1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 /* 25 ** This routine is a helper for explainIndexRange() below 26 ** 27 ** pStr holds the text of an expression that we are building up one term 28 ** at a time. This routine adds a new term to the end of the expression. 29 ** Terms are separated by AND so add the "AND" text for second and subsequent 30 ** terms only. 31 */ 32 static void explainAppendTerm( 33 StrAccum *pStr, /* The text expression being built */ 34 int iTerm, /* Index of this term. First is zero */ 35 const char *zColumn, /* Name of the column */ 36 const char *zOp /* Name of the operator */ 37 ){ 38 if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5); 39 sqlite3StrAccumAppendAll(pStr, zColumn); 40 sqlite3StrAccumAppend(pStr, zOp, 1); 41 sqlite3StrAccumAppend(pStr, "?", 1); 42 } 43 44 /* 45 ** Return the name of the i-th column of the pIdx index. 46 */ 47 static const char *explainIndexColumnName(Index *pIdx, int i){ 48 i = pIdx->aiColumn[i]; 49 if( i==XN_EXPR ) return "<expr>"; 50 if( i==XN_ROWID ) return "rowid"; 51 return pIdx->pTable->aCol[i].zName; 52 } 53 54 /* 55 ** Argument pLevel describes a strategy for scanning table pTab. This 56 ** function appends text to pStr that describes the subset of table 57 ** rows scanned by the strategy in the form of an SQL expression. 58 ** 59 ** For example, if the query: 60 ** 61 ** SELECT * FROM t1 WHERE a=1 AND b>2; 62 ** 63 ** is run and there is an index on (a, b), then this function returns a 64 ** string similar to: 65 ** 66 ** "a=? AND b>?" 67 */ 68 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 69 Index *pIndex = pLoop->u.btree.pIndex; 70 u16 nEq = pLoop->u.btree.nEq; 71 u16 nSkip = pLoop->nSkip; 72 int i, j; 73 74 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 75 sqlite3StrAccumAppend(pStr, " (", 2); 76 for(i=0; i<nEq; i++){ 77 const char *z = explainIndexColumnName(pIndex, i); 78 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5); 79 sqlite3XPrintf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); 80 } 81 82 j = i; 83 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 84 const char *z = explainIndexColumnName(pIndex, i); 85 explainAppendTerm(pStr, i++, z, ">"); 86 } 87 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 88 const char *z = explainIndexColumnName(pIndex, j); 89 explainAppendTerm(pStr, i, z, "<"); 90 } 91 sqlite3StrAccumAppend(pStr, ")", 1); 92 } 93 94 /* 95 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 96 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 97 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 98 ** is added to the output to describe the table scan strategy in pLevel. 99 ** 100 ** If an OP_Explain opcode is added to the VM, its address is returned. 101 ** Otherwise, if no OP_Explain is coded, zero is returned. 102 */ 103 int sqlite3WhereExplainOneScan( 104 Parse *pParse, /* Parse context */ 105 SrcList *pTabList, /* Table list this loop refers to */ 106 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 107 int iLevel, /* Value for "level" column of output */ 108 int iFrom, /* Value for "from" column of output */ 109 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 110 ){ 111 int ret = 0; 112 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 113 if( pParse->explain==2 ) 114 #endif 115 { 116 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 117 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 118 sqlite3 *db = pParse->db; /* Database handle */ 119 int iId = pParse->iSelectId; /* Select id (left-most output column) */ 120 int isSearch; /* True for a SEARCH. False for SCAN. */ 121 WhereLoop *pLoop; /* The controlling WhereLoop object */ 122 u32 flags; /* Flags that describe this loop */ 123 char *zMsg; /* Text to add to EQP output */ 124 StrAccum str; /* EQP output string */ 125 char zBuf[100]; /* Initial space for EQP output string */ 126 127 pLoop = pLevel->pWLoop; 128 flags = pLoop->wsFlags; 129 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return 0; 130 131 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 132 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 133 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 134 135 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 136 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN"); 137 if( pItem->pSelect ){ 138 sqlite3XPrintf(&str, " SUBQUERY %d", pItem->iSelectId); 139 }else{ 140 sqlite3XPrintf(&str, " TABLE %s", pItem->zName); 141 } 142 143 if( pItem->zAlias ){ 144 sqlite3XPrintf(&str, " AS %s", pItem->zAlias); 145 } 146 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 147 const char *zFmt = 0; 148 Index *pIdx; 149 150 assert( pLoop->u.btree.pIndex!=0 ); 151 pIdx = pLoop->u.btree.pIndex; 152 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 153 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 154 if( isSearch ){ 155 zFmt = "PRIMARY KEY"; 156 } 157 }else if( flags & WHERE_PARTIALIDX ){ 158 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 159 }else if( flags & WHERE_AUTO_INDEX ){ 160 zFmt = "AUTOMATIC COVERING INDEX"; 161 }else if( flags & WHERE_IDX_ONLY ){ 162 zFmt = "COVERING INDEX %s"; 163 }else{ 164 zFmt = "INDEX %s"; 165 } 166 if( zFmt ){ 167 sqlite3StrAccumAppend(&str, " USING ", 7); 168 sqlite3XPrintf(&str, zFmt, pIdx->zName); 169 explainIndexRange(&str, pLoop); 170 } 171 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 172 const char *zRangeOp; 173 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 174 zRangeOp = "="; 175 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 176 zRangeOp = ">? AND rowid<"; 177 }else if( flags&WHERE_BTM_LIMIT ){ 178 zRangeOp = ">"; 179 }else{ 180 assert( flags&WHERE_TOP_LIMIT); 181 zRangeOp = "<"; 182 } 183 sqlite3XPrintf(&str, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp); 184 } 185 #ifndef SQLITE_OMIT_VIRTUALTABLE 186 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 187 sqlite3XPrintf(&str, " VIRTUAL TABLE INDEX %d:%s", 188 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 189 } 190 #endif 191 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 192 if( pLoop->nOut>=10 ){ 193 sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); 194 }else{ 195 sqlite3StrAccumAppend(&str, " (~1 row)", 9); 196 } 197 #endif 198 zMsg = sqlite3StrAccumFinish(&str); 199 ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC); 200 } 201 return ret; 202 } 203 #endif /* SQLITE_OMIT_EXPLAIN */ 204 205 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 206 /* 207 ** Configure the VM passed as the first argument with an 208 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 209 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 210 ** clause that the scan reads data from. 211 ** 212 ** If argument addrExplain is not 0, it must be the address of an 213 ** OP_Explain instruction that describes the same loop. 214 */ 215 void sqlite3WhereAddScanStatus( 216 Vdbe *v, /* Vdbe to add scanstatus entry to */ 217 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 218 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 219 int addrExplain /* Address of OP_Explain (or 0) */ 220 ){ 221 const char *zObj = 0; 222 WhereLoop *pLoop = pLvl->pWLoop; 223 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 224 zObj = pLoop->u.btree.pIndex->zName; 225 }else{ 226 zObj = pSrclist->a[pLvl->iFrom].zName; 227 } 228 sqlite3VdbeScanStatus( 229 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 230 ); 231 } 232 #endif 233 234 235 /* 236 ** Disable a term in the WHERE clause. Except, do not disable the term 237 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 238 ** or USING clause of that join. 239 ** 240 ** Consider the term t2.z='ok' in the following queries: 241 ** 242 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 243 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 244 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 245 ** 246 ** The t2.z='ok' is disabled in the in (2) because it originates 247 ** in the ON clause. The term is disabled in (3) because it is not part 248 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 249 ** 250 ** Disabling a term causes that term to not be tested in the inner loop 251 ** of the join. Disabling is an optimization. When terms are satisfied 252 ** by indices, we disable them to prevent redundant tests in the inner 253 ** loop. We would get the correct results if nothing were ever disabled, 254 ** but joins might run a little slower. The trick is to disable as much 255 ** as we can without disabling too much. If we disabled in (1), we'd get 256 ** the wrong answer. See ticket #813. 257 ** 258 ** If all the children of a term are disabled, then that term is also 259 ** automatically disabled. In this way, terms get disabled if derived 260 ** virtual terms are tested first. For example: 261 ** 262 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 263 ** \___________/ \______/ \_____/ 264 ** parent child1 child2 265 ** 266 ** Only the parent term was in the original WHERE clause. The child1 267 ** and child2 terms were added by the LIKE optimization. If both of 268 ** the virtual child terms are valid, then testing of the parent can be 269 ** skipped. 270 ** 271 ** Usually the parent term is marked as TERM_CODED. But if the parent 272 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 273 ** The TERM_LIKECOND marking indicates that the term should be coded inside 274 ** a conditional such that is only evaluated on the second pass of a 275 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 276 */ 277 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 278 int nLoop = 0; 279 while( pTerm 280 && (pTerm->wtFlags & TERM_CODED)==0 281 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 282 && (pLevel->notReady & pTerm->prereqAll)==0 283 ){ 284 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 285 pTerm->wtFlags |= TERM_LIKECOND; 286 }else{ 287 pTerm->wtFlags |= TERM_CODED; 288 } 289 if( pTerm->iParent<0 ) break; 290 pTerm = &pTerm->pWC->a[pTerm->iParent]; 291 pTerm->nChild--; 292 if( pTerm->nChild!=0 ) break; 293 nLoop++; 294 } 295 } 296 297 /* 298 ** Code an OP_Affinity opcode to apply the column affinity string zAff 299 ** to the n registers starting at base. 300 ** 301 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the 302 ** beginning and end of zAff are ignored. If all entries in zAff are 303 ** SQLITE_AFF_BLOB, then no code gets generated. 304 ** 305 ** This routine makes its own copy of zAff so that the caller is free 306 ** to modify zAff after this routine returns. 307 */ 308 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 309 Vdbe *v = pParse->pVdbe; 310 if( zAff==0 ){ 311 assert( pParse->db->mallocFailed ); 312 return; 313 } 314 assert( v!=0 ); 315 316 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning 317 ** and end of the affinity string. 318 */ 319 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){ 320 n--; 321 base++; 322 zAff++; 323 } 324 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){ 325 n--; 326 } 327 328 /* Code the OP_Affinity opcode if there is anything left to do. */ 329 if( n>0 ){ 330 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 331 sqlite3ExprCacheAffinityChange(pParse, base, n); 332 } 333 } 334 335 336 /* 337 ** Generate code for a single equality term of the WHERE clause. An equality 338 ** term can be either X=expr or X IN (...). pTerm is the term to be 339 ** coded. 340 ** 341 ** The current value for the constraint is left in register iReg. 342 ** 343 ** For a constraint of the form X=expr, the expression is evaluated and its 344 ** result is left on the stack. For constraints of the form X IN (...) 345 ** this routine sets up a loop that will iterate over all values of X. 346 */ 347 static int codeEqualityTerm( 348 Parse *pParse, /* The parsing context */ 349 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 350 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 351 int iEq, /* Index of the equality term within this level */ 352 int bRev, /* True for reverse-order IN operations */ 353 int iTarget /* Attempt to leave results in this register */ 354 ){ 355 Expr *pX = pTerm->pExpr; 356 Vdbe *v = pParse->pVdbe; 357 int iReg; /* Register holding results */ 358 359 assert( iTarget>0 ); 360 if( pX->op==TK_EQ || pX->op==TK_IS ){ 361 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 362 }else if( pX->op==TK_ISNULL ){ 363 iReg = iTarget; 364 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 365 #ifndef SQLITE_OMIT_SUBQUERY 366 }else{ 367 int eType; 368 int iTab; 369 struct InLoop *pIn; 370 WhereLoop *pLoop = pLevel->pWLoop; 371 372 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 373 && pLoop->u.btree.pIndex!=0 374 && pLoop->u.btree.pIndex->aSortOrder[iEq] 375 ){ 376 testcase( iEq==0 ); 377 testcase( bRev ); 378 bRev = !bRev; 379 } 380 assert( pX->op==TK_IN ); 381 iReg = iTarget; 382 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0); 383 if( eType==IN_INDEX_INDEX_DESC ){ 384 testcase( bRev ); 385 bRev = !bRev; 386 } 387 iTab = pX->iTable; 388 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 389 VdbeCoverageIf(v, bRev); 390 VdbeCoverageIf(v, !bRev); 391 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 392 pLoop->wsFlags |= WHERE_IN_ABLE; 393 if( pLevel->u.in.nIn==0 ){ 394 pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 395 } 396 pLevel->u.in.nIn++; 397 pLevel->u.in.aInLoop = 398 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 399 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 400 pIn = pLevel->u.in.aInLoop; 401 if( pIn ){ 402 pIn += pLevel->u.in.nIn - 1; 403 pIn->iCur = iTab; 404 if( eType==IN_INDEX_ROWID ){ 405 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); 406 }else{ 407 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); 408 } 409 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; 410 sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v); 411 }else{ 412 pLevel->u.in.nIn = 0; 413 } 414 #endif 415 } 416 disableTerm(pLevel, pTerm); 417 return iReg; 418 } 419 420 /* 421 ** Generate code that will evaluate all == and IN constraints for an 422 ** index scan. 423 ** 424 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 425 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 426 ** The index has as many as three equality constraints, but in this 427 ** example, the third "c" value is an inequality. So only two 428 ** constraints are coded. This routine will generate code to evaluate 429 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 430 ** in consecutive registers and the index of the first register is returned. 431 ** 432 ** In the example above nEq==2. But this subroutine works for any value 433 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 434 ** The only thing it does is allocate the pLevel->iMem memory cell and 435 ** compute the affinity string. 436 ** 437 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 438 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 439 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 440 ** occurs after the nEq quality constraints. 441 ** 442 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 443 ** the index of the first memory cell in that range. The code that 444 ** calls this routine will use that memory range to store keys for 445 ** start and termination conditions of the loop. 446 ** key value of the loop. If one or more IN operators appear, then 447 ** this routine allocates an additional nEq memory cells for internal 448 ** use. 449 ** 450 ** Before returning, *pzAff is set to point to a buffer containing a 451 ** copy of the column affinity string of the index allocated using 452 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 453 ** with equality constraints that use BLOB or NONE affinity are set to 454 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 455 ** 456 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 457 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 458 ** 459 ** In the example above, the index on t1(a) has TEXT affinity. But since 460 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 461 ** no conversion should be attempted before using a t2.b value as part of 462 ** a key to search the index. Hence the first byte in the returned affinity 463 ** string in this example would be set to SQLITE_AFF_BLOB. 464 */ 465 static int codeAllEqualityTerms( 466 Parse *pParse, /* Parsing context */ 467 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 468 int bRev, /* Reverse the order of IN operators */ 469 int nExtraReg, /* Number of extra registers to allocate */ 470 char **pzAff /* OUT: Set to point to affinity string */ 471 ){ 472 u16 nEq; /* The number of == or IN constraints to code */ 473 u16 nSkip; /* Number of left-most columns to skip */ 474 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 475 Index *pIdx; /* The index being used for this loop */ 476 WhereTerm *pTerm; /* A single constraint term */ 477 WhereLoop *pLoop; /* The WhereLoop object */ 478 int j; /* Loop counter */ 479 int regBase; /* Base register */ 480 int nReg; /* Number of registers to allocate */ 481 char *zAff; /* Affinity string to return */ 482 483 /* This module is only called on query plans that use an index. */ 484 pLoop = pLevel->pWLoop; 485 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 486 nEq = pLoop->u.btree.nEq; 487 nSkip = pLoop->nSkip; 488 pIdx = pLoop->u.btree.pIndex; 489 assert( pIdx!=0 ); 490 491 /* Figure out how many memory cells we will need then allocate them. 492 */ 493 regBase = pParse->nMem + 1; 494 nReg = pLoop->u.btree.nEq + nExtraReg; 495 pParse->nMem += nReg; 496 497 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 498 assert( zAff!=0 || pParse->db->mallocFailed ); 499 500 if( nSkip ){ 501 int iIdxCur = pLevel->iIdxCur; 502 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 503 VdbeCoverageIf(v, bRev==0); 504 VdbeCoverageIf(v, bRev!=0); 505 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 506 j = sqlite3VdbeAddOp0(v, OP_Goto); 507 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 508 iIdxCur, 0, regBase, nSkip); 509 VdbeCoverageIf(v, bRev==0); 510 VdbeCoverageIf(v, bRev!=0); 511 sqlite3VdbeJumpHere(v, j); 512 for(j=0; j<nSkip; j++){ 513 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 514 testcase( pIdx->aiColumn[j]==XN_EXPR ); 515 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 516 } 517 } 518 519 /* Evaluate the equality constraints 520 */ 521 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 522 for(j=nSkip; j<nEq; j++){ 523 int r1; 524 pTerm = pLoop->aLTerm[j]; 525 assert( pTerm!=0 ); 526 /* The following testcase is true for indices with redundant columns. 527 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 528 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 529 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 530 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 531 if( r1!=regBase+j ){ 532 if( nReg==1 ){ 533 sqlite3ReleaseTempReg(pParse, regBase); 534 regBase = r1; 535 }else{ 536 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 537 } 538 } 539 testcase( pTerm->eOperator & WO_ISNULL ); 540 testcase( pTerm->eOperator & WO_IN ); 541 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ 542 Expr *pRight = pTerm->pExpr->pRight; 543 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 544 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 545 VdbeCoverage(v); 546 } 547 if( zAff ){ 548 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 549 zAff[j] = SQLITE_AFF_BLOB; 550 } 551 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 552 zAff[j] = SQLITE_AFF_BLOB; 553 } 554 } 555 } 556 } 557 *pzAff = zAff; 558 return regBase; 559 } 560 561 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 562 /* 563 ** If the most recently coded instruction is a constant range contraint 564 ** that originated from the LIKE optimization, then change the P3 to be 565 ** pLoop->iLikeRepCntr and set P5. 566 ** 567 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 568 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 569 ** scan loop run twice, once for strings and a second time for BLOBs. 570 ** The OP_String opcodes on the second pass convert the upper and lower 571 ** bound string contants to blobs. This routine makes the necessary changes 572 ** to the OP_String opcodes for that to happen. 573 ** 574 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 575 ** only the one pass through the string space is required, so this routine 576 ** becomes a no-op. 577 */ 578 static void whereLikeOptimizationStringFixup( 579 Vdbe *v, /* prepared statement under construction */ 580 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 581 WhereTerm *pTerm /* The upper or lower bound just coded */ 582 ){ 583 if( pTerm->wtFlags & TERM_LIKEOPT ){ 584 VdbeOp *pOp; 585 assert( pLevel->iLikeRepCntr>0 ); 586 pOp = sqlite3VdbeGetOp(v, -1); 587 assert( pOp!=0 ); 588 assert( pOp->opcode==OP_String8 589 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 590 pOp->p3 = pLevel->iLikeRepCntr; 591 pOp->p5 = 1; 592 } 593 } 594 #else 595 # define whereLikeOptimizationStringFixup(A,B,C) 596 #endif 597 598 #ifdef SQLITE_ENABLE_CURSOR_HINTS 599 /* 600 ** Information is passed from codeCursorHint() down to individual nodes of 601 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 602 ** structure. 603 */ 604 struct CCurHint { 605 int iTabCur; /* Cursor for the main table */ 606 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 607 Index *pIdx; /* The index used to access the table */ 608 }; 609 610 /* 611 ** This function is called for every node of an expression that is a candidate 612 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 613 ** the table CCurHint.iTabCur, verify that the same column can be 614 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 615 */ 616 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 617 struct CCurHint *pHint = pWalker->u.pCCurHint; 618 assert( pHint->pIdx!=0 ); 619 if( pExpr->op==TK_COLUMN 620 && pExpr->iTable==pHint->iTabCur 621 && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0 622 ){ 623 pWalker->eCode = 1; 624 } 625 return WRC_Continue; 626 } 627 628 629 /* 630 ** This function is called on every node of an expression tree used as an 631 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 632 ** that accesses any table other than the one identified by 633 ** CCurHint.iTabCur, then do the following: 634 ** 635 ** 1) allocate a register and code an OP_Column instruction to read 636 ** the specified column into the new register, and 637 ** 638 ** 2) transform the expression node to a TK_REGISTER node that reads 639 ** from the newly populated register. 640 ** 641 ** Also, if the node is a TK_COLUMN that does access the table idenified 642 ** by pCCurHint.iTabCur, and an index is being used (which we will 643 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 644 ** an access of the index rather than the original table. 645 */ 646 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 647 int rc = WRC_Continue; 648 struct CCurHint *pHint = pWalker->u.pCCurHint; 649 if( pExpr->op==TK_COLUMN ){ 650 if( pExpr->iTable!=pHint->iTabCur ){ 651 Vdbe *v = pWalker->pParse->pVdbe; 652 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 653 sqlite3ExprCodeGetColumnOfTable( 654 v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg 655 ); 656 pExpr->op = TK_REGISTER; 657 pExpr->iTable = reg; 658 }else if( pHint->pIdx!=0 ){ 659 pExpr->iTable = pHint->iIdxCur; 660 pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn); 661 assert( pExpr->iColumn>=0 ); 662 } 663 }else if( pExpr->op==TK_AGG_FUNCTION ){ 664 /* An aggregate function in the WHERE clause of a query means this must 665 ** be a correlated sub-query, and expression pExpr is an aggregate from 666 ** the parent context. Do not walk the function arguments in this case. 667 ** 668 ** todo: It should be possible to replace this node with a TK_REGISTER 669 ** expression, as the result of the expression must be stored in a 670 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 671 rc = WRC_Prune; 672 } 673 return rc; 674 } 675 676 /* 677 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 678 */ 679 static void codeCursorHint( 680 WhereInfo *pWInfo, /* The where clause */ 681 WhereLevel *pLevel, /* Which loop to provide hints for */ 682 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 683 ){ 684 Parse *pParse = pWInfo->pParse; 685 sqlite3 *db = pParse->db; 686 Vdbe *v = pParse->pVdbe; 687 Expr *pExpr = 0; 688 WhereLoop *pLoop = pLevel->pWLoop; 689 int iCur; 690 WhereClause *pWC; 691 WhereTerm *pTerm; 692 int i, j; 693 struct CCurHint sHint; 694 Walker sWalker; 695 696 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 697 iCur = pLevel->iTabCur; 698 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 699 sHint.iTabCur = iCur; 700 sHint.iIdxCur = pLevel->iIdxCur; 701 sHint.pIdx = pLoop->u.btree.pIndex; 702 memset(&sWalker, 0, sizeof(sWalker)); 703 sWalker.pParse = pParse; 704 sWalker.u.pCCurHint = &sHint; 705 pWC = &pWInfo->sWC; 706 for(i=0; i<pWC->nTerm; i++){ 707 pTerm = &pWC->a[i]; 708 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 709 if( pTerm->prereqAll & pLevel->notReady ) continue; 710 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; 711 712 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 713 ** the cursor. These terms are not needed as hints for a pure range 714 ** scan (that has no == terms) so omit them. */ 715 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 716 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 717 if( j<pLoop->nLTerm ) continue; 718 } 719 720 /* No subqueries or non-deterministic functions allowed */ 721 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 722 723 /* For an index scan, make sure referenced columns are actually in 724 ** the index. */ 725 if( sHint.pIdx!=0 ){ 726 sWalker.eCode = 0; 727 sWalker.xExprCallback = codeCursorHintCheckExpr; 728 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 729 if( sWalker.eCode ) continue; 730 } 731 732 /* If we survive all prior tests, that means this term is worth hinting */ 733 pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 734 } 735 if( pExpr!=0 ){ 736 sWalker.xExprCallback = codeCursorHintFixExpr; 737 sqlite3WalkExpr(&sWalker, pExpr); 738 sqlite3VdbeAddOp4(v, OP_CursorHint, 739 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 740 (const char*)pExpr, P4_EXPR); 741 } 742 } 743 #else 744 # define codeCursorHint(A,B,C) /* No-op */ 745 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 746 747 /* 748 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains 749 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This 750 ** function generates code to do a deferred seek of cursor iCur to the 751 ** rowid stored in register iRowid. 752 ** 753 ** Normally, this is just: 754 ** 755 ** OP_Seek $iCur $iRowid 756 ** 757 ** However, if the scan currently being coded is a branch of an OR-loop and 758 ** the statement currently being coded is a SELECT, then P3 of the OP_Seek 759 ** is set to iIdxCur and P4 is set to point to an array of integers 760 ** containing one entry for each column of the table cursor iCur is open 761 ** on. For each table column, if the column is the i'th column of the 762 ** index, then the corresponding array entry is set to (i+1). If the column 763 ** does not appear in the index at all, the array entry is set to 0. 764 */ 765 static void codeDeferredSeek( 766 WhereInfo *pWInfo, /* Where clause context */ 767 Index *pIdx, /* Index scan is using */ 768 int iCur, /* Cursor for IPK b-tree */ 769 int iIdxCur /* Index cursor */ 770 ){ 771 Parse *pParse = pWInfo->pParse; /* Parse context */ 772 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ 773 774 assert( iIdxCur>0 ); 775 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); 776 777 sqlite3VdbeAddOp3(v, OP_Seek, iIdxCur, 0, iCur); 778 if( (pWInfo->wctrlFlags & WHERE_FORCE_TABLE) 779 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) 780 ){ 781 int i; 782 Table *pTab = pIdx->pTable; 783 int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1)); 784 if( ai ){ 785 ai[0] = pTab->nCol; 786 for(i=0; i<pIdx->nColumn-1; i++){ 787 assert( pIdx->aiColumn[i]<pTab->nCol ); 788 if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1; 789 } 790 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); 791 } 792 } 793 } 794 795 /* 796 ** Generate code for the start of the iLevel-th loop in the WHERE clause 797 ** implementation described by pWInfo. 798 */ 799 Bitmask sqlite3WhereCodeOneLoopStart( 800 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 801 int iLevel, /* Which level of pWInfo->a[] should be coded */ 802 Bitmask notReady /* Which tables are currently available */ 803 ){ 804 int j, k; /* Loop counters */ 805 int iCur; /* The VDBE cursor for the table */ 806 int addrNxt; /* Where to jump to continue with the next IN case */ 807 int omitTable; /* True if we use the index only */ 808 int bRev; /* True if we need to scan in reverse order */ 809 WhereLevel *pLevel; /* The where level to be coded */ 810 WhereLoop *pLoop; /* The WhereLoop object being coded */ 811 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 812 WhereTerm *pTerm; /* A WHERE clause term */ 813 Parse *pParse; /* Parsing context */ 814 sqlite3 *db; /* Database connection */ 815 Vdbe *v; /* The prepared stmt under constructions */ 816 struct SrcList_item *pTabItem; /* FROM clause term being coded */ 817 int addrBrk; /* Jump here to break out of the loop */ 818 int addrCont; /* Jump here to continue with next cycle */ 819 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 820 int iReleaseReg = 0; /* Temp register to free before returning */ 821 822 pParse = pWInfo->pParse; 823 v = pParse->pVdbe; 824 pWC = &pWInfo->sWC; 825 db = pParse->db; 826 pLevel = &pWInfo->a[iLevel]; 827 pLoop = pLevel->pWLoop; 828 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 829 iCur = pTabItem->iCursor; 830 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 831 bRev = (pWInfo->revMask>>iLevel)&1; 832 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 833 && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0; 834 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 835 836 /* Create labels for the "break" and "continue" instructions 837 ** for the current loop. Jump to addrBrk to break out of a loop. 838 ** Jump to cont to go immediately to the next iteration of the 839 ** loop. 840 ** 841 ** When there is an IN operator, we also have a "addrNxt" label that 842 ** means to continue with the next IN value combination. When 843 ** there are no IN operators in the constraints, the "addrNxt" label 844 ** is the same as "addrBrk". 845 */ 846 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 847 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); 848 849 /* If this is the right table of a LEFT OUTER JOIN, allocate and 850 ** initialize a memory cell that records if this table matches any 851 ** row of the left table of the join. 852 */ 853 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 854 pLevel->iLeftJoin = ++pParse->nMem; 855 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 856 VdbeComment((v, "init LEFT JOIN no-match flag")); 857 } 858 859 /* Special case of a FROM clause subquery implemented as a co-routine */ 860 if( pTabItem->fg.viaCoroutine ){ 861 int regYield = pTabItem->regReturn; 862 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 863 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 864 VdbeCoverage(v); 865 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); 866 pLevel->op = OP_Goto; 867 }else 868 869 #ifndef SQLITE_OMIT_VIRTUALTABLE 870 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 871 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 872 ** to access the data. 873 */ 874 int iReg; /* P3 Value for OP_VFilter */ 875 int addrNotFound; 876 int nConstraint = pLoop->nLTerm; 877 int iIn; /* Counter for IN constraints */ 878 879 sqlite3ExprCachePush(pParse); 880 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 881 addrNotFound = pLevel->addrBrk; 882 for(j=0; j<nConstraint; j++){ 883 int iTarget = iReg+j+2; 884 pTerm = pLoop->aLTerm[j]; 885 if( NEVER(pTerm==0) ) continue; 886 if( pTerm->eOperator & WO_IN ){ 887 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 888 addrNotFound = pLevel->addrNxt; 889 }else{ 890 sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget); 891 } 892 } 893 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 894 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 895 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 896 pLoop->u.vtab.idxStr, 897 pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC); 898 VdbeCoverage(v); 899 pLoop->u.vtab.needFree = 0; 900 pLevel->p1 = iCur; 901 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 902 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 903 iIn = pLevel->u.in.nIn; 904 for(j=nConstraint-1; j>=0; j--){ 905 pTerm = pLoop->aLTerm[j]; 906 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ 907 disableTerm(pLevel, pTerm); 908 }else if( (pTerm->eOperator & WO_IN)!=0 ){ 909 Expr *pCompare; /* The comparison operator */ 910 Expr *pRight; /* RHS of the comparison */ 911 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ 912 913 /* Reload the constraint value into reg[iReg+j+2]. The same value 914 ** was loaded into the same register prior to the OP_VFilter, but 915 ** the xFilter implementation might have changed the datatype or 916 ** encoding of the value in the register, so it *must* be reloaded. */ 917 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed ); 918 if( !db->mallocFailed ){ 919 assert( iIn>0 ); 920 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[--iIn].addrInTop); 921 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid ); 922 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 ); 923 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 ); 924 testcase( pOp->opcode==OP_Rowid ); 925 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); 926 } 927 928 /* Generate code that will continue to the next row if 929 ** the IN constraint is not satisfied */ 930 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0, 0); 931 assert( pCompare!=0 || db->mallocFailed ); 932 if( pCompare ){ 933 pCompare->pLeft = pTerm->pExpr->pLeft; 934 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); 935 if( pRight ){ 936 pRight->iTable = iReg+j+2; 937 sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0); 938 } 939 pCompare->pLeft = 0; 940 sqlite3ExprDelete(db, pCompare); 941 } 942 } 943 } 944 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 945 sqlite3ExprCachePop(pParse); 946 }else 947 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 948 949 if( (pLoop->wsFlags & WHERE_IPK)!=0 950 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 951 ){ 952 /* Case 2: We can directly reference a single row using an 953 ** equality comparison against the ROWID field. Or 954 ** we reference multiple rows using a "rowid IN (...)" 955 ** construct. 956 */ 957 assert( pLoop->u.btree.nEq==1 ); 958 pTerm = pLoop->aLTerm[0]; 959 assert( pTerm!=0 ); 960 assert( pTerm->pExpr!=0 ); 961 assert( omitTable==0 ); 962 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 963 iReleaseReg = ++pParse->nMem; 964 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 965 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 966 addrNxt = pLevel->addrNxt; 967 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v); 968 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); 969 VdbeCoverage(v); 970 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); 971 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 972 VdbeComment((v, "pk")); 973 pLevel->op = OP_Noop; 974 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 975 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 976 ){ 977 /* Case 3: We have an inequality comparison against the ROWID field. 978 */ 979 int testOp = OP_Noop; 980 int start; 981 int memEndValue = 0; 982 WhereTerm *pStart, *pEnd; 983 984 assert( omitTable==0 ); 985 j = 0; 986 pStart = pEnd = 0; 987 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 988 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 989 assert( pStart!=0 || pEnd!=0 ); 990 if( bRev ){ 991 pTerm = pStart; 992 pStart = pEnd; 993 pEnd = pTerm; 994 } 995 codeCursorHint(pWInfo, pLevel, pEnd); 996 if( pStart ){ 997 Expr *pX; /* The expression that defines the start bound */ 998 int r1, rTemp; /* Registers for holding the start boundary */ 999 1000 /* The following constant maps TK_xx codes into corresponding 1001 ** seek opcodes. It depends on a particular ordering of TK_xx 1002 */ 1003 const u8 aMoveOp[] = { 1004 /* TK_GT */ OP_SeekGT, 1005 /* TK_LE */ OP_SeekLE, 1006 /* TK_LT */ OP_SeekLT, 1007 /* TK_GE */ OP_SeekGE 1008 }; 1009 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 1010 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 1011 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 1012 1013 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 1014 testcase( pStart->wtFlags & TERM_VIRTUAL ); 1015 pX = pStart->pExpr; 1016 assert( pX!=0 ); 1017 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 1018 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 1019 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); 1020 VdbeComment((v, "pk")); 1021 VdbeCoverageIf(v, pX->op==TK_GT); 1022 VdbeCoverageIf(v, pX->op==TK_LE); 1023 VdbeCoverageIf(v, pX->op==TK_LT); 1024 VdbeCoverageIf(v, pX->op==TK_GE); 1025 sqlite3ExprCacheAffinityChange(pParse, r1, 1); 1026 sqlite3ReleaseTempReg(pParse, rTemp); 1027 disableTerm(pLevel, pStart); 1028 }else{ 1029 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); 1030 VdbeCoverageIf(v, bRev==0); 1031 VdbeCoverageIf(v, bRev!=0); 1032 } 1033 if( pEnd ){ 1034 Expr *pX; 1035 pX = pEnd->pExpr; 1036 assert( pX!=0 ); 1037 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 1038 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 1039 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 1040 memEndValue = ++pParse->nMem; 1041 sqlite3ExprCode(pParse, pX->pRight, memEndValue); 1042 if( pX->op==TK_LT || pX->op==TK_GT ){ 1043 testOp = bRev ? OP_Le : OP_Ge; 1044 }else{ 1045 testOp = bRev ? OP_Lt : OP_Gt; 1046 } 1047 disableTerm(pLevel, pEnd); 1048 } 1049 start = sqlite3VdbeCurrentAddr(v); 1050 pLevel->op = bRev ? OP_Prev : OP_Next; 1051 pLevel->p1 = iCur; 1052 pLevel->p2 = start; 1053 assert( pLevel->p5==0 ); 1054 if( testOp!=OP_Noop ){ 1055 iRowidReg = ++pParse->nMem; 1056 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 1057 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 1058 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 1059 VdbeCoverageIf(v, testOp==OP_Le); 1060 VdbeCoverageIf(v, testOp==OP_Lt); 1061 VdbeCoverageIf(v, testOp==OP_Ge); 1062 VdbeCoverageIf(v, testOp==OP_Gt); 1063 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 1064 } 1065 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 1066 /* Case 4: A scan using an index. 1067 ** 1068 ** The WHERE clause may contain zero or more equality 1069 ** terms ("==" or "IN" operators) that refer to the N 1070 ** left-most columns of the index. It may also contain 1071 ** inequality constraints (>, <, >= or <=) on the indexed 1072 ** column that immediately follows the N equalities. Only 1073 ** the right-most column can be an inequality - the rest must 1074 ** use the "==" and "IN" operators. For example, if the 1075 ** index is on (x,y,z), then the following clauses are all 1076 ** optimized: 1077 ** 1078 ** x=5 1079 ** x=5 AND y=10 1080 ** x=5 AND y<10 1081 ** x=5 AND y>5 AND y<10 1082 ** x=5 AND y=5 AND z<=10 1083 ** 1084 ** The z<10 term of the following cannot be used, only 1085 ** the x=5 term: 1086 ** 1087 ** x=5 AND z<10 1088 ** 1089 ** N may be zero if there are inequality constraints. 1090 ** If there are no inequality constraints, then N is at 1091 ** least one. 1092 ** 1093 ** This case is also used when there are no WHERE clause 1094 ** constraints but an index is selected anyway, in order 1095 ** to force the output order to conform to an ORDER BY. 1096 */ 1097 static const u8 aStartOp[] = { 1098 0, 1099 0, 1100 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1101 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1102 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1103 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1104 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1105 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1106 }; 1107 static const u8 aEndOp[] = { 1108 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1109 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1110 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1111 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1112 }; 1113 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1114 int regBase; /* Base register holding constraint values */ 1115 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1116 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1117 int startEq; /* True if range start uses ==, >= or <= */ 1118 int endEq; /* True if range end uses ==, >= or <= */ 1119 int start_constraints; /* Start of range is constrained */ 1120 int nConstraint; /* Number of constraint terms */ 1121 Index *pIdx; /* The index we will be using */ 1122 int iIdxCur; /* The VDBE cursor for the index */ 1123 int nExtraReg = 0; /* Number of extra registers needed */ 1124 int op; /* Instruction opcode */ 1125 char *zStartAff; /* Affinity for start of range constraint */ 1126 char cEndAff = 0; /* Affinity for end of range constraint */ 1127 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1128 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1129 1130 pIdx = pLoop->u.btree.pIndex; 1131 iIdxCur = pLevel->iIdxCur; 1132 assert( nEq>=pLoop->nSkip ); 1133 1134 /* If this loop satisfies a sort order (pOrderBy) request that 1135 ** was passed to this function to implement a "SELECT min(x) ..." 1136 ** query, then the caller will only allow the loop to run for 1137 ** a single iteration. This means that the first row returned 1138 ** should not have a NULL value stored in 'x'. If column 'x' is 1139 ** the first one after the nEq equality constraints in the index, 1140 ** this requires some special handling. 1141 */ 1142 assert( pWInfo->pOrderBy==0 1143 || pWInfo->pOrderBy->nExpr==1 1144 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); 1145 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 1146 && pWInfo->nOBSat>0 1147 && (pIdx->nKeyCol>nEq) 1148 ){ 1149 assert( pLoop->nSkip==0 ); 1150 bSeekPastNull = 1; 1151 nExtraReg = 1; 1152 } 1153 1154 /* Find any inequality constraint terms for the start and end 1155 ** of the range. 1156 */ 1157 j = nEq; 1158 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1159 pRangeStart = pLoop->aLTerm[j++]; 1160 nExtraReg = 1; 1161 /* Like optimization range constraints always occur in pairs */ 1162 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1163 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1164 } 1165 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1166 pRangeEnd = pLoop->aLTerm[j++]; 1167 nExtraReg = 1; 1168 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1169 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1170 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1171 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1172 pLevel->iLikeRepCntr = ++pParse->nMem; 1173 testcase( bRev ); 1174 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1175 sqlite3VdbeAddOp2(v, OP_Integer, 1176 bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC), 1177 pLevel->iLikeRepCntr); 1178 VdbeComment((v, "LIKE loop counter")); 1179 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1180 } 1181 #endif 1182 if( pRangeStart==0 1183 && (j = pIdx->aiColumn[nEq])>=0 1184 && pIdx->pTable->aCol[j].notNull==0 1185 ){ 1186 bSeekPastNull = 1; 1187 } 1188 } 1189 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1190 1191 /* If we are doing a reverse order scan on an ascending index, or 1192 ** a forward order scan on a descending index, interchange the 1193 ** start and end terms (pRangeStart and pRangeEnd). 1194 */ 1195 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) 1196 || (bRev && pIdx->nKeyCol==nEq) 1197 ){ 1198 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1199 SWAP(u8, bSeekPastNull, bStopAtNull); 1200 } 1201 1202 /* Generate code to evaluate all constraint terms using == or IN 1203 ** and store the values of those terms in an array of registers 1204 ** starting at regBase. 1205 */ 1206 codeCursorHint(pWInfo, pLevel, pRangeEnd); 1207 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1208 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1209 if( zStartAff ) cEndAff = zStartAff[nEq]; 1210 addrNxt = pLevel->addrNxt; 1211 1212 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1213 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1214 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1215 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1216 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1217 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1218 start_constraints = pRangeStart || nEq>0; 1219 1220 /* Seek the index cursor to the start of the range. */ 1221 nConstraint = nEq; 1222 if( pRangeStart ){ 1223 Expr *pRight = pRangeStart->pExpr->pRight; 1224 sqlite3ExprCode(pParse, pRight, regBase+nEq); 1225 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1226 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1227 && sqlite3ExprCanBeNull(pRight) 1228 ){ 1229 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1230 VdbeCoverage(v); 1231 } 1232 if( zStartAff ){ 1233 if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_BLOB){ 1234 /* Since the comparison is to be performed with no conversions 1235 ** applied to the operands, set the affinity to apply to pRight to 1236 ** SQLITE_AFF_BLOB. */ 1237 zStartAff[nEq] = SQLITE_AFF_BLOB; 1238 } 1239 if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ 1240 zStartAff[nEq] = SQLITE_AFF_BLOB; 1241 } 1242 } 1243 nConstraint++; 1244 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1245 }else if( bSeekPastNull ){ 1246 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1247 nConstraint++; 1248 startEq = 0; 1249 start_constraints = 1; 1250 } 1251 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1252 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ 1253 /* The skip-scan logic inside the call to codeAllEqualityConstraints() 1254 ** above has already left the cursor sitting on the correct row, 1255 ** so no further seeking is needed */ 1256 }else{ 1257 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 1258 assert( op!=0 ); 1259 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1260 VdbeCoverage(v); 1261 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1262 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1263 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 1264 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1265 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1266 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 1267 } 1268 1269 /* Load the value for the inequality constraint at the end of the 1270 ** range (if any). 1271 */ 1272 nConstraint = nEq; 1273 if( pRangeEnd ){ 1274 Expr *pRight = pRangeEnd->pExpr->pRight; 1275 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); 1276 sqlite3ExprCode(pParse, pRight, regBase+nEq); 1277 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 1278 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 1279 && sqlite3ExprCanBeNull(pRight) 1280 ){ 1281 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1282 VdbeCoverage(v); 1283 } 1284 if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_BLOB 1285 && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff) 1286 ){ 1287 codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff); 1288 } 1289 nConstraint++; 1290 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 1291 }else if( bStopAtNull ){ 1292 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1293 endEq = 0; 1294 nConstraint++; 1295 } 1296 sqlite3DbFree(db, zStartAff); 1297 1298 /* Top of the loop body */ 1299 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1300 1301 /* Check if the index cursor is past the end of the range. */ 1302 if( nConstraint ){ 1303 op = aEndOp[bRev*2 + endEq]; 1304 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1305 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1306 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1307 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1308 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1309 } 1310 1311 /* Seek the table cursor, if required */ 1312 disableTerm(pLevel, pRangeStart); 1313 disableTerm(pLevel, pRangeEnd); 1314 if( omitTable ){ 1315 /* pIdx is a covering index. No need to access the main table. */ 1316 }else if( HasRowid(pIdx->pTable) ){ 1317 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 1318 iRowidReg = ++pParse->nMem; 1319 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); 1320 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 1321 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg); 1322 VdbeCoverage(v); 1323 }else{ 1324 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); 1325 } 1326 }else if( iCur!=iIdxCur ){ 1327 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1328 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1329 for(j=0; j<pPk->nKeyCol; j++){ 1330 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); 1331 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 1332 } 1333 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 1334 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 1335 } 1336 1337 /* Record the instruction used to terminate the loop. Disable 1338 ** WHERE clause terms made redundant by the index range scan. 1339 */ 1340 if( pLoop->wsFlags & WHERE_ONEROW ){ 1341 pLevel->op = OP_Noop; 1342 }else if( bRev ){ 1343 pLevel->op = OP_Prev; 1344 }else{ 1345 pLevel->op = OP_Next; 1346 } 1347 pLevel->p1 = iIdxCur; 1348 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 1349 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 1350 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 1351 }else{ 1352 assert( pLevel->p5==0 ); 1353 } 1354 }else 1355 1356 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 1357 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 1358 /* Case 5: Two or more separately indexed terms connected by OR 1359 ** 1360 ** Example: 1361 ** 1362 ** CREATE TABLE t1(a,b,c,d); 1363 ** CREATE INDEX i1 ON t1(a); 1364 ** CREATE INDEX i2 ON t1(b); 1365 ** CREATE INDEX i3 ON t1(c); 1366 ** 1367 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 1368 ** 1369 ** In the example, there are three indexed terms connected by OR. 1370 ** The top of the loop looks like this: 1371 ** 1372 ** Null 1 # Zero the rowset in reg 1 1373 ** 1374 ** Then, for each indexed term, the following. The arguments to 1375 ** RowSetTest are such that the rowid of the current row is inserted 1376 ** into the RowSet. If it is already present, control skips the 1377 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 1378 ** 1379 ** sqlite3WhereBegin(<term>) 1380 ** RowSetTest # Insert rowid into rowset 1381 ** Gosub 2 A 1382 ** sqlite3WhereEnd() 1383 ** 1384 ** Following the above, code to terminate the loop. Label A, the target 1385 ** of the Gosub above, jumps to the instruction right after the Goto. 1386 ** 1387 ** Null 1 # Zero the rowset in reg 1 1388 ** Goto B # The loop is finished. 1389 ** 1390 ** A: <loop body> # Return data, whatever. 1391 ** 1392 ** Return 2 # Jump back to the Gosub 1393 ** 1394 ** B: <after the loop> 1395 ** 1396 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 1397 ** use an ephemeral index instead of a RowSet to record the primary 1398 ** keys of the rows we have already seen. 1399 ** 1400 */ 1401 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 1402 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 1403 Index *pCov = 0; /* Potential covering index (or NULL) */ 1404 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 1405 1406 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 1407 int regRowset = 0; /* Register for RowSet object */ 1408 int regRowid = 0; /* Register holding rowid */ 1409 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ 1410 int iRetInit; /* Address of regReturn init */ 1411 int untestedTerms = 0; /* Some terms not completely tested */ 1412 int ii; /* Loop counter */ 1413 u16 wctrlFlags; /* Flags for sub-WHERE clause */ 1414 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 1415 Table *pTab = pTabItem->pTab; 1416 1417 pTerm = pLoop->aLTerm[0]; 1418 assert( pTerm!=0 ); 1419 assert( pTerm->eOperator & WO_OR ); 1420 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 1421 pOrWc = &pTerm->u.pOrInfo->wc; 1422 pLevel->op = OP_Return; 1423 pLevel->p1 = regReturn; 1424 1425 /* Set up a new SrcList in pOrTab containing the table being scanned 1426 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 1427 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 1428 */ 1429 if( pWInfo->nLevel>1 ){ 1430 int nNotReady; /* The number of notReady tables */ 1431 struct SrcList_item *origSrc; /* Original list of tables */ 1432 nNotReady = pWInfo->nLevel - iLevel - 1; 1433 pOrTab = sqlite3StackAllocRaw(db, 1434 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 1435 if( pOrTab==0 ) return notReady; 1436 pOrTab->nAlloc = (u8)(nNotReady + 1); 1437 pOrTab->nSrc = pOrTab->nAlloc; 1438 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 1439 origSrc = pWInfo->pTabList->a; 1440 for(k=1; k<=nNotReady; k++){ 1441 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 1442 } 1443 }else{ 1444 pOrTab = pWInfo->pTabList; 1445 } 1446 1447 /* Initialize the rowset register to contain NULL. An SQL NULL is 1448 ** equivalent to an empty rowset. Or, create an ephemeral index 1449 ** capable of holding primary keys in the case of a WITHOUT ROWID. 1450 ** 1451 ** Also initialize regReturn to contain the address of the instruction 1452 ** immediately following the OP_Return at the bottom of the loop. This 1453 ** is required in a few obscure LEFT JOIN cases where control jumps 1454 ** over the top of the loop into the body of it. In this case the 1455 ** correct response for the end-of-loop code (the OP_Return) is to 1456 ** fall through to the next instruction, just as an OP_Next does if 1457 ** called on an uninitialized cursor. 1458 */ 1459 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 1460 if( HasRowid(pTab) ){ 1461 regRowset = ++pParse->nMem; 1462 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 1463 }else{ 1464 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1465 regRowset = pParse->nTab++; 1466 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 1467 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 1468 } 1469 regRowid = ++pParse->nMem; 1470 } 1471 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 1472 1473 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 1474 ** Then for every term xN, evaluate as the subexpression: xN AND z 1475 ** That way, terms in y that are factored into the disjunction will 1476 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 1477 ** 1478 ** Actually, each subexpression is converted to "xN AND w" where w is 1479 ** the "interesting" terms of z - terms that did not originate in the 1480 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 1481 ** indices. 1482 ** 1483 ** This optimization also only applies if the (x1 OR x2 OR ...) term 1484 ** is not contained in the ON clause of a LEFT JOIN. 1485 ** See ticket http://www.sqlite.org/src/info/f2369304e4 1486 */ 1487 if( pWC->nTerm>1 ){ 1488 int iTerm; 1489 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 1490 Expr *pExpr = pWC->a[iTerm].pExpr; 1491 if( &pWC->a[iTerm] == pTerm ) continue; 1492 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; 1493 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); 1494 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); 1495 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue; 1496 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 1497 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); 1498 pExpr = sqlite3ExprDup(db, pExpr, 0); 1499 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); 1500 } 1501 if( pAndExpr ){ 1502 pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr, 0); 1503 } 1504 } 1505 1506 /* Run a separate WHERE clause for each term of the OR clause. After 1507 ** eliminating duplicates from other WHERE clauses, the action for each 1508 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 1509 */ 1510 wctrlFlags = WHERE_OMIT_OPEN_CLOSE 1511 | WHERE_FORCE_TABLE 1512 | WHERE_ONETABLE_ONLY 1513 | WHERE_NO_AUTOINDEX; 1514 for(ii=0; ii<pOrWc->nTerm; ii++){ 1515 WhereTerm *pOrTerm = &pOrWc->a[ii]; 1516 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 1517 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 1518 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 1519 int jmp1 = 0; /* Address of jump operation */ 1520 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){ 1521 pAndExpr->pLeft = pOrExpr; 1522 pOrExpr = pAndExpr; 1523 } 1524 /* Loop through table entries that match term pOrTerm. */ 1525 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 1526 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 1527 wctrlFlags, iCovCur); 1528 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); 1529 if( pSubWInfo ){ 1530 WhereLoop *pSubLoop; 1531 int addrExplain = sqlite3WhereExplainOneScan( 1532 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 1533 ); 1534 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 1535 1536 /* This is the sub-WHERE clause body. First skip over 1537 ** duplicate rows from prior sub-WHERE clauses, and record the 1538 ** rowid (or PRIMARY KEY) for the current row so that the same 1539 ** row will be skipped in subsequent sub-WHERE clauses. 1540 */ 1541 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 1542 int r; 1543 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 1544 if( HasRowid(pTab) ){ 1545 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0); 1546 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 1547 r,iSet); 1548 VdbeCoverage(v); 1549 }else{ 1550 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1551 int nPk = pPk->nKeyCol; 1552 int iPk; 1553 1554 /* Read the PK into an array of temp registers. */ 1555 r = sqlite3GetTempRange(pParse, nPk); 1556 for(iPk=0; iPk<nPk; iPk++){ 1557 int iCol = pPk->aiColumn[iPk]; 1558 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk); 1559 } 1560 1561 /* Check if the temp table already contains this key. If so, 1562 ** the row has already been included in the result set and 1563 ** can be ignored (by jumping past the Gosub below). Otherwise, 1564 ** insert the key into the temp table and proceed with processing 1565 ** the row. 1566 ** 1567 ** Use some of the same optimizations as OP_RowSetTest: If iSet 1568 ** is zero, assume that the key cannot already be present in 1569 ** the temp table. And if iSet is -1, assume that there is no 1570 ** need to insert the key into the temp table, as it will never 1571 ** be tested for. */ 1572 if( iSet ){ 1573 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 1574 VdbeCoverage(v); 1575 } 1576 if( iSet>=0 ){ 1577 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 1578 sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0); 1579 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1580 } 1581 1582 /* Release the array of temp registers */ 1583 sqlite3ReleaseTempRange(pParse, r, nPk); 1584 } 1585 } 1586 1587 /* Invoke the main loop body as a subroutine */ 1588 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 1589 1590 /* Jump here (skipping the main loop body subroutine) if the 1591 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 1592 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 1593 1594 /* The pSubWInfo->untestedTerms flag means that this OR term 1595 ** contained one or more AND term from a notReady table. The 1596 ** terms from the notReady table could not be tested and will 1597 ** need to be tested later. 1598 */ 1599 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 1600 1601 /* If all of the OR-connected terms are optimized using the same 1602 ** index, and the index is opened using the same cursor number 1603 ** by each call to sqlite3WhereBegin() made by this loop, it may 1604 ** be possible to use that index as a covering index. 1605 ** 1606 ** If the call to sqlite3WhereBegin() above resulted in a scan that 1607 ** uses an index, and this is either the first OR-connected term 1608 ** processed or the index is the same as that used by all previous 1609 ** terms, set pCov to the candidate covering index. Otherwise, set 1610 ** pCov to NULL to indicate that no candidate covering index will 1611 ** be available. 1612 */ 1613 pSubLoop = pSubWInfo->a[0].pWLoop; 1614 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 1615 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 1616 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 1617 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 1618 ){ 1619 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 1620 pCov = pSubLoop->u.btree.pIndex; 1621 wctrlFlags |= WHERE_REOPEN_IDX; 1622 }else{ 1623 pCov = 0; 1624 } 1625 1626 /* Finish the loop through table entries that match term pOrTerm. */ 1627 sqlite3WhereEnd(pSubWInfo); 1628 } 1629 } 1630 } 1631 pLevel->u.pCovidx = pCov; 1632 if( pCov ) pLevel->iIdxCur = iCovCur; 1633 if( pAndExpr ){ 1634 pAndExpr->pLeft = 0; 1635 sqlite3ExprDelete(db, pAndExpr); 1636 } 1637 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 1638 sqlite3VdbeGoto(v, pLevel->addrBrk); 1639 sqlite3VdbeResolveLabel(v, iLoopBody); 1640 1641 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab); 1642 if( !untestedTerms ) disableTerm(pLevel, pTerm); 1643 }else 1644 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1645 1646 { 1647 /* Case 6: There is no usable index. We must do a complete 1648 ** scan of the entire table. 1649 */ 1650 static const u8 aStep[] = { OP_Next, OP_Prev }; 1651 static const u8 aStart[] = { OP_Rewind, OP_Last }; 1652 assert( bRev==0 || bRev==1 ); 1653 if( pTabItem->fg.isRecursive ){ 1654 /* Tables marked isRecursive have only a single row that is stored in 1655 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 1656 pLevel->op = OP_Noop; 1657 }else{ 1658 codeCursorHint(pWInfo, pLevel, 0); 1659 pLevel->op = aStep[bRev]; 1660 pLevel->p1 = iCur; 1661 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); 1662 VdbeCoverageIf(v, bRev==0); 1663 VdbeCoverageIf(v, bRev!=0); 1664 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 1665 } 1666 } 1667 1668 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1669 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 1670 #endif 1671 1672 /* Insert code to test every subexpression that can be completely 1673 ** computed using the current set of tables. 1674 */ 1675 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 1676 Expr *pE; 1677 int skipLikeAddr = 0; 1678 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1679 testcase( pTerm->wtFlags & TERM_CODED ); 1680 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1681 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 1682 testcase( pWInfo->untestedTerms==0 1683 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); 1684 pWInfo->untestedTerms = 1; 1685 continue; 1686 } 1687 pE = pTerm->pExpr; 1688 assert( pE!=0 ); 1689 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 1690 continue; 1691 } 1692 if( pTerm->wtFlags & TERM_LIKECOND ){ 1693 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1694 continue; 1695 #else 1696 assert( pLevel->iLikeRepCntr>0 ); 1697 skipLikeAddr = sqlite3VdbeAddOp1(v, OP_IfNot, pLevel->iLikeRepCntr); 1698 VdbeCoverage(v); 1699 #endif 1700 } 1701 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 1702 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 1703 pTerm->wtFlags |= TERM_CODED; 1704 } 1705 1706 /* Insert code to test for implied constraints based on transitivity 1707 ** of the "==" operator. 1708 ** 1709 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 1710 ** and we are coding the t1 loop and the t2 loop has not yet coded, 1711 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 1712 ** the implied "t1.a=123" constraint. 1713 */ 1714 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 1715 Expr *pE, *pEAlt; 1716 WhereTerm *pAlt; 1717 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1718 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 1719 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 1720 if( pTerm->leftCursor!=iCur ) continue; 1721 if( pLevel->iLeftJoin ) continue; 1722 pE = pTerm->pExpr; 1723 assert( !ExprHasProperty(pE, EP_FromJoin) ); 1724 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 1725 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady, 1726 WO_EQ|WO_IN|WO_IS, 0); 1727 if( pAlt==0 ) continue; 1728 if( pAlt->wtFlags & (TERM_CODED) ) continue; 1729 testcase( pAlt->eOperator & WO_EQ ); 1730 testcase( pAlt->eOperator & WO_IS ); 1731 testcase( pAlt->eOperator & WO_IN ); 1732 VdbeModuleComment((v, "begin transitive constraint")); 1733 pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt)); 1734 if( pEAlt ){ 1735 *pEAlt = *pAlt->pExpr; 1736 pEAlt->pLeft = pE->pLeft; 1737 sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL); 1738 sqlite3StackFree(db, pEAlt); 1739 } 1740 } 1741 1742 /* For a LEFT OUTER JOIN, generate code that will record the fact that 1743 ** at least one row of the right table has matched the left table. 1744 */ 1745 if( pLevel->iLeftJoin ){ 1746 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 1747 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 1748 VdbeComment((v, "record LEFT JOIN hit")); 1749 sqlite3ExprCacheClear(pParse); 1750 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 1751 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1752 testcase( pTerm->wtFlags & TERM_CODED ); 1753 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1754 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 1755 assert( pWInfo->untestedTerms ); 1756 continue; 1757 } 1758 assert( pTerm->pExpr ); 1759 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 1760 pTerm->wtFlags |= TERM_CODED; 1761 } 1762 } 1763 1764 return pLevel->notReady; 1765 } 1766