xref: /sqlite-3.40.0/src/wherecode.c (revision b8857447)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 
25 /*
26 ** Return the name of the i-th column of the pIdx index.
27 */
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29   i = pIdx->aiColumn[i];
30   if( i==XN_EXPR ) return "<expr>";
31   if( i==XN_ROWID ) return "rowid";
32   return pIdx->pTable->aCol[i].zCnName;
33 }
34 
35 /*
36 ** This routine is a helper for explainIndexRange() below
37 **
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time.  This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
42 */
43 static void explainAppendTerm(
44   StrAccum *pStr,             /* The text expression being built */
45   Index *pIdx,                /* Index to read column names from */
46   int nTerm,                  /* Number of terms */
47   int iTerm,                  /* Zero-based index of first term. */
48   int bAnd,                   /* Non-zero to append " AND " */
49   const char *zOp             /* Name of the operator */
50 ){
51   int i;
52 
53   assert( nTerm>=1 );
54   if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
55 
56   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
57   for(i=0; i<nTerm; i++){
58     if( i ) sqlite3_str_append(pStr, ",", 1);
59     sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
60   }
61   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
62 
63   sqlite3_str_append(pStr, zOp, 1);
64 
65   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
66   for(i=0; i<nTerm; i++){
67     if( i ) sqlite3_str_append(pStr, ",", 1);
68     sqlite3_str_append(pStr, "?", 1);
69   }
70   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
71 }
72 
73 /*
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
77 **
78 ** For example, if the query:
79 **
80 **   SELECT * FROM t1 WHERE a=1 AND b>2;
81 **
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
84 **
85 **   "a=? AND b>?"
86 */
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88   Index *pIndex = pLoop->u.btree.pIndex;
89   u16 nEq = pLoop->u.btree.nEq;
90   u16 nSkip = pLoop->nSkip;
91   int i, j;
92 
93   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94   sqlite3_str_append(pStr, " (", 2);
95   for(i=0; i<nEq; i++){
96     const char *z = explainIndexColumnName(pIndex, i);
97     if( i ) sqlite3_str_append(pStr, " AND ", 5);
98     sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
99   }
100 
101   j = i;
102   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104     i = 1;
105   }
106   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
108   }
109   sqlite3_str_append(pStr, ")", 1);
110 }
111 
112 /*
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
117 **
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
120 */
121 int sqlite3WhereExplainOneScan(
122   Parse *pParse,                  /* Parse context */
123   SrcList *pTabList,              /* Table list this loop refers to */
124   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
125   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
126 ){
127   int ret = 0;
128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
129   if( sqlite3ParseToplevel(pParse)->explain==2 )
130 #endif
131   {
132     SrcItem *pItem = &pTabList->a[pLevel->iFrom];
133     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
134     sqlite3 *db = pParse->db;     /* Database handle */
135     int isSearch;                 /* True for a SEARCH. False for SCAN. */
136     WhereLoop *pLoop;             /* The controlling WhereLoop object */
137     u32 flags;                    /* Flags that describe this loop */
138     char *zMsg;                   /* Text to add to EQP output */
139     StrAccum str;                 /* EQP output string */
140     char zBuf[100];               /* Initial space for EQP output string */
141 
142     pLoop = pLevel->pWLoop;
143     flags = pLoop->wsFlags;
144     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
145 
146     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
147             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
148             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
149 
150     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
151     str.printfFlags = SQLITE_PRINTF_INTERNAL;
152     sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem);
153     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
154       const char *zFmt = 0;
155       Index *pIdx;
156 
157       assert( pLoop->u.btree.pIndex!=0 );
158       pIdx = pLoop->u.btree.pIndex;
159       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
160       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
161         if( isSearch ){
162           zFmt = "PRIMARY KEY";
163         }
164       }else if( flags & WHERE_PARTIALIDX ){
165         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
166       }else if( flags & WHERE_AUTO_INDEX ){
167         zFmt = "AUTOMATIC COVERING INDEX";
168       }else if( flags & WHERE_IDX_ONLY ){
169         zFmt = "COVERING INDEX %s";
170       }else{
171         zFmt = "INDEX %s";
172       }
173       if( zFmt ){
174         sqlite3_str_append(&str, " USING ", 7);
175         sqlite3_str_appendf(&str, zFmt, pIdx->zName);
176         explainIndexRange(&str, pLoop);
177       }
178     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
179       char cRangeOp;
180 #if 0  /* Better output, but breaks many tests */
181       const Table *pTab = pItem->pTab;
182       const char *zRowid = pTab->iPKey>=0 ? pTab->aCol[pTab->iPKey].zCnName:
183                               "rowid";
184 #else
185       const char *zRowid = "rowid";
186 #endif
187       sqlite3_str_appendf(&str, " USING INTEGER PRIMARY KEY (%s", zRowid);
188       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
189         cRangeOp = '=';
190       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
191         sqlite3_str_appendf(&str, ">? AND %s", zRowid);
192         cRangeOp = '<';
193       }else if( flags&WHERE_BTM_LIMIT ){
194         cRangeOp = '>';
195       }else{
196         assert( flags&WHERE_TOP_LIMIT);
197         cRangeOp = '<';
198       }
199       sqlite3_str_appendf(&str, "%c?)", cRangeOp);
200     }
201 #ifndef SQLITE_OMIT_VIRTUALTABLE
202     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
203       sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
204                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
205     }
206 #endif
207     if( pItem->fg.jointype & JT_LEFT ){
208       sqlite3_str_appendf(&str, " LEFT-JOIN");
209     }
210 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
211     if( pLoop->nOut>=10 ){
212       sqlite3_str_appendf(&str, " (~%llu rows)",
213              sqlite3LogEstToInt(pLoop->nOut));
214     }else{
215       sqlite3_str_append(&str, " (~1 row)", 9);
216     }
217 #endif
218     zMsg = sqlite3StrAccumFinish(&str);
219     sqlite3ExplainBreakpoint("",zMsg);
220     ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
221                             pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
222   }
223   return ret;
224 }
225 
226 /*
227 ** Add a single OP_Explain opcode that describes a Bloom filter.
228 **
229 ** Or if not processing EXPLAIN QUERY PLAN and not in a SQLITE_DEBUG and/or
230 ** SQLITE_ENABLE_STMT_SCANSTATUS build, then OP_Explain opcodes are not
231 ** required and this routine is a no-op.
232 **
233 ** If an OP_Explain opcode is added to the VM, its address is returned.
234 ** Otherwise, if no OP_Explain is coded, zero is returned.
235 */
236 int sqlite3WhereExplainBloomFilter(
237   const Parse *pParse,               /* Parse context */
238   const WhereInfo *pWInfo,           /* WHERE clause */
239   const WhereLevel *pLevel           /* Bloom filter on this level */
240 ){
241   int ret = 0;
242   SrcItem *pItem = &pWInfo->pTabList->a[pLevel->iFrom];
243   Vdbe *v = pParse->pVdbe;      /* VM being constructed */
244   sqlite3 *db = pParse->db;     /* Database handle */
245   char *zMsg;                   /* Text to add to EQP output */
246   int i;                        /* Loop counter */
247   WhereLoop *pLoop;             /* The where loop */
248   StrAccum str;                 /* EQP output string */
249   char zBuf[100];               /* Initial space for EQP output string */
250 
251   sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
252   str.printfFlags = SQLITE_PRINTF_INTERNAL;
253   sqlite3_str_appendf(&str, "BLOOM FILTER ON %S (", pItem);
254   pLoop = pLevel->pWLoop;
255   if( pLoop->wsFlags & WHERE_IPK ){
256     const Table *pTab = pItem->pTab;
257     if( pTab->iPKey>=0 ){
258       sqlite3_str_appendf(&str, "%s=?", pTab->aCol[pTab->iPKey].zCnName);
259     }else{
260       sqlite3_str_appendf(&str, "rowid=?");
261     }
262   }else{
263     for(i=pLoop->nSkip; i<pLoop->u.btree.nEq; i++){
264       const char *z = explainIndexColumnName(pLoop->u.btree.pIndex, i);
265       if( i>pLoop->nSkip ) sqlite3_str_append(&str, " AND ", 5);
266       sqlite3_str_appendf(&str, "%s=?", z);
267     }
268   }
269   sqlite3_str_append(&str, ")", 1);
270   zMsg = sqlite3StrAccumFinish(&str);
271   ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
272                           pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
273   return ret;
274 }
275 #endif /* SQLITE_OMIT_EXPLAIN */
276 
277 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
278 /*
279 ** Configure the VM passed as the first argument with an
280 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
281 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
282 ** clause that the scan reads data from.
283 **
284 ** If argument addrExplain is not 0, it must be the address of an
285 ** OP_Explain instruction that describes the same loop.
286 */
287 void sqlite3WhereAddScanStatus(
288   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
289   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
290   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
291   int addrExplain                 /* Address of OP_Explain (or 0) */
292 ){
293   const char *zObj = 0;
294   WhereLoop *pLoop = pLvl->pWLoop;
295   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
296     zObj = pLoop->u.btree.pIndex->zName;
297   }else{
298     zObj = pSrclist->a[pLvl->iFrom].zName;
299   }
300   sqlite3VdbeScanStatus(
301       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
302   );
303 }
304 #endif
305 
306 
307 /*
308 ** Disable a term in the WHERE clause.  Except, do not disable the term
309 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
310 ** or USING clause of that join.
311 **
312 ** Consider the term t2.z='ok' in the following queries:
313 **
314 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
315 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
316 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
317 **
318 ** The t2.z='ok' is disabled in the in (2) because it originates
319 ** in the ON clause.  The term is disabled in (3) because it is not part
320 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
321 **
322 ** Disabling a term causes that term to not be tested in the inner loop
323 ** of the join.  Disabling is an optimization.  When terms are satisfied
324 ** by indices, we disable them to prevent redundant tests in the inner
325 ** loop.  We would get the correct results if nothing were ever disabled,
326 ** but joins might run a little slower.  The trick is to disable as much
327 ** as we can without disabling too much.  If we disabled in (1), we'd get
328 ** the wrong answer.  See ticket #813.
329 **
330 ** If all the children of a term are disabled, then that term is also
331 ** automatically disabled.  In this way, terms get disabled if derived
332 ** virtual terms are tested first.  For example:
333 **
334 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
335 **      \___________/     \______/     \_____/
336 **         parent          child1       child2
337 **
338 ** Only the parent term was in the original WHERE clause.  The child1
339 ** and child2 terms were added by the LIKE optimization.  If both of
340 ** the virtual child terms are valid, then testing of the parent can be
341 ** skipped.
342 **
343 ** Usually the parent term is marked as TERM_CODED.  But if the parent
344 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
345 ** The TERM_LIKECOND marking indicates that the term should be coded inside
346 ** a conditional such that is only evaluated on the second pass of a
347 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
348 */
349 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
350   int nLoop = 0;
351   assert( pTerm!=0 );
352   while( (pTerm->wtFlags & TERM_CODED)==0
353       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_OuterON))
354       && (pLevel->notReady & pTerm->prereqAll)==0
355   ){
356     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
357       pTerm->wtFlags |= TERM_LIKECOND;
358     }else{
359       pTerm->wtFlags |= TERM_CODED;
360     }
361 #ifdef WHERETRACE_ENABLED
362     if( sqlite3WhereTrace & 0x20000 ){
363       sqlite3DebugPrintf("DISABLE-");
364       sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a)));
365     }
366 #endif
367     if( pTerm->iParent<0 ) break;
368     pTerm = &pTerm->pWC->a[pTerm->iParent];
369     assert( pTerm!=0 );
370     pTerm->nChild--;
371     if( pTerm->nChild!=0 ) break;
372     nLoop++;
373   }
374 }
375 
376 /*
377 ** Code an OP_Affinity opcode to apply the column affinity string zAff
378 ** to the n registers starting at base.
379 **
380 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
381 ** are no-ops) at the beginning and end of zAff are ignored.  If all entries
382 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
383 **
384 ** This routine makes its own copy of zAff so that the caller is free
385 ** to modify zAff after this routine returns.
386 */
387 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
388   Vdbe *v = pParse->pVdbe;
389   if( zAff==0 ){
390     assert( pParse->db->mallocFailed );
391     return;
392   }
393   assert( v!=0 );
394 
395   /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
396   ** entries at the beginning and end of the affinity string.
397   */
398   assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB );
399   while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){
400     n--;
401     base++;
402     zAff++;
403   }
404   while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){
405     n--;
406   }
407 
408   /* Code the OP_Affinity opcode if there is anything left to do. */
409   if( n>0 ){
410     sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
411   }
412 }
413 
414 /*
415 ** Expression pRight, which is the RHS of a comparison operation, is
416 ** either a vector of n elements or, if n==1, a scalar expression.
417 ** Before the comparison operation, affinity zAff is to be applied
418 ** to the pRight values. This function modifies characters within the
419 ** affinity string to SQLITE_AFF_BLOB if either:
420 **
421 **   * the comparison will be performed with no affinity, or
422 **   * the affinity change in zAff is guaranteed not to change the value.
423 */
424 static void updateRangeAffinityStr(
425   Expr *pRight,                   /* RHS of comparison */
426   int n,                          /* Number of vector elements in comparison */
427   char *zAff                      /* Affinity string to modify */
428 ){
429   int i;
430   for(i=0; i<n; i++){
431     Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
432     if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
433      || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
434     ){
435       zAff[i] = SQLITE_AFF_BLOB;
436     }
437   }
438 }
439 
440 
441 /*
442 ** pX is an expression of the form:  (vector) IN (SELECT ...)
443 ** In other words, it is a vector IN operator with a SELECT clause on the
444 ** LHS.  But not all terms in the vector are indexable and the terms might
445 ** not be in the correct order for indexing.
446 **
447 ** This routine makes a copy of the input pX expression and then adjusts
448 ** the vector on the LHS with corresponding changes to the SELECT so that
449 ** the vector contains only index terms and those terms are in the correct
450 ** order.  The modified IN expression is returned.  The caller is responsible
451 ** for deleting the returned expression.
452 **
453 ** Example:
454 **
455 **    CREATE TABLE t1(a,b,c,d,e,f);
456 **    CREATE INDEX t1x1 ON t1(e,c);
457 **    SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
458 **                           \_______________________________________/
459 **                                     The pX expression
460 **
461 ** Since only columns e and c can be used with the index, in that order,
462 ** the modified IN expression that is returned will be:
463 **
464 **        (e,c) IN (SELECT z,x FROM t2)
465 **
466 ** The reduced pX is different from the original (obviously) and thus is
467 ** only used for indexing, to improve performance.  The original unaltered
468 ** IN expression must also be run on each output row for correctness.
469 */
470 static Expr *removeUnindexableInClauseTerms(
471   Parse *pParse,        /* The parsing context */
472   int iEq,              /* Look at loop terms starting here */
473   WhereLoop *pLoop,     /* The current loop */
474   Expr *pX              /* The IN expression to be reduced */
475 ){
476   sqlite3 *db = pParse->db;
477   Expr *pNew;
478   pNew = sqlite3ExprDup(db, pX, 0);
479   if( db->mallocFailed==0 ){
480     ExprList *pOrigRhs;         /* Original unmodified RHS */
481     ExprList *pOrigLhs;         /* Original unmodified LHS */
482     ExprList *pRhs = 0;         /* New RHS after modifications */
483     ExprList *pLhs = 0;         /* New LHS after mods */
484     int i;                      /* Loop counter */
485     Select *pSelect;            /* Pointer to the SELECT on the RHS */
486 
487     assert( ExprUseXSelect(pNew) );
488     pOrigRhs = pNew->x.pSelect->pEList;
489     assert( pNew->pLeft!=0 );
490     assert( ExprUseXList(pNew->pLeft) );
491     pOrigLhs = pNew->pLeft->x.pList;
492     for(i=iEq; i<pLoop->nLTerm; i++){
493       if( pLoop->aLTerm[i]->pExpr==pX ){
494         int iField;
495         assert( (pLoop->aLTerm[i]->eOperator & (WO_OR|WO_AND))==0 );
496         iField = pLoop->aLTerm[i]->u.x.iField - 1;
497         if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
498         pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
499         pOrigRhs->a[iField].pExpr = 0;
500         assert( pOrigLhs->a[iField].pExpr!=0 );
501         pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
502         pOrigLhs->a[iField].pExpr = 0;
503       }
504     }
505     sqlite3ExprListDelete(db, pOrigRhs);
506     sqlite3ExprListDelete(db, pOrigLhs);
507     pNew->pLeft->x.pList = pLhs;
508     pNew->x.pSelect->pEList = pRhs;
509     if( pLhs && pLhs->nExpr==1 ){
510       /* Take care here not to generate a TK_VECTOR containing only a
511       ** single value. Since the parser never creates such a vector, some
512       ** of the subroutines do not handle this case.  */
513       Expr *p = pLhs->a[0].pExpr;
514       pLhs->a[0].pExpr = 0;
515       sqlite3ExprDelete(db, pNew->pLeft);
516       pNew->pLeft = p;
517     }
518     pSelect = pNew->x.pSelect;
519     if( pSelect->pOrderBy ){
520       /* If the SELECT statement has an ORDER BY clause, zero the
521       ** iOrderByCol variables. These are set to non-zero when an
522       ** ORDER BY term exactly matches one of the terms of the
523       ** result-set. Since the result-set of the SELECT statement may
524       ** have been modified or reordered, these variables are no longer
525       ** set correctly.  Since setting them is just an optimization,
526       ** it's easiest just to zero them here.  */
527       ExprList *pOrderBy = pSelect->pOrderBy;
528       for(i=0; i<pOrderBy->nExpr; i++){
529         pOrderBy->a[i].u.x.iOrderByCol = 0;
530       }
531     }
532 
533 #if 0
534     printf("For indexing, change the IN expr:\n");
535     sqlite3TreeViewExpr(0, pX, 0);
536     printf("Into:\n");
537     sqlite3TreeViewExpr(0, pNew, 0);
538 #endif
539   }
540   return pNew;
541 }
542 
543 
544 /*
545 ** Generate code for a single equality term of the WHERE clause.  An equality
546 ** term can be either X=expr or X IN (...).   pTerm is the term to be
547 ** coded.
548 **
549 ** The current value for the constraint is left in a register, the index
550 ** of which is returned.  An attempt is made store the result in iTarget but
551 ** this is only guaranteed for TK_ISNULL and TK_IN constraints.  If the
552 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
553 ** some other register and it is the caller's responsibility to compensate.
554 **
555 ** For a constraint of the form X=expr, the expression is evaluated in
556 ** straight-line code.  For constraints of the form X IN (...)
557 ** this routine sets up a loop that will iterate over all values of X.
558 */
559 static int codeEqualityTerm(
560   Parse *pParse,      /* The parsing context */
561   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
562   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
563   int iEq,            /* Index of the equality term within this level */
564   int bRev,           /* True for reverse-order IN operations */
565   int iTarget         /* Attempt to leave results in this register */
566 ){
567   Expr *pX = pTerm->pExpr;
568   Vdbe *v = pParse->pVdbe;
569   int iReg;                  /* Register holding results */
570 
571   assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
572   assert( iTarget>0 );
573   if( pX->op==TK_EQ || pX->op==TK_IS ){
574     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
575   }else if( pX->op==TK_ISNULL ){
576     iReg = iTarget;
577     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
578 #ifndef SQLITE_OMIT_SUBQUERY
579   }else{
580     int eType = IN_INDEX_NOOP;
581     int iTab;
582     struct InLoop *pIn;
583     WhereLoop *pLoop = pLevel->pWLoop;
584     int i;
585     int nEq = 0;
586     int *aiMap = 0;
587 
588     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
589       && pLoop->u.btree.pIndex!=0
590       && pLoop->u.btree.pIndex->aSortOrder[iEq]
591     ){
592       testcase( iEq==0 );
593       testcase( bRev );
594       bRev = !bRev;
595     }
596     assert( pX->op==TK_IN );
597     iReg = iTarget;
598 
599     for(i=0; i<iEq; i++){
600       if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
601         disableTerm(pLevel, pTerm);
602         return iTarget;
603       }
604     }
605     for(i=iEq;i<pLoop->nLTerm; i++){
606       assert( pLoop->aLTerm[i]!=0 );
607       if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
608     }
609 
610     iTab = 0;
611     if( !ExprUseXSelect(pX) || pX->x.pSelect->pEList->nExpr==1 ){
612       eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab);
613     }else{
614       Expr *pExpr = pTerm->pExpr;
615       if( pExpr->iTable==0 || !ExprHasProperty(pExpr, EP_Subrtn) ){
616         sqlite3 *db = pParse->db;
617         pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
618         if( !db->mallocFailed ){
619           aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
620           eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap,&iTab);
621           pExpr->iTable = iTab;
622         }
623         sqlite3ExprDelete(db, pX);
624       }else{
625         aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
626         eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab);
627       }
628       pX = pExpr;
629     }
630 
631     if( eType==IN_INDEX_INDEX_DESC ){
632       testcase( bRev );
633       bRev = !bRev;
634     }
635     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
636     VdbeCoverageIf(v, bRev);
637     VdbeCoverageIf(v, !bRev);
638 
639     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
640     pLoop->wsFlags |= WHERE_IN_ABLE;
641     if( pLevel->u.in.nIn==0 ){
642       pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
643     }
644     if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){
645       pLoop->wsFlags |= WHERE_IN_EARLYOUT;
646     }
647 
648     i = pLevel->u.in.nIn;
649     pLevel->u.in.nIn += nEq;
650     pLevel->u.in.aInLoop =
651        sqlite3WhereRealloc(pTerm->pWC->pWInfo,
652                            pLevel->u.in.aInLoop,
653                            sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
654     pIn = pLevel->u.in.aInLoop;
655     if( pIn ){
656       int iMap = 0;               /* Index in aiMap[] */
657       pIn += i;
658       for(i=iEq;i<pLoop->nLTerm; i++){
659         if( pLoop->aLTerm[i]->pExpr==pX ){
660           int iOut = iReg + i - iEq;
661           if( eType==IN_INDEX_ROWID ){
662             pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
663           }else{
664             int iCol = aiMap ? aiMap[iMap++] : 0;
665             pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
666           }
667           sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
668           if( i==iEq ){
669             pIn->iCur = iTab;
670             pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
671             if( iEq>0 ){
672               pIn->iBase = iReg - i;
673               pIn->nPrefix = i;
674             }else{
675               pIn->nPrefix = 0;
676             }
677           }else{
678             pIn->eEndLoopOp = OP_Noop;
679           }
680           pIn++;
681         }
682       }
683       testcase( iEq>0
684                 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
685                 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 );
686       if( iEq>0
687        && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0
688       ){
689         sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq);
690       }
691     }else{
692       pLevel->u.in.nIn = 0;
693     }
694     sqlite3DbFree(pParse->db, aiMap);
695 #endif
696   }
697 
698   /* As an optimization, try to disable the WHERE clause term that is
699   ** driving the index as it will always be true.  The correct answer is
700   ** obtained regardless, but we might get the answer with fewer CPU cycles
701   ** by omitting the term.
702   **
703   ** But do not disable the term unless we are certain that the term is
704   ** not a transitive constraint.  For an example of where that does not
705   ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04)
706   */
707   if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0
708    || (pTerm->eOperator & WO_EQUIV)==0
709   ){
710     disableTerm(pLevel, pTerm);
711   }
712 
713   return iReg;
714 }
715 
716 /*
717 ** Generate code that will evaluate all == and IN constraints for an
718 ** index scan.
719 **
720 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
721 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
722 ** The index has as many as three equality constraints, but in this
723 ** example, the third "c" value is an inequality.  So only two
724 ** constraints are coded.  This routine will generate code to evaluate
725 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
726 ** in consecutive registers and the index of the first register is returned.
727 **
728 ** In the example above nEq==2.  But this subroutine works for any value
729 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
730 ** The only thing it does is allocate the pLevel->iMem memory cell and
731 ** compute the affinity string.
732 **
733 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
734 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
735 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
736 ** occurs after the nEq quality constraints.
737 **
738 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
739 ** the index of the first memory cell in that range. The code that
740 ** calls this routine will use that memory range to store keys for
741 ** start and termination conditions of the loop.
742 ** key value of the loop.  If one or more IN operators appear, then
743 ** this routine allocates an additional nEq memory cells for internal
744 ** use.
745 **
746 ** Before returning, *pzAff is set to point to a buffer containing a
747 ** copy of the column affinity string of the index allocated using
748 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
749 ** with equality constraints that use BLOB or NONE affinity are set to
750 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
751 **
752 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
753 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
754 **
755 ** In the example above, the index on t1(a) has TEXT affinity. But since
756 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
757 ** no conversion should be attempted before using a t2.b value as part of
758 ** a key to search the index. Hence the first byte in the returned affinity
759 ** string in this example would be set to SQLITE_AFF_BLOB.
760 */
761 static int codeAllEqualityTerms(
762   Parse *pParse,        /* Parsing context */
763   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
764   int bRev,             /* Reverse the order of IN operators */
765   int nExtraReg,        /* Number of extra registers to allocate */
766   char **pzAff          /* OUT: Set to point to affinity string */
767 ){
768   u16 nEq;                      /* The number of == or IN constraints to code */
769   u16 nSkip;                    /* Number of left-most columns to skip */
770   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
771   Index *pIdx;                  /* The index being used for this loop */
772   WhereTerm *pTerm;             /* A single constraint term */
773   WhereLoop *pLoop;             /* The WhereLoop object */
774   int j;                        /* Loop counter */
775   int regBase;                  /* Base register */
776   int nReg;                     /* Number of registers to allocate */
777   char *zAff;                   /* Affinity string to return */
778 
779   /* This module is only called on query plans that use an index. */
780   pLoop = pLevel->pWLoop;
781   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
782   nEq = pLoop->u.btree.nEq;
783   nSkip = pLoop->nSkip;
784   pIdx = pLoop->u.btree.pIndex;
785   assert( pIdx!=0 );
786 
787   /* Figure out how many memory cells we will need then allocate them.
788   */
789   regBase = pParse->nMem + 1;
790   nReg = pLoop->u.btree.nEq + nExtraReg;
791   pParse->nMem += nReg;
792 
793   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
794   assert( zAff!=0 || pParse->db->mallocFailed );
795 
796   if( nSkip ){
797     int iIdxCur = pLevel->iIdxCur;
798     sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1);
799     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
800     VdbeCoverageIf(v, bRev==0);
801     VdbeCoverageIf(v, bRev!=0);
802     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
803     j = sqlite3VdbeAddOp0(v, OP_Goto);
804     assert( pLevel->addrSkip==0 );
805     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
806                             iIdxCur, 0, regBase, nSkip);
807     VdbeCoverageIf(v, bRev==0);
808     VdbeCoverageIf(v, bRev!=0);
809     sqlite3VdbeJumpHere(v, j);
810     for(j=0; j<nSkip; j++){
811       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
812       testcase( pIdx->aiColumn[j]==XN_EXPR );
813       VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
814     }
815   }
816 
817   /* Evaluate the equality constraints
818   */
819   assert( zAff==0 || (int)strlen(zAff)>=nEq );
820   for(j=nSkip; j<nEq; j++){
821     int r1;
822     pTerm = pLoop->aLTerm[j];
823     assert( pTerm!=0 );
824     /* The following testcase is true for indices with redundant columns.
825     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
826     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
827     testcase( pTerm->wtFlags & TERM_VIRTUAL );
828     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
829     if( r1!=regBase+j ){
830       if( nReg==1 ){
831         sqlite3ReleaseTempReg(pParse, regBase);
832         regBase = r1;
833       }else{
834         sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j);
835       }
836     }
837   }
838   for(j=nSkip; j<nEq; j++){
839     pTerm = pLoop->aLTerm[j];
840     if( pTerm->eOperator & WO_IN ){
841       if( pTerm->pExpr->flags & EP_xIsSelect ){
842         /* No affinity ever needs to be (or should be) applied to a value
843         ** from the RHS of an "? IN (SELECT ...)" expression. The
844         ** sqlite3FindInIndex() routine has already ensured that the
845         ** affinity of the comparison has been applied to the value.  */
846         if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
847       }
848     }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
849       Expr *pRight = pTerm->pExpr->pRight;
850       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
851         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
852         VdbeCoverage(v);
853       }
854       if( pParse->nErr==0 ){
855         assert( pParse->db->mallocFailed==0 );
856         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
857           zAff[j] = SQLITE_AFF_BLOB;
858         }
859         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
860           zAff[j] = SQLITE_AFF_BLOB;
861         }
862       }
863     }
864   }
865   *pzAff = zAff;
866   return regBase;
867 }
868 
869 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
870 /*
871 ** If the most recently coded instruction is a constant range constraint
872 ** (a string literal) that originated from the LIKE optimization, then
873 ** set P3 and P5 on the OP_String opcode so that the string will be cast
874 ** to a BLOB at appropriate times.
875 **
876 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
877 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
878 ** scan loop run twice, once for strings and a second time for BLOBs.
879 ** The OP_String opcodes on the second pass convert the upper and lower
880 ** bound string constants to blobs.  This routine makes the necessary changes
881 ** to the OP_String opcodes for that to happen.
882 **
883 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
884 ** only the one pass through the string space is required, so this routine
885 ** becomes a no-op.
886 */
887 static void whereLikeOptimizationStringFixup(
888   Vdbe *v,                /* prepared statement under construction */
889   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
890   WhereTerm *pTerm        /* The upper or lower bound just coded */
891 ){
892   if( pTerm->wtFlags & TERM_LIKEOPT ){
893     VdbeOp *pOp;
894     assert( pLevel->iLikeRepCntr>0 );
895     pOp = sqlite3VdbeGetOp(v, -1);
896     assert( pOp!=0 );
897     assert( pOp->opcode==OP_String8
898             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
899     pOp->p3 = (int)(pLevel->iLikeRepCntr>>1);  /* Register holding counter */
900     pOp->p5 = (u8)(pLevel->iLikeRepCntr&1);    /* ASC or DESC */
901   }
902 }
903 #else
904 # define whereLikeOptimizationStringFixup(A,B,C)
905 #endif
906 
907 #ifdef SQLITE_ENABLE_CURSOR_HINTS
908 /*
909 ** Information is passed from codeCursorHint() down to individual nodes of
910 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
911 ** structure.
912 */
913 struct CCurHint {
914   int iTabCur;    /* Cursor for the main table */
915   int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
916   Index *pIdx;    /* The index used to access the table */
917 };
918 
919 /*
920 ** This function is called for every node of an expression that is a candidate
921 ** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
922 ** the table CCurHint.iTabCur, verify that the same column can be
923 ** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
924 */
925 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
926   struct CCurHint *pHint = pWalker->u.pCCurHint;
927   assert( pHint->pIdx!=0 );
928   if( pExpr->op==TK_COLUMN
929    && pExpr->iTable==pHint->iTabCur
930    && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0
931   ){
932     pWalker->eCode = 1;
933   }
934   return WRC_Continue;
935 }
936 
937 /*
938 ** Test whether or not expression pExpr, which was part of a WHERE clause,
939 ** should be included in the cursor-hint for a table that is on the rhs
940 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
941 ** expression is not suitable.
942 **
943 ** An expression is unsuitable if it might evaluate to non NULL even if
944 ** a TK_COLUMN node that does affect the value of the expression is set
945 ** to NULL. For example:
946 **
947 **   col IS NULL
948 **   col IS NOT NULL
949 **   coalesce(col, 1)
950 **   CASE WHEN col THEN 0 ELSE 1 END
951 */
952 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
953   if( pExpr->op==TK_IS
954    || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
955    || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
956   ){
957     pWalker->eCode = 1;
958   }else if( pExpr->op==TK_FUNCTION ){
959     int d1;
960     char d2[4];
961     if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
962       pWalker->eCode = 1;
963     }
964   }
965 
966   return WRC_Continue;
967 }
968 
969 
970 /*
971 ** This function is called on every node of an expression tree used as an
972 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
973 ** that accesses any table other than the one identified by
974 ** CCurHint.iTabCur, then do the following:
975 **
976 **   1) allocate a register and code an OP_Column instruction to read
977 **      the specified column into the new register, and
978 **
979 **   2) transform the expression node to a TK_REGISTER node that reads
980 **      from the newly populated register.
981 **
982 ** Also, if the node is a TK_COLUMN that does access the table idenified
983 ** by pCCurHint.iTabCur, and an index is being used (which we will
984 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
985 ** an access of the index rather than the original table.
986 */
987 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
988   int rc = WRC_Continue;
989   struct CCurHint *pHint = pWalker->u.pCCurHint;
990   if( pExpr->op==TK_COLUMN ){
991     if( pExpr->iTable!=pHint->iTabCur ){
992       int reg = ++pWalker->pParse->nMem;   /* Register for column value */
993       sqlite3ExprCode(pWalker->pParse, pExpr, reg);
994       pExpr->op = TK_REGISTER;
995       pExpr->iTable = reg;
996     }else if( pHint->pIdx!=0 ){
997       pExpr->iTable = pHint->iIdxCur;
998       pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn);
999       assert( pExpr->iColumn>=0 );
1000     }
1001   }else if( pExpr->op==TK_AGG_FUNCTION ){
1002     /* An aggregate function in the WHERE clause of a query means this must
1003     ** be a correlated sub-query, and expression pExpr is an aggregate from
1004     ** the parent context. Do not walk the function arguments in this case.
1005     **
1006     ** todo: It should be possible to replace this node with a TK_REGISTER
1007     ** expression, as the result of the expression must be stored in a
1008     ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
1009     rc = WRC_Prune;
1010   }
1011   return rc;
1012 }
1013 
1014 /*
1015 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
1016 */
1017 static void codeCursorHint(
1018   SrcItem *pTabItem,  /* FROM clause item */
1019   WhereInfo *pWInfo,    /* The where clause */
1020   WhereLevel *pLevel,   /* Which loop to provide hints for */
1021   WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
1022 ){
1023   Parse *pParse = pWInfo->pParse;
1024   sqlite3 *db = pParse->db;
1025   Vdbe *v = pParse->pVdbe;
1026   Expr *pExpr = 0;
1027   WhereLoop *pLoop = pLevel->pWLoop;
1028   int iCur;
1029   WhereClause *pWC;
1030   WhereTerm *pTerm;
1031   int i, j;
1032   struct CCurHint sHint;
1033   Walker sWalker;
1034 
1035   if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
1036   iCur = pLevel->iTabCur;
1037   assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
1038   sHint.iTabCur = iCur;
1039   sHint.iIdxCur = pLevel->iIdxCur;
1040   sHint.pIdx = pLoop->u.btree.pIndex;
1041   memset(&sWalker, 0, sizeof(sWalker));
1042   sWalker.pParse = pParse;
1043   sWalker.u.pCCurHint = &sHint;
1044   pWC = &pWInfo->sWC;
1045   for(i=0; i<pWC->nBase; i++){
1046     pTerm = &pWC->a[i];
1047     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1048     if( pTerm->prereqAll & pLevel->notReady ) continue;
1049 
1050     /* Any terms specified as part of the ON(...) clause for any LEFT
1051     ** JOIN for which the current table is not the rhs are omitted
1052     ** from the cursor-hint.
1053     **
1054     ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
1055     ** that were specified as part of the WHERE clause must be excluded.
1056     ** This is to address the following:
1057     **
1058     **   SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
1059     **
1060     ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
1061     ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
1062     ** pushed down to the cursor, this row is filtered out, causing
1063     ** SQLite to synthesize a row of NULL values. Which does match the
1064     ** WHERE clause, and so the query returns a row. Which is incorrect.
1065     **
1066     ** For the same reason, WHERE terms such as:
1067     **
1068     **   WHERE 1 = (t2.c IS NULL)
1069     **
1070     ** are also excluded. See codeCursorHintIsOrFunction() for details.
1071     */
1072     if( pTabItem->fg.jointype & JT_LEFT ){
1073       Expr *pExpr = pTerm->pExpr;
1074       if( !ExprHasProperty(pExpr, EP_OuterON)
1075        || pExpr->w.iJoin!=pTabItem->iCursor
1076       ){
1077         sWalker.eCode = 0;
1078         sWalker.xExprCallback = codeCursorHintIsOrFunction;
1079         sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1080         if( sWalker.eCode ) continue;
1081       }
1082     }else{
1083       if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) continue;
1084     }
1085 
1086     /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
1087     ** the cursor.  These terms are not needed as hints for a pure range
1088     ** scan (that has no == terms) so omit them. */
1089     if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
1090       for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
1091       if( j<pLoop->nLTerm ) continue;
1092     }
1093 
1094     /* No subqueries or non-deterministic functions allowed */
1095     if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
1096 
1097     /* For an index scan, make sure referenced columns are actually in
1098     ** the index. */
1099     if( sHint.pIdx!=0 ){
1100       sWalker.eCode = 0;
1101       sWalker.xExprCallback = codeCursorHintCheckExpr;
1102       sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1103       if( sWalker.eCode ) continue;
1104     }
1105 
1106     /* If we survive all prior tests, that means this term is worth hinting */
1107     pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
1108   }
1109   if( pExpr!=0 ){
1110     sWalker.xExprCallback = codeCursorHintFixExpr;
1111     sqlite3WalkExpr(&sWalker, pExpr);
1112     sqlite3VdbeAddOp4(v, OP_CursorHint,
1113                       (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
1114                       (const char*)pExpr, P4_EXPR);
1115   }
1116 }
1117 #else
1118 # define codeCursorHint(A,B,C,D)  /* No-op */
1119 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1120 
1121 /*
1122 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1123 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1124 ** function generates code to do a deferred seek of cursor iCur to the
1125 ** rowid stored in register iRowid.
1126 **
1127 ** Normally, this is just:
1128 **
1129 **   OP_DeferredSeek $iCur $iRowid
1130 **
1131 ** Which causes a seek on $iCur to the row with rowid $iRowid.
1132 **
1133 ** However, if the scan currently being coded is a branch of an OR-loop and
1134 ** the statement currently being coded is a SELECT, then additional information
1135 ** is added that might allow OP_Column to omit the seek and instead do its
1136 ** lookup on the index, thus avoiding an expensive seek operation.  To
1137 ** enable this optimization, the P3 of OP_DeferredSeek is set to iIdxCur
1138 ** and P4 is set to an array of integers containing one entry for each column
1139 ** in the table.  For each table column, if the column is the i'th
1140 ** column of the index, then the corresponding array entry is set to (i+1).
1141 ** If the column does not appear in the index at all, the array entry is set
1142 ** to 0.  The OP_Column opcode can check this array to see if the column it
1143 ** wants is in the index and if it is, it will substitute the index cursor
1144 ** and column number and continue with those new values, rather than seeking
1145 ** the table cursor.
1146 */
1147 static void codeDeferredSeek(
1148   WhereInfo *pWInfo,              /* Where clause context */
1149   Index *pIdx,                    /* Index scan is using */
1150   int iCur,                       /* Cursor for IPK b-tree */
1151   int iIdxCur                     /* Index cursor */
1152 ){
1153   Parse *pParse = pWInfo->pParse; /* Parse context */
1154   Vdbe *v = pParse->pVdbe;        /* Vdbe to generate code within */
1155 
1156   assert( iIdxCur>0 );
1157   assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1158 
1159   pWInfo->bDeferredSeek = 1;
1160   sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1161   if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))
1162    && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1163   ){
1164     int i;
1165     Table *pTab = pIdx->pTable;
1166     u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1));
1167     if( ai ){
1168       ai[0] = pTab->nCol;
1169       for(i=0; i<pIdx->nColumn-1; i++){
1170         int x1, x2;
1171         assert( pIdx->aiColumn[i]<pTab->nCol );
1172         x1 = pIdx->aiColumn[i];
1173         x2 = sqlite3TableColumnToStorage(pTab, x1);
1174         testcase( x1!=x2 );
1175         if( x1>=0 ) ai[x2+1] = i+1;
1176       }
1177       sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1178     }
1179   }
1180 }
1181 
1182 /*
1183 ** If the expression passed as the second argument is a vector, generate
1184 ** code to write the first nReg elements of the vector into an array
1185 ** of registers starting with iReg.
1186 **
1187 ** If the expression is not a vector, then nReg must be passed 1. In
1188 ** this case, generate code to evaluate the expression and leave the
1189 ** result in register iReg.
1190 */
1191 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1192   assert( nReg>0 );
1193   if( p && sqlite3ExprIsVector(p) ){
1194 #ifndef SQLITE_OMIT_SUBQUERY
1195     if( ExprUseXSelect(p) ){
1196       Vdbe *v = pParse->pVdbe;
1197       int iSelect;
1198       assert( p->op==TK_SELECT );
1199       iSelect = sqlite3CodeSubselect(pParse, p);
1200       sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1201     }else
1202 #endif
1203     {
1204       int i;
1205       const ExprList *pList;
1206       assert( ExprUseXList(p) );
1207       pList = p->x.pList;
1208       assert( nReg<=pList->nExpr );
1209       for(i=0; i<nReg; i++){
1210         sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1211       }
1212     }
1213   }else{
1214     assert( nReg==1 || pParse->nErr );
1215     sqlite3ExprCode(pParse, p, iReg);
1216   }
1217 }
1218 
1219 /* An instance of the IdxExprTrans object carries information about a
1220 ** mapping from an expression on table columns into a column in an index
1221 ** down through the Walker.
1222 */
1223 typedef struct IdxExprTrans {
1224   Expr *pIdxExpr;    /* The index expression */
1225   int iTabCur;       /* The cursor of the corresponding table */
1226   int iIdxCur;       /* The cursor for the index */
1227   int iIdxCol;       /* The column for the index */
1228   int iTabCol;       /* The column for the table */
1229   WhereInfo *pWInfo; /* Complete WHERE clause information */
1230   sqlite3 *db;       /* Database connection (for malloc()) */
1231 } IdxExprTrans;
1232 
1233 /*
1234 ** Preserve pExpr on the WhereETrans list of the WhereInfo.
1235 */
1236 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){
1237   WhereExprMod *pNew;
1238   pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew));
1239   if( pNew==0 ) return;
1240   pNew->pNext = pTrans->pWInfo->pExprMods;
1241   pTrans->pWInfo->pExprMods = pNew;
1242   pNew->pExpr = pExpr;
1243   memcpy(&pNew->orig, pExpr, sizeof(*pExpr));
1244 }
1245 
1246 /* The walker node callback used to transform matching expressions into
1247 ** a reference to an index column for an index on an expression.
1248 **
1249 ** If pExpr matches, then transform it into a reference to the index column
1250 ** that contains the value of pExpr.
1251 */
1252 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1253   IdxExprTrans *pX = p->u.pIdxTrans;
1254   if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1255     pExpr = sqlite3ExprSkipCollate(pExpr);
1256     preserveExpr(pX, pExpr);
1257     pExpr->affExpr = sqlite3ExprAffinity(pExpr);
1258     pExpr->op = TK_COLUMN;
1259     pExpr->iTable = pX->iIdxCur;
1260     pExpr->iColumn = pX->iIdxCol;
1261     testcase( ExprHasProperty(pExpr, EP_Unlikely) );
1262     ExprClearProperty(pExpr, EP_Skip|EP_Unlikely|EP_WinFunc|EP_Subrtn);
1263     pExpr->y.pTab = 0;
1264     return WRC_Prune;
1265   }else{
1266     return WRC_Continue;
1267   }
1268 }
1269 
1270 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1271 /* A walker node callback that translates a column reference to a table
1272 ** into a corresponding column reference of an index.
1273 */
1274 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){
1275   if( pExpr->op==TK_COLUMN ){
1276     IdxExprTrans *pX = p->u.pIdxTrans;
1277     if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){
1278       assert( ExprUseYTab(pExpr) && pExpr->y.pTab!=0 );
1279       preserveExpr(pX, pExpr);
1280       pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn);
1281       pExpr->iTable = pX->iIdxCur;
1282       pExpr->iColumn = pX->iIdxCol;
1283       pExpr->y.pTab = 0;
1284     }
1285   }
1286   return WRC_Continue;
1287 }
1288 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1289 
1290 /*
1291 ** For an indexes on expression X, locate every instance of expression X
1292 ** in pExpr and change that subexpression into a reference to the appropriate
1293 ** column of the index.
1294 **
1295 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in
1296 ** the table into references to the corresponding (stored) column of the
1297 ** index.
1298 */
1299 static void whereIndexExprTrans(
1300   Index *pIdx,      /* The Index */
1301   int iTabCur,      /* Cursor of the table that is being indexed */
1302   int iIdxCur,      /* Cursor of the index itself */
1303   WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1304 ){
1305   int iIdxCol;               /* Column number of the index */
1306   ExprList *aColExpr;        /* Expressions that are indexed */
1307   Table *pTab;
1308   Walker w;
1309   IdxExprTrans x;
1310   aColExpr = pIdx->aColExpr;
1311   if( aColExpr==0 && !pIdx->bHasVCol ){
1312     /* The index does not reference any expressions or virtual columns
1313     ** so no translations are needed. */
1314     return;
1315   }
1316   pTab = pIdx->pTable;
1317   memset(&w, 0, sizeof(w));
1318   w.u.pIdxTrans = &x;
1319   x.iTabCur = iTabCur;
1320   x.iIdxCur = iIdxCur;
1321   x.pWInfo = pWInfo;
1322   x.db = pWInfo->pParse->db;
1323   for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){
1324     i16 iRef = pIdx->aiColumn[iIdxCol];
1325     if( iRef==XN_EXPR ){
1326       assert( aColExpr!=0 && aColExpr->a[iIdxCol].pExpr!=0 );
1327       x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1328       if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue;
1329       w.xExprCallback = whereIndexExprTransNode;
1330 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1331     }else if( iRef>=0
1332        && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0
1333        && ((pTab->aCol[iRef].colFlags & COLFLAG_HASCOLL)==0
1334            || sqlite3StrICmp(sqlite3ColumnColl(&pTab->aCol[iRef]),
1335                                                sqlite3StrBINARY)==0)
1336     ){
1337       /* Check to see if there are direct references to generated columns
1338       ** that are contained in the index.  Pulling the generated column
1339       ** out of the index is an optimization only - the main table is always
1340       ** available if the index cannot be used.  To avoid unnecessary
1341       ** complication, omit this optimization if the collating sequence for
1342       ** the column is non-standard */
1343       x.iTabCol = iRef;
1344       w.xExprCallback = whereIndexExprTransColumn;
1345 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1346     }else{
1347       continue;
1348     }
1349     x.iIdxCol = iIdxCol;
1350     sqlite3WalkExpr(&w, pWInfo->pWhere);
1351     sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1352     sqlite3WalkExprList(&w, pWInfo->pResultSet);
1353   }
1354 }
1355 
1356 /*
1357 ** The pTruth expression is always true because it is the WHERE clause
1358 ** a partial index that is driving a query loop.  Look through all of the
1359 ** WHERE clause terms on the query, and if any of those terms must be
1360 ** true because pTruth is true, then mark those WHERE clause terms as
1361 ** coded.
1362 */
1363 static void whereApplyPartialIndexConstraints(
1364   Expr *pTruth,
1365   int iTabCur,
1366   WhereClause *pWC
1367 ){
1368   int i;
1369   WhereTerm *pTerm;
1370   while( pTruth->op==TK_AND ){
1371     whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC);
1372     pTruth = pTruth->pRight;
1373   }
1374   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1375     Expr *pExpr;
1376     if( pTerm->wtFlags & TERM_CODED ) continue;
1377     pExpr = pTerm->pExpr;
1378     if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){
1379       pTerm->wtFlags |= TERM_CODED;
1380     }
1381   }
1382 }
1383 
1384 /*
1385 ** This routine is called right after An OP_Filter has been generated and
1386 ** before the corresponding index search has been performed.  This routine
1387 ** checks to see if there are additional Bloom filters in inner loops that
1388 ** can be checked prior to doing the index lookup.  If there are available
1389 ** inner-loop Bloom filters, then evaluate those filters now, before the
1390 ** index lookup.  The idea is that a Bloom filter check is way faster than
1391 ** an index lookup, and the Bloom filter might return false, meaning that
1392 ** the index lookup can be skipped.
1393 **
1394 ** We know that an inner loop uses a Bloom filter because it has the
1395 ** WhereLevel.regFilter set.  If an inner-loop Bloom filter is checked,
1396 ** then clear the WhereLevel.regFilter value to prevent the Bloom filter
1397 ** from being checked a second time when the inner loop is evaluated.
1398 */
1399 static SQLITE_NOINLINE void filterPullDown(
1400   Parse *pParse,       /* Parsing context */
1401   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1402   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1403   int addrNxt,         /* Jump here to bypass inner loops */
1404   Bitmask notReady     /* Loops that are not ready */
1405 ){
1406   while( ++iLevel < pWInfo->nLevel ){
1407     WhereLevel *pLevel = &pWInfo->a[iLevel];
1408     WhereLoop *pLoop = pLevel->pWLoop;
1409     if( pLevel->regFilter==0 ) continue;
1410     if( pLevel->pWLoop->nSkip ) continue;
1411     /*         ,--- Because sqlite3ConstructBloomFilter() has will not have set
1412     **  vvvvv--'    pLevel->regFilter if this were true. */
1413     if( NEVER(pLoop->prereq & notReady) ) continue;
1414     assert( pLevel->addrBrk==0 );
1415     pLevel->addrBrk = addrNxt;
1416     if( pLoop->wsFlags & WHERE_IPK ){
1417       WhereTerm *pTerm = pLoop->aLTerm[0];
1418       int regRowid;
1419       assert( pTerm!=0 );
1420       assert( pTerm->pExpr!=0 );
1421       testcase( pTerm->wtFlags & TERM_VIRTUAL );
1422       regRowid = sqlite3GetTempReg(pParse);
1423       regRowid = codeEqualityTerm(pParse, pTerm, pLevel, 0, 0, regRowid);
1424       sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter,
1425                            addrNxt, regRowid, 1);
1426       VdbeCoverage(pParse->pVdbe);
1427     }else{
1428       u16 nEq = pLoop->u.btree.nEq;
1429       int r1;
1430       char *zStartAff;
1431 
1432       assert( pLoop->wsFlags & WHERE_INDEXED );
1433       assert( (pLoop->wsFlags & WHERE_COLUMN_IN)==0 );
1434       r1 = codeAllEqualityTerms(pParse,pLevel,0,0,&zStartAff);
1435       codeApplyAffinity(pParse, r1, nEq, zStartAff);
1436       sqlite3DbFree(pParse->db, zStartAff);
1437       sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter,
1438                            addrNxt, r1, nEq);
1439       VdbeCoverage(pParse->pVdbe);
1440     }
1441     pLevel->regFilter = 0;
1442     pLevel->addrBrk = 0;
1443   }
1444 }
1445 
1446 /*
1447 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1448 ** implementation described by pWInfo.
1449 */
1450 Bitmask sqlite3WhereCodeOneLoopStart(
1451   Parse *pParse,       /* Parsing context */
1452   Vdbe *v,             /* Prepared statement under construction */
1453   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1454   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1455   WhereLevel *pLevel,  /* The current level pointer */
1456   Bitmask notReady     /* Which tables are currently available */
1457 ){
1458   int j, k;            /* Loop counters */
1459   int iCur;            /* The VDBE cursor for the table */
1460   int addrNxt;         /* Where to jump to continue with the next IN case */
1461   int bRev;            /* True if we need to scan in reverse order */
1462   WhereLoop *pLoop;    /* The WhereLoop object being coded */
1463   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
1464   WhereTerm *pTerm;               /* A WHERE clause term */
1465   sqlite3 *db;                    /* Database connection */
1466   SrcItem *pTabItem;              /* FROM clause term being coded */
1467   int addrBrk;                    /* Jump here to break out of the loop */
1468   int addrHalt;                   /* addrBrk for the outermost loop */
1469   int addrCont;                   /* Jump here to continue with next cycle */
1470   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
1471   int iReleaseReg = 0;      /* Temp register to free before returning */
1472   Index *pIdx = 0;          /* Index used by loop (if any) */
1473   int iLoop;                /* Iteration of constraint generator loop */
1474 
1475   pWC = &pWInfo->sWC;
1476   db = pParse->db;
1477   pLoop = pLevel->pWLoop;
1478   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1479   iCur = pTabItem->iCursor;
1480   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1481   bRev = (pWInfo->revMask>>iLevel)&1;
1482   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1483 #if WHERETRACE_ENABLED /* 0x20800 */
1484   if( sqlite3WhereTrace & 0x800 ){
1485     sqlite3DebugPrintf("Coding level %d of %d:  notReady=%llx  iFrom=%d\n",
1486        iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom);
1487     sqlite3WhereLoopPrint(pLoop, pWC);
1488   }
1489   if( sqlite3WhereTrace & 0x20000 ){
1490     if( iLevel==0 ){
1491       sqlite3DebugPrintf("WHERE clause being coded:\n");
1492       sqlite3TreeViewExpr(0, pWInfo->pWhere, 0);
1493     }
1494     sqlite3DebugPrintf("All WHERE-clause terms before coding:\n");
1495     sqlite3WhereClausePrint(pWC);
1496   }
1497 #endif
1498 
1499   /* Create labels for the "break" and "continue" instructions
1500   ** for the current loop.  Jump to addrBrk to break out of a loop.
1501   ** Jump to cont to go immediately to the next iteration of the
1502   ** loop.
1503   **
1504   ** When there is an IN operator, we also have a "addrNxt" label that
1505   ** means to continue with the next IN value combination.  When
1506   ** there are no IN operators in the constraints, the "addrNxt" label
1507   ** is the same as "addrBrk".
1508   */
1509   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
1510   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse);
1511 
1512   /* If this is the right table of a LEFT OUTER JOIN, allocate and
1513   ** initialize a memory cell that records if this table matches any
1514   ** row of the left table of the join.
1515   */
1516   assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))
1517        || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
1518   );
1519   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1520     pLevel->iLeftJoin = ++pParse->nMem;
1521     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1522     VdbeComment((v, "init LEFT JOIN no-match flag"));
1523   }
1524 
1525   /* Compute a safe address to jump to if we discover that the table for
1526   ** this loop is empty and can never contribute content. */
1527   for(j=iLevel; j>0; j--){
1528     if( pWInfo->a[j].iLeftJoin ) break;
1529     if( pWInfo->a[j].pRJ ) break;
1530   }
1531   addrHalt = pWInfo->a[j].addrBrk;
1532 
1533   /* Special case of a FROM clause subquery implemented as a co-routine */
1534   if( pTabItem->fg.viaCoroutine ){
1535     int regYield = pTabItem->regReturn;
1536     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1537     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1538     VdbeCoverage(v);
1539     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
1540     pLevel->op = OP_Goto;
1541   }else
1542 
1543 #ifndef SQLITE_OMIT_VIRTUALTABLE
1544   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1545     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
1546     **          to access the data.
1547     */
1548     int iReg;   /* P3 Value for OP_VFilter */
1549     int addrNotFound;
1550     int nConstraint = pLoop->nLTerm;
1551 
1552     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1553     addrNotFound = pLevel->addrBrk;
1554     for(j=0; j<nConstraint; j++){
1555       int iTarget = iReg+j+2;
1556       pTerm = pLoop->aLTerm[j];
1557       if( NEVER(pTerm==0) ) continue;
1558       if( pTerm->eOperator & WO_IN ){
1559         if( SMASKBIT32(j) & pLoop->u.vtab.mHandleIn ){
1560           int iTab = pParse->nTab++;
1561           int iCache = ++pParse->nMem;
1562           sqlite3CodeRhsOfIN(pParse, pTerm->pExpr, iTab);
1563           sqlite3VdbeAddOp3(v, OP_VInitIn, iTab, iTarget, iCache);
1564         }else{
1565           codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1566           addrNotFound = pLevel->addrNxt;
1567         }
1568       }else{
1569         Expr *pRight = pTerm->pExpr->pRight;
1570         codeExprOrVector(pParse, pRight, iTarget, 1);
1571         if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET
1572          && pLoop->u.vtab.bOmitOffset
1573         ){
1574           assert( pTerm->eOperator==WO_AUX );
1575           assert( pWInfo->pLimit!=0 );
1576           assert( pWInfo->pLimit->iOffset>0 );
1577           sqlite3VdbeAddOp2(v, OP_Integer, 0, pWInfo->pLimit->iOffset);
1578           VdbeComment((v,"Zero OFFSET counter"));
1579         }
1580       }
1581     }
1582     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1583     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1584     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1585                       pLoop->u.vtab.idxStr,
1586                       pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1587     VdbeCoverage(v);
1588     pLoop->u.vtab.needFree = 0;
1589     /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed
1590     ** the u.vtab.idxStr.  NULL it out to prevent a use-after-free */
1591     if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0;
1592     pLevel->p1 = iCur;
1593     pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1594     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1595     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
1596 
1597     for(j=0; j<nConstraint; j++){
1598       pTerm = pLoop->aLTerm[j];
1599       if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1600         disableTerm(pLevel, pTerm);
1601         continue;
1602       }
1603       if( (pTerm->eOperator & WO_IN)!=0
1604        && (SMASKBIT32(j) & pLoop->u.vtab.mHandleIn)==0
1605        && !db->mallocFailed
1606       ){
1607         Expr *pCompare;  /* The comparison operator */
1608         Expr *pRight;    /* RHS of the comparison */
1609         VdbeOp *pOp;     /* Opcode to access the value of the IN constraint */
1610         int iIn;         /* IN loop corresponding to the j-th constraint */
1611 
1612         /* Reload the constraint value into reg[iReg+j+2].  The same value
1613         ** was loaded into the same register prior to the OP_VFilter, but
1614         ** the xFilter implementation might have changed the datatype or
1615         ** encoding of the value in the register, so it *must* be reloaded.
1616         */
1617         for(iIn=0; ALWAYS(iIn<pLevel->u.in.nIn); iIn++){
1618           pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop);
1619           if( (pOp->opcode==OP_Column && pOp->p3==iReg+j+2)
1620            || (pOp->opcode==OP_Rowid && pOp->p2==iReg+j+2)
1621           ){
1622             testcase( pOp->opcode==OP_Rowid );
1623             sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1624             break;
1625           }
1626         }
1627 
1628         /* Generate code that will continue to the next row if
1629         ** the IN constraint is not satisfied
1630         */
1631         pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1632         if( !db->mallocFailed ){
1633           int iFld = pTerm->u.x.iField;
1634           Expr *pLeft = pTerm->pExpr->pLeft;
1635           assert( pLeft!=0 );
1636           if( iFld>0 ){
1637             assert( pLeft->op==TK_VECTOR );
1638             assert( ExprUseXList(pLeft) );
1639             assert( iFld<=pLeft->x.pList->nExpr );
1640             pCompare->pLeft = pLeft->x.pList->a[iFld-1].pExpr;
1641           }else{
1642             pCompare->pLeft = pLeft;
1643           }
1644           pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1645           if( pRight ){
1646             pRight->iTable = iReg+j+2;
1647             sqlite3ExprIfFalse(
1648                 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL
1649             );
1650           }
1651           pCompare->pLeft = 0;
1652         }
1653         sqlite3ExprDelete(db, pCompare);
1654       }
1655     }
1656 
1657     /* These registers need to be preserved in case there is an IN operator
1658     ** loop.  So we could deallocate the registers here (and potentially
1659     ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0.  But it seems
1660     ** simpler and safer to simply not reuse the registers.
1661     **
1662     **    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1663     */
1664   }else
1665 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1666 
1667   if( (pLoop->wsFlags & WHERE_IPK)!=0
1668    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1669   ){
1670     /* Case 2:  We can directly reference a single row using an
1671     **          equality comparison against the ROWID field.  Or
1672     **          we reference multiple rows using a "rowid IN (...)"
1673     **          construct.
1674     */
1675     assert( pLoop->u.btree.nEq==1 );
1676     pTerm = pLoop->aLTerm[0];
1677     assert( pTerm!=0 );
1678     assert( pTerm->pExpr!=0 );
1679     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1680     iReleaseReg = ++pParse->nMem;
1681     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1682     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1683     addrNxt = pLevel->addrNxt;
1684     if( pLevel->regFilter ){
1685       sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt,
1686                            iRowidReg, 1);
1687       VdbeCoverage(v);
1688       filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady);
1689     }
1690     sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1691     VdbeCoverage(v);
1692     pLevel->op = OP_Noop;
1693   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1694          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1695   ){
1696     /* Case 3:  We have an inequality comparison against the ROWID field.
1697     */
1698     int testOp = OP_Noop;
1699     int start;
1700     int memEndValue = 0;
1701     WhereTerm *pStart, *pEnd;
1702 
1703     j = 0;
1704     pStart = pEnd = 0;
1705     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1706     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1707     assert( pStart!=0 || pEnd!=0 );
1708     if( bRev ){
1709       pTerm = pStart;
1710       pStart = pEnd;
1711       pEnd = pTerm;
1712     }
1713     codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1714     if( pStart ){
1715       Expr *pX;             /* The expression that defines the start bound */
1716       int r1, rTemp;        /* Registers for holding the start boundary */
1717       int op;               /* Cursor seek operation */
1718 
1719       /* The following constant maps TK_xx codes into corresponding
1720       ** seek opcodes.  It depends on a particular ordering of TK_xx
1721       */
1722       const u8 aMoveOp[] = {
1723            /* TK_GT */  OP_SeekGT,
1724            /* TK_LE */  OP_SeekLE,
1725            /* TK_LT */  OP_SeekLT,
1726            /* TK_GE */  OP_SeekGE
1727       };
1728       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
1729       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
1730       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
1731 
1732       assert( (pStart->wtFlags & TERM_VNULL)==0 );
1733       testcase( pStart->wtFlags & TERM_VIRTUAL );
1734       pX = pStart->pExpr;
1735       assert( pX!=0 );
1736       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1737       if( sqlite3ExprIsVector(pX->pRight) ){
1738         r1 = rTemp = sqlite3GetTempReg(pParse);
1739         codeExprOrVector(pParse, pX->pRight, r1, 1);
1740         testcase( pX->op==TK_GT );
1741         testcase( pX->op==TK_GE );
1742         testcase( pX->op==TK_LT );
1743         testcase( pX->op==TK_LE );
1744         op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
1745         assert( pX->op!=TK_GT || op==OP_SeekGE );
1746         assert( pX->op!=TK_GE || op==OP_SeekGE );
1747         assert( pX->op!=TK_LT || op==OP_SeekLE );
1748         assert( pX->op!=TK_LE || op==OP_SeekLE );
1749       }else{
1750         r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1751         disableTerm(pLevel, pStart);
1752         op = aMoveOp[(pX->op - TK_GT)];
1753       }
1754       sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1755       VdbeComment((v, "pk"));
1756       VdbeCoverageIf(v, pX->op==TK_GT);
1757       VdbeCoverageIf(v, pX->op==TK_LE);
1758       VdbeCoverageIf(v, pX->op==TK_LT);
1759       VdbeCoverageIf(v, pX->op==TK_GE);
1760       sqlite3ReleaseTempReg(pParse, rTemp);
1761     }else{
1762       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1763       VdbeCoverageIf(v, bRev==0);
1764       VdbeCoverageIf(v, bRev!=0);
1765     }
1766     if( pEnd ){
1767       Expr *pX;
1768       pX = pEnd->pExpr;
1769       assert( pX!=0 );
1770       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1771       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1772       testcase( pEnd->wtFlags & TERM_VIRTUAL );
1773       memEndValue = ++pParse->nMem;
1774       codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1775       if( 0==sqlite3ExprIsVector(pX->pRight)
1776        && (pX->op==TK_LT || pX->op==TK_GT)
1777       ){
1778         testOp = bRev ? OP_Le : OP_Ge;
1779       }else{
1780         testOp = bRev ? OP_Lt : OP_Gt;
1781       }
1782       if( 0==sqlite3ExprIsVector(pX->pRight) ){
1783         disableTerm(pLevel, pEnd);
1784       }
1785     }
1786     start = sqlite3VdbeCurrentAddr(v);
1787     pLevel->op = bRev ? OP_Prev : OP_Next;
1788     pLevel->p1 = iCur;
1789     pLevel->p2 = start;
1790     assert( pLevel->p5==0 );
1791     if( testOp!=OP_Noop ){
1792       iRowidReg = ++pParse->nMem;
1793       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1794       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1795       VdbeCoverageIf(v, testOp==OP_Le);
1796       VdbeCoverageIf(v, testOp==OP_Lt);
1797       VdbeCoverageIf(v, testOp==OP_Ge);
1798       VdbeCoverageIf(v, testOp==OP_Gt);
1799       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1800     }
1801   }else if( pLoop->wsFlags & WHERE_INDEXED ){
1802     /* Case 4: A scan using an index.
1803     **
1804     **         The WHERE clause may contain zero or more equality
1805     **         terms ("==" or "IN" operators) that refer to the N
1806     **         left-most columns of the index. It may also contain
1807     **         inequality constraints (>, <, >= or <=) on the indexed
1808     **         column that immediately follows the N equalities. Only
1809     **         the right-most column can be an inequality - the rest must
1810     **         use the "==" and "IN" operators. For example, if the
1811     **         index is on (x,y,z), then the following clauses are all
1812     **         optimized:
1813     **
1814     **            x=5
1815     **            x=5 AND y=10
1816     **            x=5 AND y<10
1817     **            x=5 AND y>5 AND y<10
1818     **            x=5 AND y=5 AND z<=10
1819     **
1820     **         The z<10 term of the following cannot be used, only
1821     **         the x=5 term:
1822     **
1823     **            x=5 AND z<10
1824     **
1825     **         N may be zero if there are inequality constraints.
1826     **         If there are no inequality constraints, then N is at
1827     **         least one.
1828     **
1829     **         This case is also used when there are no WHERE clause
1830     **         constraints but an index is selected anyway, in order
1831     **         to force the output order to conform to an ORDER BY.
1832     */
1833     static const u8 aStartOp[] = {
1834       0,
1835       0,
1836       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
1837       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
1838       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
1839       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
1840       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
1841       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
1842     };
1843     static const u8 aEndOp[] = {
1844       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
1845       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
1846       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
1847       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
1848     };
1849     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
1850     u16 nBtm = pLoop->u.btree.nBtm;   /* Length of BTM vector */
1851     u16 nTop = pLoop->u.btree.nTop;   /* Length of TOP vector */
1852     int regBase;                 /* Base register holding constraint values */
1853     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
1854     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
1855     int startEq;                 /* True if range start uses ==, >= or <= */
1856     int endEq;                   /* True if range end uses ==, >= or <= */
1857     int start_constraints;       /* Start of range is constrained */
1858     int nConstraint;             /* Number of constraint terms */
1859     int iIdxCur;                 /* The VDBE cursor for the index */
1860     int nExtraReg = 0;           /* Number of extra registers needed */
1861     int op;                      /* Instruction opcode */
1862     char *zStartAff;             /* Affinity for start of range constraint */
1863     char *zEndAff = 0;           /* Affinity for end of range constraint */
1864     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
1865     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
1866     int omitTable;               /* True if we use the index only */
1867     int regBignull = 0;          /* big-null flag register */
1868     int addrSeekScan = 0;        /* Opcode of the OP_SeekScan, if any */
1869 
1870     pIdx = pLoop->u.btree.pIndex;
1871     iIdxCur = pLevel->iIdxCur;
1872     assert( nEq>=pLoop->nSkip );
1873 
1874     /* Find any inequality constraint terms for the start and end
1875     ** of the range.
1876     */
1877     j = nEq;
1878     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1879       pRangeStart = pLoop->aLTerm[j++];
1880       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1881       /* Like optimization range constraints always occur in pairs */
1882       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1883               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1884     }
1885     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1886       pRangeEnd = pLoop->aLTerm[j++];
1887       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1888 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1889       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1890         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
1891         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
1892         pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1893         sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1894         VdbeComment((v, "LIKE loop counter"));
1895         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1896         /* iLikeRepCntr actually stores 2x the counter register number.  The
1897         ** bottom bit indicates whether the search order is ASC or DESC. */
1898         testcase( bRev );
1899         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1900         assert( (bRev & ~1)==0 );
1901         pLevel->iLikeRepCntr <<=1;
1902         pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1903       }
1904 #endif
1905       if( pRangeStart==0 ){
1906         j = pIdx->aiColumn[nEq];
1907         if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1908           bSeekPastNull = 1;
1909         }
1910       }
1911     }
1912     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1913 
1914     /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
1915     ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
1916     ** FIRST). In both cases separate ordered scans are made of those
1917     ** index entries for which the column is null and for those for which
1918     ** it is not. For an ASC sort, the non-NULL entries are scanned first.
1919     ** For DESC, NULL entries are scanned first.
1920     */
1921     if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0
1922      && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0
1923     ){
1924       assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 );
1925       assert( pRangeEnd==0 && pRangeStart==0 );
1926       testcase( pLoop->nSkip>0 );
1927       nExtraReg = 1;
1928       bSeekPastNull = 1;
1929       pLevel->regBignull = regBignull = ++pParse->nMem;
1930       if( pLevel->iLeftJoin ){
1931         sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull);
1932       }
1933       pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse);
1934     }
1935 
1936     /* If we are doing a reverse order scan on an ascending index, or
1937     ** a forward order scan on a descending index, interchange the
1938     ** start and end terms (pRangeStart and pRangeEnd).
1939     */
1940     if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){
1941       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1942       SWAP(u8, bSeekPastNull, bStopAtNull);
1943       SWAP(u8, nBtm, nTop);
1944     }
1945 
1946     if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){
1947       /* In case OP_SeekScan is used, ensure that the index cursor does not
1948       ** point to a valid row for the first iteration of this loop. */
1949       sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
1950     }
1951 
1952     /* Generate code to evaluate all constraint terms using == or IN
1953     ** and store the values of those terms in an array of registers
1954     ** starting at regBase.
1955     */
1956     codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1957     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1958     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1959     if( zStartAff && nTop ){
1960       zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1961     }
1962     addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt);
1963 
1964     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1965     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1966     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1967     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1968     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1969     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1970     start_constraints = pRangeStart || nEq>0;
1971 
1972     /* Seek the index cursor to the start of the range. */
1973     nConstraint = nEq;
1974     if( pRangeStart ){
1975       Expr *pRight = pRangeStart->pExpr->pRight;
1976       codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1977       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1978       if( (pRangeStart->wtFlags & TERM_VNULL)==0
1979        && sqlite3ExprCanBeNull(pRight)
1980       ){
1981         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1982         VdbeCoverage(v);
1983       }
1984       if( zStartAff ){
1985         updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1986       }
1987       nConstraint += nBtm;
1988       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1989       if( sqlite3ExprIsVector(pRight)==0 ){
1990         disableTerm(pLevel, pRangeStart);
1991       }else{
1992         startEq = 1;
1993       }
1994       bSeekPastNull = 0;
1995     }else if( bSeekPastNull ){
1996       startEq = 0;
1997       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1998       start_constraints = 1;
1999       nConstraint++;
2000     }else if( regBignull ){
2001       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
2002       start_constraints = 1;
2003       nConstraint++;
2004     }
2005     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
2006     if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
2007       /* The skip-scan logic inside the call to codeAllEqualityConstraints()
2008       ** above has already left the cursor sitting on the correct row,
2009       ** so no further seeking is needed */
2010     }else{
2011       if( regBignull ){
2012         sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull);
2013         VdbeComment((v, "NULL-scan pass ctr"));
2014       }
2015       if( pLevel->regFilter ){
2016         sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt,
2017                              regBase, nEq);
2018         VdbeCoverage(v);
2019         filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady);
2020       }
2021 
2022       op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
2023       assert( op!=0 );
2024       if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){
2025         assert( regBignull==0 );
2026         /* TUNING:  The OP_SeekScan opcode seeks to reduce the number
2027         ** of expensive seek operations by replacing a single seek with
2028         ** 1 or more step operations.  The question is, how many steps
2029         ** should we try before giving up and going with a seek.  The cost
2030         ** of a seek is proportional to the logarithm of the of the number
2031         ** of entries in the tree, so basing the number of steps to try
2032         ** on the estimated number of rows in the btree seems like a good
2033         ** guess. */
2034         addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan,
2035                                          (pIdx->aiRowLogEst[0]+9)/10);
2036         VdbeCoverage(v);
2037       }
2038       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
2039       VdbeCoverage(v);
2040       VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
2041       VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
2042       VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
2043       VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
2044       VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
2045       VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
2046 
2047       assert( bSeekPastNull==0 || bStopAtNull==0 );
2048       if( regBignull ){
2049         assert( bSeekPastNull==1 || bStopAtNull==1 );
2050         assert( bSeekPastNull==!bStopAtNull );
2051         assert( bStopAtNull==startEq );
2052         sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2);
2053         op = aStartOp[(nConstraint>1)*4 + 2 + bRev];
2054         sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
2055                              nConstraint-startEq);
2056         VdbeCoverage(v);
2057         VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
2058         VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
2059         VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
2060         VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
2061         assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE);
2062       }
2063     }
2064 
2065     /* Load the value for the inequality constraint at the end of the
2066     ** range (if any).
2067     */
2068     nConstraint = nEq;
2069     assert( pLevel->p2==0 );
2070     if( pRangeEnd ){
2071       Expr *pRight = pRangeEnd->pExpr->pRight;
2072       if( addrSeekScan ){
2073         /* For a seek-scan that has a range on the lowest term of the index,
2074         ** we have to make the top of the loop be code that sets the end
2075         ** condition of the range.  Otherwise, the OP_SeekScan might jump
2076         ** over that initialization, leaving the range-end value set to the
2077         ** range-start value, resulting in a wrong answer.
2078         ** See ticket 5981a8c041a3c2f3 (2021-11-02).
2079         */
2080         pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2081       }
2082       codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
2083       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
2084       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
2085        && sqlite3ExprCanBeNull(pRight)
2086       ){
2087         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
2088         VdbeCoverage(v);
2089       }
2090       if( zEndAff ){
2091         updateRangeAffinityStr(pRight, nTop, zEndAff);
2092         codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
2093       }else{
2094         assert( pParse->db->mallocFailed );
2095       }
2096       nConstraint += nTop;
2097       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
2098 
2099       if( sqlite3ExprIsVector(pRight)==0 ){
2100         disableTerm(pLevel, pRangeEnd);
2101       }else{
2102         endEq = 1;
2103       }
2104     }else if( bStopAtNull ){
2105       if( regBignull==0 ){
2106         sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
2107         endEq = 0;
2108       }
2109       nConstraint++;
2110     }
2111     sqlite3DbFree(db, zStartAff);
2112     sqlite3DbFree(db, zEndAff);
2113 
2114     /* Top of the loop body */
2115     if( pLevel->p2==0 ) pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2116 
2117     /* Check if the index cursor is past the end of the range. */
2118     if( nConstraint ){
2119       if( regBignull ){
2120         /* Except, skip the end-of-range check while doing the NULL-scan */
2121         sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3);
2122         VdbeComment((v, "If NULL-scan 2nd pass"));
2123         VdbeCoverage(v);
2124       }
2125       op = aEndOp[bRev*2 + endEq];
2126       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
2127       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
2128       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
2129       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
2130       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
2131       if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan);
2132     }
2133     if( regBignull ){
2134       /* During a NULL-scan, check to see if we have reached the end of
2135       ** the NULLs */
2136       assert( bSeekPastNull==!bStopAtNull );
2137       assert( bSeekPastNull+bStopAtNull==1 );
2138       assert( nConstraint+bSeekPastNull>0 );
2139       sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2);
2140       VdbeComment((v, "If NULL-scan 1st pass"));
2141       VdbeCoverage(v);
2142       op = aEndOp[bRev*2 + bSeekPastNull];
2143       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
2144                            nConstraint+bSeekPastNull);
2145       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
2146       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
2147       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
2148       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
2149     }
2150 
2151     if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){
2152       sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq);
2153     }
2154 
2155     /* Seek the table cursor, if required */
2156     omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
2157            && (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0;
2158     if( omitTable ){
2159       /* pIdx is a covering index.  No need to access the main table. */
2160     }else if( HasRowid(pIdx->pTable) ){
2161       codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
2162     }else if( iCur!=iIdxCur ){
2163       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
2164       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
2165       for(j=0; j<pPk->nKeyCol; j++){
2166         k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
2167         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
2168       }
2169       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
2170                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
2171     }
2172 
2173     if( pLevel->iLeftJoin==0 ){
2174       /* If pIdx is an index on one or more expressions, then look through
2175       ** all the expressions in pWInfo and try to transform matching expressions
2176       ** into reference to index columns.  Also attempt to translate references
2177       ** to virtual columns in the table into references to (stored) columns
2178       ** of the index.
2179       **
2180       ** Do not do this for the RHS of a LEFT JOIN. This is because the
2181       ** expression may be evaluated after OP_NullRow has been executed on
2182       ** the cursor. In this case it is important to do the full evaluation,
2183       ** as the result of the expression may not be NULL, even if all table
2184       ** column values are.  https://www.sqlite.org/src/info/7fa8049685b50b5a
2185       **
2186       ** Also, do not do this when processing one index an a multi-index
2187       ** OR clause, since the transformation will become invalid once we
2188       ** move forward to the next index.
2189       ** https://sqlite.org/src/info/4e8e4857d32d401f
2190       */
2191       if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 ){
2192         whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
2193       }
2194 
2195       /* If a partial index is driving the loop, try to eliminate WHERE clause
2196       ** terms from the query that must be true due to the WHERE clause of
2197       ** the partial index.
2198       **
2199       ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
2200       ** for a LEFT JOIN.
2201       */
2202       if( pIdx->pPartIdxWhere ){
2203         whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC);
2204       }
2205     }else{
2206       testcase( pIdx->pPartIdxWhere );
2207       /* The following assert() is not a requirement, merely an observation:
2208       ** The OR-optimization doesn't work for the right hand table of
2209       ** a LEFT JOIN: */
2210       assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 );
2211     }
2212 
2213     /* Record the instruction used to terminate the loop. */
2214     if( pLoop->wsFlags & WHERE_ONEROW ){
2215       pLevel->op = OP_Noop;
2216     }else if( bRev ){
2217       pLevel->op = OP_Prev;
2218     }else{
2219       pLevel->op = OP_Next;
2220     }
2221     pLevel->p1 = iIdxCur;
2222     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
2223     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
2224       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2225     }else{
2226       assert( pLevel->p5==0 );
2227     }
2228     if( omitTable ) pIdx = 0;
2229   }else
2230 
2231 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
2232   if( pLoop->wsFlags & WHERE_MULTI_OR ){
2233     /* Case 5:  Two or more separately indexed terms connected by OR
2234     **
2235     ** Example:
2236     **
2237     **   CREATE TABLE t1(a,b,c,d);
2238     **   CREATE INDEX i1 ON t1(a);
2239     **   CREATE INDEX i2 ON t1(b);
2240     **   CREATE INDEX i3 ON t1(c);
2241     **
2242     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
2243     **
2244     ** In the example, there are three indexed terms connected by OR.
2245     ** The top of the loop looks like this:
2246     **
2247     **          Null       1                # Zero the rowset in reg 1
2248     **
2249     ** Then, for each indexed term, the following. The arguments to
2250     ** RowSetTest are such that the rowid of the current row is inserted
2251     ** into the RowSet. If it is already present, control skips the
2252     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
2253     **
2254     **        sqlite3WhereBegin(<term>)
2255     **          RowSetTest                  # Insert rowid into rowset
2256     **          Gosub      2 A
2257     **        sqlite3WhereEnd()
2258     **
2259     ** Following the above, code to terminate the loop. Label A, the target
2260     ** of the Gosub above, jumps to the instruction right after the Goto.
2261     **
2262     **          Null       1                # Zero the rowset in reg 1
2263     **          Goto       B                # The loop is finished.
2264     **
2265     **       A: <loop body>                 # Return data, whatever.
2266     **
2267     **          Return     2                # Jump back to the Gosub
2268     **
2269     **       B: <after the loop>
2270     **
2271     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
2272     ** use an ephemeral index instead of a RowSet to record the primary
2273     ** keys of the rows we have already seen.
2274     **
2275     */
2276     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
2277     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
2278     Index *pCov = 0;             /* Potential covering index (or NULL) */
2279     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
2280 
2281     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
2282     int regRowset = 0;                        /* Register for RowSet object */
2283     int regRowid = 0;                         /* Register holding rowid */
2284     int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */
2285     int iRetInit;                             /* Address of regReturn init */
2286     int untestedTerms = 0;             /* Some terms not completely tested */
2287     int ii;                            /* Loop counter */
2288     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
2289     Table *pTab = pTabItem->pTab;
2290 
2291     pTerm = pLoop->aLTerm[0];
2292     assert( pTerm!=0 );
2293     assert( pTerm->eOperator & WO_OR );
2294     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
2295     pOrWc = &pTerm->u.pOrInfo->wc;
2296     pLevel->op = OP_Return;
2297     pLevel->p1 = regReturn;
2298 
2299     /* Set up a new SrcList in pOrTab containing the table being scanned
2300     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
2301     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
2302     */
2303     if( pWInfo->nLevel>1 ){
2304       int nNotReady;                 /* The number of notReady tables */
2305       SrcItem *origSrc;              /* Original list of tables */
2306       nNotReady = pWInfo->nLevel - iLevel - 1;
2307       pOrTab = sqlite3StackAllocRaw(db,
2308                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
2309       if( pOrTab==0 ) return notReady;
2310       pOrTab->nAlloc = (u8)(nNotReady + 1);
2311       pOrTab->nSrc = pOrTab->nAlloc;
2312       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
2313       origSrc = pWInfo->pTabList->a;
2314       for(k=1; k<=nNotReady; k++){
2315         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
2316       }
2317     }else{
2318       pOrTab = pWInfo->pTabList;
2319     }
2320 
2321     /* Initialize the rowset register to contain NULL. An SQL NULL is
2322     ** equivalent to an empty rowset.  Or, create an ephemeral index
2323     ** capable of holding primary keys in the case of a WITHOUT ROWID.
2324     **
2325     ** Also initialize regReturn to contain the address of the instruction
2326     ** immediately following the OP_Return at the bottom of the loop. This
2327     ** is required in a few obscure LEFT JOIN cases where control jumps
2328     ** over the top of the loop into the body of it. In this case the
2329     ** correct response for the end-of-loop code (the OP_Return) is to
2330     ** fall through to the next instruction, just as an OP_Next does if
2331     ** called on an uninitialized cursor.
2332     */
2333     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2334       if( HasRowid(pTab) ){
2335         regRowset = ++pParse->nMem;
2336         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
2337       }else{
2338         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2339         regRowset = pParse->nTab++;
2340         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
2341         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
2342       }
2343       regRowid = ++pParse->nMem;
2344     }
2345     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
2346 
2347     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
2348     ** Then for every term xN, evaluate as the subexpression: xN AND y
2349     ** That way, terms in y that are factored into the disjunction will
2350     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
2351     **
2352     ** Actually, each subexpression is converted to "xN AND w" where w is
2353     ** the "interesting" terms of z - terms that did not originate in the
2354     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
2355     ** indices.
2356     **
2357     ** This optimization also only applies if the (x1 OR x2 OR ...) term
2358     ** is not contained in the ON clause of a LEFT JOIN.
2359     ** See ticket http://www.sqlite.org/src/info/f2369304e4
2360     **
2361     ** 2022-02-04:  Do not push down slices of a row-value comparison.
2362     ** In other words, "w" or "y" may not be a slice of a vector.  Otherwise,
2363     ** the initialization of the right-hand operand of the vector comparison
2364     ** might not occur, or might occur only in an OR branch that is not
2365     ** taken.  dbsqlfuzz 80a9fade844b4fb43564efc972bcb2c68270f5d1.
2366     **
2367     ** 2022-03-03:  Do not push down expressions that involve subqueries.
2368     ** The subquery might get coded as a subroutine.  Any table-references
2369     ** in the subquery might be resolved to index-references for the index on
2370     ** the OR branch in which the subroutine is coded.  But if the subroutine
2371     ** is invoked from a different OR branch that uses a different index, such
2372     ** index-references will not work.  tag-20220303a
2373     ** https://sqlite.org/forum/forumpost/36937b197273d403
2374     */
2375     if( pWC->nTerm>1 ){
2376       int iTerm;
2377       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
2378         Expr *pExpr = pWC->a[iTerm].pExpr;
2379         if( &pWC->a[iTerm] == pTerm ) continue;
2380         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
2381         testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
2382         testcase( pWC->a[iTerm].wtFlags & TERM_SLICE );
2383         if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED|TERM_SLICE))!=0 ){
2384           continue;
2385         }
2386         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
2387         if( ExprHasProperty(pExpr, EP_Subquery) ) continue;  /* tag-20220303a */
2388         pExpr = sqlite3ExprDup(db, pExpr, 0);
2389         pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr);
2390       }
2391       if( pAndExpr ){
2392         /* The extra 0x10000 bit on the opcode is masked off and does not
2393         ** become part of the new Expr.op.  However, it does make the
2394         ** op==TK_AND comparison inside of sqlite3PExpr() false, and this
2395         ** prevents sqlite3PExpr() from applying the AND short-circuit
2396         ** optimization, which we do not want here. */
2397         pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr);
2398       }
2399     }
2400 
2401     /* Run a separate WHERE clause for each term of the OR clause.  After
2402     ** eliminating duplicates from other WHERE clauses, the action for each
2403     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
2404     */
2405     ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
2406     for(ii=0; ii<pOrWc->nTerm; ii++){
2407       WhereTerm *pOrTerm = &pOrWc->a[ii];
2408       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
2409         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
2410         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
2411         Expr *pDelete;                  /* Local copy of OR clause term */
2412         int jmp1 = 0;                   /* Address of jump operation */
2413         testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0
2414                && !ExprHasProperty(pOrExpr, EP_OuterON)
2415         ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */
2416         pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0);
2417         if( db->mallocFailed ){
2418           sqlite3ExprDelete(db, pDelete);
2419           continue;
2420         }
2421         if( pAndExpr ){
2422           pAndExpr->pLeft = pOrExpr;
2423           pOrExpr = pAndExpr;
2424         }
2425         /* Loop through table entries that match term pOrTerm. */
2426         ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1));
2427         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
2428         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 0,
2429                                       WHERE_OR_SUBCLAUSE, iCovCur);
2430         assert( pSubWInfo || pParse->nErr );
2431         if( pSubWInfo ){
2432           WhereLoop *pSubLoop;
2433           int addrExplain = sqlite3WhereExplainOneScan(
2434               pParse, pOrTab, &pSubWInfo->a[0], 0
2435           );
2436           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
2437 
2438           /* This is the sub-WHERE clause body.  First skip over
2439           ** duplicate rows from prior sub-WHERE clauses, and record the
2440           ** rowid (or PRIMARY KEY) for the current row so that the same
2441           ** row will be skipped in subsequent sub-WHERE clauses.
2442           */
2443           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2444             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
2445             if( HasRowid(pTab) ){
2446               sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid);
2447               jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
2448                                           regRowid, iSet);
2449               VdbeCoverage(v);
2450             }else{
2451               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2452               int nPk = pPk->nKeyCol;
2453               int iPk;
2454               int r;
2455 
2456               /* Read the PK into an array of temp registers. */
2457               r = sqlite3GetTempRange(pParse, nPk);
2458               for(iPk=0; iPk<nPk; iPk++){
2459                 int iCol = pPk->aiColumn[iPk];
2460                 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2461               }
2462 
2463               /* Check if the temp table already contains this key. If so,
2464               ** the row has already been included in the result set and
2465               ** can be ignored (by jumping past the Gosub below). Otherwise,
2466               ** insert the key into the temp table and proceed with processing
2467               ** the row.
2468               **
2469               ** Use some of the same optimizations as OP_RowSetTest: If iSet
2470               ** is zero, assume that the key cannot already be present in
2471               ** the temp table. And if iSet is -1, assume that there is no
2472               ** need to insert the key into the temp table, as it will never
2473               ** be tested for.  */
2474               if( iSet ){
2475                 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
2476                 VdbeCoverage(v);
2477               }
2478               if( iSet>=0 ){
2479                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
2480                 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
2481                                      r, nPk);
2482                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2483               }
2484 
2485               /* Release the array of temp registers */
2486               sqlite3ReleaseTempRange(pParse, r, nPk);
2487             }
2488           }
2489 
2490           /* Invoke the main loop body as a subroutine */
2491           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2492 
2493           /* Jump here (skipping the main loop body subroutine) if the
2494           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2495           if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
2496 
2497           /* The pSubWInfo->untestedTerms flag means that this OR term
2498           ** contained one or more AND term from a notReady table.  The
2499           ** terms from the notReady table could not be tested and will
2500           ** need to be tested later.
2501           */
2502           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
2503 
2504           /* If all of the OR-connected terms are optimized using the same
2505           ** index, and the index is opened using the same cursor number
2506           ** by each call to sqlite3WhereBegin() made by this loop, it may
2507           ** be possible to use that index as a covering index.
2508           **
2509           ** If the call to sqlite3WhereBegin() above resulted in a scan that
2510           ** uses an index, and this is either the first OR-connected term
2511           ** processed or the index is the same as that used by all previous
2512           ** terms, set pCov to the candidate covering index. Otherwise, set
2513           ** pCov to NULL to indicate that no candidate covering index will
2514           ** be available.
2515           */
2516           pSubLoop = pSubWInfo->a[0].pWLoop;
2517           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2518           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2519            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2520            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2521           ){
2522             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2523             pCov = pSubLoop->u.btree.pIndex;
2524           }else{
2525             pCov = 0;
2526           }
2527           if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){
2528             pWInfo->bDeferredSeek = 1;
2529           }
2530 
2531           /* Finish the loop through table entries that match term pOrTerm. */
2532           sqlite3WhereEnd(pSubWInfo);
2533           ExplainQueryPlanPop(pParse);
2534         }
2535         sqlite3ExprDelete(db, pDelete);
2536       }
2537     }
2538     ExplainQueryPlanPop(pParse);
2539     assert( pLevel->pWLoop==pLoop );
2540     assert( (pLoop->wsFlags & WHERE_MULTI_OR)!=0 );
2541     assert( (pLoop->wsFlags & WHERE_IN_ABLE)==0 );
2542     pLevel->u.pCoveringIdx = pCov;
2543     if( pCov ) pLevel->iIdxCur = iCovCur;
2544     if( pAndExpr ){
2545       pAndExpr->pLeft = 0;
2546       sqlite3ExprDelete(db, pAndExpr);
2547     }
2548     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2549     sqlite3VdbeGoto(v, pLevel->addrBrk);
2550     sqlite3VdbeResolveLabel(v, iLoopBody);
2551 
2552     /* Set the P2 operand of the OP_Return opcode that will end the current
2553     ** loop to point to this spot, which is the top of the next containing
2554     ** loop.  The byte-code formatter will use that P2 value as a hint to
2555     ** indent everything in between the this point and the final OP_Return.
2556     ** See tag-20220407a in vdbe.c and shell.c */
2557     assert( pLevel->op==OP_Return );
2558     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2559 
2560     if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); }
2561     if( !untestedTerms ) disableTerm(pLevel, pTerm);
2562   }else
2563 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2564 
2565   {
2566     /* Case 6:  There is no usable index.  We must do a complete
2567     **          scan of the entire table.
2568     */
2569     static const u8 aStep[] = { OP_Next, OP_Prev };
2570     static const u8 aStart[] = { OP_Rewind, OP_Last };
2571     assert( bRev==0 || bRev==1 );
2572     if( pTabItem->fg.isRecursive ){
2573       /* Tables marked isRecursive have only a single row that is stored in
2574       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
2575       pLevel->op = OP_Noop;
2576     }else{
2577       codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2578       pLevel->op = aStep[bRev];
2579       pLevel->p1 = iCur;
2580       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2581       VdbeCoverageIf(v, bRev==0);
2582       VdbeCoverageIf(v, bRev!=0);
2583       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2584     }
2585   }
2586 
2587 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2588   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2589 #endif
2590 
2591   /* Insert code to test every subexpression that can be completely
2592   ** computed using the current set of tables.
2593   **
2594   ** This loop may run between one and three times, depending on the
2595   ** constraints to be generated. The value of stack variable iLoop
2596   ** determines the constraints coded by each iteration, as follows:
2597   **
2598   ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2599   ** iLoop==2: Code remaining expressions that do not contain correlated
2600   **           sub-queries.
2601   ** iLoop==3: Code all remaining expressions.
2602   **
2603   ** An effort is made to skip unnecessary iterations of the loop.
2604   */
2605   iLoop = (pIdx ? 1 : 2);
2606   do{
2607     int iNext = 0;                /* Next value for iLoop */
2608     for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2609       Expr *pE;
2610       int skipLikeAddr = 0;
2611       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2612       testcase( pTerm->wtFlags & TERM_CODED );
2613       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2614       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2615         testcase( pWInfo->untestedTerms==0
2616             && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2617         pWInfo->untestedTerms = 1;
2618         continue;
2619       }
2620       pE = pTerm->pExpr;
2621       assert( pE!=0 );
2622       if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ){
2623         if( !ExprHasProperty(pE,EP_OuterON|EP_InnerON) ){
2624           /* Defer processing WHERE clause constraints until after outer
2625           ** join processing.  tag-20220513a */
2626           continue;
2627         }else if( (pTabItem->fg.jointype & JT_LEFT)==JT_LEFT
2628                && !ExprHasProperty(pE,EP_OuterON) ){
2629           continue;
2630         }else{
2631           Bitmask m = sqlite3WhereGetMask(&pWInfo->sMaskSet, pE->w.iJoin);
2632           if( m & pLevel->notReady ){
2633             /* An ON clause that is not ripe */
2634             continue;
2635           }
2636         }
2637       }
2638       if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2639         iNext = 2;
2640         continue;
2641       }
2642       if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2643         if( iNext==0 ) iNext = 3;
2644         continue;
2645       }
2646 
2647       if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
2648         /* If the TERM_LIKECOND flag is set, that means that the range search
2649         ** is sufficient to guarantee that the LIKE operator is true, so we
2650         ** can skip the call to the like(A,B) function.  But this only works
2651         ** for strings.  So do not skip the call to the function on the pass
2652         ** that compares BLOBs. */
2653 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2654         continue;
2655 #else
2656         u32 x = pLevel->iLikeRepCntr;
2657         if( x>0 ){
2658           skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
2659           VdbeCoverageIf(v, (x&1)==1);
2660           VdbeCoverageIf(v, (x&1)==0);
2661         }
2662 #endif
2663       }
2664 #ifdef WHERETRACE_ENABLED /* 0xffff */
2665       if( sqlite3WhereTrace ){
2666         VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2667                          pWC->nTerm-j, pTerm, iLoop));
2668       }
2669       if( sqlite3WhereTrace & 0x800 ){
2670         sqlite3DebugPrintf("Coding auxiliary constraint:\n");
2671         sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2672       }
2673 #endif
2674       sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2675       if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2676       pTerm->wtFlags |= TERM_CODED;
2677     }
2678     iLoop = iNext;
2679   }while( iLoop>0 );
2680 
2681   /* Insert code to test for implied constraints based on transitivity
2682   ** of the "==" operator.
2683   **
2684   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2685   ** and we are coding the t1 loop and the t2 loop has not yet coded,
2686   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2687   ** the implied "t1.a=123" constraint.
2688   */
2689   for(pTerm=pWC->a, j=pWC->nBase; j>0; j--, pTerm++){
2690     Expr *pE, sEAlt;
2691     WhereTerm *pAlt;
2692     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2693     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2694     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2695     if( pTerm->leftCursor!=iCur ) continue;
2696     if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ) continue;
2697     pE = pTerm->pExpr;
2698 #ifdef WHERETRACE_ENABLED /* 0x800 */
2699     if( sqlite3WhereTrace & 0x800 ){
2700       sqlite3DebugPrintf("Coding transitive constraint:\n");
2701       sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2702     }
2703 #endif
2704     assert( !ExprHasProperty(pE, EP_OuterON) );
2705     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2706     assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
2707     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady,
2708                     WO_EQ|WO_IN|WO_IS, 0);
2709     if( pAlt==0 ) continue;
2710     if( pAlt->wtFlags & (TERM_CODED) ) continue;
2711     if( (pAlt->eOperator & WO_IN)
2712      && ExprUseXSelect(pAlt->pExpr)
2713      && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
2714     ){
2715       continue;
2716     }
2717     testcase( pAlt->eOperator & WO_EQ );
2718     testcase( pAlt->eOperator & WO_IS );
2719     testcase( pAlt->eOperator & WO_IN );
2720     VdbeModuleComment((v, "begin transitive constraint"));
2721     sEAlt = *pAlt->pExpr;
2722     sEAlt.pLeft = pE->pLeft;
2723     sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2724     pAlt->wtFlags |= TERM_CODED;
2725   }
2726 
2727   /* For a RIGHT OUTER JOIN, record the fact that the current row has
2728   ** been matched at least once.
2729   */
2730   if( pLevel->pRJ ){
2731     Table *pTab;
2732     int nPk;
2733     int r;
2734     int jmp1 = 0;
2735     WhereRightJoin *pRJ = pLevel->pRJ;
2736 
2737     /* pTab is the right-hand table of the RIGHT JOIN.  Generate code that
2738     ** will record that the current row of that table has been matched at
2739     ** least once.  This is accomplished by storing the PK for the row in
2740     ** both the iMatch index and the regBloom Bloom filter.
2741     */
2742     pTab = pWInfo->pTabList->a[pLevel->iFrom].pTab;
2743     if( HasRowid(pTab) ){
2744       r = sqlite3GetTempRange(pParse, 2);
2745       sqlite3ExprCodeGetColumnOfTable(v, pTab, pLevel->iTabCur, -1, r+1);
2746       nPk = 1;
2747     }else{
2748       int iPk;
2749       Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2750       nPk = pPk->nKeyCol;
2751       r = sqlite3GetTempRange(pParse, nPk+1);
2752       for(iPk=0; iPk<nPk; iPk++){
2753         int iCol = pPk->aiColumn[iPk];
2754         sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+1+iPk);
2755       }
2756     }
2757     jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, 0, r+1, nPk);
2758     VdbeCoverage(v);
2759     VdbeComment((v, "match against %s", pTab->zName));
2760     sqlite3VdbeAddOp3(v, OP_MakeRecord, r+1, nPk, r);
2761     sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pRJ->iMatch, r, r+1, nPk);
2762     sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pRJ->regBloom, 0, r+1, nPk);
2763     sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2764     sqlite3VdbeJumpHere(v, jmp1);
2765     sqlite3ReleaseTempRange(pParse, r, nPk+1);
2766   }
2767 
2768   /* For a LEFT OUTER JOIN, generate code that will record the fact that
2769   ** at least one row of the right table has matched the left table.
2770   */
2771   if( pLevel->iLeftJoin ){
2772     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2773     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2774     VdbeComment((v, "record LEFT JOIN hit"));
2775     if( pLevel->pRJ==0 ){
2776       goto code_outer_join_constraints; /* WHERE clause constraints */
2777     }
2778   }
2779 
2780   if( pLevel->pRJ ){
2781     /* Create a subroutine used to process all interior loops and code
2782     ** of the RIGHT JOIN.  During normal operation, the subroutine will
2783     ** be in-line with the rest of the code.  But at the end, a separate
2784     ** loop will run that invokes this subroutine for unmatched rows
2785     ** of pTab, with all tables to left begin set to NULL.
2786     */
2787     WhereRightJoin *pRJ = pLevel->pRJ;
2788     sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pRJ->regReturn);
2789     pRJ->addrSubrtn = sqlite3VdbeCurrentAddr(v);
2790     assert( pParse->withinRJSubrtn < 255 );
2791     pParse->withinRJSubrtn++;
2792 
2793     /* WHERE clause constraints must be deferred until after outer join
2794     ** row elimination has completed, since WHERE clause constraints apply
2795     ** to the results of the OUTER JOIN.  The following loop generates the
2796     ** appropriate WHERE clause constraint checks.  tag-20220513a.
2797     */
2798   code_outer_join_constraints:
2799     for(pTerm=pWC->a, j=0; j<pWC->nBase; j++, pTerm++){
2800       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2801       testcase( pTerm->wtFlags & TERM_CODED );
2802       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2803       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2804         assert( pWInfo->untestedTerms );
2805         continue;
2806       }
2807       if( pTabItem->fg.jointype & JT_LTORJ ) continue;
2808       assert( pTerm->pExpr );
2809       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2810       pTerm->wtFlags |= TERM_CODED;
2811     }
2812   }
2813 
2814 #if WHERETRACE_ENABLED /* 0x20800 */
2815   if( sqlite3WhereTrace & 0x20000 ){
2816     sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n",
2817                        iLevel);
2818     sqlite3WhereClausePrint(pWC);
2819   }
2820   if( sqlite3WhereTrace & 0x800 ){
2821     sqlite3DebugPrintf("End Coding level %d:  notReady=%llx\n",
2822        iLevel, (u64)pLevel->notReady);
2823   }
2824 #endif
2825   return pLevel->notReady;
2826 }
2827 
2828 /*
2829 ** Generate the code for the loop that finds all non-matched terms
2830 ** for a RIGHT JOIN.
2831 */
2832 SQLITE_NOINLINE void sqlite3WhereRightJoinLoop(
2833   WhereInfo *pWInfo,
2834   int iLevel,
2835   WhereLevel *pLevel
2836 ){
2837   Parse *pParse = pWInfo->pParse;
2838   Vdbe *v = pParse->pVdbe;
2839   WhereRightJoin *pRJ = pLevel->pRJ;
2840   Expr *pSubWhere = 0;
2841   WhereClause *pWC = &pWInfo->sWC;
2842   WhereInfo *pSubWInfo;
2843   WhereLoop *pLoop = pLevel->pWLoop;
2844   SrcItem *pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
2845   SrcList sFrom;
2846   Bitmask mAll = 0;
2847   int k;
2848 
2849   ExplainQueryPlan((pParse, 1, "RIGHT-JOIN %s", pTabItem->pTab->zName));
2850   sqlite3VdbeNoJumpsOutsideSubrtn(v, pRJ->addrSubrtn, pRJ->endSubrtn,
2851                                   pRJ->regReturn);
2852   for(k=0; k<iLevel; k++){
2853     int iIdxCur;
2854     mAll |= pWInfo->a[k].pWLoop->maskSelf;
2855     sqlite3VdbeAddOp1(v, OP_NullRow, pWInfo->a[k].iTabCur);
2856     iIdxCur = pWInfo->a[k].iIdxCur;
2857     if( iIdxCur ){
2858       sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
2859     }
2860   }
2861   if( (pTabItem->fg.jointype & JT_LTORJ)==0 ){
2862     mAll |= pLoop->maskSelf;
2863     for(k=0; k<pWC->nTerm; k++){
2864       WhereTerm *pTerm = &pWC->a[k];
2865       if( (pTerm->wtFlags & (TERM_VIRTUAL|TERM_SLICE))!=0
2866        && pTerm->eOperator!=WO_ROWVAL
2867       ){
2868         break;
2869       }
2870       if( pTerm->prereqAll & ~mAll ) continue;
2871       if( ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) ) continue;
2872       pSubWhere = sqlite3ExprAnd(pParse, pSubWhere,
2873                                  sqlite3ExprDup(pParse->db, pTerm->pExpr, 0));
2874     }
2875   }
2876   sFrom.nSrc = 1;
2877   sFrom.nAlloc = 1;
2878   memcpy(&sFrom.a[0], pTabItem, sizeof(SrcItem));
2879   sFrom.a[0].fg.jointype = 0;
2880   assert( pParse->withinRJSubrtn < 100 );
2881   pParse->withinRJSubrtn++;
2882   pSubWInfo = sqlite3WhereBegin(pParse, &sFrom, pSubWhere, 0, 0, 0,
2883                                 WHERE_RIGHT_JOIN, 0);
2884   if( pSubWInfo ){
2885     int iCur = pLevel->iTabCur;
2886     int r = ++pParse->nMem;
2887     int nPk;
2888     int jmp;
2889     int addrCont = sqlite3WhereContinueLabel(pSubWInfo);
2890     Table *pTab = pTabItem->pTab;
2891     if( HasRowid(pTab) ){
2892       sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, r);
2893       nPk = 1;
2894     }else{
2895       int iPk;
2896       Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2897       nPk = pPk->nKeyCol;
2898       pParse->nMem += nPk - 1;
2899       for(iPk=0; iPk<nPk; iPk++){
2900         int iCol = pPk->aiColumn[iPk];
2901         sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2902       }
2903     }
2904     jmp = sqlite3VdbeAddOp4Int(v, OP_Filter, pRJ->regBloom, 0, r, nPk);
2905     VdbeCoverage(v);
2906     sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, addrCont, r, nPk);
2907     VdbeCoverage(v);
2908     sqlite3VdbeJumpHere(v, jmp);
2909     sqlite3VdbeAddOp2(v, OP_Gosub, pRJ->regReturn, pRJ->addrSubrtn);
2910     sqlite3WhereEnd(pSubWInfo);
2911   }
2912   sqlite3ExprDelete(pParse->db, pSubWhere);
2913   ExplainQueryPlanPop(pParse);
2914   assert( pParse->withinRJSubrtn>0 );
2915   pParse->withinRJSubrtn--;
2916 }
2917