xref: /sqlite-3.40.0/src/wherecode.c (revision 7ac2ee0a)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 
25 /*
26 ** Return the name of the i-th column of the pIdx index.
27 */
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29   i = pIdx->aiColumn[i];
30   if( i==XN_EXPR ) return "<expr>";
31   if( i==XN_ROWID ) return "rowid";
32   return pIdx->pTable->aCol[i].zName;
33 }
34 
35 /*
36 ** This routine is a helper for explainIndexRange() below
37 **
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time.  This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
42 */
43 static void explainAppendTerm(
44   StrAccum *pStr,             /* The text expression being built */
45   Index *pIdx,                /* Index to read column names from */
46   int nTerm,                  /* Number of terms */
47   int iTerm,                  /* Zero-based index of first term. */
48   int bAnd,                   /* Non-zero to append " AND " */
49   const char *zOp             /* Name of the operator */
50 ){
51   int i;
52 
53   assert( nTerm>=1 );
54   if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
55 
56   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
57   for(i=0; i<nTerm; i++){
58     if( i ) sqlite3_str_append(pStr, ",", 1);
59     sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
60   }
61   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
62 
63   sqlite3_str_append(pStr, zOp, 1);
64 
65   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
66   for(i=0; i<nTerm; i++){
67     if( i ) sqlite3_str_append(pStr, ",", 1);
68     sqlite3_str_append(pStr, "?", 1);
69   }
70   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
71 }
72 
73 /*
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
77 **
78 ** For example, if the query:
79 **
80 **   SELECT * FROM t1 WHERE a=1 AND b>2;
81 **
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
84 **
85 **   "a=? AND b>?"
86 */
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88   Index *pIndex = pLoop->u.btree.pIndex;
89   u16 nEq = pLoop->u.btree.nEq;
90   u16 nSkip = pLoop->nSkip;
91   int i, j;
92 
93   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94   sqlite3_str_append(pStr, " (", 2);
95   for(i=0; i<nEq; i++){
96     const char *z = explainIndexColumnName(pIndex, i);
97     if( i ) sqlite3_str_append(pStr, " AND ", 5);
98     sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
99   }
100 
101   j = i;
102   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104     i = 1;
105   }
106   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
108   }
109   sqlite3_str_append(pStr, ")", 1);
110 }
111 
112 /*
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
117 **
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
120 */
121 int sqlite3WhereExplainOneScan(
122   Parse *pParse,                  /* Parse context */
123   SrcList *pTabList,              /* Table list this loop refers to */
124   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
125   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
126 ){
127   int ret = 0;
128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
129   if( sqlite3ParseToplevel(pParse)->explain==2 )
130 #endif
131   {
132     struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
133     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
134     sqlite3 *db = pParse->db;     /* Database handle */
135     int isSearch;                 /* True for a SEARCH. False for SCAN. */
136     WhereLoop *pLoop;             /* The controlling WhereLoop object */
137     u32 flags;                    /* Flags that describe this loop */
138     char *zMsg;                   /* Text to add to EQP output */
139     StrAccum str;                 /* EQP output string */
140     char zBuf[100];               /* Initial space for EQP output string */
141 
142     pLoop = pLevel->pWLoop;
143     flags = pLoop->wsFlags;
144     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
145 
146     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
147             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
148             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
149 
150     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
151     sqlite3_str_appendall(&str, isSearch ? "SEARCH" : "SCAN");
152     if( pItem->pSelect ){
153       sqlite3_str_appendf(&str, " SUBQUERY %u", pItem->pSelect->selId);
154     }else{
155       sqlite3_str_appendf(&str, " TABLE %s", pItem->zName);
156     }
157 
158     if( pItem->zAlias ){
159       sqlite3_str_appendf(&str, " AS %s", pItem->zAlias);
160     }
161     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
162       const char *zFmt = 0;
163       Index *pIdx;
164 
165       assert( pLoop->u.btree.pIndex!=0 );
166       pIdx = pLoop->u.btree.pIndex;
167       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
168       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
169         if( isSearch ){
170           zFmt = "PRIMARY KEY";
171         }
172       }else if( flags & WHERE_PARTIALIDX ){
173         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
174       }else if( flags & WHERE_AUTO_INDEX ){
175         zFmt = "AUTOMATIC COVERING INDEX";
176       }else if( flags & WHERE_IDX_ONLY ){
177         zFmt = "COVERING INDEX %s";
178       }else{
179         zFmt = "INDEX %s";
180       }
181       if( zFmt ){
182         sqlite3_str_append(&str, " USING ", 7);
183         sqlite3_str_appendf(&str, zFmt, pIdx->zName);
184         explainIndexRange(&str, pLoop);
185       }
186     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
187       const char *zRangeOp;
188       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
189         zRangeOp = "=";
190       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
191         zRangeOp = ">? AND rowid<";
192       }else if( flags&WHERE_BTM_LIMIT ){
193         zRangeOp = ">";
194       }else{
195         assert( flags&WHERE_TOP_LIMIT);
196         zRangeOp = "<";
197       }
198       sqlite3_str_appendf(&str,
199           " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
200     }
201 #ifndef SQLITE_OMIT_VIRTUALTABLE
202     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
203       sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
204                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
205     }
206 #endif
207 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
208     if( pLoop->nOut>=10 ){
209       sqlite3_str_appendf(&str, " (~%llu rows)",
210              sqlite3LogEstToInt(pLoop->nOut));
211     }else{
212       sqlite3_str_append(&str, " (~1 row)", 9);
213     }
214 #endif
215     zMsg = sqlite3StrAccumFinish(&str);
216     sqlite3ExplainBreakpoint("",zMsg);
217     ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
218                             pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
219   }
220   return ret;
221 }
222 #endif /* SQLITE_OMIT_EXPLAIN */
223 
224 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
225 /*
226 ** Configure the VM passed as the first argument with an
227 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
228 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
229 ** clause that the scan reads data from.
230 **
231 ** If argument addrExplain is not 0, it must be the address of an
232 ** OP_Explain instruction that describes the same loop.
233 */
234 void sqlite3WhereAddScanStatus(
235   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
236   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
237   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
238   int addrExplain                 /* Address of OP_Explain (or 0) */
239 ){
240   const char *zObj = 0;
241   WhereLoop *pLoop = pLvl->pWLoop;
242   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
243     zObj = pLoop->u.btree.pIndex->zName;
244   }else{
245     zObj = pSrclist->a[pLvl->iFrom].zName;
246   }
247   sqlite3VdbeScanStatus(
248       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
249   );
250 }
251 #endif
252 
253 
254 /*
255 ** Disable a term in the WHERE clause.  Except, do not disable the term
256 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
257 ** or USING clause of that join.
258 **
259 ** Consider the term t2.z='ok' in the following queries:
260 **
261 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
262 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
263 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
264 **
265 ** The t2.z='ok' is disabled in the in (2) because it originates
266 ** in the ON clause.  The term is disabled in (3) because it is not part
267 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
268 **
269 ** Disabling a term causes that term to not be tested in the inner loop
270 ** of the join.  Disabling is an optimization.  When terms are satisfied
271 ** by indices, we disable them to prevent redundant tests in the inner
272 ** loop.  We would get the correct results if nothing were ever disabled,
273 ** but joins might run a little slower.  The trick is to disable as much
274 ** as we can without disabling too much.  If we disabled in (1), we'd get
275 ** the wrong answer.  See ticket #813.
276 **
277 ** If all the children of a term are disabled, then that term is also
278 ** automatically disabled.  In this way, terms get disabled if derived
279 ** virtual terms are tested first.  For example:
280 **
281 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
282 **      \___________/     \______/     \_____/
283 **         parent          child1       child2
284 **
285 ** Only the parent term was in the original WHERE clause.  The child1
286 ** and child2 terms were added by the LIKE optimization.  If both of
287 ** the virtual child terms are valid, then testing of the parent can be
288 ** skipped.
289 **
290 ** Usually the parent term is marked as TERM_CODED.  But if the parent
291 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
292 ** The TERM_LIKECOND marking indicates that the term should be coded inside
293 ** a conditional such that is only evaluated on the second pass of a
294 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
295 */
296 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
297   int nLoop = 0;
298   assert( pTerm!=0 );
299   while( (pTerm->wtFlags & TERM_CODED)==0
300       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
301       && (pLevel->notReady & pTerm->prereqAll)==0
302   ){
303     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
304       pTerm->wtFlags |= TERM_LIKECOND;
305     }else{
306       pTerm->wtFlags |= TERM_CODED;
307     }
308     if( pTerm->iParent<0 ) break;
309     pTerm = &pTerm->pWC->a[pTerm->iParent];
310     assert( pTerm!=0 );
311     pTerm->nChild--;
312     if( pTerm->nChild!=0 ) break;
313     nLoop++;
314   }
315 }
316 
317 /*
318 ** Code an OP_Affinity opcode to apply the column affinity string zAff
319 ** to the n registers starting at base.
320 **
321 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the
322 ** beginning and end of zAff are ignored.  If all entries in zAff are
323 ** SQLITE_AFF_BLOB, then no code gets generated.
324 **
325 ** This routine makes its own copy of zAff so that the caller is free
326 ** to modify zAff after this routine returns.
327 */
328 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
329   Vdbe *v = pParse->pVdbe;
330   if( zAff==0 ){
331     assert( pParse->db->mallocFailed );
332     return;
333   }
334   assert( v!=0 );
335 
336   /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning
337   ** and end of the affinity string.
338   */
339   while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){
340     n--;
341     base++;
342     zAff++;
343   }
344   while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){
345     n--;
346   }
347 
348   /* Code the OP_Affinity opcode if there is anything left to do. */
349   if( n>0 ){
350     sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
351   }
352 }
353 
354 /*
355 ** Expression pRight, which is the RHS of a comparison operation, is
356 ** either a vector of n elements or, if n==1, a scalar expression.
357 ** Before the comparison operation, affinity zAff is to be applied
358 ** to the pRight values. This function modifies characters within the
359 ** affinity string to SQLITE_AFF_BLOB if either:
360 **
361 **   * the comparison will be performed with no affinity, or
362 **   * the affinity change in zAff is guaranteed not to change the value.
363 */
364 static void updateRangeAffinityStr(
365   Expr *pRight,                   /* RHS of comparison */
366   int n,                          /* Number of vector elements in comparison */
367   char *zAff                      /* Affinity string to modify */
368 ){
369   int i;
370   for(i=0; i<n; i++){
371     Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
372     if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
373      || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
374     ){
375       zAff[i] = SQLITE_AFF_BLOB;
376     }
377   }
378 }
379 
380 
381 /*
382 ** pX is an expression of the form:  (vector) IN (SELECT ...)
383 ** In other words, it is a vector IN operator with a SELECT clause on the
384 ** LHS.  But not all terms in the vector are indexable and the terms might
385 ** not be in the correct order for indexing.
386 **
387 ** This routine makes a copy of the input pX expression and then adjusts
388 ** the vector on the LHS with corresponding changes to the SELECT so that
389 ** the vector contains only index terms and those terms are in the correct
390 ** order.  The modified IN expression is returned.  The caller is responsible
391 ** for deleting the returned expression.
392 **
393 ** Example:
394 **
395 **    CREATE TABLE t1(a,b,c,d,e,f);
396 **    CREATE INDEX t1x1 ON t1(e,c);
397 **    SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
398 **                           \_______________________________________/
399 **                                     The pX expression
400 **
401 ** Since only columns e and c can be used with the index, in that order,
402 ** the modified IN expression that is returned will be:
403 **
404 **        (e,c) IN (SELECT z,x FROM t2)
405 **
406 ** The reduced pX is different from the original (obviously) and thus is
407 ** only used for indexing, to improve performance.  The original unaltered
408 ** IN expression must also be run on each output row for correctness.
409 */
410 static Expr *removeUnindexableInClauseTerms(
411   Parse *pParse,        /* The parsing context */
412   int iEq,              /* Look at loop terms starting here */
413   WhereLoop *pLoop,     /* The current loop */
414   Expr *pX              /* The IN expression to be reduced */
415 ){
416   sqlite3 *db = pParse->db;
417   Expr *pNew = sqlite3ExprDup(db, pX, 0);
418   if( db->mallocFailed==0 ){
419     ExprList *pOrigRhs = pNew->x.pSelect->pEList;  /* Original unmodified RHS */
420     ExprList *pOrigLhs = pNew->pLeft->x.pList;     /* Original unmodified LHS */
421     ExprList *pRhs = 0;         /* New RHS after modifications */
422     ExprList *pLhs = 0;         /* New LHS after mods */
423     int i;                      /* Loop counter */
424     Select *pSelect;            /* Pointer to the SELECT on the RHS */
425 
426     for(i=iEq; i<pLoop->nLTerm; i++){
427       if( pLoop->aLTerm[i]->pExpr==pX ){
428         int iField = pLoop->aLTerm[i]->iField - 1;
429         if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
430         pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
431         pOrigRhs->a[iField].pExpr = 0;
432         assert( pOrigLhs->a[iField].pExpr!=0 );
433         pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
434         pOrigLhs->a[iField].pExpr = 0;
435       }
436     }
437     sqlite3ExprListDelete(db, pOrigRhs);
438     sqlite3ExprListDelete(db, pOrigLhs);
439     pNew->pLeft->x.pList = pLhs;
440     pNew->x.pSelect->pEList = pRhs;
441     if( pLhs && pLhs->nExpr==1 ){
442       /* Take care here not to generate a TK_VECTOR containing only a
443       ** single value. Since the parser never creates such a vector, some
444       ** of the subroutines do not handle this case.  */
445       Expr *p = pLhs->a[0].pExpr;
446       pLhs->a[0].pExpr = 0;
447       sqlite3ExprDelete(db, pNew->pLeft);
448       pNew->pLeft = p;
449     }
450     pSelect = pNew->x.pSelect;
451     if( pSelect->pOrderBy ){
452       /* If the SELECT statement has an ORDER BY clause, zero the
453       ** iOrderByCol variables. These are set to non-zero when an
454       ** ORDER BY term exactly matches one of the terms of the
455       ** result-set. Since the result-set of the SELECT statement may
456       ** have been modified or reordered, these variables are no longer
457       ** set correctly.  Since setting them is just an optimization,
458       ** it's easiest just to zero them here.  */
459       ExprList *pOrderBy = pSelect->pOrderBy;
460       for(i=0; i<pOrderBy->nExpr; i++){
461         pOrderBy->a[i].u.x.iOrderByCol = 0;
462       }
463     }
464 
465 #if 0
466     printf("For indexing, change the IN expr:\n");
467     sqlite3TreeViewExpr(0, pX, 0);
468     printf("Into:\n");
469     sqlite3TreeViewExpr(0, pNew, 0);
470 #endif
471   }
472   return pNew;
473 }
474 
475 
476 /*
477 ** Generate code for a single equality term of the WHERE clause.  An equality
478 ** term can be either X=expr or X IN (...).   pTerm is the term to be
479 ** coded.
480 **
481 ** The current value for the constraint is left in a register, the index
482 ** of which is returned.  An attempt is made store the result in iTarget but
483 ** this is only guaranteed for TK_ISNULL and TK_IN constraints.  If the
484 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
485 ** some other register and it is the caller's responsibility to compensate.
486 **
487 ** For a constraint of the form X=expr, the expression is evaluated in
488 ** straight-line code.  For constraints of the form X IN (...)
489 ** this routine sets up a loop that will iterate over all values of X.
490 */
491 static int codeEqualityTerm(
492   Parse *pParse,      /* The parsing context */
493   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
494   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
495   int iEq,            /* Index of the equality term within this level */
496   int bRev,           /* True for reverse-order IN operations */
497   int iTarget         /* Attempt to leave results in this register */
498 ){
499   Expr *pX = pTerm->pExpr;
500   Vdbe *v = pParse->pVdbe;
501   int iReg;                  /* Register holding results */
502 
503   assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
504   assert( iTarget>0 );
505   if( pX->op==TK_EQ || pX->op==TK_IS ){
506     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
507   }else if( pX->op==TK_ISNULL ){
508     iReg = iTarget;
509     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
510 #ifndef SQLITE_OMIT_SUBQUERY
511   }else{
512     int eType = IN_INDEX_NOOP;
513     int iTab;
514     struct InLoop *pIn;
515     WhereLoop *pLoop = pLevel->pWLoop;
516     int i;
517     int nEq = 0;
518     int *aiMap = 0;
519 
520     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
521       && pLoop->u.btree.pIndex!=0
522       && pLoop->u.btree.pIndex->aSortOrder[iEq]
523     ){
524       testcase( iEq==0 );
525       testcase( bRev );
526       bRev = !bRev;
527     }
528     assert( pX->op==TK_IN );
529     iReg = iTarget;
530 
531     for(i=0; i<iEq; i++){
532       if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
533         disableTerm(pLevel, pTerm);
534         return iTarget;
535       }
536     }
537     for(i=iEq;i<pLoop->nLTerm; i++){
538       assert( pLoop->aLTerm[i]!=0 );
539       if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
540     }
541 
542     iTab = 0;
543     if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){
544       eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab);
545     }else{
546       sqlite3 *db = pParse->db;
547       pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
548 
549       if( !db->mallocFailed ){
550         aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
551         eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab);
552         pTerm->pExpr->iTable = iTab;
553       }
554       sqlite3ExprDelete(db, pX);
555       pX = pTerm->pExpr;
556     }
557 
558     if( eType==IN_INDEX_INDEX_DESC ){
559       testcase( bRev );
560       bRev = !bRev;
561     }
562     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
563     VdbeCoverageIf(v, bRev);
564     VdbeCoverageIf(v, !bRev);
565     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
566 
567     pLoop->wsFlags |= WHERE_IN_ABLE;
568     if( pLevel->u.in.nIn==0 ){
569       pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
570     }
571 
572     i = pLevel->u.in.nIn;
573     pLevel->u.in.nIn += nEq;
574     pLevel->u.in.aInLoop =
575        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
576                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
577     pIn = pLevel->u.in.aInLoop;
578     if( pIn ){
579       int iMap = 0;               /* Index in aiMap[] */
580       pIn += i;
581       for(i=iEq;i<pLoop->nLTerm; i++){
582         if( pLoop->aLTerm[i]->pExpr==pX ){
583           int iOut = iReg + i - iEq;
584           if( eType==IN_INDEX_ROWID ){
585             pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
586           }else{
587             int iCol = aiMap ? aiMap[iMap++] : 0;
588             pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
589           }
590           sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
591           if( i==iEq ){
592             pIn->iCur = iTab;
593             pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
594             if( iEq>0 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ){
595               pIn->iBase = iReg - i;
596               pIn->nPrefix = i;
597               pLoop->wsFlags |= WHERE_IN_EARLYOUT;
598             }else{
599               pIn->nPrefix = 0;
600             }
601           }else{
602             pIn->eEndLoopOp = OP_Noop;
603           }
604           pIn++;
605         }
606       }
607     }else{
608       pLevel->u.in.nIn = 0;
609     }
610     sqlite3DbFree(pParse->db, aiMap);
611 #endif
612   }
613   disableTerm(pLevel, pTerm);
614   return iReg;
615 }
616 
617 /*
618 ** Generate code that will evaluate all == and IN constraints for an
619 ** index scan.
620 **
621 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
622 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
623 ** The index has as many as three equality constraints, but in this
624 ** example, the third "c" value is an inequality.  So only two
625 ** constraints are coded.  This routine will generate code to evaluate
626 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
627 ** in consecutive registers and the index of the first register is returned.
628 **
629 ** In the example above nEq==2.  But this subroutine works for any value
630 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
631 ** The only thing it does is allocate the pLevel->iMem memory cell and
632 ** compute the affinity string.
633 **
634 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
635 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
636 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
637 ** occurs after the nEq quality constraints.
638 **
639 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
640 ** the index of the first memory cell in that range. The code that
641 ** calls this routine will use that memory range to store keys for
642 ** start and termination conditions of the loop.
643 ** key value of the loop.  If one or more IN operators appear, then
644 ** this routine allocates an additional nEq memory cells for internal
645 ** use.
646 **
647 ** Before returning, *pzAff is set to point to a buffer containing a
648 ** copy of the column affinity string of the index allocated using
649 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
650 ** with equality constraints that use BLOB or NONE affinity are set to
651 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
652 **
653 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
654 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
655 **
656 ** In the example above, the index on t1(a) has TEXT affinity. But since
657 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
658 ** no conversion should be attempted before using a t2.b value as part of
659 ** a key to search the index. Hence the first byte in the returned affinity
660 ** string in this example would be set to SQLITE_AFF_BLOB.
661 */
662 static int codeAllEqualityTerms(
663   Parse *pParse,        /* Parsing context */
664   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
665   int bRev,             /* Reverse the order of IN operators */
666   int nExtraReg,        /* Number of extra registers to allocate */
667   char **pzAff          /* OUT: Set to point to affinity string */
668 ){
669   u16 nEq;                      /* The number of == or IN constraints to code */
670   u16 nSkip;                    /* Number of left-most columns to skip */
671   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
672   Index *pIdx;                  /* The index being used for this loop */
673   WhereTerm *pTerm;             /* A single constraint term */
674   WhereLoop *pLoop;             /* The WhereLoop object */
675   int j;                        /* Loop counter */
676   int regBase;                  /* Base register */
677   int nReg;                     /* Number of registers to allocate */
678   char *zAff;                   /* Affinity string to return */
679 
680   /* This module is only called on query plans that use an index. */
681   pLoop = pLevel->pWLoop;
682   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
683   nEq = pLoop->u.btree.nEq;
684   nSkip = pLoop->nSkip;
685   pIdx = pLoop->u.btree.pIndex;
686   assert( pIdx!=0 );
687 
688   /* Figure out how many memory cells we will need then allocate them.
689   */
690   regBase = pParse->nMem + 1;
691   nReg = pLoop->u.btree.nEq + nExtraReg;
692   pParse->nMem += nReg;
693 
694   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
695   assert( zAff!=0 || pParse->db->mallocFailed );
696 
697   if( nSkip ){
698     int iIdxCur = pLevel->iIdxCur;
699     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
700     VdbeCoverageIf(v, bRev==0);
701     VdbeCoverageIf(v, bRev!=0);
702     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
703     j = sqlite3VdbeAddOp0(v, OP_Goto);
704     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
705                             iIdxCur, 0, regBase, nSkip);
706     VdbeCoverageIf(v, bRev==0);
707     VdbeCoverageIf(v, bRev!=0);
708     sqlite3VdbeJumpHere(v, j);
709     for(j=0; j<nSkip; j++){
710       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
711       testcase( pIdx->aiColumn[j]==XN_EXPR );
712       VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
713     }
714   }
715 
716   /* Evaluate the equality constraints
717   */
718   assert( zAff==0 || (int)strlen(zAff)>=nEq );
719   for(j=nSkip; j<nEq; j++){
720     int r1;
721     pTerm = pLoop->aLTerm[j];
722     assert( pTerm!=0 );
723     /* The following testcase is true for indices with redundant columns.
724     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
725     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
726     testcase( pTerm->wtFlags & TERM_VIRTUAL );
727     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
728     if( r1!=regBase+j ){
729       if( nReg==1 ){
730         sqlite3ReleaseTempReg(pParse, regBase);
731         regBase = r1;
732       }else{
733         sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
734       }
735     }
736     if( pTerm->eOperator & WO_IN ){
737       if( pTerm->pExpr->flags & EP_xIsSelect ){
738         /* No affinity ever needs to be (or should be) applied to a value
739         ** from the RHS of an "? IN (SELECT ...)" expression. The
740         ** sqlite3FindInIndex() routine has already ensured that the
741         ** affinity of the comparison has been applied to the value.  */
742         if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
743       }
744     }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
745       Expr *pRight = pTerm->pExpr->pRight;
746       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
747         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
748         VdbeCoverage(v);
749       }
750       if( zAff ){
751         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
752           zAff[j] = SQLITE_AFF_BLOB;
753         }
754         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
755           zAff[j] = SQLITE_AFF_BLOB;
756         }
757       }
758     }
759   }
760   *pzAff = zAff;
761   return regBase;
762 }
763 
764 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
765 /*
766 ** If the most recently coded instruction is a constant range constraint
767 ** (a string literal) that originated from the LIKE optimization, then
768 ** set P3 and P5 on the OP_String opcode so that the string will be cast
769 ** to a BLOB at appropriate times.
770 **
771 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
772 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
773 ** scan loop run twice, once for strings and a second time for BLOBs.
774 ** The OP_String opcodes on the second pass convert the upper and lower
775 ** bound string constants to blobs.  This routine makes the necessary changes
776 ** to the OP_String opcodes for that to happen.
777 **
778 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
779 ** only the one pass through the string space is required, so this routine
780 ** becomes a no-op.
781 */
782 static void whereLikeOptimizationStringFixup(
783   Vdbe *v,                /* prepared statement under construction */
784   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
785   WhereTerm *pTerm        /* The upper or lower bound just coded */
786 ){
787   if( pTerm->wtFlags & TERM_LIKEOPT ){
788     VdbeOp *pOp;
789     assert( pLevel->iLikeRepCntr>0 );
790     pOp = sqlite3VdbeGetOp(v, -1);
791     assert( pOp!=0 );
792     assert( pOp->opcode==OP_String8
793             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
794     pOp->p3 = (int)(pLevel->iLikeRepCntr>>1);  /* Register holding counter */
795     pOp->p5 = (u8)(pLevel->iLikeRepCntr&1);    /* ASC or DESC */
796   }
797 }
798 #else
799 # define whereLikeOptimizationStringFixup(A,B,C)
800 #endif
801 
802 #ifdef SQLITE_ENABLE_CURSOR_HINTS
803 /*
804 ** Information is passed from codeCursorHint() down to individual nodes of
805 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
806 ** structure.
807 */
808 struct CCurHint {
809   int iTabCur;    /* Cursor for the main table */
810   int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
811   Index *pIdx;    /* The index used to access the table */
812 };
813 
814 /*
815 ** This function is called for every node of an expression that is a candidate
816 ** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
817 ** the table CCurHint.iTabCur, verify that the same column can be
818 ** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
819 */
820 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
821   struct CCurHint *pHint = pWalker->u.pCCurHint;
822   assert( pHint->pIdx!=0 );
823   if( pExpr->op==TK_COLUMN
824    && pExpr->iTable==pHint->iTabCur
825    && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0
826   ){
827     pWalker->eCode = 1;
828   }
829   return WRC_Continue;
830 }
831 
832 /*
833 ** Test whether or not expression pExpr, which was part of a WHERE clause,
834 ** should be included in the cursor-hint for a table that is on the rhs
835 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
836 ** expression is not suitable.
837 **
838 ** An expression is unsuitable if it might evaluate to non NULL even if
839 ** a TK_COLUMN node that does affect the value of the expression is set
840 ** to NULL. For example:
841 **
842 **   col IS NULL
843 **   col IS NOT NULL
844 **   coalesce(col, 1)
845 **   CASE WHEN col THEN 0 ELSE 1 END
846 */
847 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
848   if( pExpr->op==TK_IS
849    || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
850    || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
851   ){
852     pWalker->eCode = 1;
853   }else if( pExpr->op==TK_FUNCTION ){
854     int d1;
855     char d2[4];
856     if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
857       pWalker->eCode = 1;
858     }
859   }
860 
861   return WRC_Continue;
862 }
863 
864 
865 /*
866 ** This function is called on every node of an expression tree used as an
867 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
868 ** that accesses any table other than the one identified by
869 ** CCurHint.iTabCur, then do the following:
870 **
871 **   1) allocate a register and code an OP_Column instruction to read
872 **      the specified column into the new register, and
873 **
874 **   2) transform the expression node to a TK_REGISTER node that reads
875 **      from the newly populated register.
876 **
877 ** Also, if the node is a TK_COLUMN that does access the table idenified
878 ** by pCCurHint.iTabCur, and an index is being used (which we will
879 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
880 ** an access of the index rather than the original table.
881 */
882 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
883   int rc = WRC_Continue;
884   struct CCurHint *pHint = pWalker->u.pCCurHint;
885   if( pExpr->op==TK_COLUMN ){
886     if( pExpr->iTable!=pHint->iTabCur ){
887       int reg = ++pWalker->pParse->nMem;   /* Register for column value */
888       sqlite3ExprCode(pWalker->pParse, pExpr, reg);
889       pExpr->op = TK_REGISTER;
890       pExpr->iTable = reg;
891     }else if( pHint->pIdx!=0 ){
892       pExpr->iTable = pHint->iIdxCur;
893       pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn);
894       assert( pExpr->iColumn>=0 );
895     }
896   }else if( pExpr->op==TK_AGG_FUNCTION ){
897     /* An aggregate function in the WHERE clause of a query means this must
898     ** be a correlated sub-query, and expression pExpr is an aggregate from
899     ** the parent context. Do not walk the function arguments in this case.
900     **
901     ** todo: It should be possible to replace this node with a TK_REGISTER
902     ** expression, as the result of the expression must be stored in a
903     ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
904     rc = WRC_Prune;
905   }
906   return rc;
907 }
908 
909 /*
910 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
911 */
912 static void codeCursorHint(
913   struct SrcList_item *pTabItem,  /* FROM clause item */
914   WhereInfo *pWInfo,    /* The where clause */
915   WhereLevel *pLevel,   /* Which loop to provide hints for */
916   WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
917 ){
918   Parse *pParse = pWInfo->pParse;
919   sqlite3 *db = pParse->db;
920   Vdbe *v = pParse->pVdbe;
921   Expr *pExpr = 0;
922   WhereLoop *pLoop = pLevel->pWLoop;
923   int iCur;
924   WhereClause *pWC;
925   WhereTerm *pTerm;
926   int i, j;
927   struct CCurHint sHint;
928   Walker sWalker;
929 
930   if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
931   iCur = pLevel->iTabCur;
932   assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
933   sHint.iTabCur = iCur;
934   sHint.iIdxCur = pLevel->iIdxCur;
935   sHint.pIdx = pLoop->u.btree.pIndex;
936   memset(&sWalker, 0, sizeof(sWalker));
937   sWalker.pParse = pParse;
938   sWalker.u.pCCurHint = &sHint;
939   pWC = &pWInfo->sWC;
940   for(i=0; i<pWC->nTerm; i++){
941     pTerm = &pWC->a[i];
942     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
943     if( pTerm->prereqAll & pLevel->notReady ) continue;
944 
945     /* Any terms specified as part of the ON(...) clause for any LEFT
946     ** JOIN for which the current table is not the rhs are omitted
947     ** from the cursor-hint.
948     **
949     ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
950     ** that were specified as part of the WHERE clause must be excluded.
951     ** This is to address the following:
952     **
953     **   SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
954     **
955     ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
956     ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
957     ** pushed down to the cursor, this row is filtered out, causing
958     ** SQLite to synthesize a row of NULL values. Which does match the
959     ** WHERE clause, and so the query returns a row. Which is incorrect.
960     **
961     ** For the same reason, WHERE terms such as:
962     **
963     **   WHERE 1 = (t2.c IS NULL)
964     **
965     ** are also excluded. See codeCursorHintIsOrFunction() for details.
966     */
967     if( pTabItem->fg.jointype & JT_LEFT ){
968       Expr *pExpr = pTerm->pExpr;
969       if( !ExprHasProperty(pExpr, EP_FromJoin)
970        || pExpr->iRightJoinTable!=pTabItem->iCursor
971       ){
972         sWalker.eCode = 0;
973         sWalker.xExprCallback = codeCursorHintIsOrFunction;
974         sqlite3WalkExpr(&sWalker, pTerm->pExpr);
975         if( sWalker.eCode ) continue;
976       }
977     }else{
978       if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
979     }
980 
981     /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
982     ** the cursor.  These terms are not needed as hints for a pure range
983     ** scan (that has no == terms) so omit them. */
984     if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
985       for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
986       if( j<pLoop->nLTerm ) continue;
987     }
988 
989     /* No subqueries or non-deterministic functions allowed */
990     if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
991 
992     /* For an index scan, make sure referenced columns are actually in
993     ** the index. */
994     if( sHint.pIdx!=0 ){
995       sWalker.eCode = 0;
996       sWalker.xExprCallback = codeCursorHintCheckExpr;
997       sqlite3WalkExpr(&sWalker, pTerm->pExpr);
998       if( sWalker.eCode ) continue;
999     }
1000 
1001     /* If we survive all prior tests, that means this term is worth hinting */
1002     pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
1003   }
1004   if( pExpr!=0 ){
1005     sWalker.xExprCallback = codeCursorHintFixExpr;
1006     sqlite3WalkExpr(&sWalker, pExpr);
1007     sqlite3VdbeAddOp4(v, OP_CursorHint,
1008                       (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
1009                       (const char*)pExpr, P4_EXPR);
1010   }
1011 }
1012 #else
1013 # define codeCursorHint(A,B,C,D)  /* No-op */
1014 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1015 
1016 /*
1017 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1018 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1019 ** function generates code to do a deferred seek of cursor iCur to the
1020 ** rowid stored in register iRowid.
1021 **
1022 ** Normally, this is just:
1023 **
1024 **   OP_DeferredSeek $iCur $iRowid
1025 **
1026 ** However, if the scan currently being coded is a branch of an OR-loop and
1027 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek
1028 ** is set to iIdxCur and P4 is set to point to an array of integers
1029 ** containing one entry for each column of the table cursor iCur is open
1030 ** on. For each table column, if the column is the i'th column of the
1031 ** index, then the corresponding array entry is set to (i+1). If the column
1032 ** does not appear in the index at all, the array entry is set to 0.
1033 */
1034 static void codeDeferredSeek(
1035   WhereInfo *pWInfo,              /* Where clause context */
1036   Index *pIdx,                    /* Index scan is using */
1037   int iCur,                       /* Cursor for IPK b-tree */
1038   int iIdxCur                     /* Index cursor */
1039 ){
1040   Parse *pParse = pWInfo->pParse; /* Parse context */
1041   Vdbe *v = pParse->pVdbe;        /* Vdbe to generate code within */
1042 
1043   assert( iIdxCur>0 );
1044   assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1045 
1046   sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1047   if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1048    && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1049   ){
1050     int i;
1051     Table *pTab = pIdx->pTable;
1052     int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1));
1053     if( ai ){
1054       ai[0] = pTab->nCol;
1055       for(i=0; i<pIdx->nColumn-1; i++){
1056         assert( pIdx->aiColumn[i]<pTab->nCol );
1057         if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1;
1058       }
1059       sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1060     }
1061   }
1062 }
1063 
1064 /*
1065 ** If the expression passed as the second argument is a vector, generate
1066 ** code to write the first nReg elements of the vector into an array
1067 ** of registers starting with iReg.
1068 **
1069 ** If the expression is not a vector, then nReg must be passed 1. In
1070 ** this case, generate code to evaluate the expression and leave the
1071 ** result in register iReg.
1072 */
1073 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1074   assert( nReg>0 );
1075   if( p && sqlite3ExprIsVector(p) ){
1076 #ifndef SQLITE_OMIT_SUBQUERY
1077     if( (p->flags & EP_xIsSelect) ){
1078       Vdbe *v = pParse->pVdbe;
1079       int iSelect;
1080       assert( p->op==TK_SELECT );
1081       iSelect = sqlite3CodeSubselect(pParse, p);
1082       sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1083     }else
1084 #endif
1085     {
1086       int i;
1087       ExprList *pList = p->x.pList;
1088       assert( nReg<=pList->nExpr );
1089       for(i=0; i<nReg; i++){
1090         sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1091       }
1092     }
1093   }else{
1094     assert( nReg==1 );
1095     sqlite3ExprCode(pParse, p, iReg);
1096   }
1097 }
1098 
1099 /* An instance of the IdxExprTrans object carries information about a
1100 ** mapping from an expression on table columns into a column in an index
1101 ** down through the Walker.
1102 */
1103 typedef struct IdxExprTrans {
1104   Expr *pIdxExpr;    /* The index expression */
1105   int iTabCur;       /* The cursor of the corresponding table */
1106   int iIdxCur;       /* The cursor for the index */
1107   int iIdxCol;       /* The column for the index */
1108 } IdxExprTrans;
1109 
1110 /* The walker node callback used to transform matching expressions into
1111 ** a reference to an index column for an index on an expression.
1112 **
1113 ** If pExpr matches, then transform it into a reference to the index column
1114 ** that contains the value of pExpr.
1115 */
1116 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1117   IdxExprTrans *pX = p->u.pIdxTrans;
1118   if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1119     pExpr->op = TK_COLUMN;
1120     pExpr->iTable = pX->iIdxCur;
1121     pExpr->iColumn = pX->iIdxCol;
1122     pExpr->y.pTab = 0;
1123     return WRC_Prune;
1124   }else{
1125     return WRC_Continue;
1126   }
1127 }
1128 
1129 /*
1130 ** For an indexes on expression X, locate every instance of expression X
1131 ** in pExpr and change that subexpression into a reference to the appropriate
1132 ** column of the index.
1133 */
1134 static void whereIndexExprTrans(
1135   Index *pIdx,      /* The Index */
1136   int iTabCur,      /* Cursor of the table that is being indexed */
1137   int iIdxCur,      /* Cursor of the index itself */
1138   WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1139 ){
1140   int iIdxCol;               /* Column number of the index */
1141   ExprList *aColExpr;        /* Expressions that are indexed */
1142   Walker w;
1143   IdxExprTrans x;
1144   aColExpr = pIdx->aColExpr;
1145   if( aColExpr==0 ) return;  /* Not an index on expressions */
1146   memset(&w, 0, sizeof(w));
1147   w.xExprCallback = whereIndexExprTransNode;
1148   w.u.pIdxTrans = &x;
1149   x.iTabCur = iTabCur;
1150   x.iIdxCur = iIdxCur;
1151   for(iIdxCol=0; iIdxCol<aColExpr->nExpr; iIdxCol++){
1152     if( pIdx->aiColumn[iIdxCol]!=XN_EXPR ) continue;
1153     assert( aColExpr->a[iIdxCol].pExpr!=0 );
1154     x.iIdxCol = iIdxCol;
1155     x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1156     sqlite3WalkExpr(&w, pWInfo->pWhere);
1157     sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1158     sqlite3WalkExprList(&w, pWInfo->pResultSet);
1159   }
1160 }
1161 
1162 /*
1163 ** The pTruth expression is always true because it is the WHERE clause
1164 ** a partial index that is driving a query loop.  Look through all of the
1165 ** WHERE clause terms on the query, and if any of those terms must be
1166 ** true because pTruth is true, then mark those WHERE clause terms as
1167 ** coded.
1168 */
1169 static void whereApplyPartialIndexConstraints(
1170   Expr *pTruth,
1171   int iTabCur,
1172   WhereClause *pWC
1173 ){
1174   int i;
1175   WhereTerm *pTerm;
1176   while( pTruth->op==TK_AND ){
1177     whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC);
1178     pTruth = pTruth->pRight;
1179   }
1180   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1181     Expr *pExpr;
1182     if( pTerm->wtFlags & TERM_CODED ) continue;
1183     pExpr = pTerm->pExpr;
1184     if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){
1185       pTerm->wtFlags |= TERM_CODED;
1186     }
1187   }
1188 }
1189 
1190 /*
1191 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1192 ** implementation described by pWInfo.
1193 */
1194 Bitmask sqlite3WhereCodeOneLoopStart(
1195   Parse *pParse,       /* Parsing context */
1196   Vdbe *v,             /* Prepared statement under construction */
1197   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1198   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1199   WhereLevel *pLevel,  /* The current level pointer */
1200   Bitmask notReady     /* Which tables are currently available */
1201 ){
1202   int j, k;            /* Loop counters */
1203   int iCur;            /* The VDBE cursor for the table */
1204   int addrNxt;         /* Where to jump to continue with the next IN case */
1205   int bRev;            /* True if we need to scan in reverse order */
1206   WhereLoop *pLoop;    /* The WhereLoop object being coded */
1207   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
1208   WhereTerm *pTerm;               /* A WHERE clause term */
1209   sqlite3 *db;                    /* Database connection */
1210   struct SrcList_item *pTabItem;  /* FROM clause term being coded */
1211   int addrBrk;                    /* Jump here to break out of the loop */
1212   int addrHalt;                   /* addrBrk for the outermost loop */
1213   int addrCont;                   /* Jump here to continue with next cycle */
1214   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
1215   int iReleaseReg = 0;      /* Temp register to free before returning */
1216   Index *pIdx = 0;          /* Index used by loop (if any) */
1217   int iLoop;                /* Iteration of constraint generator loop */
1218 
1219   pWC = &pWInfo->sWC;
1220   db = pParse->db;
1221   pLoop = pLevel->pWLoop;
1222   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1223   iCur = pTabItem->iCursor;
1224   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1225   bRev = (pWInfo->revMask>>iLevel)&1;
1226   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1227 
1228   /* Create labels for the "break" and "continue" instructions
1229   ** for the current loop.  Jump to addrBrk to break out of a loop.
1230   ** Jump to cont to go immediately to the next iteration of the
1231   ** loop.
1232   **
1233   ** When there is an IN operator, we also have a "addrNxt" label that
1234   ** means to continue with the next IN value combination.  When
1235   ** there are no IN operators in the constraints, the "addrNxt" label
1236   ** is the same as "addrBrk".
1237   */
1238   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
1239   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse);
1240 
1241   /* If this is the right table of a LEFT OUTER JOIN, allocate and
1242   ** initialize a memory cell that records if this table matches any
1243   ** row of the left table of the join.
1244   */
1245   assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1246        || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
1247   );
1248   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1249     pLevel->iLeftJoin = ++pParse->nMem;
1250     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1251     VdbeComment((v, "init LEFT JOIN no-match flag"));
1252   }
1253 
1254   /* Compute a safe address to jump to if we discover that the table for
1255   ** this loop is empty and can never contribute content. */
1256   for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){}
1257   addrHalt = pWInfo->a[j].addrBrk;
1258 
1259   /* Special case of a FROM clause subquery implemented as a co-routine */
1260   if( pTabItem->fg.viaCoroutine ){
1261     int regYield = pTabItem->regReturn;
1262     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1263     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1264     VdbeCoverage(v);
1265     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
1266     pLevel->op = OP_Goto;
1267   }else
1268 
1269 #ifndef SQLITE_OMIT_VIRTUALTABLE
1270   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1271     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
1272     **          to access the data.
1273     */
1274     int iReg;   /* P3 Value for OP_VFilter */
1275     int addrNotFound;
1276     int nConstraint = pLoop->nLTerm;
1277     int iIn;    /* Counter for IN constraints */
1278 
1279     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1280     addrNotFound = pLevel->addrBrk;
1281     for(j=0; j<nConstraint; j++){
1282       int iTarget = iReg+j+2;
1283       pTerm = pLoop->aLTerm[j];
1284       if( NEVER(pTerm==0) ) continue;
1285       if( pTerm->eOperator & WO_IN ){
1286         codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1287         addrNotFound = pLevel->addrNxt;
1288       }else{
1289         Expr *pRight = pTerm->pExpr->pRight;
1290         codeExprOrVector(pParse, pRight, iTarget, 1);
1291       }
1292     }
1293     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1294     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1295     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1296                       pLoop->u.vtab.idxStr,
1297                       pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1298     VdbeCoverage(v);
1299     pLoop->u.vtab.needFree = 0;
1300     pLevel->p1 = iCur;
1301     pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1302     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1303     iIn = pLevel->u.in.nIn;
1304     for(j=nConstraint-1; j>=0; j--){
1305       pTerm = pLoop->aLTerm[j];
1306       if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1307         disableTerm(pLevel, pTerm);
1308       }else if( (pTerm->eOperator & WO_IN)!=0 ){
1309         Expr *pCompare;  /* The comparison operator */
1310         Expr *pRight;    /* RHS of the comparison */
1311         VdbeOp *pOp;     /* Opcode to access the value of the IN constraint */
1312 
1313         /* Reload the constraint value into reg[iReg+j+2].  The same value
1314         ** was loaded into the same register prior to the OP_VFilter, but
1315         ** the xFilter implementation might have changed the datatype or
1316         ** encoding of the value in the register, so it *must* be reloaded. */
1317         assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed );
1318         if( !db->mallocFailed ){
1319           assert( iIn>0 );
1320           pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[--iIn].addrInTop);
1321           assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid );
1322           assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 );
1323           assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 );
1324           testcase( pOp->opcode==OP_Rowid );
1325           sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1326         }
1327 
1328         /* Generate code that will continue to the next row if
1329         ** the IN constraint is not satisfied */
1330         pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1331         assert( pCompare!=0 || db->mallocFailed );
1332         if( pCompare ){
1333           pCompare->pLeft = pTerm->pExpr->pLeft;
1334           pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1335           if( pRight ){
1336             pRight->iTable = iReg+j+2;
1337             sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0);
1338           }
1339           pCompare->pLeft = 0;
1340           sqlite3ExprDelete(db, pCompare);
1341         }
1342       }
1343     }
1344     /* These registers need to be preserved in case there is an IN operator
1345     ** loop.  So we could deallocate the registers here (and potentially
1346     ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0.  But it seems
1347     ** simpler and safer to simply not reuse the registers.
1348     **
1349     **    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1350     */
1351   }else
1352 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1353 
1354   if( (pLoop->wsFlags & WHERE_IPK)!=0
1355    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1356   ){
1357     /* Case 2:  We can directly reference a single row using an
1358     **          equality comparison against the ROWID field.  Or
1359     **          we reference multiple rows using a "rowid IN (...)"
1360     **          construct.
1361     */
1362     assert( pLoop->u.btree.nEq==1 );
1363     pTerm = pLoop->aLTerm[0];
1364     assert( pTerm!=0 );
1365     assert( pTerm->pExpr!=0 );
1366     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1367     iReleaseReg = ++pParse->nMem;
1368     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1369     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1370     addrNxt = pLevel->addrNxt;
1371     sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1372     VdbeCoverage(v);
1373     pLevel->op = OP_Noop;
1374     if( (pTerm->prereqAll & pLevel->notReady)==0 ){
1375       pTerm->wtFlags |= TERM_CODED;
1376     }
1377   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1378          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1379   ){
1380     /* Case 3:  We have an inequality comparison against the ROWID field.
1381     */
1382     int testOp = OP_Noop;
1383     int start;
1384     int memEndValue = 0;
1385     WhereTerm *pStart, *pEnd;
1386 
1387     j = 0;
1388     pStart = pEnd = 0;
1389     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1390     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1391     assert( pStart!=0 || pEnd!=0 );
1392     if( bRev ){
1393       pTerm = pStart;
1394       pStart = pEnd;
1395       pEnd = pTerm;
1396     }
1397     codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1398     if( pStart ){
1399       Expr *pX;             /* The expression that defines the start bound */
1400       int r1, rTemp;        /* Registers for holding the start boundary */
1401       int op;               /* Cursor seek operation */
1402 
1403       /* The following constant maps TK_xx codes into corresponding
1404       ** seek opcodes.  It depends on a particular ordering of TK_xx
1405       */
1406       const u8 aMoveOp[] = {
1407            /* TK_GT */  OP_SeekGT,
1408            /* TK_LE */  OP_SeekLE,
1409            /* TK_LT */  OP_SeekLT,
1410            /* TK_GE */  OP_SeekGE
1411       };
1412       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
1413       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
1414       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
1415 
1416       assert( (pStart->wtFlags & TERM_VNULL)==0 );
1417       testcase( pStart->wtFlags & TERM_VIRTUAL );
1418       pX = pStart->pExpr;
1419       assert( pX!=0 );
1420       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1421       if( sqlite3ExprIsVector(pX->pRight) ){
1422         r1 = rTemp = sqlite3GetTempReg(pParse);
1423         codeExprOrVector(pParse, pX->pRight, r1, 1);
1424         testcase( pX->op==TK_GT );
1425         testcase( pX->op==TK_GE );
1426         testcase( pX->op==TK_LT );
1427         testcase( pX->op==TK_LE );
1428         op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
1429         assert( pX->op!=TK_GT || op==OP_SeekGE );
1430         assert( pX->op!=TK_GE || op==OP_SeekGE );
1431         assert( pX->op!=TK_LT || op==OP_SeekLE );
1432         assert( pX->op!=TK_LE || op==OP_SeekLE );
1433       }else{
1434         r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1435         disableTerm(pLevel, pStart);
1436         op = aMoveOp[(pX->op - TK_GT)];
1437       }
1438       sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1439       VdbeComment((v, "pk"));
1440       VdbeCoverageIf(v, pX->op==TK_GT);
1441       VdbeCoverageIf(v, pX->op==TK_LE);
1442       VdbeCoverageIf(v, pX->op==TK_LT);
1443       VdbeCoverageIf(v, pX->op==TK_GE);
1444       sqlite3ReleaseTempReg(pParse, rTemp);
1445     }else{
1446       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1447       VdbeCoverageIf(v, bRev==0);
1448       VdbeCoverageIf(v, bRev!=0);
1449     }
1450     if( pEnd ){
1451       Expr *pX;
1452       pX = pEnd->pExpr;
1453       assert( pX!=0 );
1454       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1455       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1456       testcase( pEnd->wtFlags & TERM_VIRTUAL );
1457       memEndValue = ++pParse->nMem;
1458       codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1459       if( 0==sqlite3ExprIsVector(pX->pRight)
1460        && (pX->op==TK_LT || pX->op==TK_GT)
1461       ){
1462         testOp = bRev ? OP_Le : OP_Ge;
1463       }else{
1464         testOp = bRev ? OP_Lt : OP_Gt;
1465       }
1466       if( 0==sqlite3ExprIsVector(pX->pRight) ){
1467         disableTerm(pLevel, pEnd);
1468       }
1469     }
1470     start = sqlite3VdbeCurrentAddr(v);
1471     pLevel->op = bRev ? OP_Prev : OP_Next;
1472     pLevel->p1 = iCur;
1473     pLevel->p2 = start;
1474     assert( pLevel->p5==0 );
1475     if( testOp!=OP_Noop ){
1476       iRowidReg = ++pParse->nMem;
1477       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1478       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1479       VdbeCoverageIf(v, testOp==OP_Le);
1480       VdbeCoverageIf(v, testOp==OP_Lt);
1481       VdbeCoverageIf(v, testOp==OP_Ge);
1482       VdbeCoverageIf(v, testOp==OP_Gt);
1483       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1484     }
1485   }else if( pLoop->wsFlags & WHERE_INDEXED ){
1486     /* Case 4: A scan using an index.
1487     **
1488     **         The WHERE clause may contain zero or more equality
1489     **         terms ("==" or "IN" operators) that refer to the N
1490     **         left-most columns of the index. It may also contain
1491     **         inequality constraints (>, <, >= or <=) on the indexed
1492     **         column that immediately follows the N equalities. Only
1493     **         the right-most column can be an inequality - the rest must
1494     **         use the "==" and "IN" operators. For example, if the
1495     **         index is on (x,y,z), then the following clauses are all
1496     **         optimized:
1497     **
1498     **            x=5
1499     **            x=5 AND y=10
1500     **            x=5 AND y<10
1501     **            x=5 AND y>5 AND y<10
1502     **            x=5 AND y=5 AND z<=10
1503     **
1504     **         The z<10 term of the following cannot be used, only
1505     **         the x=5 term:
1506     **
1507     **            x=5 AND z<10
1508     **
1509     **         N may be zero if there are inequality constraints.
1510     **         If there are no inequality constraints, then N is at
1511     **         least one.
1512     **
1513     **         This case is also used when there are no WHERE clause
1514     **         constraints but an index is selected anyway, in order
1515     **         to force the output order to conform to an ORDER BY.
1516     */
1517     static const u8 aStartOp[] = {
1518       0,
1519       0,
1520       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
1521       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
1522       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
1523       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
1524       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
1525       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
1526     };
1527     static const u8 aEndOp[] = {
1528       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
1529       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
1530       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
1531       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
1532     };
1533     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
1534     u16 nBtm = pLoop->u.btree.nBtm;   /* Length of BTM vector */
1535     u16 nTop = pLoop->u.btree.nTop;   /* Length of TOP vector */
1536     int regBase;                 /* Base register holding constraint values */
1537     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
1538     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
1539     int startEq;                 /* True if range start uses ==, >= or <= */
1540     int endEq;                   /* True if range end uses ==, >= or <= */
1541     int start_constraints;       /* Start of range is constrained */
1542     int nConstraint;             /* Number of constraint terms */
1543     int iIdxCur;                 /* The VDBE cursor for the index */
1544     int nExtraReg = 0;           /* Number of extra registers needed */
1545     int op;                      /* Instruction opcode */
1546     char *zStartAff;             /* Affinity for start of range constraint */
1547     char *zEndAff = 0;           /* Affinity for end of range constraint */
1548     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
1549     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
1550     int omitTable;               /* True if we use the index only */
1551 
1552 
1553     pIdx = pLoop->u.btree.pIndex;
1554     iIdxCur = pLevel->iIdxCur;
1555     assert( nEq>=pLoop->nSkip );
1556 
1557     /* If this loop satisfies a sort order (pOrderBy) request that
1558     ** was passed to this function to implement a "SELECT min(x) ..."
1559     ** query, then the caller will only allow the loop to run for
1560     ** a single iteration. This means that the first row returned
1561     ** should not have a NULL value stored in 'x'. If column 'x' is
1562     ** the first one after the nEq equality constraints in the index,
1563     ** this requires some special handling.
1564     */
1565     assert( pWInfo->pOrderBy==0
1566          || pWInfo->pOrderBy->nExpr==1
1567          || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
1568     if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
1569      && pWInfo->nOBSat>0
1570      && (pIdx->nKeyCol>nEq)
1571     ){
1572       assert( pLoop->nSkip==0 );
1573       bSeekPastNull = 1;
1574       nExtraReg = 1;
1575     }
1576 
1577     /* Find any inequality constraint terms for the start and end
1578     ** of the range.
1579     */
1580     j = nEq;
1581     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1582       pRangeStart = pLoop->aLTerm[j++];
1583       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1584       /* Like optimization range constraints always occur in pairs */
1585       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1586               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1587     }
1588     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1589       pRangeEnd = pLoop->aLTerm[j++];
1590       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1591 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1592       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1593         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
1594         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
1595         pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1596         sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1597         VdbeComment((v, "LIKE loop counter"));
1598         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1599         /* iLikeRepCntr actually stores 2x the counter register number.  The
1600         ** bottom bit indicates whether the search order is ASC or DESC. */
1601         testcase( bRev );
1602         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1603         assert( (bRev & ~1)==0 );
1604         pLevel->iLikeRepCntr <<=1;
1605         pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1606       }
1607 #endif
1608       if( pRangeStart==0 ){
1609         j = pIdx->aiColumn[nEq];
1610         if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1611           bSeekPastNull = 1;
1612         }
1613       }
1614     }
1615     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1616 
1617     /* If we are doing a reverse order scan on an ascending index, or
1618     ** a forward order scan on a descending index, interchange the
1619     ** start and end terms (pRangeStart and pRangeEnd).
1620     */
1621     if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1622      || (bRev && pIdx->nKeyCol==nEq)
1623     ){
1624       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1625       SWAP(u8, bSeekPastNull, bStopAtNull);
1626       SWAP(u8, nBtm, nTop);
1627     }
1628 
1629     /* Generate code to evaluate all constraint terms using == or IN
1630     ** and store the values of those terms in an array of registers
1631     ** starting at regBase.
1632     */
1633     codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1634     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1635     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1636     if( zStartAff && nTop ){
1637       zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1638     }
1639     addrNxt = pLevel->addrNxt;
1640 
1641     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1642     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1643     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1644     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1645     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1646     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1647     start_constraints = pRangeStart || nEq>0;
1648 
1649     /* Seek the index cursor to the start of the range. */
1650     nConstraint = nEq;
1651     if( pRangeStart ){
1652       Expr *pRight = pRangeStart->pExpr->pRight;
1653       codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1654       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1655       if( (pRangeStart->wtFlags & TERM_VNULL)==0
1656        && sqlite3ExprCanBeNull(pRight)
1657       ){
1658         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1659         VdbeCoverage(v);
1660       }
1661       if( zStartAff ){
1662         updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1663       }
1664       nConstraint += nBtm;
1665       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1666       if( sqlite3ExprIsVector(pRight)==0 ){
1667         disableTerm(pLevel, pRangeStart);
1668       }else{
1669         startEq = 1;
1670       }
1671       bSeekPastNull = 0;
1672     }else if( bSeekPastNull ){
1673       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1674       nConstraint++;
1675       startEq = 0;
1676       start_constraints = 1;
1677     }
1678     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1679     if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1680       /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1681       ** above has already left the cursor sitting on the correct row,
1682       ** so no further seeking is needed */
1683     }else{
1684       if( pLoop->wsFlags & WHERE_IN_EARLYOUT ){
1685         sqlite3VdbeAddOp1(v, OP_SeekHit, iIdxCur);
1686       }
1687       op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1688       assert( op!=0 );
1689       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1690       VdbeCoverage(v);
1691       VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1692       VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1693       VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
1694       VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1695       VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1696       VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
1697     }
1698 
1699     /* Load the value for the inequality constraint at the end of the
1700     ** range (if any).
1701     */
1702     nConstraint = nEq;
1703     if( pRangeEnd ){
1704       Expr *pRight = pRangeEnd->pExpr->pRight;
1705       codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
1706       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1707       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1708        && sqlite3ExprCanBeNull(pRight)
1709       ){
1710         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1711         VdbeCoverage(v);
1712       }
1713       if( zEndAff ){
1714         updateRangeAffinityStr(pRight, nTop, zEndAff);
1715         codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1716       }else{
1717         assert( pParse->db->mallocFailed );
1718       }
1719       nConstraint += nTop;
1720       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1721 
1722       if( sqlite3ExprIsVector(pRight)==0 ){
1723         disableTerm(pLevel, pRangeEnd);
1724       }else{
1725         endEq = 1;
1726       }
1727     }else if( bStopAtNull ){
1728       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1729       endEq = 0;
1730       nConstraint++;
1731     }
1732     sqlite3DbFree(db, zStartAff);
1733     sqlite3DbFree(db, zEndAff);
1734 
1735     /* Top of the loop body */
1736     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1737 
1738     /* Check if the index cursor is past the end of the range. */
1739     if( nConstraint ){
1740       op = aEndOp[bRev*2 + endEq];
1741       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1742       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1743       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1744       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1745       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1746     }
1747 
1748     if( pLoop->wsFlags & WHERE_IN_EARLYOUT ){
1749       sqlite3VdbeAddOp2(v, OP_SeekHit, iIdxCur, 1);
1750     }
1751 
1752     /* Seek the table cursor, if required */
1753     omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
1754            && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
1755     if( omitTable ){
1756       /* pIdx is a covering index.  No need to access the main table. */
1757     }else if( HasRowid(pIdx->pTable) ){
1758       if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE) || (
1759           (pWInfo->wctrlFlags & WHERE_SEEK_UNIQ_TABLE)
1760        && (pWInfo->eOnePass==ONEPASS_SINGLE)
1761       )){
1762         iRowidReg = ++pParse->nMem;
1763         sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
1764         sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
1765         VdbeCoverage(v);
1766       }else{
1767         codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
1768       }
1769     }else if( iCur!=iIdxCur ){
1770       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1771       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1772       for(j=0; j<pPk->nKeyCol; j++){
1773         k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1774         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1775       }
1776       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1777                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1778     }
1779 
1780     /* If pIdx is an index on one or more expressions, then look through
1781     ** all the expressions in pWInfo and try to transform matching expressions
1782     ** into reference to index columns.
1783     **
1784     ** Do not do this for the RHS of a LEFT JOIN. This is because the
1785     ** expression may be evaluated after OP_NullRow has been executed on
1786     ** the cursor. In this case it is important to do the full evaluation,
1787     ** as the result of the expression may not be NULL, even if all table
1788     ** column values are.  https://www.sqlite.org/src/info/7fa8049685b50b5a
1789     **
1790     ** Also, do not do this when processing one index an a multi-index
1791     ** OR clause, since the transformation will become invalid once we
1792     ** move forward to the next index.
1793     ** https://sqlite.org/src/info/4e8e4857d32d401f
1794     */
1795     if( pLevel->iLeftJoin==0 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
1796       whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
1797     }
1798 
1799     /* If a partial index is driving the loop, try to eliminate WHERE clause
1800     ** terms from the query that must be true due to the WHERE clause of
1801     ** the partial index
1802     */
1803     if( pIdx->pPartIdxWhere ){
1804       whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC);
1805     }
1806 
1807     /* Record the instruction used to terminate the loop. */
1808     if( pLoop->wsFlags & WHERE_ONEROW ){
1809       pLevel->op = OP_Noop;
1810     }else if( bRev ){
1811       pLevel->op = OP_Prev;
1812     }else{
1813       pLevel->op = OP_Next;
1814     }
1815     pLevel->p1 = iIdxCur;
1816     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1817     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1818       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1819     }else{
1820       assert( pLevel->p5==0 );
1821     }
1822     if( omitTable ) pIdx = 0;
1823   }else
1824 
1825 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1826   if( pLoop->wsFlags & WHERE_MULTI_OR ){
1827     /* Case 5:  Two or more separately indexed terms connected by OR
1828     **
1829     ** Example:
1830     **
1831     **   CREATE TABLE t1(a,b,c,d);
1832     **   CREATE INDEX i1 ON t1(a);
1833     **   CREATE INDEX i2 ON t1(b);
1834     **   CREATE INDEX i3 ON t1(c);
1835     **
1836     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
1837     **
1838     ** In the example, there are three indexed terms connected by OR.
1839     ** The top of the loop looks like this:
1840     **
1841     **          Null       1                # Zero the rowset in reg 1
1842     **
1843     ** Then, for each indexed term, the following. The arguments to
1844     ** RowSetTest are such that the rowid of the current row is inserted
1845     ** into the RowSet. If it is already present, control skips the
1846     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
1847     **
1848     **        sqlite3WhereBegin(<term>)
1849     **          RowSetTest                  # Insert rowid into rowset
1850     **          Gosub      2 A
1851     **        sqlite3WhereEnd()
1852     **
1853     ** Following the above, code to terminate the loop. Label A, the target
1854     ** of the Gosub above, jumps to the instruction right after the Goto.
1855     **
1856     **          Null       1                # Zero the rowset in reg 1
1857     **          Goto       B                # The loop is finished.
1858     **
1859     **       A: <loop body>                 # Return data, whatever.
1860     **
1861     **          Return     2                # Jump back to the Gosub
1862     **
1863     **       B: <after the loop>
1864     **
1865     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
1866     ** use an ephemeral index instead of a RowSet to record the primary
1867     ** keys of the rows we have already seen.
1868     **
1869     */
1870     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
1871     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
1872     Index *pCov = 0;             /* Potential covering index (or NULL) */
1873     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
1874 
1875     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
1876     int regRowset = 0;                        /* Register for RowSet object */
1877     int regRowid = 0;                         /* Register holding rowid */
1878     int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */
1879     int iRetInit;                             /* Address of regReturn init */
1880     int untestedTerms = 0;             /* Some terms not completely tested */
1881     int ii;                            /* Loop counter */
1882     u16 wctrlFlags;                    /* Flags for sub-WHERE clause */
1883     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
1884     Table *pTab = pTabItem->pTab;
1885 
1886     pTerm = pLoop->aLTerm[0];
1887     assert( pTerm!=0 );
1888     assert( pTerm->eOperator & WO_OR );
1889     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
1890     pOrWc = &pTerm->u.pOrInfo->wc;
1891     pLevel->op = OP_Return;
1892     pLevel->p1 = regReturn;
1893 
1894     /* Set up a new SrcList in pOrTab containing the table being scanned
1895     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
1896     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
1897     */
1898     if( pWInfo->nLevel>1 ){
1899       int nNotReady;                 /* The number of notReady tables */
1900       struct SrcList_item *origSrc;     /* Original list of tables */
1901       nNotReady = pWInfo->nLevel - iLevel - 1;
1902       pOrTab = sqlite3StackAllocRaw(db,
1903                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
1904       if( pOrTab==0 ) return notReady;
1905       pOrTab->nAlloc = (u8)(nNotReady + 1);
1906       pOrTab->nSrc = pOrTab->nAlloc;
1907       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
1908       origSrc = pWInfo->pTabList->a;
1909       for(k=1; k<=nNotReady; k++){
1910         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
1911       }
1912     }else{
1913       pOrTab = pWInfo->pTabList;
1914     }
1915 
1916     /* Initialize the rowset register to contain NULL. An SQL NULL is
1917     ** equivalent to an empty rowset.  Or, create an ephemeral index
1918     ** capable of holding primary keys in the case of a WITHOUT ROWID.
1919     **
1920     ** Also initialize regReturn to contain the address of the instruction
1921     ** immediately following the OP_Return at the bottom of the loop. This
1922     ** is required in a few obscure LEFT JOIN cases where control jumps
1923     ** over the top of the loop into the body of it. In this case the
1924     ** correct response for the end-of-loop code (the OP_Return) is to
1925     ** fall through to the next instruction, just as an OP_Next does if
1926     ** called on an uninitialized cursor.
1927     */
1928     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1929       if( HasRowid(pTab) ){
1930         regRowset = ++pParse->nMem;
1931         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
1932       }else{
1933         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1934         regRowset = pParse->nTab++;
1935         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
1936         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
1937       }
1938       regRowid = ++pParse->nMem;
1939     }
1940     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
1941 
1942     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
1943     ** Then for every term xN, evaluate as the subexpression: xN AND z
1944     ** That way, terms in y that are factored into the disjunction will
1945     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
1946     **
1947     ** Actually, each subexpression is converted to "xN AND w" where w is
1948     ** the "interesting" terms of z - terms that did not originate in the
1949     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
1950     ** indices.
1951     **
1952     ** This optimization also only applies if the (x1 OR x2 OR ...) term
1953     ** is not contained in the ON clause of a LEFT JOIN.
1954     ** See ticket http://www.sqlite.org/src/info/f2369304e4
1955     */
1956     if( pWC->nTerm>1 ){
1957       int iTerm;
1958       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
1959         Expr *pExpr = pWC->a[iTerm].pExpr;
1960         if( &pWC->a[iTerm] == pTerm ) continue;
1961         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
1962         testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
1963         if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
1964         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
1965         testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
1966         pExpr = sqlite3ExprDup(db, pExpr, 0);
1967         pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
1968       }
1969       if( pAndExpr ){
1970         pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr);
1971       }
1972     }
1973 
1974     /* Run a separate WHERE clause for each term of the OR clause.  After
1975     ** eliminating duplicates from other WHERE clauses, the action for each
1976     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
1977     */
1978     wctrlFlags =  WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE);
1979     ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
1980     for(ii=0; ii<pOrWc->nTerm; ii++){
1981       WhereTerm *pOrTerm = &pOrWc->a[ii];
1982       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
1983         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
1984         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
1985         int jmp1 = 0;                   /* Address of jump operation */
1986         assert( (pTabItem[0].fg.jointype & JT_LEFT)==0
1987              || ExprHasProperty(pOrExpr, EP_FromJoin)
1988         );
1989         if( pAndExpr ){
1990           pAndExpr->pLeft = pOrExpr;
1991           pOrExpr = pAndExpr;
1992         }
1993         /* Loop through table entries that match term pOrTerm. */
1994         ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1));
1995         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
1996         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
1997                                       wctrlFlags, iCovCur);
1998         assert( pSubWInfo || pParse->nErr || db->mallocFailed );
1999         if( pSubWInfo ){
2000           WhereLoop *pSubLoop;
2001           int addrExplain = sqlite3WhereExplainOneScan(
2002               pParse, pOrTab, &pSubWInfo->a[0], 0
2003           );
2004           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
2005 
2006           /* This is the sub-WHERE clause body.  First skip over
2007           ** duplicate rows from prior sub-WHERE clauses, and record the
2008           ** rowid (or PRIMARY KEY) for the current row so that the same
2009           ** row will be skipped in subsequent sub-WHERE clauses.
2010           */
2011           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2012             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
2013             if( HasRowid(pTab) ){
2014               sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid);
2015               jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
2016                                           regRowid, iSet);
2017               VdbeCoverage(v);
2018             }else{
2019               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2020               int nPk = pPk->nKeyCol;
2021               int iPk;
2022               int r;
2023 
2024               /* Read the PK into an array of temp registers. */
2025               r = sqlite3GetTempRange(pParse, nPk);
2026               for(iPk=0; iPk<nPk; iPk++){
2027                 int iCol = pPk->aiColumn[iPk];
2028                 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol, r+iPk);
2029               }
2030 
2031               /* Check if the temp table already contains this key. If so,
2032               ** the row has already been included in the result set and
2033               ** can be ignored (by jumping past the Gosub below). Otherwise,
2034               ** insert the key into the temp table and proceed with processing
2035               ** the row.
2036               **
2037               ** Use some of the same optimizations as OP_RowSetTest: If iSet
2038               ** is zero, assume that the key cannot already be present in
2039               ** the temp table. And if iSet is -1, assume that there is no
2040               ** need to insert the key into the temp table, as it will never
2041               ** be tested for.  */
2042               if( iSet ){
2043                 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
2044                 VdbeCoverage(v);
2045               }
2046               if( iSet>=0 ){
2047                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
2048                 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
2049                                      r, nPk);
2050                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2051               }
2052 
2053               /* Release the array of temp registers */
2054               sqlite3ReleaseTempRange(pParse, r, nPk);
2055             }
2056           }
2057 
2058           /* Invoke the main loop body as a subroutine */
2059           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2060 
2061           /* Jump here (skipping the main loop body subroutine) if the
2062           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2063           if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
2064 
2065           /* The pSubWInfo->untestedTerms flag means that this OR term
2066           ** contained one or more AND term from a notReady table.  The
2067           ** terms from the notReady table could not be tested and will
2068           ** need to be tested later.
2069           */
2070           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
2071 
2072           /* If all of the OR-connected terms are optimized using the same
2073           ** index, and the index is opened using the same cursor number
2074           ** by each call to sqlite3WhereBegin() made by this loop, it may
2075           ** be possible to use that index as a covering index.
2076           **
2077           ** If the call to sqlite3WhereBegin() above resulted in a scan that
2078           ** uses an index, and this is either the first OR-connected term
2079           ** processed or the index is the same as that used by all previous
2080           ** terms, set pCov to the candidate covering index. Otherwise, set
2081           ** pCov to NULL to indicate that no candidate covering index will
2082           ** be available.
2083           */
2084           pSubLoop = pSubWInfo->a[0].pWLoop;
2085           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2086           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2087            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2088            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2089           ){
2090             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2091             pCov = pSubLoop->u.btree.pIndex;
2092           }else{
2093             pCov = 0;
2094           }
2095 
2096           /* Finish the loop through table entries that match term pOrTerm. */
2097           sqlite3WhereEnd(pSubWInfo);
2098           ExplainQueryPlanPop(pParse);
2099         }
2100       }
2101     }
2102     ExplainQueryPlanPop(pParse);
2103     pLevel->u.pCovidx = pCov;
2104     if( pCov ) pLevel->iIdxCur = iCovCur;
2105     if( pAndExpr ){
2106       pAndExpr->pLeft = 0;
2107       sqlite3ExprDelete(db, pAndExpr);
2108     }
2109     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2110     sqlite3VdbeGoto(v, pLevel->addrBrk);
2111     sqlite3VdbeResolveLabel(v, iLoopBody);
2112 
2113     if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
2114     if( !untestedTerms ) disableTerm(pLevel, pTerm);
2115   }else
2116 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2117 
2118   {
2119     /* Case 6:  There is no usable index.  We must do a complete
2120     **          scan of the entire table.
2121     */
2122     static const u8 aStep[] = { OP_Next, OP_Prev };
2123     static const u8 aStart[] = { OP_Rewind, OP_Last };
2124     assert( bRev==0 || bRev==1 );
2125     if( pTabItem->fg.isRecursive ){
2126       /* Tables marked isRecursive have only a single row that is stored in
2127       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
2128       pLevel->op = OP_Noop;
2129     }else{
2130       codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2131       pLevel->op = aStep[bRev];
2132       pLevel->p1 = iCur;
2133       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2134       VdbeCoverageIf(v, bRev==0);
2135       VdbeCoverageIf(v, bRev!=0);
2136       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2137     }
2138   }
2139 
2140 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2141   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2142 #endif
2143 
2144   /* Insert code to test every subexpression that can be completely
2145   ** computed using the current set of tables.
2146   **
2147   ** This loop may run between one and three times, depending on the
2148   ** constraints to be generated. The value of stack variable iLoop
2149   ** determines the constraints coded by each iteration, as follows:
2150   **
2151   ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2152   ** iLoop==2: Code remaining expressions that do not contain correlated
2153   **           sub-queries.
2154   ** iLoop==3: Code all remaining expressions.
2155   **
2156   ** An effort is made to skip unnecessary iterations of the loop.
2157   */
2158   iLoop = (pIdx ? 1 : 2);
2159   do{
2160     int iNext = 0;                /* Next value for iLoop */
2161     for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2162       Expr *pE;
2163       int skipLikeAddr = 0;
2164       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2165       testcase( pTerm->wtFlags & TERM_CODED );
2166       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2167       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2168         testcase( pWInfo->untestedTerms==0
2169             && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2170         pWInfo->untestedTerms = 1;
2171         continue;
2172       }
2173       pE = pTerm->pExpr;
2174       assert( pE!=0 );
2175       if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){
2176         continue;
2177       }
2178 
2179       if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2180         iNext = 2;
2181         continue;
2182       }
2183       if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2184         if( iNext==0 ) iNext = 3;
2185         continue;
2186       }
2187 
2188       if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
2189         /* If the TERM_LIKECOND flag is set, that means that the range search
2190         ** is sufficient to guarantee that the LIKE operator is true, so we
2191         ** can skip the call to the like(A,B) function.  But this only works
2192         ** for strings.  So do not skip the call to the function on the pass
2193         ** that compares BLOBs. */
2194 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2195         continue;
2196 #else
2197         u32 x = pLevel->iLikeRepCntr;
2198         if( x>0 ){
2199           skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
2200         }
2201         VdbeCoverage(v);
2202 #endif
2203       }
2204 #ifdef WHERETRACE_ENABLED /* 0xffff */
2205       if( sqlite3WhereTrace ){
2206         VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2207                          pWC->nTerm-j, pTerm, iLoop));
2208       }
2209 #endif
2210       sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2211       if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2212       pTerm->wtFlags |= TERM_CODED;
2213     }
2214     iLoop = iNext;
2215   }while( iLoop>0 );
2216 
2217   /* Insert code to test for implied constraints based on transitivity
2218   ** of the "==" operator.
2219   **
2220   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2221   ** and we are coding the t1 loop and the t2 loop has not yet coded,
2222   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2223   ** the implied "t1.a=123" constraint.
2224   */
2225   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2226     Expr *pE, sEAlt;
2227     WhereTerm *pAlt;
2228     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2229     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2230     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2231     if( pTerm->leftCursor!=iCur ) continue;
2232     if( pLevel->iLeftJoin ) continue;
2233     pE = pTerm->pExpr;
2234     assert( !ExprHasProperty(pE, EP_FromJoin) );
2235     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2236     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
2237                     WO_EQ|WO_IN|WO_IS, 0);
2238     if( pAlt==0 ) continue;
2239     if( pAlt->wtFlags & (TERM_CODED) ) continue;
2240     if( (pAlt->eOperator & WO_IN)
2241      && (pAlt->pExpr->flags & EP_xIsSelect)
2242      && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
2243     ){
2244       continue;
2245     }
2246     testcase( pAlt->eOperator & WO_EQ );
2247     testcase( pAlt->eOperator & WO_IS );
2248     testcase( pAlt->eOperator & WO_IN );
2249     VdbeModuleComment((v, "begin transitive constraint"));
2250     sEAlt = *pAlt->pExpr;
2251     sEAlt.pLeft = pE->pLeft;
2252     sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2253   }
2254 
2255   /* For a LEFT OUTER JOIN, generate code that will record the fact that
2256   ** at least one row of the right table has matched the left table.
2257   */
2258   if( pLevel->iLeftJoin ){
2259     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2260     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2261     VdbeComment((v, "record LEFT JOIN hit"));
2262     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
2263       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2264       testcase( pTerm->wtFlags & TERM_CODED );
2265       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2266       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2267         assert( pWInfo->untestedTerms );
2268         continue;
2269       }
2270       assert( pTerm->pExpr );
2271       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2272       pTerm->wtFlags |= TERM_CODED;
2273     }
2274   }
2275 
2276   return pLevel->notReady;
2277 }
2278