdx->bHasVCol ){ 1312 /* The index does not reference any expressions or virtual columns 1313 ** so no translations are needed. */ 1314 return; 1315 } 1316 pTab = pIdx->pTable; 1317 memset(&w, 0, sizeof(w)); 1318 w.u.pIdxTrans = &x; 1319 x.iTabCur = iTabCur; 1320 x.iIdxCur = iIdxCur; 1321 x.pWInfo = pWInfo; 1322 x.db = pWInfo->pParse->db; 1323 for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){ 1324 i16 iRef = pIdx->aiColumn[iIdxCol]; 1325 if( iRef==XN_EXPR ){ 1326 assert( aColExpr!=0 && aColExpr->a[iIdxCol].pExpr!=0 ); 1327 x.pIdxExpr = aColExpr->a[iIdxCol].pExpr; 1328 if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue; 1329 w.xExprCallback = whereIndexExprTransNode; 1330 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1331 }else if( iRef>=0 1332 && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0 1333 && ((pTab->aCol[iRef].colFlags & COLFLAG_HASCOLL)==0 1334 || sqlite3StrICmp(sqlite3ColumnColl(&pTab->aCol[iRef]), 1335 sqlite3StrBINARY)==0) 1336 ){ 1337 /* Check to see if there are direct references to generated columns 1338 ** that are contained in the index. Pulling the generated column 1339 ** out of the index is an optimization only - the main table is always 1340 ** available if the index cannot be used. To avoid unnecessary 1341 ** complication, omit this optimization if the collating sequence for 1342 ** the column is non-standard */ 1343 x.iTabCol = iRef; 1344 w.xExprCallback = whereIndexExprTransColumn; 1345 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1346 }else{ 1347 continue; 1348 } 1349 x.iIdxCol = iIdxCol; 1350 sqlite3WalkExpr(&w, pWInfo->pWhere); 1351 sqlite3WalkExprList(&w, pWInfo->pOrderBy); 1352 sqlite3WalkExprList(&w, pWInfo->pResultSet); 1353 } 1354 } 1355 1356 /* 1357 ** The pTruth expression is always true because it is the WHERE clause 1358 ** a partial index that is driving a query loop. Look through all of the 1359 ** WHERE clause terms on the query, and if any of those terms must be 1360 ** true because pTruth is true, then mark those WHERE clause terms as 1361 ** coded. 1362 */ 1363 static void whereApplyPartialIndexConstraints( 1364 Expr *pTruth, 1365 int iTabCur, 1366 WhereClause *pWC 1367 ){ 1368 int i; 1369 WhereTerm *pTerm; 1370 while( pTruth->op==TK_AND ){ 1371 whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC); 1372 pTruth = pTruth->pRight; 1373 } 1374 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1375 Expr *pExpr; 1376 if( pTerm->wtFlags & TERM_CODED ) continue; 1377 pExpr = pTerm->pExpr; 1378 if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){ 1379 pTerm->wtFlags |= TERM_CODED; 1380 } 1381 } 1382 } 1383 1384 /* 1385 ** This routine is called right after An OP_Filter has been generated and 1386 ** before the corresponding index search has been performed. This routine 1387 ** checks to see if there are additional Bloom filters in inner loops that 1388 ** can be checked prior to doing the index lookup. If there are available 1389 ** inner-loop Bloom filters, then evaluate those filters now, before the 1390 ** index lookup. The idea is that a Bloom filter check is way faster than 1391 ** an index lookup, and the Bloom filter might return false, meaning that 1392 ** the index lookup can be skipped. 1393 ** 1394 ** We know that an inner loop uses a Bloom filter because it has the 1395 ** WhereLevel.regFilter set. If an inner-loop Bloom filter is checked, 1396 ** then clear the WhereLevel.regFilter value to prevent the Bloom filter 1397 ** from being checked a second time when the inner loop is evaluated. 1398 */ 1399 static SQLITE_NOINLINE void filterPullDown( 1400 Parse *pParse, /* Parsing context */ 1401 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1402 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1403 int addrNxt, /* Jump here to bypass inner loops */ 1404 Bitmask notReady /* Loops that are not ready */ 1405 ){ 1406 while( ++iLevel < pWInfo->nLevel ){ 1407 WhereLevel *pLevel = &pWInfo->a[iLevel]; 1408 WhereLoop *pLoop = pLevel->pWLoop; 1409 if( pLevel->regFilter==0 ) continue; 1410 if( pLevel->pWLoop->nSkip ) continue; 1411 /* ,--- Because sqlite3ConstructBloomFilter() has will not have set 1412 ** vvvvv--' pLevel->regFilter if this were true. */ 1413 if( NEVER(pLoop->prereq & notReady) ) continue; 1414 assert( pLevel->addrBrk==0 ); 1415 pLevel->addrBrk = addrNxt; 1416 if( pLoop->wsFlags & WHERE_IPK ){ 1417 WhereTerm *pTerm = pLoop->aLTerm[0]; 1418 int regRowid; 1419 assert( pTerm!=0 ); 1420 assert( pTerm->pExpr!=0 ); 1421 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1422 regRowid = sqlite3GetTempReg(pParse); 1423 regRowid = codeEqualityTerm(pParse, pTerm, pLevel, 0, 0, regRowid); 1424 sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter, 1425 addrNxt, regRowid, 1); 1426 VdbeCoverage(pParse->pVdbe); 1427 }else{ 1428 u16 nEq = pLoop->u.btree.nEq; 1429 int r1; 1430 char *zStartAff; 1431 1432 assert( pLoop->wsFlags & WHERE_INDEXED ); 1433 assert( (pLoop->wsFlags & WHERE_COLUMN_IN)==0 ); 1434 r1 = codeAllEqualityTerms(pParse,pLevel,0,0,&zStartAff); 1435 codeApplyAffinity(pParse, r1, nEq, zStartAff); 1436 sqlite3DbFree(pParse->db, zStartAff); 1437 sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter, 1438 addrNxt, r1, nEq); 1439 VdbeCoverage(pParse->pVdbe); 1440 } 1441 pLevel->regFilter = 0; 1442 pLevel->addrBrk = 0; 1443 } 1444 } 1445 1446 /* 1447 ** Generate code for the start of the iLevel-th loop in the WHERE clause 1448 ** implementation described by pWInfo. 1449 */ 1450 Bitmask sqlite3WhereCodeOneLoopStart( 1451 Parse *pParse, /* Parsing context */ 1452 Vdbe *v, /* Prepared statement under construction */ 1453 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1454 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1455 WhereLevel *pLevel, /* The current level pointer */ 1456 Bitmask notReady /* Which tables are currently available */ 1457 ){ 1458 int j, k; /* Loop counters */ 1459 int iCur; /* The VDBE cursor for the table */ 1460 int addrNxt; /* Where to jump to continue with the next IN case */ 1461 int bRev; /* True if we need to scan in reverse order */ 1462 WhereLoop *pLoop; /* The WhereLoop object being coded */ 1463 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 1464 WhereTerm *pTerm; /* A WHERE clause term */ 1465 sqlite3 *db; /* Database connection */ 1466 SrcItem *pTabItem; /* FROM clause term being coded */ 1467 int addrBrk; /* Jump here to break out of the loop */ 1468 int addrHalt; /* addrBrk for the outermost loop */ 1469 int addrCont; /* Jump here to continue with next cycle */ 1470 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 1471 int iReleaseReg = 0; /* Temp register to free before returning */ 1472 Index *pIdx = 0; /* Index used by loop (if any) */ 1473 int iLoop; /* Iteration of constraint generator loop */ 1474 1475 pWC = &pWInfo->sWC; 1476 db = pParse->db; 1477 pLoop = pLevel->pWLoop; 1478 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1479 iCur = pTabItem->iCursor; 1480 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 1481 bRev = (pWInfo->revMask>>iLevel)&1; 1482 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 1483 #if WHERETRACE_ENABLED /* 0x20800 */ 1484 if( sqlite3WhereTrace & 0x800 ){ 1485 sqlite3DebugPrintf("Coding level %d of %d: notReady=%llx iFrom=%d\n", 1486 iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom); 1487 sqlite3WhereLoopPrint(pLoop, pWC); 1488 } 1489 if( sqlite3WhereTrace & 0x20000 ){ 1490 if( iLevel==0 ){ 1491 sqlite3DebugPrintf("WHERE clause being coded:\n"); 1492 sqlite3TreeViewExpr(0, pWInfo->pWhere, 0); 1493 } 1494 sqlite3DebugPrintf("All WHERE-clause terms before coding:\n"); 1495 sqlite3WhereClausePrint(pWC); 1496 } 1497 #endif 1498 1499 /* Create labels for the "break" and "continue" instructions 1500 ** for the current loop. Jump to addrBrk to break out of a loop. 1501 ** Jump to cont to go immediately to the next iteration of the 1502 ** loop. 1503 ** 1504 ** When there is an IN operator, we also have a "addrNxt" label that 1505 ** means to continue with the next IN value combination. When 1506 ** there are no IN operators in the constraints, the "addrNxt" label 1507 ** is the same as "addrBrk". 1508 */ 1509 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 1510 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse); 1511 1512 /* If this is the right table of a LEFT OUTER JOIN, allocate and 1513 ** initialize a memory cell that records if this table matches any 1514 ** row of the left table of the join. 1515 */ 1516 assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN)) 1517 || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0 1518 ); 1519 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 1520 pLevel->iLeftJoin = ++pParse->nMem; 1521 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 1522 VdbeComment((v, "init LEFT JOIN no-match flag")); 1523 } 1524 1525 /* Compute a safe address to jump to if we discover that the table for 1526 ** this loop is empty and can never contribute content. */ 1527 for(j=iLevel; j>0; j--){ 1528 if( pWInfo->a[j].iLeftJoin ) break; 1529 if( pWInfo->a[j].pRJ ) break; 1530 } 1531 addrHalt = pWInfo->a[j].addrBrk; 1532 1533 /* Special case of a FROM clause subquery implemented as a co-routine */ 1534 if( pTabItem->fg.viaCoroutine ){ 1535 int regYield = pTabItem->regReturn; 1536 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 1537 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 1538 VdbeCoverage(v); 1539 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 1540 pLevel->op = OP_Goto; 1541 }else 1542 1543 #ifndef SQLITE_OMIT_VIRTUALTABLE 1544 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 1545 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 1546 ** to access the data. 1547 */ 1548 int iReg; /* P3 Value for OP_VFilter */ 1549 int addrNotFound; 1550 int nConstraint = pLoop->nLTerm; 1551 1552 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 1553 addrNotFound = pLevel->addrBrk; 1554 for(j=0; j<nConstraint; j++){ 1555 int iTarget = iReg+j+2; 1556 pTerm = pLoop->aLTerm[j]; 1557 if( NEVER(pTerm==0) ) continue; 1558 if( pTerm->eOperator & WO_IN ){ 1559 if( SMASKBIT32(j) & pLoop->u.vtab.mHandleIn ){ 1560 int iTab = pParse->nTab++; 1561 int iCache = ++pParse->nMem; 1562 sqlite3CodeRhsOfIN(pParse, pTerm->pExpr, iTab); 1563 sqlite3VdbeAddOp3(v, OP_VInitIn, iTab, iTarget, iCache); 1564 }else{ 1565 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 1566 addrNotFound = pLevel->addrNxt; 1567 } 1568 }else{ 1569 Expr *pRight = pTerm->pExpr->pRight; 1570 codeExprOrVector(pParse, pRight, iTarget, 1); 1571 if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET 1572 && pLoop->u.vtab.bOmitOffset 1573 ){ 1574 assert( pTerm->eOperator==WO_AUX ); 1575 assert( pWInfo->pLimit!=0 ); 1576 assert( pWInfo->pLimit->iOffset>0 ); 1577 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWInfo->pLimit->iOffset); 1578 VdbeComment((v,"Zero OFFSET counter")); 1579 } 1580 } 1581 } 1582 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 1583 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 1584 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 1585 pLoop->u.vtab.idxStr, 1586 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); 1587 VdbeCoverage(v); 1588 pLoop->u.vtab.needFree = 0; 1589 /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed 1590 ** the u.vtab.idxStr. NULL it out to prevent a use-after-free */ 1591 if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0; 1592 pLevel->p1 = iCur; 1593 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 1594 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1595 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 1596 1597 for(j=0; j<nConstraint; j++){ 1598 pTerm = pLoop->aLTerm[j]; 1599 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ 1600 disableTerm(pLevel, pTerm); 1601 continue; 1602 } 1603 if( (pTerm->eOperator & WO_IN)!=0 1604 && (SMASKBIT32(j) & pLoop->u.vtab.mHandleIn)==0 1605 && !db->mallocFailed 1606 ){ 1607 Expr *pCompare; /* The comparison operator */ 1608 Expr *pRight; /* RHS of the comparison */ 1609 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ 1610 int iIn; /* IN loop corresponding to the j-th constraint */ 1611 1612 /* Reload the constraint value into reg[iReg+j+2]. The same value 1613 ** was loaded into the same register prior to the OP_VFilter, but 1614 ** the xFilter implementation might have changed the datatype or 1615 ** encoding of the value in the register, so it *must* be reloaded. 1616 */ 1617 for(iIn=0; ALWAYS(iIn<pLevel->u.in.nIn); iIn++){ 1618 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop); 1619 if( (pOp->opcode==OP_Column && pOp->p3==iReg+j+2) 1620 || (pOp->opcode==OP_Rowid && pOp->p2==iReg+j+2) 1621 ){ 1622 testcase( pOp->opcode==OP_Rowid ); 1623 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); 1624 break; 1625 } 1626 } 1627 1628 /* Generate code that will continue to the next row if 1629 ** the IN constraint is not satisfied 1630 */ 1631 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); 1632 if( !db->mallocFailed ){ 1633 int iFld = pTerm->u.x.iField; 1634 Expr *pLeft = pTerm->pExpr->pLeft; 1635 assert( pLeft!=0 ); 1636 if( iFld>0 ){ 1637 assert( pLeft->op==TK_VECTOR ); 1638 assert( ExprUseXList(pLeft) ); 1639 assert( iFld<=pLeft->x.pList->nExpr ); 1640 pCompare->pLeft = pLeft->x.pList->a[iFld-1].pExpr; 1641 }else{ 1642 pCompare->pLeft = pLeft; 1643 } 1644 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); 1645 if( pRight ){ 1646 pRight->iTable = iReg+j+2; 1647 sqlite3ExprIfFalse( 1648 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL 1649 ); 1650 } 1651 pCompare->pLeft = 0; 1652 } 1653 sqlite3ExprDelete(db, pCompare); 1654 } 1655 } 1656 1657 /* These registers need to be preserved in case there is an IN operator 1658 ** loop. So we could deallocate the registers here (and potentially 1659 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems 1660 ** simpler and safer to simply not reuse the registers. 1661 ** 1662 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 1663 */ 1664 }else 1665 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1666 1667 if( (pLoop->wsFlags & WHERE_IPK)!=0 1668 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 1669 ){ 1670 /* Case 2: We can directly reference a single row using an 1671 ** equality comparison against the ROWID field. Or 1672 ** we reference multiple rows using a "rowid IN (...)" 1673 ** construct. 1674 */ 1675 assert( pLoop->u.btree.nEq==1 ); 1676 pTerm = pLoop->aLTerm[0]; 1677 assert( pTerm!=0 ); 1678 assert( pTerm->pExpr!=0 ); 1679 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1680 iReleaseReg = ++pParse->nMem; 1681 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 1682 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 1683 addrNxt = pLevel->addrNxt; 1684 if( pLevel->regFilter ){ 1685 sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt, 1686 iRowidReg, 1); 1687 VdbeCoverage(v); 1688 filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady); 1689 } 1690 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); 1691 VdbeCoverage(v); 1692 pLevel->op = OP_Noop; 1693 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 1694 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 1695 ){ 1696 /* Case 3: We have an inequality comparison against the ROWID field. 1697 */ 1698 int testOp = OP_Noop; 1699 int start; 1700 int memEndValue = 0; 1701 WhereTerm *pStart, *pEnd; 1702 1703 j = 0; 1704 pStart = pEnd = 0; 1705 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 1706 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 1707 assert( pStart!=0 || pEnd!=0 ); 1708 if( bRev ){ 1709 pTerm = pStart; 1710 pStart = pEnd; 1711 pEnd = pTerm; 1712 } 1713 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); 1714 if( pStart ){ 1715 Expr *pX; /* The expression that defines the start bound */ 1716 int r1, rTemp; /* Registers for holding the start boundary */ 1717 int op; /* Cursor seek operation */ 1718 1719 /* The following constant maps TK_xx codes into corresponding 1720 ** seek opcodes. It depends on a particular ordering of TK_xx 1721 */ 1722 const u8 aMoveOp[] = { 1723 /* TK_GT */ OP_SeekGT, 1724 /* TK_LE */ OP_SeekLE, 1725 /* TK_LT */ OP_SeekLT, 1726 /* TK_GE */ OP_SeekGE 1727 }; 1728 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 1729 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 1730 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 1731 1732 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 1733 testcase( pStart->wtFlags & TERM_VIRTUAL ); 1734 pX = pStart->pExpr; 1735 assert( pX!=0 ); 1736 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 1737 if( sqlite3ExprIsVector(pX->pRight) ){ 1738 r1 = rTemp = sqlite3GetTempReg(pParse); 1739 codeExprOrVector(pParse, pX->pRight, r1, 1); 1740 testcase( pX->op==TK_GT ); 1741 testcase( pX->op==TK_GE ); 1742 testcase( pX->op==TK_LT ); 1743 testcase( pX->op==TK_LE ); 1744 op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1]; 1745 assert( pX->op!=TK_GT || op==OP_SeekGE ); 1746 assert( pX->op!=TK_GE || op==OP_SeekGE ); 1747 assert( pX->op!=TK_LT || op==OP_SeekLE ); 1748 assert( pX->op!=TK_LE || op==OP_SeekLE ); 1749 }else{ 1750 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 1751 disableTerm(pLevel, pStart); 1752 op = aMoveOp[(pX->op - TK_GT)]; 1753 } 1754 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); 1755 VdbeComment((v, "pk")); 1756 VdbeCoverageIf(v, pX->op==TK_GT); 1757 VdbeCoverageIf(v, pX->op==TK_LE); 1758 VdbeCoverageIf(v, pX->op==TK_LT); 1759 VdbeCoverageIf(v, pX->op==TK_GE); 1760 sqlite3ReleaseTempReg(pParse, rTemp); 1761 }else{ 1762 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt); 1763 VdbeCoverageIf(v, bRev==0); 1764 VdbeCoverageIf(v, bRev!=0); 1765 } 1766 if( pEnd ){ 1767 Expr *pX; 1768 pX = pEnd->pExpr; 1769 assert( pX!=0 ); 1770 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 1771 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 1772 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 1773 memEndValue = ++pParse->nMem; 1774 codeExprOrVector(pParse, pX->pRight, memEndValue, 1); 1775 if( 0==sqlite3ExprIsVector(pX->pRight) 1776 && (pX->op==TK_LT || pX->op==TK_GT) 1777 ){ 1778 testOp = bRev ? OP_Le : OP_Ge; 1779 }else{ 1780 testOp = bRev ? OP_Lt : OP_Gt; 1781 } 1782 if( 0==sqlite3ExprIsVector(pX->pRight) ){ 1783 disableTerm(pLevel, pEnd); 1784 } 1785 } 1786 start = sqlite3VdbeCurrentAddr(v); 1787 pLevel->op = bRev ? OP_Prev : OP_Next; 1788 pLevel->p1 = iCur; 1789 pLevel->p2 = start; 1790 assert( pLevel->p5==0 ); 1791 if( testOp!=OP_Noop ){ 1792 iRowidReg = ++pParse->nMem; 1793 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 1794 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 1795 VdbeCoverageIf(v, testOp==OP_Le); 1796 VdbeCoverageIf(v, testOp==OP_Lt); 1797 VdbeCoverageIf(v, testOp==OP_Ge); 1798 VdbeCoverageIf(v, testOp==OP_Gt); 1799 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 1800 } 1801 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 1802 /* Case 4: A scan using an index. 1803 ** 1804 ** The WHERE clause may contain zero or more equality 1805 ** terms ("==" or "IN" operators) that refer to the N 1806 ** left-most columns of the index. It may also contain 1807 ** inequality constraints (>, <, >= or <=) on the indexed 1808 ** column that immediately follows the N equalities. Only 1809 ** the right-most column can be an inequality - the rest must 1810 ** use the "==" and "IN" operators. For example, if the 1811 ** index is on (x,y,z), then the following clauses are all 1812 ** optimized: 1813 ** 1814 ** x=5 1815 ** x=5 AND y=10 1816 ** x=5 AND y<10 1817 ** x=5 AND y>5 AND y<10 1818 ** x=5 AND y=5 AND z<=10 1819 ** 1820 ** The z<10 term of the following cannot be used, only 1821 ** the x=5 term: 1822 ** 1823 ** x=5 AND z<10 1824 ** 1825 ** N may be zero if there are inequality constraints. 1826 ** If there are no inequality constraints, then N is at 1827 ** least one. 1828 ** 1829 ** This case is also used when there are no WHERE clause 1830 ** constraints but an index is selected anyway, in order 1831 ** to force the output order to conform to an ORDER BY. 1832 */ 1833 static const u8 aStartOp[] = { 1834 0, 1835 0, 1836 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1837 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1838 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1839 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1840 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1841 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1842 }; 1843 static const u8 aEndOp[] = { 1844 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1845 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1846 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1847 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1848 }; 1849 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1850 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ 1851 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ 1852 int regBase; /* Base register holding constraint values */ 1853 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1854 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1855 int startEq; /* True if range start uses ==, >= or <= */ 1856 int endEq; /* True if range end uses ==, >= or <= */ 1857 int start_constraints; /* Start of range is constrained */ 1858 int nConstraint; /* Number of constraint terms */ 1859 int iIdxCur; /* The VDBE cursor for the index */ 1860 int nExtraReg = 0; /* Number of extra registers needed */ 1861 int op; /* Instruction opcode */ 1862 char *zStartAff; /* Affinity for start of range constraint */ 1863 char *zEndAff = 0; /* Affinity for end of range constraint */ 1864 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1865 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1866 int omitTable; /* True if we use the index only */ 1867 int regBignull = 0; /* big-null flag register */ 1868 int addrSeekScan = 0; /* Opcode of the OP_SeekScan, if any */ 1869 1870 pIdx = pLoop->u.btree.pIndex; 1871 iIdxCur = pLevel->iIdxCur; 1872 assert( nEq>=pLoop->nSkip ); 1873 1874 /* Find any inequality constraint terms for the start and end 1875 ** of the range. 1876 */ 1877 j = nEq; 1878 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1879 pRangeStart = pLoop->aLTerm[j++]; 1880 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); 1881 /* Like optimization range constraints always occur in pairs */ 1882 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1883 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1884 } 1885 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1886 pRangeEnd = pLoop->aLTerm[j++]; 1887 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); 1888 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1889 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1890 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1891 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1892 pLevel->iLikeRepCntr = (u32)++pParse->nMem; 1893 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); 1894 VdbeComment((v, "LIKE loop counter")); 1895 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1896 /* iLikeRepCntr actually stores 2x the counter register number. The 1897 ** bottom bit indicates whether the search order is ASC or DESC. */ 1898 testcase( bRev ); 1899 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1900 assert( (bRev & ~1)==0 ); 1901 pLevel->iLikeRepCntr <<=1; 1902 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); 1903 } 1904 #endif 1905 if( pRangeStart==0 ){ 1906 j = pIdx->aiColumn[nEq]; 1907 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){ 1908 bSeekPastNull = 1; 1909 } 1910 } 1911 } 1912 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1913 1914 /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses 1915 ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS 1916 ** FIRST). In both cases separate ordered scans are made of those 1917 ** index entries for which the column is null and for those for which 1918 ** it is not. For an ASC sort, the non-NULL entries are scanned first. 1919 ** For DESC, NULL entries are scanned first. 1920 */ 1921 if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0 1922 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0 1923 ){ 1924 assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 ); 1925 assert( pRangeEnd==0 && pRangeStart==0 ); 1926 testcase( pLoop->nSkip>0 ); 1927 nExtraReg = 1; 1928 bSeekPastNull = 1; 1929 pLevel->regBignull = regBignull = ++pParse->nMem; 1930 if( pLevel->iLeftJoin ){ 1931 sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull); 1932 } 1933 pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse); 1934 } 1935 1936 /* If we are doing a reverse order scan on an ascending index, or 1937 ** a forward order scan on a descending index, interchange the 1938 ** start and end terms (pRangeStart and pRangeEnd). 1939 */ 1940 if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){ 1941 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1942 SWAP(u8, bSeekPastNull, bStopAtNull); 1943 SWAP(u8, nBtm, nTop); 1944 } 1945 1946 if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){ 1947 /* In case OP_SeekScan is used, ensure that the index cursor does not 1948 ** point to a valid row for the first iteration of this loop. */ 1949 sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur); 1950 } 1951 1952 /* Generate code to evaluate all constraint terms using == or IN 1953 ** and store the values of those terms in an array of registers 1954 ** starting at regBase. 1955 */ 1956 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); 1957 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1958 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1959 if( zStartAff && nTop ){ 1960 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); 1961 } 1962 addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt); 1963 1964 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1965 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1966 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1967 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1968 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1969 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1970 start_constraints = pRangeStart || nEq>0; 1971 1972 /* Seek the index cursor to the start of the range. */ 1973 nConstraint = nEq; 1974 if( pRangeStart ){ 1975 Expr *pRight = pRangeStart->pExpr->pRight; 1976 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); 1977 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1978 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1979 && sqlite3ExprCanBeNull(pRight) 1980 ){ 1981 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1982 VdbeCoverage(v); 1983 } 1984 if( zStartAff ){ 1985 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); 1986 } 1987 nConstraint += nBtm; 1988 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1989 if( sqlite3ExprIsVector(pRight)==0 ){ 1990 disableTerm(pLevel, pRangeStart); 1991 }else{ 1992 startEq = 1; 1993 } 1994 bSeekPastNull = 0; 1995 }else if( bSeekPastNull ){ 1996 startEq = 0; 1997 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1998 start_constraints = 1; 1999 nConstraint++; 2000 }else if( regBignull ){ 2001 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 2002 start_constraints = 1; 2003 nConstraint++; 2004 } 2005 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 2006 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ 2007 /* The skip-scan logic inside the call to codeAllEqualityConstraints() 2008 ** above has already left the cursor sitting on the correct row, 2009 ** so no further seeking is needed */ 2010 }else{ 2011 if( regBignull ){ 2012 sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull); 2013 VdbeComment((v, "NULL-scan pass ctr")); 2014 } 2015 if( pLevel->regFilter ){ 2016 sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt, 2017 regBase, nEq); 2018 VdbeCoverage(v); 2019 filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady); 2020 } 2021 2022 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 2023 assert( op!=0 ); 2024 if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){ 2025 assert( regBignull==0 ); 2026 /* TUNING: The OP_SeekScan opcode seeks to reduce the number 2027 ** of expensive seek operations by replacing a single seek with 2028 ** 1 or more step operations. The question is, how many steps 2029 ** should we try before giving up and going with a seek. The cost 2030 ** of a seek is proportional to the logarithm of the of the number 2031 ** of entries in the tree, so basing the number of steps to try 2032 ** on the estimated number of rows in the btree seems like a good 2033 ** guess. */ 2034 addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan, 2035 (pIdx->aiRowLogEst[0]+9)/10); 2036 VdbeCoverage(v); 2037 } 2038 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 2039 VdbeCoverage(v); 2040 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 2041 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 2042 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 2043 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 2044 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 2045 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 2046 2047 assert( bSeekPastNull==0 || bStopAtNull==0 ); 2048 if( regBignull ){ 2049 assert( bSeekPastNull==1 || bStopAtNull==1 ); 2050 assert( bSeekPastNull==!bStopAtNull ); 2051 assert( bStopAtNull==startEq ); 2052 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2); 2053 op = aStartOp[(nConstraint>1)*4 + 2 + bRev]; 2054 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 2055 nConstraint-startEq); 2056 VdbeCoverage(v); 2057 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 2058 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 2059 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 2060 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 2061 assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE); 2062 } 2063 } 2064 2065 /* Load the value for the inequality constraint at the end of the 2066 ** range (if any). 2067 */ 2068 nConstraint = nEq; 2069 assert( pLevel->p2==0 ); 2070 if( pRangeEnd ){ 2071 Expr *pRight = pRangeEnd->pExpr->pRight; 2072 if( addrSeekScan ){ 2073 /* For a seek-scan that has a range on the lowest term of the index, 2074 ** we have to make the top of the loop be code that sets the end 2075 ** condition of the range. Otherwise, the OP_SeekScan might jump 2076 ** over that initialization, leaving the range-end value set to the 2077 ** range-start value, resulting in a wrong answer. 2078 ** See ticket 5981a8c041a3c2f3 (2021-11-02). 2079 */ 2080 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2081 } 2082 codeExprOrVector(pParse, pRight, regBase+nEq, nTop); 2083 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 2084 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 2085 && sqlite3ExprCanBeNull(pRight) 2086 ){ 2087 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 2088 VdbeCoverage(v); 2089 } 2090 if( zEndAff ){ 2091 updateRangeAffinityStr(pRight, nTop, zEndAff); 2092 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); 2093 }else{ 2094 assert( pParse->db->mallocFailed ); 2095 } 2096 nConstraint += nTop; 2097 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 2098 2099 if( sqlite3ExprIsVector(pRight)==0 ){ 2100 disableTerm(pLevel, pRangeEnd); 2101 }else{ 2102 endEq = 1; 2103 } 2104 }else if( bStopAtNull ){ 2105 if( regBignull==0 ){ 2106 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 2107 endEq = 0; 2108 } 2109 nConstraint++; 2110 } 2111 sqlite3DbFree(db, zStartAff); 2112 sqlite3DbFree(db, zEndAff); 2113 2114 /* Top of the loop body */ 2115 if( pLevel->p2==0 ) pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2116 2117 /* Check if the index cursor is past the end of the range. */ 2118 if( nConstraint ){ 2119 if( regBignull ){ 2120 /* Except, skip the end-of-range check while doing the NULL-scan */ 2121 sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3); 2122 VdbeComment((v, "If NULL-scan 2nd pass")); 2123 VdbeCoverage(v); 2124 } 2125 op = aEndOp[bRev*2 + endEq]; 2126 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 2127 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 2128 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 2129 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 2130 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 2131 if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan); 2132 } 2133 if( regBignull ){ 2134 /* During a NULL-scan, check to see if we have reached the end of 2135 ** the NULLs */ 2136 assert( bSeekPastNull==!bStopAtNull ); 2137 assert( bSeekPastNull+bStopAtNull==1 ); 2138 assert( nConstraint+bSeekPastNull>0 ); 2139 sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2); 2140 VdbeComment((v, "If NULL-scan 1st pass")); 2141 VdbeCoverage(v); 2142 op = aEndOp[bRev*2 + bSeekPastNull]; 2143 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 2144 nConstraint+bSeekPastNull); 2145 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 2146 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 2147 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 2148 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 2149 } 2150 2151 if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){ 2152 sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq); 2153 } 2154 2155 /* Seek the table cursor, if required */ 2156 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 2157 && (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0; 2158 if( omitTable ){ 2159 /* pIdx is a covering index. No need to access the main table. */ 2160 }else if( HasRowid(pIdx->pTable) ){ 2161 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); 2162 }else if( iCur!=iIdxCur ){ 2163 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 2164 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 2165 for(j=0; j<pPk->nKeyCol; j++){ 2166 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]); 2167 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 2168 } 2169 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 2170 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 2171 } 2172 2173 if( pLevel->iLeftJoin==0 ){ 2174 /* If pIdx is an index on one or more expressions, then look through 2175 ** all the expressions in pWInfo and try to transform matching expressions 2176 ** into reference to index columns. Also attempt to translate references 2177 ** to virtual columns in the table into references to (stored) columns 2178 ** of the index. 2179 ** 2180 ** Do not do this for the RHS of a LEFT JOIN. This is because the 2181 ** expression may be evaluated after OP_NullRow has been executed on 2182 ** the cursor. In this case it is important to do the full evaluation, 2183 ** as the result of the expression may not be NULL, even if all table 2184 ** column values are. https://www.sqlite.org/src/info/7fa8049685b50b5a 2185 ** 2186 ** Also, do not do this when processing one index an a multi-index 2187 ** OR clause, since the transformation will become invalid once we 2188 ** move forward to the next index. 2189 ** https://sqlite.org/src/info/4e8e4857d32d401f 2190 */ 2191 if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 ){ 2192 whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo); 2193 } 2194 2195 /* If a partial index is driving the loop, try to eliminate WHERE clause 2196 ** terms from the query that must be true due to the WHERE clause of 2197 ** the partial index. 2198 ** 2199 ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work 2200 ** for a LEFT JOIN. 2201 */ 2202 if( pIdx->pPartIdxWhere ){ 2203 whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC); 2204 } 2205 }else{ 2206 testcase( pIdx->pPartIdxWhere ); 2207 /* The following assert() is not a requirement, merely an observation: 2208 ** The OR-optimization doesn't work for the right hand table of 2209 ** a LEFT JOIN: */ 2210 assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 ); 2211 } 2212 2213 /* Record the instruction used to terminate the loop. */ 2214 if( pLoop->wsFlags & WHERE_ONEROW ){ 2215 pLevel->op = OP_Noop; 2216 }else if( bRev ){ 2217 pLevel->op = OP_Prev; 2218 }else{ 2219 pLevel->op = OP_Next; 2220 } 2221 pLevel->p1 = iIdxCur; 2222 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 2223 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 2224 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2225 }else{ 2226 assert( pLevel->p5==0 ); 2227 } 2228 if( omitTable ) pIdx = 0; 2229 }else 2230 2231 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 2232 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 2233 /* Case 5: Two or more separately indexed terms connected by OR 2234 ** 2235 ** Example: 2236 ** 2237 ** CREATE TABLE t1(a,b,c,d); 2238 ** CREATE INDEX i1 ON t1(a); 2239 ** CREATE INDEX i2 ON t1(b); 2240 ** CREATE INDEX i3 ON t1(c); 2241 ** 2242 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 2243 ** 2244 ** In the example, there are three indexed terms connected by OR. 2245 ** The top of the loop looks like this: 2246 ** 2247 ** Null 1 # Zero the rowset in reg 1 2248 ** 2249 ** Then, for each indexed term, the following. The arguments to 2250 ** RowSetTest are such that the rowid of the current row is inserted 2251 ** into the RowSet. If it is already present, control skips the 2252 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 2253 ** 2254 ** sqlite3WhereBegin(<term>) 2255 ** RowSetTest # Insert rowid into rowset 2256 ** Gosub 2 A 2257 ** sqlite3WhereEnd() 2258 ** 2259 ** Following the above, code to terminate the loop. Label A, the target 2260 ** of the Gosub above, jumps to the instruction right after the Goto. 2261 ** 2262 ** Null 1 # Zero the rowset in reg 1 2263 ** Goto B # The loop is finished. 2264 ** 2265 ** A: <loop body> # Return data, whatever. 2266 ** 2267 ** Return 2 # Jump back to the Gosub 2268 ** 2269 ** B: <after the loop> 2270 ** 2271 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 2272 ** use an ephemeral index instead of a RowSet to record the primary 2273 ** keys of the rows we have already seen. 2274 ** 2275 */ 2276 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 2277 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 2278 Index *pCov = 0; /* Potential covering index (or NULL) */ 2279 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 2280 2281 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 2282 int regRowset = 0; /* Register for RowSet object */ 2283 int regRowid = 0; /* Register holding rowid */ 2284 int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */ 2285 int iRetInit; /* Address of regReturn init */ 2286 int untestedTerms = 0; /* Some terms not completely tested */ 2287 int ii; /* Loop counter */ 2288 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 2289 Table *pTab = pTabItem->pTab; 2290 2291 pTerm = pLoop->aLTerm[0]; 2292 assert( pTerm!=0 ); 2293 assert( pTerm->eOperator & WO_OR ); 2294 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 2295 pOrWc = &pTerm->u.pOrInfo->wc; 2296 pLevel->op = OP_Return; 2297 pLevel->p1 = regReturn; 2298 2299 /* Set up a new SrcList in pOrTab containing the table being scanned 2300 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 2301 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 2302 */ 2303 if( pWInfo->nLevel>1 ){ 2304 int nNotReady; /* The number of notReady tables */ 2305 SrcItem *origSrc; /* Original list of tables */ 2306 nNotReady = pWInfo->nLevel - iLevel - 1; 2307 pOrTab = sqlite3StackAllocRaw(db, 2308 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 2309 if( pOrTab==0 ) return notReady; 2310 pOrTab->nAlloc = (u8)(nNotReady + 1); 2311 pOrTab->nSrc = pOrTab->nAlloc; 2312 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 2313 origSrc = pWInfo->pTabList->a; 2314 for(k=1; k<=nNotReady; k++){ 2315 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 2316 } 2317 }else{ 2318 pOrTab = pWInfo->pTabList; 2319 } 2320 2321 /* Initialize the rowset register to contain NULL. An SQL NULL is 2322 ** equivalent to an empty rowset. Or, create an ephemeral index 2323 ** capable of holding primary keys in the case of a WITHOUT ROWID. 2324 ** 2325 ** Also initialize regReturn to contain the address of the instruction 2326 ** immediately following the OP_Return at the bottom of the loop. This 2327 ** is required in a few obscure LEFT JOIN cases where control jumps 2328 ** over the top of the loop into the body of it. In this case the 2329 ** correct response for the end-of-loop code (the OP_Return) is to 2330 ** fall through to the next instruction, just as an OP_Next does if 2331 ** called on an uninitialized cursor. 2332 */ 2333 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2334 if( HasRowid(pTab) ){ 2335 regRowset = ++pParse->nMem; 2336 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 2337 }else{ 2338 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2339 regRowset = pParse->nTab++; 2340 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 2341 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 2342 } 2343 regRowid = ++pParse->nMem; 2344 } 2345 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 2346 2347 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 2348 ** Then for every term xN, evaluate as the subexpression: xN AND y 2349 ** That way, terms in y that are factored into the disjunction will 2350 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 2351 ** 2352 ** Actually, each subexpression is converted to "xN AND w" where w is 2353 ** the "interesting" terms of z - terms that did not originate in the 2354 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 2355 ** indices. 2356 ** 2357 ** This optimization also only applies if the (x1 OR x2 OR ...) term 2358 ** is not contained in the ON clause of a LEFT JOIN. 2359 ** See ticket http://www.sqlite.org/src/info/f2369304e4 2360 ** 2361 ** 2022-02-04: Do not push down slices of a row-value comparison. 2362 ** In other words, "w" or "y" may not be a slice of a vector. Otherwise, 2363 ** the initialization of the right-hand operand of the vector comparison 2364 ** might not occur, or might occur only in an OR branch that is not 2365 ** taken. dbsqlfuzz 80a9fade844b4fb43564efc972bcb2c68270f5d1. 2366 ** 2367 ** 2022-03-03: Do not push down expressions that involve subqueries. 2368 ** The subquery might get coded as a subroutine. Any table-references 2369 ** in the subquery might be resolved to index-references for the index on 2370 ** the OR branch in which the subroutine is coded. But if the subroutine 2371 ** is invoked from a different OR branch that uses a different index, such 2372 ** index-references will not work. tag-20220303a 2373 ** https://sqlite.org/forum/forumpost/36937b197273d403 2374 */ 2375 if( pWC->nTerm>1 ){ 2376 int iTerm; 2377 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 2378 Expr *pExpr = pWC->a[iTerm].pExpr; 2379 if( &pWC->a[iTerm] == pTerm ) continue; 2380 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); 2381 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); 2382 testcase( pWC->a[iTerm].wtFlags & TERM_SLICE ); 2383 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED|TERM_SLICE))!=0 ){ 2384 continue; 2385 } 2386 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 2387 if( ExprHasProperty(pExpr, EP_Subquery) ) continue; /* tag-20220303a */ 2388 pExpr = sqlite3ExprDup(db, pExpr, 0); 2389 pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr); 2390 } 2391 if( pAndExpr ){ 2392 /* The extra 0x10000 bit on the opcode is masked off and does not 2393 ** become part of the new Expr.op. However, it does make the 2394 ** op==TK_AND comparison inside of sqlite3PExpr() false, and this 2395 ** prevents sqlite3PExpr() from applying the AND short-circuit 2396 ** optimization, which we do not want here. */ 2397 pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr); 2398 } 2399 } 2400 2401 /* Run a separate WHERE clause for each term of the OR clause. After 2402 ** eliminating duplicates from other WHERE clauses, the action for each 2403 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 2404 */ 2405 ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR")); 2406 for(ii=0; ii<pOrWc->nTerm; ii++){ 2407 WhereTerm *pOrTerm = &pOrWc->a[ii]; 2408 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 2409 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 2410 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 2411 Expr *pDelete; /* Local copy of OR clause term */ 2412 int jmp1 = 0; /* Address of jump operation */ 2413 testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0 2414 && !ExprHasProperty(pOrExpr, EP_OuterON) 2415 ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */ 2416 pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0); 2417 if( db->mallocFailed ){ 2418 sqlite3ExprDelete(db, pDelete); 2419 continue; 2420 } 2421 if( pAndExpr ){ 2422 pAndExpr->pLeft = pOrExpr; 2423 pOrExpr = pAndExpr; 2424 } 2425 /* Loop through table entries that match term pOrTerm. */ 2426 ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1)); 2427 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 2428 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 0, 2429 WHERE_OR_SUBCLAUSE, iCovCur); 2430 assert( pSubWInfo || pParse->nErr ); 2431 if( pSubWInfo ){ 2432 WhereLoop *pSubLoop; 2433 int addrExplain = sqlite3WhereExplainOneScan( 2434 pParse, pOrTab, &pSubWInfo->a[0], 0 2435 ); 2436 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 2437 2438 /* This is the sub-WHERE clause body. First skip over 2439 ** duplicate rows from prior sub-WHERE clauses, and record the 2440 ** rowid (or PRIMARY KEY) for the current row so that the same 2441 ** row will be skipped in subsequent sub-WHERE clauses. 2442 */ 2443 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2444 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 2445 if( HasRowid(pTab) ){ 2446 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid); 2447 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 2448 regRowid, iSet); 2449 VdbeCoverage(v); 2450 }else{ 2451 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2452 int nPk = pPk->nKeyCol; 2453 int iPk; 2454 int r; 2455 2456 /* Read the PK into an array of temp registers. */ 2457 r = sqlite3GetTempRange(pParse, nPk); 2458 for(iPk=0; iPk<nPk; iPk++){ 2459 int iCol = pPk->aiColumn[iPk]; 2460 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk); 2461 } 2462 2463 /* Check if the temp table already contains this key. If so, 2464 ** the row has already been included in the result set and 2465 ** can be ignored (by jumping past the Gosub below). Otherwise, 2466 ** insert the key into the temp table and proceed with processing 2467 ** the row. 2468 ** 2469 ** Use some of the same optimizations as OP_RowSetTest: If iSet 2470 ** is zero, assume that the key cannot already be present in 2471 ** the temp table. And if iSet is -1, assume that there is no 2472 ** need to insert the key into the temp table, as it will never 2473 ** be tested for. */ 2474 if( iSet ){ 2475 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 2476 VdbeCoverage(v); 2477 } 2478 if( iSet>=0 ){ 2479 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 2480 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid, 2481 r, nPk); 2482 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2483 } 2484 2485 /* Release the array of temp registers */ 2486 sqlite3ReleaseTempRange(pParse, r, nPk); 2487 } 2488 } 2489 2490 /* Invoke the main loop body as a subroutine */ 2491 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 2492 2493 /* Jump here (skipping the main loop body subroutine) if the 2494 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 2495 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 2496 2497 /* The pSubWInfo->untestedTerms flag means that this OR term 2498 ** contained one or more AND term from a notReady table. The 2499 ** terms from the notReady table could not be tested and will 2500 ** need to be tested later. 2501 */ 2502 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 2503 2504 /* If all of the OR-connected terms are optimized using the same 2505 ** index, and the index is opened using the same cursor number 2506 ** by each call to sqlite3WhereBegin() made by this loop, it may 2507 ** be possible to use that index as a covering index. 2508 ** 2509 ** If the call to sqlite3WhereBegin() above resulted in a scan that 2510 ** uses an index, and this is either the first OR-connected term 2511 ** processed or the index is the same as that used by all previous 2512 ** terms, set pCov to the candidate covering index. Otherwise, set 2513 ** pCov to NULL to indicate that no candidate covering index will 2514 ** be available. 2515 */ 2516 pSubLoop = pSubWInfo->a[0].pWLoop; 2517 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2518 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 2519 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 2520 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 2521 ){ 2522 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 2523 pCov = pSubLoop->u.btree.pIndex; 2524 }else{ 2525 pCov = 0; 2526 } 2527 if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){ 2528 pWInfo->bDeferredSeek = 1; 2529 } 2530 2531 /* Finish the loop through table entries that match term pOrTerm. */ 2532 sqlite3WhereEnd(pSubWInfo); 2533 ExplainQueryPlanPop(pParse); 2534 } 2535 sqlite3ExprDelete(db, pDelete); 2536 } 2537 } 2538 ExplainQueryPlanPop(pParse); 2539 assert( pLevel->pWLoop==pLoop ); 2540 assert( (pLoop->wsFlags & WHERE_MULTI_OR)!=0 ); 2541 assert( (pLoop->wsFlags & WHERE_IN_ABLE)==0 ); 2542 pLevel->u.pCoveringIdx = pCov; 2543 if( pCov ) pLevel->iIdxCur = iCovCur; 2544 if( pAndExpr ){ 2545 pAndExpr->pLeft = 0; 2546 sqlite3ExprDelete(db, pAndExpr); 2547 } 2548 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 2549 sqlite3VdbeGoto(v, pLevel->addrBrk); 2550 sqlite3VdbeResolveLabel(v, iLoopBody); 2551 2552 /* Set the P2 operand of the OP_Return opcode that will end the current 2553 ** loop to point to this spot, which is the top of the next containing 2554 ** loop. The byte-code formatter will use that P2 value as a hint to 2555 ** indent everything in between the this point and the final OP_Return. 2556 ** See tag-20220407a in vdbe.c and shell.c */ 2557 assert( pLevel->op==OP_Return ); 2558 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2559 2560 if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); } 2561 if( !untestedTerms ) disableTerm(pLevel, pTerm); 2562 }else 2563 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 2564 2565 { 2566 /* Case 6: There is no usable index. We must do a complete 2567 ** scan of the entire table. 2568 */ 2569 static const u8 aStep[] = { OP_Next, OP_Prev }; 2570 static const u8 aStart[] = { OP_Rewind, OP_Last }; 2571 assert( bRev==0 || bRev==1 ); 2572 if( pTabItem->fg.isRecursive ){ 2573 /* Tables marked isRecursive have only a single row that is stored in 2574 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 2575 pLevel->op = OP_Noop; 2576 }else{ 2577 codeCursorHint(pTabItem, pWInfo, pLevel, 0); 2578 pLevel->op = aStep[bRev]; 2579 pLevel->p1 = iCur; 2580 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt); 2581 VdbeCoverageIf(v, bRev==0); 2582 VdbeCoverageIf(v, bRev!=0); 2583 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2584 } 2585 } 2586 2587 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2588 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 2589 #endif 2590 2591 /* Insert code to test every subexpression that can be completely 2592 ** computed using the current set of tables. 2593 ** 2594 ** This loop may run between one and three times, depending on the 2595 ** constraints to be generated. The value of stack variable iLoop 2596 ** determines the constraints coded by each iteration, as follows: 2597 ** 2598 ** iLoop==1: Code only expressions that are entirely covered by pIdx. 2599 ** iLoop==2: Code remaining expressions that do not contain correlated 2600 ** sub-queries. 2601 ** iLoop==3: Code all remaining expressions. 2602 ** 2603 ** An effort is made to skip unnecessary iterations of the loop. 2604 */ 2605 iLoop = (pIdx ? 1 : 2); 2606 do{ 2607 int iNext = 0; /* Next value for iLoop */ 2608 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2609 Expr *pE; 2610 int skipLikeAddr = 0; 2611 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2612 testcase( pTerm->wtFlags & TERM_CODED ); 2613 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2614 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2615 testcase( pWInfo->untestedTerms==0 2616 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); 2617 pWInfo->untestedTerms = 1; 2618 continue; 2619 } 2620 pE = pTerm->pExpr; 2621 assert( pE!=0 ); 2622 if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ){ 2623 if( !ExprHasProperty(pE,EP_OuterON|EP_InnerON) ){ 2624 /* Defer processing WHERE clause constraints until after outer 2625 ** join processing. tag-20220513a */ 2626 continue; 2627 }else if( (pTabItem->fg.jointype & JT_LEFT)==JT_LEFT 2628 && !ExprHasProperty(pE,EP_OuterON) ){ 2629 continue; 2630 }else{ 2631 Bitmask m = sqlite3WhereGetMask(&pWInfo->sMaskSet, pE->w.iJoin); 2632 if( m & pLevel->notReady ){ 2633 /* An ON clause that is not ripe */ 2634 continue; 2635 } 2636 } 2637 } 2638 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){ 2639 iNext = 2; 2640 continue; 2641 } 2642 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){ 2643 if( iNext==0 ) iNext = 3; 2644 continue; 2645 } 2646 2647 if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){ 2648 /* If the TERM_LIKECOND flag is set, that means that the range search 2649 ** is sufficient to guarantee that the LIKE operator is true, so we 2650 ** can skip the call to the like(A,B) function. But this only works 2651 ** for strings. So do not skip the call to the function on the pass 2652 ** that compares BLOBs. */ 2653 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 2654 continue; 2655 #else 2656 u32 x = pLevel->iLikeRepCntr; 2657 if( x>0 ){ 2658 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1)); 2659 VdbeCoverageIf(v, (x&1)==1); 2660 VdbeCoverageIf(v, (x&1)==0); 2661 } 2662 #endif 2663 } 2664 #ifdef WHERETRACE_ENABLED /* 0xffff */ 2665 if( sqlite3WhereTrace ){ 2666 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d", 2667 pWC->nTerm-j, pTerm, iLoop)); 2668 } 2669 if( sqlite3WhereTrace & 0x800 ){ 2670 sqlite3DebugPrintf("Coding auxiliary constraint:\n"); 2671 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2672 } 2673 #endif 2674 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 2675 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 2676 pTerm->wtFlags |= TERM_CODED; 2677 } 2678 iLoop = iNext; 2679 }while( iLoop>0 ); 2680 2681 /* Insert code to test for implied constraints based on transitivity 2682 ** of the "==" operator. 2683 ** 2684 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 2685 ** and we are coding the t1 loop and the t2 loop has not yet coded, 2686 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 2687 ** the implied "t1.a=123" constraint. 2688 */ 2689 for(pTerm=pWC->a, j=pWC->nBase; j>0; j--, pTerm++){ 2690 Expr *pE, sEAlt; 2691 WhereTerm *pAlt; 2692 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2693 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 2694 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 2695 if( pTerm->leftCursor!=iCur ) continue; 2696 if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ) continue; 2697 pE = pTerm->pExpr; 2698 #ifdef WHERETRACE_ENABLED /* 0x800 */ 2699 if( sqlite3WhereTrace & 0x800 ){ 2700 sqlite3DebugPrintf("Coding transitive constraint:\n"); 2701 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2702 } 2703 #endif 2704 assert( !ExprHasProperty(pE, EP_OuterON) ); 2705 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 2706 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 2707 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady, 2708 WO_EQ|WO_IN|WO_IS, 0); 2709 if( pAlt==0 ) continue; 2710 if( pAlt->wtFlags & (TERM_CODED) ) continue; 2711 if( (pAlt->eOperator & WO_IN) 2712 && ExprUseXSelect(pAlt->pExpr) 2713 && (pAlt->pExpr->x.pSelect->pEList->nExpr>1) 2714 ){ 2715 continue; 2716 } 2717 testcase( pAlt->eOperator & WO_EQ ); 2718 testcase( pAlt->eOperator & WO_IS ); 2719 testcase( pAlt->eOperator & WO_IN ); 2720 VdbeModuleComment((v, "begin transitive constraint")); 2721 sEAlt = *pAlt->pExpr; 2722 sEAlt.pLeft = pE->pLeft; 2723 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); 2724 pAlt->wtFlags |= TERM_CODED; 2725 } 2726 2727 /* For a RIGHT OUTER JOIN, record the fact that the current row has 2728 ** been matched at least once. 2729 */ 2730 if( pLevel->pRJ ){ 2731 Table *pTab; 2732 int nPk; 2733 int r; 2734 int jmp1 = 0; 2735 WhereRightJoin *pRJ = pLevel->pRJ; 2736 2737 /* pTab is the right-hand table of the RIGHT JOIN. Generate code that 2738 ** will record that the current row of that table has been matched at 2739 ** least once. This is accomplished by storing the PK for the row in 2740 ** both the iMatch index and the regBloom Bloom filter. 2741 */ 2742 pTab = pWInfo->pTabList->a[pLevel->iFrom].pTab; 2743 if( HasRowid(pTab) ){ 2744 r = sqlite3GetTempRange(pParse, 2); 2745 sqlite3ExprCodeGetColumnOfTable(v, pTab, pLevel->iTabCur, -1, r+1); 2746 nPk = 1; 2747 }else{ 2748 int iPk; 2749 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2750 nPk = pPk->nKeyCol; 2751 r = sqlite3GetTempRange(pParse, nPk+1); 2752 for(iPk=0; iPk<nPk; iPk++){ 2753 int iCol = pPk->aiColumn[iPk]; 2754 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+1+iPk); 2755 } 2756 } 2757 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, 0, r+1, nPk); 2758 VdbeCoverage(v); 2759 VdbeComment((v, "match against %s", pTab->zName)); 2760 sqlite3VdbeAddOp3(v, OP_MakeRecord, r+1, nPk, r); 2761 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pRJ->iMatch, r, r+1, nPk); 2762 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pRJ->regBloom, 0, r+1, nPk); 2763 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2764 sqlite3VdbeJumpHere(v, jmp1); 2765 sqlite3ReleaseTempRange(pParse, r, nPk+1); 2766 } 2767 2768 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2769 ** at least one row of the right table has matched the left table. 2770 */ 2771 if( pLevel->iLeftJoin ){ 2772 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2773 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2774 VdbeComment((v, "record LEFT JOIN hit")); 2775 if( pLevel->pRJ==0 ){ 2776 goto code_outer_join_constraints; /* WHERE clause constraints */ 2777 } 2778 } 2779 2780 if( pLevel->pRJ ){ 2781 /* Create a subroutine used to process all interior loops and code 2782 ** of the RIGHT JOIN. During normal operation, the subroutine will 2783 ** be in-line with the rest of the code. But at the end, a separate 2784 ** loop will run that invokes this subroutine for unmatched rows 2785 ** of pTab, with all tables to left begin set to NULL. 2786 */ 2787 WhereRightJoin *pRJ = pLevel->pRJ; 2788 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pRJ->regReturn); 2789 pRJ->addrSubrtn = sqlite3VdbeCurrentAddr(v); 2790 assert( pParse->withinRJSubrtn < 255 ); 2791 pParse->withinRJSubrtn++; 2792 2793 /* WHERE clause constraints must be deferred until after outer join 2794 ** row elimination has completed, since WHERE clause constraints apply 2795 ** to the results of the OUTER JOIN. The following loop generates the 2796 ** appropriate WHERE clause constraint checks. tag-20220513a. 2797 */ 2798 code_outer_join_constraints: 2799 for(pTerm=pWC->a, j=0; j<pWC->nBase; j++, pTerm++){ 2800 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2801 testcase( pTerm->wtFlags & TERM_CODED ); 2802 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2803 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2804 assert( pWInfo->untestedTerms ); 2805 continue; 2806 } 2807 if( pTabItem->fg.jointype & JT_LTORJ ) continue; 2808 assert( pTerm->pExpr ); 2809 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 2810 pTerm->wtFlags |= TERM_CODED; 2811 } 2812 } 2813 2814 #if WHERETRACE_ENABLED /* 0x20800 */ 2815 if( sqlite3WhereTrace & 0x20000 ){ 2816 sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n", 2817 iLevel); 2818 sqlite3WhereClausePrint(pWC); 2819 } 2820 if( sqlite3WhereTrace & 0x800 ){ 2821 sqlite3DebugPrintf("End Coding level %d: notReady=%llx\n", 2822 iLevel, (u64)pLevel->notReady); 2823 } 2824 #endif 2825 return pLevel->notReady; 2826 } 2827 2828 /* 2829 ** Generate the code for the loop that finds all non-matched terms 2830 ** for a RIGHT JOIN. 2831 */ 2832 SQLITE_NOINLINE void sqlite3WhereRightJoinLoop( 2833 WhereInfo *pWInfo, 2834 int iLevel, 2835 WhereLevel *pLevel 2836 ){ 2837 Parse *pParse = pWInfo->pParse; 2838 Vdbe *v = pParse->pVdbe; 2839 WhereRightJoin *pRJ = pLevel->pRJ; 2840 Expr *pSubWhere = 0; 2841 WhereClause *pWC = &pWInfo->sWC; 2842 WhereInfo *pSubWInfo; 2843 WhereLoop *pLoop = pLevel->pWLoop; 2844 SrcItem *pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 2845 SrcList sFrom; 2846 Bitmask mAll = 0; 2847 int k; 2848 2849 ExplainQueryPlan((pParse, 1, "RIGHT-JOIN %s", pTabItem->pTab->zName)); 2850 sqlite3VdbeNoJumpsOutsideSubrtn(v, pRJ->addrSubrtn, pRJ->endSubrtn, 2851 pRJ->regReturn); 2852 for(k=0; k<iLevel; k++){ 2853 int iIdxCur; 2854 mAll |= pWInfo->a[k].pWLoop->maskSelf; 2855 sqlite3VdbeAddOp1(v, OP_NullRow, pWInfo->a[k].iTabCur); 2856 iIdxCur = pWInfo->a[k].iIdxCur; 2857 if( iIdxCur ){ 2858 sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur); 2859 } 2860 } 2861 if( (pTabItem->fg.jointype & JT_LTORJ)==0 ){ 2862 mAll |= pLoop->maskSelf; 2863 for(k=0; k<pWC->nTerm; k++){ 2864 WhereTerm *pTerm = &pWC->a[k]; 2865 if( (pTerm->wtFlags & (TERM_VIRTUAL|TERM_SLICE))!=0 2866 && pTerm->eOperator!=WO_ROWVAL 2867 ){ 2868 break; 2869 } 2870 if( pTerm->prereqAll & ~mAll ) continue; 2871 if( ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) ) continue; 2872 pSubWhere = sqlite3ExprAnd(pParse, pSubWhere, 2873 sqlite3ExprDup(pParse->db, pTerm->pExpr, 0)); 2874 } 2875 } 2876 sFrom.nSrc = 1; 2877 sFrom.nAlloc = 1; 2878 memcpy(&sFrom.a[0], pTabItem, sizeof(SrcItem)); 2879 sFrom.a[0].fg.jointype = 0; 2880 assert( pParse->withinRJSubrtn < 100 ); 2881 pParse->withinRJSubrtn++; 2882 pSubWInfo = sqlite3WhereBegin(pParse, &sFrom, pSubWhere, 0, 0, 0, 2883 WHERE_RIGHT_JOIN, 0); 2884 if( pSubWInfo ){ 2885 int iCur = pLevel->iTabCur; 2886 int r = ++pParse->nMem; 2887 int nPk; 2888 int jmp; 2889 int addrCont = sqlite3WhereContinueLabel(pSubWInfo); 2890 Table *pTab = pTabItem->pTab; 2891 if( HasRowid(pTab) ){ 2892 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, r); 2893 nPk = 1; 2894 }else{ 2895 int iPk; 2896 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2897 nPk = pPk->nKeyCol; 2898 pParse->nMem += nPk - 1; 2899 for(iPk=0; iPk<nPk; iPk++){ 2900 int iCol = pPk->aiColumn[iPk]; 2901 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk); 2902 } 2903 } 2904 jmp = sqlite3VdbeAddOp4Int(v, OP_Filter, pRJ->regBloom, 0, r, nPk); 2905 VdbeCoverage(v); 2906 sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, addrCont, r, nPk); 2907 VdbeCoverage(v); 2908 sqlite3VdbeJumpHere(v, jmp); 2909 sqlite3VdbeAddOp2(v, OP_Gosub, pRJ->regReturn, pRJ->addrSubrtn); 2910 sqlite3WhereEnd(pSubWInfo); 2911 } 2912 sqlite3ExprDelete(pParse->db, pSubWhere); 2913 ExplainQueryPlanPop(pParse); 2914 assert( pParse->withinRJSubrtn>0 ); 2915 pParse->withinRJSubrtn--; 2916 } 2917