xref: /sqlite-3.40.0/src/wherecode.c (revision b0c4ef71)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 
25 /*
26 ** Return the name of the i-th column of the pIdx index.
27 */
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29   i = pIdx->aiColumn[i];
30   if( i==XN_EXPR ) return "<expr>";
31   if( i==XN_ROWID ) return "rowid";
32   return pIdx->pTable->aCol[i].zName;
33 }
34 
35 /*
36 ** This routine is a helper for explainIndexRange() below
37 **
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time.  This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
42 */
43 static void explainAppendTerm(
44   StrAccum *pStr,             /* The text expression being built */
45   Index *pIdx,                /* Index to read column names from */
46   int nTerm,                  /* Number of terms */
47   int iTerm,                  /* Zero-based index of first term. */
48   int bAnd,                   /* Non-zero to append " AND " */
49   const char *zOp             /* Name of the operator */
50 ){
51   int i;
52 
53   assert( nTerm>=1 );
54   if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
55 
56   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
57   for(i=0; i<nTerm; i++){
58     if( i ) sqlite3_str_append(pStr, ",", 1);
59     sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
60   }
61   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
62 
63   sqlite3_str_append(pStr, zOp, 1);
64 
65   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
66   for(i=0; i<nTerm; i++){
67     if( i ) sqlite3_str_append(pStr, ",", 1);
68     sqlite3_str_append(pStr, "?", 1);
69   }
70   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
71 }
72 
73 /*
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
77 **
78 ** For example, if the query:
79 **
80 **   SELECT * FROM t1 WHERE a=1 AND b>2;
81 **
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
84 **
85 **   "a=? AND b>?"
86 */
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88   Index *pIndex = pLoop->u.btree.pIndex;
89   u16 nEq = pLoop->u.btree.nEq;
90   u16 nSkip = pLoop->nSkip;
91   int i, j;
92 
93   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94   sqlite3_str_append(pStr, " (", 2);
95   for(i=0; i<nEq; i++){
96     const char *z = explainIndexColumnName(pIndex, i);
97     if( i ) sqlite3_str_append(pStr, " AND ", 5);
98     sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
99   }
100 
101   j = i;
102   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104     i = 1;
105   }
106   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
108   }
109   sqlite3_str_append(pStr, ")", 1);
110 }
111 
112 /*
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
117 **
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
120 */
121 int sqlite3WhereExplainOneScan(
122   Parse *pParse,                  /* Parse context */
123   SrcList *pTabList,              /* Table list this loop refers to */
124   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
125   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
126 ){
127   int ret = 0;
128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
129   if( sqlite3ParseToplevel(pParse)->explain==2 )
130 #endif
131   {
132     struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
133     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
134     sqlite3 *db = pParse->db;     /* Database handle */
135     int isSearch;                 /* True for a SEARCH. False for SCAN. */
136     WhereLoop *pLoop;             /* The controlling WhereLoop object */
137     u32 flags;                    /* Flags that describe this loop */
138     char *zMsg;                   /* Text to add to EQP output */
139     StrAccum str;                 /* EQP output string */
140     char zBuf[100];               /* Initial space for EQP output string */
141 
142     pLoop = pLevel->pWLoop;
143     flags = pLoop->wsFlags;
144     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
145 
146     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
147             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
148             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
149 
150     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
151     sqlite3_str_appendall(&str, isSearch ? "SEARCH" : "SCAN");
152     if( pItem->pSelect ){
153       sqlite3_str_appendf(&str, " SUBQUERY %u", pItem->pSelect->selId);
154     }else{
155       sqlite3_str_appendf(&str, " TABLE %s", pItem->zName);
156     }
157 
158     if( pItem->zAlias ){
159       sqlite3_str_appendf(&str, " AS %s", pItem->zAlias);
160     }
161     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
162       const char *zFmt = 0;
163       Index *pIdx;
164 
165       assert( pLoop->u.btree.pIndex!=0 );
166       pIdx = pLoop->u.btree.pIndex;
167       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
168       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
169         if( isSearch ){
170           zFmt = "PRIMARY KEY";
171         }
172       }else if( flags & WHERE_PARTIALIDX ){
173         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
174       }else if( flags & WHERE_AUTO_INDEX ){
175         zFmt = "AUTOMATIC COVERING INDEX";
176       }else if( flags & WHERE_IDX_ONLY ){
177         zFmt = "COVERING INDEX %s";
178       }else{
179         zFmt = "INDEX %s";
180       }
181       if( zFmt ){
182         sqlite3_str_append(&str, " USING ", 7);
183         sqlite3_str_appendf(&str, zFmt, pIdx->zName);
184         explainIndexRange(&str, pLoop);
185       }
186     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
187       const char *zRangeOp;
188       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
189         zRangeOp = "=";
190       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
191         zRangeOp = ">? AND rowid<";
192       }else if( flags&WHERE_BTM_LIMIT ){
193         zRangeOp = ">";
194       }else{
195         assert( flags&WHERE_TOP_LIMIT);
196         zRangeOp = "<";
197       }
198       sqlite3_str_appendf(&str,
199           " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
200     }
201 #ifndef SQLITE_OMIT_VIRTUALTABLE
202     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
203       sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
204                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
205     }
206 #endif
207 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
208     if( pLoop->nOut>=10 ){
209       sqlite3_str_appendf(&str, " (~%llu rows)",
210              sqlite3LogEstToInt(pLoop->nOut));
211     }else{
212       sqlite3_str_append(&str, " (~1 row)", 9);
213     }
214 #endif
215     zMsg = sqlite3StrAccumFinish(&str);
216     sqlite3ExplainBreakpoint("",zMsg);
217     ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
218                             pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
219   }
220   return ret;
221 }
222 #endif /* SQLITE_OMIT_EXPLAIN */
223 
224 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
225 /*
226 ** Configure the VM passed as the first argument with an
227 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
228 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
229 ** clause that the scan reads data from.
230 **
231 ** If argument addrExplain is not 0, it must be the address of an
232 ** OP_Explain instruction that describes the same loop.
233 */
234 void sqlite3WhereAddScanStatus(
235   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
236   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
237   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
238   int addrExplain                 /* Address of OP_Explain (or 0) */
239 ){
240   const char *zObj = 0;
241   WhereLoop *pLoop = pLvl->pWLoop;
242   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
243     zObj = pLoop->u.btree.pIndex->zName;
244   }else{
245     zObj = pSrclist->a[pLvl->iFrom].zName;
246   }
247   sqlite3VdbeScanStatus(
248       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
249   );
250 }
251 #endif
252 
253 
254 /*
255 ** Disable a term in the WHERE clause.  Except, do not disable the term
256 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
257 ** or USING clause of that join.
258 **
259 ** Consider the term t2.z='ok' in the following queries:
260 **
261 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
262 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
263 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
264 **
265 ** The t2.z='ok' is disabled in the in (2) because it originates
266 ** in the ON clause.  The term is disabled in (3) because it is not part
267 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
268 **
269 ** Disabling a term causes that term to not be tested in the inner loop
270 ** of the join.  Disabling is an optimization.  When terms are satisfied
271 ** by indices, we disable them to prevent redundant tests in the inner
272 ** loop.  We would get the correct results if nothing were ever disabled,
273 ** but joins might run a little slower.  The trick is to disable as much
274 ** as we can without disabling too much.  If we disabled in (1), we'd get
275 ** the wrong answer.  See ticket #813.
276 **
277 ** If all the children of a term are disabled, then that term is also
278 ** automatically disabled.  In this way, terms get disabled if derived
279 ** virtual terms are tested first.  For example:
280 **
281 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
282 **      \___________/     \______/     \_____/
283 **         parent          child1       child2
284 **
285 ** Only the parent term was in the original WHERE clause.  The child1
286 ** and child2 terms were added by the LIKE optimization.  If both of
287 ** the virtual child terms are valid, then testing of the parent can be
288 ** skipped.
289 **
290 ** Usually the parent term is marked as TERM_CODED.  But if the parent
291 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
292 ** The TERM_LIKECOND marking indicates that the term should be coded inside
293 ** a conditional such that is only evaluated on the second pass of a
294 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
295 */
296 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
297   int nLoop = 0;
298   assert( pTerm!=0 );
299   while( (pTerm->wtFlags & TERM_CODED)==0
300       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
301       && (pLevel->notReady & pTerm->prereqAll)==0
302   ){
303     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
304       pTerm->wtFlags |= TERM_LIKECOND;
305     }else{
306       pTerm->wtFlags |= TERM_CODED;
307     }
308     if( pTerm->iParent<0 ) break;
309     pTerm = &pTerm->pWC->a[pTerm->iParent];
310     assert( pTerm!=0 );
311     pTerm->nChild--;
312     if( pTerm->nChild!=0 ) break;
313     nLoop++;
314   }
315 }
316 
317 /*
318 ** Code an OP_Affinity opcode to apply the column affinity string zAff
319 ** to the n registers starting at base.
320 **
321 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
322 ** are no-ops) at the beginning and end of zAff are ignored.  If all entries
323 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
324 **
325 ** This routine makes its own copy of zAff so that the caller is free
326 ** to modify zAff after this routine returns.
327 */
328 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
329   Vdbe *v = pParse->pVdbe;
330   if( zAff==0 ){
331     assert( pParse->db->mallocFailed );
332     return;
333   }
334   assert( v!=0 );
335 
336   /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
337   ** entries at the beginning and end of the affinity string.
338   */
339   assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB );
340   while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){
341     n--;
342     base++;
343     zAff++;
344   }
345   while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){
346     n--;
347   }
348 
349   /* Code the OP_Affinity opcode if there is anything left to do. */
350   if( n>0 ){
351     sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
352   }
353 }
354 
355 /*
356 ** Expression pRight, which is the RHS of a comparison operation, is
357 ** either a vector of n elements or, if n==1, a scalar expression.
358 ** Before the comparison operation, affinity zAff is to be applied
359 ** to the pRight values. This function modifies characters within the
360 ** affinity string to SQLITE_AFF_BLOB if either:
361 **
362 **   * the comparison will be performed with no affinity, or
363 **   * the affinity change in zAff is guaranteed not to change the value.
364 */
365 static void updateRangeAffinityStr(
366   Expr *pRight,                   /* RHS of comparison */
367   int n,                          /* Number of vector elements in comparison */
368   char *zAff                      /* Affinity string to modify */
369 ){
370   int i;
371   for(i=0; i<n; i++){
372     Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
373     if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
374      || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
375     ){
376       zAff[i] = SQLITE_AFF_BLOB;
377     }
378   }
379 }
380 
381 
382 /*
383 ** pX is an expression of the form:  (vector) IN (SELECT ...)
384 ** In other words, it is a vector IN operator with a SELECT clause on the
385 ** LHS.  But not all terms in the vector are indexable and the terms might
386 ** not be in the correct order for indexing.
387 **
388 ** This routine makes a copy of the input pX expression and then adjusts
389 ** the vector on the LHS with corresponding changes to the SELECT so that
390 ** the vector contains only index terms and those terms are in the correct
391 ** order.  The modified IN expression is returned.  The caller is responsible
392 ** for deleting the returned expression.
393 **
394 ** Example:
395 **
396 **    CREATE TABLE t1(a,b,c,d,e,f);
397 **    CREATE INDEX t1x1 ON t1(e,c);
398 **    SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
399 **                           \_______________________________________/
400 **                                     The pX expression
401 **
402 ** Since only columns e and c can be used with the index, in that order,
403 ** the modified IN expression that is returned will be:
404 **
405 **        (e,c) IN (SELECT z,x FROM t2)
406 **
407 ** The reduced pX is different from the original (obviously) and thus is
408 ** only used for indexing, to improve performance.  The original unaltered
409 ** IN expression must also be run on each output row for correctness.
410 */
411 static Expr *removeUnindexableInClauseTerms(
412   Parse *pParse,        /* The parsing context */
413   int iEq,              /* Look at loop terms starting here */
414   WhereLoop *pLoop,     /* The current loop */
415   Expr *pX              /* The IN expression to be reduced */
416 ){
417   sqlite3 *db = pParse->db;
418   Expr *pNew;
419   pNew = sqlite3ExprDup(db, pX, 0);
420   if( db->mallocFailed==0 ){
421     ExprList *pOrigRhs = pNew->x.pSelect->pEList;  /* Original unmodified RHS */
422     ExprList *pOrigLhs = pNew->pLeft->x.pList;     /* Original unmodified LHS */
423     ExprList *pRhs = 0;         /* New RHS after modifications */
424     ExprList *pLhs = 0;         /* New LHS after mods */
425     int i;                      /* Loop counter */
426     Select *pSelect;            /* Pointer to the SELECT on the RHS */
427 
428     for(i=iEq; i<pLoop->nLTerm; i++){
429       if( pLoop->aLTerm[i]->pExpr==pX ){
430         int iField = pLoop->aLTerm[i]->iField - 1;
431         if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
432         pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
433         pOrigRhs->a[iField].pExpr = 0;
434         assert( pOrigLhs->a[iField].pExpr!=0 );
435         pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
436         pOrigLhs->a[iField].pExpr = 0;
437       }
438     }
439     sqlite3ExprListDelete(db, pOrigRhs);
440     sqlite3ExprListDelete(db, pOrigLhs);
441     pNew->pLeft->x.pList = pLhs;
442     pNew->x.pSelect->pEList = pRhs;
443     if( pLhs && pLhs->nExpr==1 ){
444       /* Take care here not to generate a TK_VECTOR containing only a
445       ** single value. Since the parser never creates such a vector, some
446       ** of the subroutines do not handle this case.  */
447       Expr *p = pLhs->a[0].pExpr;
448       pLhs->a[0].pExpr = 0;
449       sqlite3ExprDelete(db, pNew->pLeft);
450       pNew->pLeft = p;
451     }
452     pSelect = pNew->x.pSelect;
453     if( pSelect->pOrderBy ){
454       /* If the SELECT statement has an ORDER BY clause, zero the
455       ** iOrderByCol variables. These are set to non-zero when an
456       ** ORDER BY term exactly matches one of the terms of the
457       ** result-set. Since the result-set of the SELECT statement may
458       ** have been modified or reordered, these variables are no longer
459       ** set correctly.  Since setting them is just an optimization,
460       ** it's easiest just to zero them here.  */
461       ExprList *pOrderBy = pSelect->pOrderBy;
462       for(i=0; i<pOrderBy->nExpr; i++){
463         pOrderBy->a[i].u.x.iOrderByCol = 0;
464       }
465     }
466 
467 #if 0
468     printf("For indexing, change the IN expr:\n");
469     sqlite3TreeViewExpr(0, pX, 0);
470     printf("Into:\n");
471     sqlite3TreeViewExpr(0, pNew, 0);
472 #endif
473   }
474   return pNew;
475 }
476 
477 
478 /*
479 ** Generate code for a single equality term of the WHERE clause.  An equality
480 ** term can be either X=expr or X IN (...).   pTerm is the term to be
481 ** coded.
482 **
483 ** The current value for the constraint is left in a register, the index
484 ** of which is returned.  An attempt is made store the result in iTarget but
485 ** this is only guaranteed for TK_ISNULL and TK_IN constraints.  If the
486 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
487 ** some other register and it is the caller's responsibility to compensate.
488 **
489 ** For a constraint of the form X=expr, the expression is evaluated in
490 ** straight-line code.  For constraints of the form X IN (...)
491 ** this routine sets up a loop that will iterate over all values of X.
492 */
493 static int codeEqualityTerm(
494   Parse *pParse,      /* The parsing context */
495   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
496   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
497   int iEq,            /* Index of the equality term within this level */
498   int bRev,           /* True for reverse-order IN operations */
499   int iTarget         /* Attempt to leave results in this register */
500 ){
501   Expr *pX = pTerm->pExpr;
502   Vdbe *v = pParse->pVdbe;
503   int iReg;                  /* Register holding results */
504 
505   assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
506   assert( iTarget>0 );
507   if( pX->op==TK_EQ || pX->op==TK_IS ){
508     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
509   }else if( pX->op==TK_ISNULL ){
510     iReg = iTarget;
511     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
512 #ifndef SQLITE_OMIT_SUBQUERY
513   }else{
514     int eType = IN_INDEX_NOOP;
515     int iTab;
516     struct InLoop *pIn;
517     WhereLoop *pLoop = pLevel->pWLoop;
518     int i;
519     int nEq = 0;
520     int *aiMap = 0;
521 
522     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
523       && pLoop->u.btree.pIndex!=0
524       && pLoop->u.btree.pIndex->aSortOrder[iEq]
525     ){
526       testcase( iEq==0 );
527       testcase( bRev );
528       bRev = !bRev;
529     }
530     assert( pX->op==TK_IN );
531     iReg = iTarget;
532 
533     for(i=0; i<iEq; i++){
534       if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
535         disableTerm(pLevel, pTerm);
536         return iTarget;
537       }
538     }
539     for(i=iEq;i<pLoop->nLTerm; i++){
540       assert( pLoop->aLTerm[i]!=0 );
541       if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
542     }
543 
544     iTab = 0;
545     if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){
546       eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab);
547     }else{
548       sqlite3 *db = pParse->db;
549       pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
550 
551       if( !db->mallocFailed ){
552         aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
553         eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab);
554         pTerm->pExpr->iTable = iTab;
555       }
556       sqlite3ExprDelete(db, pX);
557       pX = pTerm->pExpr;
558     }
559 
560     if( eType==IN_INDEX_INDEX_DESC ){
561       testcase( bRev );
562       bRev = !bRev;
563     }
564     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
565     VdbeCoverageIf(v, bRev);
566     VdbeCoverageIf(v, !bRev);
567     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
568 
569     pLoop->wsFlags |= WHERE_IN_ABLE;
570     if( pLevel->u.in.nIn==0 ){
571       pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
572     }
573 
574     i = pLevel->u.in.nIn;
575     pLevel->u.in.nIn += nEq;
576     pLevel->u.in.aInLoop =
577        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
578                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
579     pIn = pLevel->u.in.aInLoop;
580     if( pIn ){
581       int iMap = 0;               /* Index in aiMap[] */
582       pIn += i;
583       for(i=iEq;i<pLoop->nLTerm; i++){
584         if( pLoop->aLTerm[i]->pExpr==pX ){
585           int iOut = iReg + i - iEq;
586           if( eType==IN_INDEX_ROWID ){
587             pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
588           }else{
589             int iCol = aiMap ? aiMap[iMap++] : 0;
590             pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
591           }
592           sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
593           if( i==iEq ){
594             pIn->iCur = iTab;
595             pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
596             if( iEq>0 ){
597               pIn->iBase = iReg - i;
598               pIn->nPrefix = i;
599               pLoop->wsFlags |= WHERE_IN_EARLYOUT;
600             }else{
601               pIn->nPrefix = 0;
602             }
603           }else{
604             pIn->eEndLoopOp = OP_Noop;
605           }
606           pIn++;
607         }
608       }
609     }else{
610       pLevel->u.in.nIn = 0;
611     }
612     sqlite3DbFree(pParse->db, aiMap);
613 #endif
614   }
615   disableTerm(pLevel, pTerm);
616   return iReg;
617 }
618 
619 /*
620 ** Generate code that will evaluate all == and IN constraints for an
621 ** index scan.
622 **
623 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
624 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
625 ** The index has as many as three equality constraints, but in this
626 ** example, the third "c" value is an inequality.  So only two
627 ** constraints are coded.  This routine will generate code to evaluate
628 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
629 ** in consecutive registers and the index of the first register is returned.
630 **
631 ** In the example above nEq==2.  But this subroutine works for any value
632 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
633 ** The only thing it does is allocate the pLevel->iMem memory cell and
634 ** compute the affinity string.
635 **
636 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
637 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
638 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
639 ** occurs after the nEq quality constraints.
640 **
641 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
642 ** the index of the first memory cell in that range. The code that
643 ** calls this routine will use that memory range to store keys for
644 ** start and termination conditions of the loop.
645 ** key value of the loop.  If one or more IN operators appear, then
646 ** this routine allocates an additional nEq memory cells for internal
647 ** use.
648 **
649 ** Before returning, *pzAff is set to point to a buffer containing a
650 ** copy of the column affinity string of the index allocated using
651 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
652 ** with equality constraints that use BLOB or NONE affinity are set to
653 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
654 **
655 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
656 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
657 **
658 ** In the example above, the index on t1(a) has TEXT affinity. But since
659 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
660 ** no conversion should be attempted before using a t2.b value as part of
661 ** a key to search the index. Hence the first byte in the returned affinity
662 ** string in this example would be set to SQLITE_AFF_BLOB.
663 */
664 static int codeAllEqualityTerms(
665   Parse *pParse,        /* Parsing context */
666   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
667   int bRev,             /* Reverse the order of IN operators */
668   int nExtraReg,        /* Number of extra registers to allocate */
669   char **pzAff          /* OUT: Set to point to affinity string */
670 ){
671   u16 nEq;                      /* The number of == or IN constraints to code */
672   u16 nSkip;                    /* Number of left-most columns to skip */
673   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
674   Index *pIdx;                  /* The index being used for this loop */
675   WhereTerm *pTerm;             /* A single constraint term */
676   WhereLoop *pLoop;             /* The WhereLoop object */
677   int j;                        /* Loop counter */
678   int regBase;                  /* Base register */
679   int nReg;                     /* Number of registers to allocate */
680   char *zAff;                   /* Affinity string to return */
681 
682   /* This module is only called on query plans that use an index. */
683   pLoop = pLevel->pWLoop;
684   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
685   nEq = pLoop->u.btree.nEq;
686   nSkip = pLoop->nSkip;
687   pIdx = pLoop->u.btree.pIndex;
688   assert( pIdx!=0 );
689 
690   /* Figure out how many memory cells we will need then allocate them.
691   */
692   regBase = pParse->nMem + 1;
693   nReg = pLoop->u.btree.nEq + nExtraReg;
694   pParse->nMem += nReg;
695 
696   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
697   assert( zAff!=0 || pParse->db->mallocFailed );
698 
699   if( nSkip ){
700     int iIdxCur = pLevel->iIdxCur;
701     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
702     VdbeCoverageIf(v, bRev==0);
703     VdbeCoverageIf(v, bRev!=0);
704     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
705     j = sqlite3VdbeAddOp0(v, OP_Goto);
706     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
707                             iIdxCur, 0, regBase, nSkip);
708     VdbeCoverageIf(v, bRev==0);
709     VdbeCoverageIf(v, bRev!=0);
710     sqlite3VdbeJumpHere(v, j);
711     for(j=0; j<nSkip; j++){
712       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
713       testcase( pIdx->aiColumn[j]==XN_EXPR );
714       VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
715     }
716   }
717 
718   /* Evaluate the equality constraints
719   */
720   assert( zAff==0 || (int)strlen(zAff)>=nEq );
721   for(j=nSkip; j<nEq; j++){
722     int r1;
723     pTerm = pLoop->aLTerm[j];
724     assert( pTerm!=0 );
725     /* The following testcase is true for indices with redundant columns.
726     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
727     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
728     testcase( pTerm->wtFlags & TERM_VIRTUAL );
729     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
730     if( r1!=regBase+j ){
731       if( nReg==1 ){
732         sqlite3ReleaseTempReg(pParse, regBase);
733         regBase = r1;
734       }else{
735         sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
736       }
737     }
738     if( pTerm->eOperator & WO_IN ){
739       if( pTerm->pExpr->flags & EP_xIsSelect ){
740         /* No affinity ever needs to be (or should be) applied to a value
741         ** from the RHS of an "? IN (SELECT ...)" expression. The
742         ** sqlite3FindInIndex() routine has already ensured that the
743         ** affinity of the comparison has been applied to the value.  */
744         if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
745       }
746     }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
747       Expr *pRight = pTerm->pExpr->pRight;
748       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
749         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
750         VdbeCoverage(v);
751       }
752       if( zAff ){
753         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
754           zAff[j] = SQLITE_AFF_BLOB;
755         }
756         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
757           zAff[j] = SQLITE_AFF_BLOB;
758         }
759       }
760     }
761   }
762   *pzAff = zAff;
763   return regBase;
764 }
765 
766 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
767 /*
768 ** If the most recently coded instruction is a constant range constraint
769 ** (a string literal) that originated from the LIKE optimization, then
770 ** set P3 and P5 on the OP_String opcode so that the string will be cast
771 ** to a BLOB at appropriate times.
772 **
773 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
774 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
775 ** scan loop run twice, once for strings and a second time for BLOBs.
776 ** The OP_String opcodes on the second pass convert the upper and lower
777 ** bound string constants to blobs.  This routine makes the necessary changes
778 ** to the OP_String opcodes for that to happen.
779 **
780 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
781 ** only the one pass through the string space is required, so this routine
782 ** becomes a no-op.
783 */
784 static void whereLikeOptimizationStringFixup(
785   Vdbe *v,                /* prepared statement under construction */
786   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
787   WhereTerm *pTerm        /* The upper or lower bound just coded */
788 ){
789   if( pTerm->wtFlags & TERM_LIKEOPT ){
790     VdbeOp *pOp;
791     assert( pLevel->iLikeRepCntr>0 );
792     pOp = sqlite3VdbeGetOp(v, -1);
793     assert( pOp!=0 );
794     assert( pOp->opcode==OP_String8
795             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
796     pOp->p3 = (int)(pLevel->iLikeRepCntr>>1);  /* Register holding counter */
797     pOp->p5 = (u8)(pLevel->iLikeRepCntr&1);    /* ASC or DESC */
798   }
799 }
800 #else
801 # define whereLikeOptimizationStringFixup(A,B,C)
802 #endif
803 
804 #ifdef SQLITE_ENABLE_CURSOR_HINTS
805 /*
806 ** Information is passed from codeCursorHint() down to individual nodes of
807 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
808 ** structure.
809 */
810 struct CCurHint {
811   int iTabCur;    /* Cursor for the main table */
812   int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
813   Index *pIdx;    /* The index used to access the table */
814 };
815 
816 /*
817 ** This function is called for every node of an expression that is a candidate
818 ** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
819 ** the table CCurHint.iTabCur, verify that the same column can be
820 ** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
821 */
822 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
823   struct CCurHint *pHint = pWalker->u.pCCurHint;
824   assert( pHint->pIdx!=0 );
825   if( pExpr->op==TK_COLUMN
826    && pExpr->iTable==pHint->iTabCur
827    && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0
828   ){
829     pWalker->eCode = 1;
830   }
831   return WRC_Continue;
832 }
833 
834 /*
835 ** Test whether or not expression pExpr, which was part of a WHERE clause,
836 ** should be included in the cursor-hint for a table that is on the rhs
837 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
838 ** expression is not suitable.
839 **
840 ** An expression is unsuitable if it might evaluate to non NULL even if
841 ** a TK_COLUMN node that does affect the value of the expression is set
842 ** to NULL. For example:
843 **
844 **   col IS NULL
845 **   col IS NOT NULL
846 **   coalesce(col, 1)
847 **   CASE WHEN col THEN 0 ELSE 1 END
848 */
849 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
850   if( pExpr->op==TK_IS
851    || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
852    || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
853   ){
854     pWalker->eCode = 1;
855   }else if( pExpr->op==TK_FUNCTION ){
856     int d1;
857     char d2[4];
858     if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
859       pWalker->eCode = 1;
860     }
861   }
862 
863   return WRC_Continue;
864 }
865 
866 
867 /*
868 ** This function is called on every node of an expression tree used as an
869 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
870 ** that accesses any table other than the one identified by
871 ** CCurHint.iTabCur, then do the following:
872 **
873 **   1) allocate a register and code an OP_Column instruction to read
874 **      the specified column into the new register, and
875 **
876 **   2) transform the expression node to a TK_REGISTER node that reads
877 **      from the newly populated register.
878 **
879 ** Also, if the node is a TK_COLUMN that does access the table idenified
880 ** by pCCurHint.iTabCur, and an index is being used (which we will
881 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
882 ** an access of the index rather than the original table.
883 */
884 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
885   int rc = WRC_Continue;
886   struct CCurHint *pHint = pWalker->u.pCCurHint;
887   if( pExpr->op==TK_COLUMN ){
888     if( pExpr->iTable!=pHint->iTabCur ){
889       int reg = ++pWalker->pParse->nMem;   /* Register for column value */
890       sqlite3ExprCode(pWalker->pParse, pExpr, reg);
891       pExpr->op = TK_REGISTER;
892       pExpr->iTable = reg;
893     }else if( pHint->pIdx!=0 ){
894       pExpr->iTable = pHint->iIdxCur;
895       pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn);
896       assert( pExpr->iColumn>=0 );
897     }
898   }else if( pExpr->op==TK_AGG_FUNCTION ){
899     /* An aggregate function in the WHERE clause of a query means this must
900     ** be a correlated sub-query, and expression pExpr is an aggregate from
901     ** the parent context. Do not walk the function arguments in this case.
902     **
903     ** todo: It should be possible to replace this node with a TK_REGISTER
904     ** expression, as the result of the expression must be stored in a
905     ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
906     rc = WRC_Prune;
907   }
908   return rc;
909 }
910 
911 /*
912 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
913 */
914 static void codeCursorHint(
915   struct SrcList_item *pTabItem,  /* FROM clause item */
916   WhereInfo *pWInfo,    /* The where clause */
917   WhereLevel *pLevel,   /* Which loop to provide hints for */
918   WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
919 ){
920   Parse *pParse = pWInfo->pParse;
921   sqlite3 *db = pParse->db;
922   Vdbe *v = pParse->pVdbe;
923   Expr *pExpr = 0;
924   WhereLoop *pLoop = pLevel->pWLoop;
925   int iCur;
926   WhereClause *pWC;
927   WhereTerm *pTerm;
928   int i, j;
929   struct CCurHint sHint;
930   Walker sWalker;
931 
932   if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
933   iCur = pLevel->iTabCur;
934   assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
935   sHint.iTabCur = iCur;
936   sHint.iIdxCur = pLevel->iIdxCur;
937   sHint.pIdx = pLoop->u.btree.pIndex;
938   memset(&sWalker, 0, sizeof(sWalker));
939   sWalker.pParse = pParse;
940   sWalker.u.pCCurHint = &sHint;
941   pWC = &pWInfo->sWC;
942   for(i=0; i<pWC->nTerm; i++){
943     pTerm = &pWC->a[i];
944     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
945     if( pTerm->prereqAll & pLevel->notReady ) continue;
946 
947     /* Any terms specified as part of the ON(...) clause for any LEFT
948     ** JOIN for which the current table is not the rhs are omitted
949     ** from the cursor-hint.
950     **
951     ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
952     ** that were specified as part of the WHERE clause must be excluded.
953     ** This is to address the following:
954     **
955     **   SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
956     **
957     ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
958     ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
959     ** pushed down to the cursor, this row is filtered out, causing
960     ** SQLite to synthesize a row of NULL values. Which does match the
961     ** WHERE clause, and so the query returns a row. Which is incorrect.
962     **
963     ** For the same reason, WHERE terms such as:
964     **
965     **   WHERE 1 = (t2.c IS NULL)
966     **
967     ** are also excluded. See codeCursorHintIsOrFunction() for details.
968     */
969     if( pTabItem->fg.jointype & JT_LEFT ){
970       Expr *pExpr = pTerm->pExpr;
971       if( !ExprHasProperty(pExpr, EP_FromJoin)
972        || pExpr->iRightJoinTable!=pTabItem->iCursor
973       ){
974         sWalker.eCode = 0;
975         sWalker.xExprCallback = codeCursorHintIsOrFunction;
976         sqlite3WalkExpr(&sWalker, pTerm->pExpr);
977         if( sWalker.eCode ) continue;
978       }
979     }else{
980       if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
981     }
982 
983     /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
984     ** the cursor.  These terms are not needed as hints for a pure range
985     ** scan (that has no == terms) so omit them. */
986     if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
987       for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
988       if( j<pLoop->nLTerm ) continue;
989     }
990 
991     /* No subqueries or non-deterministic functions allowed */
992     if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
993 
994     /* For an index scan, make sure referenced columns are actually in
995     ** the index. */
996     if( sHint.pIdx!=0 ){
997       sWalker.eCode = 0;
998       sWalker.xExprCallback = codeCursorHintCheckExpr;
999       sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1000       if( sWalker.eCode ) continue;
1001     }
1002 
1003     /* If we survive all prior tests, that means this term is worth hinting */
1004     pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
1005   }
1006   if( pExpr!=0 ){
1007     sWalker.xExprCallback = codeCursorHintFixExpr;
1008     sqlite3WalkExpr(&sWalker, pExpr);
1009     sqlite3VdbeAddOp4(v, OP_CursorHint,
1010                       (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
1011                       (const char*)pExpr, P4_EXPR);
1012   }
1013 }
1014 #else
1015 # define codeCursorHint(A,B,C,D)  /* No-op */
1016 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1017 
1018 /*
1019 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1020 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1021 ** function generates code to do a deferred seek of cursor iCur to the
1022 ** rowid stored in register iRowid.
1023 **
1024 ** Normally, this is just:
1025 **
1026 **   OP_DeferredSeek $iCur $iRowid
1027 **
1028 ** However, if the scan currently being coded is a branch of an OR-loop and
1029 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek
1030 ** is set to iIdxCur and P4 is set to point to an array of integers
1031 ** containing one entry for each column of the table cursor iCur is open
1032 ** on. For each table column, if the column is the i'th column of the
1033 ** index, then the corresponding array entry is set to (i+1). If the column
1034 ** does not appear in the index at all, the array entry is set to 0.
1035 */
1036 static void codeDeferredSeek(
1037   WhereInfo *pWInfo,              /* Where clause context */
1038   Index *pIdx,                    /* Index scan is using */
1039   int iCur,                       /* Cursor for IPK b-tree */
1040   int iIdxCur                     /* Index cursor */
1041 ){
1042   Parse *pParse = pWInfo->pParse; /* Parse context */
1043   Vdbe *v = pParse->pVdbe;        /* Vdbe to generate code within */
1044 
1045   assert( iIdxCur>0 );
1046   assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1047 
1048   pWInfo->bDeferredSeek = 1;
1049   sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1050   if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1051    && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1052   ){
1053     int i;
1054     Table *pTab = pIdx->pTable;
1055     int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1));
1056     if( ai ){
1057       ai[0] = pTab->nCol;
1058       for(i=0; i<pIdx->nColumn-1; i++){
1059         int x1, x2;
1060         assert( pIdx->aiColumn[i]<pTab->nCol );
1061         x1 = pIdx->aiColumn[i];
1062         x2 = sqlite3TableColumnToStorage(pTab, x1);
1063         testcase( x1!=x2 );
1064         if( x1>=0 ) ai[x2+1] = i+1;
1065       }
1066       sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1067     }
1068   }
1069 }
1070 
1071 /*
1072 ** If the expression passed as the second argument is a vector, generate
1073 ** code to write the first nReg elements of the vector into an array
1074 ** of registers starting with iReg.
1075 **
1076 ** If the expression is not a vector, then nReg must be passed 1. In
1077 ** this case, generate code to evaluate the expression and leave the
1078 ** result in register iReg.
1079 */
1080 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1081   assert( nReg>0 );
1082   if( p && sqlite3ExprIsVector(p) ){
1083 #ifndef SQLITE_OMIT_SUBQUERY
1084     if( (p->flags & EP_xIsSelect) ){
1085       Vdbe *v = pParse->pVdbe;
1086       int iSelect;
1087       assert( p->op==TK_SELECT );
1088       iSelect = sqlite3CodeSubselect(pParse, p);
1089       sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1090     }else
1091 #endif
1092     {
1093       int i;
1094       ExprList *pList = p->x.pList;
1095       assert( nReg<=pList->nExpr );
1096       for(i=0; i<nReg; i++){
1097         sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1098       }
1099     }
1100   }else{
1101     assert( nReg==1 );
1102     sqlite3ExprCode(pParse, p, iReg);
1103   }
1104 }
1105 
1106 /* An instance of the IdxExprTrans object carries information about a
1107 ** mapping from an expression on table columns into a column in an index
1108 ** down through the Walker.
1109 */
1110 typedef struct IdxExprTrans {
1111   Expr *pIdxExpr;    /* The index expression */
1112   int iTabCur;       /* The cursor of the corresponding table */
1113   int iIdxCur;       /* The cursor for the index */
1114   int iIdxCol;       /* The column for the index */
1115   int iTabCol;       /* The column for the table */
1116   WhereInfo *pWInfo; /* Complete WHERE clause information */
1117   sqlite3 *db;       /* Database connection (for malloc()) */
1118 } IdxExprTrans;
1119 
1120 /*
1121 ** Preserve pExpr on the WhereETrans list of the WhereInfo.
1122 */
1123 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){
1124   WhereExprMod *pNew;
1125   pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew));
1126   if( pNew==0 ) return;
1127   pNew->pNext = pTrans->pWInfo->pExprMods;
1128   pTrans->pWInfo->pExprMods = pNew;
1129   pNew->pExpr = pExpr;
1130   memcpy(&pNew->orig, pExpr, sizeof(*pExpr));
1131 }
1132 
1133 /* The walker node callback used to transform matching expressions into
1134 ** a reference to an index column for an index on an expression.
1135 **
1136 ** If pExpr matches, then transform it into a reference to the index column
1137 ** that contains the value of pExpr.
1138 */
1139 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1140   IdxExprTrans *pX = p->u.pIdxTrans;
1141   if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1142     preserveExpr(pX, pExpr);
1143     pExpr->affExpr = sqlite3ExprAffinity(pExpr);
1144     pExpr->op = TK_COLUMN;
1145     pExpr->iTable = pX->iIdxCur;
1146     pExpr->iColumn = pX->iIdxCol;
1147     pExpr->y.pTab = 0;
1148     testcase( ExprHasProperty(pExpr, EP_Skip) );
1149     testcase( ExprHasProperty(pExpr, EP_Unlikely) );
1150     ExprClearProperty(pExpr, EP_Skip|EP_Unlikely);
1151     return WRC_Prune;
1152   }else{
1153     return WRC_Continue;
1154   }
1155 }
1156 
1157 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1158 /* A walker node callback that translates a column reference to a table
1159 ** into a corresponding column reference of an index.
1160 */
1161 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){
1162   if( pExpr->op==TK_COLUMN ){
1163     IdxExprTrans *pX = p->u.pIdxTrans;
1164     if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){
1165       assert( pExpr->y.pTab!=0 );
1166       preserveExpr(pX, pExpr);
1167       pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn);
1168       pExpr->iTable = pX->iIdxCur;
1169       pExpr->iColumn = pX->iIdxCol;
1170       pExpr->y.pTab = 0;
1171     }
1172   }
1173   return WRC_Continue;
1174 }
1175 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1176 
1177 /*
1178 ** For an indexes on expression X, locate every instance of expression X
1179 ** in pExpr and change that subexpression into a reference to the appropriate
1180 ** column of the index.
1181 **
1182 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in
1183 ** the table into references to the corresponding (stored) column of the
1184 ** index.
1185 */
1186 static void whereIndexExprTrans(
1187   Index *pIdx,      /* The Index */
1188   int iTabCur,      /* Cursor of the table that is being indexed */
1189   int iIdxCur,      /* Cursor of the index itself */
1190   WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1191 ){
1192   int iIdxCol;               /* Column number of the index */
1193   ExprList *aColExpr;        /* Expressions that are indexed */
1194   Table *pTab;
1195   Walker w;
1196   IdxExprTrans x;
1197   aColExpr = pIdx->aColExpr;
1198   if( aColExpr==0 && !pIdx->bHasVCol ){
1199     /* The index does not reference any expressions or virtual columns
1200     ** so no translations are needed. */
1201     return;
1202   }
1203   pTab = pIdx->pTable;
1204   memset(&w, 0, sizeof(w));
1205   w.u.pIdxTrans = &x;
1206   x.iTabCur = iTabCur;
1207   x.iIdxCur = iIdxCur;
1208   x.pWInfo = pWInfo;
1209   x.db = pWInfo->pParse->db;
1210   for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){
1211     i16 iRef = pIdx->aiColumn[iIdxCol];
1212     if( iRef==XN_EXPR ){
1213       assert( aColExpr->a[iIdxCol].pExpr!=0 );
1214       x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1215       if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue;
1216       w.xExprCallback = whereIndexExprTransNode;
1217 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1218     }else if( iRef>=0
1219        && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0
1220        && (pTab->aCol[iRef].zColl==0
1221            || sqlite3StrICmp(pTab->aCol[iRef].zColl, sqlite3StrBINARY)==0)
1222     ){
1223       /* Check to see if there are direct references to generated columns
1224       ** that are contained in the index.  Pulling the generated column
1225       ** out of the index is an optimization only - the main table is always
1226       ** available if the index cannot be used.  To avoid unnecessary
1227       ** complication, omit this optimization if the collating sequence for
1228       ** the column is non-standard */
1229       x.iTabCol = iRef;
1230       w.xExprCallback = whereIndexExprTransColumn;
1231 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1232     }else{
1233       continue;
1234     }
1235     x.iIdxCol = iIdxCol;
1236     sqlite3WalkExpr(&w, pWInfo->pWhere);
1237     sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1238     sqlite3WalkExprList(&w, pWInfo->pResultSet);
1239   }
1240 }
1241 
1242 /*
1243 ** The pTruth expression is always true because it is the WHERE clause
1244 ** a partial index that is driving a query loop.  Look through all of the
1245 ** WHERE clause terms on the query, and if any of those terms must be
1246 ** true because pTruth is true, then mark those WHERE clause terms as
1247 ** coded.
1248 */
1249 static void whereApplyPartialIndexConstraints(
1250   Expr *pTruth,
1251   int iTabCur,
1252   WhereClause *pWC
1253 ){
1254   int i;
1255   WhereTerm *pTerm;
1256   while( pTruth->op==TK_AND ){
1257     whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC);
1258     pTruth = pTruth->pRight;
1259   }
1260   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1261     Expr *pExpr;
1262     if( pTerm->wtFlags & TERM_CODED ) continue;
1263     pExpr = pTerm->pExpr;
1264     if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){
1265       pTerm->wtFlags |= TERM_CODED;
1266     }
1267   }
1268 }
1269 
1270 /*
1271 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1272 ** implementation described by pWInfo.
1273 */
1274 Bitmask sqlite3WhereCodeOneLoopStart(
1275   Parse *pParse,       /* Parsing context */
1276   Vdbe *v,             /* Prepared statement under construction */
1277   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1278   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1279   WhereLevel *pLevel,  /* The current level pointer */
1280   Bitmask notReady     /* Which tables are currently available */
1281 ){
1282   int j, k;            /* Loop counters */
1283   int iCur;            /* The VDBE cursor for the table */
1284   int addrNxt;         /* Where to jump to continue with the next IN case */
1285   int bRev;            /* True if we need to scan in reverse order */
1286   WhereLoop *pLoop;    /* The WhereLoop object being coded */
1287   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
1288   WhereTerm *pTerm;               /* A WHERE clause term */
1289   sqlite3 *db;                    /* Database connection */
1290   struct SrcList_item *pTabItem;  /* FROM clause term being coded */
1291   int addrBrk;                    /* Jump here to break out of the loop */
1292   int addrHalt;                   /* addrBrk for the outermost loop */
1293   int addrCont;                   /* Jump here to continue with next cycle */
1294   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
1295   int iReleaseReg = 0;      /* Temp register to free before returning */
1296   Index *pIdx = 0;          /* Index used by loop (if any) */
1297   int iLoop;                /* Iteration of constraint generator loop */
1298 
1299   pWC = &pWInfo->sWC;
1300   db = pParse->db;
1301   pLoop = pLevel->pWLoop;
1302   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1303   iCur = pTabItem->iCursor;
1304   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1305   bRev = (pWInfo->revMask>>iLevel)&1;
1306   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1307 #if WHERETRACE_ENABLED /* 0x20800 */
1308   if( sqlite3WhereTrace & 0x800 ){
1309     sqlite3DebugPrintf("Coding level %d of %d:  notReady=%llx  iFrom=%d\n",
1310        iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom);
1311     sqlite3WhereLoopPrint(pLoop, pWC);
1312   }
1313   if( sqlite3WhereTrace & 0x20000 ){
1314     if( iLevel==0 ){
1315       sqlite3DebugPrintf("WHERE clause being coded:\n");
1316       sqlite3TreeViewExpr(0, pWInfo->pWhere, 0);
1317     }
1318     sqlite3DebugPrintf("All WHERE-clause terms before coding:\n");
1319     sqlite3WhereClausePrint(pWC);
1320   }
1321 #endif
1322 
1323   /* Create labels for the "break" and "continue" instructions
1324   ** for the current loop.  Jump to addrBrk to break out of a loop.
1325   ** Jump to cont to go immediately to the next iteration of the
1326   ** loop.
1327   **
1328   ** When there is an IN operator, we also have a "addrNxt" label that
1329   ** means to continue with the next IN value combination.  When
1330   ** there are no IN operators in the constraints, the "addrNxt" label
1331   ** is the same as "addrBrk".
1332   */
1333   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
1334   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse);
1335 
1336   /* If this is the right table of a LEFT OUTER JOIN, allocate and
1337   ** initialize a memory cell that records if this table matches any
1338   ** row of the left table of the join.
1339   */
1340   assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1341        || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
1342   );
1343   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1344     pLevel->iLeftJoin = ++pParse->nMem;
1345     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1346     VdbeComment((v, "init LEFT JOIN no-match flag"));
1347   }
1348 
1349   /* Compute a safe address to jump to if we discover that the table for
1350   ** this loop is empty and can never contribute content. */
1351   for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){}
1352   addrHalt = pWInfo->a[j].addrBrk;
1353 
1354   /* Special case of a FROM clause subquery implemented as a co-routine */
1355   if( pTabItem->fg.viaCoroutine ){
1356     int regYield = pTabItem->regReturn;
1357     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1358     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1359     VdbeCoverage(v);
1360     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
1361     pLevel->op = OP_Goto;
1362   }else
1363 
1364 #ifndef SQLITE_OMIT_VIRTUALTABLE
1365   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1366     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
1367     **          to access the data.
1368     */
1369     int iReg;   /* P3 Value for OP_VFilter */
1370     int addrNotFound;
1371     int nConstraint = pLoop->nLTerm;
1372     int iIn;    /* Counter for IN constraints */
1373 
1374     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1375     addrNotFound = pLevel->addrBrk;
1376     for(j=0; j<nConstraint; j++){
1377       int iTarget = iReg+j+2;
1378       pTerm = pLoop->aLTerm[j];
1379       if( NEVER(pTerm==0) ) continue;
1380       if( pTerm->eOperator & WO_IN ){
1381         codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1382         addrNotFound = pLevel->addrNxt;
1383       }else{
1384         Expr *pRight = pTerm->pExpr->pRight;
1385         codeExprOrVector(pParse, pRight, iTarget, 1);
1386       }
1387     }
1388     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1389     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1390     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1391                       pLoop->u.vtab.idxStr,
1392                       pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1393     VdbeCoverage(v);
1394     pLoop->u.vtab.needFree = 0;
1395     pLevel->p1 = iCur;
1396     pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1397     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1398     iIn = pLevel->u.in.nIn;
1399     for(j=nConstraint-1; j>=0; j--){
1400       pTerm = pLoop->aLTerm[j];
1401       if( (pTerm->eOperator & WO_IN)!=0 ) iIn--;
1402       if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1403         disableTerm(pLevel, pTerm);
1404       }else if( (pTerm->eOperator & WO_IN)!=0
1405         && sqlite3ExprVectorSize(pTerm->pExpr->pLeft)==1
1406       ){
1407         Expr *pCompare;  /* The comparison operator */
1408         Expr *pRight;    /* RHS of the comparison */
1409         VdbeOp *pOp;     /* Opcode to access the value of the IN constraint */
1410 
1411         /* Reload the constraint value into reg[iReg+j+2].  The same value
1412         ** was loaded into the same register prior to the OP_VFilter, but
1413         ** the xFilter implementation might have changed the datatype or
1414         ** encoding of the value in the register, so it *must* be reloaded. */
1415         assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed );
1416         if( !db->mallocFailed ){
1417           assert( iIn>=0 && iIn<pLevel->u.in.nIn );
1418           pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop);
1419           assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid );
1420           assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 );
1421           assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 );
1422           testcase( pOp->opcode==OP_Rowid );
1423           sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1424         }
1425 
1426         /* Generate code that will continue to the next row if
1427         ** the IN constraint is not satisfied */
1428         pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1429         assert( pCompare!=0 || db->mallocFailed );
1430         if( pCompare ){
1431           pCompare->pLeft = pTerm->pExpr->pLeft;
1432           pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1433           if( pRight ){
1434             pRight->iTable = iReg+j+2;
1435             sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0);
1436           }
1437           pCompare->pLeft = 0;
1438           sqlite3ExprDelete(db, pCompare);
1439         }
1440       }
1441     }
1442     assert( iIn==0 || db->mallocFailed );
1443     /* These registers need to be preserved in case there is an IN operator
1444     ** loop.  So we could deallocate the registers here (and potentially
1445     ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0.  But it seems
1446     ** simpler and safer to simply not reuse the registers.
1447     **
1448     **    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1449     */
1450   }else
1451 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1452 
1453   if( (pLoop->wsFlags & WHERE_IPK)!=0
1454    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1455   ){
1456     /* Case 2:  We can directly reference a single row using an
1457     **          equality comparison against the ROWID field.  Or
1458     **          we reference multiple rows using a "rowid IN (...)"
1459     **          construct.
1460     */
1461     assert( pLoop->u.btree.nEq==1 );
1462     pTerm = pLoop->aLTerm[0];
1463     assert( pTerm!=0 );
1464     assert( pTerm->pExpr!=0 );
1465     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1466     iReleaseReg = ++pParse->nMem;
1467     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1468     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1469     addrNxt = pLevel->addrNxt;
1470     sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1471     VdbeCoverage(v);
1472     pLevel->op = OP_Noop;
1473     if( (pTerm->prereqAll & pLevel->notReady)==0 ){
1474       pTerm->wtFlags |= TERM_CODED;
1475     }
1476   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1477          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1478   ){
1479     /* Case 3:  We have an inequality comparison against the ROWID field.
1480     */
1481     int testOp = OP_Noop;
1482     int start;
1483     int memEndValue = 0;
1484     WhereTerm *pStart, *pEnd;
1485 
1486     j = 0;
1487     pStart = pEnd = 0;
1488     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1489     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1490     assert( pStart!=0 || pEnd!=0 );
1491     if( bRev ){
1492       pTerm = pStart;
1493       pStart = pEnd;
1494       pEnd = pTerm;
1495     }
1496     codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1497     if( pStart ){
1498       Expr *pX;             /* The expression that defines the start bound */
1499       int r1, rTemp;        /* Registers for holding the start boundary */
1500       int op;               /* Cursor seek operation */
1501 
1502       /* The following constant maps TK_xx codes into corresponding
1503       ** seek opcodes.  It depends on a particular ordering of TK_xx
1504       */
1505       const u8 aMoveOp[] = {
1506            /* TK_GT */  OP_SeekGT,
1507            /* TK_LE */  OP_SeekLE,
1508            /* TK_LT */  OP_SeekLT,
1509            /* TK_GE */  OP_SeekGE
1510       };
1511       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
1512       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
1513       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
1514 
1515       assert( (pStart->wtFlags & TERM_VNULL)==0 );
1516       testcase( pStart->wtFlags & TERM_VIRTUAL );
1517       pX = pStart->pExpr;
1518       assert( pX!=0 );
1519       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1520       if( sqlite3ExprIsVector(pX->pRight) ){
1521         r1 = rTemp = sqlite3GetTempReg(pParse);
1522         codeExprOrVector(pParse, pX->pRight, r1, 1);
1523         testcase( pX->op==TK_GT );
1524         testcase( pX->op==TK_GE );
1525         testcase( pX->op==TK_LT );
1526         testcase( pX->op==TK_LE );
1527         op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
1528         assert( pX->op!=TK_GT || op==OP_SeekGE );
1529         assert( pX->op!=TK_GE || op==OP_SeekGE );
1530         assert( pX->op!=TK_LT || op==OP_SeekLE );
1531         assert( pX->op!=TK_LE || op==OP_SeekLE );
1532       }else{
1533         r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1534         disableTerm(pLevel, pStart);
1535         op = aMoveOp[(pX->op - TK_GT)];
1536       }
1537       sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1538       VdbeComment((v, "pk"));
1539       VdbeCoverageIf(v, pX->op==TK_GT);
1540       VdbeCoverageIf(v, pX->op==TK_LE);
1541       VdbeCoverageIf(v, pX->op==TK_LT);
1542       VdbeCoverageIf(v, pX->op==TK_GE);
1543       sqlite3ReleaseTempReg(pParse, rTemp);
1544     }else{
1545       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1546       VdbeCoverageIf(v, bRev==0);
1547       VdbeCoverageIf(v, bRev!=0);
1548     }
1549     if( pEnd ){
1550       Expr *pX;
1551       pX = pEnd->pExpr;
1552       assert( pX!=0 );
1553       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1554       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1555       testcase( pEnd->wtFlags & TERM_VIRTUAL );
1556       memEndValue = ++pParse->nMem;
1557       codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1558       if( 0==sqlite3ExprIsVector(pX->pRight)
1559        && (pX->op==TK_LT || pX->op==TK_GT)
1560       ){
1561         testOp = bRev ? OP_Le : OP_Ge;
1562       }else{
1563         testOp = bRev ? OP_Lt : OP_Gt;
1564       }
1565       if( 0==sqlite3ExprIsVector(pX->pRight) ){
1566         disableTerm(pLevel, pEnd);
1567       }
1568     }
1569     start = sqlite3VdbeCurrentAddr(v);
1570     pLevel->op = bRev ? OP_Prev : OP_Next;
1571     pLevel->p1 = iCur;
1572     pLevel->p2 = start;
1573     assert( pLevel->p5==0 );
1574     if( testOp!=OP_Noop ){
1575       iRowidReg = ++pParse->nMem;
1576       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1577       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1578       VdbeCoverageIf(v, testOp==OP_Le);
1579       VdbeCoverageIf(v, testOp==OP_Lt);
1580       VdbeCoverageIf(v, testOp==OP_Ge);
1581       VdbeCoverageIf(v, testOp==OP_Gt);
1582       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1583     }
1584   }else if( pLoop->wsFlags & WHERE_INDEXED ){
1585     /* Case 4: A scan using an index.
1586     **
1587     **         The WHERE clause may contain zero or more equality
1588     **         terms ("==" or "IN" operators) that refer to the N
1589     **         left-most columns of the index. It may also contain
1590     **         inequality constraints (>, <, >= or <=) on the indexed
1591     **         column that immediately follows the N equalities. Only
1592     **         the right-most column can be an inequality - the rest must
1593     **         use the "==" and "IN" operators. For example, if the
1594     **         index is on (x,y,z), then the following clauses are all
1595     **         optimized:
1596     **
1597     **            x=5
1598     **            x=5 AND y=10
1599     **            x=5 AND y<10
1600     **            x=5 AND y>5 AND y<10
1601     **            x=5 AND y=5 AND z<=10
1602     **
1603     **         The z<10 term of the following cannot be used, only
1604     **         the x=5 term:
1605     **
1606     **            x=5 AND z<10
1607     **
1608     **         N may be zero if there are inequality constraints.
1609     **         If there are no inequality constraints, then N is at
1610     **         least one.
1611     **
1612     **         This case is also used when there are no WHERE clause
1613     **         constraints but an index is selected anyway, in order
1614     **         to force the output order to conform to an ORDER BY.
1615     */
1616     static const u8 aStartOp[] = {
1617       0,
1618       0,
1619       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
1620       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
1621       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
1622       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
1623       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
1624       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
1625     };
1626     static const u8 aEndOp[] = {
1627       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
1628       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
1629       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
1630       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
1631     };
1632     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
1633     u16 nBtm = pLoop->u.btree.nBtm;   /* Length of BTM vector */
1634     u16 nTop = pLoop->u.btree.nTop;   /* Length of TOP vector */
1635     int regBase;                 /* Base register holding constraint values */
1636     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
1637     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
1638     int startEq;                 /* True if range start uses ==, >= or <= */
1639     int endEq;                   /* True if range end uses ==, >= or <= */
1640     int start_constraints;       /* Start of range is constrained */
1641     int nConstraint;             /* Number of constraint terms */
1642     int iIdxCur;                 /* The VDBE cursor for the index */
1643     int nExtraReg = 0;           /* Number of extra registers needed */
1644     int op;                      /* Instruction opcode */
1645     char *zStartAff;             /* Affinity for start of range constraint */
1646     char *zEndAff = 0;           /* Affinity for end of range constraint */
1647     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
1648     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
1649     int omitTable;               /* True if we use the index only */
1650     int regBignull = 0;          /* big-null flag register */
1651 
1652     pIdx = pLoop->u.btree.pIndex;
1653     iIdxCur = pLevel->iIdxCur;
1654     assert( nEq>=pLoop->nSkip );
1655 
1656     /* Find any inequality constraint terms for the start and end
1657     ** of the range.
1658     */
1659     j = nEq;
1660     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1661       pRangeStart = pLoop->aLTerm[j++];
1662       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1663       /* Like optimization range constraints always occur in pairs */
1664       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1665               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1666     }
1667     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1668       pRangeEnd = pLoop->aLTerm[j++];
1669       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1670 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1671       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1672         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
1673         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
1674         pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1675         sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1676         VdbeComment((v, "LIKE loop counter"));
1677         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1678         /* iLikeRepCntr actually stores 2x the counter register number.  The
1679         ** bottom bit indicates whether the search order is ASC or DESC. */
1680         testcase( bRev );
1681         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1682         assert( (bRev & ~1)==0 );
1683         pLevel->iLikeRepCntr <<=1;
1684         pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1685       }
1686 #endif
1687       if( pRangeStart==0 ){
1688         j = pIdx->aiColumn[nEq];
1689         if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1690           bSeekPastNull = 1;
1691         }
1692       }
1693     }
1694     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1695 
1696     /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
1697     ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
1698     ** FIRST). In both cases separate ordered scans are made of those
1699     ** index entries for which the column is null and for those for which
1700     ** it is not. For an ASC sort, the non-NULL entries are scanned first.
1701     ** For DESC, NULL entries are scanned first.
1702     */
1703     if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0
1704      && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0
1705     ){
1706       assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 );
1707       assert( pRangeEnd==0 && pRangeStart==0 );
1708       testcase( pLoop->nSkip>0 );
1709       nExtraReg = 1;
1710       bSeekPastNull = 1;
1711       pLevel->regBignull = regBignull = ++pParse->nMem;
1712       pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse);
1713     }
1714 
1715     /* If we are doing a reverse order scan on an ascending index, or
1716     ** a forward order scan on a descending index, interchange the
1717     ** start and end terms (pRangeStart and pRangeEnd).
1718     */
1719     if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1720      || (bRev && pIdx->nKeyCol==nEq)
1721     ){
1722       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1723       SWAP(u8, bSeekPastNull, bStopAtNull);
1724       SWAP(u8, nBtm, nTop);
1725     }
1726 
1727     /* Generate code to evaluate all constraint terms using == or IN
1728     ** and store the values of those terms in an array of registers
1729     ** starting at regBase.
1730     */
1731     codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1732     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1733     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1734     if( zStartAff && nTop ){
1735       zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1736     }
1737     addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt);
1738 
1739     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1740     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1741     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1742     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1743     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1744     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1745     start_constraints = pRangeStart || nEq>0;
1746 
1747     /* Seek the index cursor to the start of the range. */
1748     nConstraint = nEq;
1749     if( pRangeStart ){
1750       Expr *pRight = pRangeStart->pExpr->pRight;
1751       codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1752       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1753       if( (pRangeStart->wtFlags & TERM_VNULL)==0
1754        && sqlite3ExprCanBeNull(pRight)
1755       ){
1756         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1757         VdbeCoverage(v);
1758       }
1759       if( zStartAff ){
1760         updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1761       }
1762       nConstraint += nBtm;
1763       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1764       if( sqlite3ExprIsVector(pRight)==0 ){
1765         disableTerm(pLevel, pRangeStart);
1766       }else{
1767         startEq = 1;
1768       }
1769       bSeekPastNull = 0;
1770     }else if( bSeekPastNull ){
1771       startEq = 0;
1772       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1773       start_constraints = 1;
1774       nConstraint++;
1775     }else if( regBignull ){
1776       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1777       start_constraints = 1;
1778       nConstraint++;
1779     }
1780     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1781     if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1782       /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1783       ** above has already left the cursor sitting on the correct row,
1784       ** so no further seeking is needed */
1785     }else{
1786       if( pLoop->wsFlags & WHERE_IN_EARLYOUT ){
1787         sqlite3VdbeAddOp1(v, OP_SeekHit, iIdxCur);
1788       }
1789       if( regBignull ){
1790         sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull);
1791         VdbeComment((v, "NULL-scan pass ctr"));
1792       }
1793 
1794       op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1795       assert( op!=0 );
1796       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1797       VdbeCoverage(v);
1798       VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1799       VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1800       VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
1801       VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1802       VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1803       VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
1804 
1805       assert( bSeekPastNull==0 || bStopAtNull==0 );
1806       if( regBignull ){
1807         assert( bSeekPastNull==1 || bStopAtNull==1 );
1808         assert( bSeekPastNull==!bStopAtNull );
1809         assert( bStopAtNull==startEq );
1810         sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2);
1811         op = aStartOp[(nConstraint>1)*4 + 2 + bRev];
1812         sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1813                              nConstraint-startEq);
1814         VdbeCoverage(v);
1815         VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1816         VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1817         VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1818         VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1819         assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE);
1820       }
1821     }
1822 
1823     /* Load the value for the inequality constraint at the end of the
1824     ** range (if any).
1825     */
1826     nConstraint = nEq;
1827     if( pRangeEnd ){
1828       Expr *pRight = pRangeEnd->pExpr->pRight;
1829       codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
1830       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1831       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1832        && sqlite3ExprCanBeNull(pRight)
1833       ){
1834         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1835         VdbeCoverage(v);
1836       }
1837       if( zEndAff ){
1838         updateRangeAffinityStr(pRight, nTop, zEndAff);
1839         codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1840       }else{
1841         assert( pParse->db->mallocFailed );
1842       }
1843       nConstraint += nTop;
1844       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1845 
1846       if( sqlite3ExprIsVector(pRight)==0 ){
1847         disableTerm(pLevel, pRangeEnd);
1848       }else{
1849         endEq = 1;
1850       }
1851     }else if( bStopAtNull ){
1852       if( regBignull==0 ){
1853         sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1854         endEq = 0;
1855       }
1856       nConstraint++;
1857     }
1858     sqlite3DbFree(db, zStartAff);
1859     sqlite3DbFree(db, zEndAff);
1860 
1861     /* Top of the loop body */
1862     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1863 
1864     /* Check if the index cursor is past the end of the range. */
1865     if( nConstraint ){
1866       if( regBignull ){
1867         /* Except, skip the end-of-range check while doing the NULL-scan */
1868         sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3);
1869         VdbeComment((v, "If NULL-scan 2nd pass"));
1870         VdbeCoverage(v);
1871       }
1872       op = aEndOp[bRev*2 + endEq];
1873       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1874       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1875       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1876       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1877       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1878     }
1879     if( regBignull ){
1880       /* During a NULL-scan, check to see if we have reached the end of
1881       ** the NULLs */
1882       assert( bSeekPastNull==!bStopAtNull );
1883       assert( bSeekPastNull+bStopAtNull==1 );
1884       assert( nConstraint+bSeekPastNull>0 );
1885       sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2);
1886       VdbeComment((v, "If NULL-scan 1st pass"));
1887       VdbeCoverage(v);
1888       op = aEndOp[bRev*2 + bSeekPastNull];
1889       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1890                            nConstraint+bSeekPastNull);
1891       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1892       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1893       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1894       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1895     }
1896 
1897     if( pLoop->wsFlags & WHERE_IN_EARLYOUT ){
1898       sqlite3VdbeAddOp2(v, OP_SeekHit, iIdxCur, 1);
1899     }
1900 
1901     /* Seek the table cursor, if required */
1902     omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
1903            && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
1904     if( omitTable ){
1905       /* pIdx is a covering index.  No need to access the main table. */
1906     }else if( HasRowid(pIdx->pTable) ){
1907       if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE)
1908        || ( (pWInfo->wctrlFlags & WHERE_SEEK_UNIQ_TABLE)!=0
1909            && (pWInfo->eOnePass==ONEPASS_SINGLE || pLoop->nLTerm==0) )
1910       ){
1911         iRowidReg = ++pParse->nMem;
1912         sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
1913         sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
1914         VdbeCoverage(v);
1915       }else{
1916         codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
1917       }
1918     }else if( iCur!=iIdxCur ){
1919       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1920       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1921       for(j=0; j<pPk->nKeyCol; j++){
1922         k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
1923         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1924       }
1925       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1926                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1927     }
1928 
1929     if( pLevel->iLeftJoin==0 ){
1930       /* If pIdx is an index on one or more expressions, then look through
1931       ** all the expressions in pWInfo and try to transform matching expressions
1932       ** into reference to index columns.  Also attempt to translate references
1933       ** to virtual columns in the table into references to (stored) columns
1934       ** of the index.
1935       **
1936       ** Do not do this for the RHS of a LEFT JOIN. This is because the
1937       ** expression may be evaluated after OP_NullRow has been executed on
1938       ** the cursor. In this case it is important to do the full evaluation,
1939       ** as the result of the expression may not be NULL, even if all table
1940       ** column values are.  https://www.sqlite.org/src/info/7fa8049685b50b5a
1941       **
1942       ** Also, do not do this when processing one index an a multi-index
1943       ** OR clause, since the transformation will become invalid once we
1944       ** move forward to the next index.
1945       ** https://sqlite.org/src/info/4e8e4857d32d401f
1946       */
1947       if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
1948         whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
1949       }
1950 
1951       /* If a partial index is driving the loop, try to eliminate WHERE clause
1952       ** terms from the query that must be true due to the WHERE clause of
1953       ** the partial index.
1954       **
1955       ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
1956       ** for a LEFT JOIN.
1957       */
1958       if( pIdx->pPartIdxWhere ){
1959         whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC);
1960       }
1961     }else{
1962       testcase( pIdx->pPartIdxWhere );
1963       /* The following assert() is not a requirement, merely an observation:
1964       ** The OR-optimization doesn't work for the right hand table of
1965       ** a LEFT JOIN: */
1966       assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 );
1967     }
1968 
1969     /* Record the instruction used to terminate the loop. */
1970     if( pLoop->wsFlags & WHERE_ONEROW ){
1971       pLevel->op = OP_Noop;
1972     }else if( bRev ){
1973       pLevel->op = OP_Prev;
1974     }else{
1975       pLevel->op = OP_Next;
1976     }
1977     pLevel->p1 = iIdxCur;
1978     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1979     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1980       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1981     }else{
1982       assert( pLevel->p5==0 );
1983     }
1984     if( omitTable ) pIdx = 0;
1985   }else
1986 
1987 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1988   if( pLoop->wsFlags & WHERE_MULTI_OR ){
1989     /* Case 5:  Two or more separately indexed terms connected by OR
1990     **
1991     ** Example:
1992     **
1993     **   CREATE TABLE t1(a,b,c,d);
1994     **   CREATE INDEX i1 ON t1(a);
1995     **   CREATE INDEX i2 ON t1(b);
1996     **   CREATE INDEX i3 ON t1(c);
1997     **
1998     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
1999     **
2000     ** In the example, there are three indexed terms connected by OR.
2001     ** The top of the loop looks like this:
2002     **
2003     **          Null       1                # Zero the rowset in reg 1
2004     **
2005     ** Then, for each indexed term, the following. The arguments to
2006     ** RowSetTest are such that the rowid of the current row is inserted
2007     ** into the RowSet. If it is already present, control skips the
2008     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
2009     **
2010     **        sqlite3WhereBegin(<term>)
2011     **          RowSetTest                  # Insert rowid into rowset
2012     **          Gosub      2 A
2013     **        sqlite3WhereEnd()
2014     **
2015     ** Following the above, code to terminate the loop. Label A, the target
2016     ** of the Gosub above, jumps to the instruction right after the Goto.
2017     **
2018     **          Null       1                # Zero the rowset in reg 1
2019     **          Goto       B                # The loop is finished.
2020     **
2021     **       A: <loop body>                 # Return data, whatever.
2022     **
2023     **          Return     2                # Jump back to the Gosub
2024     **
2025     **       B: <after the loop>
2026     **
2027     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
2028     ** use an ephemeral index instead of a RowSet to record the primary
2029     ** keys of the rows we have already seen.
2030     **
2031     */
2032     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
2033     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
2034     Index *pCov = 0;             /* Potential covering index (or NULL) */
2035     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
2036 
2037     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
2038     int regRowset = 0;                        /* Register for RowSet object */
2039     int regRowid = 0;                         /* Register holding rowid */
2040     int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */
2041     int iRetInit;                             /* Address of regReturn init */
2042     int untestedTerms = 0;             /* Some terms not completely tested */
2043     int ii;                            /* Loop counter */
2044     u16 wctrlFlags;                    /* Flags for sub-WHERE clause */
2045     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
2046     Table *pTab = pTabItem->pTab;
2047 
2048     pTerm = pLoop->aLTerm[0];
2049     assert( pTerm!=0 );
2050     assert( pTerm->eOperator & WO_OR );
2051     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
2052     pOrWc = &pTerm->u.pOrInfo->wc;
2053     pLevel->op = OP_Return;
2054     pLevel->p1 = regReturn;
2055 
2056     /* Set up a new SrcList in pOrTab containing the table being scanned
2057     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
2058     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
2059     */
2060     if( pWInfo->nLevel>1 ){
2061       int nNotReady;                 /* The number of notReady tables */
2062       struct SrcList_item *origSrc;     /* Original list of tables */
2063       nNotReady = pWInfo->nLevel - iLevel - 1;
2064       pOrTab = sqlite3StackAllocRaw(db,
2065                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
2066       if( pOrTab==0 ) return notReady;
2067       pOrTab->nAlloc = (u8)(nNotReady + 1);
2068       pOrTab->nSrc = pOrTab->nAlloc;
2069       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
2070       origSrc = pWInfo->pTabList->a;
2071       for(k=1; k<=nNotReady; k++){
2072         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
2073       }
2074     }else{
2075       pOrTab = pWInfo->pTabList;
2076     }
2077 
2078     /* Initialize the rowset register to contain NULL. An SQL NULL is
2079     ** equivalent to an empty rowset.  Or, create an ephemeral index
2080     ** capable of holding primary keys in the case of a WITHOUT ROWID.
2081     **
2082     ** Also initialize regReturn to contain the address of the instruction
2083     ** immediately following the OP_Return at the bottom of the loop. This
2084     ** is required in a few obscure LEFT JOIN cases where control jumps
2085     ** over the top of the loop into the body of it. In this case the
2086     ** correct response for the end-of-loop code (the OP_Return) is to
2087     ** fall through to the next instruction, just as an OP_Next does if
2088     ** called on an uninitialized cursor.
2089     */
2090     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2091       if( HasRowid(pTab) ){
2092         regRowset = ++pParse->nMem;
2093         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
2094       }else{
2095         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2096         regRowset = pParse->nTab++;
2097         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
2098         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
2099       }
2100       regRowid = ++pParse->nMem;
2101     }
2102     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
2103 
2104     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
2105     ** Then for every term xN, evaluate as the subexpression: xN AND z
2106     ** That way, terms in y that are factored into the disjunction will
2107     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
2108     **
2109     ** Actually, each subexpression is converted to "xN AND w" where w is
2110     ** the "interesting" terms of z - terms that did not originate in the
2111     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
2112     ** indices.
2113     **
2114     ** This optimization also only applies if the (x1 OR x2 OR ...) term
2115     ** is not contained in the ON clause of a LEFT JOIN.
2116     ** See ticket http://www.sqlite.org/src/info/f2369304e4
2117     */
2118     if( pWC->nTerm>1 ){
2119       int iTerm;
2120       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
2121         Expr *pExpr = pWC->a[iTerm].pExpr;
2122         if( &pWC->a[iTerm] == pTerm ) continue;
2123         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
2124         testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
2125         if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
2126         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
2127         testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
2128         pExpr = sqlite3ExprDup(db, pExpr, 0);
2129         pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr);
2130       }
2131       if( pAndExpr ){
2132         /* The extra 0x10000 bit on the opcode is masked off and does not
2133         ** become part of the new Expr.op.  However, it does make the
2134         ** op==TK_AND comparison inside of sqlite3PExpr() false, and this
2135         ** prevents sqlite3PExpr() from implementing AND short-circuit
2136         ** optimization, which we do not want here. */
2137         pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr);
2138       }
2139     }
2140 
2141     /* Run a separate WHERE clause for each term of the OR clause.  After
2142     ** eliminating duplicates from other WHERE clauses, the action for each
2143     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
2144     */
2145     wctrlFlags =  WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE);
2146     ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
2147     for(ii=0; ii<pOrWc->nTerm; ii++){
2148       WhereTerm *pOrTerm = &pOrWc->a[ii];
2149       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
2150         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
2151         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
2152         int jmp1 = 0;                   /* Address of jump operation */
2153         assert( (pTabItem[0].fg.jointype & JT_LEFT)==0
2154              || ExprHasProperty(pOrExpr, EP_FromJoin)
2155         );
2156         if( pAndExpr ){
2157           pAndExpr->pLeft = pOrExpr;
2158           pOrExpr = pAndExpr;
2159         }
2160         /* Loop through table entries that match term pOrTerm. */
2161         ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1));
2162         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
2163         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
2164                                       wctrlFlags, iCovCur);
2165         assert( pSubWInfo || pParse->nErr || db->mallocFailed );
2166         if( pSubWInfo ){
2167           WhereLoop *pSubLoop;
2168           int addrExplain = sqlite3WhereExplainOneScan(
2169               pParse, pOrTab, &pSubWInfo->a[0], 0
2170           );
2171           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
2172 
2173           /* This is the sub-WHERE clause body.  First skip over
2174           ** duplicate rows from prior sub-WHERE clauses, and record the
2175           ** rowid (or PRIMARY KEY) for the current row so that the same
2176           ** row will be skipped in subsequent sub-WHERE clauses.
2177           */
2178           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2179             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
2180             if( HasRowid(pTab) ){
2181               sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid);
2182               jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
2183                                           regRowid, iSet);
2184               VdbeCoverage(v);
2185             }else{
2186               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2187               int nPk = pPk->nKeyCol;
2188               int iPk;
2189               int r;
2190 
2191               /* Read the PK into an array of temp registers. */
2192               r = sqlite3GetTempRange(pParse, nPk);
2193               for(iPk=0; iPk<nPk; iPk++){
2194                 int iCol = pPk->aiColumn[iPk];
2195                 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2196               }
2197 
2198               /* Check if the temp table already contains this key. If so,
2199               ** the row has already been included in the result set and
2200               ** can be ignored (by jumping past the Gosub below). Otherwise,
2201               ** insert the key into the temp table and proceed with processing
2202               ** the row.
2203               **
2204               ** Use some of the same optimizations as OP_RowSetTest: If iSet
2205               ** is zero, assume that the key cannot already be present in
2206               ** the temp table. And if iSet is -1, assume that there is no
2207               ** need to insert the key into the temp table, as it will never
2208               ** be tested for.  */
2209               if( iSet ){
2210                 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
2211                 VdbeCoverage(v);
2212               }
2213               if( iSet>=0 ){
2214                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
2215                 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
2216                                      r, nPk);
2217                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2218               }
2219 
2220               /* Release the array of temp registers */
2221               sqlite3ReleaseTempRange(pParse, r, nPk);
2222             }
2223           }
2224 
2225           /* Invoke the main loop body as a subroutine */
2226           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2227 
2228           /* Jump here (skipping the main loop body subroutine) if the
2229           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2230           if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
2231 
2232           /* The pSubWInfo->untestedTerms flag means that this OR term
2233           ** contained one or more AND term from a notReady table.  The
2234           ** terms from the notReady table could not be tested and will
2235           ** need to be tested later.
2236           */
2237           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
2238 
2239           /* If all of the OR-connected terms are optimized using the same
2240           ** index, and the index is opened using the same cursor number
2241           ** by each call to sqlite3WhereBegin() made by this loop, it may
2242           ** be possible to use that index as a covering index.
2243           **
2244           ** If the call to sqlite3WhereBegin() above resulted in a scan that
2245           ** uses an index, and this is either the first OR-connected term
2246           ** processed or the index is the same as that used by all previous
2247           ** terms, set pCov to the candidate covering index. Otherwise, set
2248           ** pCov to NULL to indicate that no candidate covering index will
2249           ** be available.
2250           */
2251           pSubLoop = pSubWInfo->a[0].pWLoop;
2252           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2253           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2254            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2255            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2256           ){
2257             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2258             pCov = pSubLoop->u.btree.pIndex;
2259           }else{
2260             pCov = 0;
2261           }
2262 
2263           /* Finish the loop through table entries that match term pOrTerm. */
2264           sqlite3WhereEnd(pSubWInfo);
2265           ExplainQueryPlanPop(pParse);
2266         }
2267       }
2268     }
2269     ExplainQueryPlanPop(pParse);
2270     pLevel->u.pCovidx = pCov;
2271     if( pCov ) pLevel->iIdxCur = iCovCur;
2272     if( pAndExpr ){
2273       pAndExpr->pLeft = 0;
2274       sqlite3ExprDelete(db, pAndExpr);
2275     }
2276     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2277     sqlite3VdbeGoto(v, pLevel->addrBrk);
2278     sqlite3VdbeResolveLabel(v, iLoopBody);
2279 
2280     if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); }
2281     if( !untestedTerms ) disableTerm(pLevel, pTerm);
2282   }else
2283 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2284 
2285   {
2286     /* Case 6:  There is no usable index.  We must do a complete
2287     **          scan of the entire table.
2288     */
2289     static const u8 aStep[] = { OP_Next, OP_Prev };
2290     static const u8 aStart[] = { OP_Rewind, OP_Last };
2291     assert( bRev==0 || bRev==1 );
2292     if( pTabItem->fg.isRecursive ){
2293       /* Tables marked isRecursive have only a single row that is stored in
2294       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
2295       pLevel->op = OP_Noop;
2296     }else{
2297       codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2298       pLevel->op = aStep[bRev];
2299       pLevel->p1 = iCur;
2300       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2301       VdbeCoverageIf(v, bRev==0);
2302       VdbeCoverageIf(v, bRev!=0);
2303       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2304     }
2305   }
2306 
2307 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2308   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2309 #endif
2310 
2311   /* Insert code to test every subexpression that can be completely
2312   ** computed using the current set of tables.
2313   **
2314   ** This loop may run between one and three times, depending on the
2315   ** constraints to be generated. The value of stack variable iLoop
2316   ** determines the constraints coded by each iteration, as follows:
2317   **
2318   ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2319   ** iLoop==2: Code remaining expressions that do not contain correlated
2320   **           sub-queries.
2321   ** iLoop==3: Code all remaining expressions.
2322   **
2323   ** An effort is made to skip unnecessary iterations of the loop.
2324   */
2325   iLoop = (pIdx ? 1 : 2);
2326   do{
2327     int iNext = 0;                /* Next value for iLoop */
2328     for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2329       Expr *pE;
2330       int skipLikeAddr = 0;
2331       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2332       testcase( pTerm->wtFlags & TERM_CODED );
2333       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2334       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2335         testcase( pWInfo->untestedTerms==0
2336             && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2337         pWInfo->untestedTerms = 1;
2338         continue;
2339       }
2340       pE = pTerm->pExpr;
2341       assert( pE!=0 );
2342       if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){
2343         continue;
2344       }
2345 
2346       if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2347         iNext = 2;
2348         continue;
2349       }
2350       if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2351         if( iNext==0 ) iNext = 3;
2352         continue;
2353       }
2354 
2355       if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
2356         /* If the TERM_LIKECOND flag is set, that means that the range search
2357         ** is sufficient to guarantee that the LIKE operator is true, so we
2358         ** can skip the call to the like(A,B) function.  But this only works
2359         ** for strings.  So do not skip the call to the function on the pass
2360         ** that compares BLOBs. */
2361 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2362         continue;
2363 #else
2364         u32 x = pLevel->iLikeRepCntr;
2365         if( x>0 ){
2366           skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
2367           VdbeCoverageIf(v, (x&1)==1);
2368           VdbeCoverageIf(v, (x&1)==0);
2369         }
2370 #endif
2371       }
2372 #ifdef WHERETRACE_ENABLED /* 0xffff */
2373       if( sqlite3WhereTrace ){
2374         VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2375                          pWC->nTerm-j, pTerm, iLoop));
2376       }
2377       if( sqlite3WhereTrace & 0x800 ){
2378         sqlite3DebugPrintf("Coding auxiliary constraint:\n");
2379         sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2380       }
2381 #endif
2382       sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2383       if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2384       pTerm->wtFlags |= TERM_CODED;
2385     }
2386     iLoop = iNext;
2387   }while( iLoop>0 );
2388 
2389   /* Insert code to test for implied constraints based on transitivity
2390   ** of the "==" operator.
2391   **
2392   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2393   ** and we are coding the t1 loop and the t2 loop has not yet coded,
2394   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2395   ** the implied "t1.a=123" constraint.
2396   */
2397   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2398     Expr *pE, sEAlt;
2399     WhereTerm *pAlt;
2400     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2401     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2402     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2403     if( pTerm->leftCursor!=iCur ) continue;
2404     if( pTabItem->fg.jointype & JT_LEFT ) continue;
2405     pE = pTerm->pExpr;
2406 #ifdef WHERETRACE_ENABLED /* 0x800 */
2407     if( sqlite3WhereTrace & 0x800 ){
2408       sqlite3DebugPrintf("Coding transitive constraint:\n");
2409       sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2410     }
2411 #endif
2412     assert( !ExprHasProperty(pE, EP_FromJoin) );
2413     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2414     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
2415                     WO_EQ|WO_IN|WO_IS, 0);
2416     if( pAlt==0 ) continue;
2417     if( pAlt->wtFlags & (TERM_CODED) ) continue;
2418     if( (pAlt->eOperator & WO_IN)
2419      && (pAlt->pExpr->flags & EP_xIsSelect)
2420      && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
2421     ){
2422       continue;
2423     }
2424     testcase( pAlt->eOperator & WO_EQ );
2425     testcase( pAlt->eOperator & WO_IS );
2426     testcase( pAlt->eOperator & WO_IN );
2427     VdbeModuleComment((v, "begin transitive constraint"));
2428     sEAlt = *pAlt->pExpr;
2429     sEAlt.pLeft = pE->pLeft;
2430     sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2431   }
2432 
2433   /* For a LEFT OUTER JOIN, generate code that will record the fact that
2434   ** at least one row of the right table has matched the left table.
2435   */
2436   if( pLevel->iLeftJoin ){
2437     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2438     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2439     VdbeComment((v, "record LEFT JOIN hit"));
2440     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
2441       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2442       testcase( pTerm->wtFlags & TERM_CODED );
2443       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2444       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2445         assert( pWInfo->untestedTerms );
2446         continue;
2447       }
2448       assert( pTerm->pExpr );
2449       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2450       pTerm->wtFlags |= TERM_CODED;
2451     }
2452   }
2453 
2454 #if WHERETRACE_ENABLED /* 0x20800 */
2455   if( sqlite3WhereTrace & 0x20000 ){
2456     sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n",
2457                        iLevel);
2458     sqlite3WhereClausePrint(pWC);
2459   }
2460   if( sqlite3WhereTrace & 0x800 ){
2461     sqlite3DebugPrintf("End Coding level %d:  notReady=%llx\n",
2462        iLevel, (u64)pLevel->notReady);
2463   }
2464 #endif
2465   return pLevel->notReady;
2466 }
2467