xref: /sqlite-3.40.0/src/wherecode.c (revision 9cffb0ff)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 
25 /*
26 ** Return the name of the i-th column of the pIdx index.
27 */
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29   i = pIdx->aiColumn[i];
30   if( i==XN_EXPR ) return "<expr>";
31   if( i==XN_ROWID ) return "rowid";
32   return pIdx->pTable->aCol[i].zName;
33 }
34 
35 /*
36 ** This routine is a helper for explainIndexRange() below
37 **
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time.  This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
42 */
43 static void explainAppendTerm(
44   StrAccum *pStr,             /* The text expression being built */
45   Index *pIdx,                /* Index to read column names from */
46   int nTerm,                  /* Number of terms */
47   int iTerm,                  /* Zero-based index of first term. */
48   int bAnd,                   /* Non-zero to append " AND " */
49   const char *zOp             /* Name of the operator */
50 ){
51   int i;
52 
53   assert( nTerm>=1 );
54   if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
55 
56   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
57   for(i=0; i<nTerm; i++){
58     if( i ) sqlite3_str_append(pStr, ",", 1);
59     sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
60   }
61   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
62 
63   sqlite3_str_append(pStr, zOp, 1);
64 
65   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
66   for(i=0; i<nTerm; i++){
67     if( i ) sqlite3_str_append(pStr, ",", 1);
68     sqlite3_str_append(pStr, "?", 1);
69   }
70   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
71 }
72 
73 /*
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
77 **
78 ** For example, if the query:
79 **
80 **   SELECT * FROM t1 WHERE a=1 AND b>2;
81 **
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
84 **
85 **   "a=? AND b>?"
86 */
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88   Index *pIndex = pLoop->u.btree.pIndex;
89   u16 nEq = pLoop->u.btree.nEq;
90   u16 nSkip = pLoop->nSkip;
91   int i, j;
92 
93   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94   sqlite3_str_append(pStr, " (", 2);
95   for(i=0; i<nEq; i++){
96     const char *z = explainIndexColumnName(pIndex, i);
97     if( i ) sqlite3_str_append(pStr, " AND ", 5);
98     sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
99   }
100 
101   j = i;
102   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104     i = 1;
105   }
106   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
108   }
109   sqlite3_str_append(pStr, ")", 1);
110 }
111 
112 /*
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
117 **
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
120 */
121 int sqlite3WhereExplainOneScan(
122   Parse *pParse,                  /* Parse context */
123   SrcList *pTabList,              /* Table list this loop refers to */
124   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
125   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
126 ){
127   int ret = 0;
128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
129   if( sqlite3ParseToplevel(pParse)->explain==2 )
130 #endif
131   {
132     SrcItem *pItem = &pTabList->a[pLevel->iFrom];
133     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
134     sqlite3 *db = pParse->db;     /* Database handle */
135     int isSearch;                 /* True for a SEARCH. False for SCAN. */
136     WhereLoop *pLoop;             /* The controlling WhereLoop object */
137     u32 flags;                    /* Flags that describe this loop */
138     char *zMsg;                   /* Text to add to EQP output */
139     StrAccum str;                 /* EQP output string */
140     char zBuf[100];               /* Initial space for EQP output string */
141 
142     pLoop = pLevel->pWLoop;
143     flags = pLoop->wsFlags;
144     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
145 
146     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
147             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
148             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
149 
150     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
151     str.printfFlags = SQLITE_PRINTF_INTERNAL;
152     sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem);
153     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
154       const char *zFmt = 0;
155       Index *pIdx;
156 
157       assert( pLoop->u.btree.pIndex!=0 );
158       pIdx = pLoop->u.btree.pIndex;
159       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
160       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
161         if( isSearch ){
162           zFmt = "PRIMARY KEY";
163         }
164       }else if( flags & WHERE_PARTIALIDX ){
165         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
166       }else if( flags & WHERE_AUTO_INDEX ){
167         zFmt = "AUTOMATIC COVERING INDEX";
168       }else if( flags & WHERE_IDX_ONLY ){
169         zFmt = "COVERING INDEX %s";
170       }else{
171         zFmt = "INDEX %s";
172       }
173       if( zFmt ){
174         sqlite3_str_append(&str, " USING ", 7);
175         sqlite3_str_appendf(&str, zFmt, pIdx->zName);
176         explainIndexRange(&str, pLoop);
177       }
178     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
179       const char *zRangeOp;
180       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
181         zRangeOp = "=";
182       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
183         zRangeOp = ">? AND rowid<";
184       }else if( flags&WHERE_BTM_LIMIT ){
185         zRangeOp = ">";
186       }else{
187         assert( flags&WHERE_TOP_LIMIT);
188         zRangeOp = "<";
189       }
190       sqlite3_str_appendf(&str,
191           " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
192     }
193 #ifndef SQLITE_OMIT_VIRTUALTABLE
194     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
195       sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
196                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
197     }
198 #endif
199 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
200     if( pLoop->nOut>=10 ){
201       sqlite3_str_appendf(&str, " (~%llu rows)",
202              sqlite3LogEstToInt(pLoop->nOut));
203     }else{
204       sqlite3_str_append(&str, " (~1 row)", 9);
205     }
206 #endif
207     zMsg = sqlite3StrAccumFinish(&str);
208     sqlite3ExplainBreakpoint("",zMsg);
209     ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
210                             pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
211   }
212   return ret;
213 }
214 #endif /* SQLITE_OMIT_EXPLAIN */
215 
216 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
217 /*
218 ** Configure the VM passed as the first argument with an
219 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
220 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
221 ** clause that the scan reads data from.
222 **
223 ** If argument addrExplain is not 0, it must be the address of an
224 ** OP_Explain instruction that describes the same loop.
225 */
226 void sqlite3WhereAddScanStatus(
227   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
228   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
229   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
230   int addrExplain                 /* Address of OP_Explain (or 0) */
231 ){
232   const char *zObj = 0;
233   WhereLoop *pLoop = pLvl->pWLoop;
234   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
235     zObj = pLoop->u.btree.pIndex->zName;
236   }else{
237     zObj = pSrclist->a[pLvl->iFrom].zName;
238   }
239   sqlite3VdbeScanStatus(
240       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
241   );
242 }
243 #endif
244 
245 
246 /*
247 ** Disable a term in the WHERE clause.  Except, do not disable the term
248 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
249 ** or USING clause of that join.
250 **
251 ** Consider the term t2.z='ok' in the following queries:
252 **
253 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
254 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
255 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
256 **
257 ** The t2.z='ok' is disabled in the in (2) because it originates
258 ** in the ON clause.  The term is disabled in (3) because it is not part
259 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
260 **
261 ** Disabling a term causes that term to not be tested in the inner loop
262 ** of the join.  Disabling is an optimization.  When terms are satisfied
263 ** by indices, we disable them to prevent redundant tests in the inner
264 ** loop.  We would get the correct results if nothing were ever disabled,
265 ** but joins might run a little slower.  The trick is to disable as much
266 ** as we can without disabling too much.  If we disabled in (1), we'd get
267 ** the wrong answer.  See ticket #813.
268 **
269 ** If all the children of a term are disabled, then that term is also
270 ** automatically disabled.  In this way, terms get disabled if derived
271 ** virtual terms are tested first.  For example:
272 **
273 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
274 **      \___________/     \______/     \_____/
275 **         parent          child1       child2
276 **
277 ** Only the parent term was in the original WHERE clause.  The child1
278 ** and child2 terms were added by the LIKE optimization.  If both of
279 ** the virtual child terms are valid, then testing of the parent can be
280 ** skipped.
281 **
282 ** Usually the parent term is marked as TERM_CODED.  But if the parent
283 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
284 ** The TERM_LIKECOND marking indicates that the term should be coded inside
285 ** a conditional such that is only evaluated on the second pass of a
286 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
287 */
288 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
289   int nLoop = 0;
290   assert( pTerm!=0 );
291   while( (pTerm->wtFlags & TERM_CODED)==0
292       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
293       && (pLevel->notReady & pTerm->prereqAll)==0
294   ){
295     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
296       pTerm->wtFlags |= TERM_LIKECOND;
297     }else{
298       pTerm->wtFlags |= TERM_CODED;
299     }
300     if( pTerm->iParent<0 ) break;
301     pTerm = &pTerm->pWC->a[pTerm->iParent];
302     assert( pTerm!=0 );
303     pTerm->nChild--;
304     if( pTerm->nChild!=0 ) break;
305     nLoop++;
306   }
307 }
308 
309 /*
310 ** Code an OP_Affinity opcode to apply the column affinity string zAff
311 ** to the n registers starting at base.
312 **
313 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
314 ** are no-ops) at the beginning and end of zAff are ignored.  If all entries
315 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
316 **
317 ** This routine makes its own copy of zAff so that the caller is free
318 ** to modify zAff after this routine returns.
319 */
320 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
321   Vdbe *v = pParse->pVdbe;
322   if( zAff==0 ){
323     assert( pParse->db->mallocFailed );
324     return;
325   }
326   assert( v!=0 );
327 
328   /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
329   ** entries at the beginning and end of the affinity string.
330   */
331   assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB );
332   while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){
333     n--;
334     base++;
335     zAff++;
336   }
337   while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){
338     n--;
339   }
340 
341   /* Code the OP_Affinity opcode if there is anything left to do. */
342   if( n>0 ){
343     sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
344   }
345 }
346 
347 /*
348 ** Expression pRight, which is the RHS of a comparison operation, is
349 ** either a vector of n elements or, if n==1, a scalar expression.
350 ** Before the comparison operation, affinity zAff is to be applied
351 ** to the pRight values. This function modifies characters within the
352 ** affinity string to SQLITE_AFF_BLOB if either:
353 **
354 **   * the comparison will be performed with no affinity, or
355 **   * the affinity change in zAff is guaranteed not to change the value.
356 */
357 static void updateRangeAffinityStr(
358   Expr *pRight,                   /* RHS of comparison */
359   int n,                          /* Number of vector elements in comparison */
360   char *zAff                      /* Affinity string to modify */
361 ){
362   int i;
363   for(i=0; i<n; i++){
364     Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
365     if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
366      || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
367     ){
368       zAff[i] = SQLITE_AFF_BLOB;
369     }
370   }
371 }
372 
373 
374 /*
375 ** pX is an expression of the form:  (vector) IN (SELECT ...)
376 ** In other words, it is a vector IN operator with a SELECT clause on the
377 ** LHS.  But not all terms in the vector are indexable and the terms might
378 ** not be in the correct order for indexing.
379 **
380 ** This routine makes a copy of the input pX expression and then adjusts
381 ** the vector on the LHS with corresponding changes to the SELECT so that
382 ** the vector contains only index terms and those terms are in the correct
383 ** order.  The modified IN expression is returned.  The caller is responsible
384 ** for deleting the returned expression.
385 **
386 ** Example:
387 **
388 **    CREATE TABLE t1(a,b,c,d,e,f);
389 **    CREATE INDEX t1x1 ON t1(e,c);
390 **    SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
391 **                           \_______________________________________/
392 **                                     The pX expression
393 **
394 ** Since only columns e and c can be used with the index, in that order,
395 ** the modified IN expression that is returned will be:
396 **
397 **        (e,c) IN (SELECT z,x FROM t2)
398 **
399 ** The reduced pX is different from the original (obviously) and thus is
400 ** only used for indexing, to improve performance.  The original unaltered
401 ** IN expression must also be run on each output row for correctness.
402 */
403 static Expr *removeUnindexableInClauseTerms(
404   Parse *pParse,        /* The parsing context */
405   int iEq,              /* Look at loop terms starting here */
406   WhereLoop *pLoop,     /* The current loop */
407   Expr *pX              /* The IN expression to be reduced */
408 ){
409   sqlite3 *db = pParse->db;
410   Expr *pNew;
411   pNew = sqlite3ExprDup(db, pX, 0);
412   if( db->mallocFailed==0 ){
413     ExprList *pOrigRhs = pNew->x.pSelect->pEList;  /* Original unmodified RHS */
414     ExprList *pOrigLhs = pNew->pLeft->x.pList;     /* Original unmodified LHS */
415     ExprList *pRhs = 0;         /* New RHS after modifications */
416     ExprList *pLhs = 0;         /* New LHS after mods */
417     int i;                      /* Loop counter */
418     Select *pSelect;            /* Pointer to the SELECT on the RHS */
419 
420     for(i=iEq; i<pLoop->nLTerm; i++){
421       if( pLoop->aLTerm[i]->pExpr==pX ){
422         int iField = pLoop->aLTerm[i]->u.x.iField - 1;
423         if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
424         pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
425         pOrigRhs->a[iField].pExpr = 0;
426         assert( pOrigLhs->a[iField].pExpr!=0 );
427         pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
428         pOrigLhs->a[iField].pExpr = 0;
429       }
430     }
431     sqlite3ExprListDelete(db, pOrigRhs);
432     sqlite3ExprListDelete(db, pOrigLhs);
433     pNew->pLeft->x.pList = pLhs;
434     pNew->x.pSelect->pEList = pRhs;
435     if( pLhs && pLhs->nExpr==1 ){
436       /* Take care here not to generate a TK_VECTOR containing only a
437       ** single value. Since the parser never creates such a vector, some
438       ** of the subroutines do not handle this case.  */
439       Expr *p = pLhs->a[0].pExpr;
440       pLhs->a[0].pExpr = 0;
441       sqlite3ExprDelete(db, pNew->pLeft);
442       pNew->pLeft = p;
443     }
444     pSelect = pNew->x.pSelect;
445     if( pSelect->pOrderBy ){
446       /* If the SELECT statement has an ORDER BY clause, zero the
447       ** iOrderByCol variables. These are set to non-zero when an
448       ** ORDER BY term exactly matches one of the terms of the
449       ** result-set. Since the result-set of the SELECT statement may
450       ** have been modified or reordered, these variables are no longer
451       ** set correctly.  Since setting them is just an optimization,
452       ** it's easiest just to zero them here.  */
453       ExprList *pOrderBy = pSelect->pOrderBy;
454       for(i=0; i<pOrderBy->nExpr; i++){
455         pOrderBy->a[i].u.x.iOrderByCol = 0;
456       }
457     }
458 
459 #if 0
460     printf("For indexing, change the IN expr:\n");
461     sqlite3TreeViewExpr(0, pX, 0);
462     printf("Into:\n");
463     sqlite3TreeViewExpr(0, pNew, 0);
464 #endif
465   }
466   return pNew;
467 }
468 
469 
470 /*
471 ** Generate code for a single equality term of the WHERE clause.  An equality
472 ** term can be either X=expr or X IN (...).   pTerm is the term to be
473 ** coded.
474 **
475 ** The current value for the constraint is left in a register, the index
476 ** of which is returned.  An attempt is made store the result in iTarget but
477 ** this is only guaranteed for TK_ISNULL and TK_IN constraints.  If the
478 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
479 ** some other register and it is the caller's responsibility to compensate.
480 **
481 ** For a constraint of the form X=expr, the expression is evaluated in
482 ** straight-line code.  For constraints of the form X IN (...)
483 ** this routine sets up a loop that will iterate over all values of X.
484 */
485 static int codeEqualityTerm(
486   Parse *pParse,      /* The parsing context */
487   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
488   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
489   int iEq,            /* Index of the equality term within this level */
490   int bRev,           /* True for reverse-order IN operations */
491   int iTarget         /* Attempt to leave results in this register */
492 ){
493   Expr *pX = pTerm->pExpr;
494   Vdbe *v = pParse->pVdbe;
495   int iReg;                  /* Register holding results */
496 
497   assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
498   assert( iTarget>0 );
499   if( pX->op==TK_EQ || pX->op==TK_IS ){
500     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
501   }else if( pX->op==TK_ISNULL ){
502     iReg = iTarget;
503     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
504 #ifndef SQLITE_OMIT_SUBQUERY
505   }else{
506     int eType = IN_INDEX_NOOP;
507     int iTab;
508     struct InLoop *pIn;
509     WhereLoop *pLoop = pLevel->pWLoop;
510     int i;
511     int nEq = 0;
512     int *aiMap = 0;
513 
514     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
515       && pLoop->u.btree.pIndex!=0
516       && pLoop->u.btree.pIndex->aSortOrder[iEq]
517     ){
518       testcase( iEq==0 );
519       testcase( bRev );
520       bRev = !bRev;
521     }
522     assert( pX->op==TK_IN );
523     iReg = iTarget;
524 
525     for(i=0; i<iEq; i++){
526       if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
527         disableTerm(pLevel, pTerm);
528         return iTarget;
529       }
530     }
531     for(i=iEq;i<pLoop->nLTerm; i++){
532       assert( pLoop->aLTerm[i]!=0 );
533       if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
534     }
535 
536     iTab = 0;
537     if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){
538       eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab);
539     }else{
540       sqlite3 *db = pParse->db;
541       pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
542 
543       if( !db->mallocFailed ){
544         aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
545         eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab);
546         pTerm->pExpr->iTable = iTab;
547       }
548       sqlite3ExprDelete(db, pX);
549       pX = pTerm->pExpr;
550     }
551 
552     if( eType==IN_INDEX_INDEX_DESC ){
553       testcase( bRev );
554       bRev = !bRev;
555     }
556     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
557     VdbeCoverageIf(v, bRev);
558     VdbeCoverageIf(v, !bRev);
559     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
560 
561     pLoop->wsFlags |= WHERE_IN_ABLE;
562     if( pLevel->u.in.nIn==0 ){
563       pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
564     }
565     if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){
566       pLoop->wsFlags |= WHERE_IN_EARLYOUT;
567     }
568 
569     i = pLevel->u.in.nIn;
570     pLevel->u.in.nIn += nEq;
571     pLevel->u.in.aInLoop =
572        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
573                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
574     pIn = pLevel->u.in.aInLoop;
575     if( pIn ){
576       int iMap = 0;               /* Index in aiMap[] */
577       pIn += i;
578       for(i=iEq;i<pLoop->nLTerm; i++){
579         if( pLoop->aLTerm[i]->pExpr==pX ){
580           int iOut = iReg + i - iEq;
581           if( eType==IN_INDEX_ROWID ){
582             pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
583           }else{
584             int iCol = aiMap ? aiMap[iMap++] : 0;
585             pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
586           }
587           sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
588           if( i==iEq ){
589             pIn->iCur = iTab;
590             pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
591             if( iEq>0 ){
592               pIn->iBase = iReg - i;
593               pIn->nPrefix = i;
594             }else{
595               pIn->nPrefix = 0;
596             }
597           }else{
598             pIn->eEndLoopOp = OP_Noop;
599           }
600           pIn++;
601         }
602       }
603       testcase( iEq>0
604                 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
605                 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 );
606       if( iEq>0
607        && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0
608       ){
609         sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq);
610       }
611     }else{
612       pLevel->u.in.nIn = 0;
613     }
614     sqlite3DbFree(pParse->db, aiMap);
615 #endif
616   }
617   disableTerm(pLevel, pTerm);
618   return iReg;
619 }
620 
621 /*
622 ** Generate code that will evaluate all == and IN constraints for an
623 ** index scan.
624 **
625 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
626 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
627 ** The index has as many as three equality constraints, but in this
628 ** example, the third "c" value is an inequality.  So only two
629 ** constraints are coded.  This routine will generate code to evaluate
630 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
631 ** in consecutive registers and the index of the first register is returned.
632 **
633 ** In the example above nEq==2.  But this subroutine works for any value
634 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
635 ** The only thing it does is allocate the pLevel->iMem memory cell and
636 ** compute the affinity string.
637 **
638 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
639 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
640 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
641 ** occurs after the nEq quality constraints.
642 **
643 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
644 ** the index of the first memory cell in that range. The code that
645 ** calls this routine will use that memory range to store keys for
646 ** start and termination conditions of the loop.
647 ** key value of the loop.  If one or more IN operators appear, then
648 ** this routine allocates an additional nEq memory cells for internal
649 ** use.
650 **
651 ** Before returning, *pzAff is set to point to a buffer containing a
652 ** copy of the column affinity string of the index allocated using
653 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
654 ** with equality constraints that use BLOB or NONE affinity are set to
655 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
656 **
657 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
658 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
659 **
660 ** In the example above, the index on t1(a) has TEXT affinity. But since
661 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
662 ** no conversion should be attempted before using a t2.b value as part of
663 ** a key to search the index. Hence the first byte in the returned affinity
664 ** string in this example would be set to SQLITE_AFF_BLOB.
665 */
666 static int codeAllEqualityTerms(
667   Parse *pParse,        /* Parsing context */
668   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
669   int bRev,             /* Reverse the order of IN operators */
670   int nExtraReg,        /* Number of extra registers to allocate */
671   char **pzAff          /* OUT: Set to point to affinity string */
672 ){
673   u16 nEq;                      /* The number of == or IN constraints to code */
674   u16 nSkip;                    /* Number of left-most columns to skip */
675   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
676   Index *pIdx;                  /* The index being used for this loop */
677   WhereTerm *pTerm;             /* A single constraint term */
678   WhereLoop *pLoop;             /* The WhereLoop object */
679   int j;                        /* Loop counter */
680   int regBase;                  /* Base register */
681   int nReg;                     /* Number of registers to allocate */
682   char *zAff;                   /* Affinity string to return */
683 
684   /* This module is only called on query plans that use an index. */
685   pLoop = pLevel->pWLoop;
686   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
687   nEq = pLoop->u.btree.nEq;
688   nSkip = pLoop->nSkip;
689   pIdx = pLoop->u.btree.pIndex;
690   assert( pIdx!=0 );
691 
692   /* Figure out how many memory cells we will need then allocate them.
693   */
694   regBase = pParse->nMem + 1;
695   nReg = pLoop->u.btree.nEq + nExtraReg;
696   pParse->nMem += nReg;
697 
698   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
699   assert( zAff!=0 || pParse->db->mallocFailed );
700 
701   if( nSkip ){
702     int iIdxCur = pLevel->iIdxCur;
703     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
704     VdbeCoverageIf(v, bRev==0);
705     VdbeCoverageIf(v, bRev!=0);
706     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
707     j = sqlite3VdbeAddOp0(v, OP_Goto);
708     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
709                             iIdxCur, 0, regBase, nSkip);
710     VdbeCoverageIf(v, bRev==0);
711     VdbeCoverageIf(v, bRev!=0);
712     sqlite3VdbeJumpHere(v, j);
713     for(j=0; j<nSkip; j++){
714       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
715       testcase( pIdx->aiColumn[j]==XN_EXPR );
716       VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
717     }
718   }
719 
720   /* Evaluate the equality constraints
721   */
722   assert( zAff==0 || (int)strlen(zAff)>=nEq );
723   for(j=nSkip; j<nEq; j++){
724     int r1;
725     pTerm = pLoop->aLTerm[j];
726     assert( pTerm!=0 );
727     /* The following testcase is true for indices with redundant columns.
728     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
729     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
730     testcase( pTerm->wtFlags & TERM_VIRTUAL );
731     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
732     if( r1!=regBase+j ){
733       if( nReg==1 ){
734         sqlite3ReleaseTempReg(pParse, regBase);
735         regBase = r1;
736       }else{
737         sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
738       }
739     }
740     if( pTerm->eOperator & WO_IN ){
741       if( pTerm->pExpr->flags & EP_xIsSelect ){
742         /* No affinity ever needs to be (or should be) applied to a value
743         ** from the RHS of an "? IN (SELECT ...)" expression. The
744         ** sqlite3FindInIndex() routine has already ensured that the
745         ** affinity of the comparison has been applied to the value.  */
746         if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
747       }
748     }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
749       Expr *pRight = pTerm->pExpr->pRight;
750       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
751         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
752         VdbeCoverage(v);
753       }
754       if( zAff ){
755         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
756           zAff[j] = SQLITE_AFF_BLOB;
757         }
758         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
759           zAff[j] = SQLITE_AFF_BLOB;
760         }
761       }
762     }
763   }
764   *pzAff = zAff;
765   return regBase;
766 }
767 
768 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
769 /*
770 ** If the most recently coded instruction is a constant range constraint
771 ** (a string literal) that originated from the LIKE optimization, then
772 ** set P3 and P5 on the OP_String opcode so that the string will be cast
773 ** to a BLOB at appropriate times.
774 **
775 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
776 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
777 ** scan loop run twice, once for strings and a second time for BLOBs.
778 ** The OP_String opcodes on the second pass convert the upper and lower
779 ** bound string constants to blobs.  This routine makes the necessary changes
780 ** to the OP_String opcodes for that to happen.
781 **
782 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
783 ** only the one pass through the string space is required, so this routine
784 ** becomes a no-op.
785 */
786 static void whereLikeOptimizationStringFixup(
787   Vdbe *v,                /* prepared statement under construction */
788   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
789   WhereTerm *pTerm        /* The upper or lower bound just coded */
790 ){
791   if( pTerm->wtFlags & TERM_LIKEOPT ){
792     VdbeOp *pOp;
793     assert( pLevel->iLikeRepCntr>0 );
794     pOp = sqlite3VdbeGetOp(v, -1);
795     assert( pOp!=0 );
796     assert( pOp->opcode==OP_String8
797             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
798     pOp->p3 = (int)(pLevel->iLikeRepCntr>>1);  /* Register holding counter */
799     pOp->p5 = (u8)(pLevel->iLikeRepCntr&1);    /* ASC or DESC */
800   }
801 }
802 #else
803 # define whereLikeOptimizationStringFixup(A,B,C)
804 #endif
805 
806 #ifdef SQLITE_ENABLE_CURSOR_HINTS
807 /*
808 ** Information is passed from codeCursorHint() down to individual nodes of
809 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
810 ** structure.
811 */
812 struct CCurHint {
813   int iTabCur;    /* Cursor for the main table */
814   int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
815   Index *pIdx;    /* The index used to access the table */
816 };
817 
818 /*
819 ** This function is called for every node of an expression that is a candidate
820 ** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
821 ** the table CCurHint.iTabCur, verify that the same column can be
822 ** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
823 */
824 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
825   struct CCurHint *pHint = pWalker->u.pCCurHint;
826   assert( pHint->pIdx!=0 );
827   if( pExpr->op==TK_COLUMN
828    && pExpr->iTable==pHint->iTabCur
829    && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0
830   ){
831     pWalker->eCode = 1;
832   }
833   return WRC_Continue;
834 }
835 
836 /*
837 ** Test whether or not expression pExpr, which was part of a WHERE clause,
838 ** should be included in the cursor-hint for a table that is on the rhs
839 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
840 ** expression is not suitable.
841 **
842 ** An expression is unsuitable if it might evaluate to non NULL even if
843 ** a TK_COLUMN node that does affect the value of the expression is set
844 ** to NULL. For example:
845 **
846 **   col IS NULL
847 **   col IS NOT NULL
848 **   coalesce(col, 1)
849 **   CASE WHEN col THEN 0 ELSE 1 END
850 */
851 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
852   if( pExpr->op==TK_IS
853    || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
854    || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
855   ){
856     pWalker->eCode = 1;
857   }else if( pExpr->op==TK_FUNCTION ){
858     int d1;
859     char d2[4];
860     if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
861       pWalker->eCode = 1;
862     }
863   }
864 
865   return WRC_Continue;
866 }
867 
868 
869 /*
870 ** This function is called on every node of an expression tree used as an
871 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
872 ** that accesses any table other than the one identified by
873 ** CCurHint.iTabCur, then do the following:
874 **
875 **   1) allocate a register and code an OP_Column instruction to read
876 **      the specified column into the new register, and
877 **
878 **   2) transform the expression node to a TK_REGISTER node that reads
879 **      from the newly populated register.
880 **
881 ** Also, if the node is a TK_COLUMN that does access the table idenified
882 ** by pCCurHint.iTabCur, and an index is being used (which we will
883 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
884 ** an access of the index rather than the original table.
885 */
886 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
887   int rc = WRC_Continue;
888   struct CCurHint *pHint = pWalker->u.pCCurHint;
889   if( pExpr->op==TK_COLUMN ){
890     if( pExpr->iTable!=pHint->iTabCur ){
891       int reg = ++pWalker->pParse->nMem;   /* Register for column value */
892       sqlite3ExprCode(pWalker->pParse, pExpr, reg);
893       pExpr->op = TK_REGISTER;
894       pExpr->iTable = reg;
895     }else if( pHint->pIdx!=0 ){
896       pExpr->iTable = pHint->iIdxCur;
897       pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn);
898       assert( pExpr->iColumn>=0 );
899     }
900   }else if( pExpr->op==TK_AGG_FUNCTION ){
901     /* An aggregate function in the WHERE clause of a query means this must
902     ** be a correlated sub-query, and expression pExpr is an aggregate from
903     ** the parent context. Do not walk the function arguments in this case.
904     **
905     ** todo: It should be possible to replace this node with a TK_REGISTER
906     ** expression, as the result of the expression must be stored in a
907     ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
908     rc = WRC_Prune;
909   }
910   return rc;
911 }
912 
913 /*
914 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
915 */
916 static void codeCursorHint(
917   SrcItem *pTabItem,  /* FROM clause item */
918   WhereInfo *pWInfo,    /* The where clause */
919   WhereLevel *pLevel,   /* Which loop to provide hints for */
920   WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
921 ){
922   Parse *pParse = pWInfo->pParse;
923   sqlite3 *db = pParse->db;
924   Vdbe *v = pParse->pVdbe;
925   Expr *pExpr = 0;
926   WhereLoop *pLoop = pLevel->pWLoop;
927   int iCur;
928   WhereClause *pWC;
929   WhereTerm *pTerm;
930   int i, j;
931   struct CCurHint sHint;
932   Walker sWalker;
933 
934   if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
935   iCur = pLevel->iTabCur;
936   assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
937   sHint.iTabCur = iCur;
938   sHint.iIdxCur = pLevel->iIdxCur;
939   sHint.pIdx = pLoop->u.btree.pIndex;
940   memset(&sWalker, 0, sizeof(sWalker));
941   sWalker.pParse = pParse;
942   sWalker.u.pCCurHint = &sHint;
943   pWC = &pWInfo->sWC;
944   for(i=0; i<pWC->nTerm; i++){
945     pTerm = &pWC->a[i];
946     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
947     if( pTerm->prereqAll & pLevel->notReady ) continue;
948 
949     /* Any terms specified as part of the ON(...) clause for any LEFT
950     ** JOIN for which the current table is not the rhs are omitted
951     ** from the cursor-hint.
952     **
953     ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
954     ** that were specified as part of the WHERE clause must be excluded.
955     ** This is to address the following:
956     **
957     **   SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
958     **
959     ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
960     ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
961     ** pushed down to the cursor, this row is filtered out, causing
962     ** SQLite to synthesize a row of NULL values. Which does match the
963     ** WHERE clause, and so the query returns a row. Which is incorrect.
964     **
965     ** For the same reason, WHERE terms such as:
966     **
967     **   WHERE 1 = (t2.c IS NULL)
968     **
969     ** are also excluded. See codeCursorHintIsOrFunction() for details.
970     */
971     if( pTabItem->fg.jointype & JT_LEFT ){
972       Expr *pExpr = pTerm->pExpr;
973       if( !ExprHasProperty(pExpr, EP_FromJoin)
974        || pExpr->iRightJoinTable!=pTabItem->iCursor
975       ){
976         sWalker.eCode = 0;
977         sWalker.xExprCallback = codeCursorHintIsOrFunction;
978         sqlite3WalkExpr(&sWalker, pTerm->pExpr);
979         if( sWalker.eCode ) continue;
980       }
981     }else{
982       if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
983     }
984 
985     /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
986     ** the cursor.  These terms are not needed as hints for a pure range
987     ** scan (that has no == terms) so omit them. */
988     if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
989       for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
990       if( j<pLoop->nLTerm ) continue;
991     }
992 
993     /* No subqueries or non-deterministic functions allowed */
994     if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
995 
996     /* For an index scan, make sure referenced columns are actually in
997     ** the index. */
998     if( sHint.pIdx!=0 ){
999       sWalker.eCode = 0;
1000       sWalker.xExprCallback = codeCursorHintCheckExpr;
1001       sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1002       if( sWalker.eCode ) continue;
1003     }
1004 
1005     /* If we survive all prior tests, that means this term is worth hinting */
1006     pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
1007   }
1008   if( pExpr!=0 ){
1009     sWalker.xExprCallback = codeCursorHintFixExpr;
1010     sqlite3WalkExpr(&sWalker, pExpr);
1011     sqlite3VdbeAddOp4(v, OP_CursorHint,
1012                       (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
1013                       (const char*)pExpr, P4_EXPR);
1014   }
1015 }
1016 #else
1017 # define codeCursorHint(A,B,C,D)  /* No-op */
1018 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1019 
1020 /*
1021 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1022 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1023 ** function generates code to do a deferred seek of cursor iCur to the
1024 ** rowid stored in register iRowid.
1025 **
1026 ** Normally, this is just:
1027 **
1028 **   OP_DeferredSeek $iCur $iRowid
1029 **
1030 ** However, if the scan currently being coded is a branch of an OR-loop and
1031 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek
1032 ** is set to iIdxCur and P4 is set to point to an array of integers
1033 ** containing one entry for each column of the table cursor iCur is open
1034 ** on. For each table column, if the column is the i'th column of the
1035 ** index, then the corresponding array entry is set to (i+1). If the column
1036 ** does not appear in the index at all, the array entry is set to 0.
1037 */
1038 static void codeDeferredSeek(
1039   WhereInfo *pWInfo,              /* Where clause context */
1040   Index *pIdx,                    /* Index scan is using */
1041   int iCur,                       /* Cursor for IPK b-tree */
1042   int iIdxCur                     /* Index cursor */
1043 ){
1044   Parse *pParse = pWInfo->pParse; /* Parse context */
1045   Vdbe *v = pParse->pVdbe;        /* Vdbe to generate code within */
1046 
1047   assert( iIdxCur>0 );
1048   assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1049 
1050   pWInfo->bDeferredSeek = 1;
1051   sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1052   if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1053    && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1054   ){
1055     int i;
1056     Table *pTab = pIdx->pTable;
1057     u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1));
1058     if( ai ){
1059       ai[0] = pTab->nCol;
1060       for(i=0; i<pIdx->nColumn-1; i++){
1061         int x1, x2;
1062         assert( pIdx->aiColumn[i]<pTab->nCol );
1063         x1 = pIdx->aiColumn[i];
1064         x2 = sqlite3TableColumnToStorage(pTab, x1);
1065         testcase( x1!=x2 );
1066         if( x1>=0 ) ai[x2+1] = i+1;
1067       }
1068       sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1069     }
1070   }
1071 }
1072 
1073 /*
1074 ** If the expression passed as the second argument is a vector, generate
1075 ** code to write the first nReg elements of the vector into an array
1076 ** of registers starting with iReg.
1077 **
1078 ** If the expression is not a vector, then nReg must be passed 1. In
1079 ** this case, generate code to evaluate the expression and leave the
1080 ** result in register iReg.
1081 */
1082 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1083   assert( nReg>0 );
1084   if( p && sqlite3ExprIsVector(p) ){
1085 #ifndef SQLITE_OMIT_SUBQUERY
1086     if( (p->flags & EP_xIsSelect) ){
1087       Vdbe *v = pParse->pVdbe;
1088       int iSelect;
1089       assert( p->op==TK_SELECT );
1090       iSelect = sqlite3CodeSubselect(pParse, p);
1091       sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1092     }else
1093 #endif
1094     {
1095       int i;
1096       ExprList *pList = p->x.pList;
1097       assert( nReg<=pList->nExpr );
1098       for(i=0; i<nReg; i++){
1099         sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1100       }
1101     }
1102   }else{
1103     assert( nReg==1 );
1104     sqlite3ExprCode(pParse, p, iReg);
1105   }
1106 }
1107 
1108 /* An instance of the IdxExprTrans object carries information about a
1109 ** mapping from an expression on table columns into a column in an index
1110 ** down through the Walker.
1111 */
1112 typedef struct IdxExprTrans {
1113   Expr *pIdxExpr;    /* The index expression */
1114   int iTabCur;       /* The cursor of the corresponding table */
1115   int iIdxCur;       /* The cursor for the index */
1116   int iIdxCol;       /* The column for the index */
1117   int iTabCol;       /* The column for the table */
1118   WhereInfo *pWInfo; /* Complete WHERE clause information */
1119   sqlite3 *db;       /* Database connection (for malloc()) */
1120 } IdxExprTrans;
1121 
1122 /*
1123 ** Preserve pExpr on the WhereETrans list of the WhereInfo.
1124 */
1125 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){
1126   WhereExprMod *pNew;
1127   pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew));
1128   if( pNew==0 ) return;
1129   pNew->pNext = pTrans->pWInfo->pExprMods;
1130   pTrans->pWInfo->pExprMods = pNew;
1131   pNew->pExpr = pExpr;
1132   memcpy(&pNew->orig, pExpr, sizeof(*pExpr));
1133 }
1134 
1135 /* The walker node callback used to transform matching expressions into
1136 ** a reference to an index column for an index on an expression.
1137 **
1138 ** If pExpr matches, then transform it into a reference to the index column
1139 ** that contains the value of pExpr.
1140 */
1141 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1142   IdxExprTrans *pX = p->u.pIdxTrans;
1143   if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1144     preserveExpr(pX, pExpr);
1145     pExpr->affExpr = sqlite3ExprAffinity(pExpr);
1146     pExpr->op = TK_COLUMN;
1147     pExpr->iTable = pX->iIdxCur;
1148     pExpr->iColumn = pX->iIdxCol;
1149     pExpr->y.pTab = 0;
1150     testcase( ExprHasProperty(pExpr, EP_Skip) );
1151     testcase( ExprHasProperty(pExpr, EP_Unlikely) );
1152     ExprClearProperty(pExpr, EP_Skip|EP_Unlikely);
1153     return WRC_Prune;
1154   }else{
1155     return WRC_Continue;
1156   }
1157 }
1158 
1159 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1160 /* A walker node callback that translates a column reference to a table
1161 ** into a corresponding column reference of an index.
1162 */
1163 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){
1164   if( pExpr->op==TK_COLUMN ){
1165     IdxExprTrans *pX = p->u.pIdxTrans;
1166     if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){
1167       assert( pExpr->y.pTab!=0 );
1168       preserveExpr(pX, pExpr);
1169       pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn);
1170       pExpr->iTable = pX->iIdxCur;
1171       pExpr->iColumn = pX->iIdxCol;
1172       pExpr->y.pTab = 0;
1173     }
1174   }
1175   return WRC_Continue;
1176 }
1177 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1178 
1179 /*
1180 ** For an indexes on expression X, locate every instance of expression X
1181 ** in pExpr and change that subexpression into a reference to the appropriate
1182 ** column of the index.
1183 **
1184 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in
1185 ** the table into references to the corresponding (stored) column of the
1186 ** index.
1187 */
1188 static void whereIndexExprTrans(
1189   Index *pIdx,      /* The Index */
1190   int iTabCur,      /* Cursor of the table that is being indexed */
1191   int iIdxCur,      /* Cursor of the index itself */
1192   WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1193 ){
1194   int iIdxCol;               /* Column number of the index */
1195   ExprList *aColExpr;        /* Expressions that are indexed */
1196   Table *pTab;
1197   Walker w;
1198   IdxExprTrans x;
1199   aColExpr = pIdx->aColExpr;
1200   if( aColExpr==0 && !pIdx->bHasVCol ){
1201     /* The index does not reference any expressions or virtual columns
1202     ** so no translations are needed. */
1203     return;
1204   }
1205   pTab = pIdx->pTable;
1206   memset(&w, 0, sizeof(w));
1207   w.u.pIdxTrans = &x;
1208   x.iTabCur = iTabCur;
1209   x.iIdxCur = iIdxCur;
1210   x.pWInfo = pWInfo;
1211   x.db = pWInfo->pParse->db;
1212   for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){
1213     i16 iRef = pIdx->aiColumn[iIdxCol];
1214     if( iRef==XN_EXPR ){
1215       assert( aColExpr->a[iIdxCol].pExpr!=0 );
1216       x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1217       if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue;
1218       w.xExprCallback = whereIndexExprTransNode;
1219 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1220     }else if( iRef>=0
1221        && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0
1222        && (pTab->aCol[iRef].zColl==0
1223            || sqlite3StrICmp(pTab->aCol[iRef].zColl, sqlite3StrBINARY)==0)
1224     ){
1225       /* Check to see if there are direct references to generated columns
1226       ** that are contained in the index.  Pulling the generated column
1227       ** out of the index is an optimization only - the main table is always
1228       ** available if the index cannot be used.  To avoid unnecessary
1229       ** complication, omit this optimization if the collating sequence for
1230       ** the column is non-standard */
1231       x.iTabCol = iRef;
1232       w.xExprCallback = whereIndexExprTransColumn;
1233 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1234     }else{
1235       continue;
1236     }
1237     x.iIdxCol = iIdxCol;
1238     sqlite3WalkExpr(&w, pWInfo->pWhere);
1239     sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1240     sqlite3WalkExprList(&w, pWInfo->pResultSet);
1241   }
1242 }
1243 
1244 /*
1245 ** The pTruth expression is always true because it is the WHERE clause
1246 ** a partial index that is driving a query loop.  Look through all of the
1247 ** WHERE clause terms on the query, and if any of those terms must be
1248 ** true because pTruth is true, then mark those WHERE clause terms as
1249 ** coded.
1250 */
1251 static void whereApplyPartialIndexConstraints(
1252   Expr *pTruth,
1253   int iTabCur,
1254   WhereClause *pWC
1255 ){
1256   int i;
1257   WhereTerm *pTerm;
1258   while( pTruth->op==TK_AND ){
1259     whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC);
1260     pTruth = pTruth->pRight;
1261   }
1262   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1263     Expr *pExpr;
1264     if( pTerm->wtFlags & TERM_CODED ) continue;
1265     pExpr = pTerm->pExpr;
1266     if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){
1267       pTerm->wtFlags |= TERM_CODED;
1268     }
1269   }
1270 }
1271 
1272 /*
1273 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1274 ** implementation described by pWInfo.
1275 */
1276 Bitmask sqlite3WhereCodeOneLoopStart(
1277   Parse *pParse,       /* Parsing context */
1278   Vdbe *v,             /* Prepared statement under construction */
1279   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1280   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1281   WhereLevel *pLevel,  /* The current level pointer */
1282   Bitmask notReady     /* Which tables are currently available */
1283 ){
1284   int j, k;            /* Loop counters */
1285   int iCur;            /* The VDBE cursor for the table */
1286   int addrNxt;         /* Where to jump to continue with the next IN case */
1287   int bRev;            /* True if we need to scan in reverse order */
1288   WhereLoop *pLoop;    /* The WhereLoop object being coded */
1289   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
1290   WhereTerm *pTerm;               /* A WHERE clause term */
1291   sqlite3 *db;                    /* Database connection */
1292   SrcItem *pTabItem;              /* FROM clause term being coded */
1293   int addrBrk;                    /* Jump here to break out of the loop */
1294   int addrHalt;                   /* addrBrk for the outermost loop */
1295   int addrCont;                   /* Jump here to continue with next cycle */
1296   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
1297   int iReleaseReg = 0;      /* Temp register to free before returning */
1298   Index *pIdx = 0;          /* Index used by loop (if any) */
1299   int iLoop;                /* Iteration of constraint generator loop */
1300 
1301   pWC = &pWInfo->sWC;
1302   db = pParse->db;
1303   pLoop = pLevel->pWLoop;
1304   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1305   iCur = pTabItem->iCursor;
1306   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1307   bRev = (pWInfo->revMask>>iLevel)&1;
1308   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1309 #if WHERETRACE_ENABLED /* 0x20800 */
1310   if( sqlite3WhereTrace & 0x800 ){
1311     sqlite3DebugPrintf("Coding level %d of %d:  notReady=%llx  iFrom=%d\n",
1312        iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom);
1313     sqlite3WhereLoopPrint(pLoop, pWC);
1314   }
1315   if( sqlite3WhereTrace & 0x20000 ){
1316     if( iLevel==0 ){
1317       sqlite3DebugPrintf("WHERE clause being coded:\n");
1318       sqlite3TreeViewExpr(0, pWInfo->pWhere, 0);
1319     }
1320     sqlite3DebugPrintf("All WHERE-clause terms before coding:\n");
1321     sqlite3WhereClausePrint(pWC);
1322   }
1323 #endif
1324 
1325   /* Create labels for the "break" and "continue" instructions
1326   ** for the current loop.  Jump to addrBrk to break out of a loop.
1327   ** Jump to cont to go immediately to the next iteration of the
1328   ** loop.
1329   **
1330   ** When there is an IN operator, we also have a "addrNxt" label that
1331   ** means to continue with the next IN value combination.  When
1332   ** there are no IN operators in the constraints, the "addrNxt" label
1333   ** is the same as "addrBrk".
1334   */
1335   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
1336   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse);
1337 
1338   /* If this is the right table of a LEFT OUTER JOIN, allocate and
1339   ** initialize a memory cell that records if this table matches any
1340   ** row of the left table of the join.
1341   */
1342   assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1343        || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
1344   );
1345   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1346     pLevel->iLeftJoin = ++pParse->nMem;
1347     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1348     VdbeComment((v, "init LEFT JOIN no-match flag"));
1349   }
1350 
1351   /* Compute a safe address to jump to if we discover that the table for
1352   ** this loop is empty and can never contribute content. */
1353   for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){}
1354   addrHalt = pWInfo->a[j].addrBrk;
1355 
1356   /* Special case of a FROM clause subquery implemented as a co-routine */
1357   if( pTabItem->fg.viaCoroutine ){
1358     int regYield = pTabItem->regReturn;
1359     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1360     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1361     VdbeCoverage(v);
1362     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
1363     pLevel->op = OP_Goto;
1364   }else
1365 
1366 #ifndef SQLITE_OMIT_VIRTUALTABLE
1367   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1368     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
1369     **          to access the data.
1370     */
1371     int iReg;   /* P3 Value for OP_VFilter */
1372     int addrNotFound;
1373     int nConstraint = pLoop->nLTerm;
1374     int iIn;    /* Counter for IN constraints */
1375 
1376     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1377     addrNotFound = pLevel->addrBrk;
1378     for(j=0; j<nConstraint; j++){
1379       int iTarget = iReg+j+2;
1380       pTerm = pLoop->aLTerm[j];
1381       if( NEVER(pTerm==0) ) continue;
1382       if( pTerm->eOperator & WO_IN ){
1383         codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1384         addrNotFound = pLevel->addrNxt;
1385       }else{
1386         Expr *pRight = pTerm->pExpr->pRight;
1387         codeExprOrVector(pParse, pRight, iTarget, 1);
1388       }
1389     }
1390     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1391     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1392     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1393                       pLoop->u.vtab.idxStr,
1394                       pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1395     VdbeCoverage(v);
1396     pLoop->u.vtab.needFree = 0;
1397     /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed
1398     ** the u.vtab.idxStr.  NULL it out to prevent a use-after-free */
1399     if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0;
1400     pLevel->p1 = iCur;
1401     pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1402     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1403     iIn = pLevel->u.in.nIn;
1404     for(j=nConstraint-1; j>=0; j--){
1405       pTerm = pLoop->aLTerm[j];
1406       if( (pTerm->eOperator & WO_IN)!=0 ) iIn--;
1407       if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1408         disableTerm(pLevel, pTerm);
1409       }else if( (pTerm->eOperator & WO_IN)!=0
1410         && sqlite3ExprVectorSize(pTerm->pExpr->pLeft)==1
1411       ){
1412         Expr *pCompare;  /* The comparison operator */
1413         Expr *pRight;    /* RHS of the comparison */
1414         VdbeOp *pOp;     /* Opcode to access the value of the IN constraint */
1415 
1416         /* Reload the constraint value into reg[iReg+j+2].  The same value
1417         ** was loaded into the same register prior to the OP_VFilter, but
1418         ** the xFilter implementation might have changed the datatype or
1419         ** encoding of the value in the register, so it *must* be reloaded. */
1420         assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed );
1421         if( !db->mallocFailed ){
1422           assert( iIn>=0 && iIn<pLevel->u.in.nIn );
1423           pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop);
1424           assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid );
1425           assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 );
1426           assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 );
1427           testcase( pOp->opcode==OP_Rowid );
1428           sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1429         }
1430 
1431         /* Generate code that will continue to the next row if
1432         ** the IN constraint is not satisfied */
1433         pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1434         assert( pCompare!=0 || db->mallocFailed );
1435         if( pCompare ){
1436           pCompare->pLeft = pTerm->pExpr->pLeft;
1437           pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1438           if( pRight ){
1439             pRight->iTable = iReg+j+2;
1440             sqlite3ExprIfFalse(
1441                 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL
1442             );
1443           }
1444           pCompare->pLeft = 0;
1445           sqlite3ExprDelete(db, pCompare);
1446         }
1447       }
1448     }
1449     assert( iIn==0 || db->mallocFailed );
1450     /* These registers need to be preserved in case there is an IN operator
1451     ** loop.  So we could deallocate the registers here (and potentially
1452     ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0.  But it seems
1453     ** simpler and safer to simply not reuse the registers.
1454     **
1455     **    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1456     */
1457   }else
1458 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1459 
1460   if( (pLoop->wsFlags & WHERE_IPK)!=0
1461    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1462   ){
1463     /* Case 2:  We can directly reference a single row using an
1464     **          equality comparison against the ROWID field.  Or
1465     **          we reference multiple rows using a "rowid IN (...)"
1466     **          construct.
1467     */
1468     assert( pLoop->u.btree.nEq==1 );
1469     pTerm = pLoop->aLTerm[0];
1470     assert( pTerm!=0 );
1471     assert( pTerm->pExpr!=0 );
1472     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1473     iReleaseReg = ++pParse->nMem;
1474     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1475     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1476     addrNxt = pLevel->addrNxt;
1477     sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1478     VdbeCoverage(v);
1479     pLevel->op = OP_Noop;
1480     if( (pTerm->prereqAll & pLevel->notReady)==0 ){
1481       pTerm->wtFlags |= TERM_CODED;
1482     }
1483   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1484          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1485   ){
1486     /* Case 3:  We have an inequality comparison against the ROWID field.
1487     */
1488     int testOp = OP_Noop;
1489     int start;
1490     int memEndValue = 0;
1491     WhereTerm *pStart, *pEnd;
1492 
1493     j = 0;
1494     pStart = pEnd = 0;
1495     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1496     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1497     assert( pStart!=0 || pEnd!=0 );
1498     if( bRev ){
1499       pTerm = pStart;
1500       pStart = pEnd;
1501       pEnd = pTerm;
1502     }
1503     codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1504     if( pStart ){
1505       Expr *pX;             /* The expression that defines the start bound */
1506       int r1, rTemp;        /* Registers for holding the start boundary */
1507       int op;               /* Cursor seek operation */
1508 
1509       /* The following constant maps TK_xx codes into corresponding
1510       ** seek opcodes.  It depends on a particular ordering of TK_xx
1511       */
1512       const u8 aMoveOp[] = {
1513            /* TK_GT */  OP_SeekGT,
1514            /* TK_LE */  OP_SeekLE,
1515            /* TK_LT */  OP_SeekLT,
1516            /* TK_GE */  OP_SeekGE
1517       };
1518       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
1519       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
1520       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
1521 
1522       assert( (pStart->wtFlags & TERM_VNULL)==0 );
1523       testcase( pStart->wtFlags & TERM_VIRTUAL );
1524       pX = pStart->pExpr;
1525       assert( pX!=0 );
1526       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1527       if( sqlite3ExprIsVector(pX->pRight) ){
1528         r1 = rTemp = sqlite3GetTempReg(pParse);
1529         codeExprOrVector(pParse, pX->pRight, r1, 1);
1530         testcase( pX->op==TK_GT );
1531         testcase( pX->op==TK_GE );
1532         testcase( pX->op==TK_LT );
1533         testcase( pX->op==TK_LE );
1534         op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
1535         assert( pX->op!=TK_GT || op==OP_SeekGE );
1536         assert( pX->op!=TK_GE || op==OP_SeekGE );
1537         assert( pX->op!=TK_LT || op==OP_SeekLE );
1538         assert( pX->op!=TK_LE || op==OP_SeekLE );
1539       }else{
1540         r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1541         disableTerm(pLevel, pStart);
1542         op = aMoveOp[(pX->op - TK_GT)];
1543       }
1544       sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1545       VdbeComment((v, "pk"));
1546       VdbeCoverageIf(v, pX->op==TK_GT);
1547       VdbeCoverageIf(v, pX->op==TK_LE);
1548       VdbeCoverageIf(v, pX->op==TK_LT);
1549       VdbeCoverageIf(v, pX->op==TK_GE);
1550       sqlite3ReleaseTempReg(pParse, rTemp);
1551     }else{
1552       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1553       VdbeCoverageIf(v, bRev==0);
1554       VdbeCoverageIf(v, bRev!=0);
1555     }
1556     if( pEnd ){
1557       Expr *pX;
1558       pX = pEnd->pExpr;
1559       assert( pX!=0 );
1560       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1561       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1562       testcase( pEnd->wtFlags & TERM_VIRTUAL );
1563       memEndValue = ++pParse->nMem;
1564       codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1565       if( 0==sqlite3ExprIsVector(pX->pRight)
1566        && (pX->op==TK_LT || pX->op==TK_GT)
1567       ){
1568         testOp = bRev ? OP_Le : OP_Ge;
1569       }else{
1570         testOp = bRev ? OP_Lt : OP_Gt;
1571       }
1572       if( 0==sqlite3ExprIsVector(pX->pRight) ){
1573         disableTerm(pLevel, pEnd);
1574       }
1575     }
1576     start = sqlite3VdbeCurrentAddr(v);
1577     pLevel->op = bRev ? OP_Prev : OP_Next;
1578     pLevel->p1 = iCur;
1579     pLevel->p2 = start;
1580     assert( pLevel->p5==0 );
1581     if( testOp!=OP_Noop ){
1582       iRowidReg = ++pParse->nMem;
1583       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1584       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1585       VdbeCoverageIf(v, testOp==OP_Le);
1586       VdbeCoverageIf(v, testOp==OP_Lt);
1587       VdbeCoverageIf(v, testOp==OP_Ge);
1588       VdbeCoverageIf(v, testOp==OP_Gt);
1589       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1590     }
1591   }else if( pLoop->wsFlags & WHERE_INDEXED ){
1592     /* Case 4: A scan using an index.
1593     **
1594     **         The WHERE clause may contain zero or more equality
1595     **         terms ("==" or "IN" operators) that refer to the N
1596     **         left-most columns of the index. It may also contain
1597     **         inequality constraints (>, <, >= or <=) on the indexed
1598     **         column that immediately follows the N equalities. Only
1599     **         the right-most column can be an inequality - the rest must
1600     **         use the "==" and "IN" operators. For example, if the
1601     **         index is on (x,y,z), then the following clauses are all
1602     **         optimized:
1603     **
1604     **            x=5
1605     **            x=5 AND y=10
1606     **            x=5 AND y<10
1607     **            x=5 AND y>5 AND y<10
1608     **            x=5 AND y=5 AND z<=10
1609     **
1610     **         The z<10 term of the following cannot be used, only
1611     **         the x=5 term:
1612     **
1613     **            x=5 AND z<10
1614     **
1615     **         N may be zero if there are inequality constraints.
1616     **         If there are no inequality constraints, then N is at
1617     **         least one.
1618     **
1619     **         This case is also used when there are no WHERE clause
1620     **         constraints but an index is selected anyway, in order
1621     **         to force the output order to conform to an ORDER BY.
1622     */
1623     static const u8 aStartOp[] = {
1624       0,
1625       0,
1626       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
1627       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
1628       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
1629       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
1630       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
1631       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
1632     };
1633     static const u8 aEndOp[] = {
1634       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
1635       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
1636       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
1637       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
1638     };
1639     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
1640     u16 nBtm = pLoop->u.btree.nBtm;   /* Length of BTM vector */
1641     u16 nTop = pLoop->u.btree.nTop;   /* Length of TOP vector */
1642     int regBase;                 /* Base register holding constraint values */
1643     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
1644     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
1645     int startEq;                 /* True if range start uses ==, >= or <= */
1646     int endEq;                   /* True if range end uses ==, >= or <= */
1647     int start_constraints;       /* Start of range is constrained */
1648     int nConstraint;             /* Number of constraint terms */
1649     int iIdxCur;                 /* The VDBE cursor for the index */
1650     int nExtraReg = 0;           /* Number of extra registers needed */
1651     int op;                      /* Instruction opcode */
1652     char *zStartAff;             /* Affinity for start of range constraint */
1653     char *zEndAff = 0;           /* Affinity for end of range constraint */
1654     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
1655     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
1656     int omitTable;               /* True if we use the index only */
1657     int regBignull = 0;          /* big-null flag register */
1658     int addrSeekScan = 0;        /* Opcode of the OP_SeekScan, if any */
1659 
1660     pIdx = pLoop->u.btree.pIndex;
1661     iIdxCur = pLevel->iIdxCur;
1662     assert( nEq>=pLoop->nSkip );
1663 
1664     /* Find any inequality constraint terms for the start and end
1665     ** of the range.
1666     */
1667     j = nEq;
1668     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1669       pRangeStart = pLoop->aLTerm[j++];
1670       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1671       /* Like optimization range constraints always occur in pairs */
1672       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1673               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1674     }
1675     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1676       pRangeEnd = pLoop->aLTerm[j++];
1677       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1678 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1679       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1680         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
1681         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
1682         pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1683         sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1684         VdbeComment((v, "LIKE loop counter"));
1685         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1686         /* iLikeRepCntr actually stores 2x the counter register number.  The
1687         ** bottom bit indicates whether the search order is ASC or DESC. */
1688         testcase( bRev );
1689         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1690         assert( (bRev & ~1)==0 );
1691         pLevel->iLikeRepCntr <<=1;
1692         pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1693       }
1694 #endif
1695       if( pRangeStart==0 ){
1696         j = pIdx->aiColumn[nEq];
1697         if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1698           bSeekPastNull = 1;
1699         }
1700       }
1701     }
1702     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1703 
1704     /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
1705     ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
1706     ** FIRST). In both cases separate ordered scans are made of those
1707     ** index entries for which the column is null and for those for which
1708     ** it is not. For an ASC sort, the non-NULL entries are scanned first.
1709     ** For DESC, NULL entries are scanned first.
1710     */
1711     if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0
1712      && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0
1713     ){
1714       assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 );
1715       assert( pRangeEnd==0 && pRangeStart==0 );
1716       testcase( pLoop->nSkip>0 );
1717       nExtraReg = 1;
1718       bSeekPastNull = 1;
1719       pLevel->regBignull = regBignull = ++pParse->nMem;
1720       if( pLevel->iLeftJoin ){
1721         sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull);
1722       }
1723       pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse);
1724     }
1725 
1726     /* If we are doing a reverse order scan on an ascending index, or
1727     ** a forward order scan on a descending index, interchange the
1728     ** start and end terms (pRangeStart and pRangeEnd).
1729     */
1730     if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1731      || (bRev && pIdx->nKeyCol==nEq)
1732     ){
1733       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1734       SWAP(u8, bSeekPastNull, bStopAtNull);
1735       SWAP(u8, nBtm, nTop);
1736     }
1737 
1738     if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){
1739       /* In case OP_SeekScan is used, ensure that the index cursor does not
1740       ** point to a valid row for the first iteration of this loop. */
1741       sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
1742     }
1743 
1744     /* Generate code to evaluate all constraint terms using == or IN
1745     ** and store the values of those terms in an array of registers
1746     ** starting at regBase.
1747     */
1748     codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1749     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1750     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1751     if( zStartAff && nTop ){
1752       zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1753     }
1754     addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt);
1755 
1756     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1757     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1758     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1759     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1760     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1761     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1762     start_constraints = pRangeStart || nEq>0;
1763 
1764     /* Seek the index cursor to the start of the range. */
1765     nConstraint = nEq;
1766     if( pRangeStart ){
1767       Expr *pRight = pRangeStart->pExpr->pRight;
1768       codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1769       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1770       if( (pRangeStart->wtFlags & TERM_VNULL)==0
1771        && sqlite3ExprCanBeNull(pRight)
1772       ){
1773         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1774         VdbeCoverage(v);
1775       }
1776       if( zStartAff ){
1777         updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1778       }
1779       nConstraint += nBtm;
1780       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1781       if( sqlite3ExprIsVector(pRight)==0 ){
1782         disableTerm(pLevel, pRangeStart);
1783       }else{
1784         startEq = 1;
1785       }
1786       bSeekPastNull = 0;
1787     }else if( bSeekPastNull ){
1788       startEq = 0;
1789       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1790       start_constraints = 1;
1791       nConstraint++;
1792     }else if( regBignull ){
1793       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1794       start_constraints = 1;
1795       nConstraint++;
1796     }
1797     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1798     if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1799       /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1800       ** above has already left the cursor sitting on the correct row,
1801       ** so no further seeking is needed */
1802     }else{
1803       if( regBignull ){
1804         sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull);
1805         VdbeComment((v, "NULL-scan pass ctr"));
1806       }
1807 
1808       op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1809       assert( op!=0 );
1810       if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){
1811         assert( regBignull==0 );
1812         /* TUNING:  The OP_SeekScan opcode seeks to reduce the number
1813         ** of expensive seek operations by replacing a single seek with
1814         ** 1 or more step operations.  The question is, how many steps
1815         ** should we try before giving up and going with a seek.  The cost
1816         ** of a seek is proportional to the logarithm of the of the number
1817         ** of entries in the tree, so basing the number of steps to try
1818         ** on the estimated number of rows in the btree seems like a good
1819         ** guess. */
1820         addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan,
1821                                          (pIdx->aiRowLogEst[0]+9)/10);
1822         VdbeCoverage(v);
1823       }
1824       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1825       VdbeCoverage(v);
1826       VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1827       VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1828       VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
1829       VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1830       VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1831       VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
1832 
1833       assert( bSeekPastNull==0 || bStopAtNull==0 );
1834       if( regBignull ){
1835         assert( bSeekPastNull==1 || bStopAtNull==1 );
1836         assert( bSeekPastNull==!bStopAtNull );
1837         assert( bStopAtNull==startEq );
1838         sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2);
1839         op = aStartOp[(nConstraint>1)*4 + 2 + bRev];
1840         sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1841                              nConstraint-startEq);
1842         VdbeCoverage(v);
1843         VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1844         VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1845         VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1846         VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1847         assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE);
1848       }
1849     }
1850 
1851     /* Load the value for the inequality constraint at the end of the
1852     ** range (if any).
1853     */
1854     nConstraint = nEq;
1855     if( pRangeEnd ){
1856       Expr *pRight = pRangeEnd->pExpr->pRight;
1857       codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
1858       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1859       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1860        && sqlite3ExprCanBeNull(pRight)
1861       ){
1862         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1863         VdbeCoverage(v);
1864       }
1865       if( zEndAff ){
1866         updateRangeAffinityStr(pRight, nTop, zEndAff);
1867         codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1868       }else{
1869         assert( pParse->db->mallocFailed );
1870       }
1871       nConstraint += nTop;
1872       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1873 
1874       if( sqlite3ExprIsVector(pRight)==0 ){
1875         disableTerm(pLevel, pRangeEnd);
1876       }else{
1877         endEq = 1;
1878       }
1879     }else if( bStopAtNull ){
1880       if( regBignull==0 ){
1881         sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1882         endEq = 0;
1883       }
1884       nConstraint++;
1885     }
1886     sqlite3DbFree(db, zStartAff);
1887     sqlite3DbFree(db, zEndAff);
1888 
1889     /* Top of the loop body */
1890     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1891 
1892     /* Check if the index cursor is past the end of the range. */
1893     if( nConstraint ){
1894       if( regBignull ){
1895         /* Except, skip the end-of-range check while doing the NULL-scan */
1896         sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3);
1897         VdbeComment((v, "If NULL-scan 2nd pass"));
1898         VdbeCoverage(v);
1899       }
1900       op = aEndOp[bRev*2 + endEq];
1901       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1902       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1903       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1904       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1905       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1906       if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan);
1907     }
1908     if( regBignull ){
1909       /* During a NULL-scan, check to see if we have reached the end of
1910       ** the NULLs */
1911       assert( bSeekPastNull==!bStopAtNull );
1912       assert( bSeekPastNull+bStopAtNull==1 );
1913       assert( nConstraint+bSeekPastNull>0 );
1914       sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2);
1915       VdbeComment((v, "If NULL-scan 1st pass"));
1916       VdbeCoverage(v);
1917       op = aEndOp[bRev*2 + bSeekPastNull];
1918       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1919                            nConstraint+bSeekPastNull);
1920       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1921       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1922       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1923       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1924     }
1925 
1926     if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){
1927       sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq);
1928     }
1929 
1930     /* Seek the table cursor, if required */
1931     omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
1932            && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
1933     if( omitTable ){
1934       /* pIdx is a covering index.  No need to access the main table. */
1935     }else if( HasRowid(pIdx->pTable) ){
1936       codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
1937     }else if( iCur!=iIdxCur ){
1938       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1939       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1940       for(j=0; j<pPk->nKeyCol; j++){
1941         k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
1942         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1943       }
1944       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1945                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1946     }
1947 
1948     if( pLevel->iLeftJoin==0 ){
1949       /* If pIdx is an index on one or more expressions, then look through
1950       ** all the expressions in pWInfo and try to transform matching expressions
1951       ** into reference to index columns.  Also attempt to translate references
1952       ** to virtual columns in the table into references to (stored) columns
1953       ** of the index.
1954       **
1955       ** Do not do this for the RHS of a LEFT JOIN. This is because the
1956       ** expression may be evaluated after OP_NullRow has been executed on
1957       ** the cursor. In this case it is important to do the full evaluation,
1958       ** as the result of the expression may not be NULL, even if all table
1959       ** column values are.  https://www.sqlite.org/src/info/7fa8049685b50b5a
1960       **
1961       ** Also, do not do this when processing one index an a multi-index
1962       ** OR clause, since the transformation will become invalid once we
1963       ** move forward to the next index.
1964       ** https://sqlite.org/src/info/4e8e4857d32d401f
1965       */
1966       if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
1967         whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
1968       }
1969 
1970       /* If a partial index is driving the loop, try to eliminate WHERE clause
1971       ** terms from the query that must be true due to the WHERE clause of
1972       ** the partial index.
1973       **
1974       ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
1975       ** for a LEFT JOIN.
1976       */
1977       if( pIdx->pPartIdxWhere ){
1978         whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC);
1979       }
1980     }else{
1981       testcase( pIdx->pPartIdxWhere );
1982       /* The following assert() is not a requirement, merely an observation:
1983       ** The OR-optimization doesn't work for the right hand table of
1984       ** a LEFT JOIN: */
1985       assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 );
1986     }
1987 
1988     /* Record the instruction used to terminate the loop. */
1989     if( pLoop->wsFlags & WHERE_ONEROW ){
1990       pLevel->op = OP_Noop;
1991     }else if( bRev ){
1992       pLevel->op = OP_Prev;
1993     }else{
1994       pLevel->op = OP_Next;
1995     }
1996     pLevel->p1 = iIdxCur;
1997     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1998     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1999       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2000     }else{
2001       assert( pLevel->p5==0 );
2002     }
2003     if( omitTable ) pIdx = 0;
2004   }else
2005 
2006 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
2007   if( pLoop->wsFlags & WHERE_MULTI_OR ){
2008     /* Case 5:  Two or more separately indexed terms connected by OR
2009     **
2010     ** Example:
2011     **
2012     **   CREATE TABLE t1(a,b,c,d);
2013     **   CREATE INDEX i1 ON t1(a);
2014     **   CREATE INDEX i2 ON t1(b);
2015     **   CREATE INDEX i3 ON t1(c);
2016     **
2017     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
2018     **
2019     ** In the example, there are three indexed terms connected by OR.
2020     ** The top of the loop looks like this:
2021     **
2022     **          Null       1                # Zero the rowset in reg 1
2023     **
2024     ** Then, for each indexed term, the following. The arguments to
2025     ** RowSetTest are such that the rowid of the current row is inserted
2026     ** into the RowSet. If it is already present, control skips the
2027     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
2028     **
2029     **        sqlite3WhereBegin(<term>)
2030     **          RowSetTest                  # Insert rowid into rowset
2031     **          Gosub      2 A
2032     **        sqlite3WhereEnd()
2033     **
2034     ** Following the above, code to terminate the loop. Label A, the target
2035     ** of the Gosub above, jumps to the instruction right after the Goto.
2036     **
2037     **          Null       1                # Zero the rowset in reg 1
2038     **          Goto       B                # The loop is finished.
2039     **
2040     **       A: <loop body>                 # Return data, whatever.
2041     **
2042     **          Return     2                # Jump back to the Gosub
2043     **
2044     **       B: <after the loop>
2045     **
2046     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
2047     ** use an ephemeral index instead of a RowSet to record the primary
2048     ** keys of the rows we have already seen.
2049     **
2050     */
2051     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
2052     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
2053     Index *pCov = 0;             /* Potential covering index (or NULL) */
2054     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
2055 
2056     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
2057     int regRowset = 0;                        /* Register for RowSet object */
2058     int regRowid = 0;                         /* Register holding rowid */
2059     int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */
2060     int iRetInit;                             /* Address of regReturn init */
2061     int untestedTerms = 0;             /* Some terms not completely tested */
2062     int ii;                            /* Loop counter */
2063     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
2064     Table *pTab = pTabItem->pTab;
2065 
2066     pTerm = pLoop->aLTerm[0];
2067     assert( pTerm!=0 );
2068     assert( pTerm->eOperator & WO_OR );
2069     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
2070     pOrWc = &pTerm->u.pOrInfo->wc;
2071     pLevel->op = OP_Return;
2072     pLevel->p1 = regReturn;
2073 
2074     /* Set up a new SrcList in pOrTab containing the table being scanned
2075     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
2076     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
2077     */
2078     if( pWInfo->nLevel>1 ){
2079       int nNotReady;                 /* The number of notReady tables */
2080       SrcItem *origSrc;              /* Original list of tables */
2081       nNotReady = pWInfo->nLevel - iLevel - 1;
2082       pOrTab = sqlite3StackAllocRaw(db,
2083                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
2084       if( pOrTab==0 ) return notReady;
2085       pOrTab->nAlloc = (u8)(nNotReady + 1);
2086       pOrTab->nSrc = pOrTab->nAlloc;
2087       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
2088       origSrc = pWInfo->pTabList->a;
2089       for(k=1; k<=nNotReady; k++){
2090         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
2091       }
2092     }else{
2093       pOrTab = pWInfo->pTabList;
2094     }
2095 
2096     /* Initialize the rowset register to contain NULL. An SQL NULL is
2097     ** equivalent to an empty rowset.  Or, create an ephemeral index
2098     ** capable of holding primary keys in the case of a WITHOUT ROWID.
2099     **
2100     ** Also initialize regReturn to contain the address of the instruction
2101     ** immediately following the OP_Return at the bottom of the loop. This
2102     ** is required in a few obscure LEFT JOIN cases where control jumps
2103     ** over the top of the loop into the body of it. In this case the
2104     ** correct response for the end-of-loop code (the OP_Return) is to
2105     ** fall through to the next instruction, just as an OP_Next does if
2106     ** called on an uninitialized cursor.
2107     */
2108     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2109       if( HasRowid(pTab) ){
2110         regRowset = ++pParse->nMem;
2111         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
2112       }else{
2113         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2114         regRowset = pParse->nTab++;
2115         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
2116         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
2117       }
2118       regRowid = ++pParse->nMem;
2119     }
2120     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
2121 
2122     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
2123     ** Then for every term xN, evaluate as the subexpression: xN AND z
2124     ** That way, terms in y that are factored into the disjunction will
2125     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
2126     **
2127     ** Actually, each subexpression is converted to "xN AND w" where w is
2128     ** the "interesting" terms of z - terms that did not originate in the
2129     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
2130     ** indices.
2131     **
2132     ** This optimization also only applies if the (x1 OR x2 OR ...) term
2133     ** is not contained in the ON clause of a LEFT JOIN.
2134     ** See ticket http://www.sqlite.org/src/info/f2369304e4
2135     */
2136     if( pWC->nTerm>1 ){
2137       int iTerm;
2138       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
2139         Expr *pExpr = pWC->a[iTerm].pExpr;
2140         if( &pWC->a[iTerm] == pTerm ) continue;
2141         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
2142         testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
2143         if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
2144         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
2145         testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
2146         pExpr = sqlite3ExprDup(db, pExpr, 0);
2147         pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr);
2148       }
2149       if( pAndExpr ){
2150         /* The extra 0x10000 bit on the opcode is masked off and does not
2151         ** become part of the new Expr.op.  However, it does make the
2152         ** op==TK_AND comparison inside of sqlite3PExpr() false, and this
2153         ** prevents sqlite3PExpr() from implementing AND short-circuit
2154         ** optimization, which we do not want here. */
2155         pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr);
2156       }
2157     }
2158 
2159     /* Run a separate WHERE clause for each term of the OR clause.  After
2160     ** eliminating duplicates from other WHERE clauses, the action for each
2161     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
2162     */
2163     ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
2164     for(ii=0; ii<pOrWc->nTerm; ii++){
2165       WhereTerm *pOrTerm = &pOrWc->a[ii];
2166       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
2167         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
2168         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
2169         int jmp1 = 0;                   /* Address of jump operation */
2170         testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0
2171                && !ExprHasProperty(pOrExpr, EP_FromJoin)
2172         ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */
2173         if( pAndExpr ){
2174           pAndExpr->pLeft = pOrExpr;
2175           pOrExpr = pAndExpr;
2176         }
2177         /* Loop through table entries that match term pOrTerm. */
2178         ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1));
2179         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
2180         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
2181                                       WHERE_OR_SUBCLAUSE, iCovCur);
2182         assert( pSubWInfo || pParse->nErr || db->mallocFailed );
2183         if( pSubWInfo ){
2184           WhereLoop *pSubLoop;
2185           int addrExplain = sqlite3WhereExplainOneScan(
2186               pParse, pOrTab, &pSubWInfo->a[0], 0
2187           );
2188           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
2189 
2190           /* This is the sub-WHERE clause body.  First skip over
2191           ** duplicate rows from prior sub-WHERE clauses, and record the
2192           ** rowid (or PRIMARY KEY) for the current row so that the same
2193           ** row will be skipped in subsequent sub-WHERE clauses.
2194           */
2195           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2196             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
2197             if( HasRowid(pTab) ){
2198               sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid);
2199               jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
2200                                           regRowid, iSet);
2201               VdbeCoverage(v);
2202             }else{
2203               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2204               int nPk = pPk->nKeyCol;
2205               int iPk;
2206               int r;
2207 
2208               /* Read the PK into an array of temp registers. */
2209               r = sqlite3GetTempRange(pParse, nPk);
2210               for(iPk=0; iPk<nPk; iPk++){
2211                 int iCol = pPk->aiColumn[iPk];
2212                 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2213               }
2214 
2215               /* Check if the temp table already contains this key. If so,
2216               ** the row has already been included in the result set and
2217               ** can be ignored (by jumping past the Gosub below). Otherwise,
2218               ** insert the key into the temp table and proceed with processing
2219               ** the row.
2220               **
2221               ** Use some of the same optimizations as OP_RowSetTest: If iSet
2222               ** is zero, assume that the key cannot already be present in
2223               ** the temp table. And if iSet is -1, assume that there is no
2224               ** need to insert the key into the temp table, as it will never
2225               ** be tested for.  */
2226               if( iSet ){
2227                 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
2228                 VdbeCoverage(v);
2229               }
2230               if( iSet>=0 ){
2231                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
2232                 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
2233                                      r, nPk);
2234                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2235               }
2236 
2237               /* Release the array of temp registers */
2238               sqlite3ReleaseTempRange(pParse, r, nPk);
2239             }
2240           }
2241 
2242           /* Invoke the main loop body as a subroutine */
2243           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2244 
2245           /* Jump here (skipping the main loop body subroutine) if the
2246           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2247           if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
2248 
2249           /* The pSubWInfo->untestedTerms flag means that this OR term
2250           ** contained one or more AND term from a notReady table.  The
2251           ** terms from the notReady table could not be tested and will
2252           ** need to be tested later.
2253           */
2254           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
2255 
2256           /* If all of the OR-connected terms are optimized using the same
2257           ** index, and the index is opened using the same cursor number
2258           ** by each call to sqlite3WhereBegin() made by this loop, it may
2259           ** be possible to use that index as a covering index.
2260           **
2261           ** If the call to sqlite3WhereBegin() above resulted in a scan that
2262           ** uses an index, and this is either the first OR-connected term
2263           ** processed or the index is the same as that used by all previous
2264           ** terms, set pCov to the candidate covering index. Otherwise, set
2265           ** pCov to NULL to indicate that no candidate covering index will
2266           ** be available.
2267           */
2268           pSubLoop = pSubWInfo->a[0].pWLoop;
2269           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2270           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2271            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2272            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2273           ){
2274             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2275             pCov = pSubLoop->u.btree.pIndex;
2276           }else{
2277             pCov = 0;
2278           }
2279           if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){
2280             pWInfo->bDeferredSeek = 1;
2281           }
2282 
2283           /* Finish the loop through table entries that match term pOrTerm. */
2284           sqlite3WhereEnd(pSubWInfo);
2285           ExplainQueryPlanPop(pParse);
2286         }
2287       }
2288     }
2289     ExplainQueryPlanPop(pParse);
2290     pLevel->u.pCovidx = pCov;
2291     if( pCov ) pLevel->iIdxCur = iCovCur;
2292     if( pAndExpr ){
2293       pAndExpr->pLeft = 0;
2294       sqlite3ExprDelete(db, pAndExpr);
2295     }
2296     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2297     sqlite3VdbeGoto(v, pLevel->addrBrk);
2298     sqlite3VdbeResolveLabel(v, iLoopBody);
2299 
2300     if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); }
2301     if( !untestedTerms ) disableTerm(pLevel, pTerm);
2302   }else
2303 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2304 
2305   {
2306     /* Case 6:  There is no usable index.  We must do a complete
2307     **          scan of the entire table.
2308     */
2309     static const u8 aStep[] = { OP_Next, OP_Prev };
2310     static const u8 aStart[] = { OP_Rewind, OP_Last };
2311     assert( bRev==0 || bRev==1 );
2312     if( pTabItem->fg.isRecursive ){
2313       /* Tables marked isRecursive have only a single row that is stored in
2314       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
2315       pLevel->op = OP_Noop;
2316     }else{
2317       codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2318       pLevel->op = aStep[bRev];
2319       pLevel->p1 = iCur;
2320       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2321       VdbeCoverageIf(v, bRev==0);
2322       VdbeCoverageIf(v, bRev!=0);
2323       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2324     }
2325   }
2326 
2327 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2328   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2329 #endif
2330 
2331   /* Insert code to test every subexpression that can be completely
2332   ** computed using the current set of tables.
2333   **
2334   ** This loop may run between one and three times, depending on the
2335   ** constraints to be generated. The value of stack variable iLoop
2336   ** determines the constraints coded by each iteration, as follows:
2337   **
2338   ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2339   ** iLoop==2: Code remaining expressions that do not contain correlated
2340   **           sub-queries.
2341   ** iLoop==3: Code all remaining expressions.
2342   **
2343   ** An effort is made to skip unnecessary iterations of the loop.
2344   */
2345   iLoop = (pIdx ? 1 : 2);
2346   do{
2347     int iNext = 0;                /* Next value for iLoop */
2348     for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2349       Expr *pE;
2350       int skipLikeAddr = 0;
2351       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2352       testcase( pTerm->wtFlags & TERM_CODED );
2353       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2354       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2355         testcase( pWInfo->untestedTerms==0
2356             && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2357         pWInfo->untestedTerms = 1;
2358         continue;
2359       }
2360       pE = pTerm->pExpr;
2361       assert( pE!=0 );
2362       if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){
2363         continue;
2364       }
2365 
2366       if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2367         iNext = 2;
2368         continue;
2369       }
2370       if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2371         if( iNext==0 ) iNext = 3;
2372         continue;
2373       }
2374 
2375       if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
2376         /* If the TERM_LIKECOND flag is set, that means that the range search
2377         ** is sufficient to guarantee that the LIKE operator is true, so we
2378         ** can skip the call to the like(A,B) function.  But this only works
2379         ** for strings.  So do not skip the call to the function on the pass
2380         ** that compares BLOBs. */
2381 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2382         continue;
2383 #else
2384         u32 x = pLevel->iLikeRepCntr;
2385         if( x>0 ){
2386           skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
2387           VdbeCoverageIf(v, (x&1)==1);
2388           VdbeCoverageIf(v, (x&1)==0);
2389         }
2390 #endif
2391       }
2392 #ifdef WHERETRACE_ENABLED /* 0xffff */
2393       if( sqlite3WhereTrace ){
2394         VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2395                          pWC->nTerm-j, pTerm, iLoop));
2396       }
2397       if( sqlite3WhereTrace & 0x800 ){
2398         sqlite3DebugPrintf("Coding auxiliary constraint:\n");
2399         sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2400       }
2401 #endif
2402       sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2403       if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2404       pTerm->wtFlags |= TERM_CODED;
2405     }
2406     iLoop = iNext;
2407   }while( iLoop>0 );
2408 
2409   /* Insert code to test for implied constraints based on transitivity
2410   ** of the "==" operator.
2411   **
2412   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2413   ** and we are coding the t1 loop and the t2 loop has not yet coded,
2414   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2415   ** the implied "t1.a=123" constraint.
2416   */
2417   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2418     Expr *pE, sEAlt;
2419     WhereTerm *pAlt;
2420     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2421     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2422     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2423     if( pTerm->leftCursor!=iCur ) continue;
2424     if( pTabItem->fg.jointype & JT_LEFT ) continue;
2425     pE = pTerm->pExpr;
2426 #ifdef WHERETRACE_ENABLED /* 0x800 */
2427     if( sqlite3WhereTrace & 0x800 ){
2428       sqlite3DebugPrintf("Coding transitive constraint:\n");
2429       sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2430     }
2431 #endif
2432     assert( !ExprHasProperty(pE, EP_FromJoin) );
2433     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2434     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady,
2435                     WO_EQ|WO_IN|WO_IS, 0);
2436     if( pAlt==0 ) continue;
2437     if( pAlt->wtFlags & (TERM_CODED) ) continue;
2438     if( (pAlt->eOperator & WO_IN)
2439      && (pAlt->pExpr->flags & EP_xIsSelect)
2440      && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
2441     ){
2442       continue;
2443     }
2444     testcase( pAlt->eOperator & WO_EQ );
2445     testcase( pAlt->eOperator & WO_IS );
2446     testcase( pAlt->eOperator & WO_IN );
2447     VdbeModuleComment((v, "begin transitive constraint"));
2448     sEAlt = *pAlt->pExpr;
2449     sEAlt.pLeft = pE->pLeft;
2450     sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2451   }
2452 
2453   /* For a LEFT OUTER JOIN, generate code that will record the fact that
2454   ** at least one row of the right table has matched the left table.
2455   */
2456   if( pLevel->iLeftJoin ){
2457     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2458     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2459     VdbeComment((v, "record LEFT JOIN hit"));
2460     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
2461       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2462       testcase( pTerm->wtFlags & TERM_CODED );
2463       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2464       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2465         assert( pWInfo->untestedTerms );
2466         continue;
2467       }
2468       assert( pTerm->pExpr );
2469       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2470       pTerm->wtFlags |= TERM_CODED;
2471     }
2472   }
2473 
2474 #if WHERETRACE_ENABLED /* 0x20800 */
2475   if( sqlite3WhereTrace & 0x20000 ){
2476     sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n",
2477                        iLevel);
2478     sqlite3WhereClausePrint(pWC);
2479   }
2480   if( sqlite3WhereTrace & 0x800 ){
2481     sqlite3DebugPrintf("End Coding level %d:  notReady=%llx\n",
2482        iLevel, (u64)pLevel->notReady);
2483   }
2484 #endif
2485   return pLevel->notReady;
2486 }
2487