1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 /* 25 ** This routine is a helper for explainIndexRange() below 26 ** 27 ** pStr holds the text of an expression that we are building up one term 28 ** at a time. This routine adds a new term to the end of the expression. 29 ** Terms are separated by AND so add the "AND" text for second and subsequent 30 ** terms only. 31 */ 32 static void explainAppendTerm( 33 StrAccum *pStr, /* The text expression being built */ 34 int iTerm, /* Index of this term. First is zero */ 35 const char *zColumn, /* Name of the column */ 36 const char *zOp /* Name of the operator */ 37 ){ 38 if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5); 39 sqlite3StrAccumAppendAll(pStr, zColumn); 40 sqlite3StrAccumAppend(pStr, zOp, 1); 41 sqlite3StrAccumAppend(pStr, "?", 1); 42 } 43 44 /* 45 ** Return the name of the i-th column of the pIdx index. 46 */ 47 static const char *explainIndexColumnName(Index *pIdx, int i){ 48 i = pIdx->aiColumn[i]; 49 if( i==XN_EXPR ) return "<expr>"; 50 if( i==XN_ROWID ) return "rowid"; 51 return pIdx->pTable->aCol[i].zName; 52 } 53 54 /* 55 ** Argument pLevel describes a strategy for scanning table pTab. This 56 ** function appends text to pStr that describes the subset of table 57 ** rows scanned by the strategy in the form of an SQL expression. 58 ** 59 ** For example, if the query: 60 ** 61 ** SELECT * FROM t1 WHERE a=1 AND b>2; 62 ** 63 ** is run and there is an index on (a, b), then this function returns a 64 ** string similar to: 65 ** 66 ** "a=? AND b>?" 67 */ 68 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 69 Index *pIndex = pLoop->u.btree.pIndex; 70 u16 nEq = pLoop->u.btree.nEq; 71 u16 nSkip = pLoop->nSkip; 72 int i, j; 73 74 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 75 sqlite3StrAccumAppend(pStr, " (", 2); 76 for(i=0; i<nEq; i++){ 77 const char *z = explainIndexColumnName(pIndex, i); 78 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5); 79 sqlite3XPrintf(pStr, 0, i>=nSkip ? "%s=?" : "ANY(%s)", z); 80 } 81 82 j = i; 83 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 84 const char *z = explainIndexColumnName(pIndex, i); 85 explainAppendTerm(pStr, i++, z, ">"); 86 } 87 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 88 const char *z = explainIndexColumnName(pIndex, j); 89 explainAppendTerm(pStr, i, z, "<"); 90 } 91 sqlite3StrAccumAppend(pStr, ")", 1); 92 } 93 94 /* 95 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 96 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 97 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 98 ** is added to the output to describe the table scan strategy in pLevel. 99 ** 100 ** If an OP_Explain opcode is added to the VM, its address is returned. 101 ** Otherwise, if no OP_Explain is coded, zero is returned. 102 */ 103 int sqlite3WhereExplainOneScan( 104 Parse *pParse, /* Parse context */ 105 SrcList *pTabList, /* Table list this loop refers to */ 106 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 107 int iLevel, /* Value for "level" column of output */ 108 int iFrom, /* Value for "from" column of output */ 109 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 110 ){ 111 int ret = 0; 112 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 113 if( pParse->explain==2 ) 114 #endif 115 { 116 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 117 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 118 sqlite3 *db = pParse->db; /* Database handle */ 119 int iId = pParse->iSelectId; /* Select id (left-most output column) */ 120 int isSearch; /* True for a SEARCH. False for SCAN. */ 121 WhereLoop *pLoop; /* The controlling WhereLoop object */ 122 u32 flags; /* Flags that describe this loop */ 123 char *zMsg; /* Text to add to EQP output */ 124 StrAccum str; /* EQP output string */ 125 char zBuf[100]; /* Initial space for EQP output string */ 126 127 pLoop = pLevel->pWLoop; 128 flags = pLoop->wsFlags; 129 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return 0; 130 131 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 132 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 133 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 134 135 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 136 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN"); 137 if( pItem->pSelect ){ 138 sqlite3XPrintf(&str, 0, " SUBQUERY %d", pItem->iSelectId); 139 }else{ 140 sqlite3XPrintf(&str, 0, " TABLE %s", pItem->zName); 141 } 142 143 if( pItem->zAlias ){ 144 sqlite3XPrintf(&str, 0, " AS %s", pItem->zAlias); 145 } 146 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 147 const char *zFmt = 0; 148 Index *pIdx; 149 150 assert( pLoop->u.btree.pIndex!=0 ); 151 pIdx = pLoop->u.btree.pIndex; 152 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 153 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 154 if( isSearch ){ 155 zFmt = "PRIMARY KEY"; 156 } 157 }else if( flags & WHERE_PARTIALIDX ){ 158 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 159 }else if( flags & WHERE_AUTO_INDEX ){ 160 zFmt = "AUTOMATIC COVERING INDEX"; 161 }else if( flags & WHERE_IDX_ONLY ){ 162 zFmt = "COVERING INDEX %s"; 163 }else{ 164 zFmt = "INDEX %s"; 165 } 166 if( zFmt ){ 167 sqlite3StrAccumAppend(&str, " USING ", 7); 168 sqlite3XPrintf(&str, 0, zFmt, pIdx->zName); 169 explainIndexRange(&str, pLoop); 170 } 171 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 172 const char *zRangeOp; 173 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 174 zRangeOp = "="; 175 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 176 zRangeOp = ">? AND rowid<"; 177 }else if( flags&WHERE_BTM_LIMIT ){ 178 zRangeOp = ">"; 179 }else{ 180 assert( flags&WHERE_TOP_LIMIT); 181 zRangeOp = "<"; 182 } 183 sqlite3XPrintf(&str, 0, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp); 184 } 185 #ifndef SQLITE_OMIT_VIRTUALTABLE 186 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 187 sqlite3XPrintf(&str, 0, " VIRTUAL TABLE INDEX %d:%s", 188 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 189 } 190 #endif 191 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 192 if( pLoop->nOut>=10 ){ 193 sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); 194 }else{ 195 sqlite3StrAccumAppend(&str, " (~1 row)", 9); 196 } 197 #endif 198 zMsg = sqlite3StrAccumFinish(&str); 199 ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC); 200 } 201 return ret; 202 } 203 #endif /* SQLITE_OMIT_EXPLAIN */ 204 205 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 206 /* 207 ** Configure the VM passed as the first argument with an 208 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 209 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 210 ** clause that the scan reads data from. 211 ** 212 ** If argument addrExplain is not 0, it must be the address of an 213 ** OP_Explain instruction that describes the same loop. 214 */ 215 void sqlite3WhereAddScanStatus( 216 Vdbe *v, /* Vdbe to add scanstatus entry to */ 217 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 218 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 219 int addrExplain /* Address of OP_Explain (or 0) */ 220 ){ 221 const char *zObj = 0; 222 WhereLoop *pLoop = pLvl->pWLoop; 223 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 224 zObj = pLoop->u.btree.pIndex->zName; 225 }else{ 226 zObj = pSrclist->a[pLvl->iFrom].zName; 227 } 228 sqlite3VdbeScanStatus( 229 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 230 ); 231 } 232 #endif 233 234 235 /* 236 ** Disable a term in the WHERE clause. Except, do not disable the term 237 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 238 ** or USING clause of that join. 239 ** 240 ** Consider the term t2.z='ok' in the following queries: 241 ** 242 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 243 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 244 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 245 ** 246 ** The t2.z='ok' is disabled in the in (2) because it originates 247 ** in the ON clause. The term is disabled in (3) because it is not part 248 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 249 ** 250 ** Disabling a term causes that term to not be tested in the inner loop 251 ** of the join. Disabling is an optimization. When terms are satisfied 252 ** by indices, we disable them to prevent redundant tests in the inner 253 ** loop. We would get the correct results if nothing were ever disabled, 254 ** but joins might run a little slower. The trick is to disable as much 255 ** as we can without disabling too much. If we disabled in (1), we'd get 256 ** the wrong answer. See ticket #813. 257 ** 258 ** If all the children of a term are disabled, then that term is also 259 ** automatically disabled. In this way, terms get disabled if derived 260 ** virtual terms are tested first. For example: 261 ** 262 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 263 ** \___________/ \______/ \_____/ 264 ** parent child1 child2 265 ** 266 ** Only the parent term was in the original WHERE clause. The child1 267 ** and child2 terms were added by the LIKE optimization. If both of 268 ** the virtual child terms are valid, then testing of the parent can be 269 ** skipped. 270 ** 271 ** Usually the parent term is marked as TERM_CODED. But if the parent 272 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 273 ** The TERM_LIKECOND marking indicates that the term should be coded inside 274 ** a conditional such that is only evaluated on the second pass of a 275 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 276 */ 277 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 278 int nLoop = 0; 279 while( pTerm 280 && (pTerm->wtFlags & TERM_CODED)==0 281 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 282 && (pLevel->notReady & pTerm->prereqAll)==0 283 ){ 284 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 285 pTerm->wtFlags |= TERM_LIKECOND; 286 }else{ 287 pTerm->wtFlags |= TERM_CODED; 288 } 289 if( pTerm->iParent<0 ) break; 290 pTerm = &pTerm->pWC->a[pTerm->iParent]; 291 pTerm->nChild--; 292 if( pTerm->nChild!=0 ) break; 293 nLoop++; 294 } 295 } 296 297 /* 298 ** Code an OP_Affinity opcode to apply the column affinity string zAff 299 ** to the n registers starting at base. 300 ** 301 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the 302 ** beginning and end of zAff are ignored. If all entries in zAff are 303 ** SQLITE_AFF_BLOB, then no code gets generated. 304 ** 305 ** This routine makes its own copy of zAff so that the caller is free 306 ** to modify zAff after this routine returns. 307 */ 308 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 309 Vdbe *v = pParse->pVdbe; 310 if( zAff==0 ){ 311 assert( pParse->db->mallocFailed ); 312 return; 313 } 314 assert( v!=0 ); 315 316 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning 317 ** and end of the affinity string. 318 */ 319 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){ 320 n--; 321 base++; 322 zAff++; 323 } 324 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){ 325 n--; 326 } 327 328 /* Code the OP_Affinity opcode if there is anything left to do. */ 329 if( n>0 ){ 330 sqlite3VdbeAddOp2(v, OP_Affinity, base, n); 331 sqlite3VdbeChangeP4(v, -1, zAff, n); 332 sqlite3ExprCacheAffinityChange(pParse, base, n); 333 } 334 } 335 336 337 /* 338 ** Generate code for a single equality term of the WHERE clause. An equality 339 ** term can be either X=expr or X IN (...). pTerm is the term to be 340 ** coded. 341 ** 342 ** The current value for the constraint is left in register iReg. 343 ** 344 ** For a constraint of the form X=expr, the expression is evaluated and its 345 ** result is left on the stack. For constraints of the form X IN (...) 346 ** this routine sets up a loop that will iterate over all values of X. 347 */ 348 static int codeEqualityTerm( 349 Parse *pParse, /* The parsing context */ 350 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 351 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 352 int iEq, /* Index of the equality term within this level */ 353 int bRev, /* True for reverse-order IN operations */ 354 int iTarget /* Attempt to leave results in this register */ 355 ){ 356 Expr *pX = pTerm->pExpr; 357 Vdbe *v = pParse->pVdbe; 358 int iReg; /* Register holding results */ 359 360 assert( iTarget>0 ); 361 if( pX->op==TK_EQ || pX->op==TK_IS ){ 362 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 363 }else if( pX->op==TK_ISNULL ){ 364 iReg = iTarget; 365 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 366 #ifndef SQLITE_OMIT_SUBQUERY 367 }else{ 368 int eType; 369 int iTab; 370 struct InLoop *pIn; 371 WhereLoop *pLoop = pLevel->pWLoop; 372 373 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 374 && pLoop->u.btree.pIndex!=0 375 && pLoop->u.btree.pIndex->aSortOrder[iEq] 376 ){ 377 testcase( iEq==0 ); 378 testcase( bRev ); 379 bRev = !bRev; 380 } 381 assert( pX->op==TK_IN ); 382 iReg = iTarget; 383 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0); 384 if( eType==IN_INDEX_INDEX_DESC ){ 385 testcase( bRev ); 386 bRev = !bRev; 387 } 388 iTab = pX->iTable; 389 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 390 VdbeCoverageIf(v, bRev); 391 VdbeCoverageIf(v, !bRev); 392 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 393 pLoop->wsFlags |= WHERE_IN_ABLE; 394 if( pLevel->u.in.nIn==0 ){ 395 pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 396 } 397 pLevel->u.in.nIn++; 398 pLevel->u.in.aInLoop = 399 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 400 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 401 pIn = pLevel->u.in.aInLoop; 402 if( pIn ){ 403 pIn += pLevel->u.in.nIn - 1; 404 pIn->iCur = iTab; 405 if( eType==IN_INDEX_ROWID ){ 406 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); 407 }else{ 408 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); 409 } 410 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; 411 sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v); 412 }else{ 413 pLevel->u.in.nIn = 0; 414 } 415 #endif 416 } 417 disableTerm(pLevel, pTerm); 418 return iReg; 419 } 420 421 /* 422 ** Generate code that will evaluate all == and IN constraints for an 423 ** index scan. 424 ** 425 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 426 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 427 ** The index has as many as three equality constraints, but in this 428 ** example, the third "c" value is an inequality. So only two 429 ** constraints are coded. This routine will generate code to evaluate 430 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 431 ** in consecutive registers and the index of the first register is returned. 432 ** 433 ** In the example above nEq==2. But this subroutine works for any value 434 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 435 ** The only thing it does is allocate the pLevel->iMem memory cell and 436 ** compute the affinity string. 437 ** 438 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 439 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 440 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 441 ** occurs after the nEq quality constraints. 442 ** 443 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 444 ** the index of the first memory cell in that range. The code that 445 ** calls this routine will use that memory range to store keys for 446 ** start and termination conditions of the loop. 447 ** key value of the loop. If one or more IN operators appear, then 448 ** this routine allocates an additional nEq memory cells for internal 449 ** use. 450 ** 451 ** Before returning, *pzAff is set to point to a buffer containing a 452 ** copy of the column affinity string of the index allocated using 453 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 454 ** with equality constraints that use BLOB or NONE affinity are set to 455 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 456 ** 457 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 458 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 459 ** 460 ** In the example above, the index on t1(a) has TEXT affinity. But since 461 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 462 ** no conversion should be attempted before using a t2.b value as part of 463 ** a key to search the index. Hence the first byte in the returned affinity 464 ** string in this example would be set to SQLITE_AFF_BLOB. 465 */ 466 static int codeAllEqualityTerms( 467 Parse *pParse, /* Parsing context */ 468 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 469 int bRev, /* Reverse the order of IN operators */ 470 int nExtraReg, /* Number of extra registers to allocate */ 471 char **pzAff /* OUT: Set to point to affinity string */ 472 ){ 473 u16 nEq; /* The number of == or IN constraints to code */ 474 u16 nSkip; /* Number of left-most columns to skip */ 475 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 476 Index *pIdx; /* The index being used for this loop */ 477 WhereTerm *pTerm; /* A single constraint term */ 478 WhereLoop *pLoop; /* The WhereLoop object */ 479 int j; /* Loop counter */ 480 int regBase; /* Base register */ 481 int nReg; /* Number of registers to allocate */ 482 char *zAff; /* Affinity string to return */ 483 484 /* This module is only called on query plans that use an index. */ 485 pLoop = pLevel->pWLoop; 486 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 487 nEq = pLoop->u.btree.nEq; 488 nSkip = pLoop->nSkip; 489 pIdx = pLoop->u.btree.pIndex; 490 assert( pIdx!=0 ); 491 492 /* Figure out how many memory cells we will need then allocate them. 493 */ 494 regBase = pParse->nMem + 1; 495 nReg = pLoop->u.btree.nEq + nExtraReg; 496 pParse->nMem += nReg; 497 498 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 499 if( !zAff ){ 500 pParse->db->mallocFailed = 1; 501 } 502 503 if( nSkip ){ 504 int iIdxCur = pLevel->iIdxCur; 505 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 506 VdbeCoverageIf(v, bRev==0); 507 VdbeCoverageIf(v, bRev!=0); 508 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 509 j = sqlite3VdbeAddOp0(v, OP_Goto); 510 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 511 iIdxCur, 0, regBase, nSkip); 512 VdbeCoverageIf(v, bRev==0); 513 VdbeCoverageIf(v, bRev!=0); 514 sqlite3VdbeJumpHere(v, j); 515 for(j=0; j<nSkip; j++){ 516 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 517 testcase( pIdx->aiColumn[j]==XN_EXPR ); 518 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 519 } 520 } 521 522 /* Evaluate the equality constraints 523 */ 524 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 525 for(j=nSkip; j<nEq; j++){ 526 int r1; 527 pTerm = pLoop->aLTerm[j]; 528 assert( pTerm!=0 ); 529 /* The following testcase is true for indices with redundant columns. 530 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 531 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 532 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 533 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 534 if( r1!=regBase+j ){ 535 if( nReg==1 ){ 536 sqlite3ReleaseTempReg(pParse, regBase); 537 regBase = r1; 538 }else{ 539 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 540 } 541 } 542 testcase( pTerm->eOperator & WO_ISNULL ); 543 testcase( pTerm->eOperator & WO_IN ); 544 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ 545 Expr *pRight = pTerm->pExpr->pRight; 546 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 547 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 548 VdbeCoverage(v); 549 } 550 if( zAff ){ 551 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 552 zAff[j] = SQLITE_AFF_BLOB; 553 } 554 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 555 zAff[j] = SQLITE_AFF_BLOB; 556 } 557 } 558 } 559 } 560 *pzAff = zAff; 561 return regBase; 562 } 563 564 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 565 /* 566 ** If the most recently coded instruction is a constant range contraint 567 ** that originated from the LIKE optimization, then change the P3 to be 568 ** pLoop->iLikeRepCntr and set P5. 569 ** 570 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 571 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 572 ** scan loop run twice, once for strings and a second time for BLOBs. 573 ** The OP_String opcodes on the second pass convert the upper and lower 574 ** bound string contants to blobs. This routine makes the necessary changes 575 ** to the OP_String opcodes for that to happen. 576 ** 577 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 578 ** only the one pass through the string space is required, so this routine 579 ** becomes a no-op. 580 */ 581 static void whereLikeOptimizationStringFixup( 582 Vdbe *v, /* prepared statement under construction */ 583 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 584 WhereTerm *pTerm /* The upper or lower bound just coded */ 585 ){ 586 if( pTerm->wtFlags & TERM_LIKEOPT ){ 587 VdbeOp *pOp; 588 assert( pLevel->iLikeRepCntr>0 ); 589 pOp = sqlite3VdbeGetOp(v, -1); 590 assert( pOp!=0 ); 591 assert( pOp->opcode==OP_String8 592 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 593 pOp->p3 = pLevel->iLikeRepCntr; 594 pOp->p5 = 1; 595 } 596 } 597 #else 598 # define whereLikeOptimizationStringFixup(A,B,C) 599 #endif 600 601 #ifdef SQLITE_ENABLE_CURSOR_HINTS 602 /* 603 ** Information is passed from codeCursorHint() down to individual nodes of 604 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 605 ** structure. 606 */ 607 struct CCurHint { 608 int iTabCur; /* Cursor for the main table */ 609 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 610 Index *pIdx; /* The index used to access the table */ 611 }; 612 613 /* 614 ** This function is called for every node of an expression that is a candidate 615 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 616 ** the table CCurHint.iTabCur, verify that the same column can be 617 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 618 */ 619 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 620 struct CCurHint *pHint = pWalker->u.pCCurHint; 621 assert( pHint->pIdx!=0 ); 622 if( pExpr->op==TK_COLUMN 623 && pExpr->iTable==pHint->iTabCur 624 && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0 625 ){ 626 pWalker->eCode = 1; 627 } 628 return WRC_Continue; 629 } 630 631 632 /* 633 ** This function is called on every node of an expression tree used as an 634 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 635 ** that accesses any table other than the one identified by 636 ** CCurHint.iTabCur, then do the following: 637 ** 638 ** 1) allocate a register and code an OP_Column instruction to read 639 ** the specified column into the new register, and 640 ** 641 ** 2) transform the expression node to a TK_REGISTER node that reads 642 ** from the newly populated register. 643 ** 644 ** Also, if the node is a TK_COLUMN that does access the table idenified 645 ** by pCCurHint.iTabCur, and an index is being used (which we will 646 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 647 ** an access of the index rather than the original table. 648 */ 649 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 650 int rc = WRC_Continue; 651 struct CCurHint *pHint = pWalker->u.pCCurHint; 652 if( pExpr->op==TK_COLUMN ){ 653 if( pExpr->iTable!=pHint->iTabCur ){ 654 Vdbe *v = pWalker->pParse->pVdbe; 655 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 656 sqlite3ExprCodeGetColumnOfTable( 657 v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg 658 ); 659 pExpr->op = TK_REGISTER; 660 pExpr->iTable = reg; 661 }else if( pHint->pIdx!=0 ){ 662 pExpr->iTable = pHint->iIdxCur; 663 pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn); 664 assert( pExpr->iColumn>=0 ); 665 } 666 }else if( pExpr->op==TK_AGG_FUNCTION ){ 667 /* An aggregate function in the WHERE clause of a query means this must 668 ** be a correlated sub-query, and expression pExpr is an aggregate from 669 ** the parent context. Do not walk the function arguments in this case. 670 ** 671 ** todo: It should be possible to replace this node with a TK_REGISTER 672 ** expression, as the result of the expression must be stored in a 673 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 674 rc = WRC_Prune; 675 } 676 return rc; 677 } 678 679 /* 680 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 681 */ 682 static void codeCursorHint( 683 WhereInfo *pWInfo, /* The where clause */ 684 WhereLevel *pLevel, /* Which loop to provide hints for */ 685 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 686 ){ 687 Parse *pParse = pWInfo->pParse; 688 sqlite3 *db = pParse->db; 689 Vdbe *v = pParse->pVdbe; 690 Expr *pExpr = 0; 691 WhereLoop *pLoop = pLevel->pWLoop; 692 int iCur; 693 WhereClause *pWC; 694 WhereTerm *pTerm; 695 int i, j; 696 struct CCurHint sHint; 697 Walker sWalker; 698 699 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 700 iCur = pLevel->iTabCur; 701 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 702 sHint.iTabCur = iCur; 703 sHint.iIdxCur = pLevel->iIdxCur; 704 sHint.pIdx = pLoop->u.btree.pIndex; 705 memset(&sWalker, 0, sizeof(sWalker)); 706 sWalker.pParse = pParse; 707 sWalker.u.pCCurHint = &sHint; 708 pWC = &pWInfo->sWC; 709 for(i=0; i<pWC->nTerm; i++){ 710 pTerm = &pWC->a[i]; 711 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 712 if( pTerm->prereqAll & pLevel->notReady ) continue; 713 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; 714 715 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 716 ** the cursor. These terms are not needed as hints for a pure range 717 ** scan (that has no == terms) so omit them. */ 718 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 719 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 720 if( j<pLoop->nLTerm ) continue; 721 } 722 723 /* No subqueries or non-deterministic functions allowed */ 724 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 725 726 /* For an index scan, make sure referenced columns are actually in 727 ** the index. */ 728 if( sHint.pIdx!=0 ){ 729 sWalker.eCode = 0; 730 sWalker.xExprCallback = codeCursorHintCheckExpr; 731 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 732 if( sWalker.eCode ) continue; 733 } 734 735 /* If we survive all prior tests, that means this term is worth hinting */ 736 pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 737 } 738 if( pExpr!=0 ){ 739 sWalker.xExprCallback = codeCursorHintFixExpr; 740 sqlite3WalkExpr(&sWalker, pExpr); 741 sqlite3VdbeAddOp4(v, OP_CursorHint, 742 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 743 (const char*)pExpr, P4_EXPR); 744 } 745 } 746 #else 747 # define codeCursorHint(A,B,C) /* No-op */ 748 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 749 750 /* 751 ** Generate code for the start of the iLevel-th loop in the WHERE clause 752 ** implementation described by pWInfo. 753 */ 754 Bitmask sqlite3WhereCodeOneLoopStart( 755 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 756 int iLevel, /* Which level of pWInfo->a[] should be coded */ 757 Bitmask notReady /* Which tables are currently available */ 758 ){ 759 int j, k; /* Loop counters */ 760 int iCur; /* The VDBE cursor for the table */ 761 int addrNxt; /* Where to jump to continue with the next IN case */ 762 int omitTable; /* True if we use the index only */ 763 int bRev; /* True if we need to scan in reverse order */ 764 WhereLevel *pLevel; /* The where level to be coded */ 765 WhereLoop *pLoop; /* The WhereLoop object being coded */ 766 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 767 WhereTerm *pTerm; /* A WHERE clause term */ 768 Parse *pParse; /* Parsing context */ 769 sqlite3 *db; /* Database connection */ 770 Vdbe *v; /* The prepared stmt under constructions */ 771 struct SrcList_item *pTabItem; /* FROM clause term being coded */ 772 int addrBrk; /* Jump here to break out of the loop */ 773 int addrCont; /* Jump here to continue with next cycle */ 774 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 775 int iReleaseReg = 0; /* Temp register to free before returning */ 776 777 pParse = pWInfo->pParse; 778 v = pParse->pVdbe; 779 pWC = &pWInfo->sWC; 780 db = pParse->db; 781 pLevel = &pWInfo->a[iLevel]; 782 pLoop = pLevel->pWLoop; 783 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 784 iCur = pTabItem->iCursor; 785 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 786 bRev = (pWInfo->revMask>>iLevel)&1; 787 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 788 && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0; 789 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 790 791 /* Create labels for the "break" and "continue" instructions 792 ** for the current loop. Jump to addrBrk to break out of a loop. 793 ** Jump to cont to go immediately to the next iteration of the 794 ** loop. 795 ** 796 ** When there is an IN operator, we also have a "addrNxt" label that 797 ** means to continue with the next IN value combination. When 798 ** there are no IN operators in the constraints, the "addrNxt" label 799 ** is the same as "addrBrk". 800 */ 801 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 802 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); 803 804 /* If this is the right table of a LEFT OUTER JOIN, allocate and 805 ** initialize a memory cell that records if this table matches any 806 ** row of the left table of the join. 807 */ 808 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 809 pLevel->iLeftJoin = ++pParse->nMem; 810 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 811 VdbeComment((v, "init LEFT JOIN no-match flag")); 812 } 813 814 /* Special case of a FROM clause subquery implemented as a co-routine */ 815 if( pTabItem->fg.viaCoroutine ){ 816 int regYield = pTabItem->regReturn; 817 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 818 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 819 VdbeCoverage(v); 820 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); 821 pLevel->op = OP_Goto; 822 }else 823 824 #ifndef SQLITE_OMIT_VIRTUALTABLE 825 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 826 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 827 ** to access the data. 828 */ 829 int iReg; /* P3 Value for OP_VFilter */ 830 int addrNotFound; 831 int nConstraint = pLoop->nLTerm; 832 833 sqlite3ExprCachePush(pParse); 834 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 835 addrNotFound = pLevel->addrBrk; 836 for(j=0; j<nConstraint; j++){ 837 int iTarget = iReg+j+2; 838 pTerm = pLoop->aLTerm[j]; 839 if( pTerm==0 ) continue; 840 if( pTerm->eOperator & WO_IN ){ 841 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 842 addrNotFound = pLevel->addrNxt; 843 }else{ 844 sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget); 845 } 846 } 847 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 848 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 849 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 850 pLoop->u.vtab.idxStr, 851 pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC); 852 VdbeCoverage(v); 853 pLoop->u.vtab.needFree = 0; 854 for(j=0; j<nConstraint && j<16; j++){ 855 if( (pLoop->u.vtab.omitMask>>j)&1 ){ 856 disableTerm(pLevel, pLoop->aLTerm[j]); 857 } 858 } 859 pLevel->p1 = iCur; 860 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 861 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 862 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 863 sqlite3ExprCachePop(pParse); 864 }else 865 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 866 867 if( (pLoop->wsFlags & WHERE_IPK)!=0 868 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 869 ){ 870 /* Case 2: We can directly reference a single row using an 871 ** equality comparison against the ROWID field. Or 872 ** we reference multiple rows using a "rowid IN (...)" 873 ** construct. 874 */ 875 assert( pLoop->u.btree.nEq==1 ); 876 pTerm = pLoop->aLTerm[0]; 877 assert( pTerm!=0 ); 878 assert( pTerm->pExpr!=0 ); 879 assert( omitTable==0 ); 880 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 881 iReleaseReg = ++pParse->nMem; 882 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 883 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 884 addrNxt = pLevel->addrNxt; 885 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v); 886 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); 887 VdbeCoverage(v); 888 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); 889 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 890 VdbeComment((v, "pk")); 891 pLevel->op = OP_Noop; 892 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 893 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 894 ){ 895 /* Case 3: We have an inequality comparison against the ROWID field. 896 */ 897 int testOp = OP_Noop; 898 int start; 899 int memEndValue = 0; 900 WhereTerm *pStart, *pEnd; 901 902 assert( omitTable==0 ); 903 j = 0; 904 pStart = pEnd = 0; 905 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 906 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 907 assert( pStart!=0 || pEnd!=0 ); 908 if( bRev ){ 909 pTerm = pStart; 910 pStart = pEnd; 911 pEnd = pTerm; 912 } 913 codeCursorHint(pWInfo, pLevel, pEnd); 914 if( pStart ){ 915 Expr *pX; /* The expression that defines the start bound */ 916 int r1, rTemp; /* Registers for holding the start boundary */ 917 918 /* The following constant maps TK_xx codes into corresponding 919 ** seek opcodes. It depends on a particular ordering of TK_xx 920 */ 921 const u8 aMoveOp[] = { 922 /* TK_GT */ OP_SeekGT, 923 /* TK_LE */ OP_SeekLE, 924 /* TK_LT */ OP_SeekLT, 925 /* TK_GE */ OP_SeekGE 926 }; 927 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 928 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 929 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 930 931 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 932 testcase( pStart->wtFlags & TERM_VIRTUAL ); 933 pX = pStart->pExpr; 934 assert( pX!=0 ); 935 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 936 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 937 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); 938 VdbeComment((v, "pk")); 939 VdbeCoverageIf(v, pX->op==TK_GT); 940 VdbeCoverageIf(v, pX->op==TK_LE); 941 VdbeCoverageIf(v, pX->op==TK_LT); 942 VdbeCoverageIf(v, pX->op==TK_GE); 943 sqlite3ExprCacheAffinityChange(pParse, r1, 1); 944 sqlite3ReleaseTempReg(pParse, rTemp); 945 disableTerm(pLevel, pStart); 946 }else{ 947 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); 948 VdbeCoverageIf(v, bRev==0); 949 VdbeCoverageIf(v, bRev!=0); 950 } 951 if( pEnd ){ 952 Expr *pX; 953 pX = pEnd->pExpr; 954 assert( pX!=0 ); 955 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 956 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 957 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 958 memEndValue = ++pParse->nMem; 959 sqlite3ExprCode(pParse, pX->pRight, memEndValue); 960 if( pX->op==TK_LT || pX->op==TK_GT ){ 961 testOp = bRev ? OP_Le : OP_Ge; 962 }else{ 963 testOp = bRev ? OP_Lt : OP_Gt; 964 } 965 disableTerm(pLevel, pEnd); 966 } 967 start = sqlite3VdbeCurrentAddr(v); 968 pLevel->op = bRev ? OP_Prev : OP_Next; 969 pLevel->p1 = iCur; 970 pLevel->p2 = start; 971 assert( pLevel->p5==0 ); 972 if( testOp!=OP_Noop ){ 973 iRowidReg = ++pParse->nMem; 974 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 975 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 976 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 977 VdbeCoverageIf(v, testOp==OP_Le); 978 VdbeCoverageIf(v, testOp==OP_Lt); 979 VdbeCoverageIf(v, testOp==OP_Ge); 980 VdbeCoverageIf(v, testOp==OP_Gt); 981 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 982 } 983 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 984 /* Case 4: A scan using an index. 985 ** 986 ** The WHERE clause may contain zero or more equality 987 ** terms ("==" or "IN" operators) that refer to the N 988 ** left-most columns of the index. It may also contain 989 ** inequality constraints (>, <, >= or <=) on the indexed 990 ** column that immediately follows the N equalities. Only 991 ** the right-most column can be an inequality - the rest must 992 ** use the "==" and "IN" operators. For example, if the 993 ** index is on (x,y,z), then the following clauses are all 994 ** optimized: 995 ** 996 ** x=5 997 ** x=5 AND y=10 998 ** x=5 AND y<10 999 ** x=5 AND y>5 AND y<10 1000 ** x=5 AND y=5 AND z<=10 1001 ** 1002 ** The z<10 term of the following cannot be used, only 1003 ** the x=5 term: 1004 ** 1005 ** x=5 AND z<10 1006 ** 1007 ** N may be zero if there are inequality constraints. 1008 ** If there are no inequality constraints, then N is at 1009 ** least one. 1010 ** 1011 ** This case is also used when there are no WHERE clause 1012 ** constraints but an index is selected anyway, in order 1013 ** to force the output order to conform to an ORDER BY. 1014 */ 1015 static const u8 aStartOp[] = { 1016 0, 1017 0, 1018 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1019 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1020 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1021 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1022 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1023 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1024 }; 1025 static const u8 aEndOp[] = { 1026 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1027 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1028 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1029 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1030 }; 1031 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1032 int regBase; /* Base register holding constraint values */ 1033 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1034 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1035 int startEq; /* True if range start uses ==, >= or <= */ 1036 int endEq; /* True if range end uses ==, >= or <= */ 1037 int start_constraints; /* Start of range is constrained */ 1038 int nConstraint; /* Number of constraint terms */ 1039 Index *pIdx; /* The index we will be using */ 1040 int iIdxCur; /* The VDBE cursor for the index */ 1041 int nExtraReg = 0; /* Number of extra registers needed */ 1042 int op; /* Instruction opcode */ 1043 char *zStartAff; /* Affinity for start of range constraint */ 1044 char cEndAff = 0; /* Affinity for end of range constraint */ 1045 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1046 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1047 1048 pIdx = pLoop->u.btree.pIndex; 1049 iIdxCur = pLevel->iIdxCur; 1050 assert( nEq>=pLoop->nSkip ); 1051 1052 /* If this loop satisfies a sort order (pOrderBy) request that 1053 ** was passed to this function to implement a "SELECT min(x) ..." 1054 ** query, then the caller will only allow the loop to run for 1055 ** a single iteration. This means that the first row returned 1056 ** should not have a NULL value stored in 'x'. If column 'x' is 1057 ** the first one after the nEq equality constraints in the index, 1058 ** this requires some special handling. 1059 */ 1060 assert( pWInfo->pOrderBy==0 1061 || pWInfo->pOrderBy->nExpr==1 1062 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); 1063 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 1064 && pWInfo->nOBSat>0 1065 && (pIdx->nKeyCol>nEq) 1066 ){ 1067 assert( pLoop->nSkip==0 ); 1068 bSeekPastNull = 1; 1069 nExtraReg = 1; 1070 } 1071 1072 /* Find any inequality constraint terms for the start and end 1073 ** of the range. 1074 */ 1075 j = nEq; 1076 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1077 pRangeStart = pLoop->aLTerm[j++]; 1078 nExtraReg = 1; 1079 /* Like optimization range constraints always occur in pairs */ 1080 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1081 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1082 } 1083 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1084 pRangeEnd = pLoop->aLTerm[j++]; 1085 nExtraReg = 1; 1086 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1087 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1088 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1089 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1090 pLevel->iLikeRepCntr = ++pParse->nMem; 1091 testcase( bRev ); 1092 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1093 sqlite3VdbeAddOp2(v, OP_Integer, 1094 bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC), 1095 pLevel->iLikeRepCntr); 1096 VdbeComment((v, "LIKE loop counter")); 1097 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1098 } 1099 #endif 1100 if( pRangeStart==0 1101 && (j = pIdx->aiColumn[nEq])>=0 1102 && pIdx->pTable->aCol[j].notNull==0 1103 ){ 1104 bSeekPastNull = 1; 1105 } 1106 } 1107 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1108 1109 /* If we are doing a reverse order scan on an ascending index, or 1110 ** a forward order scan on a descending index, interchange the 1111 ** start and end terms (pRangeStart and pRangeEnd). 1112 */ 1113 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) 1114 || (bRev && pIdx->nKeyCol==nEq) 1115 ){ 1116 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1117 SWAP(u8, bSeekPastNull, bStopAtNull); 1118 } 1119 1120 /* Generate code to evaluate all constraint terms using == or IN 1121 ** and store the values of those terms in an array of registers 1122 ** starting at regBase. 1123 */ 1124 codeCursorHint(pWInfo, pLevel, pRangeEnd); 1125 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1126 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1127 if( zStartAff ) cEndAff = zStartAff[nEq]; 1128 addrNxt = pLevel->addrNxt; 1129 1130 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1131 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1132 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1133 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1134 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1135 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1136 start_constraints = pRangeStart || nEq>0; 1137 1138 /* Seek the index cursor to the start of the range. */ 1139 nConstraint = nEq; 1140 if( pRangeStart ){ 1141 Expr *pRight = pRangeStart->pExpr->pRight; 1142 sqlite3ExprCode(pParse, pRight, regBase+nEq); 1143 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1144 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1145 && sqlite3ExprCanBeNull(pRight) 1146 ){ 1147 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1148 VdbeCoverage(v); 1149 } 1150 if( zStartAff ){ 1151 if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_BLOB){ 1152 /* Since the comparison is to be performed with no conversions 1153 ** applied to the operands, set the affinity to apply to pRight to 1154 ** SQLITE_AFF_BLOB. */ 1155 zStartAff[nEq] = SQLITE_AFF_BLOB; 1156 } 1157 if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ 1158 zStartAff[nEq] = SQLITE_AFF_BLOB; 1159 } 1160 } 1161 nConstraint++; 1162 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1163 }else if( bSeekPastNull ){ 1164 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1165 nConstraint++; 1166 startEq = 0; 1167 start_constraints = 1; 1168 } 1169 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1170 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 1171 assert( op!=0 ); 1172 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1173 VdbeCoverage(v); 1174 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1175 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1176 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 1177 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1178 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1179 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 1180 1181 /* Load the value for the inequality constraint at the end of the 1182 ** range (if any). 1183 */ 1184 nConstraint = nEq; 1185 if( pRangeEnd ){ 1186 Expr *pRight = pRangeEnd->pExpr->pRight; 1187 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); 1188 sqlite3ExprCode(pParse, pRight, regBase+nEq); 1189 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 1190 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 1191 && sqlite3ExprCanBeNull(pRight) 1192 ){ 1193 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1194 VdbeCoverage(v); 1195 } 1196 if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_BLOB 1197 && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff) 1198 ){ 1199 codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff); 1200 } 1201 nConstraint++; 1202 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 1203 }else if( bStopAtNull ){ 1204 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1205 endEq = 0; 1206 nConstraint++; 1207 } 1208 sqlite3DbFree(db, zStartAff); 1209 1210 /* Top of the loop body */ 1211 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1212 1213 /* Check if the index cursor is past the end of the range. */ 1214 if( nConstraint ){ 1215 op = aEndOp[bRev*2 + endEq]; 1216 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1217 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1218 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1219 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1220 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1221 } 1222 1223 /* Seek the table cursor, if required */ 1224 disableTerm(pLevel, pRangeStart); 1225 disableTerm(pLevel, pRangeEnd); 1226 if( omitTable ){ 1227 /* pIdx is a covering index. No need to access the main table. */ 1228 }else if( HasRowid(pIdx->pTable) ){ 1229 iRowidReg = ++pParse->nMem; 1230 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); 1231 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 1232 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 1233 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg); 1234 VdbeCoverage(v); 1235 }else{ 1236 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ 1237 } 1238 }else if( iCur!=iIdxCur ){ 1239 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1240 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1241 for(j=0; j<pPk->nKeyCol; j++){ 1242 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); 1243 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 1244 } 1245 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 1246 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 1247 } 1248 1249 /* Record the instruction used to terminate the loop. Disable 1250 ** WHERE clause terms made redundant by the index range scan. 1251 */ 1252 if( pLoop->wsFlags & WHERE_ONEROW ){ 1253 pLevel->op = OP_Noop; 1254 }else if( bRev ){ 1255 pLevel->op = OP_Prev; 1256 }else{ 1257 pLevel->op = OP_Next; 1258 } 1259 pLevel->p1 = iIdxCur; 1260 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 1261 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 1262 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 1263 }else{ 1264 assert( pLevel->p5==0 ); 1265 } 1266 }else 1267 1268 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 1269 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 1270 /* Case 5: Two or more separately indexed terms connected by OR 1271 ** 1272 ** Example: 1273 ** 1274 ** CREATE TABLE t1(a,b,c,d); 1275 ** CREATE INDEX i1 ON t1(a); 1276 ** CREATE INDEX i2 ON t1(b); 1277 ** CREATE INDEX i3 ON t1(c); 1278 ** 1279 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 1280 ** 1281 ** In the example, there are three indexed terms connected by OR. 1282 ** The top of the loop looks like this: 1283 ** 1284 ** Null 1 # Zero the rowset in reg 1 1285 ** 1286 ** Then, for each indexed term, the following. The arguments to 1287 ** RowSetTest are such that the rowid of the current row is inserted 1288 ** into the RowSet. If it is already present, control skips the 1289 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 1290 ** 1291 ** sqlite3WhereBegin(<term>) 1292 ** RowSetTest # Insert rowid into rowset 1293 ** Gosub 2 A 1294 ** sqlite3WhereEnd() 1295 ** 1296 ** Following the above, code to terminate the loop. Label A, the target 1297 ** of the Gosub above, jumps to the instruction right after the Goto. 1298 ** 1299 ** Null 1 # Zero the rowset in reg 1 1300 ** Goto B # The loop is finished. 1301 ** 1302 ** A: <loop body> # Return data, whatever. 1303 ** 1304 ** Return 2 # Jump back to the Gosub 1305 ** 1306 ** B: <after the loop> 1307 ** 1308 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 1309 ** use an ephemeral index instead of a RowSet to record the primary 1310 ** keys of the rows we have already seen. 1311 ** 1312 */ 1313 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 1314 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 1315 Index *pCov = 0; /* Potential covering index (or NULL) */ 1316 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 1317 1318 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 1319 int regRowset = 0; /* Register for RowSet object */ 1320 int regRowid = 0; /* Register holding rowid */ 1321 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ 1322 int iRetInit; /* Address of regReturn init */ 1323 int untestedTerms = 0; /* Some terms not completely tested */ 1324 int ii; /* Loop counter */ 1325 u16 wctrlFlags; /* Flags for sub-WHERE clause */ 1326 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 1327 Table *pTab = pTabItem->pTab; 1328 1329 pTerm = pLoop->aLTerm[0]; 1330 assert( pTerm!=0 ); 1331 assert( pTerm->eOperator & WO_OR ); 1332 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 1333 pOrWc = &pTerm->u.pOrInfo->wc; 1334 pLevel->op = OP_Return; 1335 pLevel->p1 = regReturn; 1336 1337 /* Set up a new SrcList in pOrTab containing the table being scanned 1338 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 1339 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 1340 */ 1341 if( pWInfo->nLevel>1 ){ 1342 int nNotReady; /* The number of notReady tables */ 1343 struct SrcList_item *origSrc; /* Original list of tables */ 1344 nNotReady = pWInfo->nLevel - iLevel - 1; 1345 pOrTab = sqlite3StackAllocRaw(db, 1346 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 1347 if( pOrTab==0 ) return notReady; 1348 pOrTab->nAlloc = (u8)(nNotReady + 1); 1349 pOrTab->nSrc = pOrTab->nAlloc; 1350 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 1351 origSrc = pWInfo->pTabList->a; 1352 for(k=1; k<=nNotReady; k++){ 1353 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 1354 } 1355 }else{ 1356 pOrTab = pWInfo->pTabList; 1357 } 1358 1359 /* Initialize the rowset register to contain NULL. An SQL NULL is 1360 ** equivalent to an empty rowset. Or, create an ephemeral index 1361 ** capable of holding primary keys in the case of a WITHOUT ROWID. 1362 ** 1363 ** Also initialize regReturn to contain the address of the instruction 1364 ** immediately following the OP_Return at the bottom of the loop. This 1365 ** is required in a few obscure LEFT JOIN cases where control jumps 1366 ** over the top of the loop into the body of it. In this case the 1367 ** correct response for the end-of-loop code (the OP_Return) is to 1368 ** fall through to the next instruction, just as an OP_Next does if 1369 ** called on an uninitialized cursor. 1370 */ 1371 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 1372 if( HasRowid(pTab) ){ 1373 regRowset = ++pParse->nMem; 1374 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 1375 }else{ 1376 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1377 regRowset = pParse->nTab++; 1378 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 1379 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 1380 } 1381 regRowid = ++pParse->nMem; 1382 } 1383 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 1384 1385 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 1386 ** Then for every term xN, evaluate as the subexpression: xN AND z 1387 ** That way, terms in y that are factored into the disjunction will 1388 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 1389 ** 1390 ** Actually, each subexpression is converted to "xN AND w" where w is 1391 ** the "interesting" terms of z - terms that did not originate in the 1392 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 1393 ** indices. 1394 ** 1395 ** This optimization also only applies if the (x1 OR x2 OR ...) term 1396 ** is not contained in the ON clause of a LEFT JOIN. 1397 ** See ticket http://www.sqlite.org/src/info/f2369304e4 1398 */ 1399 if( pWC->nTerm>1 ){ 1400 int iTerm; 1401 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 1402 Expr *pExpr = pWC->a[iTerm].pExpr; 1403 if( &pWC->a[iTerm] == pTerm ) continue; 1404 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; 1405 if( (pWC->a[iTerm].wtFlags & TERM_VIRTUAL)!=0 ) continue; 1406 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 1407 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); 1408 pExpr = sqlite3ExprDup(db, pExpr, 0); 1409 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); 1410 } 1411 if( pAndExpr ){ 1412 pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr, 0); 1413 } 1414 } 1415 1416 /* Run a separate WHERE clause for each term of the OR clause. After 1417 ** eliminating duplicates from other WHERE clauses, the action for each 1418 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 1419 */ 1420 wctrlFlags = WHERE_OMIT_OPEN_CLOSE 1421 | WHERE_FORCE_TABLE 1422 | WHERE_ONETABLE_ONLY 1423 | WHERE_NO_AUTOINDEX; 1424 for(ii=0; ii<pOrWc->nTerm; ii++){ 1425 WhereTerm *pOrTerm = &pOrWc->a[ii]; 1426 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 1427 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 1428 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 1429 int jmp1 = 0; /* Address of jump operation */ 1430 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){ 1431 pAndExpr->pLeft = pOrExpr; 1432 pOrExpr = pAndExpr; 1433 } 1434 /* Loop through table entries that match term pOrTerm. */ 1435 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 1436 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 1437 wctrlFlags, iCovCur); 1438 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); 1439 if( pSubWInfo ){ 1440 WhereLoop *pSubLoop; 1441 int addrExplain = sqlite3WhereExplainOneScan( 1442 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 1443 ); 1444 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 1445 1446 /* This is the sub-WHERE clause body. First skip over 1447 ** duplicate rows from prior sub-WHERE clauses, and record the 1448 ** rowid (or PRIMARY KEY) for the current row so that the same 1449 ** row will be skipped in subsequent sub-WHERE clauses. 1450 */ 1451 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 1452 int r; 1453 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 1454 if( HasRowid(pTab) ){ 1455 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0); 1456 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 1457 r,iSet); 1458 VdbeCoverage(v); 1459 }else{ 1460 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1461 int nPk = pPk->nKeyCol; 1462 int iPk; 1463 1464 /* Read the PK into an array of temp registers. */ 1465 r = sqlite3GetTempRange(pParse, nPk); 1466 for(iPk=0; iPk<nPk; iPk++){ 1467 int iCol = pPk->aiColumn[iPk]; 1468 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk); 1469 } 1470 1471 /* Check if the temp table already contains this key. If so, 1472 ** the row has already been included in the result set and 1473 ** can be ignored (by jumping past the Gosub below). Otherwise, 1474 ** insert the key into the temp table and proceed with processing 1475 ** the row. 1476 ** 1477 ** Use some of the same optimizations as OP_RowSetTest: If iSet 1478 ** is zero, assume that the key cannot already be present in 1479 ** the temp table. And if iSet is -1, assume that there is no 1480 ** need to insert the key into the temp table, as it will never 1481 ** be tested for. */ 1482 if( iSet ){ 1483 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 1484 VdbeCoverage(v); 1485 } 1486 if( iSet>=0 ){ 1487 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 1488 sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0); 1489 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1490 } 1491 1492 /* Release the array of temp registers */ 1493 sqlite3ReleaseTempRange(pParse, r, nPk); 1494 } 1495 } 1496 1497 /* Invoke the main loop body as a subroutine */ 1498 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 1499 1500 /* Jump here (skipping the main loop body subroutine) if the 1501 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 1502 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 1503 1504 /* The pSubWInfo->untestedTerms flag means that this OR term 1505 ** contained one or more AND term from a notReady table. The 1506 ** terms from the notReady table could not be tested and will 1507 ** need to be tested later. 1508 */ 1509 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 1510 1511 /* If all of the OR-connected terms are optimized using the same 1512 ** index, and the index is opened using the same cursor number 1513 ** by each call to sqlite3WhereBegin() made by this loop, it may 1514 ** be possible to use that index as a covering index. 1515 ** 1516 ** If the call to sqlite3WhereBegin() above resulted in a scan that 1517 ** uses an index, and this is either the first OR-connected term 1518 ** processed or the index is the same as that used by all previous 1519 ** terms, set pCov to the candidate covering index. Otherwise, set 1520 ** pCov to NULL to indicate that no candidate covering index will 1521 ** be available. 1522 */ 1523 pSubLoop = pSubWInfo->a[0].pWLoop; 1524 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 1525 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 1526 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 1527 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 1528 ){ 1529 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 1530 pCov = pSubLoop->u.btree.pIndex; 1531 wctrlFlags |= WHERE_REOPEN_IDX; 1532 }else{ 1533 pCov = 0; 1534 } 1535 1536 /* Finish the loop through table entries that match term pOrTerm. */ 1537 sqlite3WhereEnd(pSubWInfo); 1538 } 1539 } 1540 } 1541 pLevel->u.pCovidx = pCov; 1542 if( pCov ) pLevel->iIdxCur = iCovCur; 1543 if( pAndExpr ){ 1544 pAndExpr->pLeft = 0; 1545 sqlite3ExprDelete(db, pAndExpr); 1546 } 1547 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 1548 sqlite3VdbeGoto(v, pLevel->addrBrk); 1549 sqlite3VdbeResolveLabel(v, iLoopBody); 1550 1551 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab); 1552 if( !untestedTerms ) disableTerm(pLevel, pTerm); 1553 }else 1554 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1555 1556 { 1557 /* Case 6: There is no usable index. We must do a complete 1558 ** scan of the entire table. 1559 */ 1560 static const u8 aStep[] = { OP_Next, OP_Prev }; 1561 static const u8 aStart[] = { OP_Rewind, OP_Last }; 1562 assert( bRev==0 || bRev==1 ); 1563 if( pTabItem->fg.isRecursive ){ 1564 /* Tables marked isRecursive have only a single row that is stored in 1565 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 1566 pLevel->op = OP_Noop; 1567 }else{ 1568 codeCursorHint(pWInfo, pLevel, 0); 1569 pLevel->op = aStep[bRev]; 1570 pLevel->p1 = iCur; 1571 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); 1572 VdbeCoverageIf(v, bRev==0); 1573 VdbeCoverageIf(v, bRev!=0); 1574 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 1575 } 1576 } 1577 1578 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1579 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 1580 #endif 1581 1582 /* Insert code to test every subexpression that can be completely 1583 ** computed using the current set of tables. 1584 */ 1585 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 1586 Expr *pE; 1587 int skipLikeAddr = 0; 1588 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1589 testcase( pTerm->wtFlags & TERM_CODED ); 1590 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1591 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 1592 testcase( pWInfo->untestedTerms==0 1593 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); 1594 pWInfo->untestedTerms = 1; 1595 continue; 1596 } 1597 pE = pTerm->pExpr; 1598 assert( pE!=0 ); 1599 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 1600 continue; 1601 } 1602 if( pTerm->wtFlags & TERM_LIKECOND ){ 1603 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1604 continue; 1605 #else 1606 assert( pLevel->iLikeRepCntr>0 ); 1607 skipLikeAddr = sqlite3VdbeAddOp1(v, OP_IfNot, pLevel->iLikeRepCntr); 1608 VdbeCoverage(v); 1609 #endif 1610 } 1611 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 1612 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 1613 pTerm->wtFlags |= TERM_CODED; 1614 } 1615 1616 /* Insert code to test for implied constraints based on transitivity 1617 ** of the "==" operator. 1618 ** 1619 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 1620 ** and we are coding the t1 loop and the t2 loop has not yet coded, 1621 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 1622 ** the implied "t1.a=123" constraint. 1623 */ 1624 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 1625 Expr *pE, *pEAlt; 1626 WhereTerm *pAlt; 1627 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1628 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 1629 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 1630 if( pTerm->leftCursor!=iCur ) continue; 1631 if( pLevel->iLeftJoin ) continue; 1632 pE = pTerm->pExpr; 1633 assert( !ExprHasProperty(pE, EP_FromJoin) ); 1634 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 1635 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady, 1636 WO_EQ|WO_IN|WO_IS, 0); 1637 if( pAlt==0 ) continue; 1638 if( pAlt->wtFlags & (TERM_CODED) ) continue; 1639 testcase( pAlt->eOperator & WO_EQ ); 1640 testcase( pAlt->eOperator & WO_IS ); 1641 testcase( pAlt->eOperator & WO_IN ); 1642 VdbeModuleComment((v, "begin transitive constraint")); 1643 pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt)); 1644 if( pEAlt ){ 1645 *pEAlt = *pAlt->pExpr; 1646 pEAlt->pLeft = pE->pLeft; 1647 sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL); 1648 sqlite3StackFree(db, pEAlt); 1649 } 1650 } 1651 1652 /* For a LEFT OUTER JOIN, generate code that will record the fact that 1653 ** at least one row of the right table has matched the left table. 1654 */ 1655 if( pLevel->iLeftJoin ){ 1656 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 1657 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 1658 VdbeComment((v, "record LEFT JOIN hit")); 1659 sqlite3ExprCacheClear(pParse); 1660 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 1661 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1662 testcase( pTerm->wtFlags & TERM_CODED ); 1663 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1664 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 1665 assert( pWInfo->untestedTerms ); 1666 continue; 1667 } 1668 assert( pTerm->pExpr ); 1669 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 1670 pTerm->wtFlags |= TERM_CODED; 1671 } 1672 } 1673 1674 return pLevel->notReady; 1675 } 1676