1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 25 /* 26 ** Return the name of the i-th column of the pIdx index. 27 */ 28 static const char *explainIndexColumnName(Index *pIdx, int i){ 29 i = pIdx->aiColumn[i]; 30 if( i==XN_EXPR ) return "<expr>"; 31 if( i==XN_ROWID ) return "rowid"; 32 return pIdx->pTable->aCol[i].zName; 33 } 34 35 /* 36 ** This routine is a helper for explainIndexRange() below 37 ** 38 ** pStr holds the text of an expression that we are building up one term 39 ** at a time. This routine adds a new term to the end of the expression. 40 ** Terms are separated by AND so add the "AND" text for second and subsequent 41 ** terms only. 42 */ 43 static void explainAppendTerm( 44 StrAccum *pStr, /* The text expression being built */ 45 Index *pIdx, /* Index to read column names from */ 46 int nTerm, /* Number of terms */ 47 int iTerm, /* Zero-based index of first term. */ 48 int bAnd, /* Non-zero to append " AND " */ 49 const char *zOp /* Name of the operator */ 50 ){ 51 int i; 52 53 assert( nTerm>=1 ); 54 if( bAnd ) sqlite3_str_append(pStr, " AND ", 5); 55 56 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 57 for(i=0; i<nTerm; i++){ 58 if( i ) sqlite3_str_append(pStr, ",", 1); 59 sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i)); 60 } 61 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 62 63 sqlite3_str_append(pStr, zOp, 1); 64 65 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 66 for(i=0; i<nTerm; i++){ 67 if( i ) sqlite3_str_append(pStr, ",", 1); 68 sqlite3_str_append(pStr, "?", 1); 69 } 70 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 71 } 72 73 /* 74 ** Argument pLevel describes a strategy for scanning table pTab. This 75 ** function appends text to pStr that describes the subset of table 76 ** rows scanned by the strategy in the form of an SQL expression. 77 ** 78 ** For example, if the query: 79 ** 80 ** SELECT * FROM t1 WHERE a=1 AND b>2; 81 ** 82 ** is run and there is an index on (a, b), then this function returns a 83 ** string similar to: 84 ** 85 ** "a=? AND b>?" 86 */ 87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 88 Index *pIndex = pLoop->u.btree.pIndex; 89 u16 nEq = pLoop->u.btree.nEq; 90 u16 nSkip = pLoop->nSkip; 91 int i, j; 92 93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 94 sqlite3_str_append(pStr, " (", 2); 95 for(i=0; i<nEq; i++){ 96 const char *z = explainIndexColumnName(pIndex, i); 97 if( i ) sqlite3_str_append(pStr, " AND ", 5); 98 sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); 99 } 100 101 j = i; 102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); 104 i = 1; 105 } 106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); 108 } 109 sqlite3_str_append(pStr, ")", 1); 110 } 111 112 /* 113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 116 ** is added to the output to describe the table scan strategy in pLevel. 117 ** 118 ** If an OP_Explain opcode is added to the VM, its address is returned. 119 ** Otherwise, if no OP_Explain is coded, zero is returned. 120 */ 121 int sqlite3WhereExplainOneScan( 122 Parse *pParse, /* Parse context */ 123 SrcList *pTabList, /* Table list this loop refers to */ 124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 125 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 126 ){ 127 int ret = 0; 128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 129 if( sqlite3ParseToplevel(pParse)->explain==2 ) 130 #endif 131 { 132 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 133 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 134 sqlite3 *db = pParse->db; /* Database handle */ 135 int isSearch; /* True for a SEARCH. False for SCAN. */ 136 WhereLoop *pLoop; /* The controlling WhereLoop object */ 137 u32 flags; /* Flags that describe this loop */ 138 char *zMsg; /* Text to add to EQP output */ 139 StrAccum str; /* EQP output string */ 140 char zBuf[100]; /* Initial space for EQP output string */ 141 142 pLoop = pLevel->pWLoop; 143 flags = pLoop->wsFlags; 144 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; 145 146 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 147 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 148 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 149 150 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 151 sqlite3_str_appendall(&str, isSearch ? "SEARCH" : "SCAN"); 152 if( pItem->pSelect ){ 153 sqlite3_str_appendf(&str, " SUBQUERY %u", pItem->pSelect->selId); 154 }else{ 155 sqlite3_str_appendf(&str, " TABLE %s", pItem->zName); 156 } 157 158 if( pItem->zAlias ){ 159 sqlite3_str_appendf(&str, " AS %s", pItem->zAlias); 160 } 161 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 162 const char *zFmt = 0; 163 Index *pIdx; 164 165 assert( pLoop->u.btree.pIndex!=0 ); 166 pIdx = pLoop->u.btree.pIndex; 167 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 168 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 169 if( isSearch ){ 170 zFmt = "PRIMARY KEY"; 171 } 172 }else if( flags & WHERE_PARTIALIDX ){ 173 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 174 }else if( flags & WHERE_AUTO_INDEX ){ 175 zFmt = "AUTOMATIC COVERING INDEX"; 176 }else if( flags & WHERE_IDX_ONLY ){ 177 zFmt = "COVERING INDEX %s"; 178 }else{ 179 zFmt = "INDEX %s"; 180 } 181 if( zFmt ){ 182 sqlite3_str_append(&str, " USING ", 7); 183 sqlite3_str_appendf(&str, zFmt, pIdx->zName); 184 explainIndexRange(&str, pLoop); 185 } 186 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 187 const char *zRangeOp; 188 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 189 zRangeOp = "="; 190 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 191 zRangeOp = ">? AND rowid<"; 192 }else if( flags&WHERE_BTM_LIMIT ){ 193 zRangeOp = ">"; 194 }else{ 195 assert( flags&WHERE_TOP_LIMIT); 196 zRangeOp = "<"; 197 } 198 sqlite3_str_appendf(&str, 199 " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp); 200 } 201 #ifndef SQLITE_OMIT_VIRTUALTABLE 202 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 203 sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s", 204 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 205 } 206 #endif 207 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 208 if( pLoop->nOut>=10 ){ 209 sqlite3_str_appendf(&str, " (~%llu rows)", 210 sqlite3LogEstToInt(pLoop->nOut)); 211 }else{ 212 sqlite3_str_append(&str, " (~1 row)", 9); 213 } 214 #endif 215 zMsg = sqlite3StrAccumFinish(&str); 216 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), 217 pParse->addrExplain, 0, zMsg,P4_DYNAMIC); 218 } 219 return ret; 220 } 221 #endif /* SQLITE_OMIT_EXPLAIN */ 222 223 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 224 /* 225 ** Configure the VM passed as the first argument with an 226 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 227 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 228 ** clause that the scan reads data from. 229 ** 230 ** If argument addrExplain is not 0, it must be the address of an 231 ** OP_Explain instruction that describes the same loop. 232 */ 233 void sqlite3WhereAddScanStatus( 234 Vdbe *v, /* Vdbe to add scanstatus entry to */ 235 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 236 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 237 int addrExplain /* Address of OP_Explain (or 0) */ 238 ){ 239 const char *zObj = 0; 240 WhereLoop *pLoop = pLvl->pWLoop; 241 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 242 zObj = pLoop->u.btree.pIndex->zName; 243 }else{ 244 zObj = pSrclist->a[pLvl->iFrom].zName; 245 } 246 sqlite3VdbeScanStatus( 247 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 248 ); 249 } 250 #endif 251 252 253 /* 254 ** Disable a term in the WHERE clause. Except, do not disable the term 255 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 256 ** or USING clause of that join. 257 ** 258 ** Consider the term t2.z='ok' in the following queries: 259 ** 260 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 261 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 262 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 263 ** 264 ** The t2.z='ok' is disabled in the in (2) because it originates 265 ** in the ON clause. The term is disabled in (3) because it is not part 266 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 267 ** 268 ** Disabling a term causes that term to not be tested in the inner loop 269 ** of the join. Disabling is an optimization. When terms are satisfied 270 ** by indices, we disable them to prevent redundant tests in the inner 271 ** loop. We would get the correct results if nothing were ever disabled, 272 ** but joins might run a little slower. The trick is to disable as much 273 ** as we can without disabling too much. If we disabled in (1), we'd get 274 ** the wrong answer. See ticket #813. 275 ** 276 ** If all the children of a term are disabled, then that term is also 277 ** automatically disabled. In this way, terms get disabled if derived 278 ** virtual terms are tested first. For example: 279 ** 280 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 281 ** \___________/ \______/ \_____/ 282 ** parent child1 child2 283 ** 284 ** Only the parent term was in the original WHERE clause. The child1 285 ** and child2 terms were added by the LIKE optimization. If both of 286 ** the virtual child terms are valid, then testing of the parent can be 287 ** skipped. 288 ** 289 ** Usually the parent term is marked as TERM_CODED. But if the parent 290 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 291 ** The TERM_LIKECOND marking indicates that the term should be coded inside 292 ** a conditional such that is only evaluated on the second pass of a 293 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 294 */ 295 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 296 int nLoop = 0; 297 assert( pTerm!=0 ); 298 while( (pTerm->wtFlags & TERM_CODED)==0 299 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 300 && (pLevel->notReady & pTerm->prereqAll)==0 301 ){ 302 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 303 pTerm->wtFlags |= TERM_LIKECOND; 304 }else{ 305 pTerm->wtFlags |= TERM_CODED; 306 } 307 if( pTerm->iParent<0 ) break; 308 pTerm = &pTerm->pWC->a[pTerm->iParent]; 309 assert( pTerm!=0 ); 310 pTerm->nChild--; 311 if( pTerm->nChild!=0 ) break; 312 nLoop++; 313 } 314 } 315 316 /* 317 ** Code an OP_Affinity opcode to apply the column affinity string zAff 318 ** to the n registers starting at base. 319 ** 320 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the 321 ** beginning and end of zAff are ignored. If all entries in zAff are 322 ** SQLITE_AFF_BLOB, then no code gets generated. 323 ** 324 ** This routine makes its own copy of zAff so that the caller is free 325 ** to modify zAff after this routine returns. 326 */ 327 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 328 Vdbe *v = pParse->pVdbe; 329 if( zAff==0 ){ 330 assert( pParse->db->mallocFailed ); 331 return; 332 } 333 assert( v!=0 ); 334 335 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning 336 ** and end of the affinity string. 337 */ 338 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){ 339 n--; 340 base++; 341 zAff++; 342 } 343 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){ 344 n--; 345 } 346 347 /* Code the OP_Affinity opcode if there is anything left to do. */ 348 if( n>0 ){ 349 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 350 } 351 } 352 353 /* 354 ** Expression pRight, which is the RHS of a comparison operation, is 355 ** either a vector of n elements or, if n==1, a scalar expression. 356 ** Before the comparison operation, affinity zAff is to be applied 357 ** to the pRight values. This function modifies characters within the 358 ** affinity string to SQLITE_AFF_BLOB if either: 359 ** 360 ** * the comparison will be performed with no affinity, or 361 ** * the affinity change in zAff is guaranteed not to change the value. 362 */ 363 static void updateRangeAffinityStr( 364 Expr *pRight, /* RHS of comparison */ 365 int n, /* Number of vector elements in comparison */ 366 char *zAff /* Affinity string to modify */ 367 ){ 368 int i; 369 for(i=0; i<n; i++){ 370 Expr *p = sqlite3VectorFieldSubexpr(pRight, i); 371 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB 372 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) 373 ){ 374 zAff[i] = SQLITE_AFF_BLOB; 375 } 376 } 377 } 378 379 380 /* 381 ** pX is an expression of the form: (vector) IN (SELECT ...) 382 ** In other words, it is a vector IN operator with a SELECT clause on the 383 ** LHS. But not all terms in the vector are indexable and the terms might 384 ** not be in the correct order for indexing. 385 ** 386 ** This routine makes a copy of the input pX expression and then adjusts 387 ** the vector on the LHS with corresponding changes to the SELECT so that 388 ** the vector contains only index terms and those terms are in the correct 389 ** order. The modified IN expression is returned. The caller is responsible 390 ** for deleting the returned expression. 391 ** 392 ** Example: 393 ** 394 ** CREATE TABLE t1(a,b,c,d,e,f); 395 ** CREATE INDEX t1x1 ON t1(e,c); 396 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2) 397 ** \_______________________________________/ 398 ** The pX expression 399 ** 400 ** Since only columns e and c can be used with the index, in that order, 401 ** the modified IN expression that is returned will be: 402 ** 403 ** (e,c) IN (SELECT z,x FROM t2) 404 ** 405 ** The reduced pX is different from the original (obviously) and thus is 406 ** only used for indexing, to improve performance. The original unaltered 407 ** IN expression must also be run on each output row for correctness. 408 */ 409 static Expr *removeUnindexableInClauseTerms( 410 Parse *pParse, /* The parsing context */ 411 int iEq, /* Look at loop terms starting here */ 412 WhereLoop *pLoop, /* The current loop */ 413 Expr *pX /* The IN expression to be reduced */ 414 ){ 415 sqlite3 *db = pParse->db; 416 Expr *pNew = sqlite3ExprDup(db, pX, 0); 417 if( db->mallocFailed==0 ){ 418 ExprList *pOrigRhs = pNew->x.pSelect->pEList; /* Original unmodified RHS */ 419 ExprList *pOrigLhs = pNew->pLeft->x.pList; /* Original unmodified LHS */ 420 ExprList *pRhs = 0; /* New RHS after modifications */ 421 ExprList *pLhs = 0; /* New LHS after mods */ 422 int i; /* Loop counter */ 423 Select *pSelect; /* Pointer to the SELECT on the RHS */ 424 425 for(i=iEq; i<pLoop->nLTerm; i++){ 426 if( pLoop->aLTerm[i]->pExpr==pX ){ 427 int iField = pLoop->aLTerm[i]->iField - 1; 428 assert( pOrigRhs->a[iField].pExpr!=0 ); 429 pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr); 430 pOrigRhs->a[iField].pExpr = 0; 431 assert( pOrigLhs->a[iField].pExpr!=0 ); 432 pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr); 433 pOrigLhs->a[iField].pExpr = 0; 434 } 435 } 436 sqlite3ExprListDelete(db, pOrigRhs); 437 sqlite3ExprListDelete(db, pOrigLhs); 438 pNew->pLeft->x.pList = pLhs; 439 pNew->x.pSelect->pEList = pRhs; 440 if( pLhs && pLhs->nExpr==1 ){ 441 /* Take care here not to generate a TK_VECTOR containing only a 442 ** single value. Since the parser never creates such a vector, some 443 ** of the subroutines do not handle this case. */ 444 Expr *p = pLhs->a[0].pExpr; 445 pLhs->a[0].pExpr = 0; 446 sqlite3ExprDelete(db, pNew->pLeft); 447 pNew->pLeft = p; 448 } 449 pSelect = pNew->x.pSelect; 450 if( pSelect->pOrderBy ){ 451 /* If the SELECT statement has an ORDER BY clause, zero the 452 ** iOrderByCol variables. These are set to non-zero when an 453 ** ORDER BY term exactly matches one of the terms of the 454 ** result-set. Since the result-set of the SELECT statement may 455 ** have been modified or reordered, these variables are no longer 456 ** set correctly. Since setting them is just an optimization, 457 ** it's easiest just to zero them here. */ 458 ExprList *pOrderBy = pSelect->pOrderBy; 459 for(i=0; i<pOrderBy->nExpr; i++){ 460 pOrderBy->a[i].u.x.iOrderByCol = 0; 461 } 462 } 463 464 #if 0 465 printf("For indexing, change the IN expr:\n"); 466 sqlite3TreeViewExpr(0, pX, 0); 467 printf("Into:\n"); 468 sqlite3TreeViewExpr(0, pNew, 0); 469 #endif 470 } 471 return pNew; 472 } 473 474 475 /* 476 ** Generate code for a single equality term of the WHERE clause. An equality 477 ** term can be either X=expr or X IN (...). pTerm is the term to be 478 ** coded. 479 ** 480 ** The current value for the constraint is left in a register, the index 481 ** of which is returned. An attempt is made store the result in iTarget but 482 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the 483 ** constraint is a TK_EQ or TK_IS, then the current value might be left in 484 ** some other register and it is the caller's responsibility to compensate. 485 ** 486 ** For a constraint of the form X=expr, the expression is evaluated in 487 ** straight-line code. For constraints of the form X IN (...) 488 ** this routine sets up a loop that will iterate over all values of X. 489 */ 490 static int codeEqualityTerm( 491 Parse *pParse, /* The parsing context */ 492 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 493 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 494 int iEq, /* Index of the equality term within this level */ 495 int bRev, /* True for reverse-order IN operations */ 496 int iTarget /* Attempt to leave results in this register */ 497 ){ 498 Expr *pX = pTerm->pExpr; 499 Vdbe *v = pParse->pVdbe; 500 int iReg; /* Register holding results */ 501 502 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); 503 assert( iTarget>0 ); 504 if( pX->op==TK_EQ || pX->op==TK_IS ){ 505 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 506 }else if( pX->op==TK_ISNULL ){ 507 iReg = iTarget; 508 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 509 #ifndef SQLITE_OMIT_SUBQUERY 510 }else{ 511 int eType = IN_INDEX_NOOP; 512 int iTab; 513 struct InLoop *pIn; 514 WhereLoop *pLoop = pLevel->pWLoop; 515 int i; 516 int nEq = 0; 517 int *aiMap = 0; 518 519 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 520 && pLoop->u.btree.pIndex!=0 521 && pLoop->u.btree.pIndex->aSortOrder[iEq] 522 ){ 523 testcase( iEq==0 ); 524 testcase( bRev ); 525 bRev = !bRev; 526 } 527 assert( pX->op==TK_IN ); 528 iReg = iTarget; 529 530 for(i=0; i<iEq; i++){ 531 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ 532 disableTerm(pLevel, pTerm); 533 return iTarget; 534 } 535 } 536 for(i=iEq;i<pLoop->nLTerm; i++){ 537 assert( pLoop->aLTerm[i]!=0 ); 538 if( pLoop->aLTerm[i]->pExpr==pX ) nEq++; 539 } 540 541 if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){ 542 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0); 543 }else{ 544 sqlite3 *db = pParse->db; 545 pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX); 546 547 if( !db->mallocFailed ){ 548 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq); 549 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap); 550 pTerm->pExpr->iTable = pX->iTable; 551 } 552 sqlite3ExprDelete(db, pX); 553 pX = pTerm->pExpr; 554 } 555 556 if( eType==IN_INDEX_INDEX_DESC ){ 557 testcase( bRev ); 558 bRev = !bRev; 559 } 560 iTab = pX->iTable; 561 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 562 VdbeCoverageIf(v, bRev); 563 VdbeCoverageIf(v, !bRev); 564 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 565 566 pLoop->wsFlags |= WHERE_IN_ABLE; 567 if( pLevel->u.in.nIn==0 ){ 568 pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 569 } 570 571 i = pLevel->u.in.nIn; 572 pLevel->u.in.nIn += nEq; 573 pLevel->u.in.aInLoop = 574 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 575 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 576 pIn = pLevel->u.in.aInLoop; 577 if( pIn ){ 578 int iMap = 0; /* Index in aiMap[] */ 579 pIn += i; 580 for(i=iEq;i<pLoop->nLTerm; i++){ 581 if( pLoop->aLTerm[i]->pExpr==pX ){ 582 int iOut = iReg + i - iEq; 583 if( eType==IN_INDEX_ROWID ){ 584 testcase( nEq>1 ); /* Happens with a UNIQUE index on ROWID */ 585 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); 586 }else{ 587 int iCol = aiMap ? aiMap[iMap++] : 0; 588 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); 589 } 590 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); 591 if( i==iEq ){ 592 pIn->iCur = iTab; 593 pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next; 594 if( iEq>0 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 595 pIn->iBase = iReg - i; 596 pIn->nPrefix = i; 597 pLoop->wsFlags |= WHERE_IN_EARLYOUT; 598 }else{ 599 pIn->nPrefix = 0; 600 } 601 }else{ 602 pIn->eEndLoopOp = OP_Noop; 603 } 604 pIn++; 605 } 606 } 607 }else{ 608 pLevel->u.in.nIn = 0; 609 } 610 sqlite3DbFree(pParse->db, aiMap); 611 #endif 612 } 613 disableTerm(pLevel, pTerm); 614 return iReg; 615 } 616 617 /* 618 ** Generate code that will evaluate all == and IN constraints for an 619 ** index scan. 620 ** 621 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 622 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 623 ** The index has as many as three equality constraints, but in this 624 ** example, the third "c" value is an inequality. So only two 625 ** constraints are coded. This routine will generate code to evaluate 626 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 627 ** in consecutive registers and the index of the first register is returned. 628 ** 629 ** In the example above nEq==2. But this subroutine works for any value 630 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 631 ** The only thing it does is allocate the pLevel->iMem memory cell and 632 ** compute the affinity string. 633 ** 634 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 635 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 636 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 637 ** occurs after the nEq quality constraints. 638 ** 639 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 640 ** the index of the first memory cell in that range. The code that 641 ** calls this routine will use that memory range to store keys for 642 ** start and termination conditions of the loop. 643 ** key value of the loop. If one or more IN operators appear, then 644 ** this routine allocates an additional nEq memory cells for internal 645 ** use. 646 ** 647 ** Before returning, *pzAff is set to point to a buffer containing a 648 ** copy of the column affinity string of the index allocated using 649 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 650 ** with equality constraints that use BLOB or NONE affinity are set to 651 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 652 ** 653 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 654 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 655 ** 656 ** In the example above, the index on t1(a) has TEXT affinity. But since 657 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 658 ** no conversion should be attempted before using a t2.b value as part of 659 ** a key to search the index. Hence the first byte in the returned affinity 660 ** string in this example would be set to SQLITE_AFF_BLOB. 661 */ 662 static int codeAllEqualityTerms( 663 Parse *pParse, /* Parsing context */ 664 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 665 int bRev, /* Reverse the order of IN operators */ 666 int nExtraReg, /* Number of extra registers to allocate */ 667 char **pzAff /* OUT: Set to point to affinity string */ 668 ){ 669 u16 nEq; /* The number of == or IN constraints to code */ 670 u16 nSkip; /* Number of left-most columns to skip */ 671 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 672 Index *pIdx; /* The index being used for this loop */ 673 WhereTerm *pTerm; /* A single constraint term */ 674 WhereLoop *pLoop; /* The WhereLoop object */ 675 int j; /* Loop counter */ 676 int regBase; /* Base register */ 677 int nReg; /* Number of registers to allocate */ 678 char *zAff; /* Affinity string to return */ 679 680 /* This module is only called on query plans that use an index. */ 681 pLoop = pLevel->pWLoop; 682 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 683 nEq = pLoop->u.btree.nEq; 684 nSkip = pLoop->nSkip; 685 pIdx = pLoop->u.btree.pIndex; 686 assert( pIdx!=0 ); 687 688 /* Figure out how many memory cells we will need then allocate them. 689 */ 690 regBase = pParse->nMem + 1; 691 nReg = pLoop->u.btree.nEq + nExtraReg; 692 pParse->nMem += nReg; 693 694 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 695 assert( zAff!=0 || pParse->db->mallocFailed ); 696 697 if( nSkip ){ 698 int iIdxCur = pLevel->iIdxCur; 699 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 700 VdbeCoverageIf(v, bRev==0); 701 VdbeCoverageIf(v, bRev!=0); 702 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 703 j = sqlite3VdbeAddOp0(v, OP_Goto); 704 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 705 iIdxCur, 0, regBase, nSkip); 706 VdbeCoverageIf(v, bRev==0); 707 VdbeCoverageIf(v, bRev!=0); 708 sqlite3VdbeJumpHere(v, j); 709 for(j=0; j<nSkip; j++){ 710 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 711 testcase( pIdx->aiColumn[j]==XN_EXPR ); 712 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 713 } 714 } 715 716 /* Evaluate the equality constraints 717 */ 718 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 719 for(j=nSkip; j<nEq; j++){ 720 int r1; 721 pTerm = pLoop->aLTerm[j]; 722 assert( pTerm!=0 ); 723 /* The following testcase is true for indices with redundant columns. 724 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 725 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 726 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 727 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 728 if( r1!=regBase+j ){ 729 if( nReg==1 ){ 730 sqlite3ReleaseTempReg(pParse, regBase); 731 regBase = r1; 732 }else{ 733 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 734 } 735 } 736 if( pTerm->eOperator & WO_IN ){ 737 if( pTerm->pExpr->flags & EP_xIsSelect ){ 738 /* No affinity ever needs to be (or should be) applied to a value 739 ** from the RHS of an "? IN (SELECT ...)" expression. The 740 ** sqlite3FindInIndex() routine has already ensured that the 741 ** affinity of the comparison has been applied to the value. */ 742 if( zAff ) zAff[j] = SQLITE_AFF_BLOB; 743 } 744 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ 745 Expr *pRight = pTerm->pExpr->pRight; 746 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 747 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 748 VdbeCoverage(v); 749 } 750 if( zAff ){ 751 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 752 zAff[j] = SQLITE_AFF_BLOB; 753 } 754 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 755 zAff[j] = SQLITE_AFF_BLOB; 756 } 757 } 758 } 759 } 760 *pzAff = zAff; 761 return regBase; 762 } 763 764 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 765 /* 766 ** If the most recently coded instruction is a constant range constraint 767 ** (a string literal) that originated from the LIKE optimization, then 768 ** set P3 and P5 on the OP_String opcode so that the string will be cast 769 ** to a BLOB at appropriate times. 770 ** 771 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 772 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 773 ** scan loop run twice, once for strings and a second time for BLOBs. 774 ** The OP_String opcodes on the second pass convert the upper and lower 775 ** bound string constants to blobs. This routine makes the necessary changes 776 ** to the OP_String opcodes for that to happen. 777 ** 778 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 779 ** only the one pass through the string space is required, so this routine 780 ** becomes a no-op. 781 */ 782 static void whereLikeOptimizationStringFixup( 783 Vdbe *v, /* prepared statement under construction */ 784 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 785 WhereTerm *pTerm /* The upper or lower bound just coded */ 786 ){ 787 if( pTerm->wtFlags & TERM_LIKEOPT ){ 788 VdbeOp *pOp; 789 assert( pLevel->iLikeRepCntr>0 ); 790 pOp = sqlite3VdbeGetOp(v, -1); 791 assert( pOp!=0 ); 792 assert( pOp->opcode==OP_String8 793 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 794 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ 795 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ 796 } 797 } 798 #else 799 # define whereLikeOptimizationStringFixup(A,B,C) 800 #endif 801 802 #ifdef SQLITE_ENABLE_CURSOR_HINTS 803 /* 804 ** Information is passed from codeCursorHint() down to individual nodes of 805 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 806 ** structure. 807 */ 808 struct CCurHint { 809 int iTabCur; /* Cursor for the main table */ 810 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 811 Index *pIdx; /* The index used to access the table */ 812 }; 813 814 /* 815 ** This function is called for every node of an expression that is a candidate 816 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 817 ** the table CCurHint.iTabCur, verify that the same column can be 818 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 819 */ 820 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 821 struct CCurHint *pHint = pWalker->u.pCCurHint; 822 assert( pHint->pIdx!=0 ); 823 if( pExpr->op==TK_COLUMN 824 && pExpr->iTable==pHint->iTabCur 825 && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0 826 ){ 827 pWalker->eCode = 1; 828 } 829 return WRC_Continue; 830 } 831 832 /* 833 ** Test whether or not expression pExpr, which was part of a WHERE clause, 834 ** should be included in the cursor-hint for a table that is on the rhs 835 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the 836 ** expression is not suitable. 837 ** 838 ** An expression is unsuitable if it might evaluate to non NULL even if 839 ** a TK_COLUMN node that does affect the value of the expression is set 840 ** to NULL. For example: 841 ** 842 ** col IS NULL 843 ** col IS NOT NULL 844 ** coalesce(col, 1) 845 ** CASE WHEN col THEN 0 ELSE 1 END 846 */ 847 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ 848 if( pExpr->op==TK_IS 849 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT 850 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE 851 ){ 852 pWalker->eCode = 1; 853 }else if( pExpr->op==TK_FUNCTION ){ 854 int d1; 855 char d2[4]; 856 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ 857 pWalker->eCode = 1; 858 } 859 } 860 861 return WRC_Continue; 862 } 863 864 865 /* 866 ** This function is called on every node of an expression tree used as an 867 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 868 ** that accesses any table other than the one identified by 869 ** CCurHint.iTabCur, then do the following: 870 ** 871 ** 1) allocate a register and code an OP_Column instruction to read 872 ** the specified column into the new register, and 873 ** 874 ** 2) transform the expression node to a TK_REGISTER node that reads 875 ** from the newly populated register. 876 ** 877 ** Also, if the node is a TK_COLUMN that does access the table idenified 878 ** by pCCurHint.iTabCur, and an index is being used (which we will 879 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 880 ** an access of the index rather than the original table. 881 */ 882 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 883 int rc = WRC_Continue; 884 struct CCurHint *pHint = pWalker->u.pCCurHint; 885 if( pExpr->op==TK_COLUMN && !ExprHasProperty(pExpr, EP_FixedCol) ){ 886 if( pExpr->iTable!=pHint->iTabCur ){ 887 Vdbe *v = pWalker->pParse->pVdbe; 888 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 889 sqlite3ExprCodeGetColumnOfTable( 890 v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg 891 ); 892 pExpr->op = TK_REGISTER; 893 pExpr->iTable = reg; 894 }else if( pHint->pIdx!=0 ){ 895 pExpr->iTable = pHint->iIdxCur; 896 pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn); 897 assert( pExpr->iColumn>=0 ); 898 } 899 }else if( pExpr->op==TK_AGG_FUNCTION ){ 900 /* An aggregate function in the WHERE clause of a query means this must 901 ** be a correlated sub-query, and expression pExpr is an aggregate from 902 ** the parent context. Do not walk the function arguments in this case. 903 ** 904 ** todo: It should be possible to replace this node with a TK_REGISTER 905 ** expression, as the result of the expression must be stored in a 906 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 907 rc = WRC_Prune; 908 } 909 return rc; 910 } 911 912 /* 913 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 914 */ 915 static void codeCursorHint( 916 struct SrcList_item *pTabItem, /* FROM clause item */ 917 WhereInfo *pWInfo, /* The where clause */ 918 WhereLevel *pLevel, /* Which loop to provide hints for */ 919 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 920 ){ 921 Parse *pParse = pWInfo->pParse; 922 sqlite3 *db = pParse->db; 923 Vdbe *v = pParse->pVdbe; 924 Expr *pExpr = 0; 925 WhereLoop *pLoop = pLevel->pWLoop; 926 int iCur; 927 WhereClause *pWC; 928 WhereTerm *pTerm; 929 int i, j; 930 struct CCurHint sHint; 931 Walker sWalker; 932 933 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 934 iCur = pLevel->iTabCur; 935 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 936 sHint.iTabCur = iCur; 937 sHint.iIdxCur = pLevel->iIdxCur; 938 sHint.pIdx = pLoop->u.btree.pIndex; 939 memset(&sWalker, 0, sizeof(sWalker)); 940 sWalker.pParse = pParse; 941 sWalker.u.pCCurHint = &sHint; 942 pWC = &pWInfo->sWC; 943 for(i=0; i<pWC->nTerm; i++){ 944 pTerm = &pWC->a[i]; 945 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 946 if( pTerm->prereqAll & pLevel->notReady ) continue; 947 948 /* Any terms specified as part of the ON(...) clause for any LEFT 949 ** JOIN for which the current table is not the rhs are omitted 950 ** from the cursor-hint. 951 ** 952 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms 953 ** that were specified as part of the WHERE clause must be excluded. 954 ** This is to address the following: 955 ** 956 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; 957 ** 958 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its 959 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is 960 ** pushed down to the cursor, this row is filtered out, causing 961 ** SQLite to synthesize a row of NULL values. Which does match the 962 ** WHERE clause, and so the query returns a row. Which is incorrect. 963 ** 964 ** For the same reason, WHERE terms such as: 965 ** 966 ** WHERE 1 = (t2.c IS NULL) 967 ** 968 ** are also excluded. See codeCursorHintIsOrFunction() for details. 969 */ 970 if( pTabItem->fg.jointype & JT_LEFT ){ 971 Expr *pExpr = pTerm->pExpr; 972 if( !ExprHasProperty(pExpr, EP_FromJoin) 973 || pExpr->iRightJoinTable!=pTabItem->iCursor 974 ){ 975 sWalker.eCode = 0; 976 sWalker.xExprCallback = codeCursorHintIsOrFunction; 977 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 978 if( sWalker.eCode ) continue; 979 } 980 }else{ 981 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; 982 } 983 984 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 985 ** the cursor. These terms are not needed as hints for a pure range 986 ** scan (that has no == terms) so omit them. */ 987 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 988 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 989 if( j<pLoop->nLTerm ) continue; 990 } 991 992 /* No subqueries or non-deterministic functions allowed */ 993 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 994 995 /* For an index scan, make sure referenced columns are actually in 996 ** the index. */ 997 if( sHint.pIdx!=0 ){ 998 sWalker.eCode = 0; 999 sWalker.xExprCallback = codeCursorHintCheckExpr; 1000 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 1001 if( sWalker.eCode ) continue; 1002 } 1003 1004 /* If we survive all prior tests, that means this term is worth hinting */ 1005 pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 1006 } 1007 if( pExpr!=0 ){ 1008 sWalker.xExprCallback = codeCursorHintFixExpr; 1009 sqlite3WalkExpr(&sWalker, pExpr); 1010 sqlite3VdbeAddOp4(v, OP_CursorHint, 1011 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 1012 (const char*)pExpr, P4_EXPR); 1013 } 1014 } 1015 #else 1016 # define codeCursorHint(A,B,C,D) /* No-op */ 1017 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 1018 1019 /* 1020 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains 1021 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This 1022 ** function generates code to do a deferred seek of cursor iCur to the 1023 ** rowid stored in register iRowid. 1024 ** 1025 ** Normally, this is just: 1026 ** 1027 ** OP_DeferredSeek $iCur $iRowid 1028 ** 1029 ** However, if the scan currently being coded is a branch of an OR-loop and 1030 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek 1031 ** is set to iIdxCur and P4 is set to point to an array of integers 1032 ** containing one entry for each column of the table cursor iCur is open 1033 ** on. For each table column, if the column is the i'th column of the 1034 ** index, then the corresponding array entry is set to (i+1). If the column 1035 ** does not appear in the index at all, the array entry is set to 0. 1036 */ 1037 static void codeDeferredSeek( 1038 WhereInfo *pWInfo, /* Where clause context */ 1039 Index *pIdx, /* Index scan is using */ 1040 int iCur, /* Cursor for IPK b-tree */ 1041 int iIdxCur /* Index cursor */ 1042 ){ 1043 Parse *pParse = pWInfo->pParse; /* Parse context */ 1044 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ 1045 1046 assert( iIdxCur>0 ); 1047 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); 1048 1049 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur); 1050 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 1051 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) 1052 ){ 1053 int i; 1054 Table *pTab = pIdx->pTable; 1055 int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1)); 1056 if( ai ){ 1057 ai[0] = pTab->nCol; 1058 for(i=0; i<pIdx->nColumn-1; i++){ 1059 assert( pIdx->aiColumn[i]<pTab->nCol ); 1060 if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1; 1061 } 1062 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); 1063 } 1064 } 1065 } 1066 1067 /* 1068 ** If the expression passed as the second argument is a vector, generate 1069 ** code to write the first nReg elements of the vector into an array 1070 ** of registers starting with iReg. 1071 ** 1072 ** If the expression is not a vector, then nReg must be passed 1. In 1073 ** this case, generate code to evaluate the expression and leave the 1074 ** result in register iReg. 1075 */ 1076 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ 1077 assert( nReg>0 ); 1078 if( p && sqlite3ExprIsVector(p) ){ 1079 #ifndef SQLITE_OMIT_SUBQUERY 1080 if( (p->flags & EP_xIsSelect) ){ 1081 Vdbe *v = pParse->pVdbe; 1082 int iSelect = sqlite3CodeSubselect(pParse, p, 0, 0); 1083 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); 1084 }else 1085 #endif 1086 { 1087 int i; 1088 ExprList *pList = p->x.pList; 1089 assert( nReg<=pList->nExpr ); 1090 for(i=0; i<nReg; i++){ 1091 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i); 1092 } 1093 } 1094 }else{ 1095 assert( nReg==1 ); 1096 sqlite3ExprCode(pParse, p, iReg); 1097 } 1098 } 1099 1100 /* An instance of the IdxExprTrans object carries information about a 1101 ** mapping from an expression on table columns into a column in an index 1102 ** down through the Walker. 1103 */ 1104 typedef struct IdxExprTrans { 1105 Expr *pIdxExpr; /* The index expression */ 1106 int iTabCur; /* The cursor of the corresponding table */ 1107 int iIdxCur; /* The cursor for the index */ 1108 int iIdxCol; /* The column for the index */ 1109 } IdxExprTrans; 1110 1111 /* The walker node callback used to transform matching expressions into 1112 ** a reference to an index column for an index on an expression. 1113 ** 1114 ** If pExpr matches, then transform it into a reference to the index column 1115 ** that contains the value of pExpr. 1116 */ 1117 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){ 1118 IdxExprTrans *pX = p->u.pIdxTrans; 1119 if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){ 1120 pExpr->op = TK_COLUMN; 1121 pExpr->iTable = pX->iIdxCur; 1122 pExpr->iColumn = pX->iIdxCol; 1123 pExpr->pTab = 0; 1124 return WRC_Prune; 1125 }else{ 1126 return WRC_Continue; 1127 } 1128 } 1129 1130 /* 1131 ** For an indexes on expression X, locate every instance of expression X 1132 ** in pExpr and change that subexpression into a reference to the appropriate 1133 ** column of the index. 1134 */ 1135 static void whereIndexExprTrans( 1136 Index *pIdx, /* The Index */ 1137 int iTabCur, /* Cursor of the table that is being indexed */ 1138 int iIdxCur, /* Cursor of the index itself */ 1139 WhereInfo *pWInfo /* Transform expressions in this WHERE clause */ 1140 ){ 1141 int iIdxCol; /* Column number of the index */ 1142 ExprList *aColExpr; /* Expressions that are indexed */ 1143 Walker w; 1144 IdxExprTrans x; 1145 aColExpr = pIdx->aColExpr; 1146 if( aColExpr==0 ) return; /* Not an index on expressions */ 1147 memset(&w, 0, sizeof(w)); 1148 w.xExprCallback = whereIndexExprTransNode; 1149 w.u.pIdxTrans = &x; 1150 x.iTabCur = iTabCur; 1151 x.iIdxCur = iIdxCur; 1152 for(iIdxCol=0; iIdxCol<aColExpr->nExpr; iIdxCol++){ 1153 if( pIdx->aiColumn[iIdxCol]!=XN_EXPR ) continue; 1154 assert( aColExpr->a[iIdxCol].pExpr!=0 ); 1155 x.iIdxCol = iIdxCol; 1156 x.pIdxExpr = aColExpr->a[iIdxCol].pExpr; 1157 sqlite3WalkExpr(&w, pWInfo->pWhere); 1158 sqlite3WalkExprList(&w, pWInfo->pOrderBy); 1159 sqlite3WalkExprList(&w, pWInfo->pResultSet); 1160 } 1161 } 1162 1163 /* 1164 ** Generate code for the start of the iLevel-th loop in the WHERE clause 1165 ** implementation described by pWInfo. 1166 */ 1167 Bitmask sqlite3WhereCodeOneLoopStart( 1168 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1169 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1170 Bitmask notReady /* Which tables are currently available */ 1171 ){ 1172 int j, k; /* Loop counters */ 1173 int iCur; /* The VDBE cursor for the table */ 1174 int addrNxt; /* Where to jump to continue with the next IN case */ 1175 int omitTable; /* True if we use the index only */ 1176 int bRev; /* True if we need to scan in reverse order */ 1177 WhereLevel *pLevel; /* The where level to be coded */ 1178 WhereLoop *pLoop; /* The WhereLoop object being coded */ 1179 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 1180 WhereTerm *pTerm; /* A WHERE clause term */ 1181 Parse *pParse; /* Parsing context */ 1182 sqlite3 *db; /* Database connection */ 1183 Vdbe *v; /* The prepared stmt under constructions */ 1184 struct SrcList_item *pTabItem; /* FROM clause term being coded */ 1185 int addrBrk; /* Jump here to break out of the loop */ 1186 int addrHalt; /* addrBrk for the outermost loop */ 1187 int addrCont; /* Jump here to continue with next cycle */ 1188 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 1189 int iReleaseReg = 0; /* Temp register to free before returning */ 1190 Index *pIdx = 0; /* Index used by loop (if any) */ 1191 int iLoop; /* Iteration of constraint generator loop */ 1192 1193 pParse = pWInfo->pParse; 1194 v = pParse->pVdbe; 1195 pWC = &pWInfo->sWC; 1196 db = pParse->db; 1197 pLevel = &pWInfo->a[iLevel]; 1198 pLoop = pLevel->pWLoop; 1199 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1200 iCur = pTabItem->iCursor; 1201 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 1202 bRev = (pWInfo->revMask>>iLevel)&1; 1203 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 1204 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0; 1205 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 1206 1207 /* Create labels for the "break" and "continue" instructions 1208 ** for the current loop. Jump to addrBrk to break out of a loop. 1209 ** Jump to cont to go immediately to the next iteration of the 1210 ** loop. 1211 ** 1212 ** When there is an IN operator, we also have a "addrNxt" label that 1213 ** means to continue with the next IN value combination. When 1214 ** there are no IN operators in the constraints, the "addrNxt" label 1215 ** is the same as "addrBrk". 1216 */ 1217 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 1218 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); 1219 1220 /* If this is the right table of a LEFT OUTER JOIN, allocate and 1221 ** initialize a memory cell that records if this table matches any 1222 ** row of the left table of the join. 1223 */ 1224 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 1225 || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0 1226 ); 1227 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 1228 pLevel->iLeftJoin = ++pParse->nMem; 1229 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 1230 VdbeComment((v, "init LEFT JOIN no-match flag")); 1231 } 1232 1233 /* Compute a safe address to jump to if we discover that the table for 1234 ** this loop is empty and can never contribute content. */ 1235 for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){} 1236 addrHalt = pWInfo->a[j].addrBrk; 1237 1238 /* Special case of a FROM clause subquery implemented as a co-routine */ 1239 if( pTabItem->fg.viaCoroutine ){ 1240 int regYield = pTabItem->regReturn; 1241 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 1242 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 1243 VdbeCoverage(v); 1244 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 1245 pLevel->op = OP_Goto; 1246 }else 1247 1248 #ifndef SQLITE_OMIT_VIRTUALTABLE 1249 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 1250 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 1251 ** to access the data. 1252 */ 1253 int iReg; /* P3 Value for OP_VFilter */ 1254 int addrNotFound; 1255 int nConstraint = pLoop->nLTerm; 1256 int iIn; /* Counter for IN constraints */ 1257 1258 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 1259 addrNotFound = pLevel->addrBrk; 1260 for(j=0; j<nConstraint; j++){ 1261 int iTarget = iReg+j+2; 1262 pTerm = pLoop->aLTerm[j]; 1263 if( NEVER(pTerm==0) ) continue; 1264 if( pTerm->eOperator & WO_IN ){ 1265 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 1266 addrNotFound = pLevel->addrNxt; 1267 }else{ 1268 Expr *pRight = pTerm->pExpr->pRight; 1269 codeExprOrVector(pParse, pRight, iTarget, 1); 1270 } 1271 } 1272 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 1273 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 1274 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 1275 pLoop->u.vtab.idxStr, 1276 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); 1277 VdbeCoverage(v); 1278 pLoop->u.vtab.needFree = 0; 1279 pLevel->p1 = iCur; 1280 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 1281 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1282 iIn = pLevel->u.in.nIn; 1283 for(j=nConstraint-1; j>=0; j--){ 1284 pTerm = pLoop->aLTerm[j]; 1285 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ 1286 disableTerm(pLevel, pTerm); 1287 }else if( (pTerm->eOperator & WO_IN)!=0 ){ 1288 Expr *pCompare; /* The comparison operator */ 1289 Expr *pRight; /* RHS of the comparison */ 1290 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ 1291 1292 /* Reload the constraint value into reg[iReg+j+2]. The same value 1293 ** was loaded into the same register prior to the OP_VFilter, but 1294 ** the xFilter implementation might have changed the datatype or 1295 ** encoding of the value in the register, so it *must* be reloaded. */ 1296 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed ); 1297 if( !db->mallocFailed ){ 1298 assert( iIn>0 ); 1299 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[--iIn].addrInTop); 1300 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid ); 1301 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 ); 1302 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 ); 1303 testcase( pOp->opcode==OP_Rowid ); 1304 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); 1305 } 1306 1307 /* Generate code that will continue to the next row if 1308 ** the IN constraint is not satisfied */ 1309 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); 1310 assert( pCompare!=0 || db->mallocFailed ); 1311 if( pCompare ){ 1312 pCompare->pLeft = pTerm->pExpr->pLeft; 1313 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); 1314 if( pRight ){ 1315 pRight->iTable = iReg+j+2; 1316 sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0); 1317 } 1318 pCompare->pLeft = 0; 1319 sqlite3ExprDelete(db, pCompare); 1320 } 1321 } 1322 } 1323 /* These registers need to be preserved in case there is an IN operator 1324 ** loop. So we could deallocate the registers here (and potentially 1325 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems 1326 ** simpler and safer to simply not reuse the registers. 1327 ** 1328 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 1329 */ 1330 }else 1331 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1332 1333 if( (pLoop->wsFlags & WHERE_IPK)!=0 1334 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 1335 ){ 1336 /* Case 2: We can directly reference a single row using an 1337 ** equality comparison against the ROWID field. Or 1338 ** we reference multiple rows using a "rowid IN (...)" 1339 ** construct. 1340 */ 1341 assert( pLoop->u.btree.nEq==1 ); 1342 pTerm = pLoop->aLTerm[0]; 1343 assert( pTerm!=0 ); 1344 assert( pTerm->pExpr!=0 ); 1345 assert( omitTable==0 ); 1346 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1347 iReleaseReg = ++pParse->nMem; 1348 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 1349 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 1350 addrNxt = pLevel->addrNxt; 1351 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); 1352 VdbeCoverage(v); 1353 pLevel->op = OP_Noop; 1354 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 1355 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 1356 ){ 1357 /* Case 3: We have an inequality comparison against the ROWID field. 1358 */ 1359 int testOp = OP_Noop; 1360 int start; 1361 int memEndValue = 0; 1362 WhereTerm *pStart, *pEnd; 1363 1364 assert( omitTable==0 ); 1365 j = 0; 1366 pStart = pEnd = 0; 1367 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 1368 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 1369 assert( pStart!=0 || pEnd!=0 ); 1370 if( bRev ){ 1371 pTerm = pStart; 1372 pStart = pEnd; 1373 pEnd = pTerm; 1374 } 1375 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); 1376 if( pStart ){ 1377 Expr *pX; /* The expression that defines the start bound */ 1378 int r1, rTemp; /* Registers for holding the start boundary */ 1379 int op; /* Cursor seek operation */ 1380 1381 /* The following constant maps TK_xx codes into corresponding 1382 ** seek opcodes. It depends on a particular ordering of TK_xx 1383 */ 1384 const u8 aMoveOp[] = { 1385 /* TK_GT */ OP_SeekGT, 1386 /* TK_LE */ OP_SeekLE, 1387 /* TK_LT */ OP_SeekLT, 1388 /* TK_GE */ OP_SeekGE 1389 }; 1390 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 1391 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 1392 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 1393 1394 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 1395 testcase( pStart->wtFlags & TERM_VIRTUAL ); 1396 pX = pStart->pExpr; 1397 assert( pX!=0 ); 1398 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 1399 if( sqlite3ExprIsVector(pX->pRight) ){ 1400 r1 = rTemp = sqlite3GetTempReg(pParse); 1401 codeExprOrVector(pParse, pX->pRight, r1, 1); 1402 testcase( pX->op==TK_GT ); 1403 testcase( pX->op==TK_GE ); 1404 testcase( pX->op==TK_LT ); 1405 testcase( pX->op==TK_LE ); 1406 op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1]; 1407 assert( pX->op!=TK_GT || op==OP_SeekGE ); 1408 assert( pX->op!=TK_GE || op==OP_SeekGE ); 1409 assert( pX->op!=TK_LT || op==OP_SeekLE ); 1410 assert( pX->op!=TK_LE || op==OP_SeekLE ); 1411 }else{ 1412 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 1413 disableTerm(pLevel, pStart); 1414 op = aMoveOp[(pX->op - TK_GT)]; 1415 } 1416 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); 1417 VdbeComment((v, "pk")); 1418 VdbeCoverageIf(v, pX->op==TK_GT); 1419 VdbeCoverageIf(v, pX->op==TK_LE); 1420 VdbeCoverageIf(v, pX->op==TK_LT); 1421 VdbeCoverageIf(v, pX->op==TK_GE); 1422 sqlite3ReleaseTempReg(pParse, rTemp); 1423 }else{ 1424 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt); 1425 VdbeCoverageIf(v, bRev==0); 1426 VdbeCoverageIf(v, bRev!=0); 1427 } 1428 if( pEnd ){ 1429 Expr *pX; 1430 pX = pEnd->pExpr; 1431 assert( pX!=0 ); 1432 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 1433 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 1434 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 1435 memEndValue = ++pParse->nMem; 1436 codeExprOrVector(pParse, pX->pRight, memEndValue, 1); 1437 if( 0==sqlite3ExprIsVector(pX->pRight) 1438 && (pX->op==TK_LT || pX->op==TK_GT) 1439 ){ 1440 testOp = bRev ? OP_Le : OP_Ge; 1441 }else{ 1442 testOp = bRev ? OP_Lt : OP_Gt; 1443 } 1444 if( 0==sqlite3ExprIsVector(pX->pRight) ){ 1445 disableTerm(pLevel, pEnd); 1446 } 1447 } 1448 start = sqlite3VdbeCurrentAddr(v); 1449 pLevel->op = bRev ? OP_Prev : OP_Next; 1450 pLevel->p1 = iCur; 1451 pLevel->p2 = start; 1452 assert( pLevel->p5==0 ); 1453 if( testOp!=OP_Noop ){ 1454 iRowidReg = ++pParse->nMem; 1455 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 1456 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 1457 VdbeCoverageIf(v, testOp==OP_Le); 1458 VdbeCoverageIf(v, testOp==OP_Lt); 1459 VdbeCoverageIf(v, testOp==OP_Ge); 1460 VdbeCoverageIf(v, testOp==OP_Gt); 1461 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 1462 } 1463 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 1464 /* Case 4: A scan using an index. 1465 ** 1466 ** The WHERE clause may contain zero or more equality 1467 ** terms ("==" or "IN" operators) that refer to the N 1468 ** left-most columns of the index. It may also contain 1469 ** inequality constraints (>, <, >= or <=) on the indexed 1470 ** column that immediately follows the N equalities. Only 1471 ** the right-most column can be an inequality - the rest must 1472 ** use the "==" and "IN" operators. For example, if the 1473 ** index is on (x,y,z), then the following clauses are all 1474 ** optimized: 1475 ** 1476 ** x=5 1477 ** x=5 AND y=10 1478 ** x=5 AND y<10 1479 ** x=5 AND y>5 AND y<10 1480 ** x=5 AND y=5 AND z<=10 1481 ** 1482 ** The z<10 term of the following cannot be used, only 1483 ** the x=5 term: 1484 ** 1485 ** x=5 AND z<10 1486 ** 1487 ** N may be zero if there are inequality constraints. 1488 ** If there are no inequality constraints, then N is at 1489 ** least one. 1490 ** 1491 ** This case is also used when there are no WHERE clause 1492 ** constraints but an index is selected anyway, in order 1493 ** to force the output order to conform to an ORDER BY. 1494 */ 1495 static const u8 aStartOp[] = { 1496 0, 1497 0, 1498 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1499 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1500 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1501 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1502 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1503 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1504 }; 1505 static const u8 aEndOp[] = { 1506 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1507 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1508 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1509 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1510 }; 1511 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1512 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ 1513 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ 1514 int regBase; /* Base register holding constraint values */ 1515 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1516 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1517 int startEq; /* True if range start uses ==, >= or <= */ 1518 int endEq; /* True if range end uses ==, >= or <= */ 1519 int start_constraints; /* Start of range is constrained */ 1520 int nConstraint; /* Number of constraint terms */ 1521 int iIdxCur; /* The VDBE cursor for the index */ 1522 int nExtraReg = 0; /* Number of extra registers needed */ 1523 int op; /* Instruction opcode */ 1524 char *zStartAff; /* Affinity for start of range constraint */ 1525 char *zEndAff = 0; /* Affinity for end of range constraint */ 1526 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1527 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1528 1529 pIdx = pLoop->u.btree.pIndex; 1530 iIdxCur = pLevel->iIdxCur; 1531 assert( nEq>=pLoop->nSkip ); 1532 1533 /* If this loop satisfies a sort order (pOrderBy) request that 1534 ** was passed to this function to implement a "SELECT min(x) ..." 1535 ** query, then the caller will only allow the loop to run for 1536 ** a single iteration. This means that the first row returned 1537 ** should not have a NULL value stored in 'x'. If column 'x' is 1538 ** the first one after the nEq equality constraints in the index, 1539 ** this requires some special handling. 1540 */ 1541 assert( pWInfo->pOrderBy==0 1542 || pWInfo->pOrderBy->nExpr==1 1543 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); 1544 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 1545 && pWInfo->nOBSat>0 1546 && (pIdx->nKeyCol>nEq) 1547 ){ 1548 assert( pLoop->nSkip==0 ); 1549 bSeekPastNull = 1; 1550 nExtraReg = 1; 1551 } 1552 1553 /* Find any inequality constraint terms for the start and end 1554 ** of the range. 1555 */ 1556 j = nEq; 1557 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1558 pRangeStart = pLoop->aLTerm[j++]; 1559 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); 1560 /* Like optimization range constraints always occur in pairs */ 1561 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1562 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1563 } 1564 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1565 pRangeEnd = pLoop->aLTerm[j++]; 1566 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); 1567 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1568 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1569 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1570 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1571 pLevel->iLikeRepCntr = (u32)++pParse->nMem; 1572 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); 1573 VdbeComment((v, "LIKE loop counter")); 1574 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1575 /* iLikeRepCntr actually stores 2x the counter register number. The 1576 ** bottom bit indicates whether the search order is ASC or DESC. */ 1577 testcase( bRev ); 1578 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1579 assert( (bRev & ~1)==0 ); 1580 pLevel->iLikeRepCntr <<=1; 1581 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); 1582 } 1583 #endif 1584 if( pRangeStart==0 ){ 1585 j = pIdx->aiColumn[nEq]; 1586 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){ 1587 bSeekPastNull = 1; 1588 } 1589 } 1590 } 1591 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1592 1593 /* If we are doing a reverse order scan on an ascending index, or 1594 ** a forward order scan on a descending index, interchange the 1595 ** start and end terms (pRangeStart and pRangeEnd). 1596 */ 1597 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) 1598 || (bRev && pIdx->nKeyCol==nEq) 1599 ){ 1600 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1601 SWAP(u8, bSeekPastNull, bStopAtNull); 1602 SWAP(u8, nBtm, nTop); 1603 } 1604 1605 /* Generate code to evaluate all constraint terms using == or IN 1606 ** and store the values of those terms in an array of registers 1607 ** starting at regBase. 1608 */ 1609 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); 1610 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1611 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1612 if( zStartAff && nTop ){ 1613 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); 1614 } 1615 addrNxt = pLevel->addrNxt; 1616 1617 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1618 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1619 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1620 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1621 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1622 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1623 start_constraints = pRangeStart || nEq>0; 1624 1625 /* Seek the index cursor to the start of the range. */ 1626 nConstraint = nEq; 1627 if( pRangeStart ){ 1628 Expr *pRight = pRangeStart->pExpr->pRight; 1629 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); 1630 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1631 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1632 && sqlite3ExprCanBeNull(pRight) 1633 ){ 1634 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1635 VdbeCoverage(v); 1636 } 1637 if( zStartAff ){ 1638 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); 1639 } 1640 nConstraint += nBtm; 1641 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1642 if( sqlite3ExprIsVector(pRight)==0 ){ 1643 disableTerm(pLevel, pRangeStart); 1644 }else{ 1645 startEq = 1; 1646 } 1647 bSeekPastNull = 0; 1648 }else if( bSeekPastNull ){ 1649 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1650 nConstraint++; 1651 startEq = 0; 1652 start_constraints = 1; 1653 } 1654 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1655 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ 1656 /* The skip-scan logic inside the call to codeAllEqualityConstraints() 1657 ** above has already left the cursor sitting on the correct row, 1658 ** so no further seeking is needed */ 1659 }else{ 1660 if( pLoop->wsFlags & WHERE_IN_EARLYOUT ){ 1661 sqlite3VdbeAddOp1(v, OP_SeekHit, iIdxCur); 1662 } 1663 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 1664 assert( op!=0 ); 1665 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1666 VdbeCoverage(v); 1667 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1668 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1669 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 1670 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1671 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1672 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 1673 } 1674 1675 /* Load the value for the inequality constraint at the end of the 1676 ** range (if any). 1677 */ 1678 nConstraint = nEq; 1679 if( pRangeEnd ){ 1680 Expr *pRight = pRangeEnd->pExpr->pRight; 1681 codeExprOrVector(pParse, pRight, regBase+nEq, nTop); 1682 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 1683 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 1684 && sqlite3ExprCanBeNull(pRight) 1685 ){ 1686 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1687 VdbeCoverage(v); 1688 } 1689 if( zEndAff ){ 1690 updateRangeAffinityStr(pRight, nTop, zEndAff); 1691 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); 1692 }else{ 1693 assert( pParse->db->mallocFailed ); 1694 } 1695 nConstraint += nTop; 1696 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 1697 1698 if( sqlite3ExprIsVector(pRight)==0 ){ 1699 disableTerm(pLevel, pRangeEnd); 1700 }else{ 1701 endEq = 1; 1702 } 1703 }else if( bStopAtNull ){ 1704 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1705 endEq = 0; 1706 nConstraint++; 1707 } 1708 sqlite3DbFree(db, zStartAff); 1709 sqlite3DbFree(db, zEndAff); 1710 1711 /* Top of the loop body */ 1712 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1713 1714 /* Check if the index cursor is past the end of the range. */ 1715 if( nConstraint ){ 1716 op = aEndOp[bRev*2 + endEq]; 1717 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1718 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1719 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1720 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1721 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1722 } 1723 1724 if( pLoop->wsFlags & WHERE_IN_EARLYOUT ){ 1725 sqlite3VdbeAddOp2(v, OP_SeekHit, iIdxCur, 1); 1726 } 1727 1728 /* Seek the table cursor, if required */ 1729 if( omitTable ){ 1730 /* pIdx is a covering index. No need to access the main table. */ 1731 }else if( HasRowid(pIdx->pTable) ){ 1732 if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE) || ( 1733 (pWInfo->wctrlFlags & WHERE_SEEK_UNIQ_TABLE) 1734 && (pWInfo->eOnePass==ONEPASS_SINGLE) 1735 )){ 1736 iRowidReg = ++pParse->nMem; 1737 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); 1738 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg); 1739 VdbeCoverage(v); 1740 }else{ 1741 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); 1742 } 1743 }else if( iCur!=iIdxCur ){ 1744 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1745 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1746 for(j=0; j<pPk->nKeyCol; j++){ 1747 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); 1748 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 1749 } 1750 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 1751 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 1752 } 1753 1754 /* If pIdx is an index on one or more expressions, then look through 1755 ** all the expressions in pWInfo and try to transform matching expressions 1756 ** into reference to index columns. 1757 ** 1758 ** Do not do this for the RHS of a LEFT JOIN. This is because the 1759 ** expression may be evaluated after OP_NullRow has been executed on 1760 ** the cursor. In this case it is important to do the full evaluation, 1761 ** as the result of the expression may not be NULL, even if all table 1762 ** column values are. https://www.sqlite.org/src/info/7fa8049685b50b5a 1763 */ 1764 if( pLevel->iLeftJoin==0 ){ 1765 whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo); 1766 } 1767 1768 /* Record the instruction used to terminate the loop. */ 1769 if( pLoop->wsFlags & WHERE_ONEROW ){ 1770 pLevel->op = OP_Noop; 1771 }else if( bRev ){ 1772 pLevel->op = OP_Prev; 1773 }else{ 1774 pLevel->op = OP_Next; 1775 } 1776 pLevel->p1 = iIdxCur; 1777 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 1778 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 1779 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 1780 }else{ 1781 assert( pLevel->p5==0 ); 1782 } 1783 if( omitTable ) pIdx = 0; 1784 }else 1785 1786 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 1787 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 1788 /* Case 5: Two or more separately indexed terms connected by OR 1789 ** 1790 ** Example: 1791 ** 1792 ** CREATE TABLE t1(a,b,c,d); 1793 ** CREATE INDEX i1 ON t1(a); 1794 ** CREATE INDEX i2 ON t1(b); 1795 ** CREATE INDEX i3 ON t1(c); 1796 ** 1797 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 1798 ** 1799 ** In the example, there are three indexed terms connected by OR. 1800 ** The top of the loop looks like this: 1801 ** 1802 ** Null 1 # Zero the rowset in reg 1 1803 ** 1804 ** Then, for each indexed term, the following. The arguments to 1805 ** RowSetTest are such that the rowid of the current row is inserted 1806 ** into the RowSet. If it is already present, control skips the 1807 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 1808 ** 1809 ** sqlite3WhereBegin(<term>) 1810 ** RowSetTest # Insert rowid into rowset 1811 ** Gosub 2 A 1812 ** sqlite3WhereEnd() 1813 ** 1814 ** Following the above, code to terminate the loop. Label A, the target 1815 ** of the Gosub above, jumps to the instruction right after the Goto. 1816 ** 1817 ** Null 1 # Zero the rowset in reg 1 1818 ** Goto B # The loop is finished. 1819 ** 1820 ** A: <loop body> # Return data, whatever. 1821 ** 1822 ** Return 2 # Jump back to the Gosub 1823 ** 1824 ** B: <after the loop> 1825 ** 1826 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 1827 ** use an ephemeral index instead of a RowSet to record the primary 1828 ** keys of the rows we have already seen. 1829 ** 1830 */ 1831 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 1832 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 1833 Index *pCov = 0; /* Potential covering index (or NULL) */ 1834 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 1835 1836 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 1837 int regRowset = 0; /* Register for RowSet object */ 1838 int regRowid = 0; /* Register holding rowid */ 1839 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ 1840 int iRetInit; /* Address of regReturn init */ 1841 int untestedTerms = 0; /* Some terms not completely tested */ 1842 int ii; /* Loop counter */ 1843 u16 wctrlFlags; /* Flags for sub-WHERE clause */ 1844 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 1845 Table *pTab = pTabItem->pTab; 1846 1847 pTerm = pLoop->aLTerm[0]; 1848 assert( pTerm!=0 ); 1849 assert( pTerm->eOperator & WO_OR ); 1850 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 1851 pOrWc = &pTerm->u.pOrInfo->wc; 1852 pLevel->op = OP_Return; 1853 pLevel->p1 = regReturn; 1854 1855 /* Set up a new SrcList in pOrTab containing the table being scanned 1856 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 1857 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 1858 */ 1859 if( pWInfo->nLevel>1 ){ 1860 int nNotReady; /* The number of notReady tables */ 1861 struct SrcList_item *origSrc; /* Original list of tables */ 1862 nNotReady = pWInfo->nLevel - iLevel - 1; 1863 pOrTab = sqlite3StackAllocRaw(db, 1864 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 1865 if( pOrTab==0 ) return notReady; 1866 pOrTab->nAlloc = (u8)(nNotReady + 1); 1867 pOrTab->nSrc = pOrTab->nAlloc; 1868 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 1869 origSrc = pWInfo->pTabList->a; 1870 for(k=1; k<=nNotReady; k++){ 1871 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 1872 } 1873 }else{ 1874 pOrTab = pWInfo->pTabList; 1875 } 1876 1877 /* Initialize the rowset register to contain NULL. An SQL NULL is 1878 ** equivalent to an empty rowset. Or, create an ephemeral index 1879 ** capable of holding primary keys in the case of a WITHOUT ROWID. 1880 ** 1881 ** Also initialize regReturn to contain the address of the instruction 1882 ** immediately following the OP_Return at the bottom of the loop. This 1883 ** is required in a few obscure LEFT JOIN cases where control jumps 1884 ** over the top of the loop into the body of it. In this case the 1885 ** correct response for the end-of-loop code (the OP_Return) is to 1886 ** fall through to the next instruction, just as an OP_Next does if 1887 ** called on an uninitialized cursor. 1888 */ 1889 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 1890 if( HasRowid(pTab) ){ 1891 regRowset = ++pParse->nMem; 1892 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 1893 }else{ 1894 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1895 regRowset = pParse->nTab++; 1896 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 1897 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 1898 } 1899 regRowid = ++pParse->nMem; 1900 } 1901 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 1902 1903 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 1904 ** Then for every term xN, evaluate as the subexpression: xN AND z 1905 ** That way, terms in y that are factored into the disjunction will 1906 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 1907 ** 1908 ** Actually, each subexpression is converted to "xN AND w" where w is 1909 ** the "interesting" terms of z - terms that did not originate in the 1910 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 1911 ** indices. 1912 ** 1913 ** This optimization also only applies if the (x1 OR x2 OR ...) term 1914 ** is not contained in the ON clause of a LEFT JOIN. 1915 ** See ticket http://www.sqlite.org/src/info/f2369304e4 1916 */ 1917 if( pWC->nTerm>1 ){ 1918 int iTerm; 1919 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 1920 Expr *pExpr = pWC->a[iTerm].pExpr; 1921 if( &pWC->a[iTerm] == pTerm ) continue; 1922 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); 1923 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); 1924 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue; 1925 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 1926 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); 1927 pExpr = sqlite3ExprDup(db, pExpr, 0); 1928 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); 1929 } 1930 if( pAndExpr ){ 1931 pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr); 1932 } 1933 } 1934 1935 /* Run a separate WHERE clause for each term of the OR clause. After 1936 ** eliminating duplicates from other WHERE clauses, the action for each 1937 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 1938 */ 1939 wctrlFlags = WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE); 1940 ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR")); 1941 for(ii=0; ii<pOrWc->nTerm; ii++){ 1942 WhereTerm *pOrTerm = &pOrWc->a[ii]; 1943 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 1944 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 1945 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 1946 int jmp1 = 0; /* Address of jump operation */ 1947 assert( (pTabItem[0].fg.jointype & JT_LEFT)==0 1948 || ExprHasProperty(pOrExpr, EP_FromJoin) 1949 ); 1950 if( pAndExpr ){ 1951 pAndExpr->pLeft = pOrExpr; 1952 pOrExpr = pAndExpr; 1953 } 1954 /* Loop through table entries that match term pOrTerm. */ 1955 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 1956 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 1957 wctrlFlags, iCovCur); 1958 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); 1959 if( pSubWInfo ){ 1960 WhereLoop *pSubLoop; 1961 int addrExplain = sqlite3WhereExplainOneScan( 1962 pParse, pOrTab, &pSubWInfo->a[0], 0 1963 ); 1964 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 1965 1966 /* This is the sub-WHERE clause body. First skip over 1967 ** duplicate rows from prior sub-WHERE clauses, and record the 1968 ** rowid (or PRIMARY KEY) for the current row so that the same 1969 ** row will be skipped in subsequent sub-WHERE clauses. 1970 */ 1971 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 1972 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 1973 if( HasRowid(pTab) ){ 1974 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid); 1975 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 1976 regRowid, iSet); 1977 VdbeCoverage(v); 1978 }else{ 1979 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1980 int nPk = pPk->nKeyCol; 1981 int iPk; 1982 int r; 1983 1984 /* Read the PK into an array of temp registers. */ 1985 r = sqlite3GetTempRange(pParse, nPk); 1986 for(iPk=0; iPk<nPk; iPk++){ 1987 int iCol = pPk->aiColumn[iPk]; 1988 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol, r+iPk); 1989 } 1990 1991 /* Check if the temp table already contains this key. If so, 1992 ** the row has already been included in the result set and 1993 ** can be ignored (by jumping past the Gosub below). Otherwise, 1994 ** insert the key into the temp table and proceed with processing 1995 ** the row. 1996 ** 1997 ** Use some of the same optimizations as OP_RowSetTest: If iSet 1998 ** is zero, assume that the key cannot already be present in 1999 ** the temp table. And if iSet is -1, assume that there is no 2000 ** need to insert the key into the temp table, as it will never 2001 ** be tested for. */ 2002 if( iSet ){ 2003 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 2004 VdbeCoverage(v); 2005 } 2006 if( iSet>=0 ){ 2007 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 2008 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid, 2009 r, nPk); 2010 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2011 } 2012 2013 /* Release the array of temp registers */ 2014 sqlite3ReleaseTempRange(pParse, r, nPk); 2015 } 2016 } 2017 2018 /* Invoke the main loop body as a subroutine */ 2019 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 2020 2021 /* Jump here (skipping the main loop body subroutine) if the 2022 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 2023 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 2024 2025 /* The pSubWInfo->untestedTerms flag means that this OR term 2026 ** contained one or more AND term from a notReady table. The 2027 ** terms from the notReady table could not be tested and will 2028 ** need to be tested later. 2029 */ 2030 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 2031 2032 /* If all of the OR-connected terms are optimized using the same 2033 ** index, and the index is opened using the same cursor number 2034 ** by each call to sqlite3WhereBegin() made by this loop, it may 2035 ** be possible to use that index as a covering index. 2036 ** 2037 ** If the call to sqlite3WhereBegin() above resulted in a scan that 2038 ** uses an index, and this is either the first OR-connected term 2039 ** processed or the index is the same as that used by all previous 2040 ** terms, set pCov to the candidate covering index. Otherwise, set 2041 ** pCov to NULL to indicate that no candidate covering index will 2042 ** be available. 2043 */ 2044 pSubLoop = pSubWInfo->a[0].pWLoop; 2045 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2046 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 2047 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 2048 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 2049 ){ 2050 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 2051 pCov = pSubLoop->u.btree.pIndex; 2052 }else{ 2053 pCov = 0; 2054 } 2055 2056 /* Finish the loop through table entries that match term pOrTerm. */ 2057 sqlite3WhereEnd(pSubWInfo); 2058 } 2059 } 2060 } 2061 ExplainQueryPlanPop(pParse); 2062 pLevel->u.pCovidx = pCov; 2063 if( pCov ) pLevel->iIdxCur = iCovCur; 2064 if( pAndExpr ){ 2065 pAndExpr->pLeft = 0; 2066 sqlite3ExprDelete(db, pAndExpr); 2067 } 2068 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 2069 sqlite3VdbeGoto(v, pLevel->addrBrk); 2070 sqlite3VdbeResolveLabel(v, iLoopBody); 2071 2072 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab); 2073 if( !untestedTerms ) disableTerm(pLevel, pTerm); 2074 }else 2075 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 2076 2077 { 2078 /* Case 6: There is no usable index. We must do a complete 2079 ** scan of the entire table. 2080 */ 2081 static const u8 aStep[] = { OP_Next, OP_Prev }; 2082 static const u8 aStart[] = { OP_Rewind, OP_Last }; 2083 assert( bRev==0 || bRev==1 ); 2084 if( pTabItem->fg.isRecursive ){ 2085 /* Tables marked isRecursive have only a single row that is stored in 2086 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 2087 pLevel->op = OP_Noop; 2088 }else{ 2089 codeCursorHint(pTabItem, pWInfo, pLevel, 0); 2090 pLevel->op = aStep[bRev]; 2091 pLevel->p1 = iCur; 2092 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt); 2093 VdbeCoverageIf(v, bRev==0); 2094 VdbeCoverageIf(v, bRev!=0); 2095 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2096 } 2097 } 2098 2099 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2100 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 2101 #endif 2102 2103 /* Insert code to test every subexpression that can be completely 2104 ** computed using the current set of tables. 2105 ** 2106 ** This loop may run between one and three times, depending on the 2107 ** constraints to be generated. The value of stack variable iLoop 2108 ** determines the constraints coded by each iteration, as follows: 2109 ** 2110 ** iLoop==1: Code only expressions that are entirely covered by pIdx. 2111 ** iLoop==2: Code remaining expressions that do not contain correlated 2112 ** sub-queries. 2113 ** iLoop==3: Code all remaining expressions. 2114 ** 2115 ** An effort is made to skip unnecessary iterations of the loop. 2116 */ 2117 iLoop = (pIdx ? 1 : 2); 2118 do{ 2119 int iNext = 0; /* Next value for iLoop */ 2120 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2121 Expr *pE; 2122 int skipLikeAddr = 0; 2123 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2124 testcase( pTerm->wtFlags & TERM_CODED ); 2125 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2126 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2127 testcase( pWInfo->untestedTerms==0 2128 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); 2129 pWInfo->untestedTerms = 1; 2130 continue; 2131 } 2132 pE = pTerm->pExpr; 2133 assert( pE!=0 ); 2134 if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){ 2135 continue; 2136 } 2137 2138 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){ 2139 iNext = 2; 2140 continue; 2141 } 2142 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){ 2143 if( iNext==0 ) iNext = 3; 2144 continue; 2145 } 2146 2147 if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){ 2148 /* If the TERM_LIKECOND flag is set, that means that the range search 2149 ** is sufficient to guarantee that the LIKE operator is true, so we 2150 ** can skip the call to the like(A,B) function. But this only works 2151 ** for strings. So do not skip the call to the function on the pass 2152 ** that compares BLOBs. */ 2153 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 2154 continue; 2155 #else 2156 u32 x = pLevel->iLikeRepCntr; 2157 if( x>0 ){ 2158 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1)); 2159 } 2160 VdbeCoverage(v); 2161 #endif 2162 } 2163 #ifdef WHERETRACE_ENABLED /* 0xffff */ 2164 if( sqlite3WhereTrace ){ 2165 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d", 2166 pWC->nTerm-j, pTerm, iLoop)); 2167 } 2168 #endif 2169 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 2170 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 2171 pTerm->wtFlags |= TERM_CODED; 2172 } 2173 iLoop = iNext; 2174 }while( iLoop>0 ); 2175 2176 /* Insert code to test for implied constraints based on transitivity 2177 ** of the "==" operator. 2178 ** 2179 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 2180 ** and we are coding the t1 loop and the t2 loop has not yet coded, 2181 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 2182 ** the implied "t1.a=123" constraint. 2183 */ 2184 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2185 Expr *pE, sEAlt; 2186 WhereTerm *pAlt; 2187 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2188 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 2189 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 2190 if( pTerm->leftCursor!=iCur ) continue; 2191 if( pLevel->iLeftJoin ) continue; 2192 pE = pTerm->pExpr; 2193 assert( !ExprHasProperty(pE, EP_FromJoin) ); 2194 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 2195 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady, 2196 WO_EQ|WO_IN|WO_IS, 0); 2197 if( pAlt==0 ) continue; 2198 if( pAlt->wtFlags & (TERM_CODED) ) continue; 2199 if( (pAlt->eOperator & WO_IN) 2200 && (pAlt->pExpr->flags & EP_xIsSelect) 2201 && (pAlt->pExpr->x.pSelect->pEList->nExpr>1) 2202 ){ 2203 continue; 2204 } 2205 testcase( pAlt->eOperator & WO_EQ ); 2206 testcase( pAlt->eOperator & WO_IS ); 2207 testcase( pAlt->eOperator & WO_IN ); 2208 VdbeModuleComment((v, "begin transitive constraint")); 2209 sEAlt = *pAlt->pExpr; 2210 sEAlt.pLeft = pE->pLeft; 2211 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); 2212 } 2213 2214 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2215 ** at least one row of the right table has matched the left table. 2216 */ 2217 if( pLevel->iLeftJoin ){ 2218 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2219 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2220 VdbeComment((v, "record LEFT JOIN hit")); 2221 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 2222 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2223 testcase( pTerm->wtFlags & TERM_CODED ); 2224 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2225 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2226 assert( pWInfo->untestedTerms ); 2227 continue; 2228 } 2229 assert( pTerm->pExpr ); 2230 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 2231 pTerm->wtFlags |= TERM_CODED; 2232 } 2233 } 2234 2235 return pLevel->notReady; 2236 } 2237