1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 25 /* 26 ** Return the name of the i-th column of the pIdx index. 27 */ 28 static const char *explainIndexColumnName(Index *pIdx, int i){ 29 i = pIdx->aiColumn[i]; 30 if( i==XN_EXPR ) return "<expr>"; 31 if( i==XN_ROWID ) return "rowid"; 32 return pIdx->pTable->aCol[i].zCnName; 33 } 34 35 /* 36 ** This routine is a helper for explainIndexRange() below 37 ** 38 ** pStr holds the text of an expression that we are building up one term 39 ** at a time. This routine adds a new term to the end of the expression. 40 ** Terms are separated by AND so add the "AND" text for second and subsequent 41 ** terms only. 42 */ 43 static void explainAppendTerm( 44 StrAccum *pStr, /* The text expression being built */ 45 Index *pIdx, /* Index to read column names from */ 46 int nTerm, /* Number of terms */ 47 int iTerm, /* Zero-based index of first term. */ 48 int bAnd, /* Non-zero to append " AND " */ 49 const char *zOp /* Name of the operator */ 50 ){ 51 int i; 52 53 assert( nTerm>=1 ); 54 if( bAnd ) sqlite3_str_append(pStr, " AND ", 5); 55 56 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 57 for(i=0; i<nTerm; i++){ 58 if( i ) sqlite3_str_append(pStr, ",", 1); 59 sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i)); 60 } 61 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 62 63 sqlite3_str_append(pStr, zOp, 1); 64 65 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 66 for(i=0; i<nTerm; i++){ 67 if( i ) sqlite3_str_append(pStr, ",", 1); 68 sqlite3_str_append(pStr, "?", 1); 69 } 70 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 71 } 72 73 /* 74 ** Argument pLevel describes a strategy for scanning table pTab. This 75 ** function appends text to pStr that describes the subset of table 76 ** rows scanned by the strategy in the form of an SQL expression. 77 ** 78 ** For example, if the query: 79 ** 80 ** SELECT * FROM t1 WHERE a=1 AND b>2; 81 ** 82 ** is run and there is an index on (a, b), then this function returns a 83 ** string similar to: 84 ** 85 ** "a=? AND b>?" 86 */ 87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 88 Index *pIndex = pLoop->u.btree.pIndex; 89 u16 nEq = pLoop->u.btree.nEq; 90 u16 nSkip = pLoop->nSkip; 91 int i, j; 92 93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 94 sqlite3_str_append(pStr, " (", 2); 95 for(i=0; i<nEq; i++){ 96 const char *z = explainIndexColumnName(pIndex, i); 97 if( i ) sqlite3_str_append(pStr, " AND ", 5); 98 sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); 99 } 100 101 j = i; 102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); 104 i = 1; 105 } 106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); 108 } 109 sqlite3_str_append(pStr, ")", 1); 110 } 111 112 /* 113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 116 ** is added to the output to describe the table scan strategy in pLevel. 117 ** 118 ** If an OP_Explain opcode is added to the VM, its address is returned. 119 ** Otherwise, if no OP_Explain is coded, zero is returned. 120 */ 121 int sqlite3WhereExplainOneScan( 122 Parse *pParse, /* Parse context */ 123 SrcList *pTabList, /* Table list this loop refers to */ 124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 125 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 126 ){ 127 int ret = 0; 128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 129 if( sqlite3ParseToplevel(pParse)->explain==2 ) 130 #endif 131 { 132 SrcItem *pItem = &pTabList->a[pLevel->iFrom]; 133 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 134 sqlite3 *db = pParse->db; /* Database handle */ 135 int isSearch; /* True for a SEARCH. False for SCAN. */ 136 WhereLoop *pLoop; /* The controlling WhereLoop object */ 137 u32 flags; /* Flags that describe this loop */ 138 char *zMsg; /* Text to add to EQP output */ 139 StrAccum str; /* EQP output string */ 140 char zBuf[100]; /* Initial space for EQP output string */ 141 142 pLoop = pLevel->pWLoop; 143 flags = pLoop->wsFlags; 144 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; 145 146 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 147 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 148 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 149 150 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 151 str.printfFlags = SQLITE_PRINTF_INTERNAL; 152 sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem); 153 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 154 const char *zFmt = 0; 155 Index *pIdx; 156 157 assert( pLoop->u.btree.pIndex!=0 ); 158 pIdx = pLoop->u.btree.pIndex; 159 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 160 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 161 if( isSearch ){ 162 zFmt = "PRIMARY KEY"; 163 } 164 }else if( flags & WHERE_PARTIALIDX ){ 165 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 166 }else if( flags & WHERE_AUTO_INDEX ){ 167 zFmt = "AUTOMATIC COVERING INDEX"; 168 }else if( flags & WHERE_IDX_ONLY ){ 169 zFmt = "COVERING INDEX %s"; 170 }else{ 171 zFmt = "INDEX %s"; 172 } 173 if( zFmt ){ 174 sqlite3_str_append(&str, " USING ", 7); 175 sqlite3_str_appendf(&str, zFmt, pIdx->zName); 176 explainIndexRange(&str, pLoop); 177 } 178 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 179 char cRangeOp; 180 #if 0 /* Better output, but breaks many tests */ 181 const Table *pTab = pItem->pTab; 182 const char *zRowid = pTab->iPKey>=0 ? pTab->aCol[pTab->iPKey].zCnName: 183 "rowid"; 184 #else 185 const char *zRowid = "rowid"; 186 #endif 187 sqlite3_str_appendf(&str, " USING INTEGER PRIMARY KEY (%s", zRowid); 188 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 189 cRangeOp = '='; 190 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 191 sqlite3_str_appendf(&str, ">? AND %s", zRowid); 192 cRangeOp = '<'; 193 }else if( flags&WHERE_BTM_LIMIT ){ 194 cRangeOp = '>'; 195 }else{ 196 assert( flags&WHERE_TOP_LIMIT); 197 cRangeOp = '<'; 198 } 199 sqlite3_str_appendf(&str, "%c?)", cRangeOp); 200 } 201 #ifndef SQLITE_OMIT_VIRTUALTABLE 202 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 203 sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s", 204 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 205 } 206 #endif 207 if( pItem->fg.jointype & JT_LEFT ){ 208 sqlite3_str_appendf(&str, " LEFT-JOIN"); 209 } 210 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 211 if( pLoop->nOut>=10 ){ 212 sqlite3_str_appendf(&str, " (~%llu rows)", 213 sqlite3LogEstToInt(pLoop->nOut)); 214 }else{ 215 sqlite3_str_append(&str, " (~1 row)", 9); 216 } 217 #endif 218 zMsg = sqlite3StrAccumFinish(&str); 219 sqlite3ExplainBreakpoint("",zMsg); 220 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), 221 pParse->addrExplain, 0, zMsg,P4_DYNAMIC); 222 } 223 return ret; 224 } 225 226 /* 227 ** Add a single OP_Explain opcode that describes a Bloom filter. 228 ** 229 ** Or if not processing EXPLAIN QUERY PLAN and not in a SQLITE_DEBUG and/or 230 ** SQLITE_ENABLE_STMT_SCANSTATUS build, then OP_Explain opcodes are not 231 ** required and this routine is a no-op. 232 ** 233 ** If an OP_Explain opcode is added to the VM, its address is returned. 234 ** Otherwise, if no OP_Explain is coded, zero is returned. 235 */ 236 int sqlite3WhereExplainBloomFilter( 237 const Parse *pParse, /* Parse context */ 238 const WhereInfo *pWInfo, /* WHERE clause */ 239 const WhereLevel *pLevel /* Bloom filter on this level */ 240 ){ 241 int ret = 0; 242 SrcItem *pItem = &pWInfo->pTabList->a[pLevel->iFrom]; 243 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 244 sqlite3 *db = pParse->db; /* Database handle */ 245 char *zMsg; /* Text to add to EQP output */ 246 int i; /* Loop counter */ 247 WhereLoop *pLoop; /* The where loop */ 248 StrAccum str; /* EQP output string */ 249 char zBuf[100]; /* Initial space for EQP output string */ 250 251 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 252 str.printfFlags = SQLITE_PRINTF_INTERNAL; 253 sqlite3_str_appendf(&str, "BLOOM FILTER ON %S (", pItem); 254 pLoop = pLevel->pWLoop; 255 if( pLoop->wsFlags & WHERE_IPK ){ 256 const Table *pTab = pItem->pTab; 257 if( pTab->iPKey>=0 ){ 258 sqlite3_str_appendf(&str, "%s=?", pTab->aCol[pTab->iPKey].zCnName); 259 }else{ 260 sqlite3_str_appendf(&str, "rowid=?"); 261 } 262 }else{ 263 for(i=pLoop->nSkip; i<pLoop->u.btree.nEq; i++){ 264 const char *z = explainIndexColumnName(pLoop->u.btree.pIndex, i); 265 if( i>pLoop->nSkip ) sqlite3_str_append(&str, " AND ", 5); 266 sqlite3_str_appendf(&str, "%s=?", z); 267 } 268 } 269 sqlite3_str_append(&str, ")", 1); 270 zMsg = sqlite3StrAccumFinish(&str); 271 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), 272 pParse->addrExplain, 0, zMsg,P4_DYNAMIC); 273 return ret; 274 } 275 #endif /* SQLITE_OMIT_EXPLAIN */ 276 277 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 278 /* 279 ** Configure the VM passed as the first argument with an 280 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 281 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 282 ** clause that the scan reads data from. 283 ** 284 ** If argument addrExplain is not 0, it must be the address of an 285 ** OP_Explain instruction that describes the same loop. 286 */ 287 void sqlite3WhereAddScanStatus( 288 Vdbe *v, /* Vdbe to add scanstatus entry to */ 289 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 290 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 291 int addrExplain /* Address of OP_Explain (or 0) */ 292 ){ 293 const char *zObj = 0; 294 WhereLoop *pLoop = pLvl->pWLoop; 295 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 296 zObj = pLoop->u.btree.pIndex->zName; 297 }else{ 298 zObj = pSrclist->a[pLvl->iFrom].zName; 299 } 300 sqlite3VdbeScanStatus( 301 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 302 ); 303 } 304 #endif 305 306 307 /* 308 ** Disable a term in the WHERE clause. Except, do not disable the term 309 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 310 ** or USING clause of that join. 311 ** 312 ** Consider the term t2.z='ok' in the following queries: 313 ** 314 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 315 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 316 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 317 ** 318 ** The t2.z='ok' is disabled in the in (2) because it originates 319 ** in the ON clause. The term is disabled in (3) because it is not part 320 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 321 ** 322 ** Disabling a term causes that term to not be tested in the inner loop 323 ** of the join. Disabling is an optimization. When terms are satisfied 324 ** by indices, we disable them to prevent redundant tests in the inner 325 ** loop. We would get the correct results if nothing were ever disabled, 326 ** but joins might run a little slower. The trick is to disable as much 327 ** as we can without disabling too much. If we disabled in (1), we'd get 328 ** the wrong answer. See ticket #813. 329 ** 330 ** If all the children of a term are disabled, then that term is also 331 ** automatically disabled. In this way, terms get disabled if derived 332 ** virtual terms are tested first. For example: 333 ** 334 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 335 ** \___________/ \______/ \_____/ 336 ** parent child1 child2 337 ** 338 ** Only the parent term was in the original WHERE clause. The child1 339 ** and child2 terms were added by the LIKE optimization. If both of 340 ** the virtual child terms are valid, then testing of the parent can be 341 ** skipped. 342 ** 343 ** Usually the parent term is marked as TERM_CODED. But if the parent 344 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 345 ** The TERM_LIKECOND marking indicates that the term should be coded inside 346 ** a conditional such that is only evaluated on the second pass of a 347 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 348 */ 349 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 350 int nLoop = 0; 351 assert( pTerm!=0 ); 352 while( (pTerm->wtFlags & TERM_CODED)==0 353 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 354 && (pLevel->notReady & pTerm->prereqAll)==0 355 ){ 356 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 357 pTerm->wtFlags |= TERM_LIKECOND; 358 }else{ 359 pTerm->wtFlags |= TERM_CODED; 360 } 361 #ifdef WHERETRACE_ENABLED 362 if( sqlite3WhereTrace & 0x20000 ){ 363 sqlite3DebugPrintf("DISABLE-"); 364 sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a))); 365 } 366 #endif 367 if( pTerm->iParent<0 ) break; 368 pTerm = &pTerm->pWC->a[pTerm->iParent]; 369 assert( pTerm!=0 ); 370 pTerm->nChild--; 371 if( pTerm->nChild!=0 ) break; 372 nLoop++; 373 } 374 } 375 376 /* 377 ** Code an OP_Affinity opcode to apply the column affinity string zAff 378 ** to the n registers starting at base. 379 ** 380 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which 381 ** are no-ops) at the beginning and end of zAff are ignored. If all entries 382 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated. 383 ** 384 ** This routine makes its own copy of zAff so that the caller is free 385 ** to modify zAff after this routine returns. 386 */ 387 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 388 Vdbe *v = pParse->pVdbe; 389 if( zAff==0 ){ 390 assert( pParse->db->mallocFailed ); 391 return; 392 } 393 assert( v!=0 ); 394 395 /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE 396 ** entries at the beginning and end of the affinity string. 397 */ 398 assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB ); 399 while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){ 400 n--; 401 base++; 402 zAff++; 403 } 404 while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){ 405 n--; 406 } 407 408 /* Code the OP_Affinity opcode if there is anything left to do. */ 409 if( n>0 ){ 410 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 411 } 412 } 413 414 /* 415 ** Expression pRight, which is the RHS of a comparison operation, is 416 ** either a vector of n elements or, if n==1, a scalar expression. 417 ** Before the comparison operation, affinity zAff is to be applied 418 ** to the pRight values. This function modifies characters within the 419 ** affinity string to SQLITE_AFF_BLOB if either: 420 ** 421 ** * the comparison will be performed with no affinity, or 422 ** * the affinity change in zAff is guaranteed not to change the value. 423 */ 424 static void updateRangeAffinityStr( 425 Expr *pRight, /* RHS of comparison */ 426 int n, /* Number of vector elements in comparison */ 427 char *zAff /* Affinity string to modify */ 428 ){ 429 int i; 430 for(i=0; i<n; i++){ 431 Expr *p = sqlite3VectorFieldSubexpr(pRight, i); 432 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB 433 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) 434 ){ 435 zAff[i] = SQLITE_AFF_BLOB; 436 } 437 } 438 } 439 440 441 /* 442 ** pX is an expression of the form: (vector) IN (SELECT ...) 443 ** In other words, it is a vector IN operator with a SELECT clause on the 444 ** LHS. But not all terms in the vector are indexable and the terms might 445 ** not be in the correct order for indexing. 446 ** 447 ** This routine makes a copy of the input pX expression and then adjusts 448 ** the vector on the LHS with corresponding changes to the SELECT so that 449 ** the vector contains only index terms and those terms are in the correct 450 ** order. The modified IN expression is returned. The caller is responsible 451 ** for deleting the returned expression. 452 ** 453 ** Example: 454 ** 455 ** CREATE TABLE t1(a,b,c,d,e,f); 456 ** CREATE INDEX t1x1 ON t1(e,c); 457 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2) 458 ** \_______________________________________/ 459 ** The pX expression 460 ** 461 ** Since only columns e and c can be used with the index, in that order, 462 ** the modified IN expression that is returned will be: 463 ** 464 ** (e,c) IN (SELECT z,x FROM t2) 465 ** 466 ** The reduced pX is different from the original (obviously) and thus is 467 ** only used for indexing, to improve performance. The original unaltered 468 ** IN expression must also be run on each output row for correctness. 469 */ 470 static Expr *removeUnindexableInClauseTerms( 471 Parse *pParse, /* The parsing context */ 472 int iEq, /* Look at loop terms starting here */ 473 WhereLoop *pLoop, /* The current loop */ 474 Expr *pX /* The IN expression to be reduced */ 475 ){ 476 sqlite3 *db = pParse->db; 477 Expr *pNew; 478 pNew = sqlite3ExprDup(db, pX, 0); 479 if( db->mallocFailed==0 ){ 480 ExprList *pOrigRhs; /* Original unmodified RHS */ 481 ExprList *pOrigLhs; /* Original unmodified LHS */ 482 ExprList *pRhs = 0; /* New RHS after modifications */ 483 ExprList *pLhs = 0; /* New LHS after mods */ 484 int i; /* Loop counter */ 485 Select *pSelect; /* Pointer to the SELECT on the RHS */ 486 487 assert( ExprUseXSelect(pNew) ); 488 pOrigRhs = pNew->x.pSelect->pEList; 489 assert( pNew->pLeft!=0 ); 490 assert( ExprUseXList(pNew->pLeft) ); 491 pOrigLhs = pNew->pLeft->x.pList; 492 for(i=iEq; i<pLoop->nLTerm; i++){ 493 if( pLoop->aLTerm[i]->pExpr==pX ){ 494 int iField; 495 assert( (pLoop->aLTerm[i]->eOperator & (WO_OR|WO_AND))==0 ); 496 iField = pLoop->aLTerm[i]->u.x.iField - 1; 497 if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */ 498 pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr); 499 pOrigRhs->a[iField].pExpr = 0; 500 assert( pOrigLhs->a[iField].pExpr!=0 ); 501 pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr); 502 pOrigLhs->a[iField].pExpr = 0; 503 } 504 } 505 sqlite3ExprListDelete(db, pOrigRhs); 506 sqlite3ExprListDelete(db, pOrigLhs); 507 pNew->pLeft->x.pList = pLhs; 508 pNew->x.pSelect->pEList = pRhs; 509 if( pLhs && pLhs->nExpr==1 ){ 510 /* Take care here not to generate a TK_VECTOR containing only a 511 ** single value. Since the parser never creates such a vector, some 512 ** of the subroutines do not handle this case. */ 513 Expr *p = pLhs->a[0].pExpr; 514 pLhs->a[0].pExpr = 0; 515 sqlite3ExprDelete(db, pNew->pLeft); 516 pNew->pLeft = p; 517 } 518 pSelect = pNew->x.pSelect; 519 if( pSelect->pOrderBy ){ 520 /* If the SELECT statement has an ORDER BY clause, zero the 521 ** iOrderByCol variables. These are set to non-zero when an 522 ** ORDER BY term exactly matches one of the terms of the 523 ** result-set. Since the result-set of the SELECT statement may 524 ** have been modified or reordered, these variables are no longer 525 ** set correctly. Since setting them is just an optimization, 526 ** it's easiest just to zero them here. */ 527 ExprList *pOrderBy = pSelect->pOrderBy; 528 for(i=0; i<pOrderBy->nExpr; i++){ 529 pOrderBy->a[i].u.x.iOrderByCol = 0; 530 } 531 } 532 533 #if 0 534 printf("For indexing, change the IN expr:\n"); 535 sqlite3TreeViewExpr(0, pX, 0); 536 printf("Into:\n"); 537 sqlite3TreeViewExpr(0, pNew, 0); 538 #endif 539 } 540 return pNew; 541 } 542 543 544 /* 545 ** Generate code for a single equality term of the WHERE clause. An equality 546 ** term can be either X=expr or X IN (...). pTerm is the term to be 547 ** coded. 548 ** 549 ** The current value for the constraint is left in a register, the index 550 ** of which is returned. An attempt is made store the result in iTarget but 551 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the 552 ** constraint is a TK_EQ or TK_IS, then the current value might be left in 553 ** some other register and it is the caller's responsibility to compensate. 554 ** 555 ** For a constraint of the form X=expr, the expression is evaluated in 556 ** straight-line code. For constraints of the form X IN (...) 557 ** this routine sets up a loop that will iterate over all values of X. 558 */ 559 static int codeEqualityTerm( 560 Parse *pParse, /* The parsing context */ 561 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 562 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 563 int iEq, /* Index of the equality term within this level */ 564 int bRev, /* True for reverse-order IN operations */ 565 int iTarget /* Attempt to leave results in this register */ 566 ){ 567 Expr *pX = pTerm->pExpr; 568 Vdbe *v = pParse->pVdbe; 569 int iReg; /* Register holding results */ 570 571 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); 572 assert( iTarget>0 ); 573 if( pX->op==TK_EQ || pX->op==TK_IS ){ 574 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 575 }else if( pX->op==TK_ISNULL ){ 576 iReg = iTarget; 577 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 578 #ifndef SQLITE_OMIT_SUBQUERY 579 }else{ 580 int eType = IN_INDEX_NOOP; 581 int iTab; 582 struct InLoop *pIn; 583 WhereLoop *pLoop = pLevel->pWLoop; 584 int i; 585 int nEq = 0; 586 int *aiMap = 0; 587 588 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 589 && pLoop->u.btree.pIndex!=0 590 && pLoop->u.btree.pIndex->aSortOrder[iEq] 591 ){ 592 testcase( iEq==0 ); 593 testcase( bRev ); 594 bRev = !bRev; 595 } 596 assert( pX->op==TK_IN ); 597 iReg = iTarget; 598 599 for(i=0; i<iEq; i++){ 600 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ 601 disableTerm(pLevel, pTerm); 602 return iTarget; 603 } 604 } 605 for(i=iEq;i<pLoop->nLTerm; i++){ 606 assert( pLoop->aLTerm[i]!=0 ); 607 if( pLoop->aLTerm[i]->pExpr==pX ) nEq++; 608 } 609 610 iTab = 0; 611 if( !ExprUseXSelect(pX) || pX->x.pSelect->pEList->nExpr==1 ){ 612 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab); 613 }else{ 614 sqlite3 *db = pParse->db; 615 pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX); 616 617 if( !db->mallocFailed ){ 618 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq); 619 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab); 620 pTerm->pExpr->iTable = iTab; 621 } 622 sqlite3ExprDelete(db, pX); 623 pX = pTerm->pExpr; 624 } 625 626 if( eType==IN_INDEX_INDEX_DESC ){ 627 testcase( bRev ); 628 bRev = !bRev; 629 } 630 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 631 VdbeCoverageIf(v, bRev); 632 VdbeCoverageIf(v, !bRev); 633 634 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 635 pLoop->wsFlags |= WHERE_IN_ABLE; 636 if( pLevel->u.in.nIn==0 ){ 637 pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 638 } 639 if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){ 640 pLoop->wsFlags |= WHERE_IN_EARLYOUT; 641 } 642 643 i = pLevel->u.in.nIn; 644 pLevel->u.in.nIn += nEq; 645 pLevel->u.in.aInLoop = 646 sqlite3WhereRealloc(pTerm->pWC->pWInfo, 647 pLevel->u.in.aInLoop, 648 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 649 pIn = pLevel->u.in.aInLoop; 650 if( pIn ){ 651 int iMap = 0; /* Index in aiMap[] */ 652 pIn += i; 653 for(i=iEq;i<pLoop->nLTerm; i++){ 654 if( pLoop->aLTerm[i]->pExpr==pX ){ 655 int iOut = iReg + i - iEq; 656 if( eType==IN_INDEX_ROWID ){ 657 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); 658 }else{ 659 int iCol = aiMap ? aiMap[iMap++] : 0; 660 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); 661 } 662 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); 663 if( i==iEq ){ 664 pIn->iCur = iTab; 665 pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next; 666 if( iEq>0 ){ 667 pIn->iBase = iReg - i; 668 pIn->nPrefix = i; 669 }else{ 670 pIn->nPrefix = 0; 671 } 672 }else{ 673 pIn->eEndLoopOp = OP_Noop; 674 } 675 pIn++; 676 } 677 } 678 testcase( iEq>0 679 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 680 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ); 681 if( iEq>0 682 && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0 683 ){ 684 sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq); 685 } 686 }else{ 687 pLevel->u.in.nIn = 0; 688 } 689 sqlite3DbFree(pParse->db, aiMap); 690 #endif 691 } 692 693 /* As an optimization, try to disable the WHERE clause term that is 694 ** driving the index as it will always be true. The correct answer is 695 ** obtained regardless, but we might get the answer with fewer CPU cycles 696 ** by omitting the term. 697 ** 698 ** But do not disable the term unless we are certain that the term is 699 ** not a transitive constraint. For an example of where that does not 700 ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04) 701 */ 702 if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0 703 || (pTerm->eOperator & WO_EQUIV)==0 704 ){ 705 disableTerm(pLevel, pTerm); 706 } 707 708 return iReg; 709 } 710 711 /* 712 ** Generate code that will evaluate all == and IN constraints for an 713 ** index scan. 714 ** 715 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 716 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 717 ** The index has as many as three equality constraints, but in this 718 ** example, the third "c" value is an inequality. So only two 719 ** constraints are coded. This routine will generate code to evaluate 720 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 721 ** in consecutive registers and the index of the first register is returned. 722 ** 723 ** In the example above nEq==2. But this subroutine works for any value 724 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 725 ** The only thing it does is allocate the pLevel->iMem memory cell and 726 ** compute the affinity string. 727 ** 728 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 729 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 730 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 731 ** occurs after the nEq quality constraints. 732 ** 733 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 734 ** the index of the first memory cell in that range. The code that 735 ** calls this routine will use that memory range to store keys for 736 ** start and termination conditions of the loop. 737 ** key value of the loop. If one or more IN operators appear, then 738 ** this routine allocates an additional nEq memory cells for internal 739 ** use. 740 ** 741 ** Before returning, *pzAff is set to point to a buffer containing a 742 ** copy of the column affinity string of the index allocated using 743 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 744 ** with equality constraints that use BLOB or NONE affinity are set to 745 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 746 ** 747 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 748 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 749 ** 750 ** In the example above, the index on t1(a) has TEXT affinity. But since 751 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 752 ** no conversion should be attempted before using a t2.b value as part of 753 ** a key to search the index. Hence the first byte in the returned affinity 754 ** string in this example would be set to SQLITE_AFF_BLOB. 755 */ 756 static int codeAllEqualityTerms( 757 Parse *pParse, /* Parsing context */ 758 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 759 int bRev, /* Reverse the order of IN operators */ 760 int nExtraReg, /* Number of extra registers to allocate */ 761 char **pzAff /* OUT: Set to point to affinity string */ 762 ){ 763 u16 nEq; /* The number of == or IN constraints to code */ 764 u16 nSkip; /* Number of left-most columns to skip */ 765 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 766 Index *pIdx; /* The index being used for this loop */ 767 WhereTerm *pTerm; /* A single constraint term */ 768 WhereLoop *pLoop; /* The WhereLoop object */ 769 int j; /* Loop counter */ 770 int regBase; /* Base register */ 771 int nReg; /* Number of registers to allocate */ 772 char *zAff; /* Affinity string to return */ 773 774 /* This module is only called on query plans that use an index. */ 775 pLoop = pLevel->pWLoop; 776 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 777 nEq = pLoop->u.btree.nEq; 778 nSkip = pLoop->nSkip; 779 pIdx = pLoop->u.btree.pIndex; 780 assert( pIdx!=0 ); 781 782 /* Figure out how many memory cells we will need then allocate them. 783 */ 784 regBase = pParse->nMem + 1; 785 nReg = pLoop->u.btree.nEq + nExtraReg; 786 pParse->nMem += nReg; 787 788 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 789 assert( zAff!=0 || pParse->db->mallocFailed ); 790 791 if( nSkip ){ 792 int iIdxCur = pLevel->iIdxCur; 793 sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1); 794 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 795 VdbeCoverageIf(v, bRev==0); 796 VdbeCoverageIf(v, bRev!=0); 797 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 798 j = sqlite3VdbeAddOp0(v, OP_Goto); 799 assert( pLevel->addrSkip==0 ); 800 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 801 iIdxCur, 0, regBase, nSkip); 802 VdbeCoverageIf(v, bRev==0); 803 VdbeCoverageIf(v, bRev!=0); 804 sqlite3VdbeJumpHere(v, j); 805 for(j=0; j<nSkip; j++){ 806 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 807 testcase( pIdx->aiColumn[j]==XN_EXPR ); 808 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 809 } 810 } 811 812 /* Evaluate the equality constraints 813 */ 814 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 815 for(j=nSkip; j<nEq; j++){ 816 int r1; 817 pTerm = pLoop->aLTerm[j]; 818 assert( pTerm!=0 ); 819 /* The following testcase is true for indices with redundant columns. 820 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 821 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 822 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 823 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 824 if( r1!=regBase+j ){ 825 if( nReg==1 ){ 826 sqlite3ReleaseTempReg(pParse, regBase); 827 regBase = r1; 828 }else{ 829 sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j); 830 } 831 } 832 } 833 for(j=nSkip; j<nEq; j++){ 834 pTerm = pLoop->aLTerm[j]; 835 if( pTerm->eOperator & WO_IN ){ 836 if( pTerm->pExpr->flags & EP_xIsSelect ){ 837 /* No affinity ever needs to be (or should be) applied to a value 838 ** from the RHS of an "? IN (SELECT ...)" expression. The 839 ** sqlite3FindInIndex() routine has already ensured that the 840 ** affinity of the comparison has been applied to the value. */ 841 if( zAff ) zAff[j] = SQLITE_AFF_BLOB; 842 } 843 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ 844 Expr *pRight = pTerm->pExpr->pRight; 845 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 846 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 847 VdbeCoverage(v); 848 } 849 if( pParse->nErr==0 ){ 850 assert( pParse->db->mallocFailed==0 ); 851 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 852 zAff[j] = SQLITE_AFF_BLOB; 853 } 854 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 855 zAff[j] = SQLITE_AFF_BLOB; 856 } 857 } 858 } 859 } 860 *pzAff = zAff; 861 return regBase; 862 } 863 864 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 865 /* 866 ** If the most recently coded instruction is a constant range constraint 867 ** (a string literal) that originated from the LIKE optimization, then 868 ** set P3 and P5 on the OP_String opcode so that the string will be cast 869 ** to a BLOB at appropriate times. 870 ** 871 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 872 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 873 ** scan loop run twice, once for strings and a second time for BLOBs. 874 ** The OP_String opcodes on the second pass convert the upper and lower 875 ** bound string constants to blobs. This routine makes the necessary changes 876 ** to the OP_String opcodes for that to happen. 877 ** 878 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 879 ** only the one pass through the string space is required, so this routine 880 ** becomes a no-op. 881 */ 882 static void whereLikeOptimizationStringFixup( 883 Vdbe *v, /* prepared statement under construction */ 884 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 885 WhereTerm *pTerm /* The upper or lower bound just coded */ 886 ){ 887 if( pTerm->wtFlags & TERM_LIKEOPT ){ 888 VdbeOp *pOp; 889 assert( pLevel->iLikeRepCntr>0 ); 890 pOp = sqlite3VdbeGetOp(v, -1); 891 assert( pOp!=0 ); 892 assert( pOp->opcode==OP_String8 893 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 894 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ 895 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ 896 } 897 } 898 #else 899 # define whereLikeOptimizationStringFixup(A,B,C) 900 #endif 901 902 #ifdef SQLITE_ENABLE_CURSOR_HINTS 903 /* 904 ** Information is passed from codeCursorHint() down to individual nodes of 905 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 906 ** structure. 907 */ 908 struct CCurHint { 909 int iTabCur; /* Cursor for the main table */ 910 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 911 Index *pIdx; /* The index used to access the table */ 912 }; 913 914 /* 915 ** This function is called for every node of an expression that is a candidate 916 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 917 ** the table CCurHint.iTabCur, verify that the same column can be 918 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 919 */ 920 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 921 struct CCurHint *pHint = pWalker->u.pCCurHint; 922 assert( pHint->pIdx!=0 ); 923 if( pExpr->op==TK_COLUMN 924 && pExpr->iTable==pHint->iTabCur 925 && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0 926 ){ 927 pWalker->eCode = 1; 928 } 929 return WRC_Continue; 930 } 931 932 /* 933 ** Test whether or not expression pExpr, which was part of a WHERE clause, 934 ** should be included in the cursor-hint for a table that is on the rhs 935 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the 936 ** expression is not suitable. 937 ** 938 ** An expression is unsuitable if it might evaluate to non NULL even if 939 ** a TK_COLUMN node that does affect the value of the expression is set 940 ** to NULL. For example: 941 ** 942 ** col IS NULL 943 ** col IS NOT NULL 944 ** coalesce(col, 1) 945 ** CASE WHEN col THEN 0 ELSE 1 END 946 */ 947 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ 948 if( pExpr->op==TK_IS 949 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT 950 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE 951 ){ 952 pWalker->eCode = 1; 953 }else if( pExpr->op==TK_FUNCTION ){ 954 int d1; 955 char d2[4]; 956 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ 957 pWalker->eCode = 1; 958 } 959 } 960 961 return WRC_Continue; 962 } 963 964 965 /* 966 ** This function is called on every node of an expression tree used as an 967 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 968 ** that accesses any table other than the one identified by 969 ** CCurHint.iTabCur, then do the following: 970 ** 971 ** 1) allocate a register and code an OP_Column instruction to read 972 ** the specified column into the new register, and 973 ** 974 ** 2) transform the expression node to a TK_REGISTER node that reads 975 ** from the newly populated register. 976 ** 977 ** Also, if the node is a TK_COLUMN that does access the table idenified 978 ** by pCCurHint.iTabCur, and an index is being used (which we will 979 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 980 ** an access of the index rather than the original table. 981 */ 982 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 983 int rc = WRC_Continue; 984 struct CCurHint *pHint = pWalker->u.pCCurHint; 985 if( pExpr->op==TK_COLUMN ){ 986 if( pExpr->iTable!=pHint->iTabCur ){ 987 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 988 sqlite3ExprCode(pWalker->pParse, pExpr, reg); 989 pExpr->op = TK_REGISTER; 990 pExpr->iTable = reg; 991 }else if( pHint->pIdx!=0 ){ 992 pExpr->iTable = pHint->iIdxCur; 993 pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn); 994 assert( pExpr->iColumn>=0 ); 995 } 996 }else if( pExpr->op==TK_AGG_FUNCTION ){ 997 /* An aggregate function in the WHERE clause of a query means this must 998 ** be a correlated sub-query, and expression pExpr is an aggregate from 999 ** the parent context. Do not walk the function arguments in this case. 1000 ** 1001 ** todo: It should be possible to replace this node with a TK_REGISTER 1002 ** expression, as the result of the expression must be stored in a 1003 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 1004 rc = WRC_Prune; 1005 } 1006 return rc; 1007 } 1008 1009 /* 1010 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 1011 */ 1012 static void codeCursorHint( 1013 SrcItem *pTabItem, /* FROM clause item */ 1014 WhereInfo *pWInfo, /* The where clause */ 1015 WhereLevel *pLevel, /* Which loop to provide hints for */ 1016 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 1017 ){ 1018 Parse *pParse = pWInfo->pParse; 1019 sqlite3 *db = pParse->db; 1020 Vdbe *v = pParse->pVdbe; 1021 Expr *pExpr = 0; 1022 WhereLoop *pLoop = pLevel->pWLoop; 1023 int iCur; 1024 WhereClause *pWC; 1025 WhereTerm *pTerm; 1026 int i, j; 1027 struct CCurHint sHint; 1028 Walker sWalker; 1029 1030 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 1031 iCur = pLevel->iTabCur; 1032 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 1033 sHint.iTabCur = iCur; 1034 sHint.iIdxCur = pLevel->iIdxCur; 1035 sHint.pIdx = pLoop->u.btree.pIndex; 1036 memset(&sWalker, 0, sizeof(sWalker)); 1037 sWalker.pParse = pParse; 1038 sWalker.u.pCCurHint = &sHint; 1039 pWC = &pWInfo->sWC; 1040 for(i=0; i<pWC->nBase; i++){ 1041 pTerm = &pWC->a[i]; 1042 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1043 if( pTerm->prereqAll & pLevel->notReady ) continue; 1044 1045 /* Any terms specified as part of the ON(...) clause for any LEFT 1046 ** JOIN for which the current table is not the rhs are omitted 1047 ** from the cursor-hint. 1048 ** 1049 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms 1050 ** that were specified as part of the WHERE clause must be excluded. 1051 ** This is to address the following: 1052 ** 1053 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; 1054 ** 1055 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its 1056 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is 1057 ** pushed down to the cursor, this row is filtered out, causing 1058 ** SQLite to synthesize a row of NULL values. Which does match the 1059 ** WHERE clause, and so the query returns a row. Which is incorrect. 1060 ** 1061 ** For the same reason, WHERE terms such as: 1062 ** 1063 ** WHERE 1 = (t2.c IS NULL) 1064 ** 1065 ** are also excluded. See codeCursorHintIsOrFunction() for details. 1066 */ 1067 if( pTabItem->fg.jointype & JT_LEFT ){ 1068 Expr *pExpr = pTerm->pExpr; 1069 if( !ExprHasProperty(pExpr, EP_FromJoin) 1070 || pExpr->w.iJoin!=pTabItem->iCursor 1071 ){ 1072 sWalker.eCode = 0; 1073 sWalker.xExprCallback = codeCursorHintIsOrFunction; 1074 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 1075 if( sWalker.eCode ) continue; 1076 } 1077 }else{ 1078 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; 1079 } 1080 1081 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 1082 ** the cursor. These terms are not needed as hints for a pure range 1083 ** scan (that has no == terms) so omit them. */ 1084 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 1085 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 1086 if( j<pLoop->nLTerm ) continue; 1087 } 1088 1089 /* No subqueries or non-deterministic functions allowed */ 1090 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 1091 1092 /* For an index scan, make sure referenced columns are actually in 1093 ** the index. */ 1094 if( sHint.pIdx!=0 ){ 1095 sWalker.eCode = 0; 1096 sWalker.xExprCallback = codeCursorHintCheckExpr; 1097 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 1098 if( sWalker.eCode ) continue; 1099 } 1100 1101 /* If we survive all prior tests, that means this term is worth hinting */ 1102 pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 1103 } 1104 if( pExpr!=0 ){ 1105 sWalker.xExprCallback = codeCursorHintFixExpr; 1106 sqlite3WalkExpr(&sWalker, pExpr); 1107 sqlite3VdbeAddOp4(v, OP_CursorHint, 1108 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 1109 (const char*)pExpr, P4_EXPR); 1110 } 1111 } 1112 #else 1113 # define codeCursorHint(A,B,C,D) /* No-op */ 1114 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 1115 1116 /* 1117 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains 1118 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This 1119 ** function generates code to do a deferred seek of cursor iCur to the 1120 ** rowid stored in register iRowid. 1121 ** 1122 ** Normally, this is just: 1123 ** 1124 ** OP_DeferredSeek $iCur $iRowid 1125 ** 1126 ** Which causes a seek on $iCur to the row with rowid $iRowid. 1127 ** 1128 ** However, if the scan currently being coded is a branch of an OR-loop and 1129 ** the statement currently being coded is a SELECT, then additional information 1130 ** is added that might allow OP_Column to omit the seek and instead do its 1131 ** lookup on the index, thus avoiding an expensive seek operation. To 1132 ** enable this optimization, the P3 of OP_DeferredSeek is set to iIdxCur 1133 ** and P4 is set to an array of integers containing one entry for each column 1134 ** in the table. For each table column, if the column is the i'th 1135 ** column of the index, then the corresponding array entry is set to (i+1). 1136 ** If the column does not appear in the index at all, the array entry is set 1137 ** to 0. The OP_Column opcode can check this array to see if the column it 1138 ** wants is in the index and if it is, it will substitute the index cursor 1139 ** and column number and continue with those new values, rather than seeking 1140 ** the table cursor. 1141 */ 1142 static void codeDeferredSeek( 1143 WhereInfo *pWInfo, /* Where clause context */ 1144 Index *pIdx, /* Index scan is using */ 1145 int iCur, /* Cursor for IPK b-tree */ 1146 int iIdxCur /* Index cursor */ 1147 ){ 1148 Parse *pParse = pWInfo->pParse; /* Parse context */ 1149 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ 1150 1151 assert( iIdxCur>0 ); 1152 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); 1153 1154 pWInfo->bDeferredSeek = 1; 1155 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur); 1156 if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN)) 1157 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) 1158 ){ 1159 int i; 1160 Table *pTab = pIdx->pTable; 1161 u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1)); 1162 if( ai ){ 1163 ai[0] = pTab->nCol; 1164 for(i=0; i<pIdx->nColumn-1; i++){ 1165 int x1, x2; 1166 assert( pIdx->aiColumn[i]<pTab->nCol ); 1167 x1 = pIdx->aiColumn[i]; 1168 x2 = sqlite3TableColumnToStorage(pTab, x1); 1169 testcase( x1!=x2 ); 1170 if( x1>=0 ) ai[x2+1] = i+1; 1171 } 1172 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); 1173 } 1174 } 1175 } 1176 1177 /* 1178 ** If the expression passed as the second argument is a vector, generate 1179 ** code to write the first nReg elements of the vector into an array 1180 ** of registers starting with iReg. 1181 ** 1182 ** If the expression is not a vector, then nReg must be passed 1. In 1183 ** this case, generate code to evaluate the expression and leave the 1184 ** result in register iReg. 1185 */ 1186 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ 1187 assert( nReg>0 ); 1188 if( p && sqlite3ExprIsVector(p) ){ 1189 #ifndef SQLITE_OMIT_SUBQUERY 1190 if( ExprUseXSelect(p) ){ 1191 Vdbe *v = pParse->pVdbe; 1192 int iSelect; 1193 assert( p->op==TK_SELECT ); 1194 iSelect = sqlite3CodeSubselect(pParse, p); 1195 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); 1196 }else 1197 #endif 1198 { 1199 int i; 1200 const ExprList *pList; 1201 assert( ExprUseXList(p) ); 1202 pList = p->x.pList; 1203 assert( nReg<=pList->nExpr ); 1204 for(i=0; i<nReg; i++){ 1205 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i); 1206 } 1207 } 1208 }else{ 1209 assert( nReg==1 || pParse->nErr ); 1210 sqlite3ExprCode(pParse, p, iReg); 1211 } 1212 } 1213 1214 /* An instance of the IdxExprTrans object carries information about a 1215 ** mapping from an expression on table columns into a column in an index 1216 ** down through the Walker. 1217 */ 1218 typedef struct IdxExprTrans { 1219 Expr *pIdxExpr; /* The index expression */ 1220 int iTabCur; /* The cursor of the corresponding table */ 1221 int iIdxCur; /* The cursor for the index */ 1222 int iIdxCol; /* The column for the index */ 1223 int iTabCol; /* The column for the table */ 1224 WhereInfo *pWInfo; /* Complete WHERE clause information */ 1225 sqlite3 *db; /* Database connection (for malloc()) */ 1226 } IdxExprTrans; 1227 1228 /* 1229 ** Preserve pExpr on the WhereETrans list of the WhereInfo. 1230 */ 1231 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){ 1232 WhereExprMod *pNew; 1233 pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew)); 1234 if( pNew==0 ) return; 1235 pNew->pNext = pTrans->pWInfo->pExprMods; 1236 pTrans->pWInfo->pExprMods = pNew; 1237 pNew->pExpr = pExpr; 1238 memcpy(&pNew->orig, pExpr, sizeof(*pExpr)); 1239 } 1240 1241 /* The walker node callback used to transform matching expressions into 1242 ** a reference to an index column for an index on an expression. 1243 ** 1244 ** If pExpr matches, then transform it into a reference to the index column 1245 ** that contains the value of pExpr. 1246 */ 1247 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){ 1248 IdxExprTrans *pX = p->u.pIdxTrans; 1249 if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){ 1250 preserveExpr(pX, pExpr); 1251 pExpr->affExpr = sqlite3ExprAffinity(pExpr); 1252 pExpr->op = TK_COLUMN; 1253 pExpr->iTable = pX->iIdxCur; 1254 pExpr->iColumn = pX->iIdxCol; 1255 testcase( ExprHasProperty(pExpr, EP_Skip) ); 1256 testcase( ExprHasProperty(pExpr, EP_Unlikely) ); 1257 ExprClearProperty(pExpr, EP_Skip|EP_Unlikely|EP_WinFunc|EP_Subrtn); 1258 pExpr->y.pTab = 0; 1259 return WRC_Prune; 1260 }else{ 1261 return WRC_Continue; 1262 } 1263 } 1264 1265 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1266 /* A walker node callback that translates a column reference to a table 1267 ** into a corresponding column reference of an index. 1268 */ 1269 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){ 1270 if( pExpr->op==TK_COLUMN ){ 1271 IdxExprTrans *pX = p->u.pIdxTrans; 1272 if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){ 1273 assert( ExprUseYTab(pExpr) && pExpr->y.pTab!=0 ); 1274 preserveExpr(pX, pExpr); 1275 pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn); 1276 pExpr->iTable = pX->iIdxCur; 1277 pExpr->iColumn = pX->iIdxCol; 1278 pExpr->y.pTab = 0; 1279 } 1280 } 1281 return WRC_Continue; 1282 } 1283 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1284 1285 /* 1286 ** For an indexes on expression X, locate every instance of expression X 1287 ** in pExpr and change that subexpression into a reference to the appropriate 1288 ** column of the index. 1289 ** 1290 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in 1291 ** the table into references to the corresponding (stored) column of the 1292 ** index. 1293 */ 1294 static void whereIndexExprTrans( 1295 Index *pIdx, /* The Index */ 1296 int iTabCur, /* Cursor of the table that is being indexed */ 1297 int iIdxCur, /* Cursor of the index itself */ 1298 WhereInfo *pWInfo /* Transform expressions in this WHERE clause */ 1299 ){ 1300 int iIdxCol; /* Column number of the index */ 1301 ExprList *aColExpr; /* Expressions that are indexed */ 1302 Table *pTab; 1303 Walker w; 1304 IdxExprTrans x; 1305 aColExpr = pIdx->aColExpr; 1306 if( aColExpr==0 && !pIdx->bHasVCol ){ 1307 /* The index does not reference any expressions or virtual columns 1308 ** so no translations are needed. */ 1309 return; 1310 } 1311 pTab = pIdx->pTable; 1312 memset(&w, 0, sizeof(w)); 1313 w.u.pIdxTrans = &x; 1314 x.iTabCur = iTabCur; 1315 x.iIdxCur = iIdxCur; 1316 x.pWInfo = pWInfo; 1317 x.db = pWInfo->pParse->db; 1318 for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){ 1319 i16 iRef = pIdx->aiColumn[iIdxCol]; 1320 if( iRef==XN_EXPR ){ 1321 assert( aColExpr!=0 && aColExpr->a[iIdxCol].pExpr!=0 ); 1322 x.pIdxExpr = aColExpr->a[iIdxCol].pExpr; 1323 if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue; 1324 w.xExprCallback = whereIndexExprTransNode; 1325 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1326 }else if( iRef>=0 1327 && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0 1328 && ((pTab->aCol[iRef].colFlags & COLFLAG_HASCOLL)==0 1329 || sqlite3StrICmp(sqlite3ColumnColl(&pTab->aCol[iRef]), 1330 sqlite3StrBINARY)==0) 1331 ){ 1332 /* Check to see if there are direct references to generated columns 1333 ** that are contained in the index. Pulling the generated column 1334 ** out of the index is an optimization only - the main table is always 1335 ** available if the index cannot be used. To avoid unnecessary 1336 ** complication, omit this optimization if the collating sequence for 1337 ** the column is non-standard */ 1338 x.iTabCol = iRef; 1339 w.xExprCallback = whereIndexExprTransColumn; 1340 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1341 }else{ 1342 continue; 1343 } 1344 x.iIdxCol = iIdxCol; 1345 sqlite3WalkExpr(&w, pWInfo->pWhere); 1346 sqlite3WalkExprList(&w, pWInfo->pOrderBy); 1347 sqlite3WalkExprList(&w, pWInfo->pResultSet); 1348 } 1349 } 1350 1351 /* 1352 ** The pTruth expression is always true because it is the WHERE clause 1353 ** a partial index that is driving a query loop. Look through all of the 1354 ** WHERE clause terms on the query, and if any of those terms must be 1355 ** true because pTruth is true, then mark those WHERE clause terms as 1356 ** coded. 1357 */ 1358 static void whereApplyPartialIndexConstraints( 1359 Expr *pTruth, 1360 int iTabCur, 1361 WhereClause *pWC 1362 ){ 1363 int i; 1364 WhereTerm *pTerm; 1365 while( pTruth->op==TK_AND ){ 1366 whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC); 1367 pTruth = pTruth->pRight; 1368 } 1369 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1370 Expr *pExpr; 1371 if( pTerm->wtFlags & TERM_CODED ) continue; 1372 pExpr = pTerm->pExpr; 1373 if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){ 1374 pTerm->wtFlags |= TERM_CODED; 1375 } 1376 } 1377 } 1378 1379 /* 1380 ** This routine is called right after An OP_Filter has been generated and 1381 ** before the corresponding index search has been performed. This routine 1382 ** checks to see if there are additional Bloom filters in inner loops that 1383 ** can be checked prior to doing the index lookup. If there are available 1384 ** inner-loop Bloom filters, then evaluate those filters now, before the 1385 ** index lookup. The idea is that a Bloom filter check is way faster than 1386 ** an index lookup, and the Bloom filter might return false, meaning that 1387 ** the index lookup can be skipped. 1388 ** 1389 ** We know that an inner loop uses a Bloom filter because it has the 1390 ** WhereLevel.regFilter set. If an inner-loop Bloom filter is checked, 1391 ** then clear the WhereLevel.regFilter value to prevent the Bloom filter 1392 ** from being checked a second time when the inner loop is evaluated. 1393 */ 1394 static SQLITE_NOINLINE void filterPullDown( 1395 Parse *pParse, /* Parsing context */ 1396 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1397 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1398 int addrNxt, /* Jump here to bypass inner loops */ 1399 Bitmask notReady /* Loops that are not ready */ 1400 ){ 1401 while( ++iLevel < pWInfo->nLevel ){ 1402 WhereLevel *pLevel = &pWInfo->a[iLevel]; 1403 WhereLoop *pLoop = pLevel->pWLoop; 1404 if( pLevel->regFilter==0 ) continue; 1405 if( pLevel->pWLoop->nSkip ) continue; 1406 /* ,--- Because sqlite3ConstructBloomFilter() has will not have set 1407 ** vvvvv--' pLevel->regFilter if this were true. */ 1408 if( NEVER(pLoop->prereq & notReady) ) continue; 1409 if( pLoop->wsFlags & WHERE_IPK ){ 1410 WhereTerm *pTerm = pLoop->aLTerm[0]; 1411 int regRowid; 1412 assert( pTerm!=0 ); 1413 assert( pTerm->pExpr!=0 ); 1414 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1415 regRowid = sqlite3GetTempReg(pParse); 1416 regRowid = codeEqualityTerm(pParse, pTerm, pLevel, 0, 0, regRowid); 1417 sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter, 1418 addrNxt, regRowid, 1); 1419 VdbeCoverage(pParse->pVdbe); 1420 }else{ 1421 u16 nEq = pLoop->u.btree.nEq; 1422 int r1; 1423 char *zStartAff; 1424 1425 assert( pLoop->wsFlags & WHERE_INDEXED ); 1426 assert( (pLoop->wsFlags & WHERE_COLUMN_IN)==0 ); 1427 r1 = codeAllEqualityTerms(pParse,pLevel,0,0,&zStartAff); 1428 codeApplyAffinity(pParse, r1, nEq, zStartAff); 1429 sqlite3DbFree(pParse->db, zStartAff); 1430 sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter, 1431 addrNxt, r1, nEq); 1432 VdbeCoverage(pParse->pVdbe); 1433 } 1434 pLevel->regFilter = 0; 1435 } 1436 } 1437 1438 /* 1439 ** Generate code for the start of the iLevel-th loop in the WHERE clause 1440 ** implementation described by pWInfo. 1441 */ 1442 Bitmask sqlite3WhereCodeOneLoopStart( 1443 Parse *pParse, /* Parsing context */ 1444 Vdbe *v, /* Prepared statement under construction */ 1445 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1446 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1447 WhereLevel *pLevel, /* The current level pointer */ 1448 Bitmask notReady /* Which tables are currently available */ 1449 ){ 1450 int j, k; /* Loop counters */ 1451 int iCur; /* The VDBE cursor for the table */ 1452 int addrNxt; /* Where to jump to continue with the next IN case */ 1453 int bRev; /* True if we need to scan in reverse order */ 1454 WhereLoop *pLoop; /* The WhereLoop object being coded */ 1455 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 1456 WhereTerm *pTerm; /* A WHERE clause term */ 1457 sqlite3 *db; /* Database connection */ 1458 SrcItem *pTabItem; /* FROM clause term being coded */ 1459 int addrBrk; /* Jump here to break out of the loop */ 1460 int addrHalt; /* addrBrk for the outermost loop */ 1461 int addrCont; /* Jump here to continue with next cycle */ 1462 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 1463 int iReleaseReg = 0; /* Temp register to free before returning */ 1464 Index *pIdx = 0; /* Index used by loop (if any) */ 1465 int iLoop; /* Iteration of constraint generator loop */ 1466 1467 pWC = &pWInfo->sWC; 1468 db = pParse->db; 1469 pLoop = pLevel->pWLoop; 1470 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1471 iCur = pTabItem->iCursor; 1472 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 1473 bRev = (pWInfo->revMask>>iLevel)&1; 1474 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 1475 #if WHERETRACE_ENABLED /* 0x20800 */ 1476 if( sqlite3WhereTrace & 0x800 ){ 1477 sqlite3DebugPrintf("Coding level %d of %d: notReady=%llx iFrom=%d\n", 1478 iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom); 1479 sqlite3WhereLoopPrint(pLoop, pWC); 1480 } 1481 if( sqlite3WhereTrace & 0x20000 ){ 1482 if( iLevel==0 ){ 1483 sqlite3DebugPrintf("WHERE clause being coded:\n"); 1484 sqlite3TreeViewExpr(0, pWInfo->pWhere, 0); 1485 } 1486 sqlite3DebugPrintf("All WHERE-clause terms before coding:\n"); 1487 sqlite3WhereClausePrint(pWC); 1488 } 1489 #endif 1490 1491 /* Create labels for the "break" and "continue" instructions 1492 ** for the current loop. Jump to addrBrk to break out of a loop. 1493 ** Jump to cont to go immediately to the next iteration of the 1494 ** loop. 1495 ** 1496 ** When there is an IN operator, we also have a "addrNxt" label that 1497 ** means to continue with the next IN value combination. When 1498 ** there are no IN operators in the constraints, the "addrNxt" label 1499 ** is the same as "addrBrk". 1500 */ 1501 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 1502 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse); 1503 1504 /* If this is the right table of a LEFT OUTER JOIN, allocate and 1505 ** initialize a memory cell that records if this table matches any 1506 ** row of the left table of the join. 1507 */ 1508 assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN)) 1509 || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0 1510 ); 1511 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 1512 pLevel->iLeftJoin = ++pParse->nMem; 1513 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 1514 VdbeComment((v, "init LEFT JOIN no-match flag")); 1515 } 1516 1517 /* Compute a safe address to jump to if we discover that the table for 1518 ** this loop is empty and can never contribute content. */ 1519 for(j=iLevel; j>0; j--){ 1520 if( pWInfo->a[j].iLeftJoin ) break; 1521 if( pWInfo->a[j].pRJ ) break; 1522 } 1523 addrHalt = pWInfo->a[j].addrBrk; 1524 1525 /* Special case of a FROM clause subquery implemented as a co-routine */ 1526 if( pTabItem->fg.viaCoroutine ){ 1527 int regYield = pTabItem->regReturn; 1528 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 1529 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 1530 VdbeCoverage(v); 1531 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 1532 pLevel->op = OP_Goto; 1533 }else 1534 1535 #ifndef SQLITE_OMIT_VIRTUALTABLE 1536 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 1537 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 1538 ** to access the data. 1539 */ 1540 int iReg; /* P3 Value for OP_VFilter */ 1541 int addrNotFound; 1542 int nConstraint = pLoop->nLTerm; 1543 1544 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 1545 addrNotFound = pLevel->addrBrk; 1546 for(j=0; j<nConstraint; j++){ 1547 int iTarget = iReg+j+2; 1548 pTerm = pLoop->aLTerm[j]; 1549 if( NEVER(pTerm==0) ) continue; 1550 if( pTerm->eOperator & WO_IN ){ 1551 if( SMASKBIT32(j) & pLoop->u.vtab.mHandleIn ){ 1552 int iTab = pParse->nTab++; 1553 int iCache = ++pParse->nMem; 1554 sqlite3CodeRhsOfIN(pParse, pTerm->pExpr, iTab); 1555 sqlite3VdbeAddOp3(v, OP_VInitIn, iTab, iTarget, iCache); 1556 }else{ 1557 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 1558 addrNotFound = pLevel->addrNxt; 1559 } 1560 }else{ 1561 Expr *pRight = pTerm->pExpr->pRight; 1562 codeExprOrVector(pParse, pRight, iTarget, 1); 1563 if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET 1564 && pLoop->u.vtab.bOmitOffset 1565 ){ 1566 assert( pTerm->eOperator==WO_AUX ); 1567 assert( pWInfo->pLimit!=0 ); 1568 assert( pWInfo->pLimit->iOffset>0 ); 1569 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWInfo->pLimit->iOffset); 1570 VdbeComment((v,"Zero OFFSET counter")); 1571 } 1572 } 1573 } 1574 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 1575 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 1576 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 1577 pLoop->u.vtab.idxStr, 1578 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); 1579 VdbeCoverage(v); 1580 pLoop->u.vtab.needFree = 0; 1581 /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed 1582 ** the u.vtab.idxStr. NULL it out to prevent a use-after-free */ 1583 if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0; 1584 pLevel->p1 = iCur; 1585 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 1586 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1587 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 1588 1589 for(j=0; j<nConstraint; j++){ 1590 pTerm = pLoop->aLTerm[j]; 1591 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ 1592 disableTerm(pLevel, pTerm); 1593 continue; 1594 } 1595 if( (pTerm->eOperator & WO_IN)!=0 1596 && (SMASKBIT32(j) & pLoop->u.vtab.mHandleIn)==0 1597 && !db->mallocFailed 1598 ){ 1599 Expr *pCompare; /* The comparison operator */ 1600 Expr *pRight; /* RHS of the comparison */ 1601 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ 1602 int iIn; /* IN loop corresponding to the j-th constraint */ 1603 1604 /* Reload the constraint value into reg[iReg+j+2]. The same value 1605 ** was loaded into the same register prior to the OP_VFilter, but 1606 ** the xFilter implementation might have changed the datatype or 1607 ** encoding of the value in the register, so it *must* be reloaded. 1608 */ 1609 for(iIn=0; ALWAYS(iIn<pLevel->u.in.nIn); iIn++){ 1610 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop); 1611 if( (pOp->opcode==OP_Column && pOp->p3==iReg+j+2) 1612 || (pOp->opcode==OP_Rowid && pOp->p2==iReg+j+2) 1613 ){ 1614 testcase( pOp->opcode==OP_Rowid ); 1615 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); 1616 break; 1617 } 1618 } 1619 1620 /* Generate code that will continue to the next row if 1621 ** the IN constraint is not satisfied 1622 */ 1623 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); 1624 if( !db->mallocFailed ){ 1625 int iFld = pTerm->u.x.iField; 1626 Expr *pLeft = pTerm->pExpr->pLeft; 1627 assert( pLeft!=0 ); 1628 if( iFld>0 ){ 1629 assert( pLeft->op==TK_VECTOR ); 1630 assert( ExprUseXList(pLeft) ); 1631 assert( iFld<=pLeft->x.pList->nExpr ); 1632 pCompare->pLeft = pLeft->x.pList->a[iFld-1].pExpr; 1633 }else{ 1634 pCompare->pLeft = pLeft; 1635 } 1636 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); 1637 if( pRight ){ 1638 pRight->iTable = iReg+j+2; 1639 sqlite3ExprIfFalse( 1640 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL 1641 ); 1642 } 1643 pCompare->pLeft = 0; 1644 } 1645 sqlite3ExprDelete(db, pCompare); 1646 } 1647 } 1648 1649 /* These registers need to be preserved in case there is an IN operator 1650 ** loop. So we could deallocate the registers here (and potentially 1651 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems 1652 ** simpler and safer to simply not reuse the registers. 1653 ** 1654 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 1655 */ 1656 }else 1657 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1658 1659 if( (pLoop->wsFlags & WHERE_IPK)!=0 1660 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 1661 ){ 1662 /* Case 2: We can directly reference a single row using an 1663 ** equality comparison against the ROWID field. Or 1664 ** we reference multiple rows using a "rowid IN (...)" 1665 ** construct. 1666 */ 1667 assert( pLoop->u.btree.nEq==1 ); 1668 pTerm = pLoop->aLTerm[0]; 1669 assert( pTerm!=0 ); 1670 assert( pTerm->pExpr!=0 ); 1671 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1672 iReleaseReg = ++pParse->nMem; 1673 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 1674 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 1675 addrNxt = pLevel->addrNxt; 1676 if( pLevel->regFilter ){ 1677 sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt, 1678 iRowidReg, 1); 1679 VdbeCoverage(v); 1680 filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady); 1681 } 1682 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); 1683 VdbeCoverage(v); 1684 pLevel->op = OP_Noop; 1685 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 1686 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 1687 ){ 1688 /* Case 3: We have an inequality comparison against the ROWID field. 1689 */ 1690 int testOp = OP_Noop; 1691 int start; 1692 int memEndValue = 0; 1693 WhereTerm *pStart, *pEnd; 1694 1695 j = 0; 1696 pStart = pEnd = 0; 1697 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 1698 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 1699 assert( pStart!=0 || pEnd!=0 ); 1700 if( bRev ){ 1701 pTerm = pStart; 1702 pStart = pEnd; 1703 pEnd = pTerm; 1704 } 1705 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); 1706 if( pStart ){ 1707 Expr *pX; /* The expression that defines the start bound */ 1708 int r1, rTemp; /* Registers for holding the start boundary */ 1709 int op; /* Cursor seek operation */ 1710 1711 /* The following constant maps TK_xx codes into corresponding 1712 ** seek opcodes. It depends on a particular ordering of TK_xx 1713 */ 1714 const u8 aMoveOp[] = { 1715 /* TK_GT */ OP_SeekGT, 1716 /* TK_LE */ OP_SeekLE, 1717 /* TK_LT */ OP_SeekLT, 1718 /* TK_GE */ OP_SeekGE 1719 }; 1720 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 1721 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 1722 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 1723 1724 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 1725 testcase( pStart->wtFlags & TERM_VIRTUAL ); 1726 pX = pStart->pExpr; 1727 assert( pX!=0 ); 1728 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 1729 if( sqlite3ExprIsVector(pX->pRight) ){ 1730 r1 = rTemp = sqlite3GetTempReg(pParse); 1731 codeExprOrVector(pParse, pX->pRight, r1, 1); 1732 testcase( pX->op==TK_GT ); 1733 testcase( pX->op==TK_GE ); 1734 testcase( pX->op==TK_LT ); 1735 testcase( pX->op==TK_LE ); 1736 op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1]; 1737 assert( pX->op!=TK_GT || op==OP_SeekGE ); 1738 assert( pX->op!=TK_GE || op==OP_SeekGE ); 1739 assert( pX->op!=TK_LT || op==OP_SeekLE ); 1740 assert( pX->op!=TK_LE || op==OP_SeekLE ); 1741 }else{ 1742 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 1743 disableTerm(pLevel, pStart); 1744 op = aMoveOp[(pX->op - TK_GT)]; 1745 } 1746 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); 1747 VdbeComment((v, "pk")); 1748 VdbeCoverageIf(v, pX->op==TK_GT); 1749 VdbeCoverageIf(v, pX->op==TK_LE); 1750 VdbeCoverageIf(v, pX->op==TK_LT); 1751 VdbeCoverageIf(v, pX->op==TK_GE); 1752 sqlite3ReleaseTempReg(pParse, rTemp); 1753 }else{ 1754 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt); 1755 VdbeCoverageIf(v, bRev==0); 1756 VdbeCoverageIf(v, bRev!=0); 1757 } 1758 if( pEnd ){ 1759 Expr *pX; 1760 pX = pEnd->pExpr; 1761 assert( pX!=0 ); 1762 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 1763 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 1764 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 1765 memEndValue = ++pParse->nMem; 1766 codeExprOrVector(pParse, pX->pRight, memEndValue, 1); 1767 if( 0==sqlite3ExprIsVector(pX->pRight) 1768 && (pX->op==TK_LT || pX->op==TK_GT) 1769 ){ 1770 testOp = bRev ? OP_Le : OP_Ge; 1771 }else{ 1772 testOp = bRev ? OP_Lt : OP_Gt; 1773 } 1774 if( 0==sqlite3ExprIsVector(pX->pRight) ){ 1775 disableTerm(pLevel, pEnd); 1776 } 1777 } 1778 start = sqlite3VdbeCurrentAddr(v); 1779 pLevel->op = bRev ? OP_Prev : OP_Next; 1780 pLevel->p1 = iCur; 1781 pLevel->p2 = start; 1782 assert( pLevel->p5==0 ); 1783 if( testOp!=OP_Noop ){ 1784 iRowidReg = ++pParse->nMem; 1785 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 1786 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 1787 VdbeCoverageIf(v, testOp==OP_Le); 1788 VdbeCoverageIf(v, testOp==OP_Lt); 1789 VdbeCoverageIf(v, testOp==OP_Ge); 1790 VdbeCoverageIf(v, testOp==OP_Gt); 1791 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 1792 } 1793 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 1794 /* Case 4: A scan using an index. 1795 ** 1796 ** The WHERE clause may contain zero or more equality 1797 ** terms ("==" or "IN" operators) that refer to the N 1798 ** left-most columns of the index. It may also contain 1799 ** inequality constraints (>, <, >= or <=) on the indexed 1800 ** column that immediately follows the N equalities. Only 1801 ** the right-most column can be an inequality - the rest must 1802 ** use the "==" and "IN" operators. For example, if the 1803 ** index is on (x,y,z), then the following clauses are all 1804 ** optimized: 1805 ** 1806 ** x=5 1807 ** x=5 AND y=10 1808 ** x=5 AND y<10 1809 ** x=5 AND y>5 AND y<10 1810 ** x=5 AND y=5 AND z<=10 1811 ** 1812 ** The z<10 term of the following cannot be used, only 1813 ** the x=5 term: 1814 ** 1815 ** x=5 AND z<10 1816 ** 1817 ** N may be zero if there are inequality constraints. 1818 ** If there are no inequality constraints, then N is at 1819 ** least one. 1820 ** 1821 ** This case is also used when there are no WHERE clause 1822 ** constraints but an index is selected anyway, in order 1823 ** to force the output order to conform to an ORDER BY. 1824 */ 1825 static const u8 aStartOp[] = { 1826 0, 1827 0, 1828 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1829 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1830 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1831 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1832 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1833 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1834 }; 1835 static const u8 aEndOp[] = { 1836 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1837 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1838 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1839 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1840 }; 1841 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1842 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ 1843 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ 1844 int regBase; /* Base register holding constraint values */ 1845 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1846 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1847 int startEq; /* True if range start uses ==, >= or <= */ 1848 int endEq; /* True if range end uses ==, >= or <= */ 1849 int start_constraints; /* Start of range is constrained */ 1850 int nConstraint; /* Number of constraint terms */ 1851 int iIdxCur; /* The VDBE cursor for the index */ 1852 int nExtraReg = 0; /* Number of extra registers needed */ 1853 int op; /* Instruction opcode */ 1854 char *zStartAff; /* Affinity for start of range constraint */ 1855 char *zEndAff = 0; /* Affinity for end of range constraint */ 1856 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1857 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1858 int omitTable; /* True if we use the index only */ 1859 int regBignull = 0; /* big-null flag register */ 1860 int addrSeekScan = 0; /* Opcode of the OP_SeekScan, if any */ 1861 1862 pIdx = pLoop->u.btree.pIndex; 1863 iIdxCur = pLevel->iIdxCur; 1864 assert( nEq>=pLoop->nSkip ); 1865 1866 /* Find any inequality constraint terms for the start and end 1867 ** of the range. 1868 */ 1869 j = nEq; 1870 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1871 pRangeStart = pLoop->aLTerm[j++]; 1872 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); 1873 /* Like optimization range constraints always occur in pairs */ 1874 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1875 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1876 } 1877 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1878 pRangeEnd = pLoop->aLTerm[j++]; 1879 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); 1880 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1881 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1882 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1883 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1884 pLevel->iLikeRepCntr = (u32)++pParse->nMem; 1885 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); 1886 VdbeComment((v, "LIKE loop counter")); 1887 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1888 /* iLikeRepCntr actually stores 2x the counter register number. The 1889 ** bottom bit indicates whether the search order is ASC or DESC. */ 1890 testcase( bRev ); 1891 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1892 assert( (bRev & ~1)==0 ); 1893 pLevel->iLikeRepCntr <<=1; 1894 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); 1895 } 1896 #endif 1897 if( pRangeStart==0 ){ 1898 j = pIdx->aiColumn[nEq]; 1899 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){ 1900 bSeekPastNull = 1; 1901 } 1902 } 1903 } 1904 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1905 1906 /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses 1907 ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS 1908 ** FIRST). In both cases separate ordered scans are made of those 1909 ** index entries for which the column is null and for those for which 1910 ** it is not. For an ASC sort, the non-NULL entries are scanned first. 1911 ** For DESC, NULL entries are scanned first. 1912 */ 1913 if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0 1914 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0 1915 ){ 1916 assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 ); 1917 assert( pRangeEnd==0 && pRangeStart==0 ); 1918 testcase( pLoop->nSkip>0 ); 1919 nExtraReg = 1; 1920 bSeekPastNull = 1; 1921 pLevel->regBignull = regBignull = ++pParse->nMem; 1922 if( pLevel->iLeftJoin ){ 1923 sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull); 1924 } 1925 pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse); 1926 } 1927 1928 /* If we are doing a reverse order scan on an ascending index, or 1929 ** a forward order scan on a descending index, interchange the 1930 ** start and end terms (pRangeStart and pRangeEnd). 1931 */ 1932 if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){ 1933 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1934 SWAP(u8, bSeekPastNull, bStopAtNull); 1935 SWAP(u8, nBtm, nTop); 1936 } 1937 1938 if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){ 1939 /* In case OP_SeekScan is used, ensure that the index cursor does not 1940 ** point to a valid row for the first iteration of this loop. */ 1941 sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur); 1942 } 1943 1944 /* Generate code to evaluate all constraint terms using == or IN 1945 ** and store the values of those terms in an array of registers 1946 ** starting at regBase. 1947 */ 1948 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); 1949 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1950 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1951 if( zStartAff && nTop ){ 1952 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); 1953 } 1954 addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt); 1955 1956 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1957 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1958 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1959 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1960 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1961 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1962 start_constraints = pRangeStart || nEq>0; 1963 1964 /* Seek the index cursor to the start of the range. */ 1965 nConstraint = nEq; 1966 if( pRangeStart ){ 1967 Expr *pRight = pRangeStart->pExpr->pRight; 1968 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); 1969 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1970 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1971 && sqlite3ExprCanBeNull(pRight) 1972 ){ 1973 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1974 VdbeCoverage(v); 1975 } 1976 if( zStartAff ){ 1977 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); 1978 } 1979 nConstraint += nBtm; 1980 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1981 if( sqlite3ExprIsVector(pRight)==0 ){ 1982 disableTerm(pLevel, pRangeStart); 1983 }else{ 1984 startEq = 1; 1985 } 1986 bSeekPastNull = 0; 1987 }else if( bSeekPastNull ){ 1988 startEq = 0; 1989 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1990 start_constraints = 1; 1991 nConstraint++; 1992 }else if( regBignull ){ 1993 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1994 start_constraints = 1; 1995 nConstraint++; 1996 } 1997 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1998 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ 1999 /* The skip-scan logic inside the call to codeAllEqualityConstraints() 2000 ** above has already left the cursor sitting on the correct row, 2001 ** so no further seeking is needed */ 2002 }else{ 2003 if( regBignull ){ 2004 sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull); 2005 VdbeComment((v, "NULL-scan pass ctr")); 2006 } 2007 if( pLevel->regFilter ){ 2008 sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt, 2009 regBase, nEq); 2010 VdbeCoverage(v); 2011 filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady); 2012 } 2013 2014 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 2015 assert( op!=0 ); 2016 if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){ 2017 assert( regBignull==0 ); 2018 /* TUNING: The OP_SeekScan opcode seeks to reduce the number 2019 ** of expensive seek operations by replacing a single seek with 2020 ** 1 or more step operations. The question is, how many steps 2021 ** should we try before giving up and going with a seek. The cost 2022 ** of a seek is proportional to the logarithm of the of the number 2023 ** of entries in the tree, so basing the number of steps to try 2024 ** on the estimated number of rows in the btree seems like a good 2025 ** guess. */ 2026 addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan, 2027 (pIdx->aiRowLogEst[0]+9)/10); 2028 VdbeCoverage(v); 2029 } 2030 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 2031 VdbeCoverage(v); 2032 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 2033 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 2034 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 2035 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 2036 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 2037 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 2038 2039 assert( bSeekPastNull==0 || bStopAtNull==0 ); 2040 if( regBignull ){ 2041 assert( bSeekPastNull==1 || bStopAtNull==1 ); 2042 assert( bSeekPastNull==!bStopAtNull ); 2043 assert( bStopAtNull==startEq ); 2044 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2); 2045 op = aStartOp[(nConstraint>1)*4 + 2 + bRev]; 2046 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 2047 nConstraint-startEq); 2048 VdbeCoverage(v); 2049 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 2050 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 2051 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 2052 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 2053 assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE); 2054 } 2055 } 2056 2057 /* Load the value for the inequality constraint at the end of the 2058 ** range (if any). 2059 */ 2060 nConstraint = nEq; 2061 assert( pLevel->p2==0 ); 2062 if( pRangeEnd ){ 2063 Expr *pRight = pRangeEnd->pExpr->pRight; 2064 if( addrSeekScan ){ 2065 /* For a seek-scan that has a range on the lowest term of the index, 2066 ** we have to make the top of the loop be code that sets the end 2067 ** condition of the range. Otherwise, the OP_SeekScan might jump 2068 ** over that initialization, leaving the range-end value set to the 2069 ** range-start value, resulting in a wrong answer. 2070 ** See ticket 5981a8c041a3c2f3 (2021-11-02). 2071 */ 2072 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2073 } 2074 codeExprOrVector(pParse, pRight, regBase+nEq, nTop); 2075 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 2076 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 2077 && sqlite3ExprCanBeNull(pRight) 2078 ){ 2079 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 2080 VdbeCoverage(v); 2081 } 2082 if( zEndAff ){ 2083 updateRangeAffinityStr(pRight, nTop, zEndAff); 2084 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); 2085 }else{ 2086 assert( pParse->db->mallocFailed ); 2087 } 2088 nConstraint += nTop; 2089 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 2090 2091 if( sqlite3ExprIsVector(pRight)==0 ){ 2092 disableTerm(pLevel, pRangeEnd); 2093 }else{ 2094 endEq = 1; 2095 } 2096 }else if( bStopAtNull ){ 2097 if( regBignull==0 ){ 2098 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 2099 endEq = 0; 2100 } 2101 nConstraint++; 2102 } 2103 sqlite3DbFree(db, zStartAff); 2104 sqlite3DbFree(db, zEndAff); 2105 2106 /* Top of the loop body */ 2107 if( pLevel->p2==0 ) pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2108 2109 /* Check if the index cursor is past the end of the range. */ 2110 if( nConstraint ){ 2111 if( regBignull ){ 2112 /* Except, skip the end-of-range check while doing the NULL-scan */ 2113 sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3); 2114 VdbeComment((v, "If NULL-scan 2nd pass")); 2115 VdbeCoverage(v); 2116 } 2117 op = aEndOp[bRev*2 + endEq]; 2118 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 2119 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 2120 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 2121 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 2122 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 2123 if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan); 2124 } 2125 if( regBignull ){ 2126 /* During a NULL-scan, check to see if we have reached the end of 2127 ** the NULLs */ 2128 assert( bSeekPastNull==!bStopAtNull ); 2129 assert( bSeekPastNull+bStopAtNull==1 ); 2130 assert( nConstraint+bSeekPastNull>0 ); 2131 sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2); 2132 VdbeComment((v, "If NULL-scan 1st pass")); 2133 VdbeCoverage(v); 2134 op = aEndOp[bRev*2 + bSeekPastNull]; 2135 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 2136 nConstraint+bSeekPastNull); 2137 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 2138 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 2139 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 2140 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 2141 } 2142 2143 if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){ 2144 sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq); 2145 } 2146 2147 /* Seek the table cursor, if required */ 2148 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 2149 && (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0; 2150 if( omitTable ){ 2151 /* pIdx is a covering index. No need to access the main table. */ 2152 }else if( HasRowid(pIdx->pTable) ){ 2153 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); 2154 }else if( iCur!=iIdxCur ){ 2155 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 2156 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 2157 for(j=0; j<pPk->nKeyCol; j++){ 2158 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]); 2159 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 2160 } 2161 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 2162 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 2163 } 2164 2165 if( pLevel->iLeftJoin==0 ){ 2166 /* If pIdx is an index on one or more expressions, then look through 2167 ** all the expressions in pWInfo and try to transform matching expressions 2168 ** into reference to index columns. Also attempt to translate references 2169 ** to virtual columns in the table into references to (stored) columns 2170 ** of the index. 2171 ** 2172 ** Do not do this for the RHS of a LEFT JOIN. This is because the 2173 ** expression may be evaluated after OP_NullRow has been executed on 2174 ** the cursor. In this case it is important to do the full evaluation, 2175 ** as the result of the expression may not be NULL, even if all table 2176 ** column values are. https://www.sqlite.org/src/info/7fa8049685b50b5a 2177 ** 2178 ** Also, do not do this when processing one index an a multi-index 2179 ** OR clause, since the transformation will become invalid once we 2180 ** move forward to the next index. 2181 ** https://sqlite.org/src/info/4e8e4857d32d401f 2182 */ 2183 if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 ){ 2184 whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo); 2185 } 2186 2187 /* If a partial index is driving the loop, try to eliminate WHERE clause 2188 ** terms from the query that must be true due to the WHERE clause of 2189 ** the partial index. 2190 ** 2191 ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work 2192 ** for a LEFT JOIN. 2193 */ 2194 if( pIdx->pPartIdxWhere ){ 2195 whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC); 2196 } 2197 }else{ 2198 testcase( pIdx->pPartIdxWhere ); 2199 /* The following assert() is not a requirement, merely an observation: 2200 ** The OR-optimization doesn't work for the right hand table of 2201 ** a LEFT JOIN: */ 2202 assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 ); 2203 } 2204 2205 /* Record the instruction used to terminate the loop. */ 2206 if( pLoop->wsFlags & WHERE_ONEROW ){ 2207 pLevel->op = OP_Noop; 2208 }else if( bRev ){ 2209 pLevel->op = OP_Prev; 2210 }else{ 2211 pLevel->op = OP_Next; 2212 } 2213 pLevel->p1 = iIdxCur; 2214 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 2215 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 2216 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2217 }else{ 2218 assert( pLevel->p5==0 ); 2219 } 2220 if( omitTable ) pIdx = 0; 2221 }else 2222 2223 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 2224 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 2225 /* Case 5: Two or more separately indexed terms connected by OR 2226 ** 2227 ** Example: 2228 ** 2229 ** CREATE TABLE t1(a,b,c,d); 2230 ** CREATE INDEX i1 ON t1(a); 2231 ** CREATE INDEX i2 ON t1(b); 2232 ** CREATE INDEX i3 ON t1(c); 2233 ** 2234 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 2235 ** 2236 ** In the example, there are three indexed terms connected by OR. 2237 ** The top of the loop looks like this: 2238 ** 2239 ** Null 1 # Zero the rowset in reg 1 2240 ** 2241 ** Then, for each indexed term, the following. The arguments to 2242 ** RowSetTest are such that the rowid of the current row is inserted 2243 ** into the RowSet. If it is already present, control skips the 2244 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 2245 ** 2246 ** sqlite3WhereBegin(<term>) 2247 ** RowSetTest # Insert rowid into rowset 2248 ** Gosub 2 A 2249 ** sqlite3WhereEnd() 2250 ** 2251 ** Following the above, code to terminate the loop. Label A, the target 2252 ** of the Gosub above, jumps to the instruction right after the Goto. 2253 ** 2254 ** Null 1 # Zero the rowset in reg 1 2255 ** Goto B # The loop is finished. 2256 ** 2257 ** A: <loop body> # Return data, whatever. 2258 ** 2259 ** Return 2 # Jump back to the Gosub 2260 ** 2261 ** B: <after the loop> 2262 ** 2263 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 2264 ** use an ephemeral index instead of a RowSet to record the primary 2265 ** keys of the rows we have already seen. 2266 ** 2267 */ 2268 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 2269 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 2270 Index *pCov = 0; /* Potential covering index (or NULL) */ 2271 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 2272 2273 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 2274 int regRowset = 0; /* Register for RowSet object */ 2275 int regRowid = 0; /* Register holding rowid */ 2276 int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */ 2277 int iRetInit; /* Address of regReturn init */ 2278 int untestedTerms = 0; /* Some terms not completely tested */ 2279 int ii; /* Loop counter */ 2280 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 2281 Table *pTab = pTabItem->pTab; 2282 2283 pTerm = pLoop->aLTerm[0]; 2284 assert( pTerm!=0 ); 2285 assert( pTerm->eOperator & WO_OR ); 2286 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 2287 pOrWc = &pTerm->u.pOrInfo->wc; 2288 pLevel->op = OP_Return; 2289 pLevel->p1 = regReturn; 2290 2291 /* Set up a new SrcList in pOrTab containing the table being scanned 2292 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 2293 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 2294 */ 2295 if( pWInfo->nLevel>1 ){ 2296 int nNotReady; /* The number of notReady tables */ 2297 SrcItem *origSrc; /* Original list of tables */ 2298 nNotReady = pWInfo->nLevel - iLevel - 1; 2299 pOrTab = sqlite3StackAllocRaw(db, 2300 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 2301 if( pOrTab==0 ) return notReady; 2302 pOrTab->nAlloc = (u8)(nNotReady + 1); 2303 pOrTab->nSrc = pOrTab->nAlloc; 2304 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 2305 origSrc = pWInfo->pTabList->a; 2306 for(k=1; k<=nNotReady; k++){ 2307 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 2308 } 2309 }else{ 2310 pOrTab = pWInfo->pTabList; 2311 } 2312 2313 /* Initialize the rowset register to contain NULL. An SQL NULL is 2314 ** equivalent to an empty rowset. Or, create an ephemeral index 2315 ** capable of holding primary keys in the case of a WITHOUT ROWID. 2316 ** 2317 ** Also initialize regReturn to contain the address of the instruction 2318 ** immediately following the OP_Return at the bottom of the loop. This 2319 ** is required in a few obscure LEFT JOIN cases where control jumps 2320 ** over the top of the loop into the body of it. In this case the 2321 ** correct response for the end-of-loop code (the OP_Return) is to 2322 ** fall through to the next instruction, just as an OP_Next does if 2323 ** called on an uninitialized cursor. 2324 */ 2325 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2326 if( HasRowid(pTab) ){ 2327 regRowset = ++pParse->nMem; 2328 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 2329 }else{ 2330 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2331 regRowset = pParse->nTab++; 2332 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 2333 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 2334 } 2335 regRowid = ++pParse->nMem; 2336 } 2337 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 2338 2339 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 2340 ** Then for every term xN, evaluate as the subexpression: xN AND y 2341 ** That way, terms in y that are factored into the disjunction will 2342 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 2343 ** 2344 ** Actually, each subexpression is converted to "xN AND w" where w is 2345 ** the "interesting" terms of z - terms that did not originate in the 2346 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 2347 ** indices. 2348 ** 2349 ** This optimization also only applies if the (x1 OR x2 OR ...) term 2350 ** is not contained in the ON clause of a LEFT JOIN. 2351 ** See ticket http://www.sqlite.org/src/info/f2369304e4 2352 ** 2353 ** 2022-02-04: Do not push down slices of a row-value comparison. 2354 ** In other words, "w" or "y" may not be a slice of a vector. Otherwise, 2355 ** the initialization of the right-hand operand of the vector comparison 2356 ** might not occur, or might occur only in an OR branch that is not 2357 ** taken. dbsqlfuzz 80a9fade844b4fb43564efc972bcb2c68270f5d1. 2358 ** 2359 ** 2022-03-03: Do not push down expressions that involve subqueries. 2360 ** The subquery might get coded as a subroutine. Any table-references 2361 ** in the subquery might be resolved to index-references for the index on 2362 ** the OR branch in which the subroutine is coded. But if the subroutine 2363 ** is invoked from a different OR branch that uses a different index, such 2364 ** index-references will not work. tag-20220303a 2365 ** https://sqlite.org/forum/forumpost/36937b197273d403 2366 */ 2367 if( pWC->nTerm>1 ){ 2368 int iTerm; 2369 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 2370 Expr *pExpr = pWC->a[iTerm].pExpr; 2371 if( &pWC->a[iTerm] == pTerm ) continue; 2372 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); 2373 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); 2374 testcase( pWC->a[iTerm].wtFlags & TERM_SLICE ); 2375 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED|TERM_SLICE))!=0 ){ 2376 continue; 2377 } 2378 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 2379 if( ExprHasProperty(pExpr, EP_Subquery) ) continue; /* tag-20220303a */ 2380 pExpr = sqlite3ExprDup(db, pExpr, 0); 2381 pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr); 2382 } 2383 if( pAndExpr ){ 2384 /* The extra 0x10000 bit on the opcode is masked off and does not 2385 ** become part of the new Expr.op. However, it does make the 2386 ** op==TK_AND comparison inside of sqlite3PExpr() false, and this 2387 ** prevents sqlite3PExpr() from applying the AND short-circuit 2388 ** optimization, which we do not want here. */ 2389 pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr); 2390 } 2391 } 2392 2393 /* Run a separate WHERE clause for each term of the OR clause. After 2394 ** eliminating duplicates from other WHERE clauses, the action for each 2395 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 2396 */ 2397 ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR")); 2398 for(ii=0; ii<pOrWc->nTerm; ii++){ 2399 WhereTerm *pOrTerm = &pOrWc->a[ii]; 2400 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 2401 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 2402 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 2403 Expr *pDelete; /* Local copy of OR clause term */ 2404 int jmp1 = 0; /* Address of jump operation */ 2405 testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0 2406 && !ExprHasProperty(pOrExpr, EP_FromJoin) 2407 ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */ 2408 pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0); 2409 if( db->mallocFailed ){ 2410 sqlite3ExprDelete(db, pDelete); 2411 continue; 2412 } 2413 if( pAndExpr ){ 2414 pAndExpr->pLeft = pOrExpr; 2415 pOrExpr = pAndExpr; 2416 } 2417 /* Loop through table entries that match term pOrTerm. */ 2418 ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1)); 2419 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 2420 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 0, 2421 WHERE_OR_SUBCLAUSE, iCovCur); 2422 assert( pSubWInfo || pParse->nErr ); 2423 if( pSubWInfo ){ 2424 WhereLoop *pSubLoop; 2425 int addrExplain = sqlite3WhereExplainOneScan( 2426 pParse, pOrTab, &pSubWInfo->a[0], 0 2427 ); 2428 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 2429 2430 /* This is the sub-WHERE clause body. First skip over 2431 ** duplicate rows from prior sub-WHERE clauses, and record the 2432 ** rowid (or PRIMARY KEY) for the current row so that the same 2433 ** row will be skipped in subsequent sub-WHERE clauses. 2434 */ 2435 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2436 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 2437 if( HasRowid(pTab) ){ 2438 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid); 2439 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 2440 regRowid, iSet); 2441 VdbeCoverage(v); 2442 }else{ 2443 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2444 int nPk = pPk->nKeyCol; 2445 int iPk; 2446 int r; 2447 2448 /* Read the PK into an array of temp registers. */ 2449 r = sqlite3GetTempRange(pParse, nPk); 2450 for(iPk=0; iPk<nPk; iPk++){ 2451 int iCol = pPk->aiColumn[iPk]; 2452 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk); 2453 } 2454 2455 /* Check if the temp table already contains this key. If so, 2456 ** the row has already been included in the result set and 2457 ** can be ignored (by jumping past the Gosub below). Otherwise, 2458 ** insert the key into the temp table and proceed with processing 2459 ** the row. 2460 ** 2461 ** Use some of the same optimizations as OP_RowSetTest: If iSet 2462 ** is zero, assume that the key cannot already be present in 2463 ** the temp table. And if iSet is -1, assume that there is no 2464 ** need to insert the key into the temp table, as it will never 2465 ** be tested for. */ 2466 if( iSet ){ 2467 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 2468 VdbeCoverage(v); 2469 } 2470 if( iSet>=0 ){ 2471 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 2472 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid, 2473 r, nPk); 2474 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2475 } 2476 2477 /* Release the array of temp registers */ 2478 sqlite3ReleaseTempRange(pParse, r, nPk); 2479 } 2480 } 2481 2482 /* Invoke the main loop body as a subroutine */ 2483 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 2484 2485 /* Jump here (skipping the main loop body subroutine) if the 2486 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 2487 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 2488 2489 /* The pSubWInfo->untestedTerms flag means that this OR term 2490 ** contained one or more AND term from a notReady table. The 2491 ** terms from the notReady table could not be tested and will 2492 ** need to be tested later. 2493 */ 2494 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 2495 2496 /* If all of the OR-connected terms are optimized using the same 2497 ** index, and the index is opened using the same cursor number 2498 ** by each call to sqlite3WhereBegin() made by this loop, it may 2499 ** be possible to use that index as a covering index. 2500 ** 2501 ** If the call to sqlite3WhereBegin() above resulted in a scan that 2502 ** uses an index, and this is either the first OR-connected term 2503 ** processed or the index is the same as that used by all previous 2504 ** terms, set pCov to the candidate covering index. Otherwise, set 2505 ** pCov to NULL to indicate that no candidate covering index will 2506 ** be available. 2507 */ 2508 pSubLoop = pSubWInfo->a[0].pWLoop; 2509 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2510 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 2511 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 2512 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 2513 ){ 2514 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 2515 pCov = pSubLoop->u.btree.pIndex; 2516 }else{ 2517 pCov = 0; 2518 } 2519 if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){ 2520 pWInfo->bDeferredSeek = 1; 2521 } 2522 2523 /* Finish the loop through table entries that match term pOrTerm. */ 2524 sqlite3WhereEnd(pSubWInfo); 2525 ExplainQueryPlanPop(pParse); 2526 } 2527 sqlite3ExprDelete(db, pDelete); 2528 } 2529 } 2530 ExplainQueryPlanPop(pParse); 2531 assert( pLevel->pWLoop==pLoop ); 2532 assert( (pLoop->wsFlags & WHERE_MULTI_OR)!=0 ); 2533 assert( (pLoop->wsFlags & WHERE_IN_ABLE)==0 ); 2534 pLevel->u.pCoveringIdx = pCov; 2535 if( pCov ) pLevel->iIdxCur = iCovCur; 2536 if( pAndExpr ){ 2537 pAndExpr->pLeft = 0; 2538 sqlite3ExprDelete(db, pAndExpr); 2539 } 2540 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 2541 sqlite3VdbeGoto(v, pLevel->addrBrk); 2542 sqlite3VdbeResolveLabel(v, iLoopBody); 2543 2544 /* Set the P2 operand of the OP_Return opcode that will end the current 2545 ** loop to point to this spot, which is the top of the next containing 2546 ** loop. The byte-code formatter will use that P2 value as a hint to 2547 ** indent everything in between the this point and the final OP_Return. 2548 ** See tag-20220407a in vdbe.c and shell.c */ 2549 assert( pLevel->op==OP_Return ); 2550 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2551 2552 if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); } 2553 if( !untestedTerms ) disableTerm(pLevel, pTerm); 2554 }else 2555 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 2556 2557 { 2558 /* Case 6: There is no usable index. We must do a complete 2559 ** scan of the entire table. 2560 */ 2561 static const u8 aStep[] = { OP_Next, OP_Prev }; 2562 static const u8 aStart[] = { OP_Rewind, OP_Last }; 2563 assert( bRev==0 || bRev==1 ); 2564 if( pTabItem->fg.isRecursive ){ 2565 /* Tables marked isRecursive have only a single row that is stored in 2566 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 2567 pLevel->op = OP_Noop; 2568 }else{ 2569 codeCursorHint(pTabItem, pWInfo, pLevel, 0); 2570 pLevel->op = aStep[bRev]; 2571 pLevel->p1 = iCur; 2572 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt); 2573 VdbeCoverageIf(v, bRev==0); 2574 VdbeCoverageIf(v, bRev!=0); 2575 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2576 } 2577 } 2578 2579 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2580 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 2581 #endif 2582 2583 /* Insert code to test every subexpression that can be completely 2584 ** computed using the current set of tables. 2585 ** 2586 ** This loop may run between one and three times, depending on the 2587 ** constraints to be generated. The value of stack variable iLoop 2588 ** determines the constraints coded by each iteration, as follows: 2589 ** 2590 ** iLoop==1: Code only expressions that are entirely covered by pIdx. 2591 ** iLoop==2: Code remaining expressions that do not contain correlated 2592 ** sub-queries. 2593 ** iLoop==3: Code all remaining expressions. 2594 ** 2595 ** An effort is made to skip unnecessary iterations of the loop. 2596 */ 2597 iLoop = (pIdx ? 1 : 2); 2598 do{ 2599 int iNext = 0; /* Next value for iLoop */ 2600 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2601 Expr *pE; 2602 int skipLikeAddr = 0; 2603 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2604 testcase( pTerm->wtFlags & TERM_CODED ); 2605 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2606 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2607 testcase( pWInfo->untestedTerms==0 2608 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); 2609 pWInfo->untestedTerms = 1; 2610 continue; 2611 } 2612 pE = pTerm->pExpr; 2613 assert( pE!=0 ); 2614 if( (pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ)) 2615 && !ExprHasProperty(pE,EP_FromJoin) 2616 ){ 2617 continue; 2618 } 2619 2620 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){ 2621 iNext = 2; 2622 continue; 2623 } 2624 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){ 2625 if( iNext==0 ) iNext = 3; 2626 continue; 2627 } 2628 2629 if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){ 2630 /* If the TERM_LIKECOND flag is set, that means that the range search 2631 ** is sufficient to guarantee that the LIKE operator is true, so we 2632 ** can skip the call to the like(A,B) function. But this only works 2633 ** for strings. So do not skip the call to the function on the pass 2634 ** that compares BLOBs. */ 2635 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 2636 continue; 2637 #else 2638 u32 x = pLevel->iLikeRepCntr; 2639 if( x>0 ){ 2640 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1)); 2641 VdbeCoverageIf(v, (x&1)==1); 2642 VdbeCoverageIf(v, (x&1)==0); 2643 } 2644 #endif 2645 } 2646 #ifdef WHERETRACE_ENABLED /* 0xffff */ 2647 if( sqlite3WhereTrace ){ 2648 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d", 2649 pWC->nTerm-j, pTerm, iLoop)); 2650 } 2651 if( sqlite3WhereTrace & 0x800 ){ 2652 sqlite3DebugPrintf("Coding auxiliary constraint:\n"); 2653 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2654 } 2655 #endif 2656 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 2657 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 2658 pTerm->wtFlags |= TERM_CODED; 2659 } 2660 iLoop = iNext; 2661 }while( iLoop>0 ); 2662 2663 /* Insert code to test for implied constraints based on transitivity 2664 ** of the "==" operator. 2665 ** 2666 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 2667 ** and we are coding the t1 loop and the t2 loop has not yet coded, 2668 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 2669 ** the implied "t1.a=123" constraint. 2670 */ 2671 for(pTerm=pWC->a, j=pWC->nBase; j>0; j--, pTerm++){ 2672 Expr *pE, sEAlt; 2673 WhereTerm *pAlt; 2674 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2675 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 2676 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 2677 if( pTerm->leftCursor!=iCur ) continue; 2678 if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ) ) continue; 2679 pE = pTerm->pExpr; 2680 #ifdef WHERETRACE_ENABLED /* 0x800 */ 2681 if( sqlite3WhereTrace & 0x800 ){ 2682 sqlite3DebugPrintf("Coding transitive constraint:\n"); 2683 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2684 } 2685 #endif 2686 assert( !ExprHasProperty(pE, EP_FromJoin) ); 2687 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 2688 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 2689 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady, 2690 WO_EQ|WO_IN|WO_IS, 0); 2691 if( pAlt==0 ) continue; 2692 if( pAlt->wtFlags & (TERM_CODED) ) continue; 2693 if( (pAlt->eOperator & WO_IN) 2694 && ExprUseXSelect(pAlt->pExpr) 2695 && (pAlt->pExpr->x.pSelect->pEList->nExpr>1) 2696 ){ 2697 continue; 2698 } 2699 testcase( pAlt->eOperator & WO_EQ ); 2700 testcase( pAlt->eOperator & WO_IS ); 2701 testcase( pAlt->eOperator & WO_IN ); 2702 VdbeModuleComment((v, "begin transitive constraint")); 2703 sEAlt = *pAlt->pExpr; 2704 sEAlt.pLeft = pE->pLeft; 2705 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); 2706 pAlt->wtFlags |= TERM_CODED; 2707 } 2708 2709 /* For a RIGHT OUTER JOIN, record the fact that the current row has 2710 ** been matched at least once. 2711 */ 2712 if( pLevel->pRJ ){ 2713 Table *pTab; 2714 int nPk; 2715 int r; 2716 int jmp1 = 0; 2717 WhereRightJoin *pRJ = pLevel->pRJ; 2718 2719 /* pTab is the right-hand table of the RIGHT JOIN. Generate code that 2720 ** will record that the current row of that table has been matched at 2721 ** least once. This is accomplished by storing the PK for the row in 2722 ** both the iMatch index and the regBloom Bloom filter. 2723 */ 2724 pTab = pWInfo->pTabList->a[pLevel->iFrom].pTab; 2725 if( HasRowid(pTab) ){ 2726 r = sqlite3GetTempRange(pParse, 2); 2727 sqlite3ExprCodeGetColumnOfTable(v, pTab, pLevel->iTabCur, -1, r+1); 2728 nPk = 1; 2729 }else{ 2730 int iPk; 2731 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2732 nPk = pPk->nKeyCol; 2733 r = sqlite3GetTempRange(pParse, nPk+1); 2734 for(iPk=0; iPk<nPk; iPk++){ 2735 int iCol = pPk->aiColumn[iPk]; 2736 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+1+iPk); 2737 } 2738 } 2739 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, 0, r+1, nPk); 2740 VdbeCoverage(v); 2741 VdbeComment((v, "match against %s", pTab->zName)); 2742 sqlite3VdbeAddOp3(v, OP_MakeRecord, r+1, nPk, r); 2743 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pRJ->iMatch, r, r+1, nPk); 2744 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pRJ->regBloom, 0, r+1, nPk); 2745 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2746 sqlite3VdbeJumpHere(v, jmp1); 2747 sqlite3ReleaseTempRange(pParse, r, nPk+1); 2748 } 2749 2750 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2751 ** at least one row of the right table has matched the left table. 2752 */ 2753 if( pLevel->iLeftJoin ){ 2754 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2755 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2756 VdbeComment((v, "record LEFT JOIN hit")); 2757 for(pTerm=pWC->a, j=0; j<pWC->nBase; j++, pTerm++){ 2758 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2759 testcase( pTerm->wtFlags & TERM_CODED ); 2760 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2761 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2762 assert( pWInfo->untestedTerms ); 2763 continue; 2764 } 2765 if( pTabItem->fg.jointype & JT_LTORJ ) continue; 2766 assert( pTerm->pExpr ); 2767 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 2768 pTerm->wtFlags |= TERM_CODED; 2769 } 2770 } 2771 2772 if( pLevel->pRJ ){ 2773 /* Create a subroutine used to process all interior loops and code 2774 ** of the RIGHT JOIN. During normal operation, the subroutine will 2775 ** be in-line with the rest of the code. But at the end, a separate 2776 ** loop will run that invokes this subroutine for unmatched rows 2777 ** of pTab, with all tables to left begin set to NULL. 2778 */ 2779 WhereRightJoin *pRJ = pLevel->pRJ; 2780 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pRJ->regReturn); 2781 pRJ->addrSubrtn = sqlite3VdbeCurrentAddr(v); 2782 assert( pParse->withinRJSubrtn < 255 ); 2783 pParse->withinRJSubrtn++; 2784 } 2785 2786 #if WHERETRACE_ENABLED /* 0x20800 */ 2787 if( sqlite3WhereTrace & 0x20000 ){ 2788 sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n", 2789 iLevel); 2790 sqlite3WhereClausePrint(pWC); 2791 } 2792 if( sqlite3WhereTrace & 0x800 ){ 2793 sqlite3DebugPrintf("End Coding level %d: notReady=%llx\n", 2794 iLevel, (u64)pLevel->notReady); 2795 } 2796 #endif 2797 return pLevel->notReady; 2798 } 2799 2800 /* 2801 ** Generate the code for the loop that finds all non-matched terms 2802 ** for a RIGHT JOIN. 2803 */ 2804 SQLITE_NOINLINE void sqlite3WhereRightJoinLoop( 2805 WhereInfo *pWInfo, 2806 int iLevel, 2807 WhereLevel *pLevel 2808 ){ 2809 Parse *pParse = pWInfo->pParse; 2810 Vdbe *v = pParse->pVdbe; 2811 WhereRightJoin *pRJ = pLevel->pRJ; 2812 Expr *pSubWhere = 0; 2813 WhereClause *pWC = &pWInfo->sWC; 2814 WhereInfo *pSubWInfo; 2815 WhereLoop *pLoop = pLevel->pWLoop; 2816 SrcItem *pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 2817 SrcList sFrom; 2818 Bitmask mAll = 0; 2819 int k; 2820 2821 ExplainQueryPlan((pParse, 1, "RIGHT-JOIN %s", pTabItem->pTab->zName)); 2822 sqlite3VdbeNoJumpsOutsideSubrtn(v, pRJ->addrSubrtn, pRJ->endSubrtn, 2823 pRJ->regReturn); 2824 for(k=0; k<iLevel; k++){ 2825 int iIdxCur; 2826 mAll |= pWInfo->a[k].pWLoop->maskSelf; 2827 sqlite3VdbeAddOp1(v, OP_NullRow, pWInfo->a[k].iTabCur); 2828 iIdxCur = pWInfo->a[k].iIdxCur; 2829 if( iIdxCur ){ 2830 sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur); 2831 } 2832 } 2833 if( (pTabItem->fg.jointype & JT_LTORJ)==0 ){ 2834 mAll |= pLoop->maskSelf; 2835 for(k=0; k<pWC->nTerm; k++){ 2836 WhereTerm *pTerm = &pWC->a[k]; 2837 if( pTerm->wtFlags & TERM_VIRTUAL ) break; 2838 if( pTerm->prereqAll & ~mAll ) continue; 2839 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin|EP_InnerJoin) ) continue; 2840 pSubWhere = sqlite3ExprAnd(pParse, pSubWhere, 2841 sqlite3ExprDup(pParse->db, pTerm->pExpr, 0)); 2842 } 2843 } 2844 sFrom.nSrc = 1; 2845 sFrom.nAlloc = 1; 2846 memcpy(&sFrom.a[0], pTabItem, sizeof(SrcItem)); 2847 sFrom.a[0].fg.jointype = 0; 2848 assert( pParse->withinRJSubrtn < 100 ); 2849 pParse->withinRJSubrtn++; 2850 pSubWInfo = sqlite3WhereBegin(pParse, &sFrom, pSubWhere, 0, 0, 0, 2851 WHERE_RIGHT_JOIN, 0); 2852 if( pSubWInfo ){ 2853 int iCur = pLevel->iTabCur; 2854 int r = ++pParse->nMem; 2855 int nPk; 2856 int jmp; 2857 int addrCont = sqlite3WhereContinueLabel(pSubWInfo); 2858 Table *pTab = pTabItem->pTab; 2859 if( HasRowid(pTab) ){ 2860 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, r); 2861 nPk = 1; 2862 }else{ 2863 int iPk; 2864 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2865 nPk = pPk->nKeyCol; 2866 pParse->nMem += nPk - 1; 2867 for(iPk=0; iPk<nPk; iPk++){ 2868 int iCol = pPk->aiColumn[iPk]; 2869 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk); 2870 } 2871 } 2872 jmp = sqlite3VdbeAddOp4Int(v, OP_Filter, pRJ->regBloom, 0, r, nPk); 2873 VdbeCoverage(v); 2874 sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, addrCont, r, nPk); 2875 VdbeCoverage(v); 2876 sqlite3VdbeJumpHere(v, jmp); 2877 sqlite3VdbeAddOp2(v, OP_Gosub, pRJ->regReturn, pRJ->addrSubrtn); 2878 sqlite3WhereEnd(pSubWInfo); 2879 } 2880 sqlite3ExprDelete(pParse->db, pSubWhere); 2881 ExplainQueryPlanPop(pParse); 2882 assert( pParse->withinRJSubrtn>0 ); 2883 pParse->withinRJSubrtn--; 2884 } 2885