xref: /sqlite-3.40.0/src/wherecode.c (revision a959bf53)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 
25 /*
26 ** Return the name of the i-th column of the pIdx index.
27 */
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29   i = pIdx->aiColumn[i];
30   if( i==XN_EXPR ) return "<expr>";
31   if( i==XN_ROWID ) return "rowid";
32   return pIdx->pTable->aCol[i].zName;
33 }
34 
35 /*
36 ** This routine is a helper for explainIndexRange() below
37 **
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time.  This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
42 */
43 static void explainAppendTerm(
44   StrAccum *pStr,             /* The text expression being built */
45   Index *pIdx,                /* Index to read column names from */
46   int nTerm,                  /* Number of terms */
47   int iTerm,                  /* Zero-based index of first term. */
48   int bAnd,                   /* Non-zero to append " AND " */
49   const char *zOp             /* Name of the operator */
50 ){
51   int i;
52 
53   assert( nTerm>=1 );
54   if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
55 
56   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
57   for(i=0; i<nTerm; i++){
58     if( i ) sqlite3_str_append(pStr, ",", 1);
59     sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
60   }
61   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
62 
63   sqlite3_str_append(pStr, zOp, 1);
64 
65   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
66   for(i=0; i<nTerm; i++){
67     if( i ) sqlite3_str_append(pStr, ",", 1);
68     sqlite3_str_append(pStr, "?", 1);
69   }
70   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
71 }
72 
73 /*
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
77 **
78 ** For example, if the query:
79 **
80 **   SELECT * FROM t1 WHERE a=1 AND b>2;
81 **
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
84 **
85 **   "a=? AND b>?"
86 */
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88   Index *pIndex = pLoop->u.btree.pIndex;
89   u16 nEq = pLoop->u.btree.nEq;
90   u16 nSkip = pLoop->nSkip;
91   int i, j;
92 
93   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94   sqlite3_str_append(pStr, " (", 2);
95   for(i=0; i<nEq; i++){
96     const char *z = explainIndexColumnName(pIndex, i);
97     if( i ) sqlite3_str_append(pStr, " AND ", 5);
98     sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
99   }
100 
101   j = i;
102   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104     i = 1;
105   }
106   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
108   }
109   sqlite3_str_append(pStr, ")", 1);
110 }
111 
112 /*
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
117 **
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
120 */
121 int sqlite3WhereExplainOneScan(
122   Parse *pParse,                  /* Parse context */
123   SrcList *pTabList,              /* Table list this loop refers to */
124   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
125   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
126 ){
127   int ret = 0;
128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
129   if( sqlite3ParseToplevel(pParse)->explain==2 )
130 #endif
131   {
132     SrcItem *pItem = &pTabList->a[pLevel->iFrom];
133     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
134     sqlite3 *db = pParse->db;     /* Database handle */
135     int isSearch;                 /* True for a SEARCH. False for SCAN. */
136     WhereLoop *pLoop;             /* The controlling WhereLoop object */
137     u32 flags;                    /* Flags that describe this loop */
138     char *zMsg;                   /* Text to add to EQP output */
139     StrAccum str;                 /* EQP output string */
140     char zBuf[100];               /* Initial space for EQP output string */
141 
142     pLoop = pLevel->pWLoop;
143     flags = pLoop->wsFlags;
144     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
145 
146     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
147             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
148             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
149 
150     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
151     str.printfFlags = SQLITE_PRINTF_INTERNAL;
152     sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem);
153     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
154       const char *zFmt = 0;
155       Index *pIdx;
156 
157       assert( pLoop->u.btree.pIndex!=0 );
158       pIdx = pLoop->u.btree.pIndex;
159       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
160       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
161         if( isSearch ){
162           zFmt = "PRIMARY KEY";
163         }
164       }else if( flags & WHERE_PARTIALIDX ){
165         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
166       }else if( flags & WHERE_AUTO_INDEX ){
167         zFmt = "AUTOMATIC COVERING INDEX";
168       }else if( flags & WHERE_IDX_ONLY ){
169         zFmt = "COVERING INDEX %s";
170       }else{
171         zFmt = "INDEX %s";
172       }
173       if( zFmt ){
174         sqlite3_str_append(&str, " USING ", 7);
175         sqlite3_str_appendf(&str, zFmt, pIdx->zName);
176         explainIndexRange(&str, pLoop);
177       }
178     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
179       const char *zRangeOp;
180       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
181         zRangeOp = "=";
182       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
183         zRangeOp = ">? AND rowid<";
184       }else if( flags&WHERE_BTM_LIMIT ){
185         zRangeOp = ">";
186       }else{
187         assert( flags&WHERE_TOP_LIMIT);
188         zRangeOp = "<";
189       }
190       sqlite3_str_appendf(&str,
191           " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
192     }
193 #ifndef SQLITE_OMIT_VIRTUALTABLE
194     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
195       sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
196                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
197     }
198 #endif
199 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
200     if( pLoop->nOut>=10 ){
201       sqlite3_str_appendf(&str, " (~%llu rows)",
202              sqlite3LogEstToInt(pLoop->nOut));
203     }else{
204       sqlite3_str_append(&str, " (~1 row)", 9);
205     }
206 #endif
207     zMsg = sqlite3StrAccumFinish(&str);
208     sqlite3ExplainBreakpoint("",zMsg);
209     ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
210                             pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
211   }
212   return ret;
213 }
214 #endif /* SQLITE_OMIT_EXPLAIN */
215 
216 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
217 /*
218 ** Configure the VM passed as the first argument with an
219 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
220 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
221 ** clause that the scan reads data from.
222 **
223 ** If argument addrExplain is not 0, it must be the address of an
224 ** OP_Explain instruction that describes the same loop.
225 */
226 void sqlite3WhereAddScanStatus(
227   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
228   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
229   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
230   int addrExplain                 /* Address of OP_Explain (or 0) */
231 ){
232   const char *zObj = 0;
233   WhereLoop *pLoop = pLvl->pWLoop;
234   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
235     zObj = pLoop->u.btree.pIndex->zName;
236   }else{
237     zObj = pSrclist->a[pLvl->iFrom].zName;
238   }
239   sqlite3VdbeScanStatus(
240       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
241   );
242 }
243 #endif
244 
245 
246 /*
247 ** Disable a term in the WHERE clause.  Except, do not disable the term
248 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
249 ** or USING clause of that join.
250 **
251 ** Consider the term t2.z='ok' in the following queries:
252 **
253 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
254 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
255 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
256 **
257 ** The t2.z='ok' is disabled in the in (2) because it originates
258 ** in the ON clause.  The term is disabled in (3) because it is not part
259 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
260 **
261 ** Disabling a term causes that term to not be tested in the inner loop
262 ** of the join.  Disabling is an optimization.  When terms are satisfied
263 ** by indices, we disable them to prevent redundant tests in the inner
264 ** loop.  We would get the correct results if nothing were ever disabled,
265 ** but joins might run a little slower.  The trick is to disable as much
266 ** as we can without disabling too much.  If we disabled in (1), we'd get
267 ** the wrong answer.  See ticket #813.
268 **
269 ** If all the children of a term are disabled, then that term is also
270 ** automatically disabled.  In this way, terms get disabled if derived
271 ** virtual terms are tested first.  For example:
272 **
273 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
274 **      \___________/     \______/     \_____/
275 **         parent          child1       child2
276 **
277 ** Only the parent term was in the original WHERE clause.  The child1
278 ** and child2 terms were added by the LIKE optimization.  If both of
279 ** the virtual child terms are valid, then testing of the parent can be
280 ** skipped.
281 **
282 ** Usually the parent term is marked as TERM_CODED.  But if the parent
283 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
284 ** The TERM_LIKECOND marking indicates that the term should be coded inside
285 ** a conditional such that is only evaluated on the second pass of a
286 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
287 */
288 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
289   int nLoop = 0;
290   assert( pTerm!=0 );
291   while( (pTerm->wtFlags & TERM_CODED)==0
292       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
293       && (pLevel->notReady & pTerm->prereqAll)==0
294   ){
295     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
296       pTerm->wtFlags |= TERM_LIKECOND;
297     }else{
298       pTerm->wtFlags |= TERM_CODED;
299     }
300 #ifdef WHERETRACE_ENABLED
301     if( sqlite3WhereTrace & 0x20000 ){
302       sqlite3DebugPrintf("DISABLE-");
303       sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a)));
304     }
305 #endif
306     if( pTerm->iParent<0 ) break;
307     pTerm = &pTerm->pWC->a[pTerm->iParent];
308     assert( pTerm!=0 );
309     pTerm->nChild--;
310     if( pTerm->nChild!=0 ) break;
311     nLoop++;
312   }
313 }
314 
315 /*
316 ** Code an OP_Affinity opcode to apply the column affinity string zAff
317 ** to the n registers starting at base.
318 **
319 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
320 ** are no-ops) at the beginning and end of zAff are ignored.  If all entries
321 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
322 **
323 ** This routine makes its own copy of zAff so that the caller is free
324 ** to modify zAff after this routine returns.
325 */
326 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
327   Vdbe *v = pParse->pVdbe;
328   if( zAff==0 ){
329     assert( pParse->db->mallocFailed );
330     return;
331   }
332   assert( v!=0 );
333 
334   /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
335   ** entries at the beginning and end of the affinity string.
336   */
337   assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB );
338   while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){
339     n--;
340     base++;
341     zAff++;
342   }
343   while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){
344     n--;
345   }
346 
347   /* Code the OP_Affinity opcode if there is anything left to do. */
348   if( n>0 ){
349     sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
350   }
351 }
352 
353 /*
354 ** Expression pRight, which is the RHS of a comparison operation, is
355 ** either a vector of n elements or, if n==1, a scalar expression.
356 ** Before the comparison operation, affinity zAff is to be applied
357 ** to the pRight values. This function modifies characters within the
358 ** affinity string to SQLITE_AFF_BLOB if either:
359 **
360 **   * the comparison will be performed with no affinity, or
361 **   * the affinity change in zAff is guaranteed not to change the value.
362 */
363 static void updateRangeAffinityStr(
364   Expr *pRight,                   /* RHS of comparison */
365   int n,                          /* Number of vector elements in comparison */
366   char *zAff                      /* Affinity string to modify */
367 ){
368   int i;
369   for(i=0; i<n; i++){
370     Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
371     if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
372      || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
373     ){
374       zAff[i] = SQLITE_AFF_BLOB;
375     }
376   }
377 }
378 
379 
380 /*
381 ** pX is an expression of the form:  (vector) IN (SELECT ...)
382 ** In other words, it is a vector IN operator with a SELECT clause on the
383 ** LHS.  But not all terms in the vector are indexable and the terms might
384 ** not be in the correct order for indexing.
385 **
386 ** This routine makes a copy of the input pX expression and then adjusts
387 ** the vector on the LHS with corresponding changes to the SELECT so that
388 ** the vector contains only index terms and those terms are in the correct
389 ** order.  The modified IN expression is returned.  The caller is responsible
390 ** for deleting the returned expression.
391 **
392 ** Example:
393 **
394 **    CREATE TABLE t1(a,b,c,d,e,f);
395 **    CREATE INDEX t1x1 ON t1(e,c);
396 **    SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
397 **                           \_______________________________________/
398 **                                     The pX expression
399 **
400 ** Since only columns e and c can be used with the index, in that order,
401 ** the modified IN expression that is returned will be:
402 **
403 **        (e,c) IN (SELECT z,x FROM t2)
404 **
405 ** The reduced pX is different from the original (obviously) and thus is
406 ** only used for indexing, to improve performance.  The original unaltered
407 ** IN expression must also be run on each output row for correctness.
408 */
409 static Expr *removeUnindexableInClauseTerms(
410   Parse *pParse,        /* The parsing context */
411   int iEq,              /* Look at loop terms starting here */
412   WhereLoop *pLoop,     /* The current loop */
413   Expr *pX              /* The IN expression to be reduced */
414 ){
415   sqlite3 *db = pParse->db;
416   Expr *pNew;
417   pNew = sqlite3ExprDup(db, pX, 0);
418   if( db->mallocFailed==0 ){
419     ExprList *pOrigRhs = pNew->x.pSelect->pEList;  /* Original unmodified RHS */
420     ExprList *pOrigLhs = pNew->pLeft->x.pList;     /* Original unmodified LHS */
421     ExprList *pRhs = 0;         /* New RHS after modifications */
422     ExprList *pLhs = 0;         /* New LHS after mods */
423     int i;                      /* Loop counter */
424     Select *pSelect;            /* Pointer to the SELECT on the RHS */
425 
426     for(i=iEq; i<pLoop->nLTerm; i++){
427       if( pLoop->aLTerm[i]->pExpr==pX ){
428         int iField = pLoop->aLTerm[i]->u.x.iField - 1;
429         if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
430         pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
431         pOrigRhs->a[iField].pExpr = 0;
432         assert( pOrigLhs->a[iField].pExpr!=0 );
433         pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
434         pOrigLhs->a[iField].pExpr = 0;
435       }
436     }
437     sqlite3ExprListDelete(db, pOrigRhs);
438     sqlite3ExprListDelete(db, pOrigLhs);
439     pNew->pLeft->x.pList = pLhs;
440     pNew->x.pSelect->pEList = pRhs;
441     if( pLhs && pLhs->nExpr==1 ){
442       /* Take care here not to generate a TK_VECTOR containing only a
443       ** single value. Since the parser never creates such a vector, some
444       ** of the subroutines do not handle this case.  */
445       Expr *p = pLhs->a[0].pExpr;
446       pLhs->a[0].pExpr = 0;
447       sqlite3ExprDelete(db, pNew->pLeft);
448       pNew->pLeft = p;
449     }
450     pSelect = pNew->x.pSelect;
451     if( pSelect->pOrderBy ){
452       /* If the SELECT statement has an ORDER BY clause, zero the
453       ** iOrderByCol variables. These are set to non-zero when an
454       ** ORDER BY term exactly matches one of the terms of the
455       ** result-set. Since the result-set of the SELECT statement may
456       ** have been modified or reordered, these variables are no longer
457       ** set correctly.  Since setting them is just an optimization,
458       ** it's easiest just to zero them here.  */
459       ExprList *pOrderBy = pSelect->pOrderBy;
460       for(i=0; i<pOrderBy->nExpr; i++){
461         pOrderBy->a[i].u.x.iOrderByCol = 0;
462       }
463     }
464 
465 #if 0
466     printf("For indexing, change the IN expr:\n");
467     sqlite3TreeViewExpr(0, pX, 0);
468     printf("Into:\n");
469     sqlite3TreeViewExpr(0, pNew, 0);
470 #endif
471   }
472   return pNew;
473 }
474 
475 
476 /*
477 ** Generate code for a single equality term of the WHERE clause.  An equality
478 ** term can be either X=expr or X IN (...).   pTerm is the term to be
479 ** coded.
480 **
481 ** The current value for the constraint is left in a register, the index
482 ** of which is returned.  An attempt is made store the result in iTarget but
483 ** this is only guaranteed for TK_ISNULL and TK_IN constraints.  If the
484 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
485 ** some other register and it is the caller's responsibility to compensate.
486 **
487 ** For a constraint of the form X=expr, the expression is evaluated in
488 ** straight-line code.  For constraints of the form X IN (...)
489 ** this routine sets up a loop that will iterate over all values of X.
490 */
491 static int codeEqualityTerm(
492   Parse *pParse,      /* The parsing context */
493   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
494   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
495   int iEq,            /* Index of the equality term within this level */
496   int bRev,           /* True for reverse-order IN operations */
497   int iTarget         /* Attempt to leave results in this register */
498 ){
499   Expr *pX = pTerm->pExpr;
500   Vdbe *v = pParse->pVdbe;
501   int iReg;                  /* Register holding results */
502 
503   assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
504   assert( iTarget>0 );
505   if( pX->op==TK_EQ || pX->op==TK_IS ){
506     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
507   }else if( pX->op==TK_ISNULL ){
508     iReg = iTarget;
509     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
510 #ifndef SQLITE_OMIT_SUBQUERY
511   }else{
512     int eType = IN_INDEX_NOOP;
513     int iTab;
514     struct InLoop *pIn;
515     WhereLoop *pLoop = pLevel->pWLoop;
516     int i;
517     int nEq = 0;
518     int *aiMap = 0;
519 
520     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
521       && pLoop->u.btree.pIndex!=0
522       && pLoop->u.btree.pIndex->aSortOrder[iEq]
523     ){
524       testcase( iEq==0 );
525       testcase( bRev );
526       bRev = !bRev;
527     }
528     assert( pX->op==TK_IN );
529     iReg = iTarget;
530 
531     for(i=0; i<iEq; i++){
532       if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
533         disableTerm(pLevel, pTerm);
534         return iTarget;
535       }
536     }
537     for(i=iEq;i<pLoop->nLTerm; i++){
538       assert( pLoop->aLTerm[i]!=0 );
539       if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
540     }
541 
542     iTab = 0;
543     if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){
544       eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab);
545     }else{
546       sqlite3 *db = pParse->db;
547       pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
548 
549       if( !db->mallocFailed ){
550         aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
551         eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab);
552         pTerm->pExpr->iTable = iTab;
553       }
554       sqlite3ExprDelete(db, pX);
555       pX = pTerm->pExpr;
556     }
557 
558     if( eType==IN_INDEX_INDEX_DESC ){
559       testcase( bRev );
560       bRev = !bRev;
561     }
562     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
563     VdbeCoverageIf(v, bRev);
564     VdbeCoverageIf(v, !bRev);
565     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
566 
567     pLoop->wsFlags |= WHERE_IN_ABLE;
568     if( pLevel->u.in.nIn==0 ){
569       pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
570     }
571     if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){
572       pLoop->wsFlags |= WHERE_IN_EARLYOUT;
573     }
574 
575     i = pLevel->u.in.nIn;
576     pLevel->u.in.nIn += nEq;
577     pLevel->u.in.aInLoop =
578        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
579                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
580     pIn = pLevel->u.in.aInLoop;
581     if( pIn ){
582       int iMap = 0;               /* Index in aiMap[] */
583       pIn += i;
584       for(i=iEq;i<pLoop->nLTerm; i++){
585         if( pLoop->aLTerm[i]->pExpr==pX ){
586           int iOut = iReg + i - iEq;
587           if( eType==IN_INDEX_ROWID ){
588             pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
589           }else{
590             int iCol = aiMap ? aiMap[iMap++] : 0;
591             pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
592           }
593           sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
594           if( i==iEq ){
595             pIn->iCur = iTab;
596             pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
597             if( iEq>0 ){
598               pIn->iBase = iReg - i;
599               pIn->nPrefix = i;
600             }else{
601               pIn->nPrefix = 0;
602             }
603           }else{
604             pIn->eEndLoopOp = OP_Noop;
605           }
606           pIn++;
607         }
608       }
609       testcase( iEq>0
610                 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
611                 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 );
612       if( iEq>0
613        && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0
614       ){
615         sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq);
616       }
617     }else{
618       pLevel->u.in.nIn = 0;
619     }
620     sqlite3DbFree(pParse->db, aiMap);
621 #endif
622   }
623 
624   /* As an optimization, try to disable the WHERE clause term that is
625   ** driving the index as it will always be true.  The correct answer is
626   ** obtained regardless, but we might get the answer with fewer CPU cycles
627   ** by omitting the term.
628   **
629   ** But do not disable the term unless we are certain that the term is
630   ** not a transitive constraint.  For an example of where that does not
631   ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04)
632   */
633   if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0
634    || (pTerm->eOperator & WO_EQUIV)==0
635   ){
636     disableTerm(pLevel, pTerm);
637   }
638 
639   return iReg;
640 }
641 
642 /*
643 ** Generate code that will evaluate all == and IN constraints for an
644 ** index scan.
645 **
646 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
647 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
648 ** The index has as many as three equality constraints, but in this
649 ** example, the third "c" value is an inequality.  So only two
650 ** constraints are coded.  This routine will generate code to evaluate
651 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
652 ** in consecutive registers and the index of the first register is returned.
653 **
654 ** In the example above nEq==2.  But this subroutine works for any value
655 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
656 ** The only thing it does is allocate the pLevel->iMem memory cell and
657 ** compute the affinity string.
658 **
659 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
660 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
661 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
662 ** occurs after the nEq quality constraints.
663 **
664 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
665 ** the index of the first memory cell in that range. The code that
666 ** calls this routine will use that memory range to store keys for
667 ** start and termination conditions of the loop.
668 ** key value of the loop.  If one or more IN operators appear, then
669 ** this routine allocates an additional nEq memory cells for internal
670 ** use.
671 **
672 ** Before returning, *pzAff is set to point to a buffer containing a
673 ** copy of the column affinity string of the index allocated using
674 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
675 ** with equality constraints that use BLOB or NONE affinity are set to
676 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
677 **
678 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
679 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
680 **
681 ** In the example above, the index on t1(a) has TEXT affinity. But since
682 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
683 ** no conversion should be attempted before using a t2.b value as part of
684 ** a key to search the index. Hence the first byte in the returned affinity
685 ** string in this example would be set to SQLITE_AFF_BLOB.
686 */
687 static int codeAllEqualityTerms(
688   Parse *pParse,        /* Parsing context */
689   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
690   int bRev,             /* Reverse the order of IN operators */
691   int nExtraReg,        /* Number of extra registers to allocate */
692   char **pzAff          /* OUT: Set to point to affinity string */
693 ){
694   u16 nEq;                      /* The number of == or IN constraints to code */
695   u16 nSkip;                    /* Number of left-most columns to skip */
696   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
697   Index *pIdx;                  /* The index being used for this loop */
698   WhereTerm *pTerm;             /* A single constraint term */
699   WhereLoop *pLoop;             /* The WhereLoop object */
700   int j;                        /* Loop counter */
701   int regBase;                  /* Base register */
702   int nReg;                     /* Number of registers to allocate */
703   char *zAff;                   /* Affinity string to return */
704 
705   /* This module is only called on query plans that use an index. */
706   pLoop = pLevel->pWLoop;
707   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
708   nEq = pLoop->u.btree.nEq;
709   nSkip = pLoop->nSkip;
710   pIdx = pLoop->u.btree.pIndex;
711   assert( pIdx!=0 );
712 
713   /* Figure out how many memory cells we will need then allocate them.
714   */
715   regBase = pParse->nMem + 1;
716   nReg = pLoop->u.btree.nEq + nExtraReg;
717   pParse->nMem += nReg;
718 
719   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
720   assert( zAff!=0 || pParse->db->mallocFailed );
721 
722   if( nSkip ){
723     int iIdxCur = pLevel->iIdxCur;
724     sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1);
725     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
726     VdbeCoverageIf(v, bRev==0);
727     VdbeCoverageIf(v, bRev!=0);
728     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
729     j = sqlite3VdbeAddOp0(v, OP_Goto);
730     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
731                             iIdxCur, 0, regBase, nSkip);
732     VdbeCoverageIf(v, bRev==0);
733     VdbeCoverageIf(v, bRev!=0);
734     sqlite3VdbeJumpHere(v, j);
735     for(j=0; j<nSkip; j++){
736       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
737       testcase( pIdx->aiColumn[j]==XN_EXPR );
738       VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
739     }
740   }
741 
742   /* Evaluate the equality constraints
743   */
744   assert( zAff==0 || (int)strlen(zAff)>=nEq );
745   for(j=nSkip; j<nEq; j++){
746     int r1;
747     pTerm = pLoop->aLTerm[j];
748     assert( pTerm!=0 );
749     /* The following testcase is true for indices with redundant columns.
750     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
751     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
752     testcase( pTerm->wtFlags & TERM_VIRTUAL );
753     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
754     if( r1!=regBase+j ){
755       if( nReg==1 ){
756         sqlite3ReleaseTempReg(pParse, regBase);
757         regBase = r1;
758       }else{
759         sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j);
760       }
761     }
762     if( pTerm->eOperator & WO_IN ){
763       if( pTerm->pExpr->flags & EP_xIsSelect ){
764         /* No affinity ever needs to be (or should be) applied to a value
765         ** from the RHS of an "? IN (SELECT ...)" expression. The
766         ** sqlite3FindInIndex() routine has already ensured that the
767         ** affinity of the comparison has been applied to the value.  */
768         if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
769       }
770     }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
771       Expr *pRight = pTerm->pExpr->pRight;
772       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
773         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
774         VdbeCoverage(v);
775       }
776       if( pParse->db->mallocFailed==0 && pParse->nErr==0 ){
777         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
778           zAff[j] = SQLITE_AFF_BLOB;
779         }
780         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
781           zAff[j] = SQLITE_AFF_BLOB;
782         }
783       }
784     }
785   }
786   *pzAff = zAff;
787   return regBase;
788 }
789 
790 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
791 /*
792 ** If the most recently coded instruction is a constant range constraint
793 ** (a string literal) that originated from the LIKE optimization, then
794 ** set P3 and P5 on the OP_String opcode so that the string will be cast
795 ** to a BLOB at appropriate times.
796 **
797 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
798 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
799 ** scan loop run twice, once for strings and a second time for BLOBs.
800 ** The OP_String opcodes on the second pass convert the upper and lower
801 ** bound string constants to blobs.  This routine makes the necessary changes
802 ** to the OP_String opcodes for that to happen.
803 **
804 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
805 ** only the one pass through the string space is required, so this routine
806 ** becomes a no-op.
807 */
808 static void whereLikeOptimizationStringFixup(
809   Vdbe *v,                /* prepared statement under construction */
810   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
811   WhereTerm *pTerm        /* The upper or lower bound just coded */
812 ){
813   if( pTerm->wtFlags & TERM_LIKEOPT ){
814     VdbeOp *pOp;
815     assert( pLevel->iLikeRepCntr>0 );
816     pOp = sqlite3VdbeGetOp(v, -1);
817     assert( pOp!=0 );
818     assert( pOp->opcode==OP_String8
819             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
820     pOp->p3 = (int)(pLevel->iLikeRepCntr>>1);  /* Register holding counter */
821     pOp->p5 = (u8)(pLevel->iLikeRepCntr&1);    /* ASC or DESC */
822   }
823 }
824 #else
825 # define whereLikeOptimizationStringFixup(A,B,C)
826 #endif
827 
828 #ifdef SQLITE_ENABLE_CURSOR_HINTS
829 /*
830 ** Information is passed from codeCursorHint() down to individual nodes of
831 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
832 ** structure.
833 */
834 struct CCurHint {
835   int iTabCur;    /* Cursor for the main table */
836   int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
837   Index *pIdx;    /* The index used to access the table */
838 };
839 
840 /*
841 ** This function is called for every node of an expression that is a candidate
842 ** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
843 ** the table CCurHint.iTabCur, verify that the same column can be
844 ** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
845 */
846 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
847   struct CCurHint *pHint = pWalker->u.pCCurHint;
848   assert( pHint->pIdx!=0 );
849   if( pExpr->op==TK_COLUMN
850    && pExpr->iTable==pHint->iTabCur
851    && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0
852   ){
853     pWalker->eCode = 1;
854   }
855   return WRC_Continue;
856 }
857 
858 /*
859 ** Test whether or not expression pExpr, which was part of a WHERE clause,
860 ** should be included in the cursor-hint for a table that is on the rhs
861 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
862 ** expression is not suitable.
863 **
864 ** An expression is unsuitable if it might evaluate to non NULL even if
865 ** a TK_COLUMN node that does affect the value of the expression is set
866 ** to NULL. For example:
867 **
868 **   col IS NULL
869 **   col IS NOT NULL
870 **   coalesce(col, 1)
871 **   CASE WHEN col THEN 0 ELSE 1 END
872 */
873 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
874   if( pExpr->op==TK_IS
875    || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
876    || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
877   ){
878     pWalker->eCode = 1;
879   }else if( pExpr->op==TK_FUNCTION ){
880     int d1;
881     char d2[4];
882     if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
883       pWalker->eCode = 1;
884     }
885   }
886 
887   return WRC_Continue;
888 }
889 
890 
891 /*
892 ** This function is called on every node of an expression tree used as an
893 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
894 ** that accesses any table other than the one identified by
895 ** CCurHint.iTabCur, then do the following:
896 **
897 **   1) allocate a register and code an OP_Column instruction to read
898 **      the specified column into the new register, and
899 **
900 **   2) transform the expression node to a TK_REGISTER node that reads
901 **      from the newly populated register.
902 **
903 ** Also, if the node is a TK_COLUMN that does access the table idenified
904 ** by pCCurHint.iTabCur, and an index is being used (which we will
905 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
906 ** an access of the index rather than the original table.
907 */
908 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
909   int rc = WRC_Continue;
910   struct CCurHint *pHint = pWalker->u.pCCurHint;
911   if( pExpr->op==TK_COLUMN ){
912     if( pExpr->iTable!=pHint->iTabCur ){
913       int reg = ++pWalker->pParse->nMem;   /* Register for column value */
914       sqlite3ExprCode(pWalker->pParse, pExpr, reg);
915       pExpr->op = TK_REGISTER;
916       pExpr->iTable = reg;
917     }else if( pHint->pIdx!=0 ){
918       pExpr->iTable = pHint->iIdxCur;
919       pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn);
920       assert( pExpr->iColumn>=0 );
921     }
922   }else if( pExpr->op==TK_AGG_FUNCTION ){
923     /* An aggregate function in the WHERE clause of a query means this must
924     ** be a correlated sub-query, and expression pExpr is an aggregate from
925     ** the parent context. Do not walk the function arguments in this case.
926     **
927     ** todo: It should be possible to replace this node with a TK_REGISTER
928     ** expression, as the result of the expression must be stored in a
929     ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
930     rc = WRC_Prune;
931   }
932   return rc;
933 }
934 
935 /*
936 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
937 */
938 static void codeCursorHint(
939   SrcItem *pTabItem,  /* FROM clause item */
940   WhereInfo *pWInfo,    /* The where clause */
941   WhereLevel *pLevel,   /* Which loop to provide hints for */
942   WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
943 ){
944   Parse *pParse = pWInfo->pParse;
945   sqlite3 *db = pParse->db;
946   Vdbe *v = pParse->pVdbe;
947   Expr *pExpr = 0;
948   WhereLoop *pLoop = pLevel->pWLoop;
949   int iCur;
950   WhereClause *pWC;
951   WhereTerm *pTerm;
952   int i, j;
953   struct CCurHint sHint;
954   Walker sWalker;
955 
956   if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
957   iCur = pLevel->iTabCur;
958   assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
959   sHint.iTabCur = iCur;
960   sHint.iIdxCur = pLevel->iIdxCur;
961   sHint.pIdx = pLoop->u.btree.pIndex;
962   memset(&sWalker, 0, sizeof(sWalker));
963   sWalker.pParse = pParse;
964   sWalker.u.pCCurHint = &sHint;
965   pWC = &pWInfo->sWC;
966   for(i=0; i<pWC->nTerm; i++){
967     pTerm = &pWC->a[i];
968     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
969     if( pTerm->prereqAll & pLevel->notReady ) continue;
970 
971     /* Any terms specified as part of the ON(...) clause for any LEFT
972     ** JOIN for which the current table is not the rhs are omitted
973     ** from the cursor-hint.
974     **
975     ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
976     ** that were specified as part of the WHERE clause must be excluded.
977     ** This is to address the following:
978     **
979     **   SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
980     **
981     ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
982     ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
983     ** pushed down to the cursor, this row is filtered out, causing
984     ** SQLite to synthesize a row of NULL values. Which does match the
985     ** WHERE clause, and so the query returns a row. Which is incorrect.
986     **
987     ** For the same reason, WHERE terms such as:
988     **
989     **   WHERE 1 = (t2.c IS NULL)
990     **
991     ** are also excluded. See codeCursorHintIsOrFunction() for details.
992     */
993     if( pTabItem->fg.jointype & JT_LEFT ){
994       Expr *pExpr = pTerm->pExpr;
995       if( !ExprHasProperty(pExpr, EP_FromJoin)
996        || pExpr->iRightJoinTable!=pTabItem->iCursor
997       ){
998         sWalker.eCode = 0;
999         sWalker.xExprCallback = codeCursorHintIsOrFunction;
1000         sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1001         if( sWalker.eCode ) continue;
1002       }
1003     }else{
1004       if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
1005     }
1006 
1007     /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
1008     ** the cursor.  These terms are not needed as hints for a pure range
1009     ** scan (that has no == terms) so omit them. */
1010     if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
1011       for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
1012       if( j<pLoop->nLTerm ) continue;
1013     }
1014 
1015     /* No subqueries or non-deterministic functions allowed */
1016     if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
1017 
1018     /* For an index scan, make sure referenced columns are actually in
1019     ** the index. */
1020     if( sHint.pIdx!=0 ){
1021       sWalker.eCode = 0;
1022       sWalker.xExprCallback = codeCursorHintCheckExpr;
1023       sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1024       if( sWalker.eCode ) continue;
1025     }
1026 
1027     /* If we survive all prior tests, that means this term is worth hinting */
1028     pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
1029   }
1030   if( pExpr!=0 ){
1031     sWalker.xExprCallback = codeCursorHintFixExpr;
1032     sqlite3WalkExpr(&sWalker, pExpr);
1033     sqlite3VdbeAddOp4(v, OP_CursorHint,
1034                       (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
1035                       (const char*)pExpr, P4_EXPR);
1036   }
1037 }
1038 #else
1039 # define codeCursorHint(A,B,C,D)  /* No-op */
1040 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1041 
1042 /*
1043 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1044 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1045 ** function generates code to do a deferred seek of cursor iCur to the
1046 ** rowid stored in register iRowid.
1047 **
1048 ** Normally, this is just:
1049 **
1050 **   OP_DeferredSeek $iCur $iRowid
1051 **
1052 ** However, if the scan currently being coded is a branch of an OR-loop and
1053 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek
1054 ** is set to iIdxCur and P4 is set to point to an array of integers
1055 ** containing one entry for each column of the table cursor iCur is open
1056 ** on. For each table column, if the column is the i'th column of the
1057 ** index, then the corresponding array entry is set to (i+1). If the column
1058 ** does not appear in the index at all, the array entry is set to 0.
1059 */
1060 static void codeDeferredSeek(
1061   WhereInfo *pWInfo,              /* Where clause context */
1062   Index *pIdx,                    /* Index scan is using */
1063   int iCur,                       /* Cursor for IPK b-tree */
1064   int iIdxCur                     /* Index cursor */
1065 ){
1066   Parse *pParse = pWInfo->pParse; /* Parse context */
1067   Vdbe *v = pParse->pVdbe;        /* Vdbe to generate code within */
1068 
1069   assert( iIdxCur>0 );
1070   assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1071 
1072   pWInfo->bDeferredSeek = 1;
1073   sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1074   if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1075    && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1076   ){
1077     int i;
1078     Table *pTab = pIdx->pTable;
1079     u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1));
1080     if( ai ){
1081       ai[0] = pTab->nCol;
1082       for(i=0; i<pIdx->nColumn-1; i++){
1083         int x1, x2;
1084         assert( pIdx->aiColumn[i]<pTab->nCol );
1085         x1 = pIdx->aiColumn[i];
1086         x2 = sqlite3TableColumnToStorage(pTab, x1);
1087         testcase( x1!=x2 );
1088         if( x1>=0 ) ai[x2+1] = i+1;
1089       }
1090       sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1091     }
1092   }
1093 }
1094 
1095 /*
1096 ** If the expression passed as the second argument is a vector, generate
1097 ** code to write the first nReg elements of the vector into an array
1098 ** of registers starting with iReg.
1099 **
1100 ** If the expression is not a vector, then nReg must be passed 1. In
1101 ** this case, generate code to evaluate the expression and leave the
1102 ** result in register iReg.
1103 */
1104 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1105   assert( nReg>0 );
1106   if( p && sqlite3ExprIsVector(p) ){
1107 #ifndef SQLITE_OMIT_SUBQUERY
1108     if( (p->flags & EP_xIsSelect) ){
1109       Vdbe *v = pParse->pVdbe;
1110       int iSelect;
1111       assert( p->op==TK_SELECT );
1112       iSelect = sqlite3CodeSubselect(pParse, p);
1113       sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1114     }else
1115 #endif
1116     {
1117       int i;
1118       ExprList *pList = p->x.pList;
1119       assert( nReg<=pList->nExpr );
1120       for(i=0; i<nReg; i++){
1121         sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1122       }
1123     }
1124   }else{
1125     assert( nReg==1 || pParse->nErr );
1126     sqlite3ExprCode(pParse, p, iReg);
1127   }
1128 }
1129 
1130 /* An instance of the IdxExprTrans object carries information about a
1131 ** mapping from an expression on table columns into a column in an index
1132 ** down through the Walker.
1133 */
1134 typedef struct IdxExprTrans {
1135   Expr *pIdxExpr;    /* The index expression */
1136   int iTabCur;       /* The cursor of the corresponding table */
1137   int iIdxCur;       /* The cursor for the index */
1138   int iIdxCol;       /* The column for the index */
1139   int iTabCol;       /* The column for the table */
1140   WhereInfo *pWInfo; /* Complete WHERE clause information */
1141   sqlite3 *db;       /* Database connection (for malloc()) */
1142 } IdxExprTrans;
1143 
1144 /*
1145 ** Preserve pExpr on the WhereETrans list of the WhereInfo.
1146 */
1147 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){
1148   WhereExprMod *pNew;
1149   pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew));
1150   if( pNew==0 ) return;
1151   pNew->pNext = pTrans->pWInfo->pExprMods;
1152   pTrans->pWInfo->pExprMods = pNew;
1153   pNew->pExpr = pExpr;
1154   memcpy(&pNew->orig, pExpr, sizeof(*pExpr));
1155 }
1156 
1157 /* The walker node callback used to transform matching expressions into
1158 ** a reference to an index column for an index on an expression.
1159 **
1160 ** If pExpr matches, then transform it into a reference to the index column
1161 ** that contains the value of pExpr.
1162 */
1163 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1164   IdxExprTrans *pX = p->u.pIdxTrans;
1165   if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1166     preserveExpr(pX, pExpr);
1167     pExpr->affExpr = sqlite3ExprAffinity(pExpr);
1168     pExpr->op = TK_COLUMN;
1169     pExpr->iTable = pX->iIdxCur;
1170     pExpr->iColumn = pX->iIdxCol;
1171     pExpr->y.pTab = 0;
1172     testcase( ExprHasProperty(pExpr, EP_Skip) );
1173     testcase( ExprHasProperty(pExpr, EP_Unlikely) );
1174     ExprClearProperty(pExpr, EP_Skip|EP_Unlikely);
1175     return WRC_Prune;
1176   }else{
1177     return WRC_Continue;
1178   }
1179 }
1180 
1181 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1182 /* A walker node callback that translates a column reference to a table
1183 ** into a corresponding column reference of an index.
1184 */
1185 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){
1186   if( pExpr->op==TK_COLUMN ){
1187     IdxExprTrans *pX = p->u.pIdxTrans;
1188     if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){
1189       assert( pExpr->y.pTab!=0 );
1190       preserveExpr(pX, pExpr);
1191       pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn);
1192       pExpr->iTable = pX->iIdxCur;
1193       pExpr->iColumn = pX->iIdxCol;
1194       pExpr->y.pTab = 0;
1195     }
1196   }
1197   return WRC_Continue;
1198 }
1199 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1200 
1201 /*
1202 ** For an indexes on expression X, locate every instance of expression X
1203 ** in pExpr and change that subexpression into a reference to the appropriate
1204 ** column of the index.
1205 **
1206 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in
1207 ** the table into references to the corresponding (stored) column of the
1208 ** index.
1209 */
1210 static void whereIndexExprTrans(
1211   Index *pIdx,      /* The Index */
1212   int iTabCur,      /* Cursor of the table that is being indexed */
1213   int iIdxCur,      /* Cursor of the index itself */
1214   WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1215 ){
1216   int iIdxCol;               /* Column number of the index */
1217   ExprList *aColExpr;        /* Expressions that are indexed */
1218   Table *pTab;
1219   Walker w;
1220   IdxExprTrans x;
1221   aColExpr = pIdx->aColExpr;
1222   if( aColExpr==0 && !pIdx->bHasVCol ){
1223     /* The index does not reference any expressions or virtual columns
1224     ** so no translations are needed. */
1225     return;
1226   }
1227   pTab = pIdx->pTable;
1228   memset(&w, 0, sizeof(w));
1229   w.u.pIdxTrans = &x;
1230   x.iTabCur = iTabCur;
1231   x.iIdxCur = iIdxCur;
1232   x.pWInfo = pWInfo;
1233   x.db = pWInfo->pParse->db;
1234   for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){
1235     i16 iRef = pIdx->aiColumn[iIdxCol];
1236     if( iRef==XN_EXPR ){
1237       assert( aColExpr->a[iIdxCol].pExpr!=0 );
1238       x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1239       if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue;
1240       w.xExprCallback = whereIndexExprTransNode;
1241 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1242     }else if( iRef>=0
1243        && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0
1244        && (pTab->aCol[iRef].zColl==0
1245            || sqlite3StrICmp(pTab->aCol[iRef].zColl, sqlite3StrBINARY)==0)
1246     ){
1247       /* Check to see if there are direct references to generated columns
1248       ** that are contained in the index.  Pulling the generated column
1249       ** out of the index is an optimization only - the main table is always
1250       ** available if the index cannot be used.  To avoid unnecessary
1251       ** complication, omit this optimization if the collating sequence for
1252       ** the column is non-standard */
1253       x.iTabCol = iRef;
1254       w.xExprCallback = whereIndexExprTransColumn;
1255 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1256     }else{
1257       continue;
1258     }
1259     x.iIdxCol = iIdxCol;
1260     sqlite3WalkExpr(&w, pWInfo->pWhere);
1261     sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1262     sqlite3WalkExprList(&w, pWInfo->pResultSet);
1263   }
1264 }
1265 
1266 /*
1267 ** The pTruth expression is always true because it is the WHERE clause
1268 ** a partial index that is driving a query loop.  Look through all of the
1269 ** WHERE clause terms on the query, and if any of those terms must be
1270 ** true because pTruth is true, then mark those WHERE clause terms as
1271 ** coded.
1272 */
1273 static void whereApplyPartialIndexConstraints(
1274   Expr *pTruth,
1275   int iTabCur,
1276   WhereClause *pWC
1277 ){
1278   int i;
1279   WhereTerm *pTerm;
1280   while( pTruth->op==TK_AND ){
1281     whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC);
1282     pTruth = pTruth->pRight;
1283   }
1284   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1285     Expr *pExpr;
1286     if( pTerm->wtFlags & TERM_CODED ) continue;
1287     pExpr = pTerm->pExpr;
1288     if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){
1289       pTerm->wtFlags |= TERM_CODED;
1290     }
1291   }
1292 }
1293 
1294 /*
1295 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1296 ** implementation described by pWInfo.
1297 */
1298 Bitmask sqlite3WhereCodeOneLoopStart(
1299   Parse *pParse,       /* Parsing context */
1300   Vdbe *v,             /* Prepared statement under construction */
1301   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1302   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1303   WhereLevel *pLevel,  /* The current level pointer */
1304   Bitmask notReady     /* Which tables are currently available */
1305 ){
1306   int j, k;            /* Loop counters */
1307   int iCur;            /* The VDBE cursor for the table */
1308   int addrNxt;         /* Where to jump to continue with the next IN case */
1309   int bRev;            /* True if we need to scan in reverse order */
1310   WhereLoop *pLoop;    /* The WhereLoop object being coded */
1311   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
1312   WhereTerm *pTerm;               /* A WHERE clause term */
1313   sqlite3 *db;                    /* Database connection */
1314   SrcItem *pTabItem;              /* FROM clause term being coded */
1315   int addrBrk;                    /* Jump here to break out of the loop */
1316   int addrHalt;                   /* addrBrk for the outermost loop */
1317   int addrCont;                   /* Jump here to continue with next cycle */
1318   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
1319   int iReleaseReg = 0;      /* Temp register to free before returning */
1320   Index *pIdx = 0;          /* Index used by loop (if any) */
1321   int iLoop;                /* Iteration of constraint generator loop */
1322 
1323   pWC = &pWInfo->sWC;
1324   db = pParse->db;
1325   pLoop = pLevel->pWLoop;
1326   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1327   iCur = pTabItem->iCursor;
1328   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1329   bRev = (pWInfo->revMask>>iLevel)&1;
1330   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1331 #if WHERETRACE_ENABLED /* 0x20800 */
1332   if( sqlite3WhereTrace & 0x800 ){
1333     sqlite3DebugPrintf("Coding level %d of %d:  notReady=%llx  iFrom=%d\n",
1334        iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom);
1335     sqlite3WhereLoopPrint(pLoop, pWC);
1336   }
1337   if( sqlite3WhereTrace & 0x20000 ){
1338     if( iLevel==0 ){
1339       sqlite3DebugPrintf("WHERE clause being coded:\n");
1340       sqlite3TreeViewExpr(0, pWInfo->pWhere, 0);
1341     }
1342     sqlite3DebugPrintf("All WHERE-clause terms before coding:\n");
1343     sqlite3WhereClausePrint(pWC);
1344   }
1345 #endif
1346 
1347   /* Create labels for the "break" and "continue" instructions
1348   ** for the current loop.  Jump to addrBrk to break out of a loop.
1349   ** Jump to cont to go immediately to the next iteration of the
1350   ** loop.
1351   **
1352   ** When there is an IN operator, we also have a "addrNxt" label that
1353   ** means to continue with the next IN value combination.  When
1354   ** there are no IN operators in the constraints, the "addrNxt" label
1355   ** is the same as "addrBrk".
1356   */
1357   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
1358   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse);
1359 
1360   /* If this is the right table of a LEFT OUTER JOIN, allocate and
1361   ** initialize a memory cell that records if this table matches any
1362   ** row of the left table of the join.
1363   */
1364   assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1365        || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
1366   );
1367   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1368     pLevel->iLeftJoin = ++pParse->nMem;
1369     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1370     VdbeComment((v, "init LEFT JOIN no-match flag"));
1371   }
1372 
1373   /* Compute a safe address to jump to if we discover that the table for
1374   ** this loop is empty and can never contribute content. */
1375   for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){}
1376   addrHalt = pWInfo->a[j].addrBrk;
1377 
1378   /* Special case of a FROM clause subquery implemented as a co-routine */
1379   if( pTabItem->fg.viaCoroutine ){
1380     int regYield = pTabItem->regReturn;
1381     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1382     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1383     VdbeCoverage(v);
1384     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
1385     pLevel->op = OP_Goto;
1386   }else
1387 
1388 #ifndef SQLITE_OMIT_VIRTUALTABLE
1389   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1390     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
1391     **          to access the data.
1392     */
1393     int iReg;   /* P3 Value for OP_VFilter */
1394     int addrNotFound;
1395     int nConstraint = pLoop->nLTerm;
1396     int iIn;    /* Counter for IN constraints */
1397 
1398     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1399     addrNotFound = pLevel->addrBrk;
1400     for(j=0; j<nConstraint; j++){
1401       int iTarget = iReg+j+2;
1402       pTerm = pLoop->aLTerm[j];
1403       if( NEVER(pTerm==0) ) continue;
1404       if( pTerm->eOperator & WO_IN ){
1405         codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1406         addrNotFound = pLevel->addrNxt;
1407       }else{
1408         Expr *pRight = pTerm->pExpr->pRight;
1409         codeExprOrVector(pParse, pRight, iTarget, 1);
1410       }
1411     }
1412     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1413     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1414     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1415                       pLoop->u.vtab.idxStr,
1416                       pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1417     VdbeCoverage(v);
1418     pLoop->u.vtab.needFree = 0;
1419     /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed
1420     ** the u.vtab.idxStr.  NULL it out to prevent a use-after-free */
1421     if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0;
1422     pLevel->p1 = iCur;
1423     pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1424     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1425     iIn = pLevel->u.in.nIn;
1426     for(j=nConstraint-1; j>=0; j--){
1427       pTerm = pLoop->aLTerm[j];
1428       if( (pTerm->eOperator & WO_IN)!=0 ) iIn--;
1429       if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1430         disableTerm(pLevel, pTerm);
1431       }else if( (pTerm->eOperator & WO_IN)!=0
1432         && sqlite3ExprVectorSize(pTerm->pExpr->pLeft)==1
1433       ){
1434         Expr *pCompare;  /* The comparison operator */
1435         Expr *pRight;    /* RHS of the comparison */
1436         VdbeOp *pOp;     /* Opcode to access the value of the IN constraint */
1437 
1438         /* Reload the constraint value into reg[iReg+j+2].  The same value
1439         ** was loaded into the same register prior to the OP_VFilter, but
1440         ** the xFilter implementation might have changed the datatype or
1441         ** encoding of the value in the register, so it *must* be reloaded. */
1442         assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed );
1443         if( !db->mallocFailed ){
1444           assert( iIn>=0 && iIn<pLevel->u.in.nIn );
1445           pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop);
1446           assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid );
1447           assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 );
1448           assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 );
1449           testcase( pOp->opcode==OP_Rowid );
1450           sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1451         }
1452 
1453         /* Generate code that will continue to the next row if
1454         ** the IN constraint is not satisfied */
1455         pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1456         assert( pCompare!=0 || db->mallocFailed );
1457         if( pCompare ){
1458           pCompare->pLeft = pTerm->pExpr->pLeft;
1459           pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1460           if( pRight ){
1461             pRight->iTable = iReg+j+2;
1462             sqlite3ExprIfFalse(
1463                 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL
1464             );
1465           }
1466           pCompare->pLeft = 0;
1467           sqlite3ExprDelete(db, pCompare);
1468         }
1469       }
1470     }
1471     assert( iIn==0 || db->mallocFailed );
1472     /* These registers need to be preserved in case there is an IN operator
1473     ** loop.  So we could deallocate the registers here (and potentially
1474     ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0.  But it seems
1475     ** simpler and safer to simply not reuse the registers.
1476     **
1477     **    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1478     */
1479   }else
1480 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1481 
1482   if( (pLoop->wsFlags & WHERE_IPK)!=0
1483    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1484   ){
1485     /* Case 2:  We can directly reference a single row using an
1486     **          equality comparison against the ROWID field.  Or
1487     **          we reference multiple rows using a "rowid IN (...)"
1488     **          construct.
1489     */
1490     assert( pLoop->u.btree.nEq==1 );
1491     pTerm = pLoop->aLTerm[0];
1492     assert( pTerm!=0 );
1493     assert( pTerm->pExpr!=0 );
1494     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1495     iReleaseReg = ++pParse->nMem;
1496     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1497     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1498     addrNxt = pLevel->addrNxt;
1499     sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1500     VdbeCoverage(v);
1501     pLevel->op = OP_Noop;
1502     if( (pTerm->prereqAll & pLevel->notReady)==0 ){
1503       pTerm->wtFlags |= TERM_CODED;
1504     }
1505   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1506          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1507   ){
1508     /* Case 3:  We have an inequality comparison against the ROWID field.
1509     */
1510     int testOp = OP_Noop;
1511     int start;
1512     int memEndValue = 0;
1513     WhereTerm *pStart, *pEnd;
1514 
1515     j = 0;
1516     pStart = pEnd = 0;
1517     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1518     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1519     assert( pStart!=0 || pEnd!=0 );
1520     if( bRev ){
1521       pTerm = pStart;
1522       pStart = pEnd;
1523       pEnd = pTerm;
1524     }
1525     codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1526     if( pStart ){
1527       Expr *pX;             /* The expression that defines the start bound */
1528       int r1, rTemp;        /* Registers for holding the start boundary */
1529       int op;               /* Cursor seek operation */
1530 
1531       /* The following constant maps TK_xx codes into corresponding
1532       ** seek opcodes.  It depends on a particular ordering of TK_xx
1533       */
1534       const u8 aMoveOp[] = {
1535            /* TK_GT */  OP_SeekGT,
1536            /* TK_LE */  OP_SeekLE,
1537            /* TK_LT */  OP_SeekLT,
1538            /* TK_GE */  OP_SeekGE
1539       };
1540       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
1541       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
1542       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
1543 
1544       assert( (pStart->wtFlags & TERM_VNULL)==0 );
1545       testcase( pStart->wtFlags & TERM_VIRTUAL );
1546       pX = pStart->pExpr;
1547       assert( pX!=0 );
1548       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1549       if( sqlite3ExprIsVector(pX->pRight) ){
1550         r1 = rTemp = sqlite3GetTempReg(pParse);
1551         codeExprOrVector(pParse, pX->pRight, r1, 1);
1552         testcase( pX->op==TK_GT );
1553         testcase( pX->op==TK_GE );
1554         testcase( pX->op==TK_LT );
1555         testcase( pX->op==TK_LE );
1556         op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
1557         assert( pX->op!=TK_GT || op==OP_SeekGE );
1558         assert( pX->op!=TK_GE || op==OP_SeekGE );
1559         assert( pX->op!=TK_LT || op==OP_SeekLE );
1560         assert( pX->op!=TK_LE || op==OP_SeekLE );
1561       }else{
1562         r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1563         disableTerm(pLevel, pStart);
1564         op = aMoveOp[(pX->op - TK_GT)];
1565       }
1566       sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1567       VdbeComment((v, "pk"));
1568       VdbeCoverageIf(v, pX->op==TK_GT);
1569       VdbeCoverageIf(v, pX->op==TK_LE);
1570       VdbeCoverageIf(v, pX->op==TK_LT);
1571       VdbeCoverageIf(v, pX->op==TK_GE);
1572       sqlite3ReleaseTempReg(pParse, rTemp);
1573     }else{
1574       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1575       VdbeCoverageIf(v, bRev==0);
1576       VdbeCoverageIf(v, bRev!=0);
1577     }
1578     if( pEnd ){
1579       Expr *pX;
1580       pX = pEnd->pExpr;
1581       assert( pX!=0 );
1582       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1583       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1584       testcase( pEnd->wtFlags & TERM_VIRTUAL );
1585       memEndValue = ++pParse->nMem;
1586       codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1587       if( 0==sqlite3ExprIsVector(pX->pRight)
1588        && (pX->op==TK_LT || pX->op==TK_GT)
1589       ){
1590         testOp = bRev ? OP_Le : OP_Ge;
1591       }else{
1592         testOp = bRev ? OP_Lt : OP_Gt;
1593       }
1594       if( 0==sqlite3ExprIsVector(pX->pRight) ){
1595         disableTerm(pLevel, pEnd);
1596       }
1597     }
1598     start = sqlite3VdbeCurrentAddr(v);
1599     pLevel->op = bRev ? OP_Prev : OP_Next;
1600     pLevel->p1 = iCur;
1601     pLevel->p2 = start;
1602     assert( pLevel->p5==0 );
1603     if( testOp!=OP_Noop ){
1604       iRowidReg = ++pParse->nMem;
1605       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1606       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1607       VdbeCoverageIf(v, testOp==OP_Le);
1608       VdbeCoverageIf(v, testOp==OP_Lt);
1609       VdbeCoverageIf(v, testOp==OP_Ge);
1610       VdbeCoverageIf(v, testOp==OP_Gt);
1611       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1612     }
1613   }else if( pLoop->wsFlags & WHERE_INDEXED ){
1614     /* Case 4: A scan using an index.
1615     **
1616     **         The WHERE clause may contain zero or more equality
1617     **         terms ("==" or "IN" operators) that refer to the N
1618     **         left-most columns of the index. It may also contain
1619     **         inequality constraints (>, <, >= or <=) on the indexed
1620     **         column that immediately follows the N equalities. Only
1621     **         the right-most column can be an inequality - the rest must
1622     **         use the "==" and "IN" operators. For example, if the
1623     **         index is on (x,y,z), then the following clauses are all
1624     **         optimized:
1625     **
1626     **            x=5
1627     **            x=5 AND y=10
1628     **            x=5 AND y<10
1629     **            x=5 AND y>5 AND y<10
1630     **            x=5 AND y=5 AND z<=10
1631     **
1632     **         The z<10 term of the following cannot be used, only
1633     **         the x=5 term:
1634     **
1635     **            x=5 AND z<10
1636     **
1637     **         N may be zero if there are inequality constraints.
1638     **         If there are no inequality constraints, then N is at
1639     **         least one.
1640     **
1641     **         This case is also used when there are no WHERE clause
1642     **         constraints but an index is selected anyway, in order
1643     **         to force the output order to conform to an ORDER BY.
1644     */
1645     static const u8 aStartOp[] = {
1646       0,
1647       0,
1648       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
1649       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
1650       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
1651       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
1652       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
1653       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
1654     };
1655     static const u8 aEndOp[] = {
1656       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
1657       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
1658       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
1659       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
1660     };
1661     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
1662     u16 nBtm = pLoop->u.btree.nBtm;   /* Length of BTM vector */
1663     u16 nTop = pLoop->u.btree.nTop;   /* Length of TOP vector */
1664     int regBase;                 /* Base register holding constraint values */
1665     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
1666     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
1667     int startEq;                 /* True if range start uses ==, >= or <= */
1668     int endEq;                   /* True if range end uses ==, >= or <= */
1669     int start_constraints;       /* Start of range is constrained */
1670     int nConstraint;             /* Number of constraint terms */
1671     int iIdxCur;                 /* The VDBE cursor for the index */
1672     int nExtraReg = 0;           /* Number of extra registers needed */
1673     int op;                      /* Instruction opcode */
1674     char *zStartAff;             /* Affinity for start of range constraint */
1675     char *zEndAff = 0;           /* Affinity for end of range constraint */
1676     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
1677     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
1678     int omitTable;               /* True if we use the index only */
1679     int regBignull = 0;          /* big-null flag register */
1680     int addrSeekScan = 0;        /* Opcode of the OP_SeekScan, if any */
1681 
1682     pIdx = pLoop->u.btree.pIndex;
1683     iIdxCur = pLevel->iIdxCur;
1684     assert( nEq>=pLoop->nSkip );
1685 
1686     /* Find any inequality constraint terms for the start and end
1687     ** of the range.
1688     */
1689     j = nEq;
1690     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1691       pRangeStart = pLoop->aLTerm[j++];
1692       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1693       /* Like optimization range constraints always occur in pairs */
1694       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1695               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1696     }
1697     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1698       pRangeEnd = pLoop->aLTerm[j++];
1699       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1700 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1701       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1702         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
1703         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
1704         pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1705         sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1706         VdbeComment((v, "LIKE loop counter"));
1707         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1708         /* iLikeRepCntr actually stores 2x the counter register number.  The
1709         ** bottom bit indicates whether the search order is ASC or DESC. */
1710         testcase( bRev );
1711         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1712         assert( (bRev & ~1)==0 );
1713         pLevel->iLikeRepCntr <<=1;
1714         pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1715       }
1716 #endif
1717       if( pRangeStart==0 ){
1718         j = pIdx->aiColumn[nEq];
1719         if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1720           bSeekPastNull = 1;
1721         }
1722       }
1723     }
1724     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1725 
1726     /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
1727     ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
1728     ** FIRST). In both cases separate ordered scans are made of those
1729     ** index entries for which the column is null and for those for which
1730     ** it is not. For an ASC sort, the non-NULL entries are scanned first.
1731     ** For DESC, NULL entries are scanned first.
1732     */
1733     if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0
1734      && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0
1735     ){
1736       assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 );
1737       assert( pRangeEnd==0 && pRangeStart==0 );
1738       testcase( pLoop->nSkip>0 );
1739       nExtraReg = 1;
1740       bSeekPastNull = 1;
1741       pLevel->regBignull = regBignull = ++pParse->nMem;
1742       if( pLevel->iLeftJoin ){
1743         sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull);
1744       }
1745       pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse);
1746     }
1747 
1748     /* If we are doing a reverse order scan on an ascending index, or
1749     ** a forward order scan on a descending index, interchange the
1750     ** start and end terms (pRangeStart and pRangeEnd).
1751     */
1752     if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){
1753       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1754       SWAP(u8, bSeekPastNull, bStopAtNull);
1755       SWAP(u8, nBtm, nTop);
1756     }
1757 
1758     if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){
1759       /* In case OP_SeekScan is used, ensure that the index cursor does not
1760       ** point to a valid row for the first iteration of this loop. */
1761       sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
1762     }
1763 
1764     /* Generate code to evaluate all constraint terms using == or IN
1765     ** and store the values of those terms in an array of registers
1766     ** starting at regBase.
1767     */
1768     codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1769     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1770     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1771     if( zStartAff && nTop ){
1772       zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1773     }
1774     addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt);
1775 
1776     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1777     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1778     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1779     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1780     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1781     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1782     start_constraints = pRangeStart || nEq>0;
1783 
1784     /* Seek the index cursor to the start of the range. */
1785     nConstraint = nEq;
1786     if( pRangeStart ){
1787       Expr *pRight = pRangeStart->pExpr->pRight;
1788       codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1789       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1790       if( (pRangeStart->wtFlags & TERM_VNULL)==0
1791        && sqlite3ExprCanBeNull(pRight)
1792       ){
1793         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1794         VdbeCoverage(v);
1795       }
1796       if( zStartAff ){
1797         updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1798       }
1799       nConstraint += nBtm;
1800       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1801       if( sqlite3ExprIsVector(pRight)==0 ){
1802         disableTerm(pLevel, pRangeStart);
1803       }else{
1804         startEq = 1;
1805       }
1806       bSeekPastNull = 0;
1807     }else if( bSeekPastNull ){
1808       startEq = 0;
1809       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1810       start_constraints = 1;
1811       nConstraint++;
1812     }else if( regBignull ){
1813       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1814       start_constraints = 1;
1815       nConstraint++;
1816     }
1817     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1818     if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1819       /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1820       ** above has already left the cursor sitting on the correct row,
1821       ** so no further seeking is needed */
1822     }else{
1823       if( regBignull ){
1824         sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull);
1825         VdbeComment((v, "NULL-scan pass ctr"));
1826       }
1827 
1828       op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1829       assert( op!=0 );
1830       if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){
1831         assert( regBignull==0 );
1832         /* TUNING:  The OP_SeekScan opcode seeks to reduce the number
1833         ** of expensive seek operations by replacing a single seek with
1834         ** 1 or more step operations.  The question is, how many steps
1835         ** should we try before giving up and going with a seek.  The cost
1836         ** of a seek is proportional to the logarithm of the of the number
1837         ** of entries in the tree, so basing the number of steps to try
1838         ** on the estimated number of rows in the btree seems like a good
1839         ** guess. */
1840         addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan,
1841                                          (pIdx->aiRowLogEst[0]+9)/10);
1842         VdbeCoverage(v);
1843       }
1844       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1845       VdbeCoverage(v);
1846       VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1847       VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1848       VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
1849       VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1850       VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1851       VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
1852 
1853       assert( bSeekPastNull==0 || bStopAtNull==0 );
1854       if( regBignull ){
1855         assert( bSeekPastNull==1 || bStopAtNull==1 );
1856         assert( bSeekPastNull==!bStopAtNull );
1857         assert( bStopAtNull==startEq );
1858         sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2);
1859         op = aStartOp[(nConstraint>1)*4 + 2 + bRev];
1860         sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1861                              nConstraint-startEq);
1862         VdbeCoverage(v);
1863         VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1864         VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1865         VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1866         VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1867         assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE);
1868       }
1869     }
1870 
1871     /* Load the value for the inequality constraint at the end of the
1872     ** range (if any).
1873     */
1874     nConstraint = nEq;
1875     if( pRangeEnd ){
1876       Expr *pRight = pRangeEnd->pExpr->pRight;
1877       codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
1878       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1879       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1880        && sqlite3ExprCanBeNull(pRight)
1881       ){
1882         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1883         VdbeCoverage(v);
1884       }
1885       if( zEndAff ){
1886         updateRangeAffinityStr(pRight, nTop, zEndAff);
1887         codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1888       }else{
1889         assert( pParse->db->mallocFailed );
1890       }
1891       nConstraint += nTop;
1892       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1893 
1894       if( sqlite3ExprIsVector(pRight)==0 ){
1895         disableTerm(pLevel, pRangeEnd);
1896       }else{
1897         endEq = 1;
1898       }
1899     }else if( bStopAtNull ){
1900       if( regBignull==0 ){
1901         sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1902         endEq = 0;
1903       }
1904       nConstraint++;
1905     }
1906     sqlite3DbFree(db, zStartAff);
1907     sqlite3DbFree(db, zEndAff);
1908 
1909     /* Top of the loop body */
1910     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1911 
1912     /* Check if the index cursor is past the end of the range. */
1913     if( nConstraint ){
1914       if( regBignull ){
1915         /* Except, skip the end-of-range check while doing the NULL-scan */
1916         sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3);
1917         VdbeComment((v, "If NULL-scan 2nd pass"));
1918         VdbeCoverage(v);
1919       }
1920       op = aEndOp[bRev*2 + endEq];
1921       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1922       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1923       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1924       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1925       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1926       if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan);
1927     }
1928     if( regBignull ){
1929       /* During a NULL-scan, check to see if we have reached the end of
1930       ** the NULLs */
1931       assert( bSeekPastNull==!bStopAtNull );
1932       assert( bSeekPastNull+bStopAtNull==1 );
1933       assert( nConstraint+bSeekPastNull>0 );
1934       sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2);
1935       VdbeComment((v, "If NULL-scan 1st pass"));
1936       VdbeCoverage(v);
1937       op = aEndOp[bRev*2 + bSeekPastNull];
1938       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1939                            nConstraint+bSeekPastNull);
1940       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1941       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1942       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1943       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1944     }
1945 
1946     if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){
1947       sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq);
1948     }
1949 
1950     /* Seek the table cursor, if required */
1951     omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
1952            && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
1953     if( omitTable ){
1954       /* pIdx is a covering index.  No need to access the main table. */
1955     }else if( HasRowid(pIdx->pTable) ){
1956       codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
1957     }else if( iCur!=iIdxCur ){
1958       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1959       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1960       for(j=0; j<pPk->nKeyCol; j++){
1961         k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
1962         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1963       }
1964       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1965                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1966     }
1967 
1968     if( pLevel->iLeftJoin==0 ){
1969       /* If pIdx is an index on one or more expressions, then look through
1970       ** all the expressions in pWInfo and try to transform matching expressions
1971       ** into reference to index columns.  Also attempt to translate references
1972       ** to virtual columns in the table into references to (stored) columns
1973       ** of the index.
1974       **
1975       ** Do not do this for the RHS of a LEFT JOIN. This is because the
1976       ** expression may be evaluated after OP_NullRow has been executed on
1977       ** the cursor. In this case it is important to do the full evaluation,
1978       ** as the result of the expression may not be NULL, even if all table
1979       ** column values are.  https://www.sqlite.org/src/info/7fa8049685b50b5a
1980       **
1981       ** Also, do not do this when processing one index an a multi-index
1982       ** OR clause, since the transformation will become invalid once we
1983       ** move forward to the next index.
1984       ** https://sqlite.org/src/info/4e8e4857d32d401f
1985       */
1986       if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
1987         whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
1988       }
1989 
1990       /* If a partial index is driving the loop, try to eliminate WHERE clause
1991       ** terms from the query that must be true due to the WHERE clause of
1992       ** the partial index.
1993       **
1994       ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
1995       ** for a LEFT JOIN.
1996       */
1997       if( pIdx->pPartIdxWhere ){
1998         whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC);
1999       }
2000     }else{
2001       testcase( pIdx->pPartIdxWhere );
2002       /* The following assert() is not a requirement, merely an observation:
2003       ** The OR-optimization doesn't work for the right hand table of
2004       ** a LEFT JOIN: */
2005       assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 );
2006     }
2007 
2008     /* Record the instruction used to terminate the loop. */
2009     if( pLoop->wsFlags & WHERE_ONEROW ){
2010       pLevel->op = OP_Noop;
2011     }else if( bRev ){
2012       pLevel->op = OP_Prev;
2013     }else{
2014       pLevel->op = OP_Next;
2015     }
2016     pLevel->p1 = iIdxCur;
2017     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
2018     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
2019       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2020     }else{
2021       assert( pLevel->p5==0 );
2022     }
2023     if( omitTable ) pIdx = 0;
2024   }else
2025 
2026 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
2027   if( pLoop->wsFlags & WHERE_MULTI_OR ){
2028     /* Case 5:  Two or more separately indexed terms connected by OR
2029     **
2030     ** Example:
2031     **
2032     **   CREATE TABLE t1(a,b,c,d);
2033     **   CREATE INDEX i1 ON t1(a);
2034     **   CREATE INDEX i2 ON t1(b);
2035     **   CREATE INDEX i3 ON t1(c);
2036     **
2037     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
2038     **
2039     ** In the example, there are three indexed terms connected by OR.
2040     ** The top of the loop looks like this:
2041     **
2042     **          Null       1                # Zero the rowset in reg 1
2043     **
2044     ** Then, for each indexed term, the following. The arguments to
2045     ** RowSetTest are such that the rowid of the current row is inserted
2046     ** into the RowSet. If it is already present, control skips the
2047     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
2048     **
2049     **        sqlite3WhereBegin(<term>)
2050     **          RowSetTest                  # Insert rowid into rowset
2051     **          Gosub      2 A
2052     **        sqlite3WhereEnd()
2053     **
2054     ** Following the above, code to terminate the loop. Label A, the target
2055     ** of the Gosub above, jumps to the instruction right after the Goto.
2056     **
2057     **          Null       1                # Zero the rowset in reg 1
2058     **          Goto       B                # The loop is finished.
2059     **
2060     **       A: <loop body>                 # Return data, whatever.
2061     **
2062     **          Return     2                # Jump back to the Gosub
2063     **
2064     **       B: <after the loop>
2065     **
2066     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
2067     ** use an ephemeral index instead of a RowSet to record the primary
2068     ** keys of the rows we have already seen.
2069     **
2070     */
2071     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
2072     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
2073     Index *pCov = 0;             /* Potential covering index (or NULL) */
2074     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
2075 
2076     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
2077     int regRowset = 0;                        /* Register for RowSet object */
2078     int regRowid = 0;                         /* Register holding rowid */
2079     int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */
2080     int iRetInit;                             /* Address of regReturn init */
2081     int untestedTerms = 0;             /* Some terms not completely tested */
2082     int ii;                            /* Loop counter */
2083     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
2084     Table *pTab = pTabItem->pTab;
2085 
2086     pTerm = pLoop->aLTerm[0];
2087     assert( pTerm!=0 );
2088     assert( pTerm->eOperator & WO_OR );
2089     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
2090     pOrWc = &pTerm->u.pOrInfo->wc;
2091     pLevel->op = OP_Return;
2092     pLevel->p1 = regReturn;
2093 
2094     /* Set up a new SrcList in pOrTab containing the table being scanned
2095     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
2096     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
2097     */
2098     if( pWInfo->nLevel>1 ){
2099       int nNotReady;                 /* The number of notReady tables */
2100       SrcItem *origSrc;              /* Original list of tables */
2101       nNotReady = pWInfo->nLevel - iLevel - 1;
2102       pOrTab = sqlite3StackAllocRaw(db,
2103                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
2104       if( pOrTab==0 ) return notReady;
2105       pOrTab->nAlloc = (u8)(nNotReady + 1);
2106       pOrTab->nSrc = pOrTab->nAlloc;
2107       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
2108       origSrc = pWInfo->pTabList->a;
2109       for(k=1; k<=nNotReady; k++){
2110         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
2111       }
2112     }else{
2113       pOrTab = pWInfo->pTabList;
2114     }
2115 
2116     /* Initialize the rowset register to contain NULL. An SQL NULL is
2117     ** equivalent to an empty rowset.  Or, create an ephemeral index
2118     ** capable of holding primary keys in the case of a WITHOUT ROWID.
2119     **
2120     ** Also initialize regReturn to contain the address of the instruction
2121     ** immediately following the OP_Return at the bottom of the loop. This
2122     ** is required in a few obscure LEFT JOIN cases where control jumps
2123     ** over the top of the loop into the body of it. In this case the
2124     ** correct response for the end-of-loop code (the OP_Return) is to
2125     ** fall through to the next instruction, just as an OP_Next does if
2126     ** called on an uninitialized cursor.
2127     */
2128     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2129       if( HasRowid(pTab) ){
2130         regRowset = ++pParse->nMem;
2131         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
2132       }else{
2133         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2134         regRowset = pParse->nTab++;
2135         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
2136         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
2137       }
2138       regRowid = ++pParse->nMem;
2139     }
2140     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
2141 
2142     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
2143     ** Then for every term xN, evaluate as the subexpression: xN AND z
2144     ** That way, terms in y that are factored into the disjunction will
2145     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
2146     **
2147     ** Actually, each subexpression is converted to "xN AND w" where w is
2148     ** the "interesting" terms of z - terms that did not originate in the
2149     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
2150     ** indices.
2151     **
2152     ** This optimization also only applies if the (x1 OR x2 OR ...) term
2153     ** is not contained in the ON clause of a LEFT JOIN.
2154     ** See ticket http://www.sqlite.org/src/info/f2369304e4
2155     */
2156     if( pWC->nTerm>1 ){
2157       int iTerm;
2158       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
2159         Expr *pExpr = pWC->a[iTerm].pExpr;
2160         if( &pWC->a[iTerm] == pTerm ) continue;
2161         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
2162         testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
2163         if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
2164         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
2165         testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
2166         pExpr = sqlite3ExprDup(db, pExpr, 0);
2167         pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr);
2168       }
2169       if( pAndExpr ){
2170         /* The extra 0x10000 bit on the opcode is masked off and does not
2171         ** become part of the new Expr.op.  However, it does make the
2172         ** op==TK_AND comparison inside of sqlite3PExpr() false, and this
2173         ** prevents sqlite3PExpr() from applying the AND short-circuit
2174         ** optimization, which we do not want here. */
2175         pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr);
2176       }
2177     }
2178 
2179     /* Run a separate WHERE clause for each term of the OR clause.  After
2180     ** eliminating duplicates from other WHERE clauses, the action for each
2181     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
2182     */
2183     ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
2184     for(ii=0; ii<pOrWc->nTerm; ii++){
2185       WhereTerm *pOrTerm = &pOrWc->a[ii];
2186       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
2187         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
2188         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
2189         Expr *pDelete;                  /* Local copy of OR clause term */
2190         int jmp1 = 0;                   /* Address of jump operation */
2191         testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0
2192                && !ExprHasProperty(pOrExpr, EP_FromJoin)
2193         ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */
2194         pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0);
2195         if( db->mallocFailed ){
2196           sqlite3ExprDelete(db, pDelete);
2197           continue;
2198         }
2199         if( pAndExpr ){
2200           pAndExpr->pLeft = pOrExpr;
2201           pOrExpr = pAndExpr;
2202         }
2203         /* Loop through table entries that match term pOrTerm. */
2204         ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1));
2205         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
2206         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
2207                                       WHERE_OR_SUBCLAUSE, iCovCur);
2208         assert( pSubWInfo || pParse->nErr || db->mallocFailed );
2209         if( pSubWInfo ){
2210           WhereLoop *pSubLoop;
2211           int addrExplain = sqlite3WhereExplainOneScan(
2212               pParse, pOrTab, &pSubWInfo->a[0], 0
2213           );
2214           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
2215 
2216           /* This is the sub-WHERE clause body.  First skip over
2217           ** duplicate rows from prior sub-WHERE clauses, and record the
2218           ** rowid (or PRIMARY KEY) for the current row so that the same
2219           ** row will be skipped in subsequent sub-WHERE clauses.
2220           */
2221           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2222             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
2223             if( HasRowid(pTab) ){
2224               sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid);
2225               jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
2226                                           regRowid, iSet);
2227               VdbeCoverage(v);
2228             }else{
2229               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2230               int nPk = pPk->nKeyCol;
2231               int iPk;
2232               int r;
2233 
2234               /* Read the PK into an array of temp registers. */
2235               r = sqlite3GetTempRange(pParse, nPk);
2236               for(iPk=0; iPk<nPk; iPk++){
2237                 int iCol = pPk->aiColumn[iPk];
2238                 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2239               }
2240 
2241               /* Check if the temp table already contains this key. If so,
2242               ** the row has already been included in the result set and
2243               ** can be ignored (by jumping past the Gosub below). Otherwise,
2244               ** insert the key into the temp table and proceed with processing
2245               ** the row.
2246               **
2247               ** Use some of the same optimizations as OP_RowSetTest: If iSet
2248               ** is zero, assume that the key cannot already be present in
2249               ** the temp table. And if iSet is -1, assume that there is no
2250               ** need to insert the key into the temp table, as it will never
2251               ** be tested for.  */
2252               if( iSet ){
2253                 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
2254                 VdbeCoverage(v);
2255               }
2256               if( iSet>=0 ){
2257                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
2258                 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
2259                                      r, nPk);
2260                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2261               }
2262 
2263               /* Release the array of temp registers */
2264               sqlite3ReleaseTempRange(pParse, r, nPk);
2265             }
2266           }
2267 
2268           /* Invoke the main loop body as a subroutine */
2269           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2270 
2271           /* Jump here (skipping the main loop body subroutine) if the
2272           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2273           if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
2274 
2275           /* The pSubWInfo->untestedTerms flag means that this OR term
2276           ** contained one or more AND term from a notReady table.  The
2277           ** terms from the notReady table could not be tested and will
2278           ** need to be tested later.
2279           */
2280           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
2281 
2282           /* If all of the OR-connected terms are optimized using the same
2283           ** index, and the index is opened using the same cursor number
2284           ** by each call to sqlite3WhereBegin() made by this loop, it may
2285           ** be possible to use that index as a covering index.
2286           **
2287           ** If the call to sqlite3WhereBegin() above resulted in a scan that
2288           ** uses an index, and this is either the first OR-connected term
2289           ** processed or the index is the same as that used by all previous
2290           ** terms, set pCov to the candidate covering index. Otherwise, set
2291           ** pCov to NULL to indicate that no candidate covering index will
2292           ** be available.
2293           */
2294           pSubLoop = pSubWInfo->a[0].pWLoop;
2295           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2296           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2297            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2298            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2299           ){
2300             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2301             pCov = pSubLoop->u.btree.pIndex;
2302           }else{
2303             pCov = 0;
2304           }
2305           if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){
2306             pWInfo->bDeferredSeek = 1;
2307           }
2308 
2309           /* Finish the loop through table entries that match term pOrTerm. */
2310           sqlite3WhereEnd(pSubWInfo);
2311           ExplainQueryPlanPop(pParse);
2312         }
2313         sqlite3ExprDelete(db, pDelete);
2314       }
2315     }
2316     ExplainQueryPlanPop(pParse);
2317     pLevel->u.pCovidx = pCov;
2318     if( pCov ) pLevel->iIdxCur = iCovCur;
2319     if( pAndExpr ){
2320       pAndExpr->pLeft = 0;
2321       sqlite3ExprDelete(db, pAndExpr);
2322     }
2323     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2324     sqlite3VdbeGoto(v, pLevel->addrBrk);
2325     sqlite3VdbeResolveLabel(v, iLoopBody);
2326 
2327     if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); }
2328     if( !untestedTerms ) disableTerm(pLevel, pTerm);
2329   }else
2330 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2331 
2332   {
2333     /* Case 6:  There is no usable index.  We must do a complete
2334     **          scan of the entire table.
2335     */
2336     static const u8 aStep[] = { OP_Next, OP_Prev };
2337     static const u8 aStart[] = { OP_Rewind, OP_Last };
2338     assert( bRev==0 || bRev==1 );
2339     if( pTabItem->fg.isRecursive ){
2340       /* Tables marked isRecursive have only a single row that is stored in
2341       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
2342       pLevel->op = OP_Noop;
2343     }else{
2344       codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2345       pLevel->op = aStep[bRev];
2346       pLevel->p1 = iCur;
2347       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2348       VdbeCoverageIf(v, bRev==0);
2349       VdbeCoverageIf(v, bRev!=0);
2350       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2351     }
2352   }
2353 
2354 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2355   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2356 #endif
2357 
2358   /* Insert code to test every subexpression that can be completely
2359   ** computed using the current set of tables.
2360   **
2361   ** This loop may run between one and three times, depending on the
2362   ** constraints to be generated. The value of stack variable iLoop
2363   ** determines the constraints coded by each iteration, as follows:
2364   **
2365   ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2366   ** iLoop==2: Code remaining expressions that do not contain correlated
2367   **           sub-queries.
2368   ** iLoop==3: Code all remaining expressions.
2369   **
2370   ** An effort is made to skip unnecessary iterations of the loop.
2371   */
2372   iLoop = (pIdx ? 1 : 2);
2373   do{
2374     int iNext = 0;                /* Next value for iLoop */
2375     for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2376       Expr *pE;
2377       int skipLikeAddr = 0;
2378       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2379       testcase( pTerm->wtFlags & TERM_CODED );
2380       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2381       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2382         testcase( pWInfo->untestedTerms==0
2383             && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2384         pWInfo->untestedTerms = 1;
2385         continue;
2386       }
2387       pE = pTerm->pExpr;
2388       assert( pE!=0 );
2389       if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){
2390         continue;
2391       }
2392 
2393       if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2394         iNext = 2;
2395         continue;
2396       }
2397       if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2398         if( iNext==0 ) iNext = 3;
2399         continue;
2400       }
2401 
2402       if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
2403         /* If the TERM_LIKECOND flag is set, that means that the range search
2404         ** is sufficient to guarantee that the LIKE operator is true, so we
2405         ** can skip the call to the like(A,B) function.  But this only works
2406         ** for strings.  So do not skip the call to the function on the pass
2407         ** that compares BLOBs. */
2408 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2409         continue;
2410 #else
2411         u32 x = pLevel->iLikeRepCntr;
2412         if( x>0 ){
2413           skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
2414           VdbeCoverageIf(v, (x&1)==1);
2415           VdbeCoverageIf(v, (x&1)==0);
2416         }
2417 #endif
2418       }
2419 #ifdef WHERETRACE_ENABLED /* 0xffff */
2420       if( sqlite3WhereTrace ){
2421         VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2422                          pWC->nTerm-j, pTerm, iLoop));
2423       }
2424       if( sqlite3WhereTrace & 0x800 ){
2425         sqlite3DebugPrintf("Coding auxiliary constraint:\n");
2426         sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2427       }
2428 #endif
2429       sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2430       if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2431       pTerm->wtFlags |= TERM_CODED;
2432     }
2433     iLoop = iNext;
2434   }while( iLoop>0 );
2435 
2436   /* Insert code to test for implied constraints based on transitivity
2437   ** of the "==" operator.
2438   **
2439   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2440   ** and we are coding the t1 loop and the t2 loop has not yet coded,
2441   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2442   ** the implied "t1.a=123" constraint.
2443   */
2444   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2445     Expr *pE, sEAlt;
2446     WhereTerm *pAlt;
2447     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2448     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2449     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2450     if( pTerm->leftCursor!=iCur ) continue;
2451     if( pTabItem->fg.jointype & JT_LEFT ) continue;
2452     pE = pTerm->pExpr;
2453 #ifdef WHERETRACE_ENABLED /* 0x800 */
2454     if( sqlite3WhereTrace & 0x800 ){
2455       sqlite3DebugPrintf("Coding transitive constraint:\n");
2456       sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2457     }
2458 #endif
2459     assert( !ExprHasProperty(pE, EP_FromJoin) );
2460     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2461     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady,
2462                     WO_EQ|WO_IN|WO_IS, 0);
2463     if( pAlt==0 ) continue;
2464     if( pAlt->wtFlags & (TERM_CODED) ) continue;
2465     if( (pAlt->eOperator & WO_IN)
2466      && (pAlt->pExpr->flags & EP_xIsSelect)
2467      && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
2468     ){
2469       continue;
2470     }
2471     testcase( pAlt->eOperator & WO_EQ );
2472     testcase( pAlt->eOperator & WO_IS );
2473     testcase( pAlt->eOperator & WO_IN );
2474     VdbeModuleComment((v, "begin transitive constraint"));
2475     sEAlt = *pAlt->pExpr;
2476     sEAlt.pLeft = pE->pLeft;
2477     sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2478     pAlt->wtFlags |= TERM_CODED;
2479   }
2480 
2481   /* For a LEFT OUTER JOIN, generate code that will record the fact that
2482   ** at least one row of the right table has matched the left table.
2483   */
2484   if( pLevel->iLeftJoin ){
2485     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2486     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2487     VdbeComment((v, "record LEFT JOIN hit"));
2488     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
2489       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2490       testcase( pTerm->wtFlags & TERM_CODED );
2491       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2492       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2493         assert( pWInfo->untestedTerms );
2494         continue;
2495       }
2496       assert( pTerm->pExpr );
2497       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2498       pTerm->wtFlags |= TERM_CODED;
2499     }
2500   }
2501 
2502 #if WHERETRACE_ENABLED /* 0x20800 */
2503   if( sqlite3WhereTrace & 0x20000 ){
2504     sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n",
2505                        iLevel);
2506     sqlite3WhereClausePrint(pWC);
2507   }
2508   if( sqlite3WhereTrace & 0x800 ){
2509     sqlite3DebugPrintf("End Coding level %d:  notReady=%llx\n",
2510        iLevel, (u64)pLevel->notReady);
2511   }
2512 #endif
2513   return pLevel->notReady;
2514 }
2515