1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 25 /* 26 ** Return the name of the i-th column of the pIdx index. 27 */ 28 static const char *explainIndexColumnName(Index *pIdx, int i){ 29 i = pIdx->aiColumn[i]; 30 if( i==XN_EXPR ) return "<expr>"; 31 if( i==XN_ROWID ) return "rowid"; 32 return pIdx->pTable->aCol[i].zName; 33 } 34 35 /* 36 ** This routine is a helper for explainIndexRange() below 37 ** 38 ** pStr holds the text of an expression that we are building up one term 39 ** at a time. This routine adds a new term to the end of the expression. 40 ** Terms are separated by AND so add the "AND" text for second and subsequent 41 ** terms only. 42 */ 43 static void explainAppendTerm( 44 StrAccum *pStr, /* The text expression being built */ 45 Index *pIdx, /* Index to read column names from */ 46 int nTerm, /* Number of terms */ 47 int iTerm, /* Zero-based index of first term. */ 48 int bAnd, /* Non-zero to append " AND " */ 49 const char *zOp /* Name of the operator */ 50 ){ 51 int i; 52 53 assert( nTerm>=1 ); 54 if( bAnd ) sqlite3_str_append(pStr, " AND ", 5); 55 56 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 57 for(i=0; i<nTerm; i++){ 58 if( i ) sqlite3_str_append(pStr, ",", 1); 59 sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i)); 60 } 61 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 62 63 sqlite3_str_append(pStr, zOp, 1); 64 65 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 66 for(i=0; i<nTerm; i++){ 67 if( i ) sqlite3_str_append(pStr, ",", 1); 68 sqlite3_str_append(pStr, "?", 1); 69 } 70 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 71 } 72 73 /* 74 ** Argument pLevel describes a strategy for scanning table pTab. This 75 ** function appends text to pStr that describes the subset of table 76 ** rows scanned by the strategy in the form of an SQL expression. 77 ** 78 ** For example, if the query: 79 ** 80 ** SELECT * FROM t1 WHERE a=1 AND b>2; 81 ** 82 ** is run and there is an index on (a, b), then this function returns a 83 ** string similar to: 84 ** 85 ** "a=? AND b>?" 86 */ 87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 88 Index *pIndex = pLoop->u.btree.pIndex; 89 u16 nEq = pLoop->u.btree.nEq; 90 u16 nSkip = pLoop->nSkip; 91 int i, j; 92 93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 94 sqlite3_str_append(pStr, " (", 2); 95 for(i=0; i<nEq; i++){ 96 const char *z = explainIndexColumnName(pIndex, i); 97 if( i ) sqlite3_str_append(pStr, " AND ", 5); 98 sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); 99 } 100 101 j = i; 102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); 104 i = 1; 105 } 106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); 108 } 109 sqlite3_str_append(pStr, ")", 1); 110 } 111 112 /* 113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 116 ** is added to the output to describe the table scan strategy in pLevel. 117 ** 118 ** If an OP_Explain opcode is added to the VM, its address is returned. 119 ** Otherwise, if no OP_Explain is coded, zero is returned. 120 */ 121 int sqlite3WhereExplainOneScan( 122 Parse *pParse, /* Parse context */ 123 SrcList *pTabList, /* Table list this loop refers to */ 124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 125 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 126 ){ 127 int ret = 0; 128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 129 if( sqlite3ParseToplevel(pParse)->explain==2 ) 130 #endif 131 { 132 SrcItem *pItem = &pTabList->a[pLevel->iFrom]; 133 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 134 sqlite3 *db = pParse->db; /* Database handle */ 135 int isSearch; /* True for a SEARCH. False for SCAN. */ 136 WhereLoop *pLoop; /* The controlling WhereLoop object */ 137 u32 flags; /* Flags that describe this loop */ 138 char *zMsg; /* Text to add to EQP output */ 139 StrAccum str; /* EQP output string */ 140 char zBuf[100]; /* Initial space for EQP output string */ 141 142 pLoop = pLevel->pWLoop; 143 flags = pLoop->wsFlags; 144 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; 145 146 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 147 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 148 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 149 150 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 151 str.printfFlags = SQLITE_PRINTF_INTERNAL; 152 sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem); 153 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 154 const char *zFmt = 0; 155 Index *pIdx; 156 157 assert( pLoop->u.btree.pIndex!=0 ); 158 pIdx = pLoop->u.btree.pIndex; 159 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 160 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 161 if( isSearch ){ 162 zFmt = "PRIMARY KEY"; 163 } 164 }else if( flags & WHERE_PARTIALIDX ){ 165 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 166 }else if( flags & WHERE_AUTO_INDEX ){ 167 zFmt = "AUTOMATIC COVERING INDEX"; 168 }else if( flags & WHERE_IDX_ONLY ){ 169 zFmt = "COVERING INDEX %s"; 170 }else{ 171 zFmt = "INDEX %s"; 172 } 173 if( zFmt ){ 174 sqlite3_str_append(&str, " USING ", 7); 175 sqlite3_str_appendf(&str, zFmt, pIdx->zName); 176 explainIndexRange(&str, pLoop); 177 } 178 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 179 const char *zRangeOp; 180 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 181 zRangeOp = "="; 182 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 183 zRangeOp = ">? AND rowid<"; 184 }else if( flags&WHERE_BTM_LIMIT ){ 185 zRangeOp = ">"; 186 }else{ 187 assert( flags&WHERE_TOP_LIMIT); 188 zRangeOp = "<"; 189 } 190 sqlite3_str_appendf(&str, 191 " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp); 192 } 193 #ifndef SQLITE_OMIT_VIRTUALTABLE 194 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 195 sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s", 196 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 197 } 198 #endif 199 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 200 if( pLoop->nOut>=10 ){ 201 sqlite3_str_appendf(&str, " (~%llu rows)", 202 sqlite3LogEstToInt(pLoop->nOut)); 203 }else{ 204 sqlite3_str_append(&str, " (~1 row)", 9); 205 } 206 #endif 207 zMsg = sqlite3StrAccumFinish(&str); 208 sqlite3ExplainBreakpoint("",zMsg); 209 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), 210 pParse->addrExplain, 0, zMsg,P4_DYNAMIC); 211 } 212 return ret; 213 } 214 #endif /* SQLITE_OMIT_EXPLAIN */ 215 216 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 217 /* 218 ** Configure the VM passed as the first argument with an 219 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 220 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 221 ** clause that the scan reads data from. 222 ** 223 ** If argument addrExplain is not 0, it must be the address of an 224 ** OP_Explain instruction that describes the same loop. 225 */ 226 void sqlite3WhereAddScanStatus( 227 Vdbe *v, /* Vdbe to add scanstatus entry to */ 228 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 229 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 230 int addrExplain /* Address of OP_Explain (or 0) */ 231 ){ 232 const char *zObj = 0; 233 WhereLoop *pLoop = pLvl->pWLoop; 234 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 235 zObj = pLoop->u.btree.pIndex->zName; 236 }else{ 237 zObj = pSrclist->a[pLvl->iFrom].zName; 238 } 239 sqlite3VdbeScanStatus( 240 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 241 ); 242 } 243 #endif 244 245 246 /* 247 ** Disable a term in the WHERE clause. Except, do not disable the term 248 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 249 ** or USING clause of that join. 250 ** 251 ** Consider the term t2.z='ok' in the following queries: 252 ** 253 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 254 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 255 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 256 ** 257 ** The t2.z='ok' is disabled in the in (2) because it originates 258 ** in the ON clause. The term is disabled in (3) because it is not part 259 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 260 ** 261 ** Disabling a term causes that term to not be tested in the inner loop 262 ** of the join. Disabling is an optimization. When terms are satisfied 263 ** by indices, we disable them to prevent redundant tests in the inner 264 ** loop. We would get the correct results if nothing were ever disabled, 265 ** but joins might run a little slower. The trick is to disable as much 266 ** as we can without disabling too much. If we disabled in (1), we'd get 267 ** the wrong answer. See ticket #813. 268 ** 269 ** If all the children of a term are disabled, then that term is also 270 ** automatically disabled. In this way, terms get disabled if derived 271 ** virtual terms are tested first. For example: 272 ** 273 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 274 ** \___________/ \______/ \_____/ 275 ** parent child1 child2 276 ** 277 ** Only the parent term was in the original WHERE clause. The child1 278 ** and child2 terms were added by the LIKE optimization. If both of 279 ** the virtual child terms are valid, then testing of the parent can be 280 ** skipped. 281 ** 282 ** Usually the parent term is marked as TERM_CODED. But if the parent 283 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 284 ** The TERM_LIKECOND marking indicates that the term should be coded inside 285 ** a conditional such that is only evaluated on the second pass of a 286 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 287 */ 288 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 289 int nLoop = 0; 290 assert( pTerm!=0 ); 291 while( (pTerm->wtFlags & TERM_CODED)==0 292 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 293 && (pLevel->notReady & pTerm->prereqAll)==0 294 ){ 295 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 296 pTerm->wtFlags |= TERM_LIKECOND; 297 }else{ 298 pTerm->wtFlags |= TERM_CODED; 299 } 300 #ifdef WHERETRACE_ENABLED 301 if( sqlite3WhereTrace & 0x20000 ){ 302 sqlite3DebugPrintf("DISABLE-"); 303 sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a))); 304 } 305 #endif 306 if( pTerm->iParent<0 ) break; 307 pTerm = &pTerm->pWC->a[pTerm->iParent]; 308 assert( pTerm!=0 ); 309 pTerm->nChild--; 310 if( pTerm->nChild!=0 ) break; 311 nLoop++; 312 } 313 } 314 315 /* 316 ** Code an OP_Affinity opcode to apply the column affinity string zAff 317 ** to the n registers starting at base. 318 ** 319 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which 320 ** are no-ops) at the beginning and end of zAff are ignored. If all entries 321 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated. 322 ** 323 ** This routine makes its own copy of zAff so that the caller is free 324 ** to modify zAff after this routine returns. 325 */ 326 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 327 Vdbe *v = pParse->pVdbe; 328 if( zAff==0 ){ 329 assert( pParse->db->mallocFailed ); 330 return; 331 } 332 assert( v!=0 ); 333 334 /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE 335 ** entries at the beginning and end of the affinity string. 336 */ 337 assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB ); 338 while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){ 339 n--; 340 base++; 341 zAff++; 342 } 343 while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){ 344 n--; 345 } 346 347 /* Code the OP_Affinity opcode if there is anything left to do. */ 348 if( n>0 ){ 349 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 350 } 351 } 352 353 /* 354 ** Expression pRight, which is the RHS of a comparison operation, is 355 ** either a vector of n elements or, if n==1, a scalar expression. 356 ** Before the comparison operation, affinity zAff is to be applied 357 ** to the pRight values. This function modifies characters within the 358 ** affinity string to SQLITE_AFF_BLOB if either: 359 ** 360 ** * the comparison will be performed with no affinity, or 361 ** * the affinity change in zAff is guaranteed not to change the value. 362 */ 363 static void updateRangeAffinityStr( 364 Expr *pRight, /* RHS of comparison */ 365 int n, /* Number of vector elements in comparison */ 366 char *zAff /* Affinity string to modify */ 367 ){ 368 int i; 369 for(i=0; i<n; i++){ 370 Expr *p = sqlite3VectorFieldSubexpr(pRight, i); 371 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB 372 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) 373 ){ 374 zAff[i] = SQLITE_AFF_BLOB; 375 } 376 } 377 } 378 379 380 /* 381 ** pX is an expression of the form: (vector) IN (SELECT ...) 382 ** In other words, it is a vector IN operator with a SELECT clause on the 383 ** LHS. But not all terms in the vector are indexable and the terms might 384 ** not be in the correct order for indexing. 385 ** 386 ** This routine makes a copy of the input pX expression and then adjusts 387 ** the vector on the LHS with corresponding changes to the SELECT so that 388 ** the vector contains only index terms and those terms are in the correct 389 ** order. The modified IN expression is returned. The caller is responsible 390 ** for deleting the returned expression. 391 ** 392 ** Example: 393 ** 394 ** CREATE TABLE t1(a,b,c,d,e,f); 395 ** CREATE INDEX t1x1 ON t1(e,c); 396 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2) 397 ** \_______________________________________/ 398 ** The pX expression 399 ** 400 ** Since only columns e and c can be used with the index, in that order, 401 ** the modified IN expression that is returned will be: 402 ** 403 ** (e,c) IN (SELECT z,x FROM t2) 404 ** 405 ** The reduced pX is different from the original (obviously) and thus is 406 ** only used for indexing, to improve performance. The original unaltered 407 ** IN expression must also be run on each output row for correctness. 408 */ 409 static Expr *removeUnindexableInClauseTerms( 410 Parse *pParse, /* The parsing context */ 411 int iEq, /* Look at loop terms starting here */ 412 WhereLoop *pLoop, /* The current loop */ 413 Expr *pX /* The IN expression to be reduced */ 414 ){ 415 sqlite3 *db = pParse->db; 416 Expr *pNew; 417 pNew = sqlite3ExprDup(db, pX, 0); 418 if( db->mallocFailed==0 ){ 419 ExprList *pOrigRhs = pNew->x.pSelect->pEList; /* Original unmodified RHS */ 420 ExprList *pOrigLhs = pNew->pLeft->x.pList; /* Original unmodified LHS */ 421 ExprList *pRhs = 0; /* New RHS after modifications */ 422 ExprList *pLhs = 0; /* New LHS after mods */ 423 int i; /* Loop counter */ 424 Select *pSelect; /* Pointer to the SELECT on the RHS */ 425 426 for(i=iEq; i<pLoop->nLTerm; i++){ 427 if( pLoop->aLTerm[i]->pExpr==pX ){ 428 int iField = pLoop->aLTerm[i]->u.x.iField - 1; 429 if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */ 430 pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr); 431 pOrigRhs->a[iField].pExpr = 0; 432 assert( pOrigLhs->a[iField].pExpr!=0 ); 433 pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr); 434 pOrigLhs->a[iField].pExpr = 0; 435 } 436 } 437 sqlite3ExprListDelete(db, pOrigRhs); 438 sqlite3ExprListDelete(db, pOrigLhs); 439 pNew->pLeft->x.pList = pLhs; 440 pNew->x.pSelect->pEList = pRhs; 441 if( pLhs && pLhs->nExpr==1 ){ 442 /* Take care here not to generate a TK_VECTOR containing only a 443 ** single value. Since the parser never creates such a vector, some 444 ** of the subroutines do not handle this case. */ 445 Expr *p = pLhs->a[0].pExpr; 446 pLhs->a[0].pExpr = 0; 447 sqlite3ExprDelete(db, pNew->pLeft); 448 pNew->pLeft = p; 449 } 450 pSelect = pNew->x.pSelect; 451 if( pSelect->pOrderBy ){ 452 /* If the SELECT statement has an ORDER BY clause, zero the 453 ** iOrderByCol variables. These are set to non-zero when an 454 ** ORDER BY term exactly matches one of the terms of the 455 ** result-set. Since the result-set of the SELECT statement may 456 ** have been modified or reordered, these variables are no longer 457 ** set correctly. Since setting them is just an optimization, 458 ** it's easiest just to zero them here. */ 459 ExprList *pOrderBy = pSelect->pOrderBy; 460 for(i=0; i<pOrderBy->nExpr; i++){ 461 pOrderBy->a[i].u.x.iOrderByCol = 0; 462 } 463 } 464 465 #if 0 466 printf("For indexing, change the IN expr:\n"); 467 sqlite3TreeViewExpr(0, pX, 0); 468 printf("Into:\n"); 469 sqlite3TreeViewExpr(0, pNew, 0); 470 #endif 471 } 472 return pNew; 473 } 474 475 476 /* 477 ** Generate code for a single equality term of the WHERE clause. An equality 478 ** term can be either X=expr or X IN (...). pTerm is the term to be 479 ** coded. 480 ** 481 ** The current value for the constraint is left in a register, the index 482 ** of which is returned. An attempt is made store the result in iTarget but 483 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the 484 ** constraint is a TK_EQ or TK_IS, then the current value might be left in 485 ** some other register and it is the caller's responsibility to compensate. 486 ** 487 ** For a constraint of the form X=expr, the expression is evaluated in 488 ** straight-line code. For constraints of the form X IN (...) 489 ** this routine sets up a loop that will iterate over all values of X. 490 */ 491 static int codeEqualityTerm( 492 Parse *pParse, /* The parsing context */ 493 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 494 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 495 int iEq, /* Index of the equality term within this level */ 496 int bRev, /* True for reverse-order IN operations */ 497 int iTarget /* Attempt to leave results in this register */ 498 ){ 499 Expr *pX = pTerm->pExpr; 500 Vdbe *v = pParse->pVdbe; 501 int iReg; /* Register holding results */ 502 503 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); 504 assert( iTarget>0 ); 505 if( pX->op==TK_EQ || pX->op==TK_IS ){ 506 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 507 }else if( pX->op==TK_ISNULL ){ 508 iReg = iTarget; 509 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 510 #ifndef SQLITE_OMIT_SUBQUERY 511 }else{ 512 int eType = IN_INDEX_NOOP; 513 int iTab; 514 struct InLoop *pIn; 515 WhereLoop *pLoop = pLevel->pWLoop; 516 int i; 517 int nEq = 0; 518 int *aiMap = 0; 519 520 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 521 && pLoop->u.btree.pIndex!=0 522 && pLoop->u.btree.pIndex->aSortOrder[iEq] 523 ){ 524 testcase( iEq==0 ); 525 testcase( bRev ); 526 bRev = !bRev; 527 } 528 assert( pX->op==TK_IN ); 529 iReg = iTarget; 530 531 for(i=0; i<iEq; i++){ 532 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ 533 disableTerm(pLevel, pTerm); 534 return iTarget; 535 } 536 } 537 for(i=iEq;i<pLoop->nLTerm; i++){ 538 assert( pLoop->aLTerm[i]!=0 ); 539 if( pLoop->aLTerm[i]->pExpr==pX ) nEq++; 540 } 541 542 iTab = 0; 543 if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){ 544 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab); 545 }else{ 546 sqlite3 *db = pParse->db; 547 pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX); 548 549 if( !db->mallocFailed ){ 550 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq); 551 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab); 552 pTerm->pExpr->iTable = iTab; 553 } 554 sqlite3ExprDelete(db, pX); 555 pX = pTerm->pExpr; 556 } 557 558 if( eType==IN_INDEX_INDEX_DESC ){ 559 testcase( bRev ); 560 bRev = !bRev; 561 } 562 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 563 VdbeCoverageIf(v, bRev); 564 VdbeCoverageIf(v, !bRev); 565 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 566 567 pLoop->wsFlags |= WHERE_IN_ABLE; 568 if( pLevel->u.in.nIn==0 ){ 569 pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 570 } 571 if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){ 572 pLoop->wsFlags |= WHERE_IN_EARLYOUT; 573 } 574 575 i = pLevel->u.in.nIn; 576 pLevel->u.in.nIn += nEq; 577 pLevel->u.in.aInLoop = 578 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 579 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 580 pIn = pLevel->u.in.aInLoop; 581 if( pIn ){ 582 int iMap = 0; /* Index in aiMap[] */ 583 pIn += i; 584 for(i=iEq;i<pLoop->nLTerm; i++){ 585 if( pLoop->aLTerm[i]->pExpr==pX ){ 586 int iOut = iReg + i - iEq; 587 if( eType==IN_INDEX_ROWID ){ 588 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); 589 }else{ 590 int iCol = aiMap ? aiMap[iMap++] : 0; 591 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); 592 } 593 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); 594 if( i==iEq ){ 595 pIn->iCur = iTab; 596 pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next; 597 if( iEq>0 ){ 598 pIn->iBase = iReg - i; 599 pIn->nPrefix = i; 600 }else{ 601 pIn->nPrefix = 0; 602 } 603 }else{ 604 pIn->eEndLoopOp = OP_Noop; 605 } 606 pIn++; 607 } 608 } 609 testcase( iEq>0 610 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 611 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ); 612 if( iEq>0 613 && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0 614 ){ 615 sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq); 616 } 617 }else{ 618 pLevel->u.in.nIn = 0; 619 } 620 sqlite3DbFree(pParse->db, aiMap); 621 #endif 622 } 623 624 /* As an optimization, try to disable the WHERE clause term that is 625 ** driving the index as it will always be true. The correct answer is 626 ** obtained regardless, but we might get the answer with fewer CPU cycles 627 ** by omitting the term. 628 ** 629 ** But do not disable the term unless we are certain that the term is 630 ** not a transitive constraint. For an example of where that does not 631 ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04) 632 */ 633 if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0 634 || (pTerm->eOperator & WO_EQUIV)==0 635 ){ 636 disableTerm(pLevel, pTerm); 637 } 638 639 return iReg; 640 } 641 642 /* 643 ** Generate code that will evaluate all == and IN constraints for an 644 ** index scan. 645 ** 646 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 647 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 648 ** The index has as many as three equality constraints, but in this 649 ** example, the third "c" value is an inequality. So only two 650 ** constraints are coded. This routine will generate code to evaluate 651 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 652 ** in consecutive registers and the index of the first register is returned. 653 ** 654 ** In the example above nEq==2. But this subroutine works for any value 655 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 656 ** The only thing it does is allocate the pLevel->iMem memory cell and 657 ** compute the affinity string. 658 ** 659 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 660 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 661 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 662 ** occurs after the nEq quality constraints. 663 ** 664 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 665 ** the index of the first memory cell in that range. The code that 666 ** calls this routine will use that memory range to store keys for 667 ** start and termination conditions of the loop. 668 ** key value of the loop. If one or more IN operators appear, then 669 ** this routine allocates an additional nEq memory cells for internal 670 ** use. 671 ** 672 ** Before returning, *pzAff is set to point to a buffer containing a 673 ** copy of the column affinity string of the index allocated using 674 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 675 ** with equality constraints that use BLOB or NONE affinity are set to 676 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 677 ** 678 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 679 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 680 ** 681 ** In the example above, the index on t1(a) has TEXT affinity. But since 682 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 683 ** no conversion should be attempted before using a t2.b value as part of 684 ** a key to search the index. Hence the first byte in the returned affinity 685 ** string in this example would be set to SQLITE_AFF_BLOB. 686 */ 687 static int codeAllEqualityTerms( 688 Parse *pParse, /* Parsing context */ 689 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 690 int bRev, /* Reverse the order of IN operators */ 691 int nExtraReg, /* Number of extra registers to allocate */ 692 char **pzAff /* OUT: Set to point to affinity string */ 693 ){ 694 u16 nEq; /* The number of == or IN constraints to code */ 695 u16 nSkip; /* Number of left-most columns to skip */ 696 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 697 Index *pIdx; /* The index being used for this loop */ 698 WhereTerm *pTerm; /* A single constraint term */ 699 WhereLoop *pLoop; /* The WhereLoop object */ 700 int j; /* Loop counter */ 701 int regBase; /* Base register */ 702 int nReg; /* Number of registers to allocate */ 703 char *zAff; /* Affinity string to return */ 704 705 /* This module is only called on query plans that use an index. */ 706 pLoop = pLevel->pWLoop; 707 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 708 nEq = pLoop->u.btree.nEq; 709 nSkip = pLoop->nSkip; 710 pIdx = pLoop->u.btree.pIndex; 711 assert( pIdx!=0 ); 712 713 /* Figure out how many memory cells we will need then allocate them. 714 */ 715 regBase = pParse->nMem + 1; 716 nReg = pLoop->u.btree.nEq + nExtraReg; 717 pParse->nMem += nReg; 718 719 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 720 assert( zAff!=0 || pParse->db->mallocFailed ); 721 722 if( nSkip ){ 723 int iIdxCur = pLevel->iIdxCur; 724 sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1); 725 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 726 VdbeCoverageIf(v, bRev==0); 727 VdbeCoverageIf(v, bRev!=0); 728 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 729 j = sqlite3VdbeAddOp0(v, OP_Goto); 730 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 731 iIdxCur, 0, regBase, nSkip); 732 VdbeCoverageIf(v, bRev==0); 733 VdbeCoverageIf(v, bRev!=0); 734 sqlite3VdbeJumpHere(v, j); 735 for(j=0; j<nSkip; j++){ 736 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 737 testcase( pIdx->aiColumn[j]==XN_EXPR ); 738 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 739 } 740 } 741 742 /* Evaluate the equality constraints 743 */ 744 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 745 for(j=nSkip; j<nEq; j++){ 746 int r1; 747 pTerm = pLoop->aLTerm[j]; 748 assert( pTerm!=0 ); 749 /* The following testcase is true for indices with redundant columns. 750 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 751 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 752 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 753 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 754 if( r1!=regBase+j ){ 755 if( nReg==1 ){ 756 sqlite3ReleaseTempReg(pParse, regBase); 757 regBase = r1; 758 }else{ 759 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 760 } 761 } 762 if( pTerm->eOperator & WO_IN ){ 763 if( pTerm->pExpr->flags & EP_xIsSelect ){ 764 /* No affinity ever needs to be (or should be) applied to a value 765 ** from the RHS of an "? IN (SELECT ...)" expression. The 766 ** sqlite3FindInIndex() routine has already ensured that the 767 ** affinity of the comparison has been applied to the value. */ 768 if( zAff ) zAff[j] = SQLITE_AFF_BLOB; 769 } 770 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ 771 Expr *pRight = pTerm->pExpr->pRight; 772 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 773 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 774 VdbeCoverage(v); 775 } 776 if( pParse->db->mallocFailed==0 ){ 777 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 778 zAff[j] = SQLITE_AFF_BLOB; 779 } 780 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 781 zAff[j] = SQLITE_AFF_BLOB; 782 } 783 } 784 } 785 } 786 *pzAff = zAff; 787 return regBase; 788 } 789 790 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 791 /* 792 ** If the most recently coded instruction is a constant range constraint 793 ** (a string literal) that originated from the LIKE optimization, then 794 ** set P3 and P5 on the OP_String opcode so that the string will be cast 795 ** to a BLOB at appropriate times. 796 ** 797 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 798 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 799 ** scan loop run twice, once for strings and a second time for BLOBs. 800 ** The OP_String opcodes on the second pass convert the upper and lower 801 ** bound string constants to blobs. This routine makes the necessary changes 802 ** to the OP_String opcodes for that to happen. 803 ** 804 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 805 ** only the one pass through the string space is required, so this routine 806 ** becomes a no-op. 807 */ 808 static void whereLikeOptimizationStringFixup( 809 Vdbe *v, /* prepared statement under construction */ 810 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 811 WhereTerm *pTerm /* The upper or lower bound just coded */ 812 ){ 813 if( pTerm->wtFlags & TERM_LIKEOPT ){ 814 VdbeOp *pOp; 815 assert( pLevel->iLikeRepCntr>0 ); 816 pOp = sqlite3VdbeGetOp(v, -1); 817 assert( pOp!=0 ); 818 assert( pOp->opcode==OP_String8 819 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 820 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ 821 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ 822 } 823 } 824 #else 825 # define whereLikeOptimizationStringFixup(A,B,C) 826 #endif 827 828 #ifdef SQLITE_ENABLE_CURSOR_HINTS 829 /* 830 ** Information is passed from codeCursorHint() down to individual nodes of 831 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 832 ** structure. 833 */ 834 struct CCurHint { 835 int iTabCur; /* Cursor for the main table */ 836 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 837 Index *pIdx; /* The index used to access the table */ 838 }; 839 840 /* 841 ** This function is called for every node of an expression that is a candidate 842 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 843 ** the table CCurHint.iTabCur, verify that the same column can be 844 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 845 */ 846 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 847 struct CCurHint *pHint = pWalker->u.pCCurHint; 848 assert( pHint->pIdx!=0 ); 849 if( pExpr->op==TK_COLUMN 850 && pExpr->iTable==pHint->iTabCur 851 && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0 852 ){ 853 pWalker->eCode = 1; 854 } 855 return WRC_Continue; 856 } 857 858 /* 859 ** Test whether or not expression pExpr, which was part of a WHERE clause, 860 ** should be included in the cursor-hint for a table that is on the rhs 861 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the 862 ** expression is not suitable. 863 ** 864 ** An expression is unsuitable if it might evaluate to non NULL even if 865 ** a TK_COLUMN node that does affect the value of the expression is set 866 ** to NULL. For example: 867 ** 868 ** col IS NULL 869 ** col IS NOT NULL 870 ** coalesce(col, 1) 871 ** CASE WHEN col THEN 0 ELSE 1 END 872 */ 873 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ 874 if( pExpr->op==TK_IS 875 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT 876 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE 877 ){ 878 pWalker->eCode = 1; 879 }else if( pExpr->op==TK_FUNCTION ){ 880 int d1; 881 char d2[4]; 882 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ 883 pWalker->eCode = 1; 884 } 885 } 886 887 return WRC_Continue; 888 } 889 890 891 /* 892 ** This function is called on every node of an expression tree used as an 893 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 894 ** that accesses any table other than the one identified by 895 ** CCurHint.iTabCur, then do the following: 896 ** 897 ** 1) allocate a register and code an OP_Column instruction to read 898 ** the specified column into the new register, and 899 ** 900 ** 2) transform the expression node to a TK_REGISTER node that reads 901 ** from the newly populated register. 902 ** 903 ** Also, if the node is a TK_COLUMN that does access the table idenified 904 ** by pCCurHint.iTabCur, and an index is being used (which we will 905 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 906 ** an access of the index rather than the original table. 907 */ 908 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 909 int rc = WRC_Continue; 910 struct CCurHint *pHint = pWalker->u.pCCurHint; 911 if( pExpr->op==TK_COLUMN ){ 912 if( pExpr->iTable!=pHint->iTabCur ){ 913 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 914 sqlite3ExprCode(pWalker->pParse, pExpr, reg); 915 pExpr->op = TK_REGISTER; 916 pExpr->iTable = reg; 917 }else if( pHint->pIdx!=0 ){ 918 pExpr->iTable = pHint->iIdxCur; 919 pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn); 920 assert( pExpr->iColumn>=0 ); 921 } 922 }else if( pExpr->op==TK_AGG_FUNCTION ){ 923 /* An aggregate function in the WHERE clause of a query means this must 924 ** be a correlated sub-query, and expression pExpr is an aggregate from 925 ** the parent context. Do not walk the function arguments in this case. 926 ** 927 ** todo: It should be possible to replace this node with a TK_REGISTER 928 ** expression, as the result of the expression must be stored in a 929 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 930 rc = WRC_Prune; 931 } 932 return rc; 933 } 934 935 /* 936 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 937 */ 938 static void codeCursorHint( 939 SrcItem *pTabItem, /* FROM clause item */ 940 WhereInfo *pWInfo, /* The where clause */ 941 WhereLevel *pLevel, /* Which loop to provide hints for */ 942 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 943 ){ 944 Parse *pParse = pWInfo->pParse; 945 sqlite3 *db = pParse->db; 946 Vdbe *v = pParse->pVdbe; 947 Expr *pExpr = 0; 948 WhereLoop *pLoop = pLevel->pWLoop; 949 int iCur; 950 WhereClause *pWC; 951 WhereTerm *pTerm; 952 int i, j; 953 struct CCurHint sHint; 954 Walker sWalker; 955 956 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 957 iCur = pLevel->iTabCur; 958 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 959 sHint.iTabCur = iCur; 960 sHint.iIdxCur = pLevel->iIdxCur; 961 sHint.pIdx = pLoop->u.btree.pIndex; 962 memset(&sWalker, 0, sizeof(sWalker)); 963 sWalker.pParse = pParse; 964 sWalker.u.pCCurHint = &sHint; 965 pWC = &pWInfo->sWC; 966 for(i=0; i<pWC->nTerm; i++){ 967 pTerm = &pWC->a[i]; 968 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 969 if( pTerm->prereqAll & pLevel->notReady ) continue; 970 971 /* Any terms specified as part of the ON(...) clause for any LEFT 972 ** JOIN for which the current table is not the rhs are omitted 973 ** from the cursor-hint. 974 ** 975 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms 976 ** that were specified as part of the WHERE clause must be excluded. 977 ** This is to address the following: 978 ** 979 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; 980 ** 981 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its 982 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is 983 ** pushed down to the cursor, this row is filtered out, causing 984 ** SQLite to synthesize a row of NULL values. Which does match the 985 ** WHERE clause, and so the query returns a row. Which is incorrect. 986 ** 987 ** For the same reason, WHERE terms such as: 988 ** 989 ** WHERE 1 = (t2.c IS NULL) 990 ** 991 ** are also excluded. See codeCursorHintIsOrFunction() for details. 992 */ 993 if( pTabItem->fg.jointype & JT_LEFT ){ 994 Expr *pExpr = pTerm->pExpr; 995 if( !ExprHasProperty(pExpr, EP_FromJoin) 996 || pExpr->iRightJoinTable!=pTabItem->iCursor 997 ){ 998 sWalker.eCode = 0; 999 sWalker.xExprCallback = codeCursorHintIsOrFunction; 1000 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 1001 if( sWalker.eCode ) continue; 1002 } 1003 }else{ 1004 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; 1005 } 1006 1007 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 1008 ** the cursor. These terms are not needed as hints for a pure range 1009 ** scan (that has no == terms) so omit them. */ 1010 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 1011 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 1012 if( j<pLoop->nLTerm ) continue; 1013 } 1014 1015 /* No subqueries or non-deterministic functions allowed */ 1016 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 1017 1018 /* For an index scan, make sure referenced columns are actually in 1019 ** the index. */ 1020 if( sHint.pIdx!=0 ){ 1021 sWalker.eCode = 0; 1022 sWalker.xExprCallback = codeCursorHintCheckExpr; 1023 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 1024 if( sWalker.eCode ) continue; 1025 } 1026 1027 /* If we survive all prior tests, that means this term is worth hinting */ 1028 pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 1029 } 1030 if( pExpr!=0 ){ 1031 sWalker.xExprCallback = codeCursorHintFixExpr; 1032 sqlite3WalkExpr(&sWalker, pExpr); 1033 sqlite3VdbeAddOp4(v, OP_CursorHint, 1034 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 1035 (const char*)pExpr, P4_EXPR); 1036 } 1037 } 1038 #else 1039 # define codeCursorHint(A,B,C,D) /* No-op */ 1040 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 1041 1042 /* 1043 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains 1044 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This 1045 ** function generates code to do a deferred seek of cursor iCur to the 1046 ** rowid stored in register iRowid. 1047 ** 1048 ** Normally, this is just: 1049 ** 1050 ** OP_DeferredSeek $iCur $iRowid 1051 ** 1052 ** However, if the scan currently being coded is a branch of an OR-loop and 1053 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek 1054 ** is set to iIdxCur and P4 is set to point to an array of integers 1055 ** containing one entry for each column of the table cursor iCur is open 1056 ** on. For each table column, if the column is the i'th column of the 1057 ** index, then the corresponding array entry is set to (i+1). If the column 1058 ** does not appear in the index at all, the array entry is set to 0. 1059 */ 1060 static void codeDeferredSeek( 1061 WhereInfo *pWInfo, /* Where clause context */ 1062 Index *pIdx, /* Index scan is using */ 1063 int iCur, /* Cursor for IPK b-tree */ 1064 int iIdxCur /* Index cursor */ 1065 ){ 1066 Parse *pParse = pWInfo->pParse; /* Parse context */ 1067 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ 1068 1069 assert( iIdxCur>0 ); 1070 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); 1071 1072 pWInfo->bDeferredSeek = 1; 1073 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur); 1074 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 1075 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) 1076 ){ 1077 int i; 1078 Table *pTab = pIdx->pTable; 1079 u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1)); 1080 if( ai ){ 1081 ai[0] = pTab->nCol; 1082 for(i=0; i<pIdx->nColumn-1; i++){ 1083 int x1, x2; 1084 assert( pIdx->aiColumn[i]<pTab->nCol ); 1085 x1 = pIdx->aiColumn[i]; 1086 x2 = sqlite3TableColumnToStorage(pTab, x1); 1087 testcase( x1!=x2 ); 1088 if( x1>=0 ) ai[x2+1] = i+1; 1089 } 1090 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); 1091 } 1092 } 1093 } 1094 1095 /* 1096 ** If the expression passed as the second argument is a vector, generate 1097 ** code to write the first nReg elements of the vector into an array 1098 ** of registers starting with iReg. 1099 ** 1100 ** If the expression is not a vector, then nReg must be passed 1. In 1101 ** this case, generate code to evaluate the expression and leave the 1102 ** result in register iReg. 1103 */ 1104 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ 1105 assert( nReg>0 ); 1106 if( p && sqlite3ExprIsVector(p) ){ 1107 #ifndef SQLITE_OMIT_SUBQUERY 1108 if( (p->flags & EP_xIsSelect) ){ 1109 Vdbe *v = pParse->pVdbe; 1110 int iSelect; 1111 assert( p->op==TK_SELECT ); 1112 iSelect = sqlite3CodeSubselect(pParse, p); 1113 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); 1114 }else 1115 #endif 1116 { 1117 int i; 1118 ExprList *pList = p->x.pList; 1119 assert( nReg<=pList->nExpr ); 1120 for(i=0; i<nReg; i++){ 1121 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i); 1122 } 1123 } 1124 }else{ 1125 assert( nReg==1 ); 1126 sqlite3ExprCode(pParse, p, iReg); 1127 } 1128 } 1129 1130 /* An instance of the IdxExprTrans object carries information about a 1131 ** mapping from an expression on table columns into a column in an index 1132 ** down through the Walker. 1133 */ 1134 typedef struct IdxExprTrans { 1135 Expr *pIdxExpr; /* The index expression */ 1136 int iTabCur; /* The cursor of the corresponding table */ 1137 int iIdxCur; /* The cursor for the index */ 1138 int iIdxCol; /* The column for the index */ 1139 int iTabCol; /* The column for the table */ 1140 WhereInfo *pWInfo; /* Complete WHERE clause information */ 1141 sqlite3 *db; /* Database connection (for malloc()) */ 1142 } IdxExprTrans; 1143 1144 /* 1145 ** Preserve pExpr on the WhereETrans list of the WhereInfo. 1146 */ 1147 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){ 1148 WhereExprMod *pNew; 1149 pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew)); 1150 if( pNew==0 ) return; 1151 pNew->pNext = pTrans->pWInfo->pExprMods; 1152 pTrans->pWInfo->pExprMods = pNew; 1153 pNew->pExpr = pExpr; 1154 memcpy(&pNew->orig, pExpr, sizeof(*pExpr)); 1155 } 1156 1157 /* The walker node callback used to transform matching expressions into 1158 ** a reference to an index column for an index on an expression. 1159 ** 1160 ** If pExpr matches, then transform it into a reference to the index column 1161 ** that contains the value of pExpr. 1162 */ 1163 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){ 1164 IdxExprTrans *pX = p->u.pIdxTrans; 1165 if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){ 1166 preserveExpr(pX, pExpr); 1167 pExpr->affExpr = sqlite3ExprAffinity(pExpr); 1168 pExpr->op = TK_COLUMN; 1169 pExpr->iTable = pX->iIdxCur; 1170 pExpr->iColumn = pX->iIdxCol; 1171 pExpr->y.pTab = 0; 1172 testcase( ExprHasProperty(pExpr, EP_Skip) ); 1173 testcase( ExprHasProperty(pExpr, EP_Unlikely) ); 1174 ExprClearProperty(pExpr, EP_Skip|EP_Unlikely); 1175 return WRC_Prune; 1176 }else{ 1177 return WRC_Continue; 1178 } 1179 } 1180 1181 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1182 /* A walker node callback that translates a column reference to a table 1183 ** into a corresponding column reference of an index. 1184 */ 1185 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){ 1186 if( pExpr->op==TK_COLUMN ){ 1187 IdxExprTrans *pX = p->u.pIdxTrans; 1188 if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){ 1189 assert( pExpr->y.pTab!=0 ); 1190 preserveExpr(pX, pExpr); 1191 pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn); 1192 pExpr->iTable = pX->iIdxCur; 1193 pExpr->iColumn = pX->iIdxCol; 1194 pExpr->y.pTab = 0; 1195 } 1196 } 1197 return WRC_Continue; 1198 } 1199 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1200 1201 /* 1202 ** For an indexes on expression X, locate every instance of expression X 1203 ** in pExpr and change that subexpression into a reference to the appropriate 1204 ** column of the index. 1205 ** 1206 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in 1207 ** the table into references to the corresponding (stored) column of the 1208 ** index. 1209 */ 1210 static void whereIndexExprTrans( 1211 Index *pIdx, /* The Index */ 1212 int iTabCur, /* Cursor of the table that is being indexed */ 1213 int iIdxCur, /* Cursor of the index itself */ 1214 WhereInfo *pWInfo /* Transform expressions in this WHERE clause */ 1215 ){ 1216 int iIdxCol; /* Column number of the index */ 1217 ExprList *aColExpr; /* Expressions that are indexed */ 1218 Table *pTab; 1219 Walker w; 1220 IdxExprTrans x; 1221 aColExpr = pIdx->aColExpr; 1222 if( aColExpr==0 && !pIdx->bHasVCol ){ 1223 /* The index does not reference any expressions or virtual columns 1224 ** so no translations are needed. */ 1225 return; 1226 } 1227 pTab = pIdx->pTable; 1228 memset(&w, 0, sizeof(w)); 1229 w.u.pIdxTrans = &x; 1230 x.iTabCur = iTabCur; 1231 x.iIdxCur = iIdxCur; 1232 x.pWInfo = pWInfo; 1233 x.db = pWInfo->pParse->db; 1234 for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){ 1235 i16 iRef = pIdx->aiColumn[iIdxCol]; 1236 if( iRef==XN_EXPR ){ 1237 assert( aColExpr->a[iIdxCol].pExpr!=0 ); 1238 x.pIdxExpr = aColExpr->a[iIdxCol].pExpr; 1239 if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue; 1240 w.xExprCallback = whereIndexExprTransNode; 1241 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1242 }else if( iRef>=0 1243 && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0 1244 && (pTab->aCol[iRef].zColl==0 1245 || sqlite3StrICmp(pTab->aCol[iRef].zColl, sqlite3StrBINARY)==0) 1246 ){ 1247 /* Check to see if there are direct references to generated columns 1248 ** that are contained in the index. Pulling the generated column 1249 ** out of the index is an optimization only - the main table is always 1250 ** available if the index cannot be used. To avoid unnecessary 1251 ** complication, omit this optimization if the collating sequence for 1252 ** the column is non-standard */ 1253 x.iTabCol = iRef; 1254 w.xExprCallback = whereIndexExprTransColumn; 1255 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1256 }else{ 1257 continue; 1258 } 1259 x.iIdxCol = iIdxCol; 1260 sqlite3WalkExpr(&w, pWInfo->pWhere); 1261 sqlite3WalkExprList(&w, pWInfo->pOrderBy); 1262 sqlite3WalkExprList(&w, pWInfo->pResultSet); 1263 } 1264 } 1265 1266 /* 1267 ** The pTruth expression is always true because it is the WHERE clause 1268 ** a partial index that is driving a query loop. Look through all of the 1269 ** WHERE clause terms on the query, and if any of those terms must be 1270 ** true because pTruth is true, then mark those WHERE clause terms as 1271 ** coded. 1272 */ 1273 static void whereApplyPartialIndexConstraints( 1274 Expr *pTruth, 1275 int iTabCur, 1276 WhereClause *pWC 1277 ){ 1278 int i; 1279 WhereTerm *pTerm; 1280 while( pTruth->op==TK_AND ){ 1281 whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC); 1282 pTruth = pTruth->pRight; 1283 } 1284 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1285 Expr *pExpr; 1286 if( pTerm->wtFlags & TERM_CODED ) continue; 1287 pExpr = pTerm->pExpr; 1288 if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){ 1289 pTerm->wtFlags |= TERM_CODED; 1290 } 1291 } 1292 } 1293 1294 /* 1295 ** Generate code for the start of the iLevel-th loop in the WHERE clause 1296 ** implementation described by pWInfo. 1297 */ 1298 Bitmask sqlite3WhereCodeOneLoopStart( 1299 Parse *pParse, /* Parsing context */ 1300 Vdbe *v, /* Prepared statement under construction */ 1301 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1302 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1303 WhereLevel *pLevel, /* The current level pointer */ 1304 Bitmask notReady /* Which tables are currently available */ 1305 ){ 1306 int j, k; /* Loop counters */ 1307 int iCur; /* The VDBE cursor for the table */ 1308 int addrNxt; /* Where to jump to continue with the next IN case */ 1309 int bRev; /* True if we need to scan in reverse order */ 1310 WhereLoop *pLoop; /* The WhereLoop object being coded */ 1311 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 1312 WhereTerm *pTerm; /* A WHERE clause term */ 1313 sqlite3 *db; /* Database connection */ 1314 SrcItem *pTabItem; /* FROM clause term being coded */ 1315 int addrBrk; /* Jump here to break out of the loop */ 1316 int addrHalt; /* addrBrk for the outermost loop */ 1317 int addrCont; /* Jump here to continue with next cycle */ 1318 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 1319 int iReleaseReg = 0; /* Temp register to free before returning */ 1320 Index *pIdx = 0; /* Index used by loop (if any) */ 1321 int iLoop; /* Iteration of constraint generator loop */ 1322 1323 pWC = &pWInfo->sWC; 1324 db = pParse->db; 1325 pLoop = pLevel->pWLoop; 1326 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1327 iCur = pTabItem->iCursor; 1328 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 1329 bRev = (pWInfo->revMask>>iLevel)&1; 1330 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 1331 #if WHERETRACE_ENABLED /* 0x20800 */ 1332 if( sqlite3WhereTrace & 0x800 ){ 1333 sqlite3DebugPrintf("Coding level %d of %d: notReady=%llx iFrom=%d\n", 1334 iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom); 1335 sqlite3WhereLoopPrint(pLoop, pWC); 1336 } 1337 if( sqlite3WhereTrace & 0x20000 ){ 1338 if( iLevel==0 ){ 1339 sqlite3DebugPrintf("WHERE clause being coded:\n"); 1340 sqlite3TreeViewExpr(0, pWInfo->pWhere, 0); 1341 } 1342 sqlite3DebugPrintf("All WHERE-clause terms before coding:\n"); 1343 sqlite3WhereClausePrint(pWC); 1344 } 1345 #endif 1346 1347 /* Create labels for the "break" and "continue" instructions 1348 ** for the current loop. Jump to addrBrk to break out of a loop. 1349 ** Jump to cont to go immediately to the next iteration of the 1350 ** loop. 1351 ** 1352 ** When there is an IN operator, we also have a "addrNxt" label that 1353 ** means to continue with the next IN value combination. When 1354 ** there are no IN operators in the constraints, the "addrNxt" label 1355 ** is the same as "addrBrk". 1356 */ 1357 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 1358 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse); 1359 1360 /* If this is the right table of a LEFT OUTER JOIN, allocate and 1361 ** initialize a memory cell that records if this table matches any 1362 ** row of the left table of the join. 1363 */ 1364 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 1365 || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0 1366 ); 1367 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 1368 pLevel->iLeftJoin = ++pParse->nMem; 1369 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 1370 VdbeComment((v, "init LEFT JOIN no-match flag")); 1371 } 1372 1373 /* Compute a safe address to jump to if we discover that the table for 1374 ** this loop is empty and can never contribute content. */ 1375 for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){} 1376 addrHalt = pWInfo->a[j].addrBrk; 1377 1378 /* Special case of a FROM clause subquery implemented as a co-routine */ 1379 if( pTabItem->fg.viaCoroutine ){ 1380 int regYield = pTabItem->regReturn; 1381 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 1382 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 1383 VdbeCoverage(v); 1384 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 1385 pLevel->op = OP_Goto; 1386 }else 1387 1388 #ifndef SQLITE_OMIT_VIRTUALTABLE 1389 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 1390 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 1391 ** to access the data. 1392 */ 1393 int iReg; /* P3 Value for OP_VFilter */ 1394 int addrNotFound; 1395 int nConstraint = pLoop->nLTerm; 1396 int iIn; /* Counter for IN constraints */ 1397 1398 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 1399 addrNotFound = pLevel->addrBrk; 1400 for(j=0; j<nConstraint; j++){ 1401 int iTarget = iReg+j+2; 1402 pTerm = pLoop->aLTerm[j]; 1403 if( NEVER(pTerm==0) ) continue; 1404 if( pTerm->eOperator & WO_IN ){ 1405 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 1406 addrNotFound = pLevel->addrNxt; 1407 }else{ 1408 Expr *pRight = pTerm->pExpr->pRight; 1409 codeExprOrVector(pParse, pRight, iTarget, 1); 1410 } 1411 } 1412 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 1413 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 1414 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 1415 pLoop->u.vtab.idxStr, 1416 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); 1417 VdbeCoverage(v); 1418 pLoop->u.vtab.needFree = 0; 1419 /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed 1420 ** the u.vtab.idxStr. NULL it out to prevent a use-after-free */ 1421 if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0; 1422 pLevel->p1 = iCur; 1423 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 1424 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1425 iIn = pLevel->u.in.nIn; 1426 for(j=nConstraint-1; j>=0; j--){ 1427 pTerm = pLoop->aLTerm[j]; 1428 if( (pTerm->eOperator & WO_IN)!=0 ) iIn--; 1429 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ 1430 disableTerm(pLevel, pTerm); 1431 }else if( (pTerm->eOperator & WO_IN)!=0 1432 && sqlite3ExprVectorSize(pTerm->pExpr->pLeft)==1 1433 ){ 1434 Expr *pCompare; /* The comparison operator */ 1435 Expr *pRight; /* RHS of the comparison */ 1436 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ 1437 1438 /* Reload the constraint value into reg[iReg+j+2]. The same value 1439 ** was loaded into the same register prior to the OP_VFilter, but 1440 ** the xFilter implementation might have changed the datatype or 1441 ** encoding of the value in the register, so it *must* be reloaded. */ 1442 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed ); 1443 if( !db->mallocFailed ){ 1444 assert( iIn>=0 && iIn<pLevel->u.in.nIn ); 1445 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop); 1446 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid ); 1447 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 ); 1448 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 ); 1449 testcase( pOp->opcode==OP_Rowid ); 1450 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); 1451 } 1452 1453 /* Generate code that will continue to the next row if 1454 ** the IN constraint is not satisfied */ 1455 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); 1456 assert( pCompare!=0 || db->mallocFailed ); 1457 if( pCompare ){ 1458 pCompare->pLeft = pTerm->pExpr->pLeft; 1459 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); 1460 if( pRight ){ 1461 pRight->iTable = iReg+j+2; 1462 sqlite3ExprIfFalse( 1463 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL 1464 ); 1465 } 1466 pCompare->pLeft = 0; 1467 sqlite3ExprDelete(db, pCompare); 1468 } 1469 } 1470 } 1471 assert( iIn==0 || db->mallocFailed ); 1472 /* These registers need to be preserved in case there is an IN operator 1473 ** loop. So we could deallocate the registers here (and potentially 1474 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems 1475 ** simpler and safer to simply not reuse the registers. 1476 ** 1477 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 1478 */ 1479 }else 1480 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1481 1482 if( (pLoop->wsFlags & WHERE_IPK)!=0 1483 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 1484 ){ 1485 /* Case 2: We can directly reference a single row using an 1486 ** equality comparison against the ROWID field. Or 1487 ** we reference multiple rows using a "rowid IN (...)" 1488 ** construct. 1489 */ 1490 assert( pLoop->u.btree.nEq==1 ); 1491 pTerm = pLoop->aLTerm[0]; 1492 assert( pTerm!=0 ); 1493 assert( pTerm->pExpr!=0 ); 1494 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1495 iReleaseReg = ++pParse->nMem; 1496 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 1497 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 1498 addrNxt = pLevel->addrNxt; 1499 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); 1500 VdbeCoverage(v); 1501 pLevel->op = OP_Noop; 1502 if( (pTerm->prereqAll & pLevel->notReady)==0 ){ 1503 pTerm->wtFlags |= TERM_CODED; 1504 } 1505 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 1506 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 1507 ){ 1508 /* Case 3: We have an inequality comparison against the ROWID field. 1509 */ 1510 int testOp = OP_Noop; 1511 int start; 1512 int memEndValue = 0; 1513 WhereTerm *pStart, *pEnd; 1514 1515 j = 0; 1516 pStart = pEnd = 0; 1517 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 1518 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 1519 assert( pStart!=0 || pEnd!=0 ); 1520 if( bRev ){ 1521 pTerm = pStart; 1522 pStart = pEnd; 1523 pEnd = pTerm; 1524 } 1525 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); 1526 if( pStart ){ 1527 Expr *pX; /* The expression that defines the start bound */ 1528 int r1, rTemp; /* Registers for holding the start boundary */ 1529 int op; /* Cursor seek operation */ 1530 1531 /* The following constant maps TK_xx codes into corresponding 1532 ** seek opcodes. It depends on a particular ordering of TK_xx 1533 */ 1534 const u8 aMoveOp[] = { 1535 /* TK_GT */ OP_SeekGT, 1536 /* TK_LE */ OP_SeekLE, 1537 /* TK_LT */ OP_SeekLT, 1538 /* TK_GE */ OP_SeekGE 1539 }; 1540 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 1541 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 1542 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 1543 1544 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 1545 testcase( pStart->wtFlags & TERM_VIRTUAL ); 1546 pX = pStart->pExpr; 1547 assert( pX!=0 ); 1548 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 1549 if( sqlite3ExprIsVector(pX->pRight) ){ 1550 r1 = rTemp = sqlite3GetTempReg(pParse); 1551 codeExprOrVector(pParse, pX->pRight, r1, 1); 1552 testcase( pX->op==TK_GT ); 1553 testcase( pX->op==TK_GE ); 1554 testcase( pX->op==TK_LT ); 1555 testcase( pX->op==TK_LE ); 1556 op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1]; 1557 assert( pX->op!=TK_GT || op==OP_SeekGE ); 1558 assert( pX->op!=TK_GE || op==OP_SeekGE ); 1559 assert( pX->op!=TK_LT || op==OP_SeekLE ); 1560 assert( pX->op!=TK_LE || op==OP_SeekLE ); 1561 }else{ 1562 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 1563 disableTerm(pLevel, pStart); 1564 op = aMoveOp[(pX->op - TK_GT)]; 1565 } 1566 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); 1567 VdbeComment((v, "pk")); 1568 VdbeCoverageIf(v, pX->op==TK_GT); 1569 VdbeCoverageIf(v, pX->op==TK_LE); 1570 VdbeCoverageIf(v, pX->op==TK_LT); 1571 VdbeCoverageIf(v, pX->op==TK_GE); 1572 sqlite3ReleaseTempReg(pParse, rTemp); 1573 }else{ 1574 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt); 1575 VdbeCoverageIf(v, bRev==0); 1576 VdbeCoverageIf(v, bRev!=0); 1577 } 1578 if( pEnd ){ 1579 Expr *pX; 1580 pX = pEnd->pExpr; 1581 assert( pX!=0 ); 1582 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 1583 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 1584 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 1585 memEndValue = ++pParse->nMem; 1586 codeExprOrVector(pParse, pX->pRight, memEndValue, 1); 1587 if( 0==sqlite3ExprIsVector(pX->pRight) 1588 && (pX->op==TK_LT || pX->op==TK_GT) 1589 ){ 1590 testOp = bRev ? OP_Le : OP_Ge; 1591 }else{ 1592 testOp = bRev ? OP_Lt : OP_Gt; 1593 } 1594 if( 0==sqlite3ExprIsVector(pX->pRight) ){ 1595 disableTerm(pLevel, pEnd); 1596 } 1597 } 1598 start = sqlite3VdbeCurrentAddr(v); 1599 pLevel->op = bRev ? OP_Prev : OP_Next; 1600 pLevel->p1 = iCur; 1601 pLevel->p2 = start; 1602 assert( pLevel->p5==0 ); 1603 if( testOp!=OP_Noop ){ 1604 iRowidReg = ++pParse->nMem; 1605 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 1606 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 1607 VdbeCoverageIf(v, testOp==OP_Le); 1608 VdbeCoverageIf(v, testOp==OP_Lt); 1609 VdbeCoverageIf(v, testOp==OP_Ge); 1610 VdbeCoverageIf(v, testOp==OP_Gt); 1611 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 1612 } 1613 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 1614 /* Case 4: A scan using an index. 1615 ** 1616 ** The WHERE clause may contain zero or more equality 1617 ** terms ("==" or "IN" operators) that refer to the N 1618 ** left-most columns of the index. It may also contain 1619 ** inequality constraints (>, <, >= or <=) on the indexed 1620 ** column that immediately follows the N equalities. Only 1621 ** the right-most column can be an inequality - the rest must 1622 ** use the "==" and "IN" operators. For example, if the 1623 ** index is on (x,y,z), then the following clauses are all 1624 ** optimized: 1625 ** 1626 ** x=5 1627 ** x=5 AND y=10 1628 ** x=5 AND y<10 1629 ** x=5 AND y>5 AND y<10 1630 ** x=5 AND y=5 AND z<=10 1631 ** 1632 ** The z<10 term of the following cannot be used, only 1633 ** the x=5 term: 1634 ** 1635 ** x=5 AND z<10 1636 ** 1637 ** N may be zero if there are inequality constraints. 1638 ** If there are no inequality constraints, then N is at 1639 ** least one. 1640 ** 1641 ** This case is also used when there are no WHERE clause 1642 ** constraints but an index is selected anyway, in order 1643 ** to force the output order to conform to an ORDER BY. 1644 */ 1645 static const u8 aStartOp[] = { 1646 0, 1647 0, 1648 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1649 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1650 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1651 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1652 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1653 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1654 }; 1655 static const u8 aEndOp[] = { 1656 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1657 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1658 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1659 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1660 }; 1661 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1662 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ 1663 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ 1664 int regBase; /* Base register holding constraint values */ 1665 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1666 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1667 int startEq; /* True if range start uses ==, >= or <= */ 1668 int endEq; /* True if range end uses ==, >= or <= */ 1669 int start_constraints; /* Start of range is constrained */ 1670 int nConstraint; /* Number of constraint terms */ 1671 int iIdxCur; /* The VDBE cursor for the index */ 1672 int nExtraReg = 0; /* Number of extra registers needed */ 1673 int op; /* Instruction opcode */ 1674 char *zStartAff; /* Affinity for start of range constraint */ 1675 char *zEndAff = 0; /* Affinity for end of range constraint */ 1676 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1677 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1678 int omitTable; /* True if we use the index only */ 1679 int regBignull = 0; /* big-null flag register */ 1680 int addrSeekScan = 0; /* Opcode of the OP_SeekScan, if any */ 1681 1682 pIdx = pLoop->u.btree.pIndex; 1683 iIdxCur = pLevel->iIdxCur; 1684 assert( nEq>=pLoop->nSkip ); 1685 1686 /* Find any inequality constraint terms for the start and end 1687 ** of the range. 1688 */ 1689 j = nEq; 1690 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1691 pRangeStart = pLoop->aLTerm[j++]; 1692 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); 1693 /* Like optimization range constraints always occur in pairs */ 1694 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1695 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1696 } 1697 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1698 pRangeEnd = pLoop->aLTerm[j++]; 1699 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); 1700 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1701 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1702 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1703 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1704 pLevel->iLikeRepCntr = (u32)++pParse->nMem; 1705 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); 1706 VdbeComment((v, "LIKE loop counter")); 1707 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1708 /* iLikeRepCntr actually stores 2x the counter register number. The 1709 ** bottom bit indicates whether the search order is ASC or DESC. */ 1710 testcase( bRev ); 1711 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1712 assert( (bRev & ~1)==0 ); 1713 pLevel->iLikeRepCntr <<=1; 1714 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); 1715 } 1716 #endif 1717 if( pRangeStart==0 ){ 1718 j = pIdx->aiColumn[nEq]; 1719 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){ 1720 bSeekPastNull = 1; 1721 } 1722 } 1723 } 1724 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1725 1726 /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses 1727 ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS 1728 ** FIRST). In both cases separate ordered scans are made of those 1729 ** index entries for which the column is null and for those for which 1730 ** it is not. For an ASC sort, the non-NULL entries are scanned first. 1731 ** For DESC, NULL entries are scanned first. 1732 */ 1733 if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0 1734 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0 1735 ){ 1736 assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 ); 1737 assert( pRangeEnd==0 && pRangeStart==0 ); 1738 testcase( pLoop->nSkip>0 ); 1739 nExtraReg = 1; 1740 bSeekPastNull = 1; 1741 pLevel->regBignull = regBignull = ++pParse->nMem; 1742 if( pLevel->iLeftJoin ){ 1743 sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull); 1744 } 1745 pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse); 1746 } 1747 1748 /* If we are doing a reverse order scan on an ascending index, or 1749 ** a forward order scan on a descending index, interchange the 1750 ** start and end terms (pRangeStart and pRangeEnd). 1751 */ 1752 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) 1753 || (bRev && pIdx->nKeyCol==nEq) 1754 ){ 1755 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1756 SWAP(u8, bSeekPastNull, bStopAtNull); 1757 SWAP(u8, nBtm, nTop); 1758 } 1759 1760 if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){ 1761 /* In case OP_SeekScan is used, ensure that the index cursor does not 1762 ** point to a valid row for the first iteration of this loop. */ 1763 sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur); 1764 } 1765 1766 /* Generate code to evaluate all constraint terms using == or IN 1767 ** and store the values of those terms in an array of registers 1768 ** starting at regBase. 1769 */ 1770 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); 1771 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1772 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1773 if( zStartAff && nTop ){ 1774 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); 1775 } 1776 addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt); 1777 1778 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1779 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1780 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1781 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1782 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1783 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1784 start_constraints = pRangeStart || nEq>0; 1785 1786 /* Seek the index cursor to the start of the range. */ 1787 nConstraint = nEq; 1788 if( pRangeStart ){ 1789 Expr *pRight = pRangeStart->pExpr->pRight; 1790 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); 1791 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1792 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1793 && sqlite3ExprCanBeNull(pRight) 1794 ){ 1795 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1796 VdbeCoverage(v); 1797 } 1798 if( zStartAff ){ 1799 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); 1800 } 1801 nConstraint += nBtm; 1802 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1803 if( sqlite3ExprIsVector(pRight)==0 ){ 1804 disableTerm(pLevel, pRangeStart); 1805 }else{ 1806 startEq = 1; 1807 } 1808 bSeekPastNull = 0; 1809 }else if( bSeekPastNull ){ 1810 startEq = 0; 1811 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1812 start_constraints = 1; 1813 nConstraint++; 1814 }else if( regBignull ){ 1815 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1816 start_constraints = 1; 1817 nConstraint++; 1818 } 1819 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1820 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ 1821 /* The skip-scan logic inside the call to codeAllEqualityConstraints() 1822 ** above has already left the cursor sitting on the correct row, 1823 ** so no further seeking is needed */ 1824 }else{ 1825 if( regBignull ){ 1826 sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull); 1827 VdbeComment((v, "NULL-scan pass ctr")); 1828 } 1829 1830 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 1831 assert( op!=0 ); 1832 if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){ 1833 assert( regBignull==0 ); 1834 /* TUNING: The OP_SeekScan opcode seeks to reduce the number 1835 ** of expensive seek operations by replacing a single seek with 1836 ** 1 or more step operations. The question is, how many steps 1837 ** should we try before giving up and going with a seek. The cost 1838 ** of a seek is proportional to the logarithm of the of the number 1839 ** of entries in the tree, so basing the number of steps to try 1840 ** on the estimated number of rows in the btree seems like a good 1841 ** guess. */ 1842 addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan, 1843 (pIdx->aiRowLogEst[0]+9)/10); 1844 VdbeCoverage(v); 1845 } 1846 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1847 VdbeCoverage(v); 1848 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1849 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1850 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 1851 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1852 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1853 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 1854 1855 assert( bSeekPastNull==0 || bStopAtNull==0 ); 1856 if( regBignull ){ 1857 assert( bSeekPastNull==1 || bStopAtNull==1 ); 1858 assert( bSeekPastNull==!bStopAtNull ); 1859 assert( bStopAtNull==startEq ); 1860 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2); 1861 op = aStartOp[(nConstraint>1)*4 + 2 + bRev]; 1862 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 1863 nConstraint-startEq); 1864 VdbeCoverage(v); 1865 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1866 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1867 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1868 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1869 assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE); 1870 } 1871 } 1872 1873 /* Load the value for the inequality constraint at the end of the 1874 ** range (if any). 1875 */ 1876 nConstraint = nEq; 1877 if( pRangeEnd ){ 1878 Expr *pRight = pRangeEnd->pExpr->pRight; 1879 codeExprOrVector(pParse, pRight, regBase+nEq, nTop); 1880 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 1881 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 1882 && sqlite3ExprCanBeNull(pRight) 1883 ){ 1884 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1885 VdbeCoverage(v); 1886 } 1887 if( zEndAff ){ 1888 updateRangeAffinityStr(pRight, nTop, zEndAff); 1889 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); 1890 }else{ 1891 assert( pParse->db->mallocFailed ); 1892 } 1893 nConstraint += nTop; 1894 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 1895 1896 if( sqlite3ExprIsVector(pRight)==0 ){ 1897 disableTerm(pLevel, pRangeEnd); 1898 }else{ 1899 endEq = 1; 1900 } 1901 }else if( bStopAtNull ){ 1902 if( regBignull==0 ){ 1903 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1904 endEq = 0; 1905 } 1906 nConstraint++; 1907 } 1908 sqlite3DbFree(db, zStartAff); 1909 sqlite3DbFree(db, zEndAff); 1910 1911 /* Top of the loop body */ 1912 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1913 1914 /* Check if the index cursor is past the end of the range. */ 1915 if( nConstraint ){ 1916 if( regBignull ){ 1917 /* Except, skip the end-of-range check while doing the NULL-scan */ 1918 sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3); 1919 VdbeComment((v, "If NULL-scan 2nd pass")); 1920 VdbeCoverage(v); 1921 } 1922 op = aEndOp[bRev*2 + endEq]; 1923 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1924 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1925 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1926 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1927 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1928 if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan); 1929 } 1930 if( regBignull ){ 1931 /* During a NULL-scan, check to see if we have reached the end of 1932 ** the NULLs */ 1933 assert( bSeekPastNull==!bStopAtNull ); 1934 assert( bSeekPastNull+bStopAtNull==1 ); 1935 assert( nConstraint+bSeekPastNull>0 ); 1936 sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2); 1937 VdbeComment((v, "If NULL-scan 1st pass")); 1938 VdbeCoverage(v); 1939 op = aEndOp[bRev*2 + bSeekPastNull]; 1940 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 1941 nConstraint+bSeekPastNull); 1942 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1943 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1944 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1945 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1946 } 1947 1948 if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){ 1949 sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq); 1950 } 1951 1952 /* Seek the table cursor, if required */ 1953 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 1954 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0; 1955 if( omitTable ){ 1956 /* pIdx is a covering index. No need to access the main table. */ 1957 }else if( HasRowid(pIdx->pTable) ){ 1958 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); 1959 }else if( iCur!=iIdxCur ){ 1960 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1961 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1962 for(j=0; j<pPk->nKeyCol; j++){ 1963 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]); 1964 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 1965 } 1966 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 1967 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 1968 } 1969 1970 if( pLevel->iLeftJoin==0 ){ 1971 /* If pIdx is an index on one or more expressions, then look through 1972 ** all the expressions in pWInfo and try to transform matching expressions 1973 ** into reference to index columns. Also attempt to translate references 1974 ** to virtual columns in the table into references to (stored) columns 1975 ** of the index. 1976 ** 1977 ** Do not do this for the RHS of a LEFT JOIN. This is because the 1978 ** expression may be evaluated after OP_NullRow has been executed on 1979 ** the cursor. In this case it is important to do the full evaluation, 1980 ** as the result of the expression may not be NULL, even if all table 1981 ** column values are. https://www.sqlite.org/src/info/7fa8049685b50b5a 1982 ** 1983 ** Also, do not do this when processing one index an a multi-index 1984 ** OR clause, since the transformation will become invalid once we 1985 ** move forward to the next index. 1986 ** https://sqlite.org/src/info/4e8e4857d32d401f 1987 */ 1988 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ 1989 whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo); 1990 } 1991 1992 /* If a partial index is driving the loop, try to eliminate WHERE clause 1993 ** terms from the query that must be true due to the WHERE clause of 1994 ** the partial index. 1995 ** 1996 ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work 1997 ** for a LEFT JOIN. 1998 */ 1999 if( pIdx->pPartIdxWhere ){ 2000 whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC); 2001 } 2002 }else{ 2003 testcase( pIdx->pPartIdxWhere ); 2004 /* The following assert() is not a requirement, merely an observation: 2005 ** The OR-optimization doesn't work for the right hand table of 2006 ** a LEFT JOIN: */ 2007 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ); 2008 } 2009 2010 /* Record the instruction used to terminate the loop. */ 2011 if( pLoop->wsFlags & WHERE_ONEROW ){ 2012 pLevel->op = OP_Noop; 2013 }else if( bRev ){ 2014 pLevel->op = OP_Prev; 2015 }else{ 2016 pLevel->op = OP_Next; 2017 } 2018 pLevel->p1 = iIdxCur; 2019 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 2020 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 2021 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2022 }else{ 2023 assert( pLevel->p5==0 ); 2024 } 2025 if( omitTable ) pIdx = 0; 2026 }else 2027 2028 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 2029 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 2030 /* Case 5: Two or more separately indexed terms connected by OR 2031 ** 2032 ** Example: 2033 ** 2034 ** CREATE TABLE t1(a,b,c,d); 2035 ** CREATE INDEX i1 ON t1(a); 2036 ** CREATE INDEX i2 ON t1(b); 2037 ** CREATE INDEX i3 ON t1(c); 2038 ** 2039 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 2040 ** 2041 ** In the example, there are three indexed terms connected by OR. 2042 ** The top of the loop looks like this: 2043 ** 2044 ** Null 1 # Zero the rowset in reg 1 2045 ** 2046 ** Then, for each indexed term, the following. The arguments to 2047 ** RowSetTest are such that the rowid of the current row is inserted 2048 ** into the RowSet. If it is already present, control skips the 2049 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 2050 ** 2051 ** sqlite3WhereBegin(<term>) 2052 ** RowSetTest # Insert rowid into rowset 2053 ** Gosub 2 A 2054 ** sqlite3WhereEnd() 2055 ** 2056 ** Following the above, code to terminate the loop. Label A, the target 2057 ** of the Gosub above, jumps to the instruction right after the Goto. 2058 ** 2059 ** Null 1 # Zero the rowset in reg 1 2060 ** Goto B # The loop is finished. 2061 ** 2062 ** A: <loop body> # Return data, whatever. 2063 ** 2064 ** Return 2 # Jump back to the Gosub 2065 ** 2066 ** B: <after the loop> 2067 ** 2068 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 2069 ** use an ephemeral index instead of a RowSet to record the primary 2070 ** keys of the rows we have already seen. 2071 ** 2072 */ 2073 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 2074 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 2075 Index *pCov = 0; /* Potential covering index (or NULL) */ 2076 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 2077 2078 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 2079 int regRowset = 0; /* Register for RowSet object */ 2080 int regRowid = 0; /* Register holding rowid */ 2081 int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */ 2082 int iRetInit; /* Address of regReturn init */ 2083 int untestedTerms = 0; /* Some terms not completely tested */ 2084 int ii; /* Loop counter */ 2085 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 2086 Table *pTab = pTabItem->pTab; 2087 2088 pTerm = pLoop->aLTerm[0]; 2089 assert( pTerm!=0 ); 2090 assert( pTerm->eOperator & WO_OR ); 2091 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 2092 pOrWc = &pTerm->u.pOrInfo->wc; 2093 pLevel->op = OP_Return; 2094 pLevel->p1 = regReturn; 2095 2096 /* Set up a new SrcList in pOrTab containing the table being scanned 2097 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 2098 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 2099 */ 2100 if( pWInfo->nLevel>1 ){ 2101 int nNotReady; /* The number of notReady tables */ 2102 SrcItem *origSrc; /* Original list of tables */ 2103 nNotReady = pWInfo->nLevel - iLevel - 1; 2104 pOrTab = sqlite3StackAllocRaw(db, 2105 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 2106 if( pOrTab==0 ) return notReady; 2107 pOrTab->nAlloc = (u8)(nNotReady + 1); 2108 pOrTab->nSrc = pOrTab->nAlloc; 2109 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 2110 origSrc = pWInfo->pTabList->a; 2111 for(k=1; k<=nNotReady; k++){ 2112 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 2113 } 2114 }else{ 2115 pOrTab = pWInfo->pTabList; 2116 } 2117 2118 /* Initialize the rowset register to contain NULL. An SQL NULL is 2119 ** equivalent to an empty rowset. Or, create an ephemeral index 2120 ** capable of holding primary keys in the case of a WITHOUT ROWID. 2121 ** 2122 ** Also initialize regReturn to contain the address of the instruction 2123 ** immediately following the OP_Return at the bottom of the loop. This 2124 ** is required in a few obscure LEFT JOIN cases where control jumps 2125 ** over the top of the loop into the body of it. In this case the 2126 ** correct response for the end-of-loop code (the OP_Return) is to 2127 ** fall through to the next instruction, just as an OP_Next does if 2128 ** called on an uninitialized cursor. 2129 */ 2130 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2131 if( HasRowid(pTab) ){ 2132 regRowset = ++pParse->nMem; 2133 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 2134 }else{ 2135 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2136 regRowset = pParse->nTab++; 2137 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 2138 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 2139 } 2140 regRowid = ++pParse->nMem; 2141 } 2142 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 2143 2144 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 2145 ** Then for every term xN, evaluate as the subexpression: xN AND z 2146 ** That way, terms in y that are factored into the disjunction will 2147 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 2148 ** 2149 ** Actually, each subexpression is converted to "xN AND w" where w is 2150 ** the "interesting" terms of z - terms that did not originate in the 2151 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 2152 ** indices. 2153 ** 2154 ** This optimization also only applies if the (x1 OR x2 OR ...) term 2155 ** is not contained in the ON clause of a LEFT JOIN. 2156 ** See ticket http://www.sqlite.org/src/info/f2369304e4 2157 */ 2158 if( pWC->nTerm>1 ){ 2159 int iTerm; 2160 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 2161 Expr *pExpr = pWC->a[iTerm].pExpr; 2162 if( &pWC->a[iTerm] == pTerm ) continue; 2163 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); 2164 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); 2165 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue; 2166 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 2167 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); 2168 pExpr = sqlite3ExprDup(db, pExpr, 0); 2169 pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr); 2170 } 2171 if( pAndExpr ){ 2172 /* The extra 0x10000 bit on the opcode is masked off and does not 2173 ** become part of the new Expr.op. However, it does make the 2174 ** op==TK_AND comparison inside of sqlite3PExpr() false, and this 2175 ** prevents sqlite3PExpr() from implementing AND short-circuit 2176 ** optimization, which we do not want here. */ 2177 pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr); 2178 } 2179 } 2180 2181 /* Run a separate WHERE clause for each term of the OR clause. After 2182 ** eliminating duplicates from other WHERE clauses, the action for each 2183 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 2184 */ 2185 ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR")); 2186 for(ii=0; ii<pOrWc->nTerm; ii++){ 2187 WhereTerm *pOrTerm = &pOrWc->a[ii]; 2188 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 2189 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 2190 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 2191 int jmp1 = 0; /* Address of jump operation */ 2192 testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0 2193 && !ExprHasProperty(pOrExpr, EP_FromJoin) 2194 ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */ 2195 if( pAndExpr ){ 2196 pAndExpr->pLeft = pOrExpr; 2197 pOrExpr = pAndExpr; 2198 } 2199 /* Loop through table entries that match term pOrTerm. */ 2200 ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1)); 2201 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 2202 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 2203 WHERE_OR_SUBCLAUSE, iCovCur); 2204 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); 2205 if( pSubWInfo ){ 2206 WhereLoop *pSubLoop; 2207 int addrExplain = sqlite3WhereExplainOneScan( 2208 pParse, pOrTab, &pSubWInfo->a[0], 0 2209 ); 2210 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 2211 2212 /* This is the sub-WHERE clause body. First skip over 2213 ** duplicate rows from prior sub-WHERE clauses, and record the 2214 ** rowid (or PRIMARY KEY) for the current row so that the same 2215 ** row will be skipped in subsequent sub-WHERE clauses. 2216 */ 2217 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2218 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 2219 if( HasRowid(pTab) ){ 2220 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid); 2221 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 2222 regRowid, iSet); 2223 VdbeCoverage(v); 2224 }else{ 2225 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2226 int nPk = pPk->nKeyCol; 2227 int iPk; 2228 int r; 2229 2230 /* Read the PK into an array of temp registers. */ 2231 r = sqlite3GetTempRange(pParse, nPk); 2232 for(iPk=0; iPk<nPk; iPk++){ 2233 int iCol = pPk->aiColumn[iPk]; 2234 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk); 2235 } 2236 2237 /* Check if the temp table already contains this key. If so, 2238 ** the row has already been included in the result set and 2239 ** can be ignored (by jumping past the Gosub below). Otherwise, 2240 ** insert the key into the temp table and proceed with processing 2241 ** the row. 2242 ** 2243 ** Use some of the same optimizations as OP_RowSetTest: If iSet 2244 ** is zero, assume that the key cannot already be present in 2245 ** the temp table. And if iSet is -1, assume that there is no 2246 ** need to insert the key into the temp table, as it will never 2247 ** be tested for. */ 2248 if( iSet ){ 2249 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 2250 VdbeCoverage(v); 2251 } 2252 if( iSet>=0 ){ 2253 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 2254 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid, 2255 r, nPk); 2256 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2257 } 2258 2259 /* Release the array of temp registers */ 2260 sqlite3ReleaseTempRange(pParse, r, nPk); 2261 } 2262 } 2263 2264 /* Invoke the main loop body as a subroutine */ 2265 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 2266 2267 /* Jump here (skipping the main loop body subroutine) if the 2268 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 2269 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 2270 2271 /* The pSubWInfo->untestedTerms flag means that this OR term 2272 ** contained one or more AND term from a notReady table. The 2273 ** terms from the notReady table could not be tested and will 2274 ** need to be tested later. 2275 */ 2276 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 2277 2278 /* If all of the OR-connected terms are optimized using the same 2279 ** index, and the index is opened using the same cursor number 2280 ** by each call to sqlite3WhereBegin() made by this loop, it may 2281 ** be possible to use that index as a covering index. 2282 ** 2283 ** If the call to sqlite3WhereBegin() above resulted in a scan that 2284 ** uses an index, and this is either the first OR-connected term 2285 ** processed or the index is the same as that used by all previous 2286 ** terms, set pCov to the candidate covering index. Otherwise, set 2287 ** pCov to NULL to indicate that no candidate covering index will 2288 ** be available. 2289 */ 2290 pSubLoop = pSubWInfo->a[0].pWLoop; 2291 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2292 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 2293 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 2294 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 2295 ){ 2296 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 2297 pCov = pSubLoop->u.btree.pIndex; 2298 }else{ 2299 pCov = 0; 2300 } 2301 if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){ 2302 pWInfo->bDeferredSeek = 1; 2303 } 2304 2305 /* Finish the loop through table entries that match term pOrTerm. */ 2306 sqlite3WhereEnd(pSubWInfo); 2307 ExplainQueryPlanPop(pParse); 2308 } 2309 } 2310 } 2311 ExplainQueryPlanPop(pParse); 2312 pLevel->u.pCovidx = pCov; 2313 if( pCov ) pLevel->iIdxCur = iCovCur; 2314 if( pAndExpr ){ 2315 pAndExpr->pLeft = 0; 2316 sqlite3ExprDelete(db, pAndExpr); 2317 } 2318 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 2319 sqlite3VdbeGoto(v, pLevel->addrBrk); 2320 sqlite3VdbeResolveLabel(v, iLoopBody); 2321 2322 if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); } 2323 if( !untestedTerms ) disableTerm(pLevel, pTerm); 2324 }else 2325 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 2326 2327 { 2328 /* Case 6: There is no usable index. We must do a complete 2329 ** scan of the entire table. 2330 */ 2331 static const u8 aStep[] = { OP_Next, OP_Prev }; 2332 static const u8 aStart[] = { OP_Rewind, OP_Last }; 2333 assert( bRev==0 || bRev==1 ); 2334 if( pTabItem->fg.isRecursive ){ 2335 /* Tables marked isRecursive have only a single row that is stored in 2336 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 2337 pLevel->op = OP_Noop; 2338 }else{ 2339 codeCursorHint(pTabItem, pWInfo, pLevel, 0); 2340 pLevel->op = aStep[bRev]; 2341 pLevel->p1 = iCur; 2342 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt); 2343 VdbeCoverageIf(v, bRev==0); 2344 VdbeCoverageIf(v, bRev!=0); 2345 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2346 } 2347 } 2348 2349 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2350 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 2351 #endif 2352 2353 /* Insert code to test every subexpression that can be completely 2354 ** computed using the current set of tables. 2355 ** 2356 ** This loop may run between one and three times, depending on the 2357 ** constraints to be generated. The value of stack variable iLoop 2358 ** determines the constraints coded by each iteration, as follows: 2359 ** 2360 ** iLoop==1: Code only expressions that are entirely covered by pIdx. 2361 ** iLoop==2: Code remaining expressions that do not contain correlated 2362 ** sub-queries. 2363 ** iLoop==3: Code all remaining expressions. 2364 ** 2365 ** An effort is made to skip unnecessary iterations of the loop. 2366 */ 2367 iLoop = (pIdx ? 1 : 2); 2368 do{ 2369 int iNext = 0; /* Next value for iLoop */ 2370 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2371 Expr *pE; 2372 int skipLikeAddr = 0; 2373 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2374 testcase( pTerm->wtFlags & TERM_CODED ); 2375 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2376 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2377 testcase( pWInfo->untestedTerms==0 2378 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); 2379 pWInfo->untestedTerms = 1; 2380 continue; 2381 } 2382 pE = pTerm->pExpr; 2383 assert( pE!=0 ); 2384 if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){ 2385 continue; 2386 } 2387 2388 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){ 2389 iNext = 2; 2390 continue; 2391 } 2392 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){ 2393 if( iNext==0 ) iNext = 3; 2394 continue; 2395 } 2396 2397 if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){ 2398 /* If the TERM_LIKECOND flag is set, that means that the range search 2399 ** is sufficient to guarantee that the LIKE operator is true, so we 2400 ** can skip the call to the like(A,B) function. But this only works 2401 ** for strings. So do not skip the call to the function on the pass 2402 ** that compares BLOBs. */ 2403 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 2404 continue; 2405 #else 2406 u32 x = pLevel->iLikeRepCntr; 2407 if( x>0 ){ 2408 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1)); 2409 VdbeCoverageIf(v, (x&1)==1); 2410 VdbeCoverageIf(v, (x&1)==0); 2411 } 2412 #endif 2413 } 2414 #ifdef WHERETRACE_ENABLED /* 0xffff */ 2415 if( sqlite3WhereTrace ){ 2416 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d", 2417 pWC->nTerm-j, pTerm, iLoop)); 2418 } 2419 if( sqlite3WhereTrace & 0x800 ){ 2420 sqlite3DebugPrintf("Coding auxiliary constraint:\n"); 2421 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2422 } 2423 #endif 2424 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 2425 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 2426 pTerm->wtFlags |= TERM_CODED; 2427 } 2428 iLoop = iNext; 2429 }while( iLoop>0 ); 2430 2431 /* Insert code to test for implied constraints based on transitivity 2432 ** of the "==" operator. 2433 ** 2434 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 2435 ** and we are coding the t1 loop and the t2 loop has not yet coded, 2436 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 2437 ** the implied "t1.a=123" constraint. 2438 */ 2439 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2440 Expr *pE, sEAlt; 2441 WhereTerm *pAlt; 2442 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2443 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 2444 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 2445 if( pTerm->leftCursor!=iCur ) continue; 2446 if( pTabItem->fg.jointype & JT_LEFT ) continue; 2447 pE = pTerm->pExpr; 2448 #ifdef WHERETRACE_ENABLED /* 0x800 */ 2449 if( sqlite3WhereTrace & 0x800 ){ 2450 sqlite3DebugPrintf("Coding transitive constraint:\n"); 2451 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2452 } 2453 #endif 2454 assert( !ExprHasProperty(pE, EP_FromJoin) ); 2455 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 2456 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady, 2457 WO_EQ|WO_IN|WO_IS, 0); 2458 if( pAlt==0 ) continue; 2459 if( pAlt->wtFlags & (TERM_CODED) ) continue; 2460 if( (pAlt->eOperator & WO_IN) 2461 && (pAlt->pExpr->flags & EP_xIsSelect) 2462 && (pAlt->pExpr->x.pSelect->pEList->nExpr>1) 2463 ){ 2464 continue; 2465 } 2466 testcase( pAlt->eOperator & WO_EQ ); 2467 testcase( pAlt->eOperator & WO_IS ); 2468 testcase( pAlt->eOperator & WO_IN ); 2469 VdbeModuleComment((v, "begin transitive constraint")); 2470 sEAlt = *pAlt->pExpr; 2471 sEAlt.pLeft = pE->pLeft; 2472 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); 2473 pAlt->wtFlags |= TERM_CODED; 2474 } 2475 2476 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2477 ** at least one row of the right table has matched the left table. 2478 */ 2479 if( pLevel->iLeftJoin ){ 2480 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2481 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2482 VdbeComment((v, "record LEFT JOIN hit")); 2483 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 2484 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2485 testcase( pTerm->wtFlags & TERM_CODED ); 2486 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2487 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2488 assert( pWInfo->untestedTerms ); 2489 continue; 2490 } 2491 assert( pTerm->pExpr ); 2492 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 2493 pTerm->wtFlags |= TERM_CODED; 2494 } 2495 } 2496 2497 #if WHERETRACE_ENABLED /* 0x20800 */ 2498 if( sqlite3WhereTrace & 0x20000 ){ 2499 sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n", 2500 iLevel); 2501 sqlite3WhereClausePrint(pWC); 2502 } 2503 if( sqlite3WhereTrace & 0x800 ){ 2504 sqlite3DebugPrintf("End Coding level %d: notReady=%llx\n", 2505 iLevel, (u64)pLevel->notReady); 2506 } 2507 #endif 2508 return pLevel->notReady; 2509 } 2510