xref: /sqlite-3.40.0/src/wherecode.c (revision 9a243e69)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 
25 /*
26 ** Return the name of the i-th column of the pIdx index.
27 */
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29   i = pIdx->aiColumn[i];
30   if( i==XN_EXPR ) return "<expr>";
31   if( i==XN_ROWID ) return "rowid";
32   return pIdx->pTable->aCol[i].zName;
33 }
34 
35 /*
36 ** This routine is a helper for explainIndexRange() below
37 **
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time.  This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
42 */
43 static void explainAppendTerm(
44   StrAccum *pStr,             /* The text expression being built */
45   Index *pIdx,                /* Index to read column names from */
46   int nTerm,                  /* Number of terms */
47   int iTerm,                  /* Zero-based index of first term. */
48   int bAnd,                   /* Non-zero to append " AND " */
49   const char *zOp             /* Name of the operator */
50 ){
51   int i;
52 
53   assert( nTerm>=1 );
54   if( bAnd ) sqlite3StrAccumAppend(pStr, " AND ", 5);
55 
56   if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1);
57   for(i=0; i<nTerm; i++){
58     if( i ) sqlite3StrAccumAppend(pStr, ",", 1);
59     sqlite3StrAccumAppendAll(pStr, explainIndexColumnName(pIdx, iTerm+i));
60   }
61   if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1);
62 
63   sqlite3StrAccumAppend(pStr, zOp, 1);
64 
65   if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1);
66   for(i=0; i<nTerm; i++){
67     if( i ) sqlite3StrAccumAppend(pStr, ",", 1);
68     sqlite3StrAccumAppend(pStr, "?", 1);
69   }
70   if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1);
71 }
72 
73 /*
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
77 **
78 ** For example, if the query:
79 **
80 **   SELECT * FROM t1 WHERE a=1 AND b>2;
81 **
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
84 **
85 **   "a=? AND b>?"
86 */
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88   Index *pIndex = pLoop->u.btree.pIndex;
89   u16 nEq = pLoop->u.btree.nEq;
90   u16 nSkip = pLoop->nSkip;
91   int i, j;
92 
93   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94   sqlite3StrAccumAppend(pStr, " (", 2);
95   for(i=0; i<nEq; i++){
96     const char *z = explainIndexColumnName(pIndex, i);
97     if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
98     sqlite3XPrintf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
99   }
100 
101   j = i;
102   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104     i = 1;
105   }
106   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
108   }
109   sqlite3StrAccumAppend(pStr, ")", 1);
110 }
111 
112 /*
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
117 **
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
120 */
121 int sqlite3WhereExplainOneScan(
122   Parse *pParse,                  /* Parse context */
123   SrcList *pTabList,              /* Table list this loop refers to */
124   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
125   int iLevel,                     /* Value for "level" column of output */
126   int iFrom,                      /* Value for "from" column of output */
127   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
128 ){
129   int ret = 0;
130 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
131   if( pParse->explain==2 )
132 #endif
133   {
134     struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
135     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
136     sqlite3 *db = pParse->db;     /* Database handle */
137     int iId = pParse->iSelectId;  /* Select id (left-most output column) */
138     int isSearch;                 /* True for a SEARCH. False for SCAN. */
139     WhereLoop *pLoop;             /* The controlling WhereLoop object */
140     u32 flags;                    /* Flags that describe this loop */
141     char *zMsg;                   /* Text to add to EQP output */
142     StrAccum str;                 /* EQP output string */
143     char zBuf[100];               /* Initial space for EQP output string */
144 
145     pLoop = pLevel->pWLoop;
146     flags = pLoop->wsFlags;
147     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
148 
149     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
150             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
151             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
152 
153     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
154     sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
155     if( pItem->pSelect ){
156       sqlite3XPrintf(&str, " SUBQUERY %d", pItem->iSelectId);
157     }else{
158       sqlite3XPrintf(&str, " TABLE %s", pItem->zName);
159     }
160 
161     if( pItem->zAlias ){
162       sqlite3XPrintf(&str, " AS %s", pItem->zAlias);
163     }
164     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
165       const char *zFmt = 0;
166       Index *pIdx;
167 
168       assert( pLoop->u.btree.pIndex!=0 );
169       pIdx = pLoop->u.btree.pIndex;
170       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
171       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
172         if( isSearch ){
173           zFmt = "PRIMARY KEY";
174         }
175       }else if( flags & WHERE_PARTIALIDX ){
176         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
177       }else if( flags & WHERE_AUTO_INDEX ){
178         zFmt = "AUTOMATIC COVERING INDEX";
179       }else if( flags & WHERE_IDX_ONLY ){
180         zFmt = "COVERING INDEX %s";
181       }else{
182         zFmt = "INDEX %s";
183       }
184       if( zFmt ){
185         sqlite3StrAccumAppend(&str, " USING ", 7);
186         sqlite3XPrintf(&str, zFmt, pIdx->zName);
187         explainIndexRange(&str, pLoop);
188       }
189     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
190       const char *zRangeOp;
191       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
192         zRangeOp = "=";
193       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
194         zRangeOp = ">? AND rowid<";
195       }else if( flags&WHERE_BTM_LIMIT ){
196         zRangeOp = ">";
197       }else{
198         assert( flags&WHERE_TOP_LIMIT);
199         zRangeOp = "<";
200       }
201       sqlite3XPrintf(&str, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
202     }
203 #ifndef SQLITE_OMIT_VIRTUALTABLE
204     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
205       sqlite3XPrintf(&str, " VIRTUAL TABLE INDEX %d:%s",
206                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
207     }
208 #endif
209 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
210     if( pLoop->nOut>=10 ){
211       sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
212     }else{
213       sqlite3StrAccumAppend(&str, " (~1 row)", 9);
214     }
215 #endif
216     zMsg = sqlite3StrAccumFinish(&str);
217     ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC);
218   }
219   return ret;
220 }
221 #endif /* SQLITE_OMIT_EXPLAIN */
222 
223 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
224 /*
225 ** Configure the VM passed as the first argument with an
226 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
227 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
228 ** clause that the scan reads data from.
229 **
230 ** If argument addrExplain is not 0, it must be the address of an
231 ** OP_Explain instruction that describes the same loop.
232 */
233 void sqlite3WhereAddScanStatus(
234   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
235   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
236   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
237   int addrExplain                 /* Address of OP_Explain (or 0) */
238 ){
239   const char *zObj = 0;
240   WhereLoop *pLoop = pLvl->pWLoop;
241   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
242     zObj = pLoop->u.btree.pIndex->zName;
243   }else{
244     zObj = pSrclist->a[pLvl->iFrom].zName;
245   }
246   sqlite3VdbeScanStatus(
247       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
248   );
249 }
250 #endif
251 
252 
253 /*
254 ** Disable a term in the WHERE clause.  Except, do not disable the term
255 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
256 ** or USING clause of that join.
257 **
258 ** Consider the term t2.z='ok' in the following queries:
259 **
260 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
261 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
262 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
263 **
264 ** The t2.z='ok' is disabled in the in (2) because it originates
265 ** in the ON clause.  The term is disabled in (3) because it is not part
266 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
267 **
268 ** Disabling a term causes that term to not be tested in the inner loop
269 ** of the join.  Disabling is an optimization.  When terms are satisfied
270 ** by indices, we disable them to prevent redundant tests in the inner
271 ** loop.  We would get the correct results if nothing were ever disabled,
272 ** but joins might run a little slower.  The trick is to disable as much
273 ** as we can without disabling too much.  If we disabled in (1), we'd get
274 ** the wrong answer.  See ticket #813.
275 **
276 ** If all the children of a term are disabled, then that term is also
277 ** automatically disabled.  In this way, terms get disabled if derived
278 ** virtual terms are tested first.  For example:
279 **
280 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
281 **      \___________/     \______/     \_____/
282 **         parent          child1       child2
283 **
284 ** Only the parent term was in the original WHERE clause.  The child1
285 ** and child2 terms were added by the LIKE optimization.  If both of
286 ** the virtual child terms are valid, then testing of the parent can be
287 ** skipped.
288 **
289 ** Usually the parent term is marked as TERM_CODED.  But if the parent
290 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
291 ** The TERM_LIKECOND marking indicates that the term should be coded inside
292 ** a conditional such that is only evaluated on the second pass of a
293 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
294 */
295 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
296   int nLoop = 0;
297   while( ALWAYS(pTerm!=0)
298       && (pTerm->wtFlags & TERM_CODED)==0
299       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
300       && (pLevel->notReady & pTerm->prereqAll)==0
301   ){
302     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
303       pTerm->wtFlags |= TERM_LIKECOND;
304     }else{
305       pTerm->wtFlags |= TERM_CODED;
306     }
307     if( pTerm->iParent<0 ) break;
308     pTerm = &pTerm->pWC->a[pTerm->iParent];
309     pTerm->nChild--;
310     if( pTerm->nChild!=0 ) break;
311     nLoop++;
312   }
313 }
314 
315 /*
316 ** Code an OP_Affinity opcode to apply the column affinity string zAff
317 ** to the n registers starting at base.
318 **
319 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the
320 ** beginning and end of zAff are ignored.  If all entries in zAff are
321 ** SQLITE_AFF_BLOB, then no code gets generated.
322 **
323 ** This routine makes its own copy of zAff so that the caller is free
324 ** to modify zAff after this routine returns.
325 */
326 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
327   Vdbe *v = pParse->pVdbe;
328   if( zAff==0 ){
329     assert( pParse->db->mallocFailed );
330     return;
331   }
332   assert( v!=0 );
333 
334   /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning
335   ** and end of the affinity string.
336   */
337   while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){
338     n--;
339     base++;
340     zAff++;
341   }
342   while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){
343     n--;
344   }
345 
346   /* Code the OP_Affinity opcode if there is anything left to do. */
347   if( n>0 ){
348     sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
349     sqlite3ExprCacheAffinityChange(pParse, base, n);
350   }
351 }
352 
353 /*
354 ** Expression pRight, which is the RHS of a comparison operation, is
355 ** either a vector of n elements or, if n==1, a scalar expression.
356 ** Before the comparison operation, affinity zAff is to be applied
357 ** to the pRight values. This function modifies characters within the
358 ** affinity string to SQLITE_AFF_BLOB if either:
359 **
360 **   * the comparison will be performed with no affinity, or
361 **   * the affinity change in zAff is guaranteed not to change the value.
362 */
363 static void updateRangeAffinityStr(
364   Expr *pRight,                   /* RHS of comparison */
365   int n,                          /* Number of vector elements in comparison */
366   char *zAff                      /* Affinity string to modify */
367 ){
368   int i;
369   for(i=0; i<n; i++){
370     Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
371     if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
372      || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
373     ){
374       zAff[i] = SQLITE_AFF_BLOB;
375     }
376   }
377 }
378 
379 /*
380 ** Generate code for a single equality term of the WHERE clause.  An equality
381 ** term can be either X=expr or X IN (...).   pTerm is the term to be
382 ** coded.
383 **
384 ** The current value for the constraint is left in a register, the index
385 ** of which is returned.  An attempt is made store the result in iTarget but
386 ** this is only guaranteed for TK_ISNULL and TK_IN constraints.  If the
387 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
388 ** some other register and it is the caller's responsibility to compensate.
389 **
390 ** For a constraint of the form X=expr, the expression is evaluated in
391 ** straight-line code.  For constraints of the form X IN (...)
392 ** this routine sets up a loop that will iterate over all values of X.
393 */
394 static int codeEqualityTerm(
395   Parse *pParse,      /* The parsing context */
396   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
397   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
398   int iEq,            /* Index of the equality term within this level */
399   int bRev,           /* True for reverse-order IN operations */
400   int iTarget         /* Attempt to leave results in this register */
401 ){
402   Expr *pX = pTerm->pExpr;
403   Vdbe *v = pParse->pVdbe;
404   int iReg;                  /* Register holding results */
405 
406   assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
407   assert( iTarget>0 );
408   if( pX->op==TK_EQ || pX->op==TK_IS ){
409     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
410   }else if( pX->op==TK_ISNULL ){
411     iReg = iTarget;
412     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
413 #ifndef SQLITE_OMIT_SUBQUERY
414   }else{
415     int eType = IN_INDEX_NOOP;
416     int iTab;
417     struct InLoop *pIn;
418     WhereLoop *pLoop = pLevel->pWLoop;
419     int i;
420     int nEq = 0;
421     int *aiMap = 0;
422 
423     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
424       && pLoop->u.btree.pIndex!=0
425       && pLoop->u.btree.pIndex->aSortOrder[iEq]
426     ){
427       testcase( iEq==0 );
428       testcase( bRev );
429       bRev = !bRev;
430     }
431     assert( pX->op==TK_IN );
432     iReg = iTarget;
433 
434     for(i=0; i<iEq; i++){
435       if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
436         disableTerm(pLevel, pTerm);
437         return iTarget;
438       }
439     }
440     for(i=iEq;i<pLoop->nLTerm; i++){
441       if( ALWAYS(pLoop->aLTerm[i]) && pLoop->aLTerm[i]->pExpr==pX ) nEq++;
442     }
443 
444     if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){
445       eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0);
446     }else{
447       Select *pSelect = pX->x.pSelect;
448       sqlite3 *db = pParse->db;
449       u16 savedDbOptFlags = db->dbOptFlags;
450       ExprList *pOrigRhs = pSelect->pEList;
451       ExprList *pOrigLhs = pX->pLeft->x.pList;
452       ExprList *pRhs = 0;         /* New Select.pEList for RHS */
453       ExprList *pLhs = 0;         /* New pX->pLeft vector */
454 
455       for(i=iEq;i<pLoop->nLTerm; i++){
456         if( pLoop->aLTerm[i]->pExpr==pX ){
457           int iField = pLoop->aLTerm[i]->iField - 1;
458           Expr *pNewRhs = sqlite3ExprDup(db, pOrigRhs->a[iField].pExpr, 0);
459           Expr *pNewLhs = sqlite3ExprDup(db, pOrigLhs->a[iField].pExpr, 0);
460 
461           pRhs = sqlite3ExprListAppend(pParse, pRhs, pNewRhs);
462           pLhs = sqlite3ExprListAppend(pParse, pLhs, pNewLhs);
463         }
464       }
465       if( !db->mallocFailed ){
466         Expr *pLeft = pX->pLeft;
467 
468         if( pSelect->pOrderBy ){
469           /* If the SELECT statement has an ORDER BY clause, zero the
470           ** iOrderByCol variables. These are set to non-zero when an
471           ** ORDER BY term exactly matches one of the terms of the
472           ** result-set. Since the result-set of the SELECT statement may
473           ** have been modified or reordered, these variables are no longer
474           ** set correctly.  Since setting them is just an optimization,
475           ** it's easiest just to zero them here.  */
476           ExprList *pOrderBy = pSelect->pOrderBy;
477           for(i=0; i<pOrderBy->nExpr; i++){
478             pOrderBy->a[i].u.x.iOrderByCol = 0;
479           }
480         }
481 
482         /* Take care here not to generate a TK_VECTOR containing only a
483         ** single value. Since the parser never creates such a vector, some
484         ** of the subroutines do not handle this case.  */
485         if( pLhs->nExpr==1 ){
486           pX->pLeft = pLhs->a[0].pExpr;
487         }else{
488           pLeft->x.pList = pLhs;
489           aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int) * nEq);
490           testcase( aiMap==0 );
491         }
492         pSelect->pEList = pRhs;
493         db->dbOptFlags |= SQLITE_QueryFlattener;
494         eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap);
495         db->dbOptFlags = savedDbOptFlags;
496         testcase( aiMap!=0 && aiMap[0]!=0 );
497         pSelect->pEList = pOrigRhs;
498         pLeft->x.pList = pOrigLhs;
499         pX->pLeft = pLeft;
500       }
501       sqlite3ExprListDelete(pParse->db, pLhs);
502       sqlite3ExprListDelete(pParse->db, pRhs);
503     }
504 
505     if( eType==IN_INDEX_INDEX_DESC ){
506       testcase( bRev );
507       bRev = !bRev;
508     }
509     iTab = pX->iTable;
510     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
511     VdbeCoverageIf(v, bRev);
512     VdbeCoverageIf(v, !bRev);
513     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
514 
515     pLoop->wsFlags |= WHERE_IN_ABLE;
516     if( pLevel->u.in.nIn==0 ){
517       pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
518     }
519 
520     i = pLevel->u.in.nIn;
521     pLevel->u.in.nIn += nEq;
522     pLevel->u.in.aInLoop =
523        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
524                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
525     pIn = pLevel->u.in.aInLoop;
526     if( pIn ){
527       int iMap = 0;               /* Index in aiMap[] */
528       pIn += i;
529       for(i=iEq;i<pLoop->nLTerm; i++){
530         if( pLoop->aLTerm[i]->pExpr==pX ){
531           int iOut = iReg + i - iEq;
532           if( eType==IN_INDEX_ROWID ){
533             testcase( nEq>1 );  /* Happens with a UNIQUE index on ROWID */
534             pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
535           }else{
536             int iCol = aiMap ? aiMap[iMap++] : 0;
537             pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
538           }
539           sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
540           if( i==iEq ){
541             pIn->iCur = iTab;
542             pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen;
543           }else{
544             pIn->eEndLoopOp = OP_Noop;
545           }
546           pIn++;
547         }
548       }
549     }else{
550       pLevel->u.in.nIn = 0;
551     }
552     sqlite3DbFree(pParse->db, aiMap);
553 #endif
554   }
555   disableTerm(pLevel, pTerm);
556   return iReg;
557 }
558 
559 /*
560 ** Generate code that will evaluate all == and IN constraints for an
561 ** index scan.
562 **
563 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
564 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
565 ** The index has as many as three equality constraints, but in this
566 ** example, the third "c" value is an inequality.  So only two
567 ** constraints are coded.  This routine will generate code to evaluate
568 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
569 ** in consecutive registers and the index of the first register is returned.
570 **
571 ** In the example above nEq==2.  But this subroutine works for any value
572 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
573 ** The only thing it does is allocate the pLevel->iMem memory cell and
574 ** compute the affinity string.
575 **
576 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
577 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
578 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
579 ** occurs after the nEq quality constraints.
580 **
581 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
582 ** the index of the first memory cell in that range. The code that
583 ** calls this routine will use that memory range to store keys for
584 ** start and termination conditions of the loop.
585 ** key value of the loop.  If one or more IN operators appear, then
586 ** this routine allocates an additional nEq memory cells for internal
587 ** use.
588 **
589 ** Before returning, *pzAff is set to point to a buffer containing a
590 ** copy of the column affinity string of the index allocated using
591 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
592 ** with equality constraints that use BLOB or NONE affinity are set to
593 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
594 **
595 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
596 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
597 **
598 ** In the example above, the index on t1(a) has TEXT affinity. But since
599 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
600 ** no conversion should be attempted before using a t2.b value as part of
601 ** a key to search the index. Hence the first byte in the returned affinity
602 ** string in this example would be set to SQLITE_AFF_BLOB.
603 */
604 static int codeAllEqualityTerms(
605   Parse *pParse,        /* Parsing context */
606   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
607   int bRev,             /* Reverse the order of IN operators */
608   int nExtraReg,        /* Number of extra registers to allocate */
609   char **pzAff          /* OUT: Set to point to affinity string */
610 ){
611   u16 nEq;                      /* The number of == or IN constraints to code */
612   u16 nSkip;                    /* Number of left-most columns to skip */
613   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
614   Index *pIdx;                  /* The index being used for this loop */
615   WhereTerm *pTerm;             /* A single constraint term */
616   WhereLoop *pLoop;             /* The WhereLoop object */
617   int j;                        /* Loop counter */
618   int regBase;                  /* Base register */
619   int nReg;                     /* Number of registers to allocate */
620   char *zAff;                   /* Affinity string to return */
621 
622   /* This module is only called on query plans that use an index. */
623   pLoop = pLevel->pWLoop;
624   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
625   nEq = pLoop->u.btree.nEq;
626   nSkip = pLoop->nSkip;
627   pIdx = pLoop->u.btree.pIndex;
628   assert( pIdx!=0 );
629 
630   /* Figure out how many memory cells we will need then allocate them.
631   */
632   regBase = pParse->nMem + 1;
633   nReg = pLoop->u.btree.nEq + nExtraReg;
634   pParse->nMem += nReg;
635 
636   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
637   assert( zAff!=0 || pParse->db->mallocFailed );
638 
639   if( nSkip ){
640     int iIdxCur = pLevel->iIdxCur;
641     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
642     VdbeCoverageIf(v, bRev==0);
643     VdbeCoverageIf(v, bRev!=0);
644     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
645     j = sqlite3VdbeAddOp0(v, OP_Goto);
646     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
647                             iIdxCur, 0, regBase, nSkip);
648     VdbeCoverageIf(v, bRev==0);
649     VdbeCoverageIf(v, bRev!=0);
650     sqlite3VdbeJumpHere(v, j);
651     for(j=0; j<nSkip; j++){
652       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
653       testcase( pIdx->aiColumn[j]==XN_EXPR );
654       VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
655     }
656   }
657 
658   /* Evaluate the equality constraints
659   */
660   assert( zAff==0 || (int)strlen(zAff)>=nEq );
661   for(j=nSkip; j<nEq; j++){
662     int r1;
663     pTerm = pLoop->aLTerm[j];
664     assert( pTerm!=0 );
665     /* The following testcase is true for indices with redundant columns.
666     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
667     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
668     testcase( pTerm->wtFlags & TERM_VIRTUAL );
669     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
670     if( r1!=regBase+j ){
671       if( nReg==1 ){
672         sqlite3ReleaseTempReg(pParse, regBase);
673         regBase = r1;
674       }else{
675         sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
676       }
677     }
678     if( pTerm->eOperator & WO_IN ){
679       if( pTerm->pExpr->flags & EP_xIsSelect ){
680         /* No affinity ever needs to be (or should be) applied to a value
681         ** from the RHS of an "? IN (SELECT ...)" expression. The
682         ** sqlite3FindInIndex() routine has already ensured that the
683         ** affinity of the comparison has been applied to the value.  */
684         if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
685       }
686     }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
687       Expr *pRight = pTerm->pExpr->pRight;
688       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
689         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
690         VdbeCoverage(v);
691       }
692       if( zAff ){
693         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
694           zAff[j] = SQLITE_AFF_BLOB;
695         }
696         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
697           zAff[j] = SQLITE_AFF_BLOB;
698         }
699       }
700     }
701   }
702   *pzAff = zAff;
703   return regBase;
704 }
705 
706 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
707 /*
708 ** If the most recently coded instruction is a constant range constraint
709 ** (a string literal) that originated from the LIKE optimization, then
710 ** set P3 and P5 on the OP_String opcode so that the string will be cast
711 ** to a BLOB at appropriate times.
712 **
713 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
714 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
715 ** scan loop run twice, once for strings and a second time for BLOBs.
716 ** The OP_String opcodes on the second pass convert the upper and lower
717 ** bound string constants to blobs.  This routine makes the necessary changes
718 ** to the OP_String opcodes for that to happen.
719 **
720 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
721 ** only the one pass through the string space is required, so this routine
722 ** becomes a no-op.
723 */
724 static void whereLikeOptimizationStringFixup(
725   Vdbe *v,                /* prepared statement under construction */
726   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
727   WhereTerm *pTerm        /* The upper or lower bound just coded */
728 ){
729   if( pTerm->wtFlags & TERM_LIKEOPT ){
730     VdbeOp *pOp;
731     assert( pLevel->iLikeRepCntr>0 );
732     pOp = sqlite3VdbeGetOp(v, -1);
733     assert( pOp!=0 );
734     assert( pOp->opcode==OP_String8
735             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
736     pOp->p3 = (int)(pLevel->iLikeRepCntr>>1);  /* Register holding counter */
737     pOp->p5 = (u8)(pLevel->iLikeRepCntr&1);    /* ASC or DESC */
738   }
739 }
740 #else
741 # define whereLikeOptimizationStringFixup(A,B,C)
742 #endif
743 
744 #ifdef SQLITE_ENABLE_CURSOR_HINTS
745 /*
746 ** Information is passed from codeCursorHint() down to individual nodes of
747 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
748 ** structure.
749 */
750 struct CCurHint {
751   int iTabCur;    /* Cursor for the main table */
752   int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
753   Index *pIdx;    /* The index used to access the table */
754 };
755 
756 /*
757 ** This function is called for every node of an expression that is a candidate
758 ** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
759 ** the table CCurHint.iTabCur, verify that the same column can be
760 ** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
761 */
762 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
763   struct CCurHint *pHint = pWalker->u.pCCurHint;
764   assert( pHint->pIdx!=0 );
765   if( pExpr->op==TK_COLUMN
766    && pExpr->iTable==pHint->iTabCur
767    && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0
768   ){
769     pWalker->eCode = 1;
770   }
771   return WRC_Continue;
772 }
773 
774 /*
775 ** Test whether or not expression pExpr, which was part of a WHERE clause,
776 ** should be included in the cursor-hint for a table that is on the rhs
777 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
778 ** expression is not suitable.
779 **
780 ** An expression is unsuitable if it might evaluate to non NULL even if
781 ** a TK_COLUMN node that does affect the value of the expression is set
782 ** to NULL. For example:
783 **
784 **   col IS NULL
785 **   col IS NOT NULL
786 **   coalesce(col, 1)
787 **   CASE WHEN col THEN 0 ELSE 1 END
788 */
789 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
790   if( pExpr->op==TK_IS
791    || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
792    || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
793   ){
794     pWalker->eCode = 1;
795   }else if( pExpr->op==TK_FUNCTION ){
796     int d1;
797     char d2[4];
798     if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
799       pWalker->eCode = 1;
800     }
801   }
802 
803   return WRC_Continue;
804 }
805 
806 
807 /*
808 ** This function is called on every node of an expression tree used as an
809 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
810 ** that accesses any table other than the one identified by
811 ** CCurHint.iTabCur, then do the following:
812 **
813 **   1) allocate a register and code an OP_Column instruction to read
814 **      the specified column into the new register, and
815 **
816 **   2) transform the expression node to a TK_REGISTER node that reads
817 **      from the newly populated register.
818 **
819 ** Also, if the node is a TK_COLUMN that does access the table idenified
820 ** by pCCurHint.iTabCur, and an index is being used (which we will
821 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
822 ** an access of the index rather than the original table.
823 */
824 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
825   int rc = WRC_Continue;
826   struct CCurHint *pHint = pWalker->u.pCCurHint;
827   if( pExpr->op==TK_COLUMN ){
828     if( pExpr->iTable!=pHint->iTabCur ){
829       Vdbe *v = pWalker->pParse->pVdbe;
830       int reg = ++pWalker->pParse->nMem;   /* Register for column value */
831       sqlite3ExprCodeGetColumnOfTable(
832           v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg
833       );
834       pExpr->op = TK_REGISTER;
835       pExpr->iTable = reg;
836     }else if( pHint->pIdx!=0 ){
837       pExpr->iTable = pHint->iIdxCur;
838       pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn);
839       assert( pExpr->iColumn>=0 );
840     }
841   }else if( pExpr->op==TK_AGG_FUNCTION ){
842     /* An aggregate function in the WHERE clause of a query means this must
843     ** be a correlated sub-query, and expression pExpr is an aggregate from
844     ** the parent context. Do not walk the function arguments in this case.
845     **
846     ** todo: It should be possible to replace this node with a TK_REGISTER
847     ** expression, as the result of the expression must be stored in a
848     ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
849     rc = WRC_Prune;
850   }
851   return rc;
852 }
853 
854 /*
855 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
856 */
857 static void codeCursorHint(
858   struct SrcList_item *pTabItem,  /* FROM clause item */
859   WhereInfo *pWInfo,    /* The where clause */
860   WhereLevel *pLevel,   /* Which loop to provide hints for */
861   WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
862 ){
863   Parse *pParse = pWInfo->pParse;
864   sqlite3 *db = pParse->db;
865   Vdbe *v = pParse->pVdbe;
866   Expr *pExpr = 0;
867   WhereLoop *pLoop = pLevel->pWLoop;
868   int iCur;
869   WhereClause *pWC;
870   WhereTerm *pTerm;
871   int i, j;
872   struct CCurHint sHint;
873   Walker sWalker;
874 
875   if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
876   iCur = pLevel->iTabCur;
877   assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
878   sHint.iTabCur = iCur;
879   sHint.iIdxCur = pLevel->iIdxCur;
880   sHint.pIdx = pLoop->u.btree.pIndex;
881   memset(&sWalker, 0, sizeof(sWalker));
882   sWalker.pParse = pParse;
883   sWalker.u.pCCurHint = &sHint;
884   pWC = &pWInfo->sWC;
885   for(i=0; i<pWC->nTerm; i++){
886     pTerm = &pWC->a[i];
887     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
888     if( pTerm->prereqAll & pLevel->notReady ) continue;
889 
890     /* Any terms specified as part of the ON(...) clause for any LEFT
891     ** JOIN for which the current table is not the rhs are omitted
892     ** from the cursor-hint.
893     **
894     ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
895     ** that were specified as part of the WHERE clause must be excluded.
896     ** This is to address the following:
897     **
898     **   SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
899     **
900     ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
901     ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
902     ** pushed down to the cursor, this row is filtered out, causing
903     ** SQLite to synthesize a row of NULL values. Which does match the
904     ** WHERE clause, and so the query returns a row. Which is incorrect.
905     **
906     ** For the same reason, WHERE terms such as:
907     **
908     **   WHERE 1 = (t2.c IS NULL)
909     **
910     ** are also excluded. See codeCursorHintIsOrFunction() for details.
911     */
912     if( pTabItem->fg.jointype & JT_LEFT ){
913       Expr *pExpr = pTerm->pExpr;
914       if( !ExprHasProperty(pExpr, EP_FromJoin)
915        || pExpr->iRightJoinTable!=pTabItem->iCursor
916       ){
917         sWalker.eCode = 0;
918         sWalker.xExprCallback = codeCursorHintIsOrFunction;
919         sqlite3WalkExpr(&sWalker, pTerm->pExpr);
920         if( sWalker.eCode ) continue;
921       }
922     }else{
923       if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
924     }
925 
926     /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
927     ** the cursor.  These terms are not needed as hints for a pure range
928     ** scan (that has no == terms) so omit them. */
929     if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
930       for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
931       if( j<pLoop->nLTerm ) continue;
932     }
933 
934     /* No subqueries or non-deterministic functions allowed */
935     if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
936 
937     /* For an index scan, make sure referenced columns are actually in
938     ** the index. */
939     if( sHint.pIdx!=0 ){
940       sWalker.eCode = 0;
941       sWalker.xExprCallback = codeCursorHintCheckExpr;
942       sqlite3WalkExpr(&sWalker, pTerm->pExpr);
943       if( sWalker.eCode ) continue;
944     }
945 
946     /* If we survive all prior tests, that means this term is worth hinting */
947     pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
948   }
949   if( pExpr!=0 ){
950     sWalker.xExprCallback = codeCursorHintFixExpr;
951     sqlite3WalkExpr(&sWalker, pExpr);
952     sqlite3VdbeAddOp4(v, OP_CursorHint,
953                       (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
954                       (const char*)pExpr, P4_EXPR);
955   }
956 }
957 #else
958 # define codeCursorHint(A,B,C,D)  /* No-op */
959 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
960 
961 /*
962 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
963 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
964 ** function generates code to do a deferred seek of cursor iCur to the
965 ** rowid stored in register iRowid.
966 **
967 ** Normally, this is just:
968 **
969 **   OP_DeferredSeek $iCur $iRowid
970 **
971 ** However, if the scan currently being coded is a branch of an OR-loop and
972 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek
973 ** is set to iIdxCur and P4 is set to point to an array of integers
974 ** containing one entry for each column of the table cursor iCur is open
975 ** on. For each table column, if the column is the i'th column of the
976 ** index, then the corresponding array entry is set to (i+1). If the column
977 ** does not appear in the index at all, the array entry is set to 0.
978 */
979 static void codeDeferredSeek(
980   WhereInfo *pWInfo,              /* Where clause context */
981   Index *pIdx,                    /* Index scan is using */
982   int iCur,                       /* Cursor for IPK b-tree */
983   int iIdxCur                     /* Index cursor */
984 ){
985   Parse *pParse = pWInfo->pParse; /* Parse context */
986   Vdbe *v = pParse->pVdbe;        /* Vdbe to generate code within */
987 
988   assert( iIdxCur>0 );
989   assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
990 
991   sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
992   if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
993    && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
994   ){
995     int i;
996     Table *pTab = pIdx->pTable;
997     int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1));
998     if( ai ){
999       ai[0] = pTab->nCol;
1000       for(i=0; i<pIdx->nColumn-1; i++){
1001         assert( pIdx->aiColumn[i]<pTab->nCol );
1002         if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1;
1003       }
1004       sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1005     }
1006   }
1007 }
1008 
1009 /*
1010 ** If the expression passed as the second argument is a vector, generate
1011 ** code to write the first nReg elements of the vector into an array
1012 ** of registers starting with iReg.
1013 **
1014 ** If the expression is not a vector, then nReg must be passed 1. In
1015 ** this case, generate code to evaluate the expression and leave the
1016 ** result in register iReg.
1017 */
1018 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1019   assert( nReg>0 );
1020   if( p && sqlite3ExprIsVector(p) ){
1021 #ifndef SQLITE_OMIT_SUBQUERY
1022     if( (p->flags & EP_xIsSelect) ){
1023       Vdbe *v = pParse->pVdbe;
1024       int iSelect = sqlite3CodeSubselect(pParse, p, 0, 0);
1025       sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1026     }else
1027 #endif
1028     {
1029       int i;
1030       ExprList *pList = p->x.pList;
1031       assert( nReg<=pList->nExpr );
1032       for(i=0; i<nReg; i++){
1033         sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1034       }
1035     }
1036   }else{
1037     assert( nReg==1 );
1038     sqlite3ExprCode(pParse, p, iReg);
1039   }
1040 }
1041 
1042 /* An instance of the IdxExprTrans object carries information about a
1043 ** mapping from an expression on table columns into a column in an index
1044 ** down through the Walker.
1045 */
1046 typedef struct IdxExprTrans {
1047   Expr *pIdxExpr;    /* The index expression */
1048   int iTabCur;       /* The cursor of the corresponding table */
1049   int iIdxCur;       /* The cursor for the index */
1050   int iIdxCol;       /* The column for the index */
1051 } IdxExprTrans;
1052 
1053 /* The walker node callback used to transform matching expressions into
1054 ** a reference to an index column for an index on an expression.
1055 **
1056 ** If pExpr matches, then transform it into a reference to the index column
1057 ** that contains the value of pExpr.
1058 */
1059 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1060   IdxExprTrans *pX = p->u.pIdxTrans;
1061   if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1062     pExpr->op = TK_COLUMN;
1063     pExpr->iTable = pX->iIdxCur;
1064     pExpr->iColumn = pX->iIdxCol;
1065     pExpr->pTab = 0;
1066     return WRC_Prune;
1067   }else{
1068     return WRC_Continue;
1069   }
1070 }
1071 
1072 /*
1073 ** For an indexes on expression X, locate every instance of expression X
1074 ** in pExpr and change that subexpression into a reference to the appropriate
1075 ** column of the index.
1076 */
1077 static void whereIndexExprTrans(
1078   Index *pIdx,      /* The Index */
1079   int iTabCur,      /* Cursor of the table that is being indexed */
1080   int iIdxCur,      /* Cursor of the index itself */
1081   WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1082 ){
1083   int iIdxCol;               /* Column number of the index */
1084   ExprList *aColExpr;        /* Expressions that are indexed */
1085   Walker w;
1086   IdxExprTrans x;
1087   aColExpr = pIdx->aColExpr;
1088   if( aColExpr==0 ) return;  /* Not an index on expressions */
1089   memset(&w, 0, sizeof(w));
1090   w.xExprCallback = whereIndexExprTransNode;
1091   w.u.pIdxTrans = &x;
1092   x.iTabCur = iTabCur;
1093   x.iIdxCur = iIdxCur;
1094   for(iIdxCol=0; iIdxCol<aColExpr->nExpr; iIdxCol++){
1095     if( pIdx->aiColumn[iIdxCol]!=XN_EXPR ) continue;
1096     assert( aColExpr->a[iIdxCol].pExpr!=0 );
1097     x.iIdxCol = iIdxCol;
1098     x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1099     sqlite3WalkExpr(&w, pWInfo->pWhere);
1100     sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1101     sqlite3WalkExprList(&w, pWInfo->pResultSet);
1102   }
1103 }
1104 
1105 /*
1106 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1107 ** implementation described by pWInfo.
1108 */
1109 Bitmask sqlite3WhereCodeOneLoopStart(
1110   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1111   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1112   Bitmask notReady     /* Which tables are currently available */
1113 ){
1114   int j, k;            /* Loop counters */
1115   int iCur;            /* The VDBE cursor for the table */
1116   int addrNxt;         /* Where to jump to continue with the next IN case */
1117   int omitTable;       /* True if we use the index only */
1118   int bRev;            /* True if we need to scan in reverse order */
1119   WhereLevel *pLevel;  /* The where level to be coded */
1120   WhereLoop *pLoop;    /* The WhereLoop object being coded */
1121   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
1122   WhereTerm *pTerm;               /* A WHERE clause term */
1123   Parse *pParse;                  /* Parsing context */
1124   sqlite3 *db;                    /* Database connection */
1125   Vdbe *v;                        /* The prepared stmt under constructions */
1126   struct SrcList_item *pTabItem;  /* FROM clause term being coded */
1127   int addrBrk;                    /* Jump here to break out of the loop */
1128   int addrHalt;                   /* addrBrk for the outermost loop */
1129   int addrCont;                   /* Jump here to continue with next cycle */
1130   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
1131   int iReleaseReg = 0;      /* Temp register to free before returning */
1132   Index *pIdx = 0;          /* Index used by loop (if any) */
1133   int iLoop;                /* Iteration of constraint generator loop */
1134 
1135   pParse = pWInfo->pParse;
1136   v = pParse->pVdbe;
1137   pWC = &pWInfo->sWC;
1138   db = pParse->db;
1139   pLevel = &pWInfo->a[iLevel];
1140   pLoop = pLevel->pWLoop;
1141   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1142   iCur = pTabItem->iCursor;
1143   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1144   bRev = (pWInfo->revMask>>iLevel)&1;
1145   omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
1146            && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
1147   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1148 
1149   /* Create labels for the "break" and "continue" instructions
1150   ** for the current loop.  Jump to addrBrk to break out of a loop.
1151   ** Jump to cont to go immediately to the next iteration of the
1152   ** loop.
1153   **
1154   ** When there is an IN operator, we also have a "addrNxt" label that
1155   ** means to continue with the next IN value combination.  When
1156   ** there are no IN operators in the constraints, the "addrNxt" label
1157   ** is the same as "addrBrk".
1158   */
1159   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
1160   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
1161 
1162   /* If this is the right table of a LEFT OUTER JOIN, allocate and
1163   ** initialize a memory cell that records if this table matches any
1164   ** row of the left table of the join.
1165   */
1166   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1167     pLevel->iLeftJoin = ++pParse->nMem;
1168     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1169     VdbeComment((v, "init LEFT JOIN no-match flag"));
1170   }
1171 
1172   /* Compute a safe address to jump to if we discover that the table for
1173   ** this loop is empty and can never contribute content. */
1174   for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){}
1175   addrHalt = pWInfo->a[j].addrBrk;
1176 
1177   /* Special case of a FROM clause subquery implemented as a co-routine */
1178   if( pTabItem->fg.viaCoroutine ){
1179     int regYield = pTabItem->regReturn;
1180     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1181     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1182     VdbeCoverage(v);
1183     VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
1184     pLevel->op = OP_Goto;
1185   }else
1186 
1187 #ifndef SQLITE_OMIT_VIRTUALTABLE
1188   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1189     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
1190     **          to access the data.
1191     */
1192     int iReg;   /* P3 Value for OP_VFilter */
1193     int addrNotFound;
1194     int nConstraint = pLoop->nLTerm;
1195     int iIn;    /* Counter for IN constraints */
1196 
1197     sqlite3ExprCachePush(pParse);
1198     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1199     addrNotFound = pLevel->addrBrk;
1200     for(j=0; j<nConstraint; j++){
1201       int iTarget = iReg+j+2;
1202       pTerm = pLoop->aLTerm[j];
1203       if( NEVER(pTerm==0) ) continue;
1204       if( pTerm->eOperator & WO_IN ){
1205         codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1206         addrNotFound = pLevel->addrNxt;
1207       }else{
1208         Expr *pRight = pTerm->pExpr->pRight;
1209         codeExprOrVector(pParse, pRight, iTarget, 1);
1210       }
1211     }
1212     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1213     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1214     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1215                       pLoop->u.vtab.idxStr,
1216                       pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1217     VdbeCoverage(v);
1218     pLoop->u.vtab.needFree = 0;
1219     pLevel->p1 = iCur;
1220     pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1221     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1222     iIn = pLevel->u.in.nIn;
1223     for(j=nConstraint-1; j>=0; j--){
1224       pTerm = pLoop->aLTerm[j];
1225       if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1226         disableTerm(pLevel, pTerm);
1227       }else if( (pTerm->eOperator & WO_IN)!=0 ){
1228         Expr *pCompare;  /* The comparison operator */
1229         Expr *pRight;    /* RHS of the comparison */
1230         VdbeOp *pOp;     /* Opcode to access the value of the IN constraint */
1231 
1232         /* Reload the constraint value into reg[iReg+j+2].  The same value
1233         ** was loaded into the same register prior to the OP_VFilter, but
1234         ** the xFilter implementation might have changed the datatype or
1235         ** encoding of the value in the register, so it *must* be reloaded. */
1236         assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed );
1237         if( !db->mallocFailed ){
1238           assert( iIn>0 );
1239           pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[--iIn].addrInTop);
1240           assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid );
1241           assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 );
1242           assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 );
1243           testcase( pOp->opcode==OP_Rowid );
1244           sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1245         }
1246 
1247         /* Generate code that will continue to the next row if
1248         ** the IN constraint is not satisfied */
1249         pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1250         assert( pCompare!=0 || db->mallocFailed );
1251         if( pCompare ){
1252           pCompare->pLeft = pTerm->pExpr->pLeft;
1253           pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1254           if( pRight ){
1255             pRight->iTable = iReg+j+2;
1256             sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0);
1257           }
1258           pCompare->pLeft = 0;
1259           sqlite3ExprDelete(db, pCompare);
1260         }
1261       }
1262     }
1263     /* These registers need to be preserved in case there is an IN operator
1264     ** loop.  So we could deallocate the registers here (and potentially
1265     ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0.  But it seems
1266     ** simpler and safer to simply not reuse the registers.
1267     **
1268     **    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1269     */
1270     sqlite3ExprCachePop(pParse);
1271   }else
1272 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1273 
1274   if( (pLoop->wsFlags & WHERE_IPK)!=0
1275    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1276   ){
1277     /* Case 2:  We can directly reference a single row using an
1278     **          equality comparison against the ROWID field.  Or
1279     **          we reference multiple rows using a "rowid IN (...)"
1280     **          construct.
1281     */
1282     assert( pLoop->u.btree.nEq==1 );
1283     pTerm = pLoop->aLTerm[0];
1284     assert( pTerm!=0 );
1285     assert( pTerm->pExpr!=0 );
1286     assert( omitTable==0 );
1287     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1288     iReleaseReg = ++pParse->nMem;
1289     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1290     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1291     addrNxt = pLevel->addrNxt;
1292     sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1293     VdbeCoverage(v);
1294     sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
1295     sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1296     VdbeComment((v, "pk"));
1297     pLevel->op = OP_Noop;
1298   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1299          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1300   ){
1301     /* Case 3:  We have an inequality comparison against the ROWID field.
1302     */
1303     int testOp = OP_Noop;
1304     int start;
1305     int memEndValue = 0;
1306     WhereTerm *pStart, *pEnd;
1307 
1308     assert( omitTable==0 );
1309     j = 0;
1310     pStart = pEnd = 0;
1311     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1312     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1313     assert( pStart!=0 || pEnd!=0 );
1314     if( bRev ){
1315       pTerm = pStart;
1316       pStart = pEnd;
1317       pEnd = pTerm;
1318     }
1319     codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1320     if( pStart ){
1321       Expr *pX;             /* The expression that defines the start bound */
1322       int r1, rTemp;        /* Registers for holding the start boundary */
1323       int op;               /* Cursor seek operation */
1324 
1325       /* The following constant maps TK_xx codes into corresponding
1326       ** seek opcodes.  It depends on a particular ordering of TK_xx
1327       */
1328       const u8 aMoveOp[] = {
1329            /* TK_GT */  OP_SeekGT,
1330            /* TK_LE */  OP_SeekLE,
1331            /* TK_LT */  OP_SeekLT,
1332            /* TK_GE */  OP_SeekGE
1333       };
1334       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
1335       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
1336       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
1337 
1338       assert( (pStart->wtFlags & TERM_VNULL)==0 );
1339       testcase( pStart->wtFlags & TERM_VIRTUAL );
1340       pX = pStart->pExpr;
1341       assert( pX!=0 );
1342       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1343       if( sqlite3ExprIsVector(pX->pRight) ){
1344         r1 = rTemp = sqlite3GetTempReg(pParse);
1345         codeExprOrVector(pParse, pX->pRight, r1, 1);
1346         op = aMoveOp[(pX->op - TK_GT) | 0x0001];
1347       }else{
1348         r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1349         disableTerm(pLevel, pStart);
1350         op = aMoveOp[(pX->op - TK_GT)];
1351       }
1352       sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1353       VdbeComment((v, "pk"));
1354       VdbeCoverageIf(v, pX->op==TK_GT);
1355       VdbeCoverageIf(v, pX->op==TK_LE);
1356       VdbeCoverageIf(v, pX->op==TK_LT);
1357       VdbeCoverageIf(v, pX->op==TK_GE);
1358       sqlite3ExprCacheAffinityChange(pParse, r1, 1);
1359       sqlite3ReleaseTempReg(pParse, rTemp);
1360     }else{
1361       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1362       VdbeCoverageIf(v, bRev==0);
1363       VdbeCoverageIf(v, bRev!=0);
1364     }
1365     if( pEnd ){
1366       Expr *pX;
1367       pX = pEnd->pExpr;
1368       assert( pX!=0 );
1369       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1370       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1371       testcase( pEnd->wtFlags & TERM_VIRTUAL );
1372       memEndValue = ++pParse->nMem;
1373       codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1374       if( 0==sqlite3ExprIsVector(pX->pRight)
1375        && (pX->op==TK_LT || pX->op==TK_GT)
1376       ){
1377         testOp = bRev ? OP_Le : OP_Ge;
1378       }else{
1379         testOp = bRev ? OP_Lt : OP_Gt;
1380       }
1381       if( 0==sqlite3ExprIsVector(pX->pRight) ){
1382         disableTerm(pLevel, pEnd);
1383       }
1384     }
1385     start = sqlite3VdbeCurrentAddr(v);
1386     pLevel->op = bRev ? OP_Prev : OP_Next;
1387     pLevel->p1 = iCur;
1388     pLevel->p2 = start;
1389     assert( pLevel->p5==0 );
1390     if( testOp!=OP_Noop ){
1391       iRowidReg = ++pParse->nMem;
1392       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1393       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1394       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1395       VdbeCoverageIf(v, testOp==OP_Le);
1396       VdbeCoverageIf(v, testOp==OP_Lt);
1397       VdbeCoverageIf(v, testOp==OP_Ge);
1398       VdbeCoverageIf(v, testOp==OP_Gt);
1399       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1400     }
1401   }else if( pLoop->wsFlags & WHERE_INDEXED ){
1402     /* Case 4: A scan using an index.
1403     **
1404     **         The WHERE clause may contain zero or more equality
1405     **         terms ("==" or "IN" operators) that refer to the N
1406     **         left-most columns of the index. It may also contain
1407     **         inequality constraints (>, <, >= or <=) on the indexed
1408     **         column that immediately follows the N equalities. Only
1409     **         the right-most column can be an inequality - the rest must
1410     **         use the "==" and "IN" operators. For example, if the
1411     **         index is on (x,y,z), then the following clauses are all
1412     **         optimized:
1413     **
1414     **            x=5
1415     **            x=5 AND y=10
1416     **            x=5 AND y<10
1417     **            x=5 AND y>5 AND y<10
1418     **            x=5 AND y=5 AND z<=10
1419     **
1420     **         The z<10 term of the following cannot be used, only
1421     **         the x=5 term:
1422     **
1423     **            x=5 AND z<10
1424     **
1425     **         N may be zero if there are inequality constraints.
1426     **         If there are no inequality constraints, then N is at
1427     **         least one.
1428     **
1429     **         This case is also used when there are no WHERE clause
1430     **         constraints but an index is selected anyway, in order
1431     **         to force the output order to conform to an ORDER BY.
1432     */
1433     static const u8 aStartOp[] = {
1434       0,
1435       0,
1436       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
1437       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
1438       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
1439       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
1440       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
1441       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
1442     };
1443     static const u8 aEndOp[] = {
1444       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
1445       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
1446       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
1447       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
1448     };
1449     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
1450     u16 nBtm = pLoop->u.btree.nBtm;   /* Length of BTM vector */
1451     u16 nTop = pLoop->u.btree.nTop;   /* Length of TOP vector */
1452     int regBase;                 /* Base register holding constraint values */
1453     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
1454     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
1455     int startEq;                 /* True if range start uses ==, >= or <= */
1456     int endEq;                   /* True if range end uses ==, >= or <= */
1457     int start_constraints;       /* Start of range is constrained */
1458     int nConstraint;             /* Number of constraint terms */
1459     int iIdxCur;                 /* The VDBE cursor for the index */
1460     int nExtraReg = 0;           /* Number of extra registers needed */
1461     int op;                      /* Instruction opcode */
1462     char *zStartAff;             /* Affinity for start of range constraint */
1463     char *zEndAff = 0;           /* Affinity for end of range constraint */
1464     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
1465     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
1466 
1467     pIdx = pLoop->u.btree.pIndex;
1468     iIdxCur = pLevel->iIdxCur;
1469     assert( nEq>=pLoop->nSkip );
1470 
1471     /* If this loop satisfies a sort order (pOrderBy) request that
1472     ** was passed to this function to implement a "SELECT min(x) ..."
1473     ** query, then the caller will only allow the loop to run for
1474     ** a single iteration. This means that the first row returned
1475     ** should not have a NULL value stored in 'x'. If column 'x' is
1476     ** the first one after the nEq equality constraints in the index,
1477     ** this requires some special handling.
1478     */
1479     assert( pWInfo->pOrderBy==0
1480          || pWInfo->pOrderBy->nExpr==1
1481          || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
1482     if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
1483      && pWInfo->nOBSat>0
1484      && (pIdx->nKeyCol>nEq)
1485     ){
1486       assert( pLoop->nSkip==0 );
1487       bSeekPastNull = 1;
1488       nExtraReg = 1;
1489     }
1490 
1491     /* Find any inequality constraint terms for the start and end
1492     ** of the range.
1493     */
1494     j = nEq;
1495     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1496       pRangeStart = pLoop->aLTerm[j++];
1497       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1498       /* Like optimization range constraints always occur in pairs */
1499       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1500               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1501     }
1502     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1503       pRangeEnd = pLoop->aLTerm[j++];
1504       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1505 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1506       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1507         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
1508         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
1509         pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1510         sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1511         VdbeComment((v, "LIKE loop counter"));
1512         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1513         /* iLikeRepCntr actually stores 2x the counter register number.  The
1514         ** bottom bit indicates whether the search order is ASC or DESC. */
1515         testcase( bRev );
1516         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1517         assert( (bRev & ~1)==0 );
1518         pLevel->iLikeRepCntr <<=1;
1519         pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1520       }
1521 #endif
1522       if( pRangeStart==0 ){
1523         j = pIdx->aiColumn[nEq];
1524         if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1525           bSeekPastNull = 1;
1526         }
1527       }
1528     }
1529     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1530 
1531     /* If we are doing a reverse order scan on an ascending index, or
1532     ** a forward order scan on a descending index, interchange the
1533     ** start and end terms (pRangeStart and pRangeEnd).
1534     */
1535     if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1536      || (bRev && pIdx->nKeyCol==nEq)
1537     ){
1538       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1539       SWAP(u8, bSeekPastNull, bStopAtNull);
1540       SWAP(u8, nBtm, nTop);
1541     }
1542 
1543     /* Generate code to evaluate all constraint terms using == or IN
1544     ** and store the values of those terms in an array of registers
1545     ** starting at regBase.
1546     */
1547     codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1548     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1549     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1550     if( zStartAff && nTop ){
1551       zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1552     }
1553     addrNxt = pLevel->addrNxt;
1554 
1555     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1556     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1557     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1558     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1559     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1560     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1561     start_constraints = pRangeStart || nEq>0;
1562 
1563     /* Seek the index cursor to the start of the range. */
1564     nConstraint = nEq;
1565     if( pRangeStart ){
1566       Expr *pRight = pRangeStart->pExpr->pRight;
1567       codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1568       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1569       if( (pRangeStart->wtFlags & TERM_VNULL)==0
1570        && sqlite3ExprCanBeNull(pRight)
1571       ){
1572         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1573         VdbeCoverage(v);
1574       }
1575       if( zStartAff ){
1576         updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1577       }
1578       nConstraint += nBtm;
1579       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1580       if( sqlite3ExprIsVector(pRight)==0 ){
1581         disableTerm(pLevel, pRangeStart);
1582       }else{
1583         startEq = 1;
1584       }
1585       bSeekPastNull = 0;
1586     }else if( bSeekPastNull ){
1587       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1588       nConstraint++;
1589       startEq = 0;
1590       start_constraints = 1;
1591     }
1592     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1593     if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1594       /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1595       ** above has already left the cursor sitting on the correct row,
1596       ** so no further seeking is needed */
1597     }else{
1598       op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1599       assert( op!=0 );
1600       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1601       VdbeCoverage(v);
1602       VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1603       VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1604       VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
1605       VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1606       VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1607       VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
1608     }
1609 
1610     /* Load the value for the inequality constraint at the end of the
1611     ** range (if any).
1612     */
1613     nConstraint = nEq;
1614     if( pRangeEnd ){
1615       Expr *pRight = pRangeEnd->pExpr->pRight;
1616       sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
1617       codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
1618       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1619       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1620        && sqlite3ExprCanBeNull(pRight)
1621       ){
1622         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1623         VdbeCoverage(v);
1624       }
1625       if( zEndAff ){
1626         updateRangeAffinityStr(pRight, nTop, zEndAff);
1627         codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1628       }else{
1629         assert( pParse->db->mallocFailed );
1630       }
1631       nConstraint += nTop;
1632       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1633 
1634       if( sqlite3ExprIsVector(pRight)==0 ){
1635         disableTerm(pLevel, pRangeEnd);
1636       }else{
1637         endEq = 1;
1638       }
1639     }else if( bStopAtNull ){
1640       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1641       endEq = 0;
1642       nConstraint++;
1643     }
1644     sqlite3DbFree(db, zStartAff);
1645     sqlite3DbFree(db, zEndAff);
1646 
1647     /* Top of the loop body */
1648     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1649 
1650     /* Check if the index cursor is past the end of the range. */
1651     if( nConstraint ){
1652       op = aEndOp[bRev*2 + endEq];
1653       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1654       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1655       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1656       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1657       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1658     }
1659 
1660     /* Seek the table cursor, if required */
1661     if( omitTable ){
1662       /* pIdx is a covering index.  No need to access the main table. */
1663     }else if( HasRowid(pIdx->pTable) ){
1664       if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE) || (
1665           (pWInfo->wctrlFlags & WHERE_SEEK_UNIQ_TABLE)
1666        && (pWInfo->eOnePass==ONEPASS_SINGLE)
1667       )){
1668         iRowidReg = ++pParse->nMem;
1669         sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
1670         sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1671         sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
1672         VdbeCoverage(v);
1673       }else{
1674         codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
1675       }
1676     }else if( iCur!=iIdxCur ){
1677       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1678       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1679       for(j=0; j<pPk->nKeyCol; j++){
1680         k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1681         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1682       }
1683       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1684                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1685     }
1686 
1687     /* If pIdx is an index on one or more expressions, then look through
1688     ** all the expressions in pWInfo and try to transform matching expressions
1689     ** into reference to index columns.
1690     */
1691     whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
1692 
1693 
1694     /* Record the instruction used to terminate the loop. */
1695     if( pLoop->wsFlags & WHERE_ONEROW ){
1696       pLevel->op = OP_Noop;
1697     }else if( bRev ){
1698       pLevel->op = OP_Prev;
1699     }else{
1700       pLevel->op = OP_Next;
1701     }
1702     pLevel->p1 = iIdxCur;
1703     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1704     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1705       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1706     }else{
1707       assert( pLevel->p5==0 );
1708     }
1709     if( omitTable ) pIdx = 0;
1710   }else
1711 
1712 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1713   if( pLoop->wsFlags & WHERE_MULTI_OR ){
1714     /* Case 5:  Two or more separately indexed terms connected by OR
1715     **
1716     ** Example:
1717     **
1718     **   CREATE TABLE t1(a,b,c,d);
1719     **   CREATE INDEX i1 ON t1(a);
1720     **   CREATE INDEX i2 ON t1(b);
1721     **   CREATE INDEX i3 ON t1(c);
1722     **
1723     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
1724     **
1725     ** In the example, there are three indexed terms connected by OR.
1726     ** The top of the loop looks like this:
1727     **
1728     **          Null       1                # Zero the rowset in reg 1
1729     **
1730     ** Then, for each indexed term, the following. The arguments to
1731     ** RowSetTest are such that the rowid of the current row is inserted
1732     ** into the RowSet. If it is already present, control skips the
1733     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
1734     **
1735     **        sqlite3WhereBegin(<term>)
1736     **          RowSetTest                  # Insert rowid into rowset
1737     **          Gosub      2 A
1738     **        sqlite3WhereEnd()
1739     **
1740     ** Following the above, code to terminate the loop. Label A, the target
1741     ** of the Gosub above, jumps to the instruction right after the Goto.
1742     **
1743     **          Null       1                # Zero the rowset in reg 1
1744     **          Goto       B                # The loop is finished.
1745     **
1746     **       A: <loop body>                 # Return data, whatever.
1747     **
1748     **          Return     2                # Jump back to the Gosub
1749     **
1750     **       B: <after the loop>
1751     **
1752     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
1753     ** use an ephemeral index instead of a RowSet to record the primary
1754     ** keys of the rows we have already seen.
1755     **
1756     */
1757     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
1758     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
1759     Index *pCov = 0;             /* Potential covering index (or NULL) */
1760     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
1761 
1762     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
1763     int regRowset = 0;                        /* Register for RowSet object */
1764     int regRowid = 0;                         /* Register holding rowid */
1765     int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
1766     int iRetInit;                             /* Address of regReturn init */
1767     int untestedTerms = 0;             /* Some terms not completely tested */
1768     int ii;                            /* Loop counter */
1769     u16 wctrlFlags;                    /* Flags for sub-WHERE clause */
1770     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
1771     Table *pTab = pTabItem->pTab;
1772 
1773     pTerm = pLoop->aLTerm[0];
1774     assert( pTerm!=0 );
1775     assert( pTerm->eOperator & WO_OR );
1776     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
1777     pOrWc = &pTerm->u.pOrInfo->wc;
1778     pLevel->op = OP_Return;
1779     pLevel->p1 = regReturn;
1780 
1781     /* Set up a new SrcList in pOrTab containing the table being scanned
1782     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
1783     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
1784     */
1785     if( pWInfo->nLevel>1 ){
1786       int nNotReady;                 /* The number of notReady tables */
1787       struct SrcList_item *origSrc;     /* Original list of tables */
1788       nNotReady = pWInfo->nLevel - iLevel - 1;
1789       pOrTab = sqlite3StackAllocRaw(db,
1790                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
1791       if( pOrTab==0 ) return notReady;
1792       pOrTab->nAlloc = (u8)(nNotReady + 1);
1793       pOrTab->nSrc = pOrTab->nAlloc;
1794       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
1795       origSrc = pWInfo->pTabList->a;
1796       for(k=1; k<=nNotReady; k++){
1797         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
1798       }
1799     }else{
1800       pOrTab = pWInfo->pTabList;
1801     }
1802 
1803     /* Initialize the rowset register to contain NULL. An SQL NULL is
1804     ** equivalent to an empty rowset.  Or, create an ephemeral index
1805     ** capable of holding primary keys in the case of a WITHOUT ROWID.
1806     **
1807     ** Also initialize regReturn to contain the address of the instruction
1808     ** immediately following the OP_Return at the bottom of the loop. This
1809     ** is required in a few obscure LEFT JOIN cases where control jumps
1810     ** over the top of the loop into the body of it. In this case the
1811     ** correct response for the end-of-loop code (the OP_Return) is to
1812     ** fall through to the next instruction, just as an OP_Next does if
1813     ** called on an uninitialized cursor.
1814     */
1815     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1816       if( HasRowid(pTab) ){
1817         regRowset = ++pParse->nMem;
1818         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
1819       }else{
1820         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1821         regRowset = pParse->nTab++;
1822         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
1823         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
1824       }
1825       regRowid = ++pParse->nMem;
1826     }
1827     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
1828 
1829     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
1830     ** Then for every term xN, evaluate as the subexpression: xN AND z
1831     ** That way, terms in y that are factored into the disjunction will
1832     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
1833     **
1834     ** Actually, each subexpression is converted to "xN AND w" where w is
1835     ** the "interesting" terms of z - terms that did not originate in the
1836     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
1837     ** indices.
1838     **
1839     ** This optimization also only applies if the (x1 OR x2 OR ...) term
1840     ** is not contained in the ON clause of a LEFT JOIN.
1841     ** See ticket http://www.sqlite.org/src/info/f2369304e4
1842     */
1843     if( pWC->nTerm>1 ){
1844       int iTerm;
1845       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
1846         Expr *pExpr = pWC->a[iTerm].pExpr;
1847         if( &pWC->a[iTerm] == pTerm ) continue;
1848         if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
1849         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
1850         testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
1851         if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
1852         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
1853         testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
1854         pExpr = sqlite3ExprDup(db, pExpr, 0);
1855         pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
1856       }
1857       if( pAndExpr ){
1858         pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr);
1859       }
1860     }
1861 
1862     /* Run a separate WHERE clause for each term of the OR clause.  After
1863     ** eliminating duplicates from other WHERE clauses, the action for each
1864     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
1865     */
1866     wctrlFlags =  WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE);
1867     for(ii=0; ii<pOrWc->nTerm; ii++){
1868       WhereTerm *pOrTerm = &pOrWc->a[ii];
1869       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
1870         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
1871         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
1872         int jmp1 = 0;                   /* Address of jump operation */
1873         if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
1874           pAndExpr->pLeft = pOrExpr;
1875           pOrExpr = pAndExpr;
1876         }
1877         /* Loop through table entries that match term pOrTerm. */
1878         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
1879         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
1880                                       wctrlFlags, iCovCur);
1881         assert( pSubWInfo || pParse->nErr || db->mallocFailed );
1882         if( pSubWInfo ){
1883           WhereLoop *pSubLoop;
1884           int addrExplain = sqlite3WhereExplainOneScan(
1885               pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
1886           );
1887           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
1888 
1889           /* This is the sub-WHERE clause body.  First skip over
1890           ** duplicate rows from prior sub-WHERE clauses, and record the
1891           ** rowid (or PRIMARY KEY) for the current row so that the same
1892           ** row will be skipped in subsequent sub-WHERE clauses.
1893           */
1894           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1895             int r;
1896             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
1897             if( HasRowid(pTab) ){
1898               r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0);
1899               jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
1900                                            r,iSet);
1901               VdbeCoverage(v);
1902             }else{
1903               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1904               int nPk = pPk->nKeyCol;
1905               int iPk;
1906 
1907               /* Read the PK into an array of temp registers. */
1908               r = sqlite3GetTempRange(pParse, nPk);
1909               for(iPk=0; iPk<nPk; iPk++){
1910                 int iCol = pPk->aiColumn[iPk];
1911                 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk);
1912               }
1913 
1914               /* Check if the temp table already contains this key. If so,
1915               ** the row has already been included in the result set and
1916               ** can be ignored (by jumping past the Gosub below). Otherwise,
1917               ** insert the key into the temp table and proceed with processing
1918               ** the row.
1919               **
1920               ** Use some of the same optimizations as OP_RowSetTest: If iSet
1921               ** is zero, assume that the key cannot already be present in
1922               ** the temp table. And if iSet is -1, assume that there is no
1923               ** need to insert the key into the temp table, as it will never
1924               ** be tested for.  */
1925               if( iSet ){
1926                 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
1927                 VdbeCoverage(v);
1928               }
1929               if( iSet>=0 ){
1930                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
1931                 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
1932                                      r, nPk);
1933                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1934               }
1935 
1936               /* Release the array of temp registers */
1937               sqlite3ReleaseTempRange(pParse, r, nPk);
1938             }
1939           }
1940 
1941           /* Invoke the main loop body as a subroutine */
1942           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
1943 
1944           /* Jump here (skipping the main loop body subroutine) if the
1945           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
1946           if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
1947 
1948           /* The pSubWInfo->untestedTerms flag means that this OR term
1949           ** contained one or more AND term from a notReady table.  The
1950           ** terms from the notReady table could not be tested and will
1951           ** need to be tested later.
1952           */
1953           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
1954 
1955           /* If all of the OR-connected terms are optimized using the same
1956           ** index, and the index is opened using the same cursor number
1957           ** by each call to sqlite3WhereBegin() made by this loop, it may
1958           ** be possible to use that index as a covering index.
1959           **
1960           ** If the call to sqlite3WhereBegin() above resulted in a scan that
1961           ** uses an index, and this is either the first OR-connected term
1962           ** processed or the index is the same as that used by all previous
1963           ** terms, set pCov to the candidate covering index. Otherwise, set
1964           ** pCov to NULL to indicate that no candidate covering index will
1965           ** be available.
1966           */
1967           pSubLoop = pSubWInfo->a[0].pWLoop;
1968           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
1969           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
1970            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
1971            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
1972           ){
1973             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
1974             pCov = pSubLoop->u.btree.pIndex;
1975           }else{
1976             pCov = 0;
1977           }
1978 
1979           /* Finish the loop through table entries that match term pOrTerm. */
1980           sqlite3WhereEnd(pSubWInfo);
1981         }
1982       }
1983     }
1984     pLevel->u.pCovidx = pCov;
1985     if( pCov ) pLevel->iIdxCur = iCovCur;
1986     if( pAndExpr ){
1987       pAndExpr->pLeft = 0;
1988       sqlite3ExprDelete(db, pAndExpr);
1989     }
1990     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
1991     sqlite3VdbeGoto(v, pLevel->addrBrk);
1992     sqlite3VdbeResolveLabel(v, iLoopBody);
1993 
1994     if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
1995     if( !untestedTerms ) disableTerm(pLevel, pTerm);
1996   }else
1997 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1998 
1999   {
2000     /* Case 6:  There is no usable index.  We must do a complete
2001     **          scan of the entire table.
2002     */
2003     static const u8 aStep[] = { OP_Next, OP_Prev };
2004     static const u8 aStart[] = { OP_Rewind, OP_Last };
2005     assert( bRev==0 || bRev==1 );
2006     if( pTabItem->fg.isRecursive ){
2007       /* Tables marked isRecursive have only a single row that is stored in
2008       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
2009       pLevel->op = OP_Noop;
2010     }else{
2011       codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2012       pLevel->op = aStep[bRev];
2013       pLevel->p1 = iCur;
2014       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2015       VdbeCoverageIf(v, bRev==0);
2016       VdbeCoverageIf(v, bRev!=0);
2017       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2018     }
2019   }
2020 
2021 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2022   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2023 #endif
2024 
2025   /* Insert code to test every subexpression that can be completely
2026   ** computed using the current set of tables.
2027   **
2028   ** This loop may run between one and three times, depending on the
2029   ** constraints to be generated. The value of stack variable iLoop
2030   ** determines the constraints coded by each iteration, as follows:
2031   **
2032   ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2033   ** iLoop==2: Code remaining expressions that do not contain correlated
2034   **           sub-queries.
2035   ** iLoop==3: Code all remaining expressions.
2036   **
2037   ** An effort is made to skip unnecessary iterations of the loop.
2038   */
2039   iLoop = (pIdx ? 1 : 2);
2040   do{
2041     int iNext = 0;                /* Next value for iLoop */
2042     for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2043       Expr *pE;
2044       int skipLikeAddr = 0;
2045       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2046       testcase( pTerm->wtFlags & TERM_CODED );
2047       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2048       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2049         testcase( pWInfo->untestedTerms==0
2050             && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2051         pWInfo->untestedTerms = 1;
2052         continue;
2053       }
2054       pE = pTerm->pExpr;
2055       assert( pE!=0 );
2056       if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
2057         continue;
2058       }
2059 
2060       if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2061         iNext = 2;
2062         continue;
2063       }
2064       if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2065         if( iNext==0 ) iNext = 3;
2066         continue;
2067       }
2068 
2069       if( pTerm->wtFlags & TERM_LIKECOND ){
2070         /* If the TERM_LIKECOND flag is set, that means that the range search
2071         ** is sufficient to guarantee that the LIKE operator is true, so we
2072         ** can skip the call to the like(A,B) function.  But this only works
2073         ** for strings.  So do not skip the call to the function on the pass
2074         ** that compares BLOBs. */
2075 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2076         continue;
2077 #else
2078         u32 x = pLevel->iLikeRepCntr;
2079         assert( x>0 );
2080         skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If, (int)(x>>1));
2081         VdbeCoverage(v);
2082 #endif
2083       }
2084 #ifdef WHERETRACE_ENABLED /* 0xffff */
2085       if( sqlite3WhereTrace ){
2086         VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2087                          pWC->nTerm-j, pTerm, iLoop));
2088       }
2089 #endif
2090       sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2091       if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2092       pTerm->wtFlags |= TERM_CODED;
2093     }
2094     iLoop = iNext;
2095   }while( iLoop>0 );
2096 
2097   /* Insert code to test for implied constraints based on transitivity
2098   ** of the "==" operator.
2099   **
2100   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2101   ** and we are coding the t1 loop and the t2 loop has not yet coded,
2102   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2103   ** the implied "t1.a=123" constraint.
2104   */
2105   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2106     Expr *pE, sEAlt;
2107     WhereTerm *pAlt;
2108     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2109     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2110     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2111     if( pTerm->leftCursor!=iCur ) continue;
2112     if( pLevel->iLeftJoin ) continue;
2113     pE = pTerm->pExpr;
2114     assert( !ExprHasProperty(pE, EP_FromJoin) );
2115     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2116     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
2117                     WO_EQ|WO_IN|WO_IS, 0);
2118     if( pAlt==0 ) continue;
2119     if( pAlt->wtFlags & (TERM_CODED) ) continue;
2120     testcase( pAlt->eOperator & WO_EQ );
2121     testcase( pAlt->eOperator & WO_IS );
2122     testcase( pAlt->eOperator & WO_IN );
2123     VdbeModuleComment((v, "begin transitive constraint"));
2124     sEAlt = *pAlt->pExpr;
2125     sEAlt.pLeft = pE->pLeft;
2126     sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2127   }
2128 
2129   /* For a LEFT OUTER JOIN, generate code that will record the fact that
2130   ** at least one row of the right table has matched the left table.
2131   */
2132   if( pLevel->iLeftJoin ){
2133     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2134     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2135     VdbeComment((v, "record LEFT JOIN hit"));
2136     sqlite3ExprCacheClear(pParse);
2137     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
2138       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2139       testcase( pTerm->wtFlags & TERM_CODED );
2140       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2141       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2142         assert( pWInfo->untestedTerms );
2143         continue;
2144       }
2145       assert( pTerm->pExpr );
2146       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2147       pTerm->wtFlags |= TERM_CODED;
2148     }
2149   }
2150 
2151   return pLevel->notReady;
2152 }
2153