1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 25 /* 26 ** Return the name of the i-th column of the pIdx index. 27 */ 28 static const char *explainIndexColumnName(Index *pIdx, int i){ 29 i = pIdx->aiColumn[i]; 30 if( i==XN_EXPR ) return "<expr>"; 31 if( i==XN_ROWID ) return "rowid"; 32 return pIdx->pTable->aCol[i].zName; 33 } 34 35 /* 36 ** This routine is a helper for explainIndexRange() below 37 ** 38 ** pStr holds the text of an expression that we are building up one term 39 ** at a time. This routine adds a new term to the end of the expression. 40 ** Terms are separated by AND so add the "AND" text for second and subsequent 41 ** terms only. 42 */ 43 static void explainAppendTerm( 44 StrAccum *pStr, /* The text expression being built */ 45 Index *pIdx, /* Index to read column names from */ 46 int nTerm, /* Number of terms */ 47 int iTerm, /* Zero-based index of first term. */ 48 int bAnd, /* Non-zero to append " AND " */ 49 const char *zOp /* Name of the operator */ 50 ){ 51 int i; 52 53 assert( nTerm>=1 ); 54 if( bAnd ) sqlite3_str_append(pStr, " AND ", 5); 55 56 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 57 for(i=0; i<nTerm; i++){ 58 if( i ) sqlite3_str_append(pStr, ",", 1); 59 sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i)); 60 } 61 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 62 63 sqlite3_str_append(pStr, zOp, 1); 64 65 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 66 for(i=0; i<nTerm; i++){ 67 if( i ) sqlite3_str_append(pStr, ",", 1); 68 sqlite3_str_append(pStr, "?", 1); 69 } 70 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 71 } 72 73 /* 74 ** Argument pLevel describes a strategy for scanning table pTab. This 75 ** function appends text to pStr that describes the subset of table 76 ** rows scanned by the strategy in the form of an SQL expression. 77 ** 78 ** For example, if the query: 79 ** 80 ** SELECT * FROM t1 WHERE a=1 AND b>2; 81 ** 82 ** is run and there is an index on (a, b), then this function returns a 83 ** string similar to: 84 ** 85 ** "a=? AND b>?" 86 */ 87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 88 Index *pIndex = pLoop->u.btree.pIndex; 89 u16 nEq = pLoop->u.btree.nEq; 90 u16 nSkip = pLoop->nSkip; 91 int i, j; 92 93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 94 sqlite3_str_append(pStr, " (", 2); 95 for(i=0; i<nEq; i++){ 96 const char *z = explainIndexColumnName(pIndex, i); 97 if( i ) sqlite3_str_append(pStr, " AND ", 5); 98 sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); 99 } 100 101 j = i; 102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); 104 i = 1; 105 } 106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); 108 } 109 sqlite3_str_append(pStr, ")", 1); 110 } 111 112 /* 113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 116 ** is added to the output to describe the table scan strategy in pLevel. 117 ** 118 ** If an OP_Explain opcode is added to the VM, its address is returned. 119 ** Otherwise, if no OP_Explain is coded, zero is returned. 120 */ 121 int sqlite3WhereExplainOneScan( 122 Parse *pParse, /* Parse context */ 123 SrcList *pTabList, /* Table list this loop refers to */ 124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 125 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 126 ){ 127 int ret = 0; 128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 129 if( sqlite3ParseToplevel(pParse)->explain==2 ) 130 #endif 131 { 132 SrcItem *pItem = &pTabList->a[pLevel->iFrom]; 133 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 134 sqlite3 *db = pParse->db; /* Database handle */ 135 int isSearch; /* True for a SEARCH. False for SCAN. */ 136 WhereLoop *pLoop; /* The controlling WhereLoop object */ 137 u32 flags; /* Flags that describe this loop */ 138 char *zMsg; /* Text to add to EQP output */ 139 StrAccum str; /* EQP output string */ 140 char zBuf[100]; /* Initial space for EQP output string */ 141 142 pLoop = pLevel->pWLoop; 143 flags = pLoop->wsFlags; 144 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; 145 146 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 147 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 148 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 149 150 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 151 str.printfFlags = SQLITE_PRINTF_INTERNAL; 152 sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem); 153 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 154 const char *zFmt = 0; 155 Index *pIdx; 156 157 assert( pLoop->u.btree.pIndex!=0 ); 158 pIdx = pLoop->u.btree.pIndex; 159 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 160 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 161 if( isSearch ){ 162 zFmt = "PRIMARY KEY"; 163 } 164 }else if( flags & WHERE_PARTIALIDX ){ 165 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 166 }else if( flags & WHERE_AUTO_INDEX ){ 167 zFmt = "AUTOMATIC COVERING INDEX"; 168 }else if( flags & WHERE_IDX_ONLY ){ 169 zFmt = "COVERING INDEX %s"; 170 }else{ 171 zFmt = "INDEX %s"; 172 } 173 if( zFmt ){ 174 sqlite3_str_append(&str, " USING ", 7); 175 sqlite3_str_appendf(&str, zFmt, pIdx->zName); 176 explainIndexRange(&str, pLoop); 177 } 178 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 179 const char *zRangeOp; 180 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 181 zRangeOp = "="; 182 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 183 zRangeOp = ">? AND rowid<"; 184 }else if( flags&WHERE_BTM_LIMIT ){ 185 zRangeOp = ">"; 186 }else{ 187 assert( flags&WHERE_TOP_LIMIT); 188 zRangeOp = "<"; 189 } 190 sqlite3_str_appendf(&str, 191 " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp); 192 } 193 #ifndef SQLITE_OMIT_VIRTUALTABLE 194 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 195 sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s", 196 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 197 } 198 #endif 199 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 200 if( pLoop->nOut>=10 ){ 201 sqlite3_str_appendf(&str, " (~%llu rows)", 202 sqlite3LogEstToInt(pLoop->nOut)); 203 }else{ 204 sqlite3_str_append(&str, " (~1 row)", 9); 205 } 206 #endif 207 zMsg = sqlite3StrAccumFinish(&str); 208 sqlite3ExplainBreakpoint("",zMsg); 209 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), 210 pParse->addrExplain, 0, zMsg,P4_DYNAMIC); 211 } 212 return ret; 213 } 214 #endif /* SQLITE_OMIT_EXPLAIN */ 215 216 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 217 /* 218 ** Configure the VM passed as the first argument with an 219 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 220 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 221 ** clause that the scan reads data from. 222 ** 223 ** If argument addrExplain is not 0, it must be the address of an 224 ** OP_Explain instruction that describes the same loop. 225 */ 226 void sqlite3WhereAddScanStatus( 227 Vdbe *v, /* Vdbe to add scanstatus entry to */ 228 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 229 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 230 int addrExplain /* Address of OP_Explain (or 0) */ 231 ){ 232 const char *zObj = 0; 233 WhereLoop *pLoop = pLvl->pWLoop; 234 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 235 zObj = pLoop->u.btree.pIndex->zName; 236 }else{ 237 zObj = pSrclist->a[pLvl->iFrom].zName; 238 } 239 sqlite3VdbeScanStatus( 240 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 241 ); 242 } 243 #endif 244 245 246 /* 247 ** Disable a term in the WHERE clause. Except, do not disable the term 248 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 249 ** or USING clause of that join. 250 ** 251 ** Consider the term t2.z='ok' in the following queries: 252 ** 253 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 254 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 255 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 256 ** 257 ** The t2.z='ok' is disabled in the in (2) because it originates 258 ** in the ON clause. The term is disabled in (3) because it is not part 259 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 260 ** 261 ** Disabling a term causes that term to not be tested in the inner loop 262 ** of the join. Disabling is an optimization. When terms are satisfied 263 ** by indices, we disable them to prevent redundant tests in the inner 264 ** loop. We would get the correct results if nothing were ever disabled, 265 ** but joins might run a little slower. The trick is to disable as much 266 ** as we can without disabling too much. If we disabled in (1), we'd get 267 ** the wrong answer. See ticket #813. 268 ** 269 ** If all the children of a term are disabled, then that term is also 270 ** automatically disabled. In this way, terms get disabled if derived 271 ** virtual terms are tested first. For example: 272 ** 273 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 274 ** \___________/ \______/ \_____/ 275 ** parent child1 child2 276 ** 277 ** Only the parent term was in the original WHERE clause. The child1 278 ** and child2 terms were added by the LIKE optimization. If both of 279 ** the virtual child terms are valid, then testing of the parent can be 280 ** skipped. 281 ** 282 ** Usually the parent term is marked as TERM_CODED. But if the parent 283 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 284 ** The TERM_LIKECOND marking indicates that the term should be coded inside 285 ** a conditional such that is only evaluated on the second pass of a 286 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 287 */ 288 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 289 int nLoop = 0; 290 assert( pTerm!=0 ); 291 while( (pTerm->wtFlags & TERM_CODED)==0 292 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 293 && (pLevel->notReady & pTerm->prereqAll)==0 294 ){ 295 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 296 pTerm->wtFlags |= TERM_LIKECOND; 297 }else{ 298 pTerm->wtFlags |= TERM_CODED; 299 } 300 if( pTerm->iParent<0 ) break; 301 pTerm = &pTerm->pWC->a[pTerm->iParent]; 302 assert( pTerm!=0 ); 303 pTerm->nChild--; 304 if( pTerm->nChild!=0 ) break; 305 nLoop++; 306 } 307 } 308 309 /* 310 ** Code an OP_Affinity opcode to apply the column affinity string zAff 311 ** to the n registers starting at base. 312 ** 313 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which 314 ** are no-ops) at the beginning and end of zAff are ignored. If all entries 315 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated. 316 ** 317 ** This routine makes its own copy of zAff so that the caller is free 318 ** to modify zAff after this routine returns. 319 */ 320 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 321 Vdbe *v = pParse->pVdbe; 322 if( zAff==0 ){ 323 assert( pParse->db->mallocFailed ); 324 return; 325 } 326 assert( v!=0 ); 327 328 /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE 329 ** entries at the beginning and end of the affinity string. 330 */ 331 assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB ); 332 while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){ 333 n--; 334 base++; 335 zAff++; 336 } 337 while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){ 338 n--; 339 } 340 341 /* Code the OP_Affinity opcode if there is anything left to do. */ 342 if( n>0 ){ 343 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 344 } 345 } 346 347 /* 348 ** Expression pRight, which is the RHS of a comparison operation, is 349 ** either a vector of n elements or, if n==1, a scalar expression. 350 ** Before the comparison operation, affinity zAff is to be applied 351 ** to the pRight values. This function modifies characters within the 352 ** affinity string to SQLITE_AFF_BLOB if either: 353 ** 354 ** * the comparison will be performed with no affinity, or 355 ** * the affinity change in zAff is guaranteed not to change the value. 356 */ 357 static void updateRangeAffinityStr( 358 Expr *pRight, /* RHS of comparison */ 359 int n, /* Number of vector elements in comparison */ 360 char *zAff /* Affinity string to modify */ 361 ){ 362 int i; 363 for(i=0; i<n; i++){ 364 Expr *p = sqlite3VectorFieldSubexpr(pRight, i); 365 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB 366 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) 367 ){ 368 zAff[i] = SQLITE_AFF_BLOB; 369 } 370 } 371 } 372 373 374 /* 375 ** pX is an expression of the form: (vector) IN (SELECT ...) 376 ** In other words, it is a vector IN operator with a SELECT clause on the 377 ** LHS. But not all terms in the vector are indexable and the terms might 378 ** not be in the correct order for indexing. 379 ** 380 ** This routine makes a copy of the input pX expression and then adjusts 381 ** the vector on the LHS with corresponding changes to the SELECT so that 382 ** the vector contains only index terms and those terms are in the correct 383 ** order. The modified IN expression is returned. The caller is responsible 384 ** for deleting the returned expression. 385 ** 386 ** Example: 387 ** 388 ** CREATE TABLE t1(a,b,c,d,e,f); 389 ** CREATE INDEX t1x1 ON t1(e,c); 390 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2) 391 ** \_______________________________________/ 392 ** The pX expression 393 ** 394 ** Since only columns e and c can be used with the index, in that order, 395 ** the modified IN expression that is returned will be: 396 ** 397 ** (e,c) IN (SELECT z,x FROM t2) 398 ** 399 ** The reduced pX is different from the original (obviously) and thus is 400 ** only used for indexing, to improve performance. The original unaltered 401 ** IN expression must also be run on each output row for correctness. 402 */ 403 static Expr *removeUnindexableInClauseTerms( 404 Parse *pParse, /* The parsing context */ 405 int iEq, /* Look at loop terms starting here */ 406 WhereLoop *pLoop, /* The current loop */ 407 Expr *pX /* The IN expression to be reduced */ 408 ){ 409 sqlite3 *db = pParse->db; 410 Expr *pNew; 411 pNew = sqlite3ExprDup(db, pX, 0); 412 if( db->mallocFailed==0 ){ 413 ExprList *pOrigRhs = pNew->x.pSelect->pEList; /* Original unmodified RHS */ 414 ExprList *pOrigLhs = pNew->pLeft->x.pList; /* Original unmodified LHS */ 415 ExprList *pRhs = 0; /* New RHS after modifications */ 416 ExprList *pLhs = 0; /* New LHS after mods */ 417 int i; /* Loop counter */ 418 Select *pSelect; /* Pointer to the SELECT on the RHS */ 419 420 for(i=iEq; i<pLoop->nLTerm; i++){ 421 if( pLoop->aLTerm[i]->pExpr==pX ){ 422 int iField = pLoop->aLTerm[i]->u.x.iField - 1; 423 if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */ 424 pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr); 425 pOrigRhs->a[iField].pExpr = 0; 426 assert( pOrigLhs->a[iField].pExpr!=0 ); 427 pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr); 428 pOrigLhs->a[iField].pExpr = 0; 429 } 430 } 431 sqlite3ExprListDelete(db, pOrigRhs); 432 sqlite3ExprListDelete(db, pOrigLhs); 433 pNew->pLeft->x.pList = pLhs; 434 pNew->x.pSelect->pEList = pRhs; 435 if( pLhs && pLhs->nExpr==1 ){ 436 /* Take care here not to generate a TK_VECTOR containing only a 437 ** single value. Since the parser never creates such a vector, some 438 ** of the subroutines do not handle this case. */ 439 Expr *p = pLhs->a[0].pExpr; 440 pLhs->a[0].pExpr = 0; 441 sqlite3ExprDelete(db, pNew->pLeft); 442 pNew->pLeft = p; 443 } 444 pSelect = pNew->x.pSelect; 445 if( pSelect->pOrderBy ){ 446 /* If the SELECT statement has an ORDER BY clause, zero the 447 ** iOrderByCol variables. These are set to non-zero when an 448 ** ORDER BY term exactly matches one of the terms of the 449 ** result-set. Since the result-set of the SELECT statement may 450 ** have been modified or reordered, these variables are no longer 451 ** set correctly. Since setting them is just an optimization, 452 ** it's easiest just to zero them here. */ 453 ExprList *pOrderBy = pSelect->pOrderBy; 454 for(i=0; i<pOrderBy->nExpr; i++){ 455 pOrderBy->a[i].u.x.iOrderByCol = 0; 456 } 457 } 458 459 #if 0 460 printf("For indexing, change the IN expr:\n"); 461 sqlite3TreeViewExpr(0, pX, 0); 462 printf("Into:\n"); 463 sqlite3TreeViewExpr(0, pNew, 0); 464 #endif 465 } 466 return pNew; 467 } 468 469 470 /* 471 ** Generate code for a single equality term of the WHERE clause. An equality 472 ** term can be either X=expr or X IN (...). pTerm is the term to be 473 ** coded. 474 ** 475 ** The current value for the constraint is left in a register, the index 476 ** of which is returned. An attempt is made store the result in iTarget but 477 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the 478 ** constraint is a TK_EQ or TK_IS, then the current value might be left in 479 ** some other register and it is the caller's responsibility to compensate. 480 ** 481 ** For a constraint of the form X=expr, the expression is evaluated in 482 ** straight-line code. For constraints of the form X IN (...) 483 ** this routine sets up a loop that will iterate over all values of X. 484 */ 485 static int codeEqualityTerm( 486 Parse *pParse, /* The parsing context */ 487 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 488 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 489 int iEq, /* Index of the equality term within this level */ 490 int bRev, /* True for reverse-order IN operations */ 491 int iTarget /* Attempt to leave results in this register */ 492 ){ 493 Expr *pX = pTerm->pExpr; 494 Vdbe *v = pParse->pVdbe; 495 int iReg; /* Register holding results */ 496 497 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); 498 assert( iTarget>0 ); 499 if( pX->op==TK_EQ || pX->op==TK_IS ){ 500 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 501 }else if( pX->op==TK_ISNULL ){ 502 iReg = iTarget; 503 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 504 #ifndef SQLITE_OMIT_SUBQUERY 505 }else{ 506 int eType = IN_INDEX_NOOP; 507 int iTab; 508 struct InLoop *pIn; 509 WhereLoop *pLoop = pLevel->pWLoop; 510 int i; 511 int nEq = 0; 512 int *aiMap = 0; 513 514 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 515 && pLoop->u.btree.pIndex!=0 516 && pLoop->u.btree.pIndex->aSortOrder[iEq] 517 ){ 518 testcase( iEq==0 ); 519 testcase( bRev ); 520 bRev = !bRev; 521 } 522 assert( pX->op==TK_IN ); 523 iReg = iTarget; 524 525 for(i=0; i<iEq; i++){ 526 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ 527 disableTerm(pLevel, pTerm); 528 return iTarget; 529 } 530 } 531 for(i=iEq;i<pLoop->nLTerm; i++){ 532 assert( pLoop->aLTerm[i]!=0 ); 533 if( pLoop->aLTerm[i]->pExpr==pX ) nEq++; 534 } 535 536 iTab = 0; 537 if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){ 538 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab); 539 }else{ 540 sqlite3 *db = pParse->db; 541 pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX); 542 543 if( !db->mallocFailed ){ 544 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq); 545 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab); 546 pTerm->pExpr->iTable = iTab; 547 } 548 sqlite3ExprDelete(db, pX); 549 pX = pTerm->pExpr; 550 } 551 552 if( eType==IN_INDEX_INDEX_DESC ){ 553 testcase( bRev ); 554 bRev = !bRev; 555 } 556 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 557 VdbeCoverageIf(v, bRev); 558 VdbeCoverageIf(v, !bRev); 559 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 560 561 pLoop->wsFlags |= WHERE_IN_ABLE; 562 if( pLevel->u.in.nIn==0 ){ 563 pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 564 } 565 if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){ 566 pLoop->wsFlags |= WHERE_IN_EARLYOUT; 567 } 568 569 i = pLevel->u.in.nIn; 570 pLevel->u.in.nIn += nEq; 571 pLevel->u.in.aInLoop = 572 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 573 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 574 pIn = pLevel->u.in.aInLoop; 575 if( pIn ){ 576 int iMap = 0; /* Index in aiMap[] */ 577 pIn += i; 578 for(i=iEq;i<pLoop->nLTerm; i++){ 579 if( pLoop->aLTerm[i]->pExpr==pX ){ 580 int iOut = iReg + i - iEq; 581 if( eType==IN_INDEX_ROWID ){ 582 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); 583 }else{ 584 int iCol = aiMap ? aiMap[iMap++] : 0; 585 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); 586 } 587 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); 588 if( i==iEq ){ 589 pIn->iCur = iTab; 590 pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next; 591 if( iEq>0 ){ 592 pIn->iBase = iReg - i; 593 pIn->nPrefix = i; 594 }else{ 595 pIn->nPrefix = 0; 596 } 597 }else{ 598 pIn->eEndLoopOp = OP_Noop; 599 } 600 pIn++; 601 } 602 } 603 testcase( iEq>0 604 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 605 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ); 606 if( iEq>0 607 && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0 608 ){ 609 sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq); 610 } 611 }else{ 612 pLevel->u.in.nIn = 0; 613 } 614 sqlite3DbFree(pParse->db, aiMap); 615 #endif 616 } 617 disableTerm(pLevel, pTerm); 618 return iReg; 619 } 620 621 /* 622 ** Generate code that will evaluate all == and IN constraints for an 623 ** index scan. 624 ** 625 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 626 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 627 ** The index has as many as three equality constraints, but in this 628 ** example, the third "c" value is an inequality. So only two 629 ** constraints are coded. This routine will generate code to evaluate 630 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 631 ** in consecutive registers and the index of the first register is returned. 632 ** 633 ** In the example above nEq==2. But this subroutine works for any value 634 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 635 ** The only thing it does is allocate the pLevel->iMem memory cell and 636 ** compute the affinity string. 637 ** 638 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 639 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 640 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 641 ** occurs after the nEq quality constraints. 642 ** 643 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 644 ** the index of the first memory cell in that range. The code that 645 ** calls this routine will use that memory range to store keys for 646 ** start and termination conditions of the loop. 647 ** key value of the loop. If one or more IN operators appear, then 648 ** this routine allocates an additional nEq memory cells for internal 649 ** use. 650 ** 651 ** Before returning, *pzAff is set to point to a buffer containing a 652 ** copy of the column affinity string of the index allocated using 653 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 654 ** with equality constraints that use BLOB or NONE affinity are set to 655 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 656 ** 657 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 658 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 659 ** 660 ** In the example above, the index on t1(a) has TEXT affinity. But since 661 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 662 ** no conversion should be attempted before using a t2.b value as part of 663 ** a key to search the index. Hence the first byte in the returned affinity 664 ** string in this example would be set to SQLITE_AFF_BLOB. 665 */ 666 static int codeAllEqualityTerms( 667 Parse *pParse, /* Parsing context */ 668 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 669 int bRev, /* Reverse the order of IN operators */ 670 int nExtraReg, /* Number of extra registers to allocate */ 671 char **pzAff /* OUT: Set to point to affinity string */ 672 ){ 673 u16 nEq; /* The number of == or IN constraints to code */ 674 u16 nSkip; /* Number of left-most columns to skip */ 675 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 676 Index *pIdx; /* The index being used for this loop */ 677 WhereTerm *pTerm; /* A single constraint term */ 678 WhereLoop *pLoop; /* The WhereLoop object */ 679 int j; /* Loop counter */ 680 int regBase; /* Base register */ 681 int nReg; /* Number of registers to allocate */ 682 char *zAff; /* Affinity string to return */ 683 684 /* This module is only called on query plans that use an index. */ 685 pLoop = pLevel->pWLoop; 686 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 687 nEq = pLoop->u.btree.nEq; 688 nSkip = pLoop->nSkip; 689 pIdx = pLoop->u.btree.pIndex; 690 assert( pIdx!=0 ); 691 692 /* Figure out how many memory cells we will need then allocate them. 693 */ 694 regBase = pParse->nMem + 1; 695 nReg = pLoop->u.btree.nEq + nExtraReg; 696 pParse->nMem += nReg; 697 698 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 699 assert( zAff!=0 || pParse->db->mallocFailed ); 700 701 if( nSkip ){ 702 int iIdxCur = pLevel->iIdxCur; 703 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 704 VdbeCoverageIf(v, bRev==0); 705 VdbeCoverageIf(v, bRev!=0); 706 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 707 j = sqlite3VdbeAddOp0(v, OP_Goto); 708 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 709 iIdxCur, 0, regBase, nSkip); 710 VdbeCoverageIf(v, bRev==0); 711 VdbeCoverageIf(v, bRev!=0); 712 sqlite3VdbeJumpHere(v, j); 713 for(j=0; j<nSkip; j++){ 714 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 715 testcase( pIdx->aiColumn[j]==XN_EXPR ); 716 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 717 } 718 } 719 720 /* Evaluate the equality constraints 721 */ 722 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 723 for(j=nSkip; j<nEq; j++){ 724 int r1; 725 pTerm = pLoop->aLTerm[j]; 726 assert( pTerm!=0 ); 727 /* The following testcase is true for indices with redundant columns. 728 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 729 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 730 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 731 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 732 if( r1!=regBase+j ){ 733 if( nReg==1 ){ 734 sqlite3ReleaseTempReg(pParse, regBase); 735 regBase = r1; 736 }else{ 737 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 738 } 739 } 740 if( pTerm->eOperator & WO_IN ){ 741 if( pTerm->pExpr->flags & EP_xIsSelect ){ 742 /* No affinity ever needs to be (or should be) applied to a value 743 ** from the RHS of an "? IN (SELECT ...)" expression. The 744 ** sqlite3FindInIndex() routine has already ensured that the 745 ** affinity of the comparison has been applied to the value. */ 746 if( zAff ) zAff[j] = SQLITE_AFF_BLOB; 747 } 748 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ 749 Expr *pRight = pTerm->pExpr->pRight; 750 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 751 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 752 VdbeCoverage(v); 753 } 754 if( zAff ){ 755 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 756 zAff[j] = SQLITE_AFF_BLOB; 757 } 758 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 759 zAff[j] = SQLITE_AFF_BLOB; 760 } 761 } 762 } 763 } 764 *pzAff = zAff; 765 return regBase; 766 } 767 768 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 769 /* 770 ** If the most recently coded instruction is a constant range constraint 771 ** (a string literal) that originated from the LIKE optimization, then 772 ** set P3 and P5 on the OP_String opcode so that the string will be cast 773 ** to a BLOB at appropriate times. 774 ** 775 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 776 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 777 ** scan loop run twice, once for strings and a second time for BLOBs. 778 ** The OP_String opcodes on the second pass convert the upper and lower 779 ** bound string constants to blobs. This routine makes the necessary changes 780 ** to the OP_String opcodes for that to happen. 781 ** 782 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 783 ** only the one pass through the string space is required, so this routine 784 ** becomes a no-op. 785 */ 786 static void whereLikeOptimizationStringFixup( 787 Vdbe *v, /* prepared statement under construction */ 788 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 789 WhereTerm *pTerm /* The upper or lower bound just coded */ 790 ){ 791 if( pTerm->wtFlags & TERM_LIKEOPT ){ 792 VdbeOp *pOp; 793 assert( pLevel->iLikeRepCntr>0 ); 794 pOp = sqlite3VdbeGetOp(v, -1); 795 assert( pOp!=0 ); 796 assert( pOp->opcode==OP_String8 797 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 798 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ 799 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ 800 } 801 } 802 #else 803 # define whereLikeOptimizationStringFixup(A,B,C) 804 #endif 805 806 #ifdef SQLITE_ENABLE_CURSOR_HINTS 807 /* 808 ** Information is passed from codeCursorHint() down to individual nodes of 809 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 810 ** structure. 811 */ 812 struct CCurHint { 813 int iTabCur; /* Cursor for the main table */ 814 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 815 Index *pIdx; /* The index used to access the table */ 816 }; 817 818 /* 819 ** This function is called for every node of an expression that is a candidate 820 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 821 ** the table CCurHint.iTabCur, verify that the same column can be 822 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 823 */ 824 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 825 struct CCurHint *pHint = pWalker->u.pCCurHint; 826 assert( pHint->pIdx!=0 ); 827 if( pExpr->op==TK_COLUMN 828 && pExpr->iTable==pHint->iTabCur 829 && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0 830 ){ 831 pWalker->eCode = 1; 832 } 833 return WRC_Continue; 834 } 835 836 /* 837 ** Test whether or not expression pExpr, which was part of a WHERE clause, 838 ** should be included in the cursor-hint for a table that is on the rhs 839 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the 840 ** expression is not suitable. 841 ** 842 ** An expression is unsuitable if it might evaluate to non NULL even if 843 ** a TK_COLUMN node that does affect the value of the expression is set 844 ** to NULL. For example: 845 ** 846 ** col IS NULL 847 ** col IS NOT NULL 848 ** coalesce(col, 1) 849 ** CASE WHEN col THEN 0 ELSE 1 END 850 */ 851 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ 852 if( pExpr->op==TK_IS 853 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT 854 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE 855 ){ 856 pWalker->eCode = 1; 857 }else if( pExpr->op==TK_FUNCTION ){ 858 int d1; 859 char d2[4]; 860 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ 861 pWalker->eCode = 1; 862 } 863 } 864 865 return WRC_Continue; 866 } 867 868 869 /* 870 ** This function is called on every node of an expression tree used as an 871 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 872 ** that accesses any table other than the one identified by 873 ** CCurHint.iTabCur, then do the following: 874 ** 875 ** 1) allocate a register and code an OP_Column instruction to read 876 ** the specified column into the new register, and 877 ** 878 ** 2) transform the expression node to a TK_REGISTER node that reads 879 ** from the newly populated register. 880 ** 881 ** Also, if the node is a TK_COLUMN that does access the table idenified 882 ** by pCCurHint.iTabCur, and an index is being used (which we will 883 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 884 ** an access of the index rather than the original table. 885 */ 886 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 887 int rc = WRC_Continue; 888 struct CCurHint *pHint = pWalker->u.pCCurHint; 889 if( pExpr->op==TK_COLUMN ){ 890 if( pExpr->iTable!=pHint->iTabCur ){ 891 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 892 sqlite3ExprCode(pWalker->pParse, pExpr, reg); 893 pExpr->op = TK_REGISTER; 894 pExpr->iTable = reg; 895 }else if( pHint->pIdx!=0 ){ 896 pExpr->iTable = pHint->iIdxCur; 897 pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn); 898 assert( pExpr->iColumn>=0 ); 899 } 900 }else if( pExpr->op==TK_AGG_FUNCTION ){ 901 /* An aggregate function in the WHERE clause of a query means this must 902 ** be a correlated sub-query, and expression pExpr is an aggregate from 903 ** the parent context. Do not walk the function arguments in this case. 904 ** 905 ** todo: It should be possible to replace this node with a TK_REGISTER 906 ** expression, as the result of the expression must be stored in a 907 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 908 rc = WRC_Prune; 909 } 910 return rc; 911 } 912 913 /* 914 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 915 */ 916 static void codeCursorHint( 917 SrcItem *pTabItem, /* FROM clause item */ 918 WhereInfo *pWInfo, /* The where clause */ 919 WhereLevel *pLevel, /* Which loop to provide hints for */ 920 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 921 ){ 922 Parse *pParse = pWInfo->pParse; 923 sqlite3 *db = pParse->db; 924 Vdbe *v = pParse->pVdbe; 925 Expr *pExpr = 0; 926 WhereLoop *pLoop = pLevel->pWLoop; 927 int iCur; 928 WhereClause *pWC; 929 WhereTerm *pTerm; 930 int i, j; 931 struct CCurHint sHint; 932 Walker sWalker; 933 934 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 935 iCur = pLevel->iTabCur; 936 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 937 sHint.iTabCur = iCur; 938 sHint.iIdxCur = pLevel->iIdxCur; 939 sHint.pIdx = pLoop->u.btree.pIndex; 940 memset(&sWalker, 0, sizeof(sWalker)); 941 sWalker.pParse = pParse; 942 sWalker.u.pCCurHint = &sHint; 943 pWC = &pWInfo->sWC; 944 for(i=0; i<pWC->nTerm; i++){ 945 pTerm = &pWC->a[i]; 946 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 947 if( pTerm->prereqAll & pLevel->notReady ) continue; 948 949 /* Any terms specified as part of the ON(...) clause for any LEFT 950 ** JOIN for which the current table is not the rhs are omitted 951 ** from the cursor-hint. 952 ** 953 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms 954 ** that were specified as part of the WHERE clause must be excluded. 955 ** This is to address the following: 956 ** 957 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; 958 ** 959 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its 960 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is 961 ** pushed down to the cursor, this row is filtered out, causing 962 ** SQLite to synthesize a row of NULL values. Which does match the 963 ** WHERE clause, and so the query returns a row. Which is incorrect. 964 ** 965 ** For the same reason, WHERE terms such as: 966 ** 967 ** WHERE 1 = (t2.c IS NULL) 968 ** 969 ** are also excluded. See codeCursorHintIsOrFunction() for details. 970 */ 971 if( pTabItem->fg.jointype & JT_LEFT ){ 972 Expr *pExpr = pTerm->pExpr; 973 if( !ExprHasProperty(pExpr, EP_FromJoin) 974 || pExpr->iRightJoinTable!=pTabItem->iCursor 975 ){ 976 sWalker.eCode = 0; 977 sWalker.xExprCallback = codeCursorHintIsOrFunction; 978 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 979 if( sWalker.eCode ) continue; 980 } 981 }else{ 982 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; 983 } 984 985 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 986 ** the cursor. These terms are not needed as hints for a pure range 987 ** scan (that has no == terms) so omit them. */ 988 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 989 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 990 if( j<pLoop->nLTerm ) continue; 991 } 992 993 /* No subqueries or non-deterministic functions allowed */ 994 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 995 996 /* For an index scan, make sure referenced columns are actually in 997 ** the index. */ 998 if( sHint.pIdx!=0 ){ 999 sWalker.eCode = 0; 1000 sWalker.xExprCallback = codeCursorHintCheckExpr; 1001 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 1002 if( sWalker.eCode ) continue; 1003 } 1004 1005 /* If we survive all prior tests, that means this term is worth hinting */ 1006 pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 1007 } 1008 if( pExpr!=0 ){ 1009 sWalker.xExprCallback = codeCursorHintFixExpr; 1010 sqlite3WalkExpr(&sWalker, pExpr); 1011 sqlite3VdbeAddOp4(v, OP_CursorHint, 1012 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 1013 (const char*)pExpr, P4_EXPR); 1014 } 1015 } 1016 #else 1017 # define codeCursorHint(A,B,C,D) /* No-op */ 1018 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 1019 1020 /* 1021 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains 1022 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This 1023 ** function generates code to do a deferred seek of cursor iCur to the 1024 ** rowid stored in register iRowid. 1025 ** 1026 ** Normally, this is just: 1027 ** 1028 ** OP_DeferredSeek $iCur $iRowid 1029 ** 1030 ** However, if the scan currently being coded is a branch of an OR-loop and 1031 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek 1032 ** is set to iIdxCur and P4 is set to point to an array of integers 1033 ** containing one entry for each column of the table cursor iCur is open 1034 ** on. For each table column, if the column is the i'th column of the 1035 ** index, then the corresponding array entry is set to (i+1). If the column 1036 ** does not appear in the index at all, the array entry is set to 0. 1037 */ 1038 static void codeDeferredSeek( 1039 WhereInfo *pWInfo, /* Where clause context */ 1040 Index *pIdx, /* Index scan is using */ 1041 int iCur, /* Cursor for IPK b-tree */ 1042 int iIdxCur /* Index cursor */ 1043 ){ 1044 Parse *pParse = pWInfo->pParse; /* Parse context */ 1045 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ 1046 1047 assert( iIdxCur>0 ); 1048 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); 1049 1050 pWInfo->bDeferredSeek = 1; 1051 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur); 1052 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 1053 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) 1054 ){ 1055 int i; 1056 Table *pTab = pIdx->pTable; 1057 u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1)); 1058 if( ai ){ 1059 ai[0] = pTab->nCol; 1060 for(i=0; i<pIdx->nColumn-1; i++){ 1061 int x1, x2; 1062 assert( pIdx->aiColumn[i]<pTab->nCol ); 1063 x1 = pIdx->aiColumn[i]; 1064 x2 = sqlite3TableColumnToStorage(pTab, x1); 1065 testcase( x1!=x2 ); 1066 if( x1>=0 ) ai[x2+1] = i+1; 1067 } 1068 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); 1069 } 1070 } 1071 } 1072 1073 /* 1074 ** If the expression passed as the second argument is a vector, generate 1075 ** code to write the first nReg elements of the vector into an array 1076 ** of registers starting with iReg. 1077 ** 1078 ** If the expression is not a vector, then nReg must be passed 1. In 1079 ** this case, generate code to evaluate the expression and leave the 1080 ** result in register iReg. 1081 */ 1082 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ 1083 assert( nReg>0 ); 1084 if( p && sqlite3ExprIsVector(p) ){ 1085 #ifndef SQLITE_OMIT_SUBQUERY 1086 if( (p->flags & EP_xIsSelect) ){ 1087 Vdbe *v = pParse->pVdbe; 1088 int iSelect; 1089 assert( p->op==TK_SELECT ); 1090 iSelect = sqlite3CodeSubselect(pParse, p); 1091 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); 1092 }else 1093 #endif 1094 { 1095 int i; 1096 ExprList *pList = p->x.pList; 1097 assert( nReg<=pList->nExpr ); 1098 for(i=0; i<nReg; i++){ 1099 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i); 1100 } 1101 } 1102 }else{ 1103 assert( nReg==1 ); 1104 sqlite3ExprCode(pParse, p, iReg); 1105 } 1106 } 1107 1108 /* An instance of the IdxExprTrans object carries information about a 1109 ** mapping from an expression on table columns into a column in an index 1110 ** down through the Walker. 1111 */ 1112 typedef struct IdxExprTrans { 1113 Expr *pIdxExpr; /* The index expression */ 1114 int iTabCur; /* The cursor of the corresponding table */ 1115 int iIdxCur; /* The cursor for the index */ 1116 int iIdxCol; /* The column for the index */ 1117 int iTabCol; /* The column for the table */ 1118 WhereInfo *pWInfo; /* Complete WHERE clause information */ 1119 sqlite3 *db; /* Database connection (for malloc()) */ 1120 } IdxExprTrans; 1121 1122 /* 1123 ** Preserve pExpr on the WhereETrans list of the WhereInfo. 1124 */ 1125 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){ 1126 WhereExprMod *pNew; 1127 pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew)); 1128 if( pNew==0 ) return; 1129 pNew->pNext = pTrans->pWInfo->pExprMods; 1130 pTrans->pWInfo->pExprMods = pNew; 1131 pNew->pExpr = pExpr; 1132 memcpy(&pNew->orig, pExpr, sizeof(*pExpr)); 1133 } 1134 1135 /* The walker node callback used to transform matching expressions into 1136 ** a reference to an index column for an index on an expression. 1137 ** 1138 ** If pExpr matches, then transform it into a reference to the index column 1139 ** that contains the value of pExpr. 1140 */ 1141 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){ 1142 IdxExprTrans *pX = p->u.pIdxTrans; 1143 if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){ 1144 preserveExpr(pX, pExpr); 1145 pExpr->affExpr = sqlite3ExprAffinity(pExpr); 1146 pExpr->op = TK_COLUMN; 1147 pExpr->iTable = pX->iIdxCur; 1148 pExpr->iColumn = pX->iIdxCol; 1149 pExpr->y.pTab = 0; 1150 testcase( ExprHasProperty(pExpr, EP_Skip) ); 1151 testcase( ExprHasProperty(pExpr, EP_Unlikely) ); 1152 ExprClearProperty(pExpr, EP_Skip|EP_Unlikely); 1153 return WRC_Prune; 1154 }else{ 1155 return WRC_Continue; 1156 } 1157 } 1158 1159 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1160 /* A walker node callback that translates a column reference to a table 1161 ** into a corresponding column reference of an index. 1162 */ 1163 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){ 1164 if( pExpr->op==TK_COLUMN ){ 1165 IdxExprTrans *pX = p->u.pIdxTrans; 1166 if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){ 1167 assert( pExpr->y.pTab!=0 ); 1168 preserveExpr(pX, pExpr); 1169 pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn); 1170 pExpr->iTable = pX->iIdxCur; 1171 pExpr->iColumn = pX->iIdxCol; 1172 pExpr->y.pTab = 0; 1173 } 1174 } 1175 return WRC_Continue; 1176 } 1177 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1178 1179 /* 1180 ** For an indexes on expression X, locate every instance of expression X 1181 ** in pExpr and change that subexpression into a reference to the appropriate 1182 ** column of the index. 1183 ** 1184 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in 1185 ** the table into references to the corresponding (stored) column of the 1186 ** index. 1187 */ 1188 static void whereIndexExprTrans( 1189 Index *pIdx, /* The Index */ 1190 int iTabCur, /* Cursor of the table that is being indexed */ 1191 int iIdxCur, /* Cursor of the index itself */ 1192 WhereInfo *pWInfo /* Transform expressions in this WHERE clause */ 1193 ){ 1194 int iIdxCol; /* Column number of the index */ 1195 ExprList *aColExpr; /* Expressions that are indexed */ 1196 Table *pTab; 1197 Walker w; 1198 IdxExprTrans x; 1199 aColExpr = pIdx->aColExpr; 1200 if( aColExpr==0 && !pIdx->bHasVCol ){ 1201 /* The index does not reference any expressions or virtual columns 1202 ** so no translations are needed. */ 1203 return; 1204 } 1205 pTab = pIdx->pTable; 1206 memset(&w, 0, sizeof(w)); 1207 w.u.pIdxTrans = &x; 1208 x.iTabCur = iTabCur; 1209 x.iIdxCur = iIdxCur; 1210 x.pWInfo = pWInfo; 1211 x.db = pWInfo->pParse->db; 1212 for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){ 1213 i16 iRef = pIdx->aiColumn[iIdxCol]; 1214 if( iRef==XN_EXPR ){ 1215 assert( aColExpr->a[iIdxCol].pExpr!=0 ); 1216 x.pIdxExpr = aColExpr->a[iIdxCol].pExpr; 1217 if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue; 1218 w.xExprCallback = whereIndexExprTransNode; 1219 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1220 }else if( iRef>=0 1221 && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0 1222 && (pTab->aCol[iRef].zColl==0 1223 || sqlite3StrICmp(pTab->aCol[iRef].zColl, sqlite3StrBINARY)==0) 1224 ){ 1225 /* Check to see if there are direct references to generated columns 1226 ** that are contained in the index. Pulling the generated column 1227 ** out of the index is an optimization only - the main table is always 1228 ** available if the index cannot be used. To avoid unnecessary 1229 ** complication, omit this optimization if the collating sequence for 1230 ** the column is non-standard */ 1231 x.iTabCol = iRef; 1232 w.xExprCallback = whereIndexExprTransColumn; 1233 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1234 }else{ 1235 continue; 1236 } 1237 x.iIdxCol = iIdxCol; 1238 sqlite3WalkExpr(&w, pWInfo->pWhere); 1239 sqlite3WalkExprList(&w, pWInfo->pOrderBy); 1240 sqlite3WalkExprList(&w, pWInfo->pResultSet); 1241 } 1242 } 1243 1244 /* 1245 ** The pTruth expression is always true because it is the WHERE clause 1246 ** a partial index that is driving a query loop. Look through all of the 1247 ** WHERE clause terms on the query, and if any of those terms must be 1248 ** true because pTruth is true, then mark those WHERE clause terms as 1249 ** coded. 1250 */ 1251 static void whereApplyPartialIndexConstraints( 1252 Expr *pTruth, 1253 int iTabCur, 1254 WhereClause *pWC 1255 ){ 1256 int i; 1257 WhereTerm *pTerm; 1258 while( pTruth->op==TK_AND ){ 1259 whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC); 1260 pTruth = pTruth->pRight; 1261 } 1262 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1263 Expr *pExpr; 1264 if( pTerm->wtFlags & TERM_CODED ) continue; 1265 pExpr = pTerm->pExpr; 1266 if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){ 1267 pTerm->wtFlags |= TERM_CODED; 1268 } 1269 } 1270 } 1271 1272 /* 1273 ** Generate code for the start of the iLevel-th loop in the WHERE clause 1274 ** implementation described by pWInfo. 1275 */ 1276 Bitmask sqlite3WhereCodeOneLoopStart( 1277 Parse *pParse, /* Parsing context */ 1278 Vdbe *v, /* Prepared statement under construction */ 1279 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1280 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1281 WhereLevel *pLevel, /* The current level pointer */ 1282 Bitmask notReady /* Which tables are currently available */ 1283 ){ 1284 int j, k; /* Loop counters */ 1285 int iCur; /* The VDBE cursor for the table */ 1286 int addrNxt; /* Where to jump to continue with the next IN case */ 1287 int bRev; /* True if we need to scan in reverse order */ 1288 WhereLoop *pLoop; /* The WhereLoop object being coded */ 1289 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 1290 WhereTerm *pTerm; /* A WHERE clause term */ 1291 sqlite3 *db; /* Database connection */ 1292 SrcItem *pTabItem; /* FROM clause term being coded */ 1293 int addrBrk; /* Jump here to break out of the loop */ 1294 int addrHalt; /* addrBrk for the outermost loop */ 1295 int addrCont; /* Jump here to continue with next cycle */ 1296 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 1297 int iReleaseReg = 0; /* Temp register to free before returning */ 1298 Index *pIdx = 0; /* Index used by loop (if any) */ 1299 int iLoop; /* Iteration of constraint generator loop */ 1300 1301 pWC = &pWInfo->sWC; 1302 db = pParse->db; 1303 pLoop = pLevel->pWLoop; 1304 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1305 iCur = pTabItem->iCursor; 1306 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 1307 bRev = (pWInfo->revMask>>iLevel)&1; 1308 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 1309 #if WHERETRACE_ENABLED /* 0x20800 */ 1310 if( sqlite3WhereTrace & 0x800 ){ 1311 sqlite3DebugPrintf("Coding level %d of %d: notReady=%llx iFrom=%d\n", 1312 iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom); 1313 sqlite3WhereLoopPrint(pLoop, pWC); 1314 } 1315 if( sqlite3WhereTrace & 0x20000 ){ 1316 if( iLevel==0 ){ 1317 sqlite3DebugPrintf("WHERE clause being coded:\n"); 1318 sqlite3TreeViewExpr(0, pWInfo->pWhere, 0); 1319 } 1320 sqlite3DebugPrintf("All WHERE-clause terms before coding:\n"); 1321 sqlite3WhereClausePrint(pWC); 1322 } 1323 #endif 1324 1325 /* Create labels for the "break" and "continue" instructions 1326 ** for the current loop. Jump to addrBrk to break out of a loop. 1327 ** Jump to cont to go immediately to the next iteration of the 1328 ** loop. 1329 ** 1330 ** When there is an IN operator, we also have a "addrNxt" label that 1331 ** means to continue with the next IN value combination. When 1332 ** there are no IN operators in the constraints, the "addrNxt" label 1333 ** is the same as "addrBrk". 1334 */ 1335 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 1336 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse); 1337 1338 /* If this is the right table of a LEFT OUTER JOIN, allocate and 1339 ** initialize a memory cell that records if this table matches any 1340 ** row of the left table of the join. 1341 */ 1342 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 1343 || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0 1344 ); 1345 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 1346 pLevel->iLeftJoin = ++pParse->nMem; 1347 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 1348 VdbeComment((v, "init LEFT JOIN no-match flag")); 1349 } 1350 1351 /* Compute a safe address to jump to if we discover that the table for 1352 ** this loop is empty and can never contribute content. */ 1353 for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){} 1354 addrHalt = pWInfo->a[j].addrBrk; 1355 1356 /* Special case of a FROM clause subquery implemented as a co-routine */ 1357 if( pTabItem->fg.viaCoroutine ){ 1358 int regYield = pTabItem->regReturn; 1359 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 1360 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 1361 VdbeCoverage(v); 1362 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 1363 pLevel->op = OP_Goto; 1364 }else 1365 1366 #ifndef SQLITE_OMIT_VIRTUALTABLE 1367 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 1368 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 1369 ** to access the data. 1370 */ 1371 int iReg; /* P3 Value for OP_VFilter */ 1372 int addrNotFound; 1373 int nConstraint = pLoop->nLTerm; 1374 int iIn; /* Counter for IN constraints */ 1375 1376 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 1377 addrNotFound = pLevel->addrBrk; 1378 for(j=0; j<nConstraint; j++){ 1379 int iTarget = iReg+j+2; 1380 pTerm = pLoop->aLTerm[j]; 1381 if( NEVER(pTerm==0) ) continue; 1382 if( pTerm->eOperator & WO_IN ){ 1383 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 1384 addrNotFound = pLevel->addrNxt; 1385 }else{ 1386 Expr *pRight = pTerm->pExpr->pRight; 1387 codeExprOrVector(pParse, pRight, iTarget, 1); 1388 } 1389 } 1390 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 1391 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 1392 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 1393 pLoop->u.vtab.idxStr, 1394 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); 1395 VdbeCoverage(v); 1396 pLoop->u.vtab.needFree = 0; 1397 /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed 1398 ** the u.vtab.idxStr. NULL it out to prevent a use-after-free */ 1399 if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0; 1400 pLevel->p1 = iCur; 1401 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 1402 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1403 iIn = pLevel->u.in.nIn; 1404 for(j=nConstraint-1; j>=0; j--){ 1405 pTerm = pLoop->aLTerm[j]; 1406 if( (pTerm->eOperator & WO_IN)!=0 ) iIn--; 1407 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ 1408 disableTerm(pLevel, pTerm); 1409 }else if( (pTerm->eOperator & WO_IN)!=0 1410 && sqlite3ExprVectorSize(pTerm->pExpr->pLeft)==1 1411 ){ 1412 Expr *pCompare; /* The comparison operator */ 1413 Expr *pRight; /* RHS of the comparison */ 1414 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ 1415 1416 /* Reload the constraint value into reg[iReg+j+2]. The same value 1417 ** was loaded into the same register prior to the OP_VFilter, but 1418 ** the xFilter implementation might have changed the datatype or 1419 ** encoding of the value in the register, so it *must* be reloaded. */ 1420 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed ); 1421 if( !db->mallocFailed ){ 1422 assert( iIn>=0 && iIn<pLevel->u.in.nIn ); 1423 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop); 1424 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid ); 1425 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 ); 1426 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 ); 1427 testcase( pOp->opcode==OP_Rowid ); 1428 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); 1429 } 1430 1431 /* Generate code that will continue to the next row if 1432 ** the IN constraint is not satisfied */ 1433 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); 1434 assert( pCompare!=0 || db->mallocFailed ); 1435 if( pCompare ){ 1436 pCompare->pLeft = pTerm->pExpr->pLeft; 1437 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); 1438 if( pRight ){ 1439 pRight->iTable = iReg+j+2; 1440 sqlite3ExprIfFalse( 1441 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL 1442 ); 1443 } 1444 pCompare->pLeft = 0; 1445 sqlite3ExprDelete(db, pCompare); 1446 } 1447 } 1448 } 1449 assert( iIn==0 || db->mallocFailed ); 1450 /* These registers need to be preserved in case there is an IN operator 1451 ** loop. So we could deallocate the registers here (and potentially 1452 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems 1453 ** simpler and safer to simply not reuse the registers. 1454 ** 1455 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 1456 */ 1457 }else 1458 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1459 1460 if( (pLoop->wsFlags & WHERE_IPK)!=0 1461 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 1462 ){ 1463 /* Case 2: We can directly reference a single row using an 1464 ** equality comparison against the ROWID field. Or 1465 ** we reference multiple rows using a "rowid IN (...)" 1466 ** construct. 1467 */ 1468 assert( pLoop->u.btree.nEq==1 ); 1469 pTerm = pLoop->aLTerm[0]; 1470 assert( pTerm!=0 ); 1471 assert( pTerm->pExpr!=0 ); 1472 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1473 iReleaseReg = ++pParse->nMem; 1474 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 1475 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 1476 addrNxt = pLevel->addrNxt; 1477 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); 1478 VdbeCoverage(v); 1479 pLevel->op = OP_Noop; 1480 if( (pTerm->prereqAll & pLevel->notReady)==0 ){ 1481 pTerm->wtFlags |= TERM_CODED; 1482 } 1483 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 1484 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 1485 ){ 1486 /* Case 3: We have an inequality comparison against the ROWID field. 1487 */ 1488 int testOp = OP_Noop; 1489 int start; 1490 int memEndValue = 0; 1491 WhereTerm *pStart, *pEnd; 1492 1493 j = 0; 1494 pStart = pEnd = 0; 1495 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 1496 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 1497 assert( pStart!=0 || pEnd!=0 ); 1498 if( bRev ){ 1499 pTerm = pStart; 1500 pStart = pEnd; 1501 pEnd = pTerm; 1502 } 1503 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); 1504 if( pStart ){ 1505 Expr *pX; /* The expression that defines the start bound */ 1506 int r1, rTemp; /* Registers for holding the start boundary */ 1507 int op; /* Cursor seek operation */ 1508 1509 /* The following constant maps TK_xx codes into corresponding 1510 ** seek opcodes. It depends on a particular ordering of TK_xx 1511 */ 1512 const u8 aMoveOp[] = { 1513 /* TK_GT */ OP_SeekGT, 1514 /* TK_LE */ OP_SeekLE, 1515 /* TK_LT */ OP_SeekLT, 1516 /* TK_GE */ OP_SeekGE 1517 }; 1518 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 1519 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 1520 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 1521 1522 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 1523 testcase( pStart->wtFlags & TERM_VIRTUAL ); 1524 pX = pStart->pExpr; 1525 assert( pX!=0 ); 1526 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 1527 if( sqlite3ExprIsVector(pX->pRight) ){ 1528 r1 = rTemp = sqlite3GetTempReg(pParse); 1529 codeExprOrVector(pParse, pX->pRight, r1, 1); 1530 testcase( pX->op==TK_GT ); 1531 testcase( pX->op==TK_GE ); 1532 testcase( pX->op==TK_LT ); 1533 testcase( pX->op==TK_LE ); 1534 op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1]; 1535 assert( pX->op!=TK_GT || op==OP_SeekGE ); 1536 assert( pX->op!=TK_GE || op==OP_SeekGE ); 1537 assert( pX->op!=TK_LT || op==OP_SeekLE ); 1538 assert( pX->op!=TK_LE || op==OP_SeekLE ); 1539 }else{ 1540 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 1541 disableTerm(pLevel, pStart); 1542 op = aMoveOp[(pX->op - TK_GT)]; 1543 } 1544 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); 1545 VdbeComment((v, "pk")); 1546 VdbeCoverageIf(v, pX->op==TK_GT); 1547 VdbeCoverageIf(v, pX->op==TK_LE); 1548 VdbeCoverageIf(v, pX->op==TK_LT); 1549 VdbeCoverageIf(v, pX->op==TK_GE); 1550 sqlite3ReleaseTempReg(pParse, rTemp); 1551 }else{ 1552 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt); 1553 VdbeCoverageIf(v, bRev==0); 1554 VdbeCoverageIf(v, bRev!=0); 1555 } 1556 if( pEnd ){ 1557 Expr *pX; 1558 pX = pEnd->pExpr; 1559 assert( pX!=0 ); 1560 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 1561 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 1562 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 1563 memEndValue = ++pParse->nMem; 1564 codeExprOrVector(pParse, pX->pRight, memEndValue, 1); 1565 if( 0==sqlite3ExprIsVector(pX->pRight) 1566 && (pX->op==TK_LT || pX->op==TK_GT) 1567 ){ 1568 testOp = bRev ? OP_Le : OP_Ge; 1569 }else{ 1570 testOp = bRev ? OP_Lt : OP_Gt; 1571 } 1572 if( 0==sqlite3ExprIsVector(pX->pRight) ){ 1573 disableTerm(pLevel, pEnd); 1574 } 1575 } 1576 start = sqlite3VdbeCurrentAddr(v); 1577 pLevel->op = bRev ? OP_Prev : OP_Next; 1578 pLevel->p1 = iCur; 1579 pLevel->p2 = start; 1580 assert( pLevel->p5==0 ); 1581 if( testOp!=OP_Noop ){ 1582 iRowidReg = ++pParse->nMem; 1583 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 1584 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 1585 VdbeCoverageIf(v, testOp==OP_Le); 1586 VdbeCoverageIf(v, testOp==OP_Lt); 1587 VdbeCoverageIf(v, testOp==OP_Ge); 1588 VdbeCoverageIf(v, testOp==OP_Gt); 1589 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 1590 } 1591 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 1592 /* Case 4: A scan using an index. 1593 ** 1594 ** The WHERE clause may contain zero or more equality 1595 ** terms ("==" or "IN" operators) that refer to the N 1596 ** left-most columns of the index. It may also contain 1597 ** inequality constraints (>, <, >= or <=) on the indexed 1598 ** column that immediately follows the N equalities. Only 1599 ** the right-most column can be an inequality - the rest must 1600 ** use the "==" and "IN" operators. For example, if the 1601 ** index is on (x,y,z), then the following clauses are all 1602 ** optimized: 1603 ** 1604 ** x=5 1605 ** x=5 AND y=10 1606 ** x=5 AND y<10 1607 ** x=5 AND y>5 AND y<10 1608 ** x=5 AND y=5 AND z<=10 1609 ** 1610 ** The z<10 term of the following cannot be used, only 1611 ** the x=5 term: 1612 ** 1613 ** x=5 AND z<10 1614 ** 1615 ** N may be zero if there are inequality constraints. 1616 ** If there are no inequality constraints, then N is at 1617 ** least one. 1618 ** 1619 ** This case is also used when there are no WHERE clause 1620 ** constraints but an index is selected anyway, in order 1621 ** to force the output order to conform to an ORDER BY. 1622 */ 1623 static const u8 aStartOp[] = { 1624 0, 1625 0, 1626 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1627 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1628 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1629 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1630 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1631 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1632 }; 1633 static const u8 aEndOp[] = { 1634 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1635 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1636 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1637 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1638 }; 1639 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1640 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ 1641 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ 1642 int regBase; /* Base register holding constraint values */ 1643 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1644 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1645 int startEq; /* True if range start uses ==, >= or <= */ 1646 int endEq; /* True if range end uses ==, >= or <= */ 1647 int start_constraints; /* Start of range is constrained */ 1648 int nConstraint; /* Number of constraint terms */ 1649 int iIdxCur; /* The VDBE cursor for the index */ 1650 int nExtraReg = 0; /* Number of extra registers needed */ 1651 int op; /* Instruction opcode */ 1652 char *zStartAff; /* Affinity for start of range constraint */ 1653 char *zEndAff = 0; /* Affinity for end of range constraint */ 1654 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1655 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1656 int omitTable; /* True if we use the index only */ 1657 int regBignull = 0; /* big-null flag register */ 1658 int addrSeekScan = 0; /* Opcode of the OP_SeekScan, if any */ 1659 1660 pIdx = pLoop->u.btree.pIndex; 1661 iIdxCur = pLevel->iIdxCur; 1662 assert( nEq>=pLoop->nSkip ); 1663 1664 /* Find any inequality constraint terms for the start and end 1665 ** of the range. 1666 */ 1667 j = nEq; 1668 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1669 pRangeStart = pLoop->aLTerm[j++]; 1670 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); 1671 /* Like optimization range constraints always occur in pairs */ 1672 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1673 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1674 } 1675 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1676 pRangeEnd = pLoop->aLTerm[j++]; 1677 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); 1678 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1679 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1680 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1681 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1682 pLevel->iLikeRepCntr = (u32)++pParse->nMem; 1683 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); 1684 VdbeComment((v, "LIKE loop counter")); 1685 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1686 /* iLikeRepCntr actually stores 2x the counter register number. The 1687 ** bottom bit indicates whether the search order is ASC or DESC. */ 1688 testcase( bRev ); 1689 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1690 assert( (bRev & ~1)==0 ); 1691 pLevel->iLikeRepCntr <<=1; 1692 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); 1693 } 1694 #endif 1695 if( pRangeStart==0 ){ 1696 j = pIdx->aiColumn[nEq]; 1697 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){ 1698 bSeekPastNull = 1; 1699 } 1700 } 1701 } 1702 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1703 1704 /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses 1705 ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS 1706 ** FIRST). In both cases separate ordered scans are made of those 1707 ** index entries for which the column is null and for those for which 1708 ** it is not. For an ASC sort, the non-NULL entries are scanned first. 1709 ** For DESC, NULL entries are scanned first. 1710 */ 1711 if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0 1712 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0 1713 ){ 1714 assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 ); 1715 assert( pRangeEnd==0 && pRangeStart==0 ); 1716 testcase( pLoop->nSkip>0 ); 1717 nExtraReg = 1; 1718 bSeekPastNull = 1; 1719 pLevel->regBignull = regBignull = ++pParse->nMem; 1720 if( pLevel->iLeftJoin ){ 1721 sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull); 1722 } 1723 pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse); 1724 } 1725 1726 /* If we are doing a reverse order scan on an ascending index, or 1727 ** a forward order scan on a descending index, interchange the 1728 ** start and end terms (pRangeStart and pRangeEnd). 1729 */ 1730 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) 1731 || (bRev && pIdx->nKeyCol==nEq) 1732 ){ 1733 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1734 SWAP(u8, bSeekPastNull, bStopAtNull); 1735 SWAP(u8, nBtm, nTop); 1736 } 1737 1738 if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){ 1739 /* In case OP_SeekScan is used, ensure that the index cursor does not 1740 ** point to a valid row for the first iteration of this loop. */ 1741 sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur); 1742 } 1743 1744 /* Generate code to evaluate all constraint terms using == or IN 1745 ** and store the values of those terms in an array of registers 1746 ** starting at regBase. 1747 */ 1748 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); 1749 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1750 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1751 if( zStartAff && nTop ){ 1752 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); 1753 } 1754 addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt); 1755 1756 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1757 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1758 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1759 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1760 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1761 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1762 start_constraints = pRangeStart || nEq>0; 1763 1764 /* Seek the index cursor to the start of the range. */ 1765 nConstraint = nEq; 1766 if( pRangeStart ){ 1767 Expr *pRight = pRangeStart->pExpr->pRight; 1768 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); 1769 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1770 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1771 && sqlite3ExprCanBeNull(pRight) 1772 ){ 1773 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1774 VdbeCoverage(v); 1775 } 1776 if( zStartAff ){ 1777 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); 1778 } 1779 nConstraint += nBtm; 1780 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1781 if( sqlite3ExprIsVector(pRight)==0 ){ 1782 disableTerm(pLevel, pRangeStart); 1783 }else{ 1784 startEq = 1; 1785 } 1786 bSeekPastNull = 0; 1787 }else if( bSeekPastNull ){ 1788 startEq = 0; 1789 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1790 start_constraints = 1; 1791 nConstraint++; 1792 }else if( regBignull ){ 1793 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1794 start_constraints = 1; 1795 nConstraint++; 1796 } 1797 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1798 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ 1799 /* The skip-scan logic inside the call to codeAllEqualityConstraints() 1800 ** above has already left the cursor sitting on the correct row, 1801 ** so no further seeking is needed */ 1802 }else{ 1803 if( regBignull ){ 1804 sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull); 1805 VdbeComment((v, "NULL-scan pass ctr")); 1806 } 1807 1808 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 1809 assert( op!=0 ); 1810 if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){ 1811 assert( regBignull==0 ); 1812 /* TUNING: The OP_SeekScan opcode seeks to reduce the number 1813 ** of expensive seek operations by replacing a single seek with 1814 ** 1 or more step operations. The question is, how many steps 1815 ** should we try before giving up and going with a seek. The cost 1816 ** of a seek is proportional to the logarithm of the of the number 1817 ** of entries in the tree, so basing the number of steps to try 1818 ** on the estimated number of rows in the btree seems like a good 1819 ** guess. */ 1820 addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan, 1821 (pIdx->aiRowLogEst[0]+9)/10); 1822 VdbeCoverage(v); 1823 } 1824 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1825 VdbeCoverage(v); 1826 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1827 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1828 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 1829 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1830 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1831 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 1832 1833 assert( bSeekPastNull==0 || bStopAtNull==0 ); 1834 if( regBignull ){ 1835 assert( bSeekPastNull==1 || bStopAtNull==1 ); 1836 assert( bSeekPastNull==!bStopAtNull ); 1837 assert( bStopAtNull==startEq ); 1838 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2); 1839 op = aStartOp[(nConstraint>1)*4 + 2 + bRev]; 1840 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 1841 nConstraint-startEq); 1842 VdbeCoverage(v); 1843 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1844 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1845 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1846 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1847 assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE); 1848 } 1849 } 1850 1851 /* Load the value for the inequality constraint at the end of the 1852 ** range (if any). 1853 */ 1854 nConstraint = nEq; 1855 if( pRangeEnd ){ 1856 Expr *pRight = pRangeEnd->pExpr->pRight; 1857 codeExprOrVector(pParse, pRight, regBase+nEq, nTop); 1858 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 1859 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 1860 && sqlite3ExprCanBeNull(pRight) 1861 ){ 1862 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1863 VdbeCoverage(v); 1864 } 1865 if( zEndAff ){ 1866 updateRangeAffinityStr(pRight, nTop, zEndAff); 1867 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); 1868 }else{ 1869 assert( pParse->db->mallocFailed ); 1870 } 1871 nConstraint += nTop; 1872 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 1873 1874 if( sqlite3ExprIsVector(pRight)==0 ){ 1875 disableTerm(pLevel, pRangeEnd); 1876 }else{ 1877 endEq = 1; 1878 } 1879 }else if( bStopAtNull ){ 1880 if( regBignull==0 ){ 1881 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1882 endEq = 0; 1883 } 1884 nConstraint++; 1885 } 1886 sqlite3DbFree(db, zStartAff); 1887 sqlite3DbFree(db, zEndAff); 1888 1889 /* Top of the loop body */ 1890 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1891 1892 /* Check if the index cursor is past the end of the range. */ 1893 if( nConstraint ){ 1894 if( regBignull ){ 1895 /* Except, skip the end-of-range check while doing the NULL-scan */ 1896 sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3); 1897 VdbeComment((v, "If NULL-scan 2nd pass")); 1898 VdbeCoverage(v); 1899 } 1900 op = aEndOp[bRev*2 + endEq]; 1901 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1902 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1903 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1904 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1905 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1906 if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan); 1907 } 1908 if( regBignull ){ 1909 /* During a NULL-scan, check to see if we have reached the end of 1910 ** the NULLs */ 1911 assert( bSeekPastNull==!bStopAtNull ); 1912 assert( bSeekPastNull+bStopAtNull==1 ); 1913 assert( nConstraint+bSeekPastNull>0 ); 1914 sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2); 1915 VdbeComment((v, "If NULL-scan 1st pass")); 1916 VdbeCoverage(v); 1917 op = aEndOp[bRev*2 + bSeekPastNull]; 1918 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 1919 nConstraint+bSeekPastNull); 1920 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1921 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1922 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1923 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1924 } 1925 1926 if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){ 1927 sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq); 1928 } 1929 1930 /* Seek the table cursor, if required */ 1931 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 1932 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0; 1933 if( omitTable ){ 1934 /* pIdx is a covering index. No need to access the main table. */ 1935 }else if( HasRowid(pIdx->pTable) ){ 1936 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); 1937 }else if( iCur!=iIdxCur ){ 1938 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1939 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1940 for(j=0; j<pPk->nKeyCol; j++){ 1941 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]); 1942 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 1943 } 1944 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 1945 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 1946 } 1947 1948 if( pLevel->iLeftJoin==0 ){ 1949 /* If pIdx is an index on one or more expressions, then look through 1950 ** all the expressions in pWInfo and try to transform matching expressions 1951 ** into reference to index columns. Also attempt to translate references 1952 ** to virtual columns in the table into references to (stored) columns 1953 ** of the index. 1954 ** 1955 ** Do not do this for the RHS of a LEFT JOIN. This is because the 1956 ** expression may be evaluated after OP_NullRow has been executed on 1957 ** the cursor. In this case it is important to do the full evaluation, 1958 ** as the result of the expression may not be NULL, even if all table 1959 ** column values are. https://www.sqlite.org/src/info/7fa8049685b50b5a 1960 ** 1961 ** Also, do not do this when processing one index an a multi-index 1962 ** OR clause, since the transformation will become invalid once we 1963 ** move forward to the next index. 1964 ** https://sqlite.org/src/info/4e8e4857d32d401f 1965 */ 1966 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ 1967 whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo); 1968 } 1969 1970 /* If a partial index is driving the loop, try to eliminate WHERE clause 1971 ** terms from the query that must be true due to the WHERE clause of 1972 ** the partial index. 1973 ** 1974 ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work 1975 ** for a LEFT JOIN. 1976 */ 1977 if( pIdx->pPartIdxWhere ){ 1978 whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC); 1979 } 1980 }else{ 1981 testcase( pIdx->pPartIdxWhere ); 1982 /* The following assert() is not a requirement, merely an observation: 1983 ** The OR-optimization doesn't work for the right hand table of 1984 ** a LEFT JOIN: */ 1985 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ); 1986 } 1987 1988 /* Record the instruction used to terminate the loop. */ 1989 if( pLoop->wsFlags & WHERE_ONEROW ){ 1990 pLevel->op = OP_Noop; 1991 }else if( bRev ){ 1992 pLevel->op = OP_Prev; 1993 }else{ 1994 pLevel->op = OP_Next; 1995 } 1996 pLevel->p1 = iIdxCur; 1997 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 1998 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 1999 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2000 }else{ 2001 assert( pLevel->p5==0 ); 2002 } 2003 if( omitTable ) pIdx = 0; 2004 }else 2005 2006 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 2007 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 2008 /* Case 5: Two or more separately indexed terms connected by OR 2009 ** 2010 ** Example: 2011 ** 2012 ** CREATE TABLE t1(a,b,c,d); 2013 ** CREATE INDEX i1 ON t1(a); 2014 ** CREATE INDEX i2 ON t1(b); 2015 ** CREATE INDEX i3 ON t1(c); 2016 ** 2017 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 2018 ** 2019 ** In the example, there are three indexed terms connected by OR. 2020 ** The top of the loop looks like this: 2021 ** 2022 ** Null 1 # Zero the rowset in reg 1 2023 ** 2024 ** Then, for each indexed term, the following. The arguments to 2025 ** RowSetTest are such that the rowid of the current row is inserted 2026 ** into the RowSet. If it is already present, control skips the 2027 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 2028 ** 2029 ** sqlite3WhereBegin(<term>) 2030 ** RowSetTest # Insert rowid into rowset 2031 ** Gosub 2 A 2032 ** sqlite3WhereEnd() 2033 ** 2034 ** Following the above, code to terminate the loop. Label A, the target 2035 ** of the Gosub above, jumps to the instruction right after the Goto. 2036 ** 2037 ** Null 1 # Zero the rowset in reg 1 2038 ** Goto B # The loop is finished. 2039 ** 2040 ** A: <loop body> # Return data, whatever. 2041 ** 2042 ** Return 2 # Jump back to the Gosub 2043 ** 2044 ** B: <after the loop> 2045 ** 2046 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 2047 ** use an ephemeral index instead of a RowSet to record the primary 2048 ** keys of the rows we have already seen. 2049 ** 2050 */ 2051 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 2052 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 2053 Index *pCov = 0; /* Potential covering index (or NULL) */ 2054 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 2055 2056 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 2057 int regRowset = 0; /* Register for RowSet object */ 2058 int regRowid = 0; /* Register holding rowid */ 2059 int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */ 2060 int iRetInit; /* Address of regReturn init */ 2061 int untestedTerms = 0; /* Some terms not completely tested */ 2062 int ii; /* Loop counter */ 2063 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 2064 Table *pTab = pTabItem->pTab; 2065 2066 pTerm = pLoop->aLTerm[0]; 2067 assert( pTerm!=0 ); 2068 assert( pTerm->eOperator & WO_OR ); 2069 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 2070 pOrWc = &pTerm->u.pOrInfo->wc; 2071 pLevel->op = OP_Return; 2072 pLevel->p1 = regReturn; 2073 2074 /* Set up a new SrcList in pOrTab containing the table being scanned 2075 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 2076 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 2077 */ 2078 if( pWInfo->nLevel>1 ){ 2079 int nNotReady; /* The number of notReady tables */ 2080 SrcItem *origSrc; /* Original list of tables */ 2081 nNotReady = pWInfo->nLevel - iLevel - 1; 2082 pOrTab = sqlite3StackAllocRaw(db, 2083 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 2084 if( pOrTab==0 ) return notReady; 2085 pOrTab->nAlloc = (u8)(nNotReady + 1); 2086 pOrTab->nSrc = pOrTab->nAlloc; 2087 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 2088 origSrc = pWInfo->pTabList->a; 2089 for(k=1; k<=nNotReady; k++){ 2090 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 2091 } 2092 }else{ 2093 pOrTab = pWInfo->pTabList; 2094 } 2095 2096 /* Initialize the rowset register to contain NULL. An SQL NULL is 2097 ** equivalent to an empty rowset. Or, create an ephemeral index 2098 ** capable of holding primary keys in the case of a WITHOUT ROWID. 2099 ** 2100 ** Also initialize regReturn to contain the address of the instruction 2101 ** immediately following the OP_Return at the bottom of the loop. This 2102 ** is required in a few obscure LEFT JOIN cases where control jumps 2103 ** over the top of the loop into the body of it. In this case the 2104 ** correct response for the end-of-loop code (the OP_Return) is to 2105 ** fall through to the next instruction, just as an OP_Next does if 2106 ** called on an uninitialized cursor. 2107 */ 2108 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2109 if( HasRowid(pTab) ){ 2110 regRowset = ++pParse->nMem; 2111 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 2112 }else{ 2113 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2114 regRowset = pParse->nTab++; 2115 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 2116 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 2117 } 2118 regRowid = ++pParse->nMem; 2119 } 2120 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 2121 2122 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 2123 ** Then for every term xN, evaluate as the subexpression: xN AND z 2124 ** That way, terms in y that are factored into the disjunction will 2125 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 2126 ** 2127 ** Actually, each subexpression is converted to "xN AND w" where w is 2128 ** the "interesting" terms of z - terms that did not originate in the 2129 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 2130 ** indices. 2131 ** 2132 ** This optimization also only applies if the (x1 OR x2 OR ...) term 2133 ** is not contained in the ON clause of a LEFT JOIN. 2134 ** See ticket http://www.sqlite.org/src/info/f2369304e4 2135 */ 2136 if( pWC->nTerm>1 ){ 2137 int iTerm; 2138 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 2139 Expr *pExpr = pWC->a[iTerm].pExpr; 2140 if( &pWC->a[iTerm] == pTerm ) continue; 2141 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); 2142 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); 2143 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue; 2144 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 2145 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); 2146 pExpr = sqlite3ExprDup(db, pExpr, 0); 2147 pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr); 2148 } 2149 if( pAndExpr ){ 2150 /* The extra 0x10000 bit on the opcode is masked off and does not 2151 ** become part of the new Expr.op. However, it does make the 2152 ** op==TK_AND comparison inside of sqlite3PExpr() false, and this 2153 ** prevents sqlite3PExpr() from implementing AND short-circuit 2154 ** optimization, which we do not want here. */ 2155 pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr); 2156 } 2157 } 2158 2159 /* Run a separate WHERE clause for each term of the OR clause. After 2160 ** eliminating duplicates from other WHERE clauses, the action for each 2161 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 2162 */ 2163 ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR")); 2164 for(ii=0; ii<pOrWc->nTerm; ii++){ 2165 WhereTerm *pOrTerm = &pOrWc->a[ii]; 2166 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 2167 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 2168 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 2169 int jmp1 = 0; /* Address of jump operation */ 2170 testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0 2171 && !ExprHasProperty(pOrExpr, EP_FromJoin) 2172 ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */ 2173 if( pAndExpr ){ 2174 pAndExpr->pLeft = pOrExpr; 2175 pOrExpr = pAndExpr; 2176 } 2177 /* Loop through table entries that match term pOrTerm. */ 2178 ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1)); 2179 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 2180 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 2181 WHERE_OR_SUBCLAUSE, iCovCur); 2182 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); 2183 if( pSubWInfo ){ 2184 WhereLoop *pSubLoop; 2185 int addrExplain = sqlite3WhereExplainOneScan( 2186 pParse, pOrTab, &pSubWInfo->a[0], 0 2187 ); 2188 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 2189 2190 /* This is the sub-WHERE clause body. First skip over 2191 ** duplicate rows from prior sub-WHERE clauses, and record the 2192 ** rowid (or PRIMARY KEY) for the current row so that the same 2193 ** row will be skipped in subsequent sub-WHERE clauses. 2194 */ 2195 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2196 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 2197 if( HasRowid(pTab) ){ 2198 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid); 2199 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 2200 regRowid, iSet); 2201 VdbeCoverage(v); 2202 }else{ 2203 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2204 int nPk = pPk->nKeyCol; 2205 int iPk; 2206 int r; 2207 2208 /* Read the PK into an array of temp registers. */ 2209 r = sqlite3GetTempRange(pParse, nPk); 2210 for(iPk=0; iPk<nPk; iPk++){ 2211 int iCol = pPk->aiColumn[iPk]; 2212 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk); 2213 } 2214 2215 /* Check if the temp table already contains this key. If so, 2216 ** the row has already been included in the result set and 2217 ** can be ignored (by jumping past the Gosub below). Otherwise, 2218 ** insert the key into the temp table and proceed with processing 2219 ** the row. 2220 ** 2221 ** Use some of the same optimizations as OP_RowSetTest: If iSet 2222 ** is zero, assume that the key cannot already be present in 2223 ** the temp table. And if iSet is -1, assume that there is no 2224 ** need to insert the key into the temp table, as it will never 2225 ** be tested for. */ 2226 if( iSet ){ 2227 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 2228 VdbeCoverage(v); 2229 } 2230 if( iSet>=0 ){ 2231 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 2232 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid, 2233 r, nPk); 2234 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2235 } 2236 2237 /* Release the array of temp registers */ 2238 sqlite3ReleaseTempRange(pParse, r, nPk); 2239 } 2240 } 2241 2242 /* Invoke the main loop body as a subroutine */ 2243 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 2244 2245 /* Jump here (skipping the main loop body subroutine) if the 2246 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 2247 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 2248 2249 /* The pSubWInfo->untestedTerms flag means that this OR term 2250 ** contained one or more AND term from a notReady table. The 2251 ** terms from the notReady table could not be tested and will 2252 ** need to be tested later. 2253 */ 2254 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 2255 2256 /* If all of the OR-connected terms are optimized using the same 2257 ** index, and the index is opened using the same cursor number 2258 ** by each call to sqlite3WhereBegin() made by this loop, it may 2259 ** be possible to use that index as a covering index. 2260 ** 2261 ** If the call to sqlite3WhereBegin() above resulted in a scan that 2262 ** uses an index, and this is either the first OR-connected term 2263 ** processed or the index is the same as that used by all previous 2264 ** terms, set pCov to the candidate covering index. Otherwise, set 2265 ** pCov to NULL to indicate that no candidate covering index will 2266 ** be available. 2267 */ 2268 pSubLoop = pSubWInfo->a[0].pWLoop; 2269 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2270 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 2271 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 2272 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 2273 ){ 2274 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 2275 pCov = pSubLoop->u.btree.pIndex; 2276 }else{ 2277 pCov = 0; 2278 } 2279 if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){ 2280 pWInfo->bDeferredSeek = 1; 2281 } 2282 2283 /* Finish the loop through table entries that match term pOrTerm. */ 2284 sqlite3WhereEnd(pSubWInfo); 2285 ExplainQueryPlanPop(pParse); 2286 } 2287 } 2288 } 2289 ExplainQueryPlanPop(pParse); 2290 pLevel->u.pCovidx = pCov; 2291 if( pCov ) pLevel->iIdxCur = iCovCur; 2292 if( pAndExpr ){ 2293 pAndExpr->pLeft = 0; 2294 sqlite3ExprDelete(db, pAndExpr); 2295 } 2296 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 2297 sqlite3VdbeGoto(v, pLevel->addrBrk); 2298 sqlite3VdbeResolveLabel(v, iLoopBody); 2299 2300 if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); } 2301 if( !untestedTerms ) disableTerm(pLevel, pTerm); 2302 }else 2303 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 2304 2305 { 2306 /* Case 6: There is no usable index. We must do a complete 2307 ** scan of the entire table. 2308 */ 2309 static const u8 aStep[] = { OP_Next, OP_Prev }; 2310 static const u8 aStart[] = { OP_Rewind, OP_Last }; 2311 assert( bRev==0 || bRev==1 ); 2312 if( pTabItem->fg.isRecursive ){ 2313 /* Tables marked isRecursive have only a single row that is stored in 2314 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 2315 pLevel->op = OP_Noop; 2316 }else{ 2317 codeCursorHint(pTabItem, pWInfo, pLevel, 0); 2318 pLevel->op = aStep[bRev]; 2319 pLevel->p1 = iCur; 2320 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt); 2321 VdbeCoverageIf(v, bRev==0); 2322 VdbeCoverageIf(v, bRev!=0); 2323 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2324 } 2325 } 2326 2327 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2328 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 2329 #endif 2330 2331 /* Insert code to test every subexpression that can be completely 2332 ** computed using the current set of tables. 2333 ** 2334 ** This loop may run between one and three times, depending on the 2335 ** constraints to be generated. The value of stack variable iLoop 2336 ** determines the constraints coded by each iteration, as follows: 2337 ** 2338 ** iLoop==1: Code only expressions that are entirely covered by pIdx. 2339 ** iLoop==2: Code remaining expressions that do not contain correlated 2340 ** sub-queries. 2341 ** iLoop==3: Code all remaining expressions. 2342 ** 2343 ** An effort is made to skip unnecessary iterations of the loop. 2344 */ 2345 iLoop = (pIdx ? 1 : 2); 2346 do{ 2347 int iNext = 0; /* Next value for iLoop */ 2348 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2349 Expr *pE; 2350 int skipLikeAddr = 0; 2351 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2352 testcase( pTerm->wtFlags & TERM_CODED ); 2353 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2354 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2355 testcase( pWInfo->untestedTerms==0 2356 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); 2357 pWInfo->untestedTerms = 1; 2358 continue; 2359 } 2360 pE = pTerm->pExpr; 2361 assert( pE!=0 ); 2362 if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){ 2363 continue; 2364 } 2365 2366 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){ 2367 iNext = 2; 2368 continue; 2369 } 2370 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){ 2371 if( iNext==0 ) iNext = 3; 2372 continue; 2373 } 2374 2375 if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){ 2376 /* If the TERM_LIKECOND flag is set, that means that the range search 2377 ** is sufficient to guarantee that the LIKE operator is true, so we 2378 ** can skip the call to the like(A,B) function. But this only works 2379 ** for strings. So do not skip the call to the function on the pass 2380 ** that compares BLOBs. */ 2381 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 2382 continue; 2383 #else 2384 u32 x = pLevel->iLikeRepCntr; 2385 if( x>0 ){ 2386 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1)); 2387 VdbeCoverageIf(v, (x&1)==1); 2388 VdbeCoverageIf(v, (x&1)==0); 2389 } 2390 #endif 2391 } 2392 #ifdef WHERETRACE_ENABLED /* 0xffff */ 2393 if( sqlite3WhereTrace ){ 2394 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d", 2395 pWC->nTerm-j, pTerm, iLoop)); 2396 } 2397 if( sqlite3WhereTrace & 0x800 ){ 2398 sqlite3DebugPrintf("Coding auxiliary constraint:\n"); 2399 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2400 } 2401 #endif 2402 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 2403 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 2404 pTerm->wtFlags |= TERM_CODED; 2405 } 2406 iLoop = iNext; 2407 }while( iLoop>0 ); 2408 2409 /* Insert code to test for implied constraints based on transitivity 2410 ** of the "==" operator. 2411 ** 2412 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 2413 ** and we are coding the t1 loop and the t2 loop has not yet coded, 2414 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 2415 ** the implied "t1.a=123" constraint. 2416 */ 2417 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2418 Expr *pE, sEAlt; 2419 WhereTerm *pAlt; 2420 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2421 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 2422 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 2423 if( pTerm->leftCursor!=iCur ) continue; 2424 if( pTabItem->fg.jointype & JT_LEFT ) continue; 2425 pE = pTerm->pExpr; 2426 #ifdef WHERETRACE_ENABLED /* 0x800 */ 2427 if( sqlite3WhereTrace & 0x800 ){ 2428 sqlite3DebugPrintf("Coding transitive constraint:\n"); 2429 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2430 } 2431 #endif 2432 assert( !ExprHasProperty(pE, EP_FromJoin) ); 2433 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 2434 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady, 2435 WO_EQ|WO_IN|WO_IS, 0); 2436 if( pAlt==0 ) continue; 2437 if( pAlt->wtFlags & (TERM_CODED) ) continue; 2438 if( (pAlt->eOperator & WO_IN) 2439 && (pAlt->pExpr->flags & EP_xIsSelect) 2440 && (pAlt->pExpr->x.pSelect->pEList->nExpr>1) 2441 ){ 2442 continue; 2443 } 2444 testcase( pAlt->eOperator & WO_EQ ); 2445 testcase( pAlt->eOperator & WO_IS ); 2446 testcase( pAlt->eOperator & WO_IN ); 2447 VdbeModuleComment((v, "begin transitive constraint")); 2448 sEAlt = *pAlt->pExpr; 2449 sEAlt.pLeft = pE->pLeft; 2450 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); 2451 } 2452 2453 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2454 ** at least one row of the right table has matched the left table. 2455 */ 2456 if( pLevel->iLeftJoin ){ 2457 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2458 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2459 VdbeComment((v, "record LEFT JOIN hit")); 2460 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 2461 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2462 testcase( pTerm->wtFlags & TERM_CODED ); 2463 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2464 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2465 assert( pWInfo->untestedTerms ); 2466 continue; 2467 } 2468 assert( pTerm->pExpr ); 2469 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 2470 pTerm->wtFlags |= TERM_CODED; 2471 } 2472 } 2473 2474 #if WHERETRACE_ENABLED /* 0x20800 */ 2475 if( sqlite3WhereTrace & 0x20000 ){ 2476 sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n", 2477 iLevel); 2478 sqlite3WhereClausePrint(pWC); 2479 } 2480 if( sqlite3WhereTrace & 0x800 ){ 2481 sqlite3DebugPrintf("End Coding level %d: notReady=%llx\n", 2482 iLevel, (u64)pLevel->notReady); 2483 } 2484 #endif 2485 return pLevel->notReady; 2486 } 2487