xref: /sqlite-3.40.0/src/wherecode.c (revision a23a873f)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 
25 /*
26 ** Return the name of the i-th column of the pIdx index.
27 */
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29   i = pIdx->aiColumn[i];
30   if( i==XN_EXPR ) return "<expr>";
31   if( i==XN_ROWID ) return "rowid";
32   return pIdx->pTable->aCol[i].zName;
33 }
34 
35 /*
36 ** This routine is a helper for explainIndexRange() below
37 **
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time.  This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
42 */
43 static void explainAppendTerm(
44   StrAccum *pStr,             /* The text expression being built */
45   Index *pIdx,                /* Index to read column names from */
46   int nTerm,                  /* Number of terms */
47   int iTerm,                  /* Zero-based index of first term. */
48   int bAnd,                   /* Non-zero to append " AND " */
49   const char *zOp             /* Name of the operator */
50 ){
51   int i;
52 
53   assert( nTerm>=1 );
54   if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
55 
56   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
57   for(i=0; i<nTerm; i++){
58     if( i ) sqlite3_str_append(pStr, ",", 1);
59     sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
60   }
61   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
62 
63   sqlite3_str_append(pStr, zOp, 1);
64 
65   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
66   for(i=0; i<nTerm; i++){
67     if( i ) sqlite3_str_append(pStr, ",", 1);
68     sqlite3_str_append(pStr, "?", 1);
69   }
70   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
71 }
72 
73 /*
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
77 **
78 ** For example, if the query:
79 **
80 **   SELECT * FROM t1 WHERE a=1 AND b>2;
81 **
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
84 **
85 **   "a=? AND b>?"
86 */
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88   Index *pIndex = pLoop->u.btree.pIndex;
89   u16 nEq = pLoop->u.btree.nEq;
90   u16 nSkip = pLoop->nSkip;
91   int i, j;
92 
93   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94   sqlite3_str_append(pStr, " (", 2);
95   for(i=0; i<nEq; i++){
96     const char *z = explainIndexColumnName(pIndex, i);
97     if( i ) sqlite3_str_append(pStr, " AND ", 5);
98     sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
99   }
100 
101   j = i;
102   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104     i = 1;
105   }
106   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
108   }
109   sqlite3_str_append(pStr, ")", 1);
110 }
111 
112 /*
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
117 **
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
120 */
121 int sqlite3WhereExplainOneScan(
122   Parse *pParse,                  /* Parse context */
123   SrcList *pTabList,              /* Table list this loop refers to */
124   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
125   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
126 ){
127   int ret = 0;
128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
129   if( sqlite3ParseToplevel(pParse)->explain==2 )
130 #endif
131   {
132     SrcItem *pItem = &pTabList->a[pLevel->iFrom];
133     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
134     sqlite3 *db = pParse->db;     /* Database handle */
135     int isSearch;                 /* True for a SEARCH. False for SCAN. */
136     WhereLoop *pLoop;             /* The controlling WhereLoop object */
137     u32 flags;                    /* Flags that describe this loop */
138     char *zMsg;                   /* Text to add to EQP output */
139     StrAccum str;                 /* EQP output string */
140     char zBuf[100];               /* Initial space for EQP output string */
141 
142     pLoop = pLevel->pWLoop;
143     flags = pLoop->wsFlags;
144     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
145 
146     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
147             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
148             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
149 
150     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
151     str.printfFlags = SQLITE_PRINTF_INTERNAL;
152     sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem);
153     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
154       const char *zFmt = 0;
155       Index *pIdx;
156 
157       assert( pLoop->u.btree.pIndex!=0 );
158       pIdx = pLoop->u.btree.pIndex;
159       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
160       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
161         if( isSearch ){
162           zFmt = "PRIMARY KEY";
163         }
164       }else if( flags & WHERE_PARTIALIDX ){
165         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
166       }else if( flags & WHERE_AUTO_INDEX ){
167         zFmt = "AUTOMATIC COVERING INDEX";
168       }else if( flags & WHERE_IDX_ONLY ){
169         zFmt = "COVERING INDEX %s";
170       }else{
171         zFmt = "INDEX %s";
172       }
173       if( zFmt ){
174         sqlite3_str_append(&str, " USING ", 7);
175         sqlite3_str_appendf(&str, zFmt, pIdx->zName);
176         explainIndexRange(&str, pLoop);
177       }
178     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
179       const char *zRangeOp;
180       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
181         zRangeOp = "=";
182       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
183         zRangeOp = ">? AND rowid<";
184       }else if( flags&WHERE_BTM_LIMIT ){
185         zRangeOp = ">";
186       }else{
187         assert( flags&WHERE_TOP_LIMIT);
188         zRangeOp = "<";
189       }
190       sqlite3_str_appendf(&str,
191           " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
192     }
193 #ifndef SQLITE_OMIT_VIRTUALTABLE
194     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
195       sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
196                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
197     }
198 #endif
199 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
200     if( pLoop->nOut>=10 ){
201       sqlite3_str_appendf(&str, " (~%llu rows)",
202              sqlite3LogEstToInt(pLoop->nOut));
203     }else{
204       sqlite3_str_append(&str, " (~1 row)", 9);
205     }
206 #endif
207     zMsg = sqlite3StrAccumFinish(&str);
208     sqlite3ExplainBreakpoint("",zMsg);
209     ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
210                             pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
211   }
212   return ret;
213 }
214 #endif /* SQLITE_OMIT_EXPLAIN */
215 
216 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
217 /*
218 ** Configure the VM passed as the first argument with an
219 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
220 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
221 ** clause that the scan reads data from.
222 **
223 ** If argument addrExplain is not 0, it must be the address of an
224 ** OP_Explain instruction that describes the same loop.
225 */
226 void sqlite3WhereAddScanStatus(
227   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
228   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
229   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
230   int addrExplain                 /* Address of OP_Explain (or 0) */
231 ){
232   const char *zObj = 0;
233   WhereLoop *pLoop = pLvl->pWLoop;
234   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
235     zObj = pLoop->u.btree.pIndex->zName;
236   }else{
237     zObj = pSrclist->a[pLvl->iFrom].zName;
238   }
239   sqlite3VdbeScanStatus(
240       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
241   );
242 }
243 #endif
244 
245 
246 /*
247 ** Disable a term in the WHERE clause.  Except, do not disable the term
248 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
249 ** or USING clause of that join.
250 **
251 ** Consider the term t2.z='ok' in the following queries:
252 **
253 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
254 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
255 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
256 **
257 ** The t2.z='ok' is disabled in the in (2) because it originates
258 ** in the ON clause.  The term is disabled in (3) because it is not part
259 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
260 **
261 ** Disabling a term causes that term to not be tested in the inner loop
262 ** of the join.  Disabling is an optimization.  When terms are satisfied
263 ** by indices, we disable them to prevent redundant tests in the inner
264 ** loop.  We would get the correct results if nothing were ever disabled,
265 ** but joins might run a little slower.  The trick is to disable as much
266 ** as we can without disabling too much.  If we disabled in (1), we'd get
267 ** the wrong answer.  See ticket #813.
268 **
269 ** If all the children of a term are disabled, then that term is also
270 ** automatically disabled.  In this way, terms get disabled if derived
271 ** virtual terms are tested first.  For example:
272 **
273 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
274 **      \___________/     \______/     \_____/
275 **         parent          child1       child2
276 **
277 ** Only the parent term was in the original WHERE clause.  The child1
278 ** and child2 terms were added by the LIKE optimization.  If both of
279 ** the virtual child terms are valid, then testing of the parent can be
280 ** skipped.
281 **
282 ** Usually the parent term is marked as TERM_CODED.  But if the parent
283 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
284 ** The TERM_LIKECOND marking indicates that the term should be coded inside
285 ** a conditional such that is only evaluated on the second pass of a
286 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
287 */
288 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
289   int nLoop = 0;
290   assert( pTerm!=0 );
291   while( (pTerm->wtFlags & TERM_CODED)==0
292       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
293       && (pLevel->notReady & pTerm->prereqAll)==0
294   ){
295     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
296       pTerm->wtFlags |= TERM_LIKECOND;
297     }else{
298       pTerm->wtFlags |= TERM_CODED;
299     }
300     if( pTerm->iParent<0 ) break;
301     pTerm = &pTerm->pWC->a[pTerm->iParent];
302     assert( pTerm!=0 );
303     pTerm->nChild--;
304     if( pTerm->nChild!=0 ) break;
305     nLoop++;
306   }
307 }
308 
309 /*
310 ** Code an OP_Affinity opcode to apply the column affinity string zAff
311 ** to the n registers starting at base.
312 **
313 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
314 ** are no-ops) at the beginning and end of zAff are ignored.  If all entries
315 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
316 **
317 ** This routine makes its own copy of zAff so that the caller is free
318 ** to modify zAff after this routine returns.
319 */
320 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
321   Vdbe *v = pParse->pVdbe;
322   if( zAff==0 ){
323     assert( pParse->db->mallocFailed );
324     return;
325   }
326   assert( v!=0 );
327 
328   /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
329   ** entries at the beginning and end of the affinity string.
330   */
331   assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB );
332   while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){
333     n--;
334     base++;
335     zAff++;
336   }
337   while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){
338     n--;
339   }
340 
341   /* Code the OP_Affinity opcode if there is anything left to do. */
342   if( n>0 ){
343     sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
344   }
345 }
346 
347 /*
348 ** Expression pRight, which is the RHS of a comparison operation, is
349 ** either a vector of n elements or, if n==1, a scalar expression.
350 ** Before the comparison operation, affinity zAff is to be applied
351 ** to the pRight values. This function modifies characters within the
352 ** affinity string to SQLITE_AFF_BLOB if either:
353 **
354 **   * the comparison will be performed with no affinity, or
355 **   * the affinity change in zAff is guaranteed not to change the value.
356 */
357 static void updateRangeAffinityStr(
358   Expr *pRight,                   /* RHS of comparison */
359   int n,                          /* Number of vector elements in comparison */
360   char *zAff                      /* Affinity string to modify */
361 ){
362   int i;
363   for(i=0; i<n; i++){
364     Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
365     if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
366      || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
367     ){
368       zAff[i] = SQLITE_AFF_BLOB;
369     }
370   }
371 }
372 
373 
374 /*
375 ** pX is an expression of the form:  (vector) IN (SELECT ...)
376 ** In other words, it is a vector IN operator with a SELECT clause on the
377 ** LHS.  But not all terms in the vector are indexable and the terms might
378 ** not be in the correct order for indexing.
379 **
380 ** This routine makes a copy of the input pX expression and then adjusts
381 ** the vector on the LHS with corresponding changes to the SELECT so that
382 ** the vector contains only index terms and those terms are in the correct
383 ** order.  The modified IN expression is returned.  The caller is responsible
384 ** for deleting the returned expression.
385 **
386 ** Example:
387 **
388 **    CREATE TABLE t1(a,b,c,d,e,f);
389 **    CREATE INDEX t1x1 ON t1(e,c);
390 **    SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
391 **                           \_______________________________________/
392 **                                     The pX expression
393 **
394 ** Since only columns e and c can be used with the index, in that order,
395 ** the modified IN expression that is returned will be:
396 **
397 **        (e,c) IN (SELECT z,x FROM t2)
398 **
399 ** The reduced pX is different from the original (obviously) and thus is
400 ** only used for indexing, to improve performance.  The original unaltered
401 ** IN expression must also be run on each output row for correctness.
402 */
403 static Expr *removeUnindexableInClauseTerms(
404   Parse *pParse,        /* The parsing context */
405   int iEq,              /* Look at loop terms starting here */
406   WhereLoop *pLoop,     /* The current loop */
407   Expr *pX              /* The IN expression to be reduced */
408 ){
409   sqlite3 *db = pParse->db;
410   Expr *pNew;
411   pNew = sqlite3ExprDup(db, pX, 0);
412   if( db->mallocFailed==0 ){
413     ExprList *pOrigRhs = pNew->x.pSelect->pEList;  /* Original unmodified RHS */
414     ExprList *pOrigLhs = pNew->pLeft->x.pList;     /* Original unmodified LHS */
415     ExprList *pRhs = 0;         /* New RHS after modifications */
416     ExprList *pLhs = 0;         /* New LHS after mods */
417     int i;                      /* Loop counter */
418     Select *pSelect;            /* Pointer to the SELECT on the RHS */
419 
420     for(i=iEq; i<pLoop->nLTerm; i++){
421       if( pLoop->aLTerm[i]->pExpr==pX ){
422         int iField = pLoop->aLTerm[i]->u.x.iField - 1;
423         if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
424         pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
425         pOrigRhs->a[iField].pExpr = 0;
426         assert( pOrigLhs->a[iField].pExpr!=0 );
427         pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
428         pOrigLhs->a[iField].pExpr = 0;
429       }
430     }
431     sqlite3ExprListDelete(db, pOrigRhs);
432     sqlite3ExprListDelete(db, pOrigLhs);
433     pNew->pLeft->x.pList = pLhs;
434     pNew->x.pSelect->pEList = pRhs;
435     if( pLhs && pLhs->nExpr==1 ){
436       /* Take care here not to generate a TK_VECTOR containing only a
437       ** single value. Since the parser never creates such a vector, some
438       ** of the subroutines do not handle this case.  */
439       Expr *p = pLhs->a[0].pExpr;
440       pLhs->a[0].pExpr = 0;
441       sqlite3ExprDelete(db, pNew->pLeft);
442       pNew->pLeft = p;
443     }
444     pSelect = pNew->x.pSelect;
445     if( pSelect->pOrderBy ){
446       /* If the SELECT statement has an ORDER BY clause, zero the
447       ** iOrderByCol variables. These are set to non-zero when an
448       ** ORDER BY term exactly matches one of the terms of the
449       ** result-set. Since the result-set of the SELECT statement may
450       ** have been modified or reordered, these variables are no longer
451       ** set correctly.  Since setting them is just an optimization,
452       ** it's easiest just to zero them here.  */
453       ExprList *pOrderBy = pSelect->pOrderBy;
454       for(i=0; i<pOrderBy->nExpr; i++){
455         pOrderBy->a[i].u.x.iOrderByCol = 0;
456       }
457     }
458 
459 #if 0
460     printf("For indexing, change the IN expr:\n");
461     sqlite3TreeViewExpr(0, pX, 0);
462     printf("Into:\n");
463     sqlite3TreeViewExpr(0, pNew, 0);
464 #endif
465   }
466   return pNew;
467 }
468 
469 
470 /*
471 ** Generate code for a single equality term of the WHERE clause.  An equality
472 ** term can be either X=expr or X IN (...).   pTerm is the term to be
473 ** coded.
474 **
475 ** The current value for the constraint is left in a register, the index
476 ** of which is returned.  An attempt is made store the result in iTarget but
477 ** this is only guaranteed for TK_ISNULL and TK_IN constraints.  If the
478 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
479 ** some other register and it is the caller's responsibility to compensate.
480 **
481 ** For a constraint of the form X=expr, the expression is evaluated in
482 ** straight-line code.  For constraints of the form X IN (...)
483 ** this routine sets up a loop that will iterate over all values of X.
484 */
485 static int codeEqualityTerm(
486   Parse *pParse,      /* The parsing context */
487   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
488   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
489   int iEq,            /* Index of the equality term within this level */
490   int bRev,           /* True for reverse-order IN operations */
491   int iTarget         /* Attempt to leave results in this register */
492 ){
493   Expr *pX = pTerm->pExpr;
494   Vdbe *v = pParse->pVdbe;
495   int iReg;                  /* Register holding results */
496 
497   assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
498   assert( iTarget>0 );
499   if( pX->op==TK_EQ || pX->op==TK_IS ){
500     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
501   }else if( pX->op==TK_ISNULL ){
502     iReg = iTarget;
503     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
504 #ifndef SQLITE_OMIT_SUBQUERY
505   }else{
506     int eType = IN_INDEX_NOOP;
507     int iTab;
508     struct InLoop *pIn;
509     WhereLoop *pLoop = pLevel->pWLoop;
510     int i;
511     int nEq = 0;
512     int *aiMap = 0;
513 
514     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
515       && pLoop->u.btree.pIndex!=0
516       && pLoop->u.btree.pIndex->aSortOrder[iEq]
517     ){
518       testcase( iEq==0 );
519       testcase( bRev );
520       bRev = !bRev;
521     }
522     assert( pX->op==TK_IN );
523     iReg = iTarget;
524 
525     for(i=0; i<iEq; i++){
526       if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
527         disableTerm(pLevel, pTerm);
528         return iTarget;
529       }
530     }
531     for(i=iEq;i<pLoop->nLTerm; i++){
532       assert( pLoop->aLTerm[i]!=0 );
533       if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
534     }
535 
536     iTab = 0;
537     if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){
538       eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab);
539     }else{
540       sqlite3 *db = pParse->db;
541       pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
542 
543       if( !db->mallocFailed ){
544         aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
545         eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab);
546         pTerm->pExpr->iTable = iTab;
547       }
548       sqlite3ExprDelete(db, pX);
549       pX = pTerm->pExpr;
550     }
551 
552     if( eType==IN_INDEX_INDEX_DESC ){
553       testcase( bRev );
554       bRev = !bRev;
555     }
556     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
557     VdbeCoverageIf(v, bRev);
558     VdbeCoverageIf(v, !bRev);
559     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
560 
561     pLoop->wsFlags |= WHERE_IN_ABLE;
562     if( pLevel->u.in.nIn==0 ){
563       pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
564     }
565     if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){
566       pLoop->wsFlags |= WHERE_IN_EARLYOUT;
567     }
568 
569     i = pLevel->u.in.nIn;
570     pLevel->u.in.nIn += nEq;
571     pLevel->u.in.aInLoop =
572        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
573                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
574     pIn = pLevel->u.in.aInLoop;
575     if( pIn ){
576       int iMap = 0;               /* Index in aiMap[] */
577       pIn += i;
578       for(i=iEq;i<pLoop->nLTerm; i++){
579         if( pLoop->aLTerm[i]->pExpr==pX ){
580           int iOut = iReg + i - iEq;
581           if( eType==IN_INDEX_ROWID ){
582             pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
583           }else{
584             int iCol = aiMap ? aiMap[iMap++] : 0;
585             pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
586           }
587           sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
588           if( i==iEq ){
589             pIn->iCur = iTab;
590             pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
591             if( iEq>0 ){
592               pIn->iBase = iReg - i;
593               pIn->nPrefix = i;
594             }else{
595               pIn->nPrefix = 0;
596             }
597           }else{
598             pIn->eEndLoopOp = OP_Noop;
599           }
600           pIn++;
601         }
602       }
603       testcase( iEq>0
604                 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
605                 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 );
606       if( iEq>0
607        && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0
608       ){
609         sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq);
610       }
611     }else{
612       pLevel->u.in.nIn = 0;
613     }
614     sqlite3DbFree(pParse->db, aiMap);
615 #endif
616   }
617   disableTerm(pLevel, pTerm);
618   return iReg;
619 }
620 
621 /*
622 ** Generate code that will evaluate all == and IN constraints for an
623 ** index scan.
624 **
625 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
626 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
627 ** The index has as many as three equality constraints, but in this
628 ** example, the third "c" value is an inequality.  So only two
629 ** constraints are coded.  This routine will generate code to evaluate
630 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
631 ** in consecutive registers and the index of the first register is returned.
632 **
633 ** In the example above nEq==2.  But this subroutine works for any value
634 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
635 ** The only thing it does is allocate the pLevel->iMem memory cell and
636 ** compute the affinity string.
637 **
638 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
639 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
640 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
641 ** occurs after the nEq quality constraints.
642 **
643 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
644 ** the index of the first memory cell in that range. The code that
645 ** calls this routine will use that memory range to store keys for
646 ** start and termination conditions of the loop.
647 ** key value of the loop.  If one or more IN operators appear, then
648 ** this routine allocates an additional nEq memory cells for internal
649 ** use.
650 **
651 ** Before returning, *pzAff is set to point to a buffer containing a
652 ** copy of the column affinity string of the index allocated using
653 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
654 ** with equality constraints that use BLOB or NONE affinity are set to
655 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
656 **
657 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
658 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
659 **
660 ** In the example above, the index on t1(a) has TEXT affinity. But since
661 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
662 ** no conversion should be attempted before using a t2.b value as part of
663 ** a key to search the index. Hence the first byte in the returned affinity
664 ** string in this example would be set to SQLITE_AFF_BLOB.
665 */
666 static int codeAllEqualityTerms(
667   Parse *pParse,        /* Parsing context */
668   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
669   int bRev,             /* Reverse the order of IN operators */
670   int nExtraReg,        /* Number of extra registers to allocate */
671   char **pzAff          /* OUT: Set to point to affinity string */
672 ){
673   u16 nEq;                      /* The number of == or IN constraints to code */
674   u16 nSkip;                    /* Number of left-most columns to skip */
675   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
676   Index *pIdx;                  /* The index being used for this loop */
677   WhereTerm *pTerm;             /* A single constraint term */
678   WhereLoop *pLoop;             /* The WhereLoop object */
679   int j;                        /* Loop counter */
680   int regBase;                  /* Base register */
681   int nReg;                     /* Number of registers to allocate */
682   char *zAff;                   /* Affinity string to return */
683 
684   /* This module is only called on query plans that use an index. */
685   pLoop = pLevel->pWLoop;
686   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
687   nEq = pLoop->u.btree.nEq;
688   nSkip = pLoop->nSkip;
689   pIdx = pLoop->u.btree.pIndex;
690   assert( pIdx!=0 );
691 
692   /* Figure out how many memory cells we will need then allocate them.
693   */
694   regBase = pParse->nMem + 1;
695   nReg = pLoop->u.btree.nEq + nExtraReg;
696   pParse->nMem += nReg;
697 
698   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
699   assert( zAff!=0 || pParse->db->mallocFailed );
700 
701   if( nSkip ){
702     int iIdxCur = pLevel->iIdxCur;
703     sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, nSkip);
704     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
705     VdbeCoverageIf(v, bRev==0);
706     VdbeCoverageIf(v, bRev!=0);
707     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
708     j = sqlite3VdbeAddOp0(v, OP_Goto);
709     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
710                             iIdxCur, 0, regBase, nSkip);
711     VdbeCoverageIf(v, bRev==0);
712     VdbeCoverageIf(v, bRev!=0);
713     sqlite3VdbeJumpHere(v, j);
714     for(j=0; j<nSkip; j++){
715       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
716       testcase( pIdx->aiColumn[j]==XN_EXPR );
717       VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
718     }
719   }
720 
721   /* Evaluate the equality constraints
722   */
723   assert( zAff==0 || (int)strlen(zAff)>=nEq );
724   for(j=nSkip; j<nEq; j++){
725     int r1;
726     pTerm = pLoop->aLTerm[j];
727     assert( pTerm!=0 );
728     /* The following testcase is true for indices with redundant columns.
729     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
730     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
731     testcase( pTerm->wtFlags & TERM_VIRTUAL );
732     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
733     if( r1!=regBase+j ){
734       if( nReg==1 ){
735         sqlite3ReleaseTempReg(pParse, regBase);
736         regBase = r1;
737       }else{
738         sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
739       }
740     }
741     if( pTerm->eOperator & WO_IN ){
742       if( pTerm->pExpr->flags & EP_xIsSelect ){
743         /* No affinity ever needs to be (or should be) applied to a value
744         ** from the RHS of an "? IN (SELECT ...)" expression. The
745         ** sqlite3FindInIndex() routine has already ensured that the
746         ** affinity of the comparison has been applied to the value.  */
747         if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
748       }
749     }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
750       Expr *pRight = pTerm->pExpr->pRight;
751       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
752         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
753         VdbeCoverage(v);
754       }
755       if( pParse->db->mallocFailed==0 ){
756         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
757           zAff[j] = SQLITE_AFF_BLOB;
758         }
759         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
760           zAff[j] = SQLITE_AFF_BLOB;
761         }
762       }
763     }
764   }
765   *pzAff = zAff;
766   return regBase;
767 }
768 
769 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
770 /*
771 ** If the most recently coded instruction is a constant range constraint
772 ** (a string literal) that originated from the LIKE optimization, then
773 ** set P3 and P5 on the OP_String opcode so that the string will be cast
774 ** to a BLOB at appropriate times.
775 **
776 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
777 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
778 ** scan loop run twice, once for strings and a second time for BLOBs.
779 ** The OP_String opcodes on the second pass convert the upper and lower
780 ** bound string constants to blobs.  This routine makes the necessary changes
781 ** to the OP_String opcodes for that to happen.
782 **
783 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
784 ** only the one pass through the string space is required, so this routine
785 ** becomes a no-op.
786 */
787 static void whereLikeOptimizationStringFixup(
788   Vdbe *v,                /* prepared statement under construction */
789   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
790   WhereTerm *pTerm        /* The upper or lower bound just coded */
791 ){
792   if( pTerm->wtFlags & TERM_LIKEOPT ){
793     VdbeOp *pOp;
794     assert( pLevel->iLikeRepCntr>0 );
795     pOp = sqlite3VdbeGetOp(v, -1);
796     assert( pOp!=0 );
797     assert( pOp->opcode==OP_String8
798             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
799     pOp->p3 = (int)(pLevel->iLikeRepCntr>>1);  /* Register holding counter */
800     pOp->p5 = (u8)(pLevel->iLikeRepCntr&1);    /* ASC or DESC */
801   }
802 }
803 #else
804 # define whereLikeOptimizationStringFixup(A,B,C)
805 #endif
806 
807 #ifdef SQLITE_ENABLE_CURSOR_HINTS
808 /*
809 ** Information is passed from codeCursorHint() down to individual nodes of
810 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
811 ** structure.
812 */
813 struct CCurHint {
814   int iTabCur;    /* Cursor for the main table */
815   int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
816   Index *pIdx;    /* The index used to access the table */
817 };
818 
819 /*
820 ** This function is called for every node of an expression that is a candidate
821 ** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
822 ** the table CCurHint.iTabCur, verify that the same column can be
823 ** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
824 */
825 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
826   struct CCurHint *pHint = pWalker->u.pCCurHint;
827   assert( pHint->pIdx!=0 );
828   if( pExpr->op==TK_COLUMN
829    && pExpr->iTable==pHint->iTabCur
830    && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0
831   ){
832     pWalker->eCode = 1;
833   }
834   return WRC_Continue;
835 }
836 
837 /*
838 ** Test whether or not expression pExpr, which was part of a WHERE clause,
839 ** should be included in the cursor-hint for a table that is on the rhs
840 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
841 ** expression is not suitable.
842 **
843 ** An expression is unsuitable if it might evaluate to non NULL even if
844 ** a TK_COLUMN node that does affect the value of the expression is set
845 ** to NULL. For example:
846 **
847 **   col IS NULL
848 **   col IS NOT NULL
849 **   coalesce(col, 1)
850 **   CASE WHEN col THEN 0 ELSE 1 END
851 */
852 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
853   if( pExpr->op==TK_IS
854    || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
855    || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
856   ){
857     pWalker->eCode = 1;
858   }else if( pExpr->op==TK_FUNCTION ){
859     int d1;
860     char d2[4];
861     if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
862       pWalker->eCode = 1;
863     }
864   }
865 
866   return WRC_Continue;
867 }
868 
869 
870 /*
871 ** This function is called on every node of an expression tree used as an
872 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
873 ** that accesses any table other than the one identified by
874 ** CCurHint.iTabCur, then do the following:
875 **
876 **   1) allocate a register and code an OP_Column instruction to read
877 **      the specified column into the new register, and
878 **
879 **   2) transform the expression node to a TK_REGISTER node that reads
880 **      from the newly populated register.
881 **
882 ** Also, if the node is a TK_COLUMN that does access the table idenified
883 ** by pCCurHint.iTabCur, and an index is being used (which we will
884 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
885 ** an access of the index rather than the original table.
886 */
887 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
888   int rc = WRC_Continue;
889   struct CCurHint *pHint = pWalker->u.pCCurHint;
890   if( pExpr->op==TK_COLUMN ){
891     if( pExpr->iTable!=pHint->iTabCur ){
892       int reg = ++pWalker->pParse->nMem;   /* Register for column value */
893       sqlite3ExprCode(pWalker->pParse, pExpr, reg);
894       pExpr->op = TK_REGISTER;
895       pExpr->iTable = reg;
896     }else if( pHint->pIdx!=0 ){
897       pExpr->iTable = pHint->iIdxCur;
898       pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn);
899       assert( pExpr->iColumn>=0 );
900     }
901   }else if( pExpr->op==TK_AGG_FUNCTION ){
902     /* An aggregate function in the WHERE clause of a query means this must
903     ** be a correlated sub-query, and expression pExpr is an aggregate from
904     ** the parent context. Do not walk the function arguments in this case.
905     **
906     ** todo: It should be possible to replace this node with a TK_REGISTER
907     ** expression, as the result of the expression must be stored in a
908     ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
909     rc = WRC_Prune;
910   }
911   return rc;
912 }
913 
914 /*
915 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
916 */
917 static void codeCursorHint(
918   SrcItem *pTabItem,  /* FROM clause item */
919   WhereInfo *pWInfo,    /* The where clause */
920   WhereLevel *pLevel,   /* Which loop to provide hints for */
921   WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
922 ){
923   Parse *pParse = pWInfo->pParse;
924   sqlite3 *db = pParse->db;
925   Vdbe *v = pParse->pVdbe;
926   Expr *pExpr = 0;
927   WhereLoop *pLoop = pLevel->pWLoop;
928   int iCur;
929   WhereClause *pWC;
930   WhereTerm *pTerm;
931   int i, j;
932   struct CCurHint sHint;
933   Walker sWalker;
934 
935   if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
936   iCur = pLevel->iTabCur;
937   assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
938   sHint.iTabCur = iCur;
939   sHint.iIdxCur = pLevel->iIdxCur;
940   sHint.pIdx = pLoop->u.btree.pIndex;
941   memset(&sWalker, 0, sizeof(sWalker));
942   sWalker.pParse = pParse;
943   sWalker.u.pCCurHint = &sHint;
944   pWC = &pWInfo->sWC;
945   for(i=0; i<pWC->nTerm; i++){
946     pTerm = &pWC->a[i];
947     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
948     if( pTerm->prereqAll & pLevel->notReady ) continue;
949 
950     /* Any terms specified as part of the ON(...) clause for any LEFT
951     ** JOIN for which the current table is not the rhs are omitted
952     ** from the cursor-hint.
953     **
954     ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
955     ** that were specified as part of the WHERE clause must be excluded.
956     ** This is to address the following:
957     **
958     **   SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
959     **
960     ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
961     ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
962     ** pushed down to the cursor, this row is filtered out, causing
963     ** SQLite to synthesize a row of NULL values. Which does match the
964     ** WHERE clause, and so the query returns a row. Which is incorrect.
965     **
966     ** For the same reason, WHERE terms such as:
967     **
968     **   WHERE 1 = (t2.c IS NULL)
969     **
970     ** are also excluded. See codeCursorHintIsOrFunction() for details.
971     */
972     if( pTabItem->fg.jointype & JT_LEFT ){
973       Expr *pExpr = pTerm->pExpr;
974       if( !ExprHasProperty(pExpr, EP_FromJoin)
975        || pExpr->iRightJoinTable!=pTabItem->iCursor
976       ){
977         sWalker.eCode = 0;
978         sWalker.xExprCallback = codeCursorHintIsOrFunction;
979         sqlite3WalkExpr(&sWalker, pTerm->pExpr);
980         if( sWalker.eCode ) continue;
981       }
982     }else{
983       if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
984     }
985 
986     /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
987     ** the cursor.  These terms are not needed as hints for a pure range
988     ** scan (that has no == terms) so omit them. */
989     if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
990       for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
991       if( j<pLoop->nLTerm ) continue;
992     }
993 
994     /* No subqueries or non-deterministic functions allowed */
995     if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
996 
997     /* For an index scan, make sure referenced columns are actually in
998     ** the index. */
999     if( sHint.pIdx!=0 ){
1000       sWalker.eCode = 0;
1001       sWalker.xExprCallback = codeCursorHintCheckExpr;
1002       sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1003       if( sWalker.eCode ) continue;
1004     }
1005 
1006     /* If we survive all prior tests, that means this term is worth hinting */
1007     pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
1008   }
1009   if( pExpr!=0 ){
1010     sWalker.xExprCallback = codeCursorHintFixExpr;
1011     sqlite3WalkExpr(&sWalker, pExpr);
1012     sqlite3VdbeAddOp4(v, OP_CursorHint,
1013                       (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
1014                       (const char*)pExpr, P4_EXPR);
1015   }
1016 }
1017 #else
1018 # define codeCursorHint(A,B,C,D)  /* No-op */
1019 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1020 
1021 /*
1022 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1023 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1024 ** function generates code to do a deferred seek of cursor iCur to the
1025 ** rowid stored in register iRowid.
1026 **
1027 ** Normally, this is just:
1028 **
1029 **   OP_DeferredSeek $iCur $iRowid
1030 **
1031 ** However, if the scan currently being coded is a branch of an OR-loop and
1032 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek
1033 ** is set to iIdxCur and P4 is set to point to an array of integers
1034 ** containing one entry for each column of the table cursor iCur is open
1035 ** on. For each table column, if the column is the i'th column of the
1036 ** index, then the corresponding array entry is set to (i+1). If the column
1037 ** does not appear in the index at all, the array entry is set to 0.
1038 */
1039 static void codeDeferredSeek(
1040   WhereInfo *pWInfo,              /* Where clause context */
1041   Index *pIdx,                    /* Index scan is using */
1042   int iCur,                       /* Cursor for IPK b-tree */
1043   int iIdxCur                     /* Index cursor */
1044 ){
1045   Parse *pParse = pWInfo->pParse; /* Parse context */
1046   Vdbe *v = pParse->pVdbe;        /* Vdbe to generate code within */
1047 
1048   assert( iIdxCur>0 );
1049   assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1050 
1051   pWInfo->bDeferredSeek = 1;
1052   sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1053   if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1054    && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1055   ){
1056     int i;
1057     Table *pTab = pIdx->pTable;
1058     u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1));
1059     if( ai ){
1060       ai[0] = pTab->nCol;
1061       for(i=0; i<pIdx->nColumn-1; i++){
1062         int x1, x2;
1063         assert( pIdx->aiColumn[i]<pTab->nCol );
1064         x1 = pIdx->aiColumn[i];
1065         x2 = sqlite3TableColumnToStorage(pTab, x1);
1066         testcase( x1!=x2 );
1067         if( x1>=0 ) ai[x2+1] = i+1;
1068       }
1069       sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1070     }
1071   }
1072 }
1073 
1074 /*
1075 ** If the expression passed as the second argument is a vector, generate
1076 ** code to write the first nReg elements of the vector into an array
1077 ** of registers starting with iReg.
1078 **
1079 ** If the expression is not a vector, then nReg must be passed 1. In
1080 ** this case, generate code to evaluate the expression and leave the
1081 ** result in register iReg.
1082 */
1083 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1084   assert( nReg>0 );
1085   if( p && sqlite3ExprIsVector(p) ){
1086 #ifndef SQLITE_OMIT_SUBQUERY
1087     if( (p->flags & EP_xIsSelect) ){
1088       Vdbe *v = pParse->pVdbe;
1089       int iSelect;
1090       assert( p->op==TK_SELECT );
1091       iSelect = sqlite3CodeSubselect(pParse, p);
1092       sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1093     }else
1094 #endif
1095     {
1096       int i;
1097       ExprList *pList = p->x.pList;
1098       assert( nReg<=pList->nExpr );
1099       for(i=0; i<nReg; i++){
1100         sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1101       }
1102     }
1103   }else{
1104     assert( nReg==1 );
1105     sqlite3ExprCode(pParse, p, iReg);
1106   }
1107 }
1108 
1109 /* An instance of the IdxExprTrans object carries information about a
1110 ** mapping from an expression on table columns into a column in an index
1111 ** down through the Walker.
1112 */
1113 typedef struct IdxExprTrans {
1114   Expr *pIdxExpr;    /* The index expression */
1115   int iTabCur;       /* The cursor of the corresponding table */
1116   int iIdxCur;       /* The cursor for the index */
1117   int iIdxCol;       /* The column for the index */
1118   int iTabCol;       /* The column for the table */
1119   WhereInfo *pWInfo; /* Complete WHERE clause information */
1120   sqlite3 *db;       /* Database connection (for malloc()) */
1121 } IdxExprTrans;
1122 
1123 /*
1124 ** Preserve pExpr on the WhereETrans list of the WhereInfo.
1125 */
1126 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){
1127   WhereExprMod *pNew;
1128   pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew));
1129   if( pNew==0 ) return;
1130   pNew->pNext = pTrans->pWInfo->pExprMods;
1131   pTrans->pWInfo->pExprMods = pNew;
1132   pNew->pExpr = pExpr;
1133   memcpy(&pNew->orig, pExpr, sizeof(*pExpr));
1134 }
1135 
1136 /* The walker node callback used to transform matching expressions into
1137 ** a reference to an index column for an index on an expression.
1138 **
1139 ** If pExpr matches, then transform it into a reference to the index column
1140 ** that contains the value of pExpr.
1141 */
1142 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1143   IdxExprTrans *pX = p->u.pIdxTrans;
1144   if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1145     preserveExpr(pX, pExpr);
1146     pExpr->affExpr = sqlite3ExprAffinity(pExpr);
1147     pExpr->op = TK_COLUMN;
1148     pExpr->iTable = pX->iIdxCur;
1149     pExpr->iColumn = pX->iIdxCol;
1150     pExpr->y.pTab = 0;
1151     testcase( ExprHasProperty(pExpr, EP_Skip) );
1152     testcase( ExprHasProperty(pExpr, EP_Unlikely) );
1153     ExprClearProperty(pExpr, EP_Skip|EP_Unlikely);
1154     return WRC_Prune;
1155   }else{
1156     return WRC_Continue;
1157   }
1158 }
1159 
1160 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1161 /* A walker node callback that translates a column reference to a table
1162 ** into a corresponding column reference of an index.
1163 */
1164 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){
1165   if( pExpr->op==TK_COLUMN ){
1166     IdxExprTrans *pX = p->u.pIdxTrans;
1167     if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){
1168       assert( pExpr->y.pTab!=0 );
1169       preserveExpr(pX, pExpr);
1170       pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn);
1171       pExpr->iTable = pX->iIdxCur;
1172       pExpr->iColumn = pX->iIdxCol;
1173       pExpr->y.pTab = 0;
1174     }
1175   }
1176   return WRC_Continue;
1177 }
1178 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1179 
1180 /*
1181 ** For an indexes on expression X, locate every instance of expression X
1182 ** in pExpr and change that subexpression into a reference to the appropriate
1183 ** column of the index.
1184 **
1185 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in
1186 ** the table into references to the corresponding (stored) column of the
1187 ** index.
1188 */
1189 static void whereIndexExprTrans(
1190   Index *pIdx,      /* The Index */
1191   int iTabCur,      /* Cursor of the table that is being indexed */
1192   int iIdxCur,      /* Cursor of the index itself */
1193   WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1194 ){
1195   int iIdxCol;               /* Column number of the index */
1196   ExprList *aColExpr;        /* Expressions that are indexed */
1197   Table *pTab;
1198   Walker w;
1199   IdxExprTrans x;
1200   aColExpr = pIdx->aColExpr;
1201   if( aColExpr==0 && !pIdx->bHasVCol ){
1202     /* The index does not reference any expressions or virtual columns
1203     ** so no translations are needed. */
1204     return;
1205   }
1206   pTab = pIdx->pTable;
1207   memset(&w, 0, sizeof(w));
1208   w.u.pIdxTrans = &x;
1209   x.iTabCur = iTabCur;
1210   x.iIdxCur = iIdxCur;
1211   x.pWInfo = pWInfo;
1212   x.db = pWInfo->pParse->db;
1213   for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){
1214     i16 iRef = pIdx->aiColumn[iIdxCol];
1215     if( iRef==XN_EXPR ){
1216       assert( aColExpr->a[iIdxCol].pExpr!=0 );
1217       x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1218       if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue;
1219       w.xExprCallback = whereIndexExprTransNode;
1220 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1221     }else if( iRef>=0
1222        && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0
1223        && (pTab->aCol[iRef].zColl==0
1224            || sqlite3StrICmp(pTab->aCol[iRef].zColl, sqlite3StrBINARY)==0)
1225     ){
1226       /* Check to see if there are direct references to generated columns
1227       ** that are contained in the index.  Pulling the generated column
1228       ** out of the index is an optimization only - the main table is always
1229       ** available if the index cannot be used.  To avoid unnecessary
1230       ** complication, omit this optimization if the collating sequence for
1231       ** the column is non-standard */
1232       x.iTabCol = iRef;
1233       w.xExprCallback = whereIndexExprTransColumn;
1234 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1235     }else{
1236       continue;
1237     }
1238     x.iIdxCol = iIdxCol;
1239     sqlite3WalkExpr(&w, pWInfo->pWhere);
1240     sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1241     sqlite3WalkExprList(&w, pWInfo->pResultSet);
1242   }
1243 }
1244 
1245 /*
1246 ** The pTruth expression is always true because it is the WHERE clause
1247 ** a partial index that is driving a query loop.  Look through all of the
1248 ** WHERE clause terms on the query, and if any of those terms must be
1249 ** true because pTruth is true, then mark those WHERE clause terms as
1250 ** coded.
1251 */
1252 static void whereApplyPartialIndexConstraints(
1253   Expr *pTruth,
1254   int iTabCur,
1255   WhereClause *pWC
1256 ){
1257   int i;
1258   WhereTerm *pTerm;
1259   while( pTruth->op==TK_AND ){
1260     whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC);
1261     pTruth = pTruth->pRight;
1262   }
1263   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1264     Expr *pExpr;
1265     if( pTerm->wtFlags & TERM_CODED ) continue;
1266     pExpr = pTerm->pExpr;
1267     if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){
1268       pTerm->wtFlags |= TERM_CODED;
1269     }
1270   }
1271 }
1272 
1273 /*
1274 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1275 ** implementation described by pWInfo.
1276 */
1277 Bitmask sqlite3WhereCodeOneLoopStart(
1278   Parse *pParse,       /* Parsing context */
1279   Vdbe *v,             /* Prepared statement under construction */
1280   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1281   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1282   WhereLevel *pLevel,  /* The current level pointer */
1283   Bitmask notReady     /* Which tables are currently available */
1284 ){
1285   int j, k;            /* Loop counters */
1286   int iCur;            /* The VDBE cursor for the table */
1287   int addrNxt;         /* Where to jump to continue with the next IN case */
1288   int bRev;            /* True if we need to scan in reverse order */
1289   WhereLoop *pLoop;    /* The WhereLoop object being coded */
1290   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
1291   WhereTerm *pTerm;               /* A WHERE clause term */
1292   sqlite3 *db;                    /* Database connection */
1293   SrcItem *pTabItem;              /* FROM clause term being coded */
1294   int addrBrk;                    /* Jump here to break out of the loop */
1295   int addrHalt;                   /* addrBrk for the outermost loop */
1296   int addrCont;                   /* Jump here to continue with next cycle */
1297   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
1298   int iReleaseReg = 0;      /* Temp register to free before returning */
1299   Index *pIdx = 0;          /* Index used by loop (if any) */
1300   int iLoop;                /* Iteration of constraint generator loop */
1301 
1302   pWC = &pWInfo->sWC;
1303   db = pParse->db;
1304   pLoop = pLevel->pWLoop;
1305   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1306   iCur = pTabItem->iCursor;
1307   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1308   bRev = (pWInfo->revMask>>iLevel)&1;
1309   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1310 #if WHERETRACE_ENABLED /* 0x20800 */
1311   if( sqlite3WhereTrace & 0x800 ){
1312     sqlite3DebugPrintf("Coding level %d of %d:  notReady=%llx  iFrom=%d\n",
1313        iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom);
1314     sqlite3WhereLoopPrint(pLoop, pWC);
1315   }
1316   if( sqlite3WhereTrace & 0x20000 ){
1317     if( iLevel==0 ){
1318       sqlite3DebugPrintf("WHERE clause being coded:\n");
1319       sqlite3TreeViewExpr(0, pWInfo->pWhere, 0);
1320     }
1321     sqlite3DebugPrintf("All WHERE-clause terms before coding:\n");
1322     sqlite3WhereClausePrint(pWC);
1323   }
1324 #endif
1325 
1326   /* Create labels for the "break" and "continue" instructions
1327   ** for the current loop.  Jump to addrBrk to break out of a loop.
1328   ** Jump to cont to go immediately to the next iteration of the
1329   ** loop.
1330   **
1331   ** When there is an IN operator, we also have a "addrNxt" label that
1332   ** means to continue with the next IN value combination.  When
1333   ** there are no IN operators in the constraints, the "addrNxt" label
1334   ** is the same as "addrBrk".
1335   */
1336   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
1337   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse);
1338 
1339   /* If this is the right table of a LEFT OUTER JOIN, allocate and
1340   ** initialize a memory cell that records if this table matches any
1341   ** row of the left table of the join.
1342   */
1343   assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1344        || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
1345   );
1346   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1347     pLevel->iLeftJoin = ++pParse->nMem;
1348     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1349     VdbeComment((v, "init LEFT JOIN no-match flag"));
1350   }
1351 
1352   /* Compute a safe address to jump to if we discover that the table for
1353   ** this loop is empty and can never contribute content. */
1354   for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){}
1355   addrHalt = pWInfo->a[j].addrBrk;
1356 
1357   /* Special case of a FROM clause subquery implemented as a co-routine */
1358   if( pTabItem->fg.viaCoroutine ){
1359     int regYield = pTabItem->regReturn;
1360     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1361     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1362     VdbeCoverage(v);
1363     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
1364     pLevel->op = OP_Goto;
1365   }else
1366 
1367 #ifndef SQLITE_OMIT_VIRTUALTABLE
1368   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1369     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
1370     **          to access the data.
1371     */
1372     int iReg;   /* P3 Value for OP_VFilter */
1373     int addrNotFound;
1374     int nConstraint = pLoop->nLTerm;
1375     int iIn;    /* Counter for IN constraints */
1376 
1377     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1378     addrNotFound = pLevel->addrBrk;
1379     for(j=0; j<nConstraint; j++){
1380       int iTarget = iReg+j+2;
1381       pTerm = pLoop->aLTerm[j];
1382       if( NEVER(pTerm==0) ) continue;
1383       if( pTerm->eOperator & WO_IN ){
1384         codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1385         addrNotFound = pLevel->addrNxt;
1386       }else{
1387         Expr *pRight = pTerm->pExpr->pRight;
1388         codeExprOrVector(pParse, pRight, iTarget, 1);
1389       }
1390     }
1391     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1392     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1393     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1394                       pLoop->u.vtab.idxStr,
1395                       pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1396     VdbeCoverage(v);
1397     pLoop->u.vtab.needFree = 0;
1398     /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed
1399     ** the u.vtab.idxStr.  NULL it out to prevent a use-after-free */
1400     if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0;
1401     pLevel->p1 = iCur;
1402     pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1403     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1404     iIn = pLevel->u.in.nIn;
1405     for(j=nConstraint-1; j>=0; j--){
1406       pTerm = pLoop->aLTerm[j];
1407       if( (pTerm->eOperator & WO_IN)!=0 ) iIn--;
1408       if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1409         disableTerm(pLevel, pTerm);
1410       }else if( (pTerm->eOperator & WO_IN)!=0
1411         && sqlite3ExprVectorSize(pTerm->pExpr->pLeft)==1
1412       ){
1413         Expr *pCompare;  /* The comparison operator */
1414         Expr *pRight;    /* RHS of the comparison */
1415         VdbeOp *pOp;     /* Opcode to access the value of the IN constraint */
1416 
1417         /* Reload the constraint value into reg[iReg+j+2].  The same value
1418         ** was loaded into the same register prior to the OP_VFilter, but
1419         ** the xFilter implementation might have changed the datatype or
1420         ** encoding of the value in the register, so it *must* be reloaded. */
1421         assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed );
1422         if( !db->mallocFailed ){
1423           assert( iIn>=0 && iIn<pLevel->u.in.nIn );
1424           pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop);
1425           assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid );
1426           assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 );
1427           assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 );
1428           testcase( pOp->opcode==OP_Rowid );
1429           sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1430         }
1431 
1432         /* Generate code that will continue to the next row if
1433         ** the IN constraint is not satisfied */
1434         pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1435         assert( pCompare!=0 || db->mallocFailed );
1436         if( pCompare ){
1437           pCompare->pLeft = pTerm->pExpr->pLeft;
1438           pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1439           if( pRight ){
1440             pRight->iTable = iReg+j+2;
1441             sqlite3ExprIfFalse(
1442                 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL
1443             );
1444           }
1445           pCompare->pLeft = 0;
1446           sqlite3ExprDelete(db, pCompare);
1447         }
1448       }
1449     }
1450     assert( iIn==0 || db->mallocFailed );
1451     /* These registers need to be preserved in case there is an IN operator
1452     ** loop.  So we could deallocate the registers here (and potentially
1453     ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0.  But it seems
1454     ** simpler and safer to simply not reuse the registers.
1455     **
1456     **    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1457     */
1458   }else
1459 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1460 
1461   if( (pLoop->wsFlags & WHERE_IPK)!=0
1462    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1463   ){
1464     /* Case 2:  We can directly reference a single row using an
1465     **          equality comparison against the ROWID field.  Or
1466     **          we reference multiple rows using a "rowid IN (...)"
1467     **          construct.
1468     */
1469     assert( pLoop->u.btree.nEq==1 );
1470     pTerm = pLoop->aLTerm[0];
1471     assert( pTerm!=0 );
1472     assert( pTerm->pExpr!=0 );
1473     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1474     iReleaseReg = ++pParse->nMem;
1475     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1476     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1477     addrNxt = pLevel->addrNxt;
1478     sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1479     VdbeCoverage(v);
1480     pLevel->op = OP_Noop;
1481     if( (pTerm->prereqAll & pLevel->notReady)==0 ){
1482       pTerm->wtFlags |= TERM_CODED;
1483     }
1484   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1485          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1486   ){
1487     /* Case 3:  We have an inequality comparison against the ROWID field.
1488     */
1489     int testOp = OP_Noop;
1490     int start;
1491     int memEndValue = 0;
1492     WhereTerm *pStart, *pEnd;
1493 
1494     j = 0;
1495     pStart = pEnd = 0;
1496     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1497     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1498     assert( pStart!=0 || pEnd!=0 );
1499     if( bRev ){
1500       pTerm = pStart;
1501       pStart = pEnd;
1502       pEnd = pTerm;
1503     }
1504     codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1505     if( pStart ){
1506       Expr *pX;             /* The expression that defines the start bound */
1507       int r1, rTemp;        /* Registers for holding the start boundary */
1508       int op;               /* Cursor seek operation */
1509 
1510       /* The following constant maps TK_xx codes into corresponding
1511       ** seek opcodes.  It depends on a particular ordering of TK_xx
1512       */
1513       const u8 aMoveOp[] = {
1514            /* TK_GT */  OP_SeekGT,
1515            /* TK_LE */  OP_SeekLE,
1516            /* TK_LT */  OP_SeekLT,
1517            /* TK_GE */  OP_SeekGE
1518       };
1519       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
1520       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
1521       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
1522 
1523       assert( (pStart->wtFlags & TERM_VNULL)==0 );
1524       testcase( pStart->wtFlags & TERM_VIRTUAL );
1525       pX = pStart->pExpr;
1526       assert( pX!=0 );
1527       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1528       if( sqlite3ExprIsVector(pX->pRight) ){
1529         r1 = rTemp = sqlite3GetTempReg(pParse);
1530         codeExprOrVector(pParse, pX->pRight, r1, 1);
1531         testcase( pX->op==TK_GT );
1532         testcase( pX->op==TK_GE );
1533         testcase( pX->op==TK_LT );
1534         testcase( pX->op==TK_LE );
1535         op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
1536         assert( pX->op!=TK_GT || op==OP_SeekGE );
1537         assert( pX->op!=TK_GE || op==OP_SeekGE );
1538         assert( pX->op!=TK_LT || op==OP_SeekLE );
1539         assert( pX->op!=TK_LE || op==OP_SeekLE );
1540       }else{
1541         r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1542         disableTerm(pLevel, pStart);
1543         op = aMoveOp[(pX->op - TK_GT)];
1544       }
1545       sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1546       VdbeComment((v, "pk"));
1547       VdbeCoverageIf(v, pX->op==TK_GT);
1548       VdbeCoverageIf(v, pX->op==TK_LE);
1549       VdbeCoverageIf(v, pX->op==TK_LT);
1550       VdbeCoverageIf(v, pX->op==TK_GE);
1551       sqlite3ReleaseTempReg(pParse, rTemp);
1552     }else{
1553       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1554       VdbeCoverageIf(v, bRev==0);
1555       VdbeCoverageIf(v, bRev!=0);
1556     }
1557     if( pEnd ){
1558       Expr *pX;
1559       pX = pEnd->pExpr;
1560       assert( pX!=0 );
1561       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1562       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1563       testcase( pEnd->wtFlags & TERM_VIRTUAL );
1564       memEndValue = ++pParse->nMem;
1565       codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1566       if( 0==sqlite3ExprIsVector(pX->pRight)
1567        && (pX->op==TK_LT || pX->op==TK_GT)
1568       ){
1569         testOp = bRev ? OP_Le : OP_Ge;
1570       }else{
1571         testOp = bRev ? OP_Lt : OP_Gt;
1572       }
1573       if( 0==sqlite3ExprIsVector(pX->pRight) ){
1574         disableTerm(pLevel, pEnd);
1575       }
1576     }
1577     start = sqlite3VdbeCurrentAddr(v);
1578     pLevel->op = bRev ? OP_Prev : OP_Next;
1579     pLevel->p1 = iCur;
1580     pLevel->p2 = start;
1581     assert( pLevel->p5==0 );
1582     if( testOp!=OP_Noop ){
1583       iRowidReg = ++pParse->nMem;
1584       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1585       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1586       VdbeCoverageIf(v, testOp==OP_Le);
1587       VdbeCoverageIf(v, testOp==OP_Lt);
1588       VdbeCoverageIf(v, testOp==OP_Ge);
1589       VdbeCoverageIf(v, testOp==OP_Gt);
1590       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1591     }
1592   }else if( pLoop->wsFlags & WHERE_INDEXED ){
1593     /* Case 4: A scan using an index.
1594     **
1595     **         The WHERE clause may contain zero or more equality
1596     **         terms ("==" or "IN" operators) that refer to the N
1597     **         left-most columns of the index. It may also contain
1598     **         inequality constraints (>, <, >= or <=) on the indexed
1599     **         column that immediately follows the N equalities. Only
1600     **         the right-most column can be an inequality - the rest must
1601     **         use the "==" and "IN" operators. For example, if the
1602     **         index is on (x,y,z), then the following clauses are all
1603     **         optimized:
1604     **
1605     **            x=5
1606     **            x=5 AND y=10
1607     **            x=5 AND y<10
1608     **            x=5 AND y>5 AND y<10
1609     **            x=5 AND y=5 AND z<=10
1610     **
1611     **         The z<10 term of the following cannot be used, only
1612     **         the x=5 term:
1613     **
1614     **            x=5 AND z<10
1615     **
1616     **         N may be zero if there are inequality constraints.
1617     **         If there are no inequality constraints, then N is at
1618     **         least one.
1619     **
1620     **         This case is also used when there are no WHERE clause
1621     **         constraints but an index is selected anyway, in order
1622     **         to force the output order to conform to an ORDER BY.
1623     */
1624     static const u8 aStartOp[] = {
1625       0,
1626       0,
1627       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
1628       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
1629       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
1630       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
1631       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
1632       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
1633     };
1634     static const u8 aEndOp[] = {
1635       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
1636       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
1637       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
1638       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
1639     };
1640     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
1641     u16 nBtm = pLoop->u.btree.nBtm;   /* Length of BTM vector */
1642     u16 nTop = pLoop->u.btree.nTop;   /* Length of TOP vector */
1643     int regBase;                 /* Base register holding constraint values */
1644     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
1645     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
1646     int startEq;                 /* True if range start uses ==, >= or <= */
1647     int endEq;                   /* True if range end uses ==, >= or <= */
1648     int start_constraints;       /* Start of range is constrained */
1649     int nConstraint;             /* Number of constraint terms */
1650     int iIdxCur;                 /* The VDBE cursor for the index */
1651     int nExtraReg = 0;           /* Number of extra registers needed */
1652     int op;                      /* Instruction opcode */
1653     char *zStartAff;             /* Affinity for start of range constraint */
1654     char *zEndAff = 0;           /* Affinity for end of range constraint */
1655     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
1656     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
1657     int omitTable;               /* True if we use the index only */
1658     int regBignull = 0;          /* big-null flag register */
1659     int addrSeekScan = 0;        /* Opcode of the OP_SeekScan, if any */
1660 
1661     pIdx = pLoop->u.btree.pIndex;
1662     iIdxCur = pLevel->iIdxCur;
1663     assert( nEq>=pLoop->nSkip );
1664 
1665     /* Find any inequality constraint terms for the start and end
1666     ** of the range.
1667     */
1668     j = nEq;
1669     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1670       pRangeStart = pLoop->aLTerm[j++];
1671       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1672       /* Like optimization range constraints always occur in pairs */
1673       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1674               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1675     }
1676     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1677       pRangeEnd = pLoop->aLTerm[j++];
1678       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1679 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1680       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1681         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
1682         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
1683         pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1684         sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1685         VdbeComment((v, "LIKE loop counter"));
1686         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1687         /* iLikeRepCntr actually stores 2x the counter register number.  The
1688         ** bottom bit indicates whether the search order is ASC or DESC. */
1689         testcase( bRev );
1690         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1691         assert( (bRev & ~1)==0 );
1692         pLevel->iLikeRepCntr <<=1;
1693         pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1694       }
1695 #endif
1696       if( pRangeStart==0 ){
1697         j = pIdx->aiColumn[nEq];
1698         if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1699           bSeekPastNull = 1;
1700         }
1701       }
1702     }
1703     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1704 
1705     /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
1706     ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
1707     ** FIRST). In both cases separate ordered scans are made of those
1708     ** index entries for which the column is null and for those for which
1709     ** it is not. For an ASC sort, the non-NULL entries are scanned first.
1710     ** For DESC, NULL entries are scanned first.
1711     */
1712     if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0
1713      && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0
1714     ){
1715       assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 );
1716       assert( pRangeEnd==0 && pRangeStart==0 );
1717       testcase( pLoop->nSkip>0 );
1718       nExtraReg = 1;
1719       bSeekPastNull = 1;
1720       pLevel->regBignull = regBignull = ++pParse->nMem;
1721       if( pLevel->iLeftJoin ){
1722         sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull);
1723       }
1724       pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse);
1725     }
1726 
1727     /* If we are doing a reverse order scan on an ascending index, or
1728     ** a forward order scan on a descending index, interchange the
1729     ** start and end terms (pRangeStart and pRangeEnd).
1730     */
1731     if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1732      || (bRev && pIdx->nKeyCol==nEq)
1733     ){
1734       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1735       SWAP(u8, bSeekPastNull, bStopAtNull);
1736       SWAP(u8, nBtm, nTop);
1737     }
1738 
1739     if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){
1740       /* In case OP_SeekScan is used, ensure that the index cursor does not
1741       ** point to a valid row for the first iteration of this loop. */
1742       sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
1743     }
1744 
1745     /* Generate code to evaluate all constraint terms using == or IN
1746     ** and store the values of those terms in an array of registers
1747     ** starting at regBase.
1748     */
1749     codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1750     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1751     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1752     if( zStartAff && nTop ){
1753       zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1754     }
1755     addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt);
1756 
1757     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1758     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1759     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1760     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1761     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1762     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1763     start_constraints = pRangeStart || nEq>0;
1764 
1765     /* Seek the index cursor to the start of the range. */
1766     nConstraint = nEq;
1767     if( pRangeStart ){
1768       Expr *pRight = pRangeStart->pExpr->pRight;
1769       codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1770       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1771       if( (pRangeStart->wtFlags & TERM_VNULL)==0
1772        && sqlite3ExprCanBeNull(pRight)
1773       ){
1774         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1775         VdbeCoverage(v);
1776       }
1777       if( zStartAff ){
1778         updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1779       }
1780       nConstraint += nBtm;
1781       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1782       if( sqlite3ExprIsVector(pRight)==0 ){
1783         disableTerm(pLevel, pRangeStart);
1784       }else{
1785         startEq = 1;
1786       }
1787       bSeekPastNull = 0;
1788     }else if( bSeekPastNull ){
1789       startEq = 0;
1790       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1791       start_constraints = 1;
1792       nConstraint++;
1793     }else if( regBignull ){
1794       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1795       start_constraints = 1;
1796       nConstraint++;
1797     }
1798     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1799     if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1800       /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1801       ** above has already left the cursor sitting on the correct row,
1802       ** so no further seeking is needed */
1803     }else{
1804       if( regBignull ){
1805         sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull);
1806         VdbeComment((v, "NULL-scan pass ctr"));
1807       }
1808 
1809       op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1810       assert( op!=0 );
1811       if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){
1812         assert( regBignull==0 );
1813         /* TUNING:  The OP_SeekScan opcode seeks to reduce the number
1814         ** of expensive seek operations by replacing a single seek with
1815         ** 1 or more step operations.  The question is, how many steps
1816         ** should we try before giving up and going with a seek.  The cost
1817         ** of a seek is proportional to the logarithm of the of the number
1818         ** of entries in the tree, so basing the number of steps to try
1819         ** on the estimated number of rows in the btree seems like a good
1820         ** guess. */
1821         addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan,
1822                                          (pIdx->aiRowLogEst[0]+9)/10);
1823         VdbeCoverage(v);
1824       }
1825       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1826       VdbeCoverage(v);
1827       VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1828       VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1829       VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
1830       VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1831       VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1832       VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
1833 
1834       assert( bSeekPastNull==0 || bStopAtNull==0 );
1835       if( regBignull ){
1836         assert( bSeekPastNull==1 || bStopAtNull==1 );
1837         assert( bSeekPastNull==!bStopAtNull );
1838         assert( bStopAtNull==startEq );
1839         sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2);
1840         op = aStartOp[(nConstraint>1)*4 + 2 + bRev];
1841         sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1842                              nConstraint-startEq);
1843         VdbeCoverage(v);
1844         VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1845         VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1846         VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1847         VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1848         assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE);
1849       }
1850     }
1851 
1852     /* Load the value for the inequality constraint at the end of the
1853     ** range (if any).
1854     */
1855     nConstraint = nEq;
1856     if( pRangeEnd ){
1857       Expr *pRight = pRangeEnd->pExpr->pRight;
1858       codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
1859       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1860       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1861        && sqlite3ExprCanBeNull(pRight)
1862       ){
1863         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1864         VdbeCoverage(v);
1865       }
1866       if( zEndAff ){
1867         updateRangeAffinityStr(pRight, nTop, zEndAff);
1868         codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1869       }else{
1870         assert( pParse->db->mallocFailed );
1871       }
1872       nConstraint += nTop;
1873       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1874 
1875       if( sqlite3ExprIsVector(pRight)==0 ){
1876         disableTerm(pLevel, pRangeEnd);
1877       }else{
1878         endEq = 1;
1879       }
1880     }else if( bStopAtNull ){
1881       if( regBignull==0 ){
1882         sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1883         endEq = 0;
1884       }
1885       nConstraint++;
1886     }
1887     sqlite3DbFree(db, zStartAff);
1888     sqlite3DbFree(db, zEndAff);
1889 
1890     /* Top of the loop body */
1891     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1892 
1893     /* Check if the index cursor is past the end of the range. */
1894     if( nConstraint ){
1895       if( regBignull ){
1896         /* Except, skip the end-of-range check while doing the NULL-scan */
1897         sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3);
1898         VdbeComment((v, "If NULL-scan 2nd pass"));
1899         VdbeCoverage(v);
1900       }
1901       op = aEndOp[bRev*2 + endEq];
1902       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1903       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1904       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1905       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1906       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1907       if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan);
1908     }
1909     if( regBignull ){
1910       /* During a NULL-scan, check to see if we have reached the end of
1911       ** the NULLs */
1912       assert( bSeekPastNull==!bStopAtNull );
1913       assert( bSeekPastNull+bStopAtNull==1 );
1914       assert( nConstraint+bSeekPastNull>0 );
1915       sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2);
1916       VdbeComment((v, "If NULL-scan 1st pass"));
1917       VdbeCoverage(v);
1918       op = aEndOp[bRev*2 + bSeekPastNull];
1919       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1920                            nConstraint+bSeekPastNull);
1921       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1922       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1923       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1924       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1925     }
1926 
1927     if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){
1928       sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq);
1929     }
1930 
1931     /* Seek the table cursor, if required */
1932     omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
1933            && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
1934     if( omitTable ){
1935       /* pIdx is a covering index.  No need to access the main table. */
1936     }else if( HasRowid(pIdx->pTable) ){
1937       codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
1938     }else if( iCur!=iIdxCur ){
1939       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1940       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1941       for(j=0; j<pPk->nKeyCol; j++){
1942         k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
1943         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1944       }
1945       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1946                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1947     }
1948 
1949     if( pLevel->iLeftJoin==0 ){
1950       /* If pIdx is an index on one or more expressions, then look through
1951       ** all the expressions in pWInfo and try to transform matching expressions
1952       ** into reference to index columns.  Also attempt to translate references
1953       ** to virtual columns in the table into references to (stored) columns
1954       ** of the index.
1955       **
1956       ** Do not do this for the RHS of a LEFT JOIN. This is because the
1957       ** expression may be evaluated after OP_NullRow has been executed on
1958       ** the cursor. In this case it is important to do the full evaluation,
1959       ** as the result of the expression may not be NULL, even if all table
1960       ** column values are.  https://www.sqlite.org/src/info/7fa8049685b50b5a
1961       **
1962       ** Also, do not do this when processing one index an a multi-index
1963       ** OR clause, since the transformation will become invalid once we
1964       ** move forward to the next index.
1965       ** https://sqlite.org/src/info/4e8e4857d32d401f
1966       */
1967       if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
1968         whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
1969       }
1970 
1971       /* If a partial index is driving the loop, try to eliminate WHERE clause
1972       ** terms from the query that must be true due to the WHERE clause of
1973       ** the partial index.
1974       **
1975       ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
1976       ** for a LEFT JOIN.
1977       */
1978       if( pIdx->pPartIdxWhere ){
1979         whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC);
1980       }
1981     }else{
1982       testcase( pIdx->pPartIdxWhere );
1983       /* The following assert() is not a requirement, merely an observation:
1984       ** The OR-optimization doesn't work for the right hand table of
1985       ** a LEFT JOIN: */
1986       assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 );
1987     }
1988 
1989     /* Record the instruction used to terminate the loop. */
1990     if( pLoop->wsFlags & WHERE_ONEROW ){
1991       pLevel->op = OP_Noop;
1992     }else if( bRev ){
1993       pLevel->op = OP_Prev;
1994     }else{
1995       pLevel->op = OP_Next;
1996     }
1997     pLevel->p1 = iIdxCur;
1998     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1999     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
2000       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2001     }else{
2002       assert( pLevel->p5==0 );
2003     }
2004     if( omitTable ) pIdx = 0;
2005   }else
2006 
2007 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
2008   if( pLoop->wsFlags & WHERE_MULTI_OR ){
2009     /* Case 5:  Two or more separately indexed terms connected by OR
2010     **
2011     ** Example:
2012     **
2013     **   CREATE TABLE t1(a,b,c,d);
2014     **   CREATE INDEX i1 ON t1(a);
2015     **   CREATE INDEX i2 ON t1(b);
2016     **   CREATE INDEX i3 ON t1(c);
2017     **
2018     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
2019     **
2020     ** In the example, there are three indexed terms connected by OR.
2021     ** The top of the loop looks like this:
2022     **
2023     **          Null       1                # Zero the rowset in reg 1
2024     **
2025     ** Then, for each indexed term, the following. The arguments to
2026     ** RowSetTest are such that the rowid of the current row is inserted
2027     ** into the RowSet. If it is already present, control skips the
2028     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
2029     **
2030     **        sqlite3WhereBegin(<term>)
2031     **          RowSetTest                  # Insert rowid into rowset
2032     **          Gosub      2 A
2033     **        sqlite3WhereEnd()
2034     **
2035     ** Following the above, code to terminate the loop. Label A, the target
2036     ** of the Gosub above, jumps to the instruction right after the Goto.
2037     **
2038     **          Null       1                # Zero the rowset in reg 1
2039     **          Goto       B                # The loop is finished.
2040     **
2041     **       A: <loop body>                 # Return data, whatever.
2042     **
2043     **          Return     2                # Jump back to the Gosub
2044     **
2045     **       B: <after the loop>
2046     **
2047     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
2048     ** use an ephemeral index instead of a RowSet to record the primary
2049     ** keys of the rows we have already seen.
2050     **
2051     */
2052     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
2053     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
2054     Index *pCov = 0;             /* Potential covering index (or NULL) */
2055     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
2056 
2057     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
2058     int regRowset = 0;                        /* Register for RowSet object */
2059     int regRowid = 0;                         /* Register holding rowid */
2060     int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */
2061     int iRetInit;                             /* Address of regReturn init */
2062     int untestedTerms = 0;             /* Some terms not completely tested */
2063     int ii;                            /* Loop counter */
2064     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
2065     Table *pTab = pTabItem->pTab;
2066 
2067     pTerm = pLoop->aLTerm[0];
2068     assert( pTerm!=0 );
2069     assert( pTerm->eOperator & WO_OR );
2070     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
2071     pOrWc = &pTerm->u.pOrInfo->wc;
2072     pLevel->op = OP_Return;
2073     pLevel->p1 = regReturn;
2074 
2075     /* Set up a new SrcList in pOrTab containing the table being scanned
2076     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
2077     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
2078     */
2079     if( pWInfo->nLevel>1 ){
2080       int nNotReady;                 /* The number of notReady tables */
2081       SrcItem *origSrc;              /* Original list of tables */
2082       nNotReady = pWInfo->nLevel - iLevel - 1;
2083       pOrTab = sqlite3StackAllocRaw(db,
2084                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
2085       if( pOrTab==0 ) return notReady;
2086       pOrTab->nAlloc = (u8)(nNotReady + 1);
2087       pOrTab->nSrc = pOrTab->nAlloc;
2088       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
2089       origSrc = pWInfo->pTabList->a;
2090       for(k=1; k<=nNotReady; k++){
2091         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
2092       }
2093     }else{
2094       pOrTab = pWInfo->pTabList;
2095     }
2096 
2097     /* Initialize the rowset register to contain NULL. An SQL NULL is
2098     ** equivalent to an empty rowset.  Or, create an ephemeral index
2099     ** capable of holding primary keys in the case of a WITHOUT ROWID.
2100     **
2101     ** Also initialize regReturn to contain the address of the instruction
2102     ** immediately following the OP_Return at the bottom of the loop. This
2103     ** is required in a few obscure LEFT JOIN cases where control jumps
2104     ** over the top of the loop into the body of it. In this case the
2105     ** correct response for the end-of-loop code (the OP_Return) is to
2106     ** fall through to the next instruction, just as an OP_Next does if
2107     ** called on an uninitialized cursor.
2108     */
2109     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2110       if( HasRowid(pTab) ){
2111         regRowset = ++pParse->nMem;
2112         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
2113       }else{
2114         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2115         regRowset = pParse->nTab++;
2116         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
2117         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
2118       }
2119       regRowid = ++pParse->nMem;
2120     }
2121     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
2122 
2123     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
2124     ** Then for every term xN, evaluate as the subexpression: xN AND z
2125     ** That way, terms in y that are factored into the disjunction will
2126     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
2127     **
2128     ** Actually, each subexpression is converted to "xN AND w" where w is
2129     ** the "interesting" terms of z - terms that did not originate in the
2130     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
2131     ** indices.
2132     **
2133     ** This optimization also only applies if the (x1 OR x2 OR ...) term
2134     ** is not contained in the ON clause of a LEFT JOIN.
2135     ** See ticket http://www.sqlite.org/src/info/f2369304e4
2136     */
2137     if( pWC->nTerm>1 ){
2138       int iTerm;
2139       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
2140         Expr *pExpr = pWC->a[iTerm].pExpr;
2141         if( &pWC->a[iTerm] == pTerm ) continue;
2142         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
2143         testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
2144         if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
2145         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
2146         testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
2147         pExpr = sqlite3ExprDup(db, pExpr, 0);
2148         pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr);
2149       }
2150       if( pAndExpr ){
2151         /* The extra 0x10000 bit on the opcode is masked off and does not
2152         ** become part of the new Expr.op.  However, it does make the
2153         ** op==TK_AND comparison inside of sqlite3PExpr() false, and this
2154         ** prevents sqlite3PExpr() from implementing AND short-circuit
2155         ** optimization, which we do not want here. */
2156         pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr);
2157       }
2158     }
2159 
2160     /* Run a separate WHERE clause for each term of the OR clause.  After
2161     ** eliminating duplicates from other WHERE clauses, the action for each
2162     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
2163     */
2164     ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
2165     for(ii=0; ii<pOrWc->nTerm; ii++){
2166       WhereTerm *pOrTerm = &pOrWc->a[ii];
2167       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
2168         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
2169         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
2170         int jmp1 = 0;                   /* Address of jump operation */
2171         testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0
2172                && !ExprHasProperty(pOrExpr, EP_FromJoin)
2173         ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */
2174         if( pAndExpr ){
2175           pAndExpr->pLeft = pOrExpr;
2176           pOrExpr = pAndExpr;
2177         }
2178         /* Loop through table entries that match term pOrTerm. */
2179         ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1));
2180         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
2181         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
2182                                       WHERE_OR_SUBCLAUSE, iCovCur);
2183         assert( pSubWInfo || pParse->nErr || db->mallocFailed );
2184         if( pSubWInfo ){
2185           WhereLoop *pSubLoop;
2186           int addrExplain = sqlite3WhereExplainOneScan(
2187               pParse, pOrTab, &pSubWInfo->a[0], 0
2188           );
2189           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
2190 
2191           /* This is the sub-WHERE clause body.  First skip over
2192           ** duplicate rows from prior sub-WHERE clauses, and record the
2193           ** rowid (or PRIMARY KEY) for the current row so that the same
2194           ** row will be skipped in subsequent sub-WHERE clauses.
2195           */
2196           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2197             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
2198             if( HasRowid(pTab) ){
2199               sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid);
2200               jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
2201                                           regRowid, iSet);
2202               VdbeCoverage(v);
2203             }else{
2204               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2205               int nPk = pPk->nKeyCol;
2206               int iPk;
2207               int r;
2208 
2209               /* Read the PK into an array of temp registers. */
2210               r = sqlite3GetTempRange(pParse, nPk);
2211               for(iPk=0; iPk<nPk; iPk++){
2212                 int iCol = pPk->aiColumn[iPk];
2213                 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2214               }
2215 
2216               /* Check if the temp table already contains this key. If so,
2217               ** the row has already been included in the result set and
2218               ** can be ignored (by jumping past the Gosub below). Otherwise,
2219               ** insert the key into the temp table and proceed with processing
2220               ** the row.
2221               **
2222               ** Use some of the same optimizations as OP_RowSetTest: If iSet
2223               ** is zero, assume that the key cannot already be present in
2224               ** the temp table. And if iSet is -1, assume that there is no
2225               ** need to insert the key into the temp table, as it will never
2226               ** be tested for.  */
2227               if( iSet ){
2228                 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
2229                 VdbeCoverage(v);
2230               }
2231               if( iSet>=0 ){
2232                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
2233                 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
2234                                      r, nPk);
2235                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2236               }
2237 
2238               /* Release the array of temp registers */
2239               sqlite3ReleaseTempRange(pParse, r, nPk);
2240             }
2241           }
2242 
2243           /* Invoke the main loop body as a subroutine */
2244           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2245 
2246           /* Jump here (skipping the main loop body subroutine) if the
2247           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2248           if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
2249 
2250           /* The pSubWInfo->untestedTerms flag means that this OR term
2251           ** contained one or more AND term from a notReady table.  The
2252           ** terms from the notReady table could not be tested and will
2253           ** need to be tested later.
2254           */
2255           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
2256 
2257           /* If all of the OR-connected terms are optimized using the same
2258           ** index, and the index is opened using the same cursor number
2259           ** by each call to sqlite3WhereBegin() made by this loop, it may
2260           ** be possible to use that index as a covering index.
2261           **
2262           ** If the call to sqlite3WhereBegin() above resulted in a scan that
2263           ** uses an index, and this is either the first OR-connected term
2264           ** processed or the index is the same as that used by all previous
2265           ** terms, set pCov to the candidate covering index. Otherwise, set
2266           ** pCov to NULL to indicate that no candidate covering index will
2267           ** be available.
2268           */
2269           pSubLoop = pSubWInfo->a[0].pWLoop;
2270           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2271           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2272            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2273            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2274           ){
2275             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2276             pCov = pSubLoop->u.btree.pIndex;
2277           }else{
2278             pCov = 0;
2279           }
2280           if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){
2281             pWInfo->bDeferredSeek = 1;
2282           }
2283 
2284           /* Finish the loop through table entries that match term pOrTerm. */
2285           sqlite3WhereEnd(pSubWInfo);
2286           ExplainQueryPlanPop(pParse);
2287         }
2288       }
2289     }
2290     ExplainQueryPlanPop(pParse);
2291     pLevel->u.pCovidx = pCov;
2292     if( pCov ) pLevel->iIdxCur = iCovCur;
2293     if( pAndExpr ){
2294       pAndExpr->pLeft = 0;
2295       sqlite3ExprDelete(db, pAndExpr);
2296     }
2297     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2298     sqlite3VdbeGoto(v, pLevel->addrBrk);
2299     sqlite3VdbeResolveLabel(v, iLoopBody);
2300 
2301     if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); }
2302     if( !untestedTerms ) disableTerm(pLevel, pTerm);
2303   }else
2304 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2305 
2306   {
2307     /* Case 6:  There is no usable index.  We must do a complete
2308     **          scan of the entire table.
2309     */
2310     static const u8 aStep[] = { OP_Next, OP_Prev };
2311     static const u8 aStart[] = { OP_Rewind, OP_Last };
2312     assert( bRev==0 || bRev==1 );
2313     if( pTabItem->fg.isRecursive ){
2314       /* Tables marked isRecursive have only a single row that is stored in
2315       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
2316       pLevel->op = OP_Noop;
2317     }else{
2318       codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2319       pLevel->op = aStep[bRev];
2320       pLevel->p1 = iCur;
2321       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2322       VdbeCoverageIf(v, bRev==0);
2323       VdbeCoverageIf(v, bRev!=0);
2324       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2325     }
2326   }
2327 
2328 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2329   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2330 #endif
2331 
2332   /* Insert code to test every subexpression that can be completely
2333   ** computed using the current set of tables.
2334   **
2335   ** This loop may run between one and three times, depending on the
2336   ** constraints to be generated. The value of stack variable iLoop
2337   ** determines the constraints coded by each iteration, as follows:
2338   **
2339   ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2340   ** iLoop==2: Code remaining expressions that do not contain correlated
2341   **           sub-queries.
2342   ** iLoop==3: Code all remaining expressions.
2343   **
2344   ** An effort is made to skip unnecessary iterations of the loop.
2345   */
2346   iLoop = (pIdx ? 1 : 2);
2347   do{
2348     int iNext = 0;                /* Next value for iLoop */
2349     for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2350       Expr *pE;
2351       int skipLikeAddr = 0;
2352       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2353       testcase( pTerm->wtFlags & TERM_CODED );
2354       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2355       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2356         testcase( pWInfo->untestedTerms==0
2357             && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2358         pWInfo->untestedTerms = 1;
2359         continue;
2360       }
2361       pE = pTerm->pExpr;
2362       assert( pE!=0 );
2363       if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){
2364         continue;
2365       }
2366 
2367       if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2368         iNext = 2;
2369         continue;
2370       }
2371       if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2372         if( iNext==0 ) iNext = 3;
2373         continue;
2374       }
2375 
2376       if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
2377         /* If the TERM_LIKECOND flag is set, that means that the range search
2378         ** is sufficient to guarantee that the LIKE operator is true, so we
2379         ** can skip the call to the like(A,B) function.  But this only works
2380         ** for strings.  So do not skip the call to the function on the pass
2381         ** that compares BLOBs. */
2382 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2383         continue;
2384 #else
2385         u32 x = pLevel->iLikeRepCntr;
2386         if( x>0 ){
2387           skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
2388           VdbeCoverageIf(v, (x&1)==1);
2389           VdbeCoverageIf(v, (x&1)==0);
2390         }
2391 #endif
2392       }
2393 #ifdef WHERETRACE_ENABLED /* 0xffff */
2394       if( sqlite3WhereTrace ){
2395         VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2396                          pWC->nTerm-j, pTerm, iLoop));
2397       }
2398       if( sqlite3WhereTrace & 0x800 ){
2399         sqlite3DebugPrintf("Coding auxiliary constraint:\n");
2400         sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2401       }
2402 #endif
2403       sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2404       if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2405       pTerm->wtFlags |= TERM_CODED;
2406     }
2407     iLoop = iNext;
2408   }while( iLoop>0 );
2409 
2410   /* Insert code to test for implied constraints based on transitivity
2411   ** of the "==" operator.
2412   **
2413   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2414   ** and we are coding the t1 loop and the t2 loop has not yet coded,
2415   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2416   ** the implied "t1.a=123" constraint.
2417   */
2418   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2419     Expr *pE, sEAlt;
2420     WhereTerm *pAlt;
2421     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2422     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2423     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2424     if( pTerm->leftCursor!=iCur ) continue;
2425     if( pTabItem->fg.jointype & JT_LEFT ) continue;
2426     pE = pTerm->pExpr;
2427 #ifdef WHERETRACE_ENABLED /* 0x800 */
2428     if( sqlite3WhereTrace & 0x800 ){
2429       sqlite3DebugPrintf("Coding transitive constraint:\n");
2430       sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2431     }
2432 #endif
2433     assert( !ExprHasProperty(pE, EP_FromJoin) );
2434     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2435     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady,
2436                     WO_EQ|WO_IN|WO_IS, 0);
2437     if( pAlt==0 ) continue;
2438     if( pAlt->wtFlags & (TERM_CODED) ) continue;
2439     if( (pAlt->eOperator & WO_IN)
2440      && (pAlt->pExpr->flags & EP_xIsSelect)
2441      && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
2442     ){
2443       continue;
2444     }
2445     testcase( pAlt->eOperator & WO_EQ );
2446     testcase( pAlt->eOperator & WO_IS );
2447     testcase( pAlt->eOperator & WO_IN );
2448     VdbeModuleComment((v, "begin transitive constraint"));
2449     sEAlt = *pAlt->pExpr;
2450     sEAlt.pLeft = pE->pLeft;
2451     sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2452     pAlt->wtFlags |= TERM_CODED;
2453   }
2454 
2455   /* For a LEFT OUTER JOIN, generate code that will record the fact that
2456   ** at least one row of the right table has matched the left table.
2457   */
2458   if( pLevel->iLeftJoin ){
2459     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2460     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2461     VdbeComment((v, "record LEFT JOIN hit"));
2462     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
2463       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2464       testcase( pTerm->wtFlags & TERM_CODED );
2465       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2466       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2467         assert( pWInfo->untestedTerms );
2468         continue;
2469       }
2470       assert( pTerm->pExpr );
2471       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2472       pTerm->wtFlags |= TERM_CODED;
2473     }
2474   }
2475 
2476 #if WHERETRACE_ENABLED /* 0x20800 */
2477   if( sqlite3WhereTrace & 0x20000 ){
2478     sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n",
2479                        iLevel);
2480     sqlite3WhereClausePrint(pWC);
2481   }
2482   if( sqlite3WhereTrace & 0x800 ){
2483     sqlite3DebugPrintf("End Coding level %d:  notReady=%llx\n",
2484        iLevel, (u64)pLevel->notReady);
2485   }
2486 #endif
2487   return pLevel->notReady;
2488 }
2489