1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 25 /* 26 ** Return the name of the i-th column of the pIdx index. 27 */ 28 static const char *explainIndexColumnName(Index *pIdx, int i){ 29 i = pIdx->aiColumn[i]; 30 if( i==XN_EXPR ) return "<expr>"; 31 if( i==XN_ROWID ) return "rowid"; 32 return pIdx->pTable->aCol[i].zCnName; 33 } 34 35 /* 36 ** This routine is a helper for explainIndexRange() below 37 ** 38 ** pStr holds the text of an expression that we are building up one term 39 ** at a time. This routine adds a new term to the end of the expression. 40 ** Terms are separated by AND so add the "AND" text for second and subsequent 41 ** terms only. 42 */ 43 static void explainAppendTerm( 44 StrAccum *pStr, /* The text expression being built */ 45 Index *pIdx, /* Index to read column names from */ 46 int nTerm, /* Number of terms */ 47 int iTerm, /* Zero-based index of first term. */ 48 int bAnd, /* Non-zero to append " AND " */ 49 const char *zOp /* Name of the operator */ 50 ){ 51 int i; 52 53 assert( nTerm>=1 ); 54 if( bAnd ) sqlite3_str_append(pStr, " AND ", 5); 55 56 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 57 for(i=0; i<nTerm; i++){ 58 if( i ) sqlite3_str_append(pStr, ",", 1); 59 sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i)); 60 } 61 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 62 63 sqlite3_str_append(pStr, zOp, 1); 64 65 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 66 for(i=0; i<nTerm; i++){ 67 if( i ) sqlite3_str_append(pStr, ",", 1); 68 sqlite3_str_append(pStr, "?", 1); 69 } 70 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 71 } 72 73 /* 74 ** Argument pLevel describes a strategy for scanning table pTab. This 75 ** function appends text to pStr that describes the subset of table 76 ** rows scanned by the strategy in the form of an SQL expression. 77 ** 78 ** For example, if the query: 79 ** 80 ** SELECT * FROM t1 WHERE a=1 AND b>2; 81 ** 82 ** is run and there is an index on (a, b), then this function returns a 83 ** string similar to: 84 ** 85 ** "a=? AND b>?" 86 */ 87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 88 Index *pIndex = pLoop->u.btree.pIndex; 89 u16 nEq = pLoop->u.btree.nEq; 90 u16 nSkip = pLoop->nSkip; 91 int i, j; 92 93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 94 sqlite3_str_append(pStr, " (", 2); 95 for(i=0; i<nEq; i++){ 96 const char *z = explainIndexColumnName(pIndex, i); 97 if( i ) sqlite3_str_append(pStr, " AND ", 5); 98 sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); 99 } 100 101 j = i; 102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); 104 i = 1; 105 } 106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); 108 } 109 sqlite3_str_append(pStr, ")", 1); 110 } 111 112 /* 113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 116 ** is added to the output to describe the table scan strategy in pLevel. 117 ** 118 ** If an OP_Explain opcode is added to the VM, its address is returned. 119 ** Otherwise, if no OP_Explain is coded, zero is returned. 120 */ 121 int sqlite3WhereExplainOneScan( 122 Parse *pParse, /* Parse context */ 123 SrcList *pTabList, /* Table list this loop refers to */ 124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 125 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 126 ){ 127 int ret = 0; 128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 129 if( sqlite3ParseToplevel(pParse)->explain==2 ) 130 #endif 131 { 132 SrcItem *pItem = &pTabList->a[pLevel->iFrom]; 133 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 134 sqlite3 *db = pParse->db; /* Database handle */ 135 int isSearch; /* True for a SEARCH. False for SCAN. */ 136 WhereLoop *pLoop; /* The controlling WhereLoop object */ 137 u32 flags; /* Flags that describe this loop */ 138 char *zMsg; /* Text to add to EQP output */ 139 StrAccum str; /* EQP output string */ 140 char zBuf[100]; /* Initial space for EQP output string */ 141 142 pLoop = pLevel->pWLoop; 143 flags = pLoop->wsFlags; 144 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; 145 146 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 147 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 148 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 149 150 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 151 str.printfFlags = SQLITE_PRINTF_INTERNAL; 152 sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem); 153 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 154 const char *zFmt = 0; 155 Index *pIdx; 156 157 assert( pLoop->u.btree.pIndex!=0 ); 158 pIdx = pLoop->u.btree.pIndex; 159 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 160 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 161 if( isSearch ){ 162 zFmt = "PRIMARY KEY"; 163 } 164 }else if( flags & WHERE_PARTIALIDX ){ 165 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 166 }else if( flags & WHERE_AUTO_INDEX ){ 167 zFmt = "AUTOMATIC COVERING INDEX"; 168 }else if( flags & WHERE_IDX_ONLY ){ 169 zFmt = "COVERING INDEX %s"; 170 }else{ 171 zFmt = "INDEX %s"; 172 } 173 if( zFmt ){ 174 sqlite3_str_append(&str, " USING ", 7); 175 sqlite3_str_appendf(&str, zFmt, pIdx->zName); 176 explainIndexRange(&str, pLoop); 177 } 178 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 179 char cRangeOp; 180 #if 0 /* Better output, but breaks many tests */ 181 const Table *pTab = pItem->pTab; 182 const char *zRowid = pTab->iPKey>=0 ? pTab->aCol[pTab->iPKey].zCnName: 183 "rowid"; 184 #else 185 const char *zRowid = "rowid"; 186 #endif 187 sqlite3_str_appendf(&str, " USING INTEGER PRIMARY KEY (%s", zRowid); 188 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 189 cRangeOp = '='; 190 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 191 sqlite3_str_appendf(&str, ">? AND %s", zRowid); 192 cRangeOp = '<'; 193 }else if( flags&WHERE_BTM_LIMIT ){ 194 cRangeOp = '>'; 195 }else{ 196 assert( flags&WHERE_TOP_LIMIT); 197 cRangeOp = '<'; 198 } 199 sqlite3_str_appendf(&str, "%c?)", cRangeOp); 200 } 201 #ifndef SQLITE_OMIT_VIRTUALTABLE 202 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 203 sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s", 204 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 205 } 206 #endif 207 if( pItem->fg.jointype & JT_LEFT ){ 208 sqlite3_str_appendf(&str, " LEFT-JOIN"); 209 } 210 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 211 if( pLoop->nOut>=10 ){ 212 sqlite3_str_appendf(&str, " (~%llu rows)", 213 sqlite3LogEstToInt(pLoop->nOut)); 214 }else{ 215 sqlite3_str_append(&str, " (~1 row)", 9); 216 } 217 #endif 218 zMsg = sqlite3StrAccumFinish(&str); 219 sqlite3ExplainBreakpoint("",zMsg); 220 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), 221 pParse->addrExplain, 0, zMsg,P4_DYNAMIC); 222 } 223 return ret; 224 } 225 226 /* 227 ** Add a single OP_Explain opcode that describes a Bloom filter. 228 ** 229 ** Or if not processing EXPLAIN QUERY PLAN and not in a SQLITE_DEBUG and/or 230 ** SQLITE_ENABLE_STMT_SCANSTATUS build, then OP_Explain opcodes are not 231 ** required and this routine is a no-op. 232 ** 233 ** If an OP_Explain opcode is added to the VM, its address is returned. 234 ** Otherwise, if no OP_Explain is coded, zero is returned. 235 */ 236 int sqlite3WhereExplainBloomFilter( 237 const Parse *pParse, /* Parse context */ 238 const WhereInfo *pWInfo, /* WHERE clause */ 239 const WhereLevel *pLevel /* Bloom filter on this level */ 240 ){ 241 int ret = 0; 242 SrcItem *pItem = &pWInfo->pTabList->a[pLevel->iFrom]; 243 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 244 sqlite3 *db = pParse->db; /* Database handle */ 245 char *zMsg; /* Text to add to EQP output */ 246 int i; /* Loop counter */ 247 WhereLoop *pLoop; /* The where loop */ 248 StrAccum str; /* EQP output string */ 249 char zBuf[100]; /* Initial space for EQP output string */ 250 251 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 252 str.printfFlags = SQLITE_PRINTF_INTERNAL; 253 sqlite3_str_appendf(&str, "BLOOM FILTER ON %S (", pItem); 254 pLoop = pLevel->pWLoop; 255 if( pLoop->wsFlags & WHERE_IPK ){ 256 const Table *pTab = pItem->pTab; 257 if( pTab->iPKey>=0 ){ 258 sqlite3_str_appendf(&str, "%s=?", pTab->aCol[pTab->iPKey].zCnName); 259 }else{ 260 sqlite3_str_appendf(&str, "rowid=?"); 261 } 262 }else{ 263 for(i=pLoop->nSkip; i<pLoop->u.btree.nEq; i++){ 264 const char *z = explainIndexColumnName(pLoop->u.btree.pIndex, i); 265 if( i>pLoop->nSkip ) sqlite3_str_append(&str, " AND ", 5); 266 sqlite3_str_appendf(&str, "%s=?", z); 267 } 268 } 269 sqlite3_str_append(&str, ")", 1); 270 zMsg = sqlite3StrAccumFinish(&str); 271 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), 272 pParse->addrExplain, 0, zMsg,P4_DYNAMIC); 273 return ret; 274 } 275 #endif /* SQLITE_OMIT_EXPLAIN */ 276 277 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 278 /* 279 ** Configure the VM passed as the first argument with an 280 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 281 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 282 ** clause that the scan reads data from. 283 ** 284 ** If argument addrExplain is not 0, it must be the address of an 285 ** OP_Explain instruction that describes the same loop. 286 */ 287 void sqlite3WhereAddScanStatus( 288 Vdbe *v, /* Vdbe to add scanstatus entry to */ 289 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 290 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 291 int addrExplain /* Address of OP_Explain (or 0) */ 292 ){ 293 const char *zObj = 0; 294 WhereLoop *pLoop = pLvl->pWLoop; 295 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 296 zObj = pLoop->u.btree.pIndex->zName; 297 }else{ 298 zObj = pSrclist->a[pLvl->iFrom].zName; 299 } 300 sqlite3VdbeScanStatus( 301 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 302 ); 303 } 304 #endif 305 306 307 /* 308 ** Disable a term in the WHERE clause. Except, do not disable the term 309 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 310 ** or USING clause of that join. 311 ** 312 ** Consider the term t2.z='ok' in the following queries: 313 ** 314 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 315 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 316 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 317 ** 318 ** The t2.z='ok' is disabled in the in (2) because it originates 319 ** in the ON clause. The term is disabled in (3) because it is not part 320 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 321 ** 322 ** Disabling a term causes that term to not be tested in the inner loop 323 ** of the join. Disabling is an optimization. When terms are satisfied 324 ** by indices, we disable them to prevent redundant tests in the inner 325 ** loop. We would get the correct results if nothing were ever disabled, 326 ** but joins might run a little slower. The trick is to disable as much 327 ** as we can without disabling too much. If we disabled in (1), we'd get 328 ** the wrong answer. See ticket #813. 329 ** 330 ** If all the children of a term are disabled, then that term is also 331 ** automatically disabled. In this way, terms get disabled if derived 332 ** virtual terms are tested first. For example: 333 ** 334 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 335 ** \___________/ \______/ \_____/ 336 ** parent child1 child2 337 ** 338 ** Only the parent term was in the original WHERE clause. The child1 339 ** and child2 terms were added by the LIKE optimization. If both of 340 ** the virtual child terms are valid, then testing of the parent can be 341 ** skipped. 342 ** 343 ** Usually the parent term is marked as TERM_CODED. But if the parent 344 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 345 ** The TERM_LIKECOND marking indicates that the term should be coded inside 346 ** a conditional such that is only evaluated on the second pass of a 347 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 348 */ 349 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 350 int nLoop = 0; 351 assert( pTerm!=0 ); 352 while( (pTerm->wtFlags & TERM_CODED)==0 353 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_OuterON)) 354 && (pLevel->notReady & pTerm->prereqAll)==0 355 ){ 356 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 357 pTerm->wtFlags |= TERM_LIKECOND; 358 }else{ 359 pTerm->wtFlags |= TERM_CODED; 360 } 361 #ifdef WHERETRACE_ENABLED 362 if( sqlite3WhereTrace & 0x20000 ){ 363 sqlite3DebugPrintf("DISABLE-"); 364 sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a))); 365 } 366 #endif 367 if( pTerm->iParent<0 ) break; 368 pTerm = &pTerm->pWC->a[pTerm->iParent]; 369 assert( pTerm!=0 ); 370 pTerm->nChild--; 371 if( pTerm->nChild!=0 ) break; 372 nLoop++; 373 } 374 } 375 376 /* 377 ** Code an OP_Affinity opcode to apply the column affinity string zAff 378 ** to the n registers starting at base. 379 ** 380 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which 381 ** are no-ops) at the beginning and end of zAff are ignored. If all entries 382 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated. 383 ** 384 ** This routine makes its own copy of zAff so that the caller is free 385 ** to modify zAff after this routine returns. 386 */ 387 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 388 Vdbe *v = pParse->pVdbe; 389 if( zAff==0 ){ 390 assert( pParse->db->mallocFailed ); 391 return; 392 } 393 assert( v!=0 ); 394 395 /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE 396 ** entries at the beginning and end of the affinity string. 397 */ 398 assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB ); 399 while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){ 400 n--; 401 base++; 402 zAff++; 403 } 404 while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){ 405 n--; 406 } 407 408 /* Code the OP_Affinity opcode if there is anything left to do. */ 409 if( n>0 ){ 410 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 411 } 412 } 413 414 /* 415 ** Expression pRight, which is the RHS of a comparison operation, is 416 ** either a vector of n elements or, if n==1, a scalar expression. 417 ** Before the comparison operation, affinity zAff is to be applied 418 ** to the pRight values. This function modifies characters within the 419 ** affinity string to SQLITE_AFF_BLOB if either: 420 ** 421 ** * the comparison will be performed with no affinity, or 422 ** * the affinity change in zAff is guaranteed not to change the value. 423 */ 424 static void updateRangeAffinityStr( 425 Expr *pRight, /* RHS of comparison */ 426 int n, /* Number of vector elements in comparison */ 427 char *zAff /* Affinity string to modify */ 428 ){ 429 int i; 430 for(i=0; i<n; i++){ 431 Expr *p = sqlite3VectorFieldSubexpr(pRight, i); 432 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB 433 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) 434 ){ 435 zAff[i] = SQLITE_AFF_BLOB; 436 } 437 } 438 } 439 440 441 /* 442 ** pX is an expression of the form: (vector) IN (SELECT ...) 443 ** In other words, it is a vector IN operator with a SELECT clause on the 444 ** LHS. But not all terms in the vector are indexable and the terms might 445 ** not be in the correct order for indexing. 446 ** 447 ** This routine makes a copy of the input pX expression and then adjusts 448 ** the vector on the LHS with corresponding changes to the SELECT so that 449 ** the vector contains only index terms and those terms are in the correct 450 ** order. The modified IN expression is returned. The caller is responsible 451 ** for deleting the returned expression. 452 ** 453 ** Example: 454 ** 455 ** CREATE TABLE t1(a,b,c,d,e,f); 456 ** CREATE INDEX t1x1 ON t1(e,c); 457 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2) 458 ** \_______________________________________/ 459 ** The pX expression 460 ** 461 ** Since only columns e and c can be used with the index, in that order, 462 ** the modified IN expression that is returned will be: 463 ** 464 ** (e,c) IN (SELECT z,x FROM t2) 465 ** 466 ** The reduced pX is different from the original (obviously) and thus is 467 ** only used for indexing, to improve performance. The original unaltered 468 ** IN expression must also be run on each output row for correctness. 469 */ 470 static Expr *removeUnindexableInClauseTerms( 471 Parse *pParse, /* The parsing context */ 472 int iEq, /* Look at loop terms starting here */ 473 WhereLoop *pLoop, /* The current loop */ 474 Expr *pX /* The IN expression to be reduced */ 475 ){ 476 sqlite3 *db = pParse->db; 477 Expr *pNew; 478 pNew = sqlite3ExprDup(db, pX, 0); 479 if( db->mallocFailed==0 ){ 480 ExprList *pOrigRhs; /* Original unmodified RHS */ 481 ExprList *pOrigLhs; /* Original unmodified LHS */ 482 ExprList *pRhs = 0; /* New RHS after modifications */ 483 ExprList *pLhs = 0; /* New LHS after mods */ 484 int i; /* Loop counter */ 485 Select *pSelect; /* Pointer to the SELECT on the RHS */ 486 487 assert( ExprUseXSelect(pNew) ); 488 pOrigRhs = pNew->x.pSelect->pEList; 489 assert( pNew->pLeft!=0 ); 490 assert( ExprUseXList(pNew->pLeft) ); 491 pOrigLhs = pNew->pLeft->x.pList; 492 for(i=iEq; i<pLoop->nLTerm; i++){ 493 if( pLoop->aLTerm[i]->pExpr==pX ){ 494 int iField; 495 assert( (pLoop->aLTerm[i]->eOperator & (WO_OR|WO_AND))==0 ); 496 iField = pLoop->aLTerm[i]->u.x.iField - 1; 497 if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */ 498 pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr); 499 pOrigRhs->a[iField].pExpr = 0; 500 assert( pOrigLhs->a[iField].pExpr!=0 ); 501 pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr); 502 pOrigLhs->a[iField].pExpr = 0; 503 } 504 } 505 sqlite3ExprListDelete(db, pOrigRhs); 506 sqlite3ExprListDelete(db, pOrigLhs); 507 pNew->pLeft->x.pList = pLhs; 508 pNew->x.pSelect->pEList = pRhs; 509 if( pLhs && pLhs->nExpr==1 ){ 510 /* Take care here not to generate a TK_VECTOR containing only a 511 ** single value. Since the parser never creates such a vector, some 512 ** of the subroutines do not handle this case. */ 513 Expr *p = pLhs->a[0].pExpr; 514 pLhs->a[0].pExpr = 0; 515 sqlite3ExprDelete(db, pNew->pLeft); 516 pNew->pLeft = p; 517 } 518 pSelect = pNew->x.pSelect; 519 if( pSelect->pOrderBy ){ 520 /* If the SELECT statement has an ORDER BY clause, zero the 521 ** iOrderByCol variables. These are set to non-zero when an 522 ** ORDER BY term exactly matches one of the terms of the 523 ** result-set. Since the result-set of the SELECT statement may 524 ** have been modified or reordered, these variables are no longer 525 ** set correctly. Since setting them is just an optimization, 526 ** it's easiest just to zero them here. */ 527 ExprList *pOrderBy = pSelect->pOrderBy; 528 for(i=0; i<pOrderBy->nExpr; i++){ 529 pOrderBy->a[i].u.x.iOrderByCol = 0; 530 } 531 } 532 533 #if 0 534 printf("For indexing, change the IN expr:\n"); 535 sqlite3TreeViewExpr(0, pX, 0); 536 printf("Into:\n"); 537 sqlite3TreeViewExpr(0, pNew, 0); 538 #endif 539 } 540 return pNew; 541 } 542 543 544 /* 545 ** Generate code for a single equality term of the WHERE clause. An equality 546 ** term can be either X=expr or X IN (...). pTerm is the term to be 547 ** coded. 548 ** 549 ** The current value for the constraint is left in a register, the index 550 ** of which is returned. An attempt is made store the result in iTarget but 551 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the 552 ** constraint is a TK_EQ or TK_IS, then the current value might be left in 553 ** some other register and it is the caller's responsibility to compensate. 554 ** 555 ** For a constraint of the form X=expr, the expression is evaluated in 556 ** straight-line code. For constraints of the form X IN (...) 557 ** this routine sets up a loop that will iterate over all values of X. 558 */ 559 static int codeEqualityTerm( 560 Parse *pParse, /* The parsing context */ 561 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 562 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 563 int iEq, /* Index of the equality term within this level */ 564 int bRev, /* True for reverse-order IN operations */ 565 int iTarget /* Attempt to leave results in this register */ 566 ){ 567 Expr *pX = pTerm->pExpr; 568 Vdbe *v = pParse->pVdbe; 569 int iReg; /* Register holding results */ 570 571 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); 572 assert( iTarget>0 ); 573 if( pX->op==TK_EQ || pX->op==TK_IS ){ 574 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 575 }else if( pX->op==TK_ISNULL ){ 576 iReg = iTarget; 577 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 578 #ifndef SQLITE_OMIT_SUBQUERY 579 }else{ 580 int eType = IN_INDEX_NOOP; 581 int iTab; 582 struct InLoop *pIn; 583 WhereLoop *pLoop = pLevel->pWLoop; 584 int i; 585 int nEq = 0; 586 int *aiMap = 0; 587 588 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 589 && pLoop->u.btree.pIndex!=0 590 && pLoop->u.btree.pIndex->aSortOrder[iEq] 591 ){ 592 testcase( iEq==0 ); 593 testcase( bRev ); 594 bRev = !bRev; 595 } 596 assert( pX->op==TK_IN ); 597 iReg = iTarget; 598 599 for(i=0; i<iEq; i++){ 600 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ 601 disableTerm(pLevel, pTerm); 602 return iTarget; 603 } 604 } 605 for(i=iEq;i<pLoop->nLTerm; i++){ 606 assert( pLoop->aLTerm[i]!=0 ); 607 if( pLoop->aLTerm[i]->pExpr==pX ) nEq++; 608 } 609 610 iTab = 0; 611 if( !ExprUseXSelect(pX) || pX->x.pSelect->pEList->nExpr==1 ){ 612 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab); 613 }else{ 614 Expr *pExpr = pTerm->pExpr; 615 if( pExpr->iTable==0 || !ExprHasProperty(pExpr, EP_Subrtn) ){ 616 sqlite3 *db = pParse->db; 617 pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX); 618 if( !db->mallocFailed ){ 619 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq); 620 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap,&iTab); 621 pExpr->iTable = iTab; 622 } 623 sqlite3ExprDelete(db, pX); 624 }else{ 625 int n = sqlite3ExprVectorSize(pX->pLeft); 626 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*MAX(nEq,n)); 627 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab); 628 } 629 pX = pExpr; 630 } 631 632 if( eType==IN_INDEX_INDEX_DESC ){ 633 testcase( bRev ); 634 bRev = !bRev; 635 } 636 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 637 VdbeCoverageIf(v, bRev); 638 VdbeCoverageIf(v, !bRev); 639 640 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 641 pLoop->wsFlags |= WHERE_IN_ABLE; 642 if( pLevel->u.in.nIn==0 ){ 643 pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 644 } 645 if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){ 646 pLoop->wsFlags |= WHERE_IN_EARLYOUT; 647 } 648 649 i = pLevel->u.in.nIn; 650 pLevel->u.in.nIn += nEq; 651 pLevel->u.in.aInLoop = 652 sqlite3WhereRealloc(pTerm->pWC->pWInfo, 653 pLevel->u.in.aInLoop, 654 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 655 pIn = pLevel->u.in.aInLoop; 656 if( pIn ){ 657 int iMap = 0; /* Index in aiMap[] */ 658 pIn += i; 659 for(i=iEq;i<pLoop->nLTerm; i++){ 660 if( pLoop->aLTerm[i]->pExpr==pX ){ 661 int iOut = iReg + i - iEq; 662 if( eType==IN_INDEX_ROWID ){ 663 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); 664 }else{ 665 int iCol = aiMap ? aiMap[iMap++] : 0; 666 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); 667 } 668 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); 669 if( i==iEq ){ 670 pIn->iCur = iTab; 671 pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next; 672 if( iEq>0 ){ 673 pIn->iBase = iReg - i; 674 pIn->nPrefix = i; 675 }else{ 676 pIn->nPrefix = 0; 677 } 678 }else{ 679 pIn->eEndLoopOp = OP_Noop; 680 } 681 pIn++; 682 } 683 } 684 testcase( iEq>0 685 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 686 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ); 687 if( iEq>0 688 && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0 689 ){ 690 sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq); 691 } 692 }else{ 693 pLevel->u.in.nIn = 0; 694 } 695 sqlite3DbFree(pParse->db, aiMap); 696 #endif 697 } 698 699 /* As an optimization, try to disable the WHERE clause term that is 700 ** driving the index as it will always be true. The correct answer is 701 ** obtained regardless, but we might get the answer with fewer CPU cycles 702 ** by omitting the term. 703 ** 704 ** But do not disable the term unless we are certain that the term is 705 ** not a transitive constraint. For an example of where that does not 706 ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04) 707 */ 708 if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0 709 || (pTerm->eOperator & WO_EQUIV)==0 710 ){ 711 disableTerm(pLevel, pTerm); 712 } 713 714 return iReg; 715 } 716 717 /* 718 ** Generate code that will evaluate all == and IN constraints for an 719 ** index scan. 720 ** 721 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 722 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 723 ** The index has as many as three equality constraints, but in this 724 ** example, the third "c" value is an inequality. So only two 725 ** constraints are coded. This routine will generate code to evaluate 726 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 727 ** in consecutive registers and the index of the first register is returned. 728 ** 729 ** In the example above nEq==2. But this subroutine works for any value 730 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 731 ** The only thing it does is allocate the pLevel->iMem memory cell and 732 ** compute the affinity string. 733 ** 734 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 735 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 736 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 737 ** occurs after the nEq quality constraints. 738 ** 739 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 740 ** the index of the first memory cell in that range. The code that 741 ** calls this routine will use that memory range to store keys for 742 ** start and termination conditions of the loop. 743 ** key value of the loop. If one or more IN operators appear, then 744 ** this routine allocates an additional nEq memory cells for internal 745 ** use. 746 ** 747 ** Before returning, *pzAff is set to point to a buffer containing a 748 ** copy of the column affinity string of the index allocated using 749 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 750 ** with equality constraints that use BLOB or NONE affinity are set to 751 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 752 ** 753 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 754 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 755 ** 756 ** In the example above, the index on t1(a) has TEXT affinity. But since 757 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 758 ** no conversion should be attempted before using a t2.b value as part of 759 ** a key to search the index. Hence the first byte in the returned affinity 760 ** string in this example would be set to SQLITE_AFF_BLOB. 761 */ 762 static int codeAllEqualityTerms( 763 Parse *pParse, /* Parsing context */ 764 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 765 int bRev, /* Reverse the order of IN operators */ 766 int nExtraReg, /* Number of extra registers to allocate */ 767 char **pzAff /* OUT: Set to point to affinity string */ 768 ){ 769 u16 nEq; /* The number of == or IN constraints to code */ 770 u16 nSkip; /* Number of left-most columns to skip */ 771 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 772 Index *pIdx; /* The index being used for this loop */ 773 WhereTerm *pTerm; /* A single constraint term */ 774 WhereLoop *pLoop; /* The WhereLoop object */ 775 int j; /* Loop counter */ 776 int regBase; /* Base register */ 777 int nReg; /* Number of registers to allocate */ 778 char *zAff; /* Affinity string to return */ 779 780 /* This module is only called on query plans that use an index. */ 781 pLoop = pLevel->pWLoop; 782 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 783 nEq = pLoop->u.btree.nEq; 784 nSkip = pLoop->nSkip; 785 pIdx = pLoop->u.btree.pIndex; 786 assert( pIdx!=0 ); 787 788 /* Figure out how many memory cells we will need then allocate them. 789 */ 790 regBase = pParse->nMem + 1; 791 nReg = pLoop->u.btree.nEq + nExtraReg; 792 pParse->nMem += nReg; 793 794 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 795 assert( zAff!=0 || pParse->db->mallocFailed ); 796 797 if( nSkip ){ 798 int iIdxCur = pLevel->iIdxCur; 799 sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1); 800 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 801 VdbeCoverageIf(v, bRev==0); 802 VdbeCoverageIf(v, bRev!=0); 803 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 804 j = sqlite3VdbeAddOp0(v, OP_Goto); 805 assert( pLevel->addrSkip==0 ); 806 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 807 iIdxCur, 0, regBase, nSkip); 808 VdbeCoverageIf(v, bRev==0); 809 VdbeCoverageIf(v, bRev!=0); 810 sqlite3VdbeJumpHere(v, j); 811 for(j=0; j<nSkip; j++){ 812 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 813 testcase( pIdx->aiColumn[j]==XN_EXPR ); 814 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 815 } 816 } 817 818 /* Evaluate the equality constraints 819 */ 820 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 821 for(j=nSkip; j<nEq; j++){ 822 int r1; 823 pTerm = pLoop->aLTerm[j]; 824 assert( pTerm!=0 ); 825 /* The following testcase is true for indices with redundant columns. 826 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 827 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 828 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 829 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 830 if( r1!=regBase+j ){ 831 if( nReg==1 ){ 832 sqlite3ReleaseTempReg(pParse, regBase); 833 regBase = r1; 834 }else{ 835 sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j); 836 } 837 } 838 } 839 for(j=nSkip; j<nEq; j++){ 840 pTerm = pLoop->aLTerm[j]; 841 if( pTerm->eOperator & WO_IN ){ 842 if( pTerm->pExpr->flags & EP_xIsSelect ){ 843 /* No affinity ever needs to be (or should be) applied to a value 844 ** from the RHS of an "? IN (SELECT ...)" expression. The 845 ** sqlite3FindInIndex() routine has already ensured that the 846 ** affinity of the comparison has been applied to the value. */ 847 if( zAff ) zAff[j] = SQLITE_AFF_BLOB; 848 } 849 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ 850 Expr *pRight = pTerm->pExpr->pRight; 851 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 852 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 853 VdbeCoverage(v); 854 } 855 if( pParse->nErr==0 ){ 856 assert( pParse->db->mallocFailed==0 ); 857 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 858 zAff[j] = SQLITE_AFF_BLOB; 859 } 860 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 861 zAff[j] = SQLITE_AFF_BLOB; 862 } 863 } 864 } 865 } 866 *pzAff = zAff; 867 return regBase; 868 } 869 870 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 871 /* 872 ** If the most recently coded instruction is a constant range constraint 873 ** (a string literal) that originated from the LIKE optimization, then 874 ** set P3 and P5 on the OP_String opcode so that the string will be cast 875 ** to a BLOB at appropriate times. 876 ** 877 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 878 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 879 ** scan loop run twice, once for strings and a second time for BLOBs. 880 ** The OP_String opcodes on the second pass convert the upper and lower 881 ** bound string constants to blobs. This routine makes the necessary changes 882 ** to the OP_String opcodes for that to happen. 883 ** 884 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 885 ** only the one pass through the string space is required, so this routine 886 ** becomes a no-op. 887 */ 888 static void whereLikeOptimizationStringFixup( 889 Vdbe *v, /* prepared statement under construction */ 890 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 891 WhereTerm *pTerm /* The upper or lower bound just coded */ 892 ){ 893 if( pTerm->wtFlags & TERM_LIKEOPT ){ 894 VdbeOp *pOp; 895 assert( pLevel->iLikeRepCntr>0 ); 896 pOp = sqlite3VdbeGetLastOp(v); 897 assert( pOp!=0 ); 898 assert( pOp->opcode==OP_String8 899 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 900 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ 901 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ 902 } 903 } 904 #else 905 # define whereLikeOptimizationStringFixup(A,B,C) 906 #endif 907 908 #ifdef SQLITE_ENABLE_CURSOR_HINTS 909 /* 910 ** Information is passed from codeCursorHint() down to individual nodes of 911 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 912 ** structure. 913 */ 914 struct CCurHint { 915 int iTabCur; /* Cursor for the main table */ 916 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 917 Index *pIdx; /* The index used to access the table */ 918 }; 919 920 /* 921 ** This function is called for every node of an expression that is a candidate 922 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 923 ** the table CCurHint.iTabCur, verify that the same column can be 924 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 925 */ 926 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 927 struct CCurHint *pHint = pWalker->u.pCCurHint; 928 assert( pHint->pIdx!=0 ); 929 if( pExpr->op==TK_COLUMN 930 && pExpr->iTable==pHint->iTabCur 931 && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0 932 ){ 933 pWalker->eCode = 1; 934 } 935 return WRC_Continue; 936 } 937 938 /* 939 ** Test whether or not expression pExpr, which was part of a WHERE clause, 940 ** should be included in the cursor-hint for a table that is on the rhs 941 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the 942 ** expression is not suitable. 943 ** 944 ** An expression is unsuitable if it might evaluate to non NULL even if 945 ** a TK_COLUMN node that does affect the value of the expression is set 946 ** to NULL. For example: 947 ** 948 ** col IS NULL 949 ** col IS NOT NULL 950 ** coalesce(col, 1) 951 ** CASE WHEN col THEN 0 ELSE 1 END 952 */ 953 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ 954 if( pExpr->op==TK_IS 955 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT 956 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE 957 ){ 958 pWalker->eCode = 1; 959 }else if( pExpr->op==TK_FUNCTION ){ 960 int d1; 961 char d2[4]; 962 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ 963 pWalker->eCode = 1; 964 } 965 } 966 967 return WRC_Continue; 968 } 969 970 971 /* 972 ** This function is called on every node of an expression tree used as an 973 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 974 ** that accesses any table other than the one identified by 975 ** CCurHint.iTabCur, then do the following: 976 ** 977 ** 1) allocate a register and code an OP_Column instruction to read 978 ** the specified column into the new register, and 979 ** 980 ** 2) transform the expression node to a TK_REGISTER node that reads 981 ** from the newly populated register. 982 ** 983 ** Also, if the node is a TK_COLUMN that does access the table idenified 984 ** by pCCurHint.iTabCur, and an index is being used (which we will 985 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 986 ** an access of the index rather than the original table. 987 */ 988 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 989 int rc = WRC_Continue; 990 struct CCurHint *pHint = pWalker->u.pCCurHint; 991 if( pExpr->op==TK_COLUMN ){ 992 if( pExpr->iTable!=pHint->iTabCur ){ 993 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 994 sqlite3ExprCode(pWalker->pParse, pExpr, reg); 995 pExpr->op = TK_REGISTER; 996 pExpr->iTable = reg; 997 }else if( pHint->pIdx!=0 ){ 998 pExpr->iTable = pHint->iIdxCur; 999 pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn); 1000 assert( pExpr->iColumn>=0 ); 1001 } 1002 }else if( pExpr->op==TK_AGG_FUNCTION ){ 1003 /* An aggregate function in the WHERE clause of a query means this must 1004 ** be a correlated sub-query, and expression pExpr is an aggregate from 1005 ** the parent context. Do not walk the function arguments in this case. 1006 ** 1007 ** todo: It should be possible to replace this node with a TK_REGISTER 1008 ** expression, as the result of the expression must be stored in a 1009 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 1010 rc = WRC_Prune; 1011 } 1012 return rc; 1013 } 1014 1015 /* 1016 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 1017 */ 1018 static void codeCursorHint( 1019 SrcItem *pTabItem, /* FROM clause item */ 1020 WhereInfo *pWInfo, /* The where clause */ 1021 WhereLevel *pLevel, /* Which loop to provide hints for */ 1022 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 1023 ){ 1024 Parse *pParse = pWInfo->pParse; 1025 sqlite3 *db = pParse->db; 1026 Vdbe *v = pParse->pVdbe; 1027 Expr *pExpr = 0; 1028 WhereLoop *pLoop = pLevel->pWLoop; 1029 int iCur; 1030 WhereClause *pWC; 1031 WhereTerm *pTerm; 1032 int i, j; 1033 struct CCurHint sHint; 1034 Walker sWalker; 1035 1036 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 1037 iCur = pLevel->iTabCur; 1038 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 1039 sHint.iTabCur = iCur; 1040 sHint.iIdxCur = pLevel->iIdxCur; 1041 sHint.pIdx = pLoop->u.btree.pIndex; 1042 memset(&sWalker, 0, sizeof(sWalker)); 1043 sWalker.pParse = pParse; 1044 sWalker.u.pCCurHint = &sHint; 1045 pWC = &pWInfo->sWC; 1046 for(i=0; i<pWC->nBase; i++){ 1047 pTerm = &pWC->a[i]; 1048 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1049 if( pTerm->prereqAll & pLevel->notReady ) continue; 1050 1051 /* Any terms specified as part of the ON(...) clause for any LEFT 1052 ** JOIN for which the current table is not the rhs are omitted 1053 ** from the cursor-hint. 1054 ** 1055 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms 1056 ** that were specified as part of the WHERE clause must be excluded. 1057 ** This is to address the following: 1058 ** 1059 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; 1060 ** 1061 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its 1062 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is 1063 ** pushed down to the cursor, this row is filtered out, causing 1064 ** SQLite to synthesize a row of NULL values. Which does match the 1065 ** WHERE clause, and so the query returns a row. Which is incorrect. 1066 ** 1067 ** For the same reason, WHERE terms such as: 1068 ** 1069 ** WHERE 1 = (t2.c IS NULL) 1070 ** 1071 ** are also excluded. See codeCursorHintIsOrFunction() for details. 1072 */ 1073 if( pTabItem->fg.jointype & JT_LEFT ){ 1074 Expr *pExpr = pTerm->pExpr; 1075 if( !ExprHasProperty(pExpr, EP_OuterON) 1076 || pExpr->w.iJoin!=pTabItem->iCursor 1077 ){ 1078 sWalker.eCode = 0; 1079 sWalker.xExprCallback = codeCursorHintIsOrFunction; 1080 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 1081 if( sWalker.eCode ) continue; 1082 } 1083 }else{ 1084 if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) continue; 1085 } 1086 1087 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 1088 ** the cursor. These terms are not needed as hints for a pure range 1089 ** scan (that has no == terms) so omit them. */ 1090 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 1091 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 1092 if( j<pLoop->nLTerm ) continue; 1093 } 1094 1095 /* No subqueries or non-deterministic functions allowed */ 1096 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 1097 1098 /* For an index scan, make sure referenced columns are actually in 1099 ** the index. */ 1100 if( sHint.pIdx!=0 ){ 1101 sWalker.eCode = 0; 1102 sWalker.xExprCallback = codeCursorHintCheckExpr; 1103 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 1104 if( sWalker.eCode ) continue; 1105 } 1106 1107 /* If we survive all prior tests, that means this term is worth hinting */ 1108 pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 1109 } 1110 if( pExpr!=0 ){ 1111 sWalker.xExprCallback = codeCursorHintFixExpr; 1112 sqlite3WalkExpr(&sWalker, pExpr); 1113 sqlite3VdbeAddOp4(v, OP_CursorHint, 1114 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 1115 (const char*)pExpr, P4_EXPR); 1116 } 1117 } 1118 #else 1119 # define codeCursorHint(A,B,C,D) /* No-op */ 1120 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 1121 1122 /* 1123 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains 1124 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This 1125 ** function generates code to do a deferred seek of cursor iCur to the 1126 ** rowid stored in register iRowid. 1127 ** 1128 ** Normally, this is just: 1129 ** 1130 ** OP_DeferredSeek $iCur $iRowid 1131 ** 1132 ** Which causes a seek on $iCur to the row with rowid $iRowid. 1133 ** 1134 ** However, if the scan currently being coded is a branch of an OR-loop and 1135 ** the statement currently being coded is a SELECT, then additional information 1136 ** is added that might allow OP_Column to omit the seek and instead do its 1137 ** lookup on the index, thus avoiding an expensive seek operation. To 1138 ** enable this optimization, the P3 of OP_DeferredSeek is set to iIdxCur 1139 ** and P4 is set to an array of integers containing one entry for each column 1140 ** in the table. For each table column, if the column is the i'th 1141 ** column of the index, then the corresponding array entry is set to (i+1). 1142 ** If the column does not appear in the index at all, the array entry is set 1143 ** to 0. The OP_Column opcode can check this array to see if the column it 1144 ** wants is in the index and if it is, it will substitute the index cursor 1145 ** and column number and continue with those new values, rather than seeking 1146 ** the table cursor. 1147 */ 1148 static void codeDeferredSeek( 1149 WhereInfo *pWInfo, /* Where clause context */ 1150 Index *pIdx, /* Index scan is using */ 1151 int iCur, /* Cursor for IPK b-tree */ 1152 int iIdxCur /* Index cursor */ 1153 ){ 1154 Parse *pParse = pWInfo->pParse; /* Parse context */ 1155 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ 1156 1157 assert( iIdxCur>0 ); 1158 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); 1159 1160 pWInfo->bDeferredSeek = 1; 1161 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur); 1162 if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN)) 1163 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) 1164 ){ 1165 int i; 1166 Table *pTab = pIdx->pTable; 1167 u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1)); 1168 if( ai ){ 1169 ai[0] = pTab->nCol; 1170 for(i=0; i<pIdx->nColumn-1; i++){ 1171 int x1, x2; 1172 assert( pIdx->aiColumn[i]<pTab->nCol ); 1173 x1 = pIdx->aiColumn[i]; 1174 x2 = sqlite3TableColumnToStorage(pTab, x1); 1175 testcase( x1!=x2 ); 1176 if( x1>=0 ) ai[x2+1] = i+1; 1177 } 1178 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); 1179 } 1180 } 1181 } 1182 1183 /* 1184 ** If the expression passed as the second argument is a vector, generate 1185 ** code to write the first nReg elements of the vector into an array 1186 ** of registers starting with iReg. 1187 ** 1188 ** If the expression is not a vector, then nReg must be passed 1. In 1189 ** this case, generate code to evaluate the expression and leave the 1190 ** result in register iReg. 1191 */ 1192 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ 1193 assert( nReg>0 ); 1194 if( p && sqlite3ExprIsVector(p) ){ 1195 #ifndef SQLITE_OMIT_SUBQUERY 1196 if( ExprUseXSelect(p) ){ 1197 Vdbe *v = pParse->pVdbe; 1198 int iSelect; 1199 assert( p->op==TK_SELECT ); 1200 iSelect = sqlite3CodeSubselect(pParse, p); 1201 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); 1202 }else 1203 #endif 1204 { 1205 int i; 1206 const ExprList *pList; 1207 assert( ExprUseXList(p) ); 1208 pList = p->x.pList; 1209 assert( nReg<=pList->nExpr ); 1210 for(i=0; i<nReg; i++){ 1211 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i); 1212 } 1213 } 1214 }else{ 1215 assert( nReg==1 || pParse->nErr ); 1216 sqlite3ExprCode(pParse, p, iReg); 1217 } 1218 } 1219 1220 /* An instance of the IdxExprTrans object carries information about a 1221 ** mapping from an expression on table columns into a column in an index 1222 ** down through the Walker. 1223 */ 1224 typedef struct IdxExprTrans { 1225 Expr *pIdxExpr; /* The index expression */ 1226 int iTabCur; /* The cursor of the corresponding table */ 1227 int iIdxCur; /* The cursor for the index */ 1228 int iIdxCol; /* The column for the index */ 1229 int iTabCol; /* The column for the table */ 1230 WhereInfo *pWInfo; /* Complete WHERE clause information */ 1231 sqlite3 *db; /* Database connection (for malloc()) */ 1232 } IdxExprTrans; 1233 1234 /* 1235 ** Preserve pExpr on the WhereETrans list of the WhereInfo. 1236 */ 1237 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){ 1238 WhereExprMod *pNew; 1239 pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew)); 1240 if( pNew==0 ) return; 1241 pNew->pNext = pTrans->pWInfo->pExprMods; 1242 pTrans->pWInfo->pExprMods = pNew; 1243 pNew->pExpr = pExpr; 1244 memcpy(&pNew->orig, pExpr, sizeof(*pExpr)); 1245 } 1246 1247 /* The walker node callback used to transform matching expressions into 1248 ** a reference to an index column for an index on an expression. 1249 ** 1250 ** If pExpr matches, then transform it into a reference to the index column 1251 ** that contains the value of pExpr. 1252 */ 1253 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){ 1254 IdxExprTrans *pX = p->u.pIdxTrans; 1255 if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){ 1256 pExpr = sqlite3ExprSkipCollate(pExpr); 1257 preserveExpr(pX, pExpr); 1258 pExpr->affExpr = sqlite3ExprAffinity(pExpr); 1259 pExpr->op = TK_COLUMN; 1260 pExpr->iTable = pX->iIdxCur; 1261 pExpr->iColumn = pX->iIdxCol; 1262 testcase( ExprHasProperty(pExpr, EP_Unlikely) ); 1263 ExprClearProperty(pExpr, EP_Skip|EP_Unlikely|EP_WinFunc|EP_Subrtn); 1264 pExpr->y.pTab = 0; 1265 return WRC_Prune; 1266 }else{ 1267 return WRC_Continue; 1268 } 1269 } 1270 1271 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1272 /* A walker node callback that translates a column reference to a table 1273 ** into a corresponding column reference of an index. 1274 */ 1275 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){ 1276 if( pExpr->op==TK_COLUMN ){ 1277 IdxExprTrans *pX = p->u.pIdxTrans; 1278 if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){ 1279 assert( ExprUseYTab(pExpr) && pExpr->y.pTab!=0 ); 1280 preserveExpr(pX, pExpr); 1281 pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn); 1282 pExpr->iTable = pX->iIdxCur; 1283 pExpr->iColumn = pX->iIdxCol; 1284 pExpr->y.pTab = 0; 1285 } 1286 } 1287 return WRC_Continue; 1288 } 1289 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1290 1291 /* 1292 ** For an indexes on expression X, locate every instance of expression X 1293 ** in pExpr and change that subexpression into a reference to the appropriate 1294 ** column of the index. 1295 ** 1296 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in 1297 ** the table into references to the corresponding (stored) column of the 1298 ** index. 1299 */ 1300 static void whereIndexExprTrans( 1301 Index *pIdx, /* The Index */ 1302 int iTabCur, /* Cursor of the table that is being indexed */ 1303 int iIdxCur, /* Cursor of the index itself */ 1304 WhereInfo *pWInfo /* Transform expressions in this WHERE clause */ 1305 ){ 1306 int iIdxCol; /* Column number of the index */ 1307 ExprList *aColExpr; /* Expressions that are indexed */ 1308 Table *pTab; 1309 Walker w; 1310 IdxExprTrans x; 1311 aColExpr = pIdx->aColExpr; 1312 if( aColExpr==0 && !pIdx->bHasVCol ){ 1313 /* The index does not reference any expressions or virtual columns 1314 ** so no translations are needed. */ 1315 return; 1316 } 1317 pTab = pIdx->pTable; 1318 memset(&w, 0, sizeof(w)); 1319 w.u.pIdxTrans = &x; 1320 x.iTabCur = iTabCur; 1321 x.iIdxCur = iIdxCur; 1322 x.pWInfo = pWInfo; 1323 x.db = pWInfo->pParse->db; 1324 for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){ 1325 i16 iRef = pIdx->aiColumn[iIdxCol]; 1326 if( iRef==XN_EXPR ){ 1327 assert( aColExpr!=0 && aColExpr->a[iIdxCol].pExpr!=0 ); 1328 x.pIdxExpr = aColExpr->a[iIdxCol].pExpr; 1329 if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue; 1330 w.xExprCallback = whereIndexExprTransNode; 1331 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1332 }else if( iRef>=0 1333 && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0 1334 && ((pTab->aCol[iRef].colFlags & COLFLAG_HASCOLL)==0 1335 || sqlite3StrICmp(sqlite3ColumnColl(&pTab->aCol[iRef]), 1336 sqlite3StrBINARY)==0) 1337 ){ 1338 /* Check to see if there are direct references to generated columns 1339 ** that are contained in the index. Pulling the generated column 1340 ** out of the index is an optimization only - the main table is always 1341 ** available if the index cannot be used. To avoid unnecessary 1342 ** complication, omit this optimization if the collating sequence for 1343 ** the column is non-standard */ 1344 x.iTabCol = iRef; 1345 w.xExprCallback = whereIndexExprTransColumn; 1346 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1347 }else{ 1348 continue; 1349 } 1350 x.iIdxCol = iIdxCol; 1351 sqlite3WalkExpr(&w, pWInfo->pWhere); 1352 sqlite3WalkExprList(&w, pWInfo->pOrderBy); 1353 sqlite3WalkExprList(&w, pWInfo->pResultSet); 1354 } 1355 } 1356 1357 /* 1358 ** The pTruth expression is always true because it is the WHERE clause 1359 ** a partial index that is driving a query loop. Look through all of the 1360 ** WHERE clause terms on the query, and if any of those terms must be 1361 ** true because pTruth is true, then mark those WHERE clause terms as 1362 ** coded. 1363 */ 1364 static void whereApplyPartialIndexConstraints( 1365 Expr *pTruth, 1366 int iTabCur, 1367 WhereClause *pWC 1368 ){ 1369 int i; 1370 WhereTerm *pTerm; 1371 while( pTruth->op==TK_AND ){ 1372 whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC); 1373 pTruth = pTruth->pRight; 1374 } 1375 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1376 Expr *pExpr; 1377 if( pTerm->wtFlags & TERM_CODED ) continue; 1378 pExpr = pTerm->pExpr; 1379 if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){ 1380 pTerm->wtFlags |= TERM_CODED; 1381 } 1382 } 1383 } 1384 1385 /* 1386 ** This routine is called right after An OP_Filter has been generated and 1387 ** before the corresponding index search has been performed. This routine 1388 ** checks to see if there are additional Bloom filters in inner loops that 1389 ** can be checked prior to doing the index lookup. If there are available 1390 ** inner-loop Bloom filters, then evaluate those filters now, before the 1391 ** index lookup. The idea is that a Bloom filter check is way faster than 1392 ** an index lookup, and the Bloom filter might return false, meaning that 1393 ** the index lookup can be skipped. 1394 ** 1395 ** We know that an inner loop uses a Bloom filter because it has the 1396 ** WhereLevel.regFilter set. If an inner-loop Bloom filter is checked, 1397 ** then clear the WhereLevel.regFilter value to prevent the Bloom filter 1398 ** from being checked a second time when the inner loop is evaluated. 1399 */ 1400 static SQLITE_NOINLINE void filterPullDown( 1401 Parse *pParse, /* Parsing context */ 1402 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1403 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1404 int addrNxt, /* Jump here to bypass inner loops */ 1405 Bitmask notReady /* Loops that are not ready */ 1406 ){ 1407 while( ++iLevel < pWInfo->nLevel ){ 1408 WhereLevel *pLevel = &pWInfo->a[iLevel]; 1409 WhereLoop *pLoop = pLevel->pWLoop; 1410 if( pLevel->regFilter==0 ) continue; 1411 if( pLevel->pWLoop->nSkip ) continue; 1412 /* ,--- Because sqlite3ConstructBloomFilter() has will not have set 1413 ** vvvvv--' pLevel->regFilter if this were true. */ 1414 if( NEVER(pLoop->prereq & notReady) ) continue; 1415 assert( pLevel->addrBrk==0 ); 1416 pLevel->addrBrk = addrNxt; 1417 if( pLoop->wsFlags & WHERE_IPK ){ 1418 WhereTerm *pTerm = pLoop->aLTerm[0]; 1419 int regRowid; 1420 assert( pTerm!=0 ); 1421 assert( pTerm->pExpr!=0 ); 1422 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1423 regRowid = sqlite3GetTempReg(pParse); 1424 regRowid = codeEqualityTerm(pParse, pTerm, pLevel, 0, 0, regRowid); 1425 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MustBeInt, regRowid, addrNxt); 1426 VdbeCoverage(pParse->pVdbe); 1427 sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter, 1428 addrNxt, regRowid, 1); 1429 VdbeCoverage(pParse->pVdbe); 1430 }else{ 1431 u16 nEq = pLoop->u.btree.nEq; 1432 int r1; 1433 char *zStartAff; 1434 1435 assert( pLoop->wsFlags & WHERE_INDEXED ); 1436 assert( (pLoop->wsFlags & WHERE_COLUMN_IN)==0 ); 1437 r1 = codeAllEqualityTerms(pParse,pLevel,0,0,&zStartAff); 1438 codeApplyAffinity(pParse, r1, nEq, zStartAff); 1439 sqlite3DbFree(pParse->db, zStartAff); 1440 sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter, 1441 addrNxt, r1, nEq); 1442 VdbeCoverage(pParse->pVdbe); 1443 } 1444 pLevel->regFilter = 0; 1445 pLevel->addrBrk = 0; 1446 } 1447 } 1448 1449 /* 1450 ** Generate code for the start of the iLevel-th loop in the WHERE clause 1451 ** implementation described by pWInfo. 1452 */ 1453 Bitmask sqlite3WhereCodeOneLoopStart( 1454 Parse *pParse, /* Parsing context */ 1455 Vdbe *v, /* Prepared statement under construction */ 1456 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1457 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1458 WhereLevel *pLevel, /* The current level pointer */ 1459 Bitmask notReady /* Which tables are currently available */ 1460 ){ 1461 int j, k; /* Loop counters */ 1462 int iCur; /* The VDBE cursor for the table */ 1463 int addrNxt; /* Where to jump to continue with the next IN case */ 1464 int bRev; /* True if we need to scan in reverse order */ 1465 WhereLoop *pLoop; /* The WhereLoop object being coded */ 1466 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 1467 WhereTerm *pTerm; /* A WHERE clause term */ 1468 sqlite3 *db; /* Database connection */ 1469 SrcItem *pTabItem; /* FROM clause term being coded */ 1470 int addrBrk; /* Jump here to break out of the loop */ 1471 int addrHalt; /* addrBrk for the outermost loop */ 1472 int addrCont; /* Jump here to continue with next cycle */ 1473 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 1474 int iReleaseReg = 0; /* Temp register to free before returning */ 1475 Index *pIdx = 0; /* Index used by loop (if any) */ 1476 int iLoop; /* Iteration of constraint generator loop */ 1477 1478 pWC = &pWInfo->sWC; 1479 db = pParse->db; 1480 pLoop = pLevel->pWLoop; 1481 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1482 iCur = pTabItem->iCursor; 1483 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 1484 bRev = (pWInfo->revMask>>iLevel)&1; 1485 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 1486 #if WHERETRACE_ENABLED /* 0x20800 */ 1487 if( sqlite3WhereTrace & 0x800 ){ 1488 sqlite3DebugPrintf("Coding level %d of %d: notReady=%llx iFrom=%d\n", 1489 iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom); 1490 sqlite3WhereLoopPrint(pLoop, pWC); 1491 } 1492 if( sqlite3WhereTrace & 0x20000 ){ 1493 if( iLevel==0 ){ 1494 sqlite3DebugPrintf("WHERE clause being coded:\n"); 1495 sqlite3TreeViewExpr(0, pWInfo->pWhere, 0); 1496 } 1497 sqlite3DebugPrintf("All WHERE-clause terms before coding:\n"); 1498 sqlite3WhereClausePrint(pWC); 1499 } 1500 #endif 1501 1502 /* Create labels for the "break" and "continue" instructions 1503 ** for the current loop. Jump to addrBrk to break out of a loop. 1504 ** Jump to cont to go immediately to the next iteration of the 1505 ** loop. 1506 ** 1507 ** When there is an IN operator, we also have a "addrNxt" label that 1508 ** means to continue with the next IN value combination. When 1509 ** there are no IN operators in the constraints, the "addrNxt" label 1510 ** is the same as "addrBrk". 1511 */ 1512 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 1513 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse); 1514 1515 /* If this is the right table of a LEFT OUTER JOIN, allocate and 1516 ** initialize a memory cell that records if this table matches any 1517 ** row of the left table of the join. 1518 */ 1519 assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN)) 1520 || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0 1521 ); 1522 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 1523 pLevel->iLeftJoin = ++pParse->nMem; 1524 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 1525 VdbeComment((v, "init LEFT JOIN no-match flag")); 1526 } 1527 1528 /* Compute a safe address to jump to if we discover that the table for 1529 ** this loop is empty and can never contribute content. */ 1530 for(j=iLevel; j>0; j--){ 1531 if( pWInfo->a[j].iLeftJoin ) break; 1532 if( pWInfo->a[j].pRJ ) break; 1533 } 1534 addrHalt = pWInfo->a[j].addrBrk; 1535 1536 /* Special case of a FROM clause subquery implemented as a co-routine */ 1537 if( pTabItem->fg.viaCoroutine ){ 1538 int regYield = pTabItem->regReturn; 1539 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 1540 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 1541 VdbeCoverage(v); 1542 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 1543 pLevel->op = OP_Goto; 1544 }else 1545 1546 #ifndef SQLITE_OMIT_VIRTUALTABLE 1547 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 1548 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 1549 ** to access the data. 1550 */ 1551 int iReg; /* P3 Value for OP_VFilter */ 1552 int addrNotFound; 1553 int nConstraint = pLoop->nLTerm; 1554 1555 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 1556 addrNotFound = pLevel->addrBrk; 1557 for(j=0; j<nConstraint; j++){ 1558 int iTarget = iReg+j+2; 1559 pTerm = pLoop->aLTerm[j]; 1560 if( NEVER(pTerm==0) ) continue; 1561 if( pTerm->eOperator & WO_IN ){ 1562 if( SMASKBIT32(j) & pLoop->u.vtab.mHandleIn ){ 1563 int iTab = pParse->nTab++; 1564 int iCache = ++pParse->nMem; 1565 sqlite3CodeRhsOfIN(pParse, pTerm->pExpr, iTab); 1566 sqlite3VdbeAddOp3(v, OP_VInitIn, iTab, iTarget, iCache); 1567 }else{ 1568 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 1569 addrNotFound = pLevel->addrNxt; 1570 } 1571 }else{ 1572 Expr *pRight = pTerm->pExpr->pRight; 1573 codeExprOrVector(pParse, pRight, iTarget, 1); 1574 if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET 1575 && pLoop->u.vtab.bOmitOffset 1576 ){ 1577 assert( pTerm->eOperator==WO_AUX ); 1578 assert( pWInfo->pLimit!=0 ); 1579 assert( pWInfo->pLimit->iOffset>0 ); 1580 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWInfo->pLimit->iOffset); 1581 VdbeComment((v,"Zero OFFSET counter")); 1582 } 1583 } 1584 } 1585 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 1586 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 1587 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 1588 pLoop->u.vtab.idxStr, 1589 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); 1590 VdbeCoverage(v); 1591 pLoop->u.vtab.needFree = 0; 1592 /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed 1593 ** the u.vtab.idxStr. NULL it out to prevent a use-after-free */ 1594 if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0; 1595 pLevel->p1 = iCur; 1596 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 1597 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1598 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 1599 1600 for(j=0; j<nConstraint; j++){ 1601 pTerm = pLoop->aLTerm[j]; 1602 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ 1603 disableTerm(pLevel, pTerm); 1604 continue; 1605 } 1606 if( (pTerm->eOperator & WO_IN)!=0 1607 && (SMASKBIT32(j) & pLoop->u.vtab.mHandleIn)==0 1608 && !db->mallocFailed 1609 ){ 1610 Expr *pCompare; /* The comparison operator */ 1611 Expr *pRight; /* RHS of the comparison */ 1612 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ 1613 int iIn; /* IN loop corresponding to the j-th constraint */ 1614 1615 /* Reload the constraint value into reg[iReg+j+2]. The same value 1616 ** was loaded into the same register prior to the OP_VFilter, but 1617 ** the xFilter implementation might have changed the datatype or 1618 ** encoding of the value in the register, so it *must* be reloaded. 1619 */ 1620 for(iIn=0; ALWAYS(iIn<pLevel->u.in.nIn); iIn++){ 1621 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop); 1622 if( (pOp->opcode==OP_Column && pOp->p3==iReg+j+2) 1623 || (pOp->opcode==OP_Rowid && pOp->p2==iReg+j+2) 1624 ){ 1625 testcase( pOp->opcode==OP_Rowid ); 1626 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); 1627 break; 1628 } 1629 } 1630 1631 /* Generate code that will continue to the next row if 1632 ** the IN constraint is not satisfied 1633 */ 1634 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); 1635 if( !db->mallocFailed ){ 1636 int iFld = pTerm->u.x.iField; 1637 Expr *pLeft = pTerm->pExpr->pLeft; 1638 assert( pLeft!=0 ); 1639 if( iFld>0 ){ 1640 assert( pLeft->op==TK_VECTOR ); 1641 assert( ExprUseXList(pLeft) ); 1642 assert( iFld<=pLeft->x.pList->nExpr ); 1643 pCompare->pLeft = pLeft->x.pList->a[iFld-1].pExpr; 1644 }else{ 1645 pCompare->pLeft = pLeft; 1646 } 1647 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); 1648 if( pRight ){ 1649 pRight->iTable = iReg+j+2; 1650 sqlite3ExprIfFalse( 1651 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL 1652 ); 1653 } 1654 pCompare->pLeft = 0; 1655 } 1656 sqlite3ExprDelete(db, pCompare); 1657 } 1658 } 1659 1660 /* These registers need to be preserved in case there is an IN operator 1661 ** loop. So we could deallocate the registers here (and potentially 1662 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems 1663 ** simpler and safer to simply not reuse the registers. 1664 ** 1665 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 1666 */ 1667 }else 1668 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1669 1670 if( (pLoop->wsFlags & WHERE_IPK)!=0 1671 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 1672 ){ 1673 /* Case 2: We can directly reference a single row using an 1674 ** equality comparison against the ROWID field. Or 1675 ** we reference multiple rows using a "rowid IN (...)" 1676 ** construct. 1677 */ 1678 assert( pLoop->u.btree.nEq==1 ); 1679 pTerm = pLoop->aLTerm[0]; 1680 assert( pTerm!=0 ); 1681 assert( pTerm->pExpr!=0 ); 1682 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1683 iReleaseReg = ++pParse->nMem; 1684 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 1685 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 1686 addrNxt = pLevel->addrNxt; 1687 if( pLevel->regFilter ){ 1688 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); 1689 VdbeCoverage(v); 1690 sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt, 1691 iRowidReg, 1); 1692 VdbeCoverage(v); 1693 filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady); 1694 } 1695 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); 1696 VdbeCoverage(v); 1697 pLevel->op = OP_Noop; 1698 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 1699 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 1700 ){ 1701 /* Case 3: We have an inequality comparison against the ROWID field. 1702 */ 1703 int testOp = OP_Noop; 1704 int start; 1705 int memEndValue = 0; 1706 WhereTerm *pStart, *pEnd; 1707 1708 j = 0; 1709 pStart = pEnd = 0; 1710 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 1711 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 1712 assert( pStart!=0 || pEnd!=0 ); 1713 if( bRev ){ 1714 pTerm = pStart; 1715 pStart = pEnd; 1716 pEnd = pTerm; 1717 } 1718 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); 1719 if( pStart ){ 1720 Expr *pX; /* The expression that defines the start bound */ 1721 int r1, rTemp; /* Registers for holding the start boundary */ 1722 int op; /* Cursor seek operation */ 1723 1724 /* The following constant maps TK_xx codes into corresponding 1725 ** seek opcodes. It depends on a particular ordering of TK_xx 1726 */ 1727 const u8 aMoveOp[] = { 1728 /* TK_GT */ OP_SeekGT, 1729 /* TK_LE */ OP_SeekLE, 1730 /* TK_LT */ OP_SeekLT, 1731 /* TK_GE */ OP_SeekGE 1732 }; 1733 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 1734 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 1735 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 1736 1737 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 1738 testcase( pStart->wtFlags & TERM_VIRTUAL ); 1739 pX = pStart->pExpr; 1740 assert( pX!=0 ); 1741 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 1742 if( sqlite3ExprIsVector(pX->pRight) ){ 1743 r1 = rTemp = sqlite3GetTempReg(pParse); 1744 codeExprOrVector(pParse, pX->pRight, r1, 1); 1745 testcase( pX->op==TK_GT ); 1746 testcase( pX->op==TK_GE ); 1747 testcase( pX->op==TK_LT ); 1748 testcase( pX->op==TK_LE ); 1749 op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1]; 1750 assert( pX->op!=TK_GT || op==OP_SeekGE ); 1751 assert( pX->op!=TK_GE || op==OP_SeekGE ); 1752 assert( pX->op!=TK_LT || op==OP_SeekLE ); 1753 assert( pX->op!=TK_LE || op==OP_SeekLE ); 1754 }else{ 1755 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 1756 disableTerm(pLevel, pStart); 1757 op = aMoveOp[(pX->op - TK_GT)]; 1758 } 1759 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); 1760 VdbeComment((v, "pk")); 1761 VdbeCoverageIf(v, pX->op==TK_GT); 1762 VdbeCoverageIf(v, pX->op==TK_LE); 1763 VdbeCoverageIf(v, pX->op==TK_LT); 1764 VdbeCoverageIf(v, pX->op==TK_GE); 1765 sqlite3ReleaseTempReg(pParse, rTemp); 1766 }else{ 1767 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt); 1768 VdbeCoverageIf(v, bRev==0); 1769 VdbeCoverageIf(v, bRev!=0); 1770 } 1771 if( pEnd ){ 1772 Expr *pX; 1773 pX = pEnd->pExpr; 1774 assert( pX!=0 ); 1775 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 1776 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 1777 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 1778 memEndValue = ++pParse->nMem; 1779 codeExprOrVector(pParse, pX->pRight, memEndValue, 1); 1780 if( 0==sqlite3ExprIsVector(pX->pRight) 1781 && (pX->op==TK_LT || pX->op==TK_GT) 1782 ){ 1783 testOp = bRev ? OP_Le : OP_Ge; 1784 }else{ 1785 testOp = bRev ? OP_Lt : OP_Gt; 1786 } 1787 if( 0==sqlite3ExprIsVector(pX->pRight) ){ 1788 disableTerm(pLevel, pEnd); 1789 } 1790 } 1791 start = sqlite3VdbeCurrentAddr(v); 1792 pLevel->op = bRev ? OP_Prev : OP_Next; 1793 pLevel->p1 = iCur; 1794 pLevel->p2 = start; 1795 assert( pLevel->p5==0 ); 1796 if( testOp!=OP_Noop ){ 1797 iRowidReg = ++pParse->nMem; 1798 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 1799 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 1800 VdbeCoverageIf(v, testOp==OP_Le); 1801 VdbeCoverageIf(v, testOp==OP_Lt); 1802 VdbeCoverageIf(v, testOp==OP_Ge); 1803 VdbeCoverageIf(v, testOp==OP_Gt); 1804 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 1805 } 1806 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 1807 /* Case 4: A scan using an index. 1808 ** 1809 ** The WHERE clause may contain zero or more equality 1810 ** terms ("==" or "IN" operators) that refer to the N 1811 ** left-most columns of the index. It may also contain 1812 ** inequality constraints (>, <, >= or <=) on the indexed 1813 ** column that immediately follows the N equalities. Only 1814 ** the right-most column can be an inequality - the rest must 1815 ** use the "==" and "IN" operators. For example, if the 1816 ** index is on (x,y,z), then the following clauses are all 1817 ** optimized: 1818 ** 1819 ** x=5 1820 ** x=5 AND y=10 1821 ** x=5 AND y<10 1822 ** x=5 AND y>5 AND y<10 1823 ** x=5 AND y=5 AND z<=10 1824 ** 1825 ** The z<10 term of the following cannot be used, only 1826 ** the x=5 term: 1827 ** 1828 ** x=5 AND z<10 1829 ** 1830 ** N may be zero if there are inequality constraints. 1831 ** If there are no inequality constraints, then N is at 1832 ** least one. 1833 ** 1834 ** This case is also used when there are no WHERE clause 1835 ** constraints but an index is selected anyway, in order 1836 ** to force the output order to conform to an ORDER BY. 1837 */ 1838 static const u8 aStartOp[] = { 1839 0, 1840 0, 1841 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1842 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1843 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1844 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1845 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1846 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1847 }; 1848 static const u8 aEndOp[] = { 1849 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1850 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1851 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1852 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1853 }; 1854 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1855 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ 1856 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ 1857 int regBase; /* Base register holding constraint values */ 1858 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1859 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1860 int startEq; /* True if range start uses ==, >= or <= */ 1861 int endEq; /* True if range end uses ==, >= or <= */ 1862 int start_constraints; /* Start of range is constrained */ 1863 int nConstraint; /* Number of constraint terms */ 1864 int iIdxCur; /* The VDBE cursor for the index */ 1865 int nExtraReg = 0; /* Number of extra registers needed */ 1866 int op; /* Instruction opcode */ 1867 char *zStartAff; /* Affinity for start of range constraint */ 1868 char *zEndAff = 0; /* Affinity for end of range constraint */ 1869 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1870 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1871 int omitTable; /* True if we use the index only */ 1872 int regBignull = 0; /* big-null flag register */ 1873 int addrSeekScan = 0; /* Opcode of the OP_SeekScan, if any */ 1874 1875 pIdx = pLoop->u.btree.pIndex; 1876 iIdxCur = pLevel->iIdxCur; 1877 assert( nEq>=pLoop->nSkip ); 1878 1879 /* Find any inequality constraint terms for the start and end 1880 ** of the range. 1881 */ 1882 j = nEq; 1883 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1884 pRangeStart = pLoop->aLTerm[j++]; 1885 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); 1886 /* Like optimization range constraints always occur in pairs */ 1887 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1888 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1889 } 1890 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1891 pRangeEnd = pLoop->aLTerm[j++]; 1892 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); 1893 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1894 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1895 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1896 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1897 pLevel->iLikeRepCntr = (u32)++pParse->nMem; 1898 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); 1899 VdbeComment((v, "LIKE loop counter")); 1900 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1901 /* iLikeRepCntr actually stores 2x the counter register number. The 1902 ** bottom bit indicates whether the search order is ASC or DESC. */ 1903 testcase( bRev ); 1904 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1905 assert( (bRev & ~1)==0 ); 1906 pLevel->iLikeRepCntr <<=1; 1907 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); 1908 } 1909 #endif 1910 if( pRangeStart==0 ){ 1911 j = pIdx->aiColumn[nEq]; 1912 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){ 1913 bSeekPastNull = 1; 1914 } 1915 } 1916 } 1917 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1918 1919 /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses 1920 ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS 1921 ** FIRST). In both cases separate ordered scans are made of those 1922 ** index entries for which the column is null and for those for which 1923 ** it is not. For an ASC sort, the non-NULL entries are scanned first. 1924 ** For DESC, NULL entries are scanned first. 1925 */ 1926 if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0 1927 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0 1928 ){ 1929 assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 ); 1930 assert( pRangeEnd==0 && pRangeStart==0 ); 1931 testcase( pLoop->nSkip>0 ); 1932 nExtraReg = 1; 1933 bSeekPastNull = 1; 1934 pLevel->regBignull = regBignull = ++pParse->nMem; 1935 if( pLevel->iLeftJoin ){ 1936 sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull); 1937 } 1938 pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse); 1939 } 1940 1941 /* If we are doing a reverse order scan on an ascending index, or 1942 ** a forward order scan on a descending index, interchange the 1943 ** start and end terms (pRangeStart and pRangeEnd). 1944 */ 1945 if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){ 1946 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1947 SWAP(u8, bSeekPastNull, bStopAtNull); 1948 SWAP(u8, nBtm, nTop); 1949 } 1950 1951 if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){ 1952 /* In case OP_SeekScan is used, ensure that the index cursor does not 1953 ** point to a valid row for the first iteration of this loop. */ 1954 sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur); 1955 } 1956 1957 /* Generate code to evaluate all constraint terms using == or IN 1958 ** and store the values of those terms in an array of registers 1959 ** starting at regBase. 1960 */ 1961 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); 1962 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1963 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1964 if( zStartAff && nTop ){ 1965 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); 1966 } 1967 addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt); 1968 1969 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1970 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1971 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1972 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1973 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1974 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1975 start_constraints = pRangeStart || nEq>0; 1976 1977 /* Seek the index cursor to the start of the range. */ 1978 nConstraint = nEq; 1979 if( pRangeStart ){ 1980 Expr *pRight = pRangeStart->pExpr->pRight; 1981 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); 1982 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1983 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1984 && sqlite3ExprCanBeNull(pRight) 1985 ){ 1986 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1987 VdbeCoverage(v); 1988 } 1989 if( zStartAff ){ 1990 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); 1991 } 1992 nConstraint += nBtm; 1993 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1994 if( sqlite3ExprIsVector(pRight)==0 ){ 1995 disableTerm(pLevel, pRangeStart); 1996 }else{ 1997 startEq = 1; 1998 } 1999 bSeekPastNull = 0; 2000 }else if( bSeekPastNull ){ 2001 startEq = 0; 2002 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 2003 start_constraints = 1; 2004 nConstraint++; 2005 }else if( regBignull ){ 2006 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 2007 start_constraints = 1; 2008 nConstraint++; 2009 } 2010 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 2011 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ 2012 /* The skip-scan logic inside the call to codeAllEqualityConstraints() 2013 ** above has already left the cursor sitting on the correct row, 2014 ** so no further seeking is needed */ 2015 }else{ 2016 if( regBignull ){ 2017 sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull); 2018 VdbeComment((v, "NULL-scan pass ctr")); 2019 } 2020 if( pLevel->regFilter ){ 2021 sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt, 2022 regBase, nEq); 2023 VdbeCoverage(v); 2024 filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady); 2025 } 2026 2027 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 2028 assert( op!=0 ); 2029 if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){ 2030 assert( regBignull==0 ); 2031 /* TUNING: The OP_SeekScan opcode seeks to reduce the number 2032 ** of expensive seek operations by replacing a single seek with 2033 ** 1 or more step operations. The question is, how many steps 2034 ** should we try before giving up and going with a seek. The cost 2035 ** of a seek is proportional to the logarithm of the of the number 2036 ** of entries in the tree, so basing the number of steps to try 2037 ** on the estimated number of rows in the btree seems like a good 2038 ** guess. */ 2039 addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan, 2040 (pIdx->aiRowLogEst[0]+9)/10); 2041 if( pRangeStart ){ 2042 sqlite3VdbeChangeP5(v, 1); 2043 sqlite3VdbeChangeP2(v, addrSeekScan, sqlite3VdbeCurrentAddr(v)+1); 2044 addrSeekScan = 0; 2045 } 2046 VdbeCoverage(v); 2047 } 2048 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 2049 VdbeCoverage(v); 2050 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 2051 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 2052 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 2053 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 2054 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 2055 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 2056 2057 assert( bSeekPastNull==0 || bStopAtNull==0 ); 2058 if( regBignull ){ 2059 assert( bSeekPastNull==1 || bStopAtNull==1 ); 2060 assert( bSeekPastNull==!bStopAtNull ); 2061 assert( bStopAtNull==startEq ); 2062 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2); 2063 op = aStartOp[(nConstraint>1)*4 + 2 + bRev]; 2064 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 2065 nConstraint-startEq); 2066 VdbeCoverage(v); 2067 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 2068 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 2069 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 2070 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 2071 assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE); 2072 } 2073 } 2074 2075 /* Load the value for the inequality constraint at the end of the 2076 ** range (if any). 2077 */ 2078 nConstraint = nEq; 2079 assert( pLevel->p2==0 ); 2080 if( pRangeEnd ){ 2081 Expr *pRight = pRangeEnd->pExpr->pRight; 2082 if( addrSeekScan ){ 2083 /* For a seek-scan that has a range on the lowest term of the index, 2084 ** we have to make the top of the loop be code that sets the end 2085 ** condition of the range. Otherwise, the OP_SeekScan might jump 2086 ** over that initialization, leaving the range-end value set to the 2087 ** range-start value, resulting in a wrong answer. 2088 ** See ticket 5981a8c041a3c2f3 (2021-11-02). 2089 */ 2090 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2091 } 2092 codeExprOrVector(pParse, pRight, regBase+nEq, nTop); 2093 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 2094 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 2095 && sqlite3ExprCanBeNull(pRight) 2096 ){ 2097 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 2098 VdbeCoverage(v); 2099 } 2100 if( zEndAff ){ 2101 updateRangeAffinityStr(pRight, nTop, zEndAff); 2102 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); 2103 }else{ 2104 assert( pParse->db->mallocFailed ); 2105 } 2106 nConstraint += nTop; 2107 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 2108 2109 if( sqlite3ExprIsVector(pRight)==0 ){ 2110 disableTerm(pLevel, pRangeEnd); 2111 }else{ 2112 endEq = 1; 2113 } 2114 }else if( bStopAtNull ){ 2115 if( regBignull==0 ){ 2116 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 2117 endEq = 0; 2118 } 2119 nConstraint++; 2120 } 2121 if( zStartAff ) sqlite3DbNNFreeNN(db, zStartAff); 2122 if( zEndAff ) sqlite3DbNNFreeNN(db, zEndAff); 2123 2124 /* Top of the loop body */ 2125 if( pLevel->p2==0 ) pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2126 2127 /* Check if the index cursor is past the end of the range. */ 2128 if( nConstraint ){ 2129 if( regBignull ){ 2130 /* Except, skip the end-of-range check while doing the NULL-scan */ 2131 sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3); 2132 VdbeComment((v, "If NULL-scan 2nd pass")); 2133 VdbeCoverage(v); 2134 } 2135 op = aEndOp[bRev*2 + endEq]; 2136 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 2137 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 2138 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 2139 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 2140 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 2141 if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan); 2142 } 2143 if( regBignull ){ 2144 /* During a NULL-scan, check to see if we have reached the end of 2145 ** the NULLs */ 2146 assert( bSeekPastNull==!bStopAtNull ); 2147 assert( bSeekPastNull+bStopAtNull==1 ); 2148 assert( nConstraint+bSeekPastNull>0 ); 2149 sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2); 2150 VdbeComment((v, "If NULL-scan 1st pass")); 2151 VdbeCoverage(v); 2152 op = aEndOp[bRev*2 + bSeekPastNull]; 2153 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 2154 nConstraint+bSeekPastNull); 2155 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 2156 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 2157 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 2158 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 2159 } 2160 2161 if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){ 2162 sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq); 2163 } 2164 2165 /* Seek the table cursor, if required */ 2166 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 2167 && (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0; 2168 if( omitTable ){ 2169 /* pIdx is a covering index. No need to access the main table. */ 2170 }else if( HasRowid(pIdx->pTable) ){ 2171 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); 2172 }else if( iCur!=iIdxCur ){ 2173 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 2174 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 2175 for(j=0; j<pPk->nKeyCol; j++){ 2176 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]); 2177 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 2178 } 2179 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 2180 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 2181 } 2182 2183 if( pLevel->iLeftJoin==0 ){ 2184 /* If pIdx is an index on one or more expressions, then look through 2185 ** all the expressions in pWInfo and try to transform matching expressions 2186 ** into reference to index columns. Also attempt to translate references 2187 ** to virtual columns in the table into references to (stored) columns 2188 ** of the index. 2189 ** 2190 ** Do not do this for the RHS of a LEFT JOIN. This is because the 2191 ** expression may be evaluated after OP_NullRow has been executed on 2192 ** the cursor. In this case it is important to do the full evaluation, 2193 ** as the result of the expression may not be NULL, even if all table 2194 ** column values are. https://www.sqlite.org/src/info/7fa8049685b50b5a 2195 ** 2196 ** Also, do not do this when processing one index an a multi-index 2197 ** OR clause, since the transformation will become invalid once we 2198 ** move forward to the next index. 2199 ** https://sqlite.org/src/info/4e8e4857d32d401f 2200 */ 2201 if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 ){ 2202 whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo); 2203 } 2204 2205 /* If a partial index is driving the loop, try to eliminate WHERE clause 2206 ** terms from the query that must be true due to the WHERE clause of 2207 ** the partial index. 2208 ** 2209 ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work 2210 ** for a LEFT JOIN. 2211 */ 2212 if( pIdx->pPartIdxWhere ){ 2213 whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC); 2214 } 2215 }else{ 2216 testcase( pIdx->pPartIdxWhere ); 2217 /* The following assert() is not a requirement, merely an observation: 2218 ** The OR-optimization doesn't work for the right hand table of 2219 ** a LEFT JOIN: */ 2220 assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 ); 2221 } 2222 2223 /* Record the instruction used to terminate the loop. */ 2224 if( pLoop->wsFlags & WHERE_ONEROW ){ 2225 pLevel->op = OP_Noop; 2226 }else if( bRev ){ 2227 pLevel->op = OP_Prev; 2228 }else{ 2229 pLevel->op = OP_Next; 2230 } 2231 pLevel->p1 = iIdxCur; 2232 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 2233 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 2234 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2235 }else{ 2236 assert( pLevel->p5==0 ); 2237 } 2238 if( omitTable ) pIdx = 0; 2239 }else 2240 2241 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 2242 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 2243 /* Case 5: Two or more separately indexed terms connected by OR 2244 ** 2245 ** Example: 2246 ** 2247 ** CREATE TABLE t1(a,b,c,d); 2248 ** CREATE INDEX i1 ON t1(a); 2249 ** CREATE INDEX i2 ON t1(b); 2250 ** CREATE INDEX i3 ON t1(c); 2251 ** 2252 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 2253 ** 2254 ** In the example, there are three indexed terms connected by OR. 2255 ** The top of the loop looks like this: 2256 ** 2257 ** Null 1 # Zero the rowset in reg 1 2258 ** 2259 ** Then, for each indexed term, the following. The arguments to 2260 ** RowSetTest are such that the rowid of the current row is inserted 2261 ** into the RowSet. If it is already present, control skips the 2262 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 2263 ** 2264 ** sqlite3WhereBegin(<term>) 2265 ** RowSetTest # Insert rowid into rowset 2266 ** Gosub 2 A 2267 ** sqlite3WhereEnd() 2268 ** 2269 ** Following the above, code to terminate the loop. Label A, the target 2270 ** of the Gosub above, jumps to the instruction right after the Goto. 2271 ** 2272 ** Null 1 # Zero the rowset in reg 1 2273 ** Goto B # The loop is finished. 2274 ** 2275 ** A: <loop body> # Return data, whatever. 2276 ** 2277 ** Return 2 # Jump back to the Gosub 2278 ** 2279 ** B: <after the loop> 2280 ** 2281 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 2282 ** use an ephemeral index instead of a RowSet to record the primary 2283 ** keys of the rows we have already seen. 2284 ** 2285 */ 2286 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 2287 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 2288 Index *pCov = 0; /* Potential covering index (or NULL) */ 2289 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 2290 2291 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 2292 int regRowset = 0; /* Register for RowSet object */ 2293 int regRowid = 0; /* Register holding rowid */ 2294 int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */ 2295 int iRetInit; /* Address of regReturn init */ 2296 int untestedTerms = 0; /* Some terms not completely tested */ 2297 int ii; /* Loop counter */ 2298 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 2299 Table *pTab = pTabItem->pTab; 2300 2301 pTerm = pLoop->aLTerm[0]; 2302 assert( pTerm!=0 ); 2303 assert( pTerm->eOperator & WO_OR ); 2304 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 2305 pOrWc = &pTerm->u.pOrInfo->wc; 2306 pLevel->op = OP_Return; 2307 pLevel->p1 = regReturn; 2308 2309 /* Set up a new SrcList in pOrTab containing the table being scanned 2310 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 2311 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 2312 */ 2313 if( pWInfo->nLevel>1 ){ 2314 int nNotReady; /* The number of notReady tables */ 2315 SrcItem *origSrc; /* Original list of tables */ 2316 nNotReady = pWInfo->nLevel - iLevel - 1; 2317 pOrTab = sqlite3DbMallocRawNN(db, 2318 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 2319 if( pOrTab==0 ) return notReady; 2320 pOrTab->nAlloc = (u8)(nNotReady + 1); 2321 pOrTab->nSrc = pOrTab->nAlloc; 2322 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 2323 origSrc = pWInfo->pTabList->a; 2324 for(k=1; k<=nNotReady; k++){ 2325 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 2326 } 2327 }else{ 2328 pOrTab = pWInfo->pTabList; 2329 } 2330 2331 /* Initialize the rowset register to contain NULL. An SQL NULL is 2332 ** equivalent to an empty rowset. Or, create an ephemeral index 2333 ** capable of holding primary keys in the case of a WITHOUT ROWID. 2334 ** 2335 ** Also initialize regReturn to contain the address of the instruction 2336 ** immediately following the OP_Return at the bottom of the loop. This 2337 ** is required in a few obscure LEFT JOIN cases where control jumps 2338 ** over the top of the loop into the body of it. In this case the 2339 ** correct response for the end-of-loop code (the OP_Return) is to 2340 ** fall through to the next instruction, just as an OP_Next does if 2341 ** called on an uninitialized cursor. 2342 */ 2343 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2344 if( HasRowid(pTab) ){ 2345 regRowset = ++pParse->nMem; 2346 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 2347 }else{ 2348 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2349 regRowset = pParse->nTab++; 2350 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 2351 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 2352 } 2353 regRowid = ++pParse->nMem; 2354 } 2355 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 2356 2357 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 2358 ** Then for every term xN, evaluate as the subexpression: xN AND y 2359 ** That way, terms in y that are factored into the disjunction will 2360 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 2361 ** 2362 ** Actually, each subexpression is converted to "xN AND w" where w is 2363 ** the "interesting" terms of z - terms that did not originate in the 2364 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 2365 ** indices. 2366 ** 2367 ** This optimization also only applies if the (x1 OR x2 OR ...) term 2368 ** is not contained in the ON clause of a LEFT JOIN. 2369 ** See ticket http://www.sqlite.org/src/info/f2369304e4 2370 ** 2371 ** 2022-02-04: Do not push down slices of a row-value comparison. 2372 ** In other words, "w" or "y" may not be a slice of a vector. Otherwise, 2373 ** the initialization of the right-hand operand of the vector comparison 2374 ** might not occur, or might occur only in an OR branch that is not 2375 ** taken. dbsqlfuzz 80a9fade844b4fb43564efc972bcb2c68270f5d1. 2376 ** 2377 ** 2022-03-03: Do not push down expressions that involve subqueries. 2378 ** The subquery might get coded as a subroutine. Any table-references 2379 ** in the subquery might be resolved to index-references for the index on 2380 ** the OR branch in which the subroutine is coded. But if the subroutine 2381 ** is invoked from a different OR branch that uses a different index, such 2382 ** index-references will not work. tag-20220303a 2383 ** https://sqlite.org/forum/forumpost/36937b197273d403 2384 */ 2385 if( pWC->nTerm>1 ){ 2386 int iTerm; 2387 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 2388 Expr *pExpr = pWC->a[iTerm].pExpr; 2389 if( &pWC->a[iTerm] == pTerm ) continue; 2390 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); 2391 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); 2392 testcase( pWC->a[iTerm].wtFlags & TERM_SLICE ); 2393 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED|TERM_SLICE))!=0 ){ 2394 continue; 2395 } 2396 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 2397 if( ExprHasProperty(pExpr, EP_Subquery) ) continue; /* tag-20220303a */ 2398 pExpr = sqlite3ExprDup(db, pExpr, 0); 2399 pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr); 2400 } 2401 if( pAndExpr ){ 2402 /* The extra 0x10000 bit on the opcode is masked off and does not 2403 ** become part of the new Expr.op. However, it does make the 2404 ** op==TK_AND comparison inside of sqlite3PExpr() false, and this 2405 ** prevents sqlite3PExpr() from applying the AND short-circuit 2406 ** optimization, which we do not want here. */ 2407 pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr); 2408 } 2409 } 2410 2411 /* Run a separate WHERE clause for each term of the OR clause. After 2412 ** eliminating duplicates from other WHERE clauses, the action for each 2413 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 2414 */ 2415 ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR")); 2416 for(ii=0; ii<pOrWc->nTerm; ii++){ 2417 WhereTerm *pOrTerm = &pOrWc->a[ii]; 2418 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 2419 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 2420 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 2421 Expr *pDelete; /* Local copy of OR clause term */ 2422 int jmp1 = 0; /* Address of jump operation */ 2423 testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0 2424 && !ExprHasProperty(pOrExpr, EP_OuterON) 2425 ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */ 2426 pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0); 2427 if( db->mallocFailed ){ 2428 sqlite3ExprDelete(db, pDelete); 2429 continue; 2430 } 2431 if( pAndExpr ){ 2432 pAndExpr->pLeft = pOrExpr; 2433 pOrExpr = pAndExpr; 2434 } 2435 /* Loop through table entries that match term pOrTerm. */ 2436 ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1)); 2437 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 2438 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 0, 2439 WHERE_OR_SUBCLAUSE, iCovCur); 2440 assert( pSubWInfo || pParse->nErr ); 2441 if( pSubWInfo ){ 2442 WhereLoop *pSubLoop; 2443 int addrExplain = sqlite3WhereExplainOneScan( 2444 pParse, pOrTab, &pSubWInfo->a[0], 0 2445 ); 2446 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 2447 2448 /* This is the sub-WHERE clause body. First skip over 2449 ** duplicate rows from prior sub-WHERE clauses, and record the 2450 ** rowid (or PRIMARY KEY) for the current row so that the same 2451 ** row will be skipped in subsequent sub-WHERE clauses. 2452 */ 2453 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2454 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 2455 if( HasRowid(pTab) ){ 2456 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid); 2457 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 2458 regRowid, iSet); 2459 VdbeCoverage(v); 2460 }else{ 2461 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2462 int nPk = pPk->nKeyCol; 2463 int iPk; 2464 int r; 2465 2466 /* Read the PK into an array of temp registers. */ 2467 r = sqlite3GetTempRange(pParse, nPk); 2468 for(iPk=0; iPk<nPk; iPk++){ 2469 int iCol = pPk->aiColumn[iPk]; 2470 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk); 2471 } 2472 2473 /* Check if the temp table already contains this key. If so, 2474 ** the row has already been included in the result set and 2475 ** can be ignored (by jumping past the Gosub below). Otherwise, 2476 ** insert the key into the temp table and proceed with processing 2477 ** the row. 2478 ** 2479 ** Use some of the same optimizations as OP_RowSetTest: If iSet 2480 ** is zero, assume that the key cannot already be present in 2481 ** the temp table. And if iSet is -1, assume that there is no 2482 ** need to insert the key into the temp table, as it will never 2483 ** be tested for. */ 2484 if( iSet ){ 2485 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 2486 VdbeCoverage(v); 2487 } 2488 if( iSet>=0 ){ 2489 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 2490 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid, 2491 r, nPk); 2492 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2493 } 2494 2495 /* Release the array of temp registers */ 2496 sqlite3ReleaseTempRange(pParse, r, nPk); 2497 } 2498 } 2499 2500 /* Invoke the main loop body as a subroutine */ 2501 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 2502 2503 /* Jump here (skipping the main loop body subroutine) if the 2504 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 2505 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 2506 2507 /* The pSubWInfo->untestedTerms flag means that this OR term 2508 ** contained one or more AND term from a notReady table. The 2509 ** terms from the notReady table could not be tested and will 2510 ** need to be tested later. 2511 */ 2512 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 2513 2514 /* If all of the OR-connected terms are optimized using the same 2515 ** index, and the index is opened using the same cursor number 2516 ** by each call to sqlite3WhereBegin() made by this loop, it may 2517 ** be possible to use that index as a covering index. 2518 ** 2519 ** If the call to sqlite3WhereBegin() above resulted in a scan that 2520 ** uses an index, and this is either the first OR-connected term 2521 ** processed or the index is the same as that used by all previous 2522 ** terms, set pCov to the candidate covering index. Otherwise, set 2523 ** pCov to NULL to indicate that no candidate covering index will 2524 ** be available. 2525 */ 2526 pSubLoop = pSubWInfo->a[0].pWLoop; 2527 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2528 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 2529 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 2530 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 2531 ){ 2532 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 2533 pCov = pSubLoop->u.btree.pIndex; 2534 }else{ 2535 pCov = 0; 2536 } 2537 if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){ 2538 pWInfo->bDeferredSeek = 1; 2539 } 2540 2541 /* Finish the loop through table entries that match term pOrTerm. */ 2542 sqlite3WhereEnd(pSubWInfo); 2543 ExplainQueryPlanPop(pParse); 2544 } 2545 sqlite3ExprDelete(db, pDelete); 2546 } 2547 } 2548 ExplainQueryPlanPop(pParse); 2549 assert( pLevel->pWLoop==pLoop ); 2550 assert( (pLoop->wsFlags & WHERE_MULTI_OR)!=0 ); 2551 assert( (pLoop->wsFlags & WHERE_IN_ABLE)==0 ); 2552 pLevel->u.pCoveringIdx = pCov; 2553 if( pCov ) pLevel->iIdxCur = iCovCur; 2554 if( pAndExpr ){ 2555 pAndExpr->pLeft = 0; 2556 sqlite3ExprDelete(db, pAndExpr); 2557 } 2558 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 2559 sqlite3VdbeGoto(v, pLevel->addrBrk); 2560 sqlite3VdbeResolveLabel(v, iLoopBody); 2561 2562 /* Set the P2 operand of the OP_Return opcode that will end the current 2563 ** loop to point to this spot, which is the top of the next containing 2564 ** loop. The byte-code formatter will use that P2 value as a hint to 2565 ** indent everything in between the this point and the final OP_Return. 2566 ** See tag-20220407a in vdbe.c and shell.c */ 2567 assert( pLevel->op==OP_Return ); 2568 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2569 2570 if( pWInfo->nLevel>1 ){ sqlite3DbFreeNN(db, pOrTab); } 2571 if( !untestedTerms ) disableTerm(pLevel, pTerm); 2572 }else 2573 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 2574 2575 { 2576 /* Case 6: There is no usable index. We must do a complete 2577 ** scan of the entire table. 2578 */ 2579 static const u8 aStep[] = { OP_Next, OP_Prev }; 2580 static const u8 aStart[] = { OP_Rewind, OP_Last }; 2581 assert( bRev==0 || bRev==1 ); 2582 if( pTabItem->fg.isRecursive ){ 2583 /* Tables marked isRecursive have only a single row that is stored in 2584 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 2585 pLevel->op = OP_Noop; 2586 }else{ 2587 codeCursorHint(pTabItem, pWInfo, pLevel, 0); 2588 pLevel->op = aStep[bRev]; 2589 pLevel->p1 = iCur; 2590 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt); 2591 VdbeCoverageIf(v, bRev==0); 2592 VdbeCoverageIf(v, bRev!=0); 2593 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2594 } 2595 } 2596 2597 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2598 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 2599 #endif 2600 2601 /* Insert code to test every subexpression that can be completely 2602 ** computed using the current set of tables. 2603 ** 2604 ** This loop may run between one and three times, depending on the 2605 ** constraints to be generated. The value of stack variable iLoop 2606 ** determines the constraints coded by each iteration, as follows: 2607 ** 2608 ** iLoop==1: Code only expressions that are entirely covered by pIdx. 2609 ** iLoop==2: Code remaining expressions that do not contain correlated 2610 ** sub-queries. 2611 ** iLoop==3: Code all remaining expressions. 2612 ** 2613 ** An effort is made to skip unnecessary iterations of the loop. 2614 */ 2615 iLoop = (pIdx ? 1 : 2); 2616 do{ 2617 int iNext = 0; /* Next value for iLoop */ 2618 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2619 Expr *pE; 2620 int skipLikeAddr = 0; 2621 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2622 testcase( pTerm->wtFlags & TERM_CODED ); 2623 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2624 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2625 testcase( pWInfo->untestedTerms==0 2626 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); 2627 pWInfo->untestedTerms = 1; 2628 continue; 2629 } 2630 pE = pTerm->pExpr; 2631 assert( pE!=0 ); 2632 if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ){ 2633 if( !ExprHasProperty(pE,EP_OuterON|EP_InnerON) ){ 2634 /* Defer processing WHERE clause constraints until after outer 2635 ** join processing. tag-20220513a */ 2636 continue; 2637 }else if( (pTabItem->fg.jointype & JT_LEFT)==JT_LEFT 2638 && !ExprHasProperty(pE,EP_OuterON) ){ 2639 continue; 2640 }else{ 2641 Bitmask m = sqlite3WhereGetMask(&pWInfo->sMaskSet, pE->w.iJoin); 2642 if( m & pLevel->notReady ){ 2643 /* An ON clause that is not ripe */ 2644 continue; 2645 } 2646 } 2647 } 2648 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){ 2649 iNext = 2; 2650 continue; 2651 } 2652 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){ 2653 if( iNext==0 ) iNext = 3; 2654 continue; 2655 } 2656 2657 if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){ 2658 /* If the TERM_LIKECOND flag is set, that means that the range search 2659 ** is sufficient to guarantee that the LIKE operator is true, so we 2660 ** can skip the call to the like(A,B) function. But this only works 2661 ** for strings. So do not skip the call to the function on the pass 2662 ** that compares BLOBs. */ 2663 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 2664 continue; 2665 #else 2666 u32 x = pLevel->iLikeRepCntr; 2667 if( x>0 ){ 2668 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1)); 2669 VdbeCoverageIf(v, (x&1)==1); 2670 VdbeCoverageIf(v, (x&1)==0); 2671 } 2672 #endif 2673 } 2674 #ifdef WHERETRACE_ENABLED /* 0xffff */ 2675 if( sqlite3WhereTrace ){ 2676 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d", 2677 pWC->nTerm-j, pTerm, iLoop)); 2678 } 2679 if( sqlite3WhereTrace & 0x800 ){ 2680 sqlite3DebugPrintf("Coding auxiliary constraint:\n"); 2681 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2682 } 2683 #endif 2684 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 2685 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 2686 pTerm->wtFlags |= TERM_CODED; 2687 } 2688 iLoop = iNext; 2689 }while( iLoop>0 ); 2690 2691 /* Insert code to test for implied constraints based on transitivity 2692 ** of the "==" operator. 2693 ** 2694 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 2695 ** and we are coding the t1 loop and the t2 loop has not yet coded, 2696 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 2697 ** the implied "t1.a=123" constraint. 2698 */ 2699 for(pTerm=pWC->a, j=pWC->nBase; j>0; j--, pTerm++){ 2700 Expr *pE, sEAlt; 2701 WhereTerm *pAlt; 2702 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2703 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 2704 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 2705 if( pTerm->leftCursor!=iCur ) continue; 2706 if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ) continue; 2707 pE = pTerm->pExpr; 2708 #ifdef WHERETRACE_ENABLED /* 0x800 */ 2709 if( sqlite3WhereTrace & 0x800 ){ 2710 sqlite3DebugPrintf("Coding transitive constraint:\n"); 2711 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2712 } 2713 #endif 2714 assert( !ExprHasProperty(pE, EP_OuterON) ); 2715 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 2716 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 2717 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady, 2718 WO_EQ|WO_IN|WO_IS, 0); 2719 if( pAlt==0 ) continue; 2720 if( pAlt->wtFlags & (TERM_CODED) ) continue; 2721 if( (pAlt->eOperator & WO_IN) 2722 && ExprUseXSelect(pAlt->pExpr) 2723 && (pAlt->pExpr->x.pSelect->pEList->nExpr>1) 2724 ){ 2725 continue; 2726 } 2727 testcase( pAlt->eOperator & WO_EQ ); 2728 testcase( pAlt->eOperator & WO_IS ); 2729 testcase( pAlt->eOperator & WO_IN ); 2730 VdbeModuleComment((v, "begin transitive constraint")); 2731 sEAlt = *pAlt->pExpr; 2732 sEAlt.pLeft = pE->pLeft; 2733 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); 2734 pAlt->wtFlags |= TERM_CODED; 2735 } 2736 2737 /* For a RIGHT OUTER JOIN, record the fact that the current row has 2738 ** been matched at least once. 2739 */ 2740 if( pLevel->pRJ ){ 2741 Table *pTab; 2742 int nPk; 2743 int r; 2744 int jmp1 = 0; 2745 WhereRightJoin *pRJ = pLevel->pRJ; 2746 2747 /* pTab is the right-hand table of the RIGHT JOIN. Generate code that 2748 ** will record that the current row of that table has been matched at 2749 ** least once. This is accomplished by storing the PK for the row in 2750 ** both the iMatch index and the regBloom Bloom filter. 2751 */ 2752 pTab = pWInfo->pTabList->a[pLevel->iFrom].pTab; 2753 if( HasRowid(pTab) ){ 2754 r = sqlite3GetTempRange(pParse, 2); 2755 sqlite3ExprCodeGetColumnOfTable(v, pTab, pLevel->iTabCur, -1, r+1); 2756 nPk = 1; 2757 }else{ 2758 int iPk; 2759 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2760 nPk = pPk->nKeyCol; 2761 r = sqlite3GetTempRange(pParse, nPk+1); 2762 for(iPk=0; iPk<nPk; iPk++){ 2763 int iCol = pPk->aiColumn[iPk]; 2764 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+1+iPk); 2765 } 2766 } 2767 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, 0, r+1, nPk); 2768 VdbeCoverage(v); 2769 VdbeComment((v, "match against %s", pTab->zName)); 2770 sqlite3VdbeAddOp3(v, OP_MakeRecord, r+1, nPk, r); 2771 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pRJ->iMatch, r, r+1, nPk); 2772 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pRJ->regBloom, 0, r+1, nPk); 2773 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2774 sqlite3VdbeJumpHere(v, jmp1); 2775 sqlite3ReleaseTempRange(pParse, r, nPk+1); 2776 } 2777 2778 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2779 ** at least one row of the right table has matched the left table. 2780 */ 2781 if( pLevel->iLeftJoin ){ 2782 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2783 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2784 VdbeComment((v, "record LEFT JOIN hit")); 2785 if( pLevel->pRJ==0 ){ 2786 goto code_outer_join_constraints; /* WHERE clause constraints */ 2787 } 2788 } 2789 2790 if( pLevel->pRJ ){ 2791 /* Create a subroutine used to process all interior loops and code 2792 ** of the RIGHT JOIN. During normal operation, the subroutine will 2793 ** be in-line with the rest of the code. But at the end, a separate 2794 ** loop will run that invokes this subroutine for unmatched rows 2795 ** of pTab, with all tables to left begin set to NULL. 2796 */ 2797 WhereRightJoin *pRJ = pLevel->pRJ; 2798 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pRJ->regReturn); 2799 pRJ->addrSubrtn = sqlite3VdbeCurrentAddr(v); 2800 assert( pParse->withinRJSubrtn < 255 ); 2801 pParse->withinRJSubrtn++; 2802 2803 /* WHERE clause constraints must be deferred until after outer join 2804 ** row elimination has completed, since WHERE clause constraints apply 2805 ** to the results of the OUTER JOIN. The following loop generates the 2806 ** appropriate WHERE clause constraint checks. tag-20220513a. 2807 */ 2808 code_outer_join_constraints: 2809 for(pTerm=pWC->a, j=0; j<pWC->nBase; j++, pTerm++){ 2810 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2811 testcase( pTerm->wtFlags & TERM_CODED ); 2812 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2813 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2814 assert( pWInfo->untestedTerms ); 2815 continue; 2816 } 2817 if( pTabItem->fg.jointype & JT_LTORJ ) continue; 2818 assert( pTerm->pExpr ); 2819 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 2820 pTerm->wtFlags |= TERM_CODED; 2821 } 2822 } 2823 2824 #if WHERETRACE_ENABLED /* 0x20800 */ 2825 if( sqlite3WhereTrace & 0x20000 ){ 2826 sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n", 2827 iLevel); 2828 sqlite3WhereClausePrint(pWC); 2829 } 2830 if( sqlite3WhereTrace & 0x800 ){ 2831 sqlite3DebugPrintf("End Coding level %d: notReady=%llx\n", 2832 iLevel, (u64)pLevel->notReady); 2833 } 2834 #endif 2835 return pLevel->notReady; 2836 } 2837 2838 /* 2839 ** Generate the code for the loop that finds all non-matched terms 2840 ** for a RIGHT JOIN. 2841 */ 2842 SQLITE_NOINLINE void sqlite3WhereRightJoinLoop( 2843 WhereInfo *pWInfo, 2844 int iLevel, 2845 WhereLevel *pLevel 2846 ){ 2847 Parse *pParse = pWInfo->pParse; 2848 Vdbe *v = pParse->pVdbe; 2849 WhereRightJoin *pRJ = pLevel->pRJ; 2850 Expr *pSubWhere = 0; 2851 WhereClause *pWC = &pWInfo->sWC; 2852 WhereInfo *pSubWInfo; 2853 WhereLoop *pLoop = pLevel->pWLoop; 2854 SrcItem *pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 2855 SrcList sFrom; 2856 Bitmask mAll = 0; 2857 int k; 2858 2859 ExplainQueryPlan((pParse, 1, "RIGHT-JOIN %s", pTabItem->pTab->zName)); 2860 sqlite3VdbeNoJumpsOutsideSubrtn(v, pRJ->addrSubrtn, pRJ->endSubrtn, 2861 pRJ->regReturn); 2862 for(k=0; k<iLevel; k++){ 2863 int iIdxCur; 2864 mAll |= pWInfo->a[k].pWLoop->maskSelf; 2865 sqlite3VdbeAddOp1(v, OP_NullRow, pWInfo->a[k].iTabCur); 2866 iIdxCur = pWInfo->a[k].iIdxCur; 2867 if( iIdxCur ){ 2868 sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur); 2869 } 2870 } 2871 if( (pTabItem->fg.jointype & JT_LTORJ)==0 ){ 2872 mAll |= pLoop->maskSelf; 2873 for(k=0; k<pWC->nTerm; k++){ 2874 WhereTerm *pTerm = &pWC->a[k]; 2875 if( (pTerm->wtFlags & (TERM_VIRTUAL|TERM_SLICE))!=0 2876 && pTerm->eOperator!=WO_ROWVAL 2877 ){ 2878 break; 2879 } 2880 if( pTerm->prereqAll & ~mAll ) continue; 2881 if( ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) ) continue; 2882 pSubWhere = sqlite3ExprAnd(pParse, pSubWhere, 2883 sqlite3ExprDup(pParse->db, pTerm->pExpr, 0)); 2884 } 2885 } 2886 sFrom.nSrc = 1; 2887 sFrom.nAlloc = 1; 2888 memcpy(&sFrom.a[0], pTabItem, sizeof(SrcItem)); 2889 sFrom.a[0].fg.jointype = 0; 2890 assert( pParse->withinRJSubrtn < 100 ); 2891 pParse->withinRJSubrtn++; 2892 pSubWInfo = sqlite3WhereBegin(pParse, &sFrom, pSubWhere, 0, 0, 0, 2893 WHERE_RIGHT_JOIN, 0); 2894 if( pSubWInfo ){ 2895 int iCur = pLevel->iTabCur; 2896 int r = ++pParse->nMem; 2897 int nPk; 2898 int jmp; 2899 int addrCont = sqlite3WhereContinueLabel(pSubWInfo); 2900 Table *pTab = pTabItem->pTab; 2901 if( HasRowid(pTab) ){ 2902 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, r); 2903 nPk = 1; 2904 }else{ 2905 int iPk; 2906 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2907 nPk = pPk->nKeyCol; 2908 pParse->nMem += nPk - 1; 2909 for(iPk=0; iPk<nPk; iPk++){ 2910 int iCol = pPk->aiColumn[iPk]; 2911 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk); 2912 } 2913 } 2914 jmp = sqlite3VdbeAddOp4Int(v, OP_Filter, pRJ->regBloom, 0, r, nPk); 2915 VdbeCoverage(v); 2916 sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, addrCont, r, nPk); 2917 VdbeCoverage(v); 2918 sqlite3VdbeJumpHere(v, jmp); 2919 sqlite3VdbeAddOp2(v, OP_Gosub, pRJ->regReturn, pRJ->addrSubrtn); 2920 sqlite3WhereEnd(pSubWInfo); 2921 } 2922 sqlite3ExprDelete(pParse->db, pSubWhere); 2923 ExplainQueryPlanPop(pParse); 2924 assert( pParse->withinRJSubrtn>0 ); 2925 pParse->withinRJSubrtn--; 2926 } 2927