xref: /sqlite-3.40.0/src/wherecode.c (revision 74973647)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 
25 /*
26 ** Return the name of the i-th column of the pIdx index.
27 */
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29   i = pIdx->aiColumn[i];
30   if( i==XN_EXPR ) return "<expr>";
31   if( i==XN_ROWID ) return "rowid";
32   return pIdx->pTable->aCol[i].zCnName;
33 }
34 
35 /*
36 ** This routine is a helper for explainIndexRange() below
37 **
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time.  This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
42 */
43 static void explainAppendTerm(
44   StrAccum *pStr,             /* The text expression being built */
45   Index *pIdx,                /* Index to read column names from */
46   int nTerm,                  /* Number of terms */
47   int iTerm,                  /* Zero-based index of first term. */
48   int bAnd,                   /* Non-zero to append " AND " */
49   const char *zOp             /* Name of the operator */
50 ){
51   int i;
52 
53   assert( nTerm>=1 );
54   if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
55 
56   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
57   for(i=0; i<nTerm; i++){
58     if( i ) sqlite3_str_append(pStr, ",", 1);
59     sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
60   }
61   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
62 
63   sqlite3_str_append(pStr, zOp, 1);
64 
65   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
66   for(i=0; i<nTerm; i++){
67     if( i ) sqlite3_str_append(pStr, ",", 1);
68     sqlite3_str_append(pStr, "?", 1);
69   }
70   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
71 }
72 
73 /*
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
77 **
78 ** For example, if the query:
79 **
80 **   SELECT * FROM t1 WHERE a=1 AND b>2;
81 **
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
84 **
85 **   "a=? AND b>?"
86 */
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88   Index *pIndex = pLoop->u.btree.pIndex;
89   u16 nEq = pLoop->u.btree.nEq;
90   u16 nSkip = pLoop->nSkip;
91   int i, j;
92 
93   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94   sqlite3_str_append(pStr, " (", 2);
95   for(i=0; i<nEq; i++){
96     const char *z = explainIndexColumnName(pIndex, i);
97     if( i ) sqlite3_str_append(pStr, " AND ", 5);
98     sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
99   }
100 
101   j = i;
102   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104     i = 1;
105   }
106   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
108   }
109   sqlite3_str_append(pStr, ")", 1);
110 }
111 
112 /*
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
117 **
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
120 */
121 int sqlite3WhereExplainOneScan(
122   Parse *pParse,                  /* Parse context */
123   SrcList *pTabList,              /* Table list this loop refers to */
124   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
125   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
126 ){
127   int ret = 0;
128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
129   if( sqlite3ParseToplevel(pParse)->explain==2 )
130 #endif
131   {
132     SrcItem *pItem = &pTabList->a[pLevel->iFrom];
133     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
134     sqlite3 *db = pParse->db;     /* Database handle */
135     int isSearch;                 /* True for a SEARCH. False for SCAN. */
136     WhereLoop *pLoop;             /* The controlling WhereLoop object */
137     u32 flags;                    /* Flags that describe this loop */
138     char *zMsg;                   /* Text to add to EQP output */
139     StrAccum str;                 /* EQP output string */
140     char zBuf[100];               /* Initial space for EQP output string */
141 
142     pLoop = pLevel->pWLoop;
143     flags = pLoop->wsFlags;
144     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
145 
146     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
147             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
148             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
149 
150     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
151     str.printfFlags = SQLITE_PRINTF_INTERNAL;
152     sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem);
153     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
154       const char *zFmt = 0;
155       Index *pIdx;
156 
157       assert( pLoop->u.btree.pIndex!=0 );
158       pIdx = pLoop->u.btree.pIndex;
159       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
160       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
161         if( isSearch ){
162           zFmt = "PRIMARY KEY";
163         }
164       }else if( flags & WHERE_PARTIALIDX ){
165         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
166       }else if( flags & WHERE_AUTO_INDEX ){
167         zFmt = "AUTOMATIC COVERING INDEX";
168       }else if( flags & WHERE_IDX_ONLY ){
169         zFmt = "COVERING INDEX %s";
170       }else{
171         zFmt = "INDEX %s";
172       }
173       if( zFmt ){
174         sqlite3_str_append(&str, " USING ", 7);
175         sqlite3_str_appendf(&str, zFmt, pIdx->zName);
176         explainIndexRange(&str, pLoop);
177       }
178     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
179       char cRangeOp;
180 #if 0  /* Better output, but breaks many tests */
181       const Table *pTab = pItem->pTab;
182       const char *zRowid = pTab->iPKey>=0 ? pTab->aCol[pTab->iPKey].zCnName:
183                               "rowid";
184 #else
185       const char *zRowid = "rowid";
186 #endif
187       sqlite3_str_appendf(&str, " USING INTEGER PRIMARY KEY (%s", zRowid);
188       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
189         cRangeOp = '=';
190       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
191         sqlite3_str_appendf(&str, ">? AND %s", zRowid);
192         cRangeOp = '<';
193       }else if( flags&WHERE_BTM_LIMIT ){
194         cRangeOp = '>';
195       }else{
196         assert( flags&WHERE_TOP_LIMIT);
197         cRangeOp = '<';
198       }
199       sqlite3_str_appendf(&str, "%c?)", cRangeOp);
200     }
201 #ifndef SQLITE_OMIT_VIRTUALTABLE
202     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
203       sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
204                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
205     }
206 #endif
207     if( pItem->fg.jointype & JT_LEFT ){
208       sqlite3_str_appendf(&str, " LEFT-JOIN");
209     }
210 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
211     if( pLoop->nOut>=10 ){
212       sqlite3_str_appendf(&str, " (~%llu rows)",
213              sqlite3LogEstToInt(pLoop->nOut));
214     }else{
215       sqlite3_str_append(&str, " (~1 row)", 9);
216     }
217 #endif
218     zMsg = sqlite3StrAccumFinish(&str);
219     sqlite3ExplainBreakpoint("",zMsg);
220     ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
221                             pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
222   }
223   return ret;
224 }
225 
226 /*
227 ** Add a single OP_Explain opcode that describes a Bloom filter.
228 **
229 ** Or if not processing EXPLAIN QUERY PLAN and not in a SQLITE_DEBUG and/or
230 ** SQLITE_ENABLE_STMT_SCANSTATUS build, then OP_Explain opcodes are not
231 ** required and this routine is a no-op.
232 **
233 ** If an OP_Explain opcode is added to the VM, its address is returned.
234 ** Otherwise, if no OP_Explain is coded, zero is returned.
235 */
236 int sqlite3WhereExplainBloomFilter(
237   const Parse *pParse,               /* Parse context */
238   const WhereInfo *pWInfo,           /* WHERE clause */
239   const WhereLevel *pLevel           /* Bloom filter on this level */
240 ){
241   int ret = 0;
242   SrcItem *pItem = &pWInfo->pTabList->a[pLevel->iFrom];
243   Vdbe *v = pParse->pVdbe;      /* VM being constructed */
244   sqlite3 *db = pParse->db;     /* Database handle */
245   char *zMsg;                   /* Text to add to EQP output */
246   int i;                        /* Loop counter */
247   WhereLoop *pLoop;             /* The where loop */
248   StrAccum str;                 /* EQP output string */
249   char zBuf[100];               /* Initial space for EQP output string */
250 
251   sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
252   str.printfFlags = SQLITE_PRINTF_INTERNAL;
253   sqlite3_str_appendf(&str, "BLOOM FILTER ON %S (", pItem);
254   pLoop = pLevel->pWLoop;
255   if( pLoop->wsFlags & WHERE_IPK ){
256     const Table *pTab = pItem->pTab;
257     if( pTab->iPKey>=0 ){
258       sqlite3_str_appendf(&str, "%s=?", pTab->aCol[pTab->iPKey].zCnName);
259     }else{
260       sqlite3_str_appendf(&str, "rowid=?");
261     }
262   }else{
263     for(i=pLoop->nSkip; i<pLoop->u.btree.nEq; i++){
264       const char *z = explainIndexColumnName(pLoop->u.btree.pIndex, i);
265       if( i>pLoop->nSkip ) sqlite3_str_append(&str, " AND ", 5);
266       sqlite3_str_appendf(&str, "%s=?", z);
267     }
268   }
269   sqlite3_str_append(&str, ")", 1);
270   zMsg = sqlite3StrAccumFinish(&str);
271   ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
272                           pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
273   return ret;
274 }
275 #endif /* SQLITE_OMIT_EXPLAIN */
276 
277 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
278 /*
279 ** Configure the VM passed as the first argument with an
280 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
281 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
282 ** clause that the scan reads data from.
283 **
284 ** If argument addrExplain is not 0, it must be the address of an
285 ** OP_Explain instruction that describes the same loop.
286 */
287 void sqlite3WhereAddScanStatus(
288   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
289   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
290   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
291   int addrExplain                 /* Address of OP_Explain (or 0) */
292 ){
293   const char *zObj = 0;
294   WhereLoop *pLoop = pLvl->pWLoop;
295   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
296     zObj = pLoop->u.btree.pIndex->zName;
297   }else{
298     zObj = pSrclist->a[pLvl->iFrom].zName;
299   }
300   sqlite3VdbeScanStatus(
301       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
302   );
303 }
304 #endif
305 
306 
307 /*
308 ** Disable a term in the WHERE clause.  Except, do not disable the term
309 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
310 ** or USING clause of that join.
311 **
312 ** Consider the term t2.z='ok' in the following queries:
313 **
314 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
315 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
316 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
317 **
318 ** The t2.z='ok' is disabled in the in (2) because it originates
319 ** in the ON clause.  The term is disabled in (3) because it is not part
320 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
321 **
322 ** Disabling a term causes that term to not be tested in the inner loop
323 ** of the join.  Disabling is an optimization.  When terms are satisfied
324 ** by indices, we disable them to prevent redundant tests in the inner
325 ** loop.  We would get the correct results if nothing were ever disabled,
326 ** but joins might run a little slower.  The trick is to disable as much
327 ** as we can without disabling too much.  If we disabled in (1), we'd get
328 ** the wrong answer.  See ticket #813.
329 **
330 ** If all the children of a term are disabled, then that term is also
331 ** automatically disabled.  In this way, terms get disabled if derived
332 ** virtual terms are tested first.  For example:
333 **
334 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
335 **      \___________/     \______/     \_____/
336 **         parent          child1       child2
337 **
338 ** Only the parent term was in the original WHERE clause.  The child1
339 ** and child2 terms were added by the LIKE optimization.  If both of
340 ** the virtual child terms are valid, then testing of the parent can be
341 ** skipped.
342 **
343 ** Usually the parent term is marked as TERM_CODED.  But if the parent
344 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
345 ** The TERM_LIKECOND marking indicates that the term should be coded inside
346 ** a conditional such that is only evaluated on the second pass of a
347 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
348 */
349 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
350   int nLoop = 0;
351   assert( pTerm!=0 );
352   while( (pTerm->wtFlags & TERM_CODED)==0
353       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
354       && (pLevel->notReady & pTerm->prereqAll)==0
355   ){
356     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
357       pTerm->wtFlags |= TERM_LIKECOND;
358     }else{
359       pTerm->wtFlags |= TERM_CODED;
360     }
361 #ifdef WHERETRACE_ENABLED
362     if( sqlite3WhereTrace & 0x20000 ){
363       sqlite3DebugPrintf("DISABLE-");
364       sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a)));
365     }
366 #endif
367     if( pTerm->iParent<0 ) break;
368     pTerm = &pTerm->pWC->a[pTerm->iParent];
369     assert( pTerm!=0 );
370     pTerm->nChild--;
371     if( pTerm->nChild!=0 ) break;
372     nLoop++;
373   }
374 }
375 
376 /*
377 ** Code an OP_Affinity opcode to apply the column affinity string zAff
378 ** to the n registers starting at base.
379 **
380 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
381 ** are no-ops) at the beginning and end of zAff are ignored.  If all entries
382 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
383 **
384 ** This routine makes its own copy of zAff so that the caller is free
385 ** to modify zAff after this routine returns.
386 */
387 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
388   Vdbe *v = pParse->pVdbe;
389   if( zAff==0 ){
390     assert( pParse->db->mallocFailed );
391     return;
392   }
393   assert( v!=0 );
394 
395   /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
396   ** entries at the beginning and end of the affinity string.
397   */
398   assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB );
399   while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){
400     n--;
401     base++;
402     zAff++;
403   }
404   while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){
405     n--;
406   }
407 
408   /* Code the OP_Affinity opcode if there is anything left to do. */
409   if( n>0 ){
410     sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
411   }
412 }
413 
414 /*
415 ** Expression pRight, which is the RHS of a comparison operation, is
416 ** either a vector of n elements or, if n==1, a scalar expression.
417 ** Before the comparison operation, affinity zAff is to be applied
418 ** to the pRight values. This function modifies characters within the
419 ** affinity string to SQLITE_AFF_BLOB if either:
420 **
421 **   * the comparison will be performed with no affinity, or
422 **   * the affinity change in zAff is guaranteed not to change the value.
423 */
424 static void updateRangeAffinityStr(
425   Expr *pRight,                   /* RHS of comparison */
426   int n,                          /* Number of vector elements in comparison */
427   char *zAff                      /* Affinity string to modify */
428 ){
429   int i;
430   for(i=0; i<n; i++){
431     Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
432     if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
433      || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
434     ){
435       zAff[i] = SQLITE_AFF_BLOB;
436     }
437   }
438 }
439 
440 
441 /*
442 ** pX is an expression of the form:  (vector) IN (SELECT ...)
443 ** In other words, it is a vector IN operator with a SELECT clause on the
444 ** LHS.  But not all terms in the vector are indexable and the terms might
445 ** not be in the correct order for indexing.
446 **
447 ** This routine makes a copy of the input pX expression and then adjusts
448 ** the vector on the LHS with corresponding changes to the SELECT so that
449 ** the vector contains only index terms and those terms are in the correct
450 ** order.  The modified IN expression is returned.  The caller is responsible
451 ** for deleting the returned expression.
452 **
453 ** Example:
454 **
455 **    CREATE TABLE t1(a,b,c,d,e,f);
456 **    CREATE INDEX t1x1 ON t1(e,c);
457 **    SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
458 **                           \_______________________________________/
459 **                                     The pX expression
460 **
461 ** Since only columns e and c can be used with the index, in that order,
462 ** the modified IN expression that is returned will be:
463 **
464 **        (e,c) IN (SELECT z,x FROM t2)
465 **
466 ** The reduced pX is different from the original (obviously) and thus is
467 ** only used for indexing, to improve performance.  The original unaltered
468 ** IN expression must also be run on each output row for correctness.
469 */
470 static Expr *removeUnindexableInClauseTerms(
471   Parse *pParse,        /* The parsing context */
472   int iEq,              /* Look at loop terms starting here */
473   WhereLoop *pLoop,     /* The current loop */
474   Expr *pX              /* The IN expression to be reduced */
475 ){
476   sqlite3 *db = pParse->db;
477   Expr *pNew;
478   pNew = sqlite3ExprDup(db, pX, 0);
479   if( db->mallocFailed==0 ){
480     ExprList *pOrigRhs;         /* Original unmodified RHS */
481     ExprList *pOrigLhs;         /* Original unmodified LHS */
482     ExprList *pRhs = 0;         /* New RHS after modifications */
483     ExprList *pLhs = 0;         /* New LHS after mods */
484     int i;                      /* Loop counter */
485     Select *pSelect;            /* Pointer to the SELECT on the RHS */
486 
487     assert( ExprUseXSelect(pNew) );
488     pOrigRhs = pNew->x.pSelect->pEList;
489     assert( pNew->pLeft!=0 );
490     assert( ExprUseXList(pNew->pLeft) );
491     pOrigLhs = pNew->pLeft->x.pList;
492     for(i=iEq; i<pLoop->nLTerm; i++){
493       if( pLoop->aLTerm[i]->pExpr==pX ){
494         int iField;
495         assert( (pLoop->aLTerm[i]->eOperator & (WO_OR|WO_AND))==0 );
496         iField = pLoop->aLTerm[i]->u.x.iField - 1;
497         if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
498         pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
499         pOrigRhs->a[iField].pExpr = 0;
500         assert( pOrigLhs->a[iField].pExpr!=0 );
501         pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
502         pOrigLhs->a[iField].pExpr = 0;
503       }
504     }
505     sqlite3ExprListDelete(db, pOrigRhs);
506     sqlite3ExprListDelete(db, pOrigLhs);
507     pNew->pLeft->x.pList = pLhs;
508     pNew->x.pSelect->pEList = pRhs;
509     if( pLhs && pLhs->nExpr==1 ){
510       /* Take care here not to generate a TK_VECTOR containing only a
511       ** single value. Since the parser never creates such a vector, some
512       ** of the subroutines do not handle this case.  */
513       Expr *p = pLhs->a[0].pExpr;
514       pLhs->a[0].pExpr = 0;
515       sqlite3ExprDelete(db, pNew->pLeft);
516       pNew->pLeft = p;
517     }
518     pSelect = pNew->x.pSelect;
519     if( pSelect->pOrderBy ){
520       /* If the SELECT statement has an ORDER BY clause, zero the
521       ** iOrderByCol variables. These are set to non-zero when an
522       ** ORDER BY term exactly matches one of the terms of the
523       ** result-set. Since the result-set of the SELECT statement may
524       ** have been modified or reordered, these variables are no longer
525       ** set correctly.  Since setting them is just an optimization,
526       ** it's easiest just to zero them here.  */
527       ExprList *pOrderBy = pSelect->pOrderBy;
528       for(i=0; i<pOrderBy->nExpr; i++){
529         pOrderBy->a[i].u.x.iOrderByCol = 0;
530       }
531     }
532 
533 #if 0
534     printf("For indexing, change the IN expr:\n");
535     sqlite3TreeViewExpr(0, pX, 0);
536     printf("Into:\n");
537     sqlite3TreeViewExpr(0, pNew, 0);
538 #endif
539   }
540   return pNew;
541 }
542 
543 
544 /*
545 ** Generate code for a single equality term of the WHERE clause.  An equality
546 ** term can be either X=expr or X IN (...).   pTerm is the term to be
547 ** coded.
548 **
549 ** The current value for the constraint is left in a register, the index
550 ** of which is returned.  An attempt is made store the result in iTarget but
551 ** this is only guaranteed for TK_ISNULL and TK_IN constraints.  If the
552 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
553 ** some other register and it is the caller's responsibility to compensate.
554 **
555 ** For a constraint of the form X=expr, the expression is evaluated in
556 ** straight-line code.  For constraints of the form X IN (...)
557 ** this routine sets up a loop that will iterate over all values of X.
558 */
559 static int codeEqualityTerm(
560   Parse *pParse,      /* The parsing context */
561   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
562   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
563   int iEq,            /* Index of the equality term within this level */
564   int bRev,           /* True for reverse-order IN operations */
565   int iTarget         /* Attempt to leave results in this register */
566 ){
567   Expr *pX = pTerm->pExpr;
568   Vdbe *v = pParse->pVdbe;
569   int iReg;                  /* Register holding results */
570 
571   assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
572   assert( iTarget>0 );
573   if( pX->op==TK_EQ || pX->op==TK_IS ){
574     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
575   }else if( pX->op==TK_ISNULL ){
576     iReg = iTarget;
577     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
578 #ifndef SQLITE_OMIT_SUBQUERY
579   }else{
580     int eType = IN_INDEX_NOOP;
581     int iTab;
582     struct InLoop *pIn;
583     WhereLoop *pLoop = pLevel->pWLoop;
584     int i;
585     int nEq = 0;
586     int *aiMap = 0;
587 
588     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
589       && pLoop->u.btree.pIndex!=0
590       && pLoop->u.btree.pIndex->aSortOrder[iEq]
591     ){
592       testcase( iEq==0 );
593       testcase( bRev );
594       bRev = !bRev;
595     }
596     assert( pX->op==TK_IN );
597     iReg = iTarget;
598 
599     for(i=0; i<iEq; i++){
600       if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
601         disableTerm(pLevel, pTerm);
602         return iTarget;
603       }
604     }
605     for(i=iEq;i<pLoop->nLTerm; i++){
606       assert( pLoop->aLTerm[i]!=0 );
607       if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
608     }
609 
610     iTab = 0;
611     if( !ExprUseXSelect(pX) || pX->x.pSelect->pEList->nExpr==1 ){
612       eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab);
613     }else{
614       Expr *pExpr = pTerm->pExpr;
615       if(  pExpr->iTable==0 || !ExprHasProperty(pExpr, EP_Subrtn) ){
616         sqlite3 *db = pParse->db;
617         pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
618         if( !db->mallocFailed ){
619           aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
620           eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap,&iTab);
621           pExpr->iTable = iTab;
622         }
623         sqlite3ExprDelete(db, pX);
624       }else{
625         int j1;
626         sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
627                           pExpr->y.sub.iAddr);
628         j1 = sqlite3VdbeAddOp0(v, OP_Goto);
629         aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
630         eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap,&iTab);
631         iTab = pExpr->iTable;
632         sqlite3VdbeJumpHere(v, j1);
633       }
634       pX = pExpr;
635     }
636 
637     if( eType==IN_INDEX_INDEX_DESC ){
638       testcase( bRev );
639       bRev = !bRev;
640     }
641     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
642     VdbeCoverageIf(v, bRev);
643     VdbeCoverageIf(v, !bRev);
644 
645     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
646     pLoop->wsFlags |= WHERE_IN_ABLE;
647     if( pLevel->u.in.nIn==0 ){
648       pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
649     }
650     if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){
651       pLoop->wsFlags |= WHERE_IN_EARLYOUT;
652     }
653 
654     i = pLevel->u.in.nIn;
655     pLevel->u.in.nIn += nEq;
656     pLevel->u.in.aInLoop =
657        sqlite3WhereRealloc(pTerm->pWC->pWInfo,
658                            pLevel->u.in.aInLoop,
659                            sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
660     pIn = pLevel->u.in.aInLoop;
661     if( pIn ){
662       int iMap = 0;               /* Index in aiMap[] */
663       pIn += i;
664       for(i=iEq;i<pLoop->nLTerm; i++){
665         if( pLoop->aLTerm[i]->pExpr==pX ){
666           int iOut = iReg + i - iEq;
667           if( eType==IN_INDEX_ROWID ){
668             pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
669           }else{
670             int iCol = aiMap ? aiMap[iMap++] : 0;
671             pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
672           }
673           sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
674           if( i==iEq ){
675             pIn->iCur = iTab;
676             pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
677             if( iEq>0 ){
678               pIn->iBase = iReg - i;
679               pIn->nPrefix = i;
680             }else{
681               pIn->nPrefix = 0;
682             }
683           }else{
684             pIn->eEndLoopOp = OP_Noop;
685           }
686           pIn++;
687         }
688       }
689       testcase( iEq>0
690                 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
691                 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 );
692       if( iEq>0
693        && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0
694       ){
695         sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq);
696       }
697     }else{
698       pLevel->u.in.nIn = 0;
699     }
700     sqlite3DbFree(pParse->db, aiMap);
701 #endif
702   }
703 
704   /* As an optimization, try to disable the WHERE clause term that is
705   ** driving the index as it will always be true.  The correct answer is
706   ** obtained regardless, but we might get the answer with fewer CPU cycles
707   ** by omitting the term.
708   **
709   ** But do not disable the term unless we are certain that the term is
710   ** not a transitive constraint.  For an example of where that does not
711   ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04)
712   */
713   if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0
714    || (pTerm->eOperator & WO_EQUIV)==0
715   ){
716     disableTerm(pLevel, pTerm);
717   }
718 
719   return iReg;
720 }
721 
722 /*
723 ** Generate code that will evaluate all == and IN constraints for an
724 ** index scan.
725 **
726 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
727 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
728 ** The index has as many as three equality constraints, but in this
729 ** example, the third "c" value is an inequality.  So only two
730 ** constraints are coded.  This routine will generate code to evaluate
731 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
732 ** in consecutive registers and the index of the first register is returned.
733 **
734 ** In the example above nEq==2.  But this subroutine works for any value
735 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
736 ** The only thing it does is allocate the pLevel->iMem memory cell and
737 ** compute the affinity string.
738 **
739 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
740 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
741 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
742 ** occurs after the nEq quality constraints.
743 **
744 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
745 ** the index of the first memory cell in that range. The code that
746 ** calls this routine will use that memory range to store keys for
747 ** start and termination conditions of the loop.
748 ** key value of the loop.  If one or more IN operators appear, then
749 ** this routine allocates an additional nEq memory cells for internal
750 ** use.
751 **
752 ** Before returning, *pzAff is set to point to a buffer containing a
753 ** copy of the column affinity string of the index allocated using
754 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
755 ** with equality constraints that use BLOB or NONE affinity are set to
756 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
757 **
758 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
759 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
760 **
761 ** In the example above, the index on t1(a) has TEXT affinity. But since
762 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
763 ** no conversion should be attempted before using a t2.b value as part of
764 ** a key to search the index. Hence the first byte in the returned affinity
765 ** string in this example would be set to SQLITE_AFF_BLOB.
766 */
767 static int codeAllEqualityTerms(
768   Parse *pParse,        /* Parsing context */
769   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
770   int bRev,             /* Reverse the order of IN operators */
771   int nExtraReg,        /* Number of extra registers to allocate */
772   char **pzAff          /* OUT: Set to point to affinity string */
773 ){
774   u16 nEq;                      /* The number of == or IN constraints to code */
775   u16 nSkip;                    /* Number of left-most columns to skip */
776   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
777   Index *pIdx;                  /* The index being used for this loop */
778   WhereTerm *pTerm;             /* A single constraint term */
779   WhereLoop *pLoop;             /* The WhereLoop object */
780   int j;                        /* Loop counter */
781   int regBase;                  /* Base register */
782   int nReg;                     /* Number of registers to allocate */
783   char *zAff;                   /* Affinity string to return */
784 
785   /* This module is only called on query plans that use an index. */
786   pLoop = pLevel->pWLoop;
787   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
788   nEq = pLoop->u.btree.nEq;
789   nSkip = pLoop->nSkip;
790   pIdx = pLoop->u.btree.pIndex;
791   assert( pIdx!=0 );
792 
793   /* Figure out how many memory cells we will need then allocate them.
794   */
795   regBase = pParse->nMem + 1;
796   nReg = pLoop->u.btree.nEq + nExtraReg;
797   pParse->nMem += nReg;
798 
799   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
800   assert( zAff!=0 || pParse->db->mallocFailed );
801 
802   if( nSkip ){
803     int iIdxCur = pLevel->iIdxCur;
804     sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1);
805     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
806     VdbeCoverageIf(v, bRev==0);
807     VdbeCoverageIf(v, bRev!=0);
808     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
809     j = sqlite3VdbeAddOp0(v, OP_Goto);
810     assert( pLevel->addrSkip==0 );
811     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
812                             iIdxCur, 0, regBase, nSkip);
813     VdbeCoverageIf(v, bRev==0);
814     VdbeCoverageIf(v, bRev!=0);
815     sqlite3VdbeJumpHere(v, j);
816     for(j=0; j<nSkip; j++){
817       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
818       testcase( pIdx->aiColumn[j]==XN_EXPR );
819       VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
820     }
821   }
822 
823   /* Evaluate the equality constraints
824   */
825   assert( zAff==0 || (int)strlen(zAff)>=nEq );
826   for(j=nSkip; j<nEq; j++){
827     int r1;
828     pTerm = pLoop->aLTerm[j];
829     assert( pTerm!=0 );
830     /* The following testcase is true for indices with redundant columns.
831     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
832     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
833     testcase( pTerm->wtFlags & TERM_VIRTUAL );
834     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
835     if( r1!=regBase+j ){
836       if( nReg==1 ){
837         sqlite3ReleaseTempReg(pParse, regBase);
838         regBase = r1;
839       }else{
840         sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j);
841       }
842     }
843   }
844   for(j=nSkip; j<nEq; j++){
845     pTerm = pLoop->aLTerm[j];
846     if( pTerm->eOperator & WO_IN ){
847       if( pTerm->pExpr->flags & EP_xIsSelect ){
848         /* No affinity ever needs to be (or should be) applied to a value
849         ** from the RHS of an "? IN (SELECT ...)" expression. The
850         ** sqlite3FindInIndex() routine has already ensured that the
851         ** affinity of the comparison has been applied to the value.  */
852         if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
853       }
854     }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
855       Expr *pRight = pTerm->pExpr->pRight;
856       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
857         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
858         VdbeCoverage(v);
859       }
860       if( pParse->nErr==0 ){
861         assert( pParse->db->mallocFailed==0 );
862         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
863           zAff[j] = SQLITE_AFF_BLOB;
864         }
865         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
866           zAff[j] = SQLITE_AFF_BLOB;
867         }
868       }
869     }
870   }
871   *pzAff = zAff;
872   return regBase;
873 }
874 
875 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
876 /*
877 ** If the most recently coded instruction is a constant range constraint
878 ** (a string literal) that originated from the LIKE optimization, then
879 ** set P3 and P5 on the OP_String opcode so that the string will be cast
880 ** to a BLOB at appropriate times.
881 **
882 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
883 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
884 ** scan loop run twice, once for strings and a second time for BLOBs.
885 ** The OP_String opcodes on the second pass convert the upper and lower
886 ** bound string constants to blobs.  This routine makes the necessary changes
887 ** to the OP_String opcodes for that to happen.
888 **
889 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
890 ** only the one pass through the string space is required, so this routine
891 ** becomes a no-op.
892 */
893 static void whereLikeOptimizationStringFixup(
894   Vdbe *v,                /* prepared statement under construction */
895   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
896   WhereTerm *pTerm        /* The upper or lower bound just coded */
897 ){
898   if( pTerm->wtFlags & TERM_LIKEOPT ){
899     VdbeOp *pOp;
900     assert( pLevel->iLikeRepCntr>0 );
901     pOp = sqlite3VdbeGetOp(v, -1);
902     assert( pOp!=0 );
903     assert( pOp->opcode==OP_String8
904             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
905     pOp->p3 = (int)(pLevel->iLikeRepCntr>>1);  /* Register holding counter */
906     pOp->p5 = (u8)(pLevel->iLikeRepCntr&1);    /* ASC or DESC */
907   }
908 }
909 #else
910 # define whereLikeOptimizationStringFixup(A,B,C)
911 #endif
912 
913 #ifdef SQLITE_ENABLE_CURSOR_HINTS
914 /*
915 ** Information is passed from codeCursorHint() down to individual nodes of
916 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
917 ** structure.
918 */
919 struct CCurHint {
920   int iTabCur;    /* Cursor for the main table */
921   int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
922   Index *pIdx;    /* The index used to access the table */
923 };
924 
925 /*
926 ** This function is called for every node of an expression that is a candidate
927 ** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
928 ** the table CCurHint.iTabCur, verify that the same column can be
929 ** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
930 */
931 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
932   struct CCurHint *pHint = pWalker->u.pCCurHint;
933   assert( pHint->pIdx!=0 );
934   if( pExpr->op==TK_COLUMN
935    && pExpr->iTable==pHint->iTabCur
936    && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0
937   ){
938     pWalker->eCode = 1;
939   }
940   return WRC_Continue;
941 }
942 
943 /*
944 ** Test whether or not expression pExpr, which was part of a WHERE clause,
945 ** should be included in the cursor-hint for a table that is on the rhs
946 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
947 ** expression is not suitable.
948 **
949 ** An expression is unsuitable if it might evaluate to non NULL even if
950 ** a TK_COLUMN node that does affect the value of the expression is set
951 ** to NULL. For example:
952 **
953 **   col IS NULL
954 **   col IS NOT NULL
955 **   coalesce(col, 1)
956 **   CASE WHEN col THEN 0 ELSE 1 END
957 */
958 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
959   if( pExpr->op==TK_IS
960    || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
961    || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
962   ){
963     pWalker->eCode = 1;
964   }else if( pExpr->op==TK_FUNCTION ){
965     int d1;
966     char d2[4];
967     if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
968       pWalker->eCode = 1;
969     }
970   }
971 
972   return WRC_Continue;
973 }
974 
975 
976 /*
977 ** This function is called on every node of an expression tree used as an
978 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
979 ** that accesses any table other than the one identified by
980 ** CCurHint.iTabCur, then do the following:
981 **
982 **   1) allocate a register and code an OP_Column instruction to read
983 **      the specified column into the new register, and
984 **
985 **   2) transform the expression node to a TK_REGISTER node that reads
986 **      from the newly populated register.
987 **
988 ** Also, if the node is a TK_COLUMN that does access the table idenified
989 ** by pCCurHint.iTabCur, and an index is being used (which we will
990 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
991 ** an access of the index rather than the original table.
992 */
993 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
994   int rc = WRC_Continue;
995   struct CCurHint *pHint = pWalker->u.pCCurHint;
996   if( pExpr->op==TK_COLUMN ){
997     if( pExpr->iTable!=pHint->iTabCur ){
998       int reg = ++pWalker->pParse->nMem;   /* Register for column value */
999       sqlite3ExprCode(pWalker->pParse, pExpr, reg);
1000       pExpr->op = TK_REGISTER;
1001       pExpr->iTable = reg;
1002     }else if( pHint->pIdx!=0 ){
1003       pExpr->iTable = pHint->iIdxCur;
1004       pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn);
1005       assert( pExpr->iColumn>=0 );
1006     }
1007   }else if( pExpr->op==TK_AGG_FUNCTION ){
1008     /* An aggregate function in the WHERE clause of a query means this must
1009     ** be a correlated sub-query, and expression pExpr is an aggregate from
1010     ** the parent context. Do not walk the function arguments in this case.
1011     **
1012     ** todo: It should be possible to replace this node with a TK_REGISTER
1013     ** expression, as the result of the expression must be stored in a
1014     ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
1015     rc = WRC_Prune;
1016   }
1017   return rc;
1018 }
1019 
1020 /*
1021 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
1022 */
1023 static void codeCursorHint(
1024   SrcItem *pTabItem,  /* FROM clause item */
1025   WhereInfo *pWInfo,    /* The where clause */
1026   WhereLevel *pLevel,   /* Which loop to provide hints for */
1027   WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
1028 ){
1029   Parse *pParse = pWInfo->pParse;
1030   sqlite3 *db = pParse->db;
1031   Vdbe *v = pParse->pVdbe;
1032   Expr *pExpr = 0;
1033   WhereLoop *pLoop = pLevel->pWLoop;
1034   int iCur;
1035   WhereClause *pWC;
1036   WhereTerm *pTerm;
1037   int i, j;
1038   struct CCurHint sHint;
1039   Walker sWalker;
1040 
1041   if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
1042   iCur = pLevel->iTabCur;
1043   assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
1044   sHint.iTabCur = iCur;
1045   sHint.iIdxCur = pLevel->iIdxCur;
1046   sHint.pIdx = pLoop->u.btree.pIndex;
1047   memset(&sWalker, 0, sizeof(sWalker));
1048   sWalker.pParse = pParse;
1049   sWalker.u.pCCurHint = &sHint;
1050   pWC = &pWInfo->sWC;
1051   for(i=0; i<pWC->nBase; i++){
1052     pTerm = &pWC->a[i];
1053     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1054     if( pTerm->prereqAll & pLevel->notReady ) continue;
1055 
1056     /* Any terms specified as part of the ON(...) clause for any LEFT
1057     ** JOIN for which the current table is not the rhs are omitted
1058     ** from the cursor-hint.
1059     **
1060     ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
1061     ** that were specified as part of the WHERE clause must be excluded.
1062     ** This is to address the following:
1063     **
1064     **   SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
1065     **
1066     ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
1067     ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
1068     ** pushed down to the cursor, this row is filtered out, causing
1069     ** SQLite to synthesize a row of NULL values. Which does match the
1070     ** WHERE clause, and so the query returns a row. Which is incorrect.
1071     **
1072     ** For the same reason, WHERE terms such as:
1073     **
1074     **   WHERE 1 = (t2.c IS NULL)
1075     **
1076     ** are also excluded. See codeCursorHintIsOrFunction() for details.
1077     */
1078     if( pTabItem->fg.jointype & JT_LEFT ){
1079       Expr *pExpr = pTerm->pExpr;
1080       if( !ExprHasProperty(pExpr, EP_FromJoin)
1081        || pExpr->w.iJoin!=pTabItem->iCursor
1082       ){
1083         sWalker.eCode = 0;
1084         sWalker.xExprCallback = codeCursorHintIsOrFunction;
1085         sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1086         if( sWalker.eCode ) continue;
1087       }
1088     }else{
1089       if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
1090     }
1091 
1092     /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
1093     ** the cursor.  These terms are not needed as hints for a pure range
1094     ** scan (that has no == terms) so omit them. */
1095     if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
1096       for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
1097       if( j<pLoop->nLTerm ) continue;
1098     }
1099 
1100     /* No subqueries or non-deterministic functions allowed */
1101     if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
1102 
1103     /* For an index scan, make sure referenced columns are actually in
1104     ** the index. */
1105     if( sHint.pIdx!=0 ){
1106       sWalker.eCode = 0;
1107       sWalker.xExprCallback = codeCursorHintCheckExpr;
1108       sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1109       if( sWalker.eCode ) continue;
1110     }
1111 
1112     /* If we survive all prior tests, that means this term is worth hinting */
1113     pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
1114   }
1115   if( pExpr!=0 ){
1116     sWalker.xExprCallback = codeCursorHintFixExpr;
1117     sqlite3WalkExpr(&sWalker, pExpr);
1118     sqlite3VdbeAddOp4(v, OP_CursorHint,
1119                       (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
1120                       (const char*)pExpr, P4_EXPR);
1121   }
1122 }
1123 #else
1124 # define codeCursorHint(A,B,C,D)  /* No-op */
1125 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1126 
1127 /*
1128 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1129 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1130 ** function generates code to do a deferred seek of cursor iCur to the
1131 ** rowid stored in register iRowid.
1132 **
1133 ** Normally, this is just:
1134 **
1135 **   OP_DeferredSeek $iCur $iRowid
1136 **
1137 ** Which causes a seek on $iCur to the row with rowid $iRowid.
1138 **
1139 ** However, if the scan currently being coded is a branch of an OR-loop and
1140 ** the statement currently being coded is a SELECT, then additional information
1141 ** is added that might allow OP_Column to omit the seek and instead do its
1142 ** lookup on the index, thus avoiding an expensive seek operation.  To
1143 ** enable this optimization, the P3 of OP_DeferredSeek is set to iIdxCur
1144 ** and P4 is set to an array of integers containing one entry for each column
1145 ** in the table.  For each table column, if the column is the i'th
1146 ** column of the index, then the corresponding array entry is set to (i+1).
1147 ** If the column does not appear in the index at all, the array entry is set
1148 ** to 0.  The OP_Column opcode can check this array to see if the column it
1149 ** wants is in the index and if it is, it will substitute the index cursor
1150 ** and column number and continue with those new values, rather than seeking
1151 ** the table cursor.
1152 */
1153 static void codeDeferredSeek(
1154   WhereInfo *pWInfo,              /* Where clause context */
1155   Index *pIdx,                    /* Index scan is using */
1156   int iCur,                       /* Cursor for IPK b-tree */
1157   int iIdxCur                     /* Index cursor */
1158 ){
1159   Parse *pParse = pWInfo->pParse; /* Parse context */
1160   Vdbe *v = pParse->pVdbe;        /* Vdbe to generate code within */
1161 
1162   assert( iIdxCur>0 );
1163   assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1164 
1165   pWInfo->bDeferredSeek = 1;
1166   sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1167   if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))
1168    && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1169   ){
1170     int i;
1171     Table *pTab = pIdx->pTable;
1172     u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1));
1173     if( ai ){
1174       ai[0] = pTab->nCol;
1175       for(i=0; i<pIdx->nColumn-1; i++){
1176         int x1, x2;
1177         assert( pIdx->aiColumn[i]<pTab->nCol );
1178         x1 = pIdx->aiColumn[i];
1179         x2 = sqlite3TableColumnToStorage(pTab, x1);
1180         testcase( x1!=x2 );
1181         if( x1>=0 ) ai[x2+1] = i+1;
1182       }
1183       sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1184     }
1185   }
1186 }
1187 
1188 /*
1189 ** If the expression passed as the second argument is a vector, generate
1190 ** code to write the first nReg elements of the vector into an array
1191 ** of registers starting with iReg.
1192 **
1193 ** If the expression is not a vector, then nReg must be passed 1. In
1194 ** this case, generate code to evaluate the expression and leave the
1195 ** result in register iReg.
1196 */
1197 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1198   assert( nReg>0 );
1199   if( p && sqlite3ExprIsVector(p) ){
1200 #ifndef SQLITE_OMIT_SUBQUERY
1201     if( ExprUseXSelect(p) ){
1202       Vdbe *v = pParse->pVdbe;
1203       int iSelect;
1204       assert( p->op==TK_SELECT );
1205       iSelect = sqlite3CodeSubselect(pParse, p);
1206       sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1207     }else
1208 #endif
1209     {
1210       int i;
1211       const ExprList *pList;
1212       assert( ExprUseXList(p) );
1213       pList = p->x.pList;
1214       assert( nReg<=pList->nExpr );
1215       for(i=0; i<nReg; i++){
1216         sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1217       }
1218     }
1219   }else{
1220     assert( nReg==1 || pParse->nErr );
1221     sqlite3ExprCode(pParse, p, iReg);
1222   }
1223 }
1224 
1225 /* An instance of the IdxExprTrans object carries information about a
1226 ** mapping from an expression on table columns into a column in an index
1227 ** down through the Walker.
1228 */
1229 typedef struct IdxExprTrans {
1230   Expr *pIdxExpr;    /* The index expression */
1231   int iTabCur;       /* The cursor of the corresponding table */
1232   int iIdxCur;       /* The cursor for the index */
1233   int iIdxCol;       /* The column for the index */
1234   int iTabCol;       /* The column for the table */
1235   WhereInfo *pWInfo; /* Complete WHERE clause information */
1236   sqlite3 *db;       /* Database connection (for malloc()) */
1237 } IdxExprTrans;
1238 
1239 /*
1240 ** Preserve pExpr on the WhereETrans list of the WhereInfo.
1241 */
1242 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){
1243   WhereExprMod *pNew;
1244   pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew));
1245   if( pNew==0 ) return;
1246   pNew->pNext = pTrans->pWInfo->pExprMods;
1247   pTrans->pWInfo->pExprMods = pNew;
1248   pNew->pExpr = pExpr;
1249   memcpy(&pNew->orig, pExpr, sizeof(*pExpr));
1250 }
1251 
1252 /* The walker node callback used to transform matching expressions into
1253 ** a reference to an index column for an index on an expression.
1254 **
1255 ** If pExpr matches, then transform it into a reference to the index column
1256 ** that contains the value of pExpr.
1257 */
1258 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1259   IdxExprTrans *pX = p->u.pIdxTrans;
1260   if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1261     pExpr = sqlite3ExprSkipCollate(pExpr);
1262     preserveExpr(pX, pExpr);
1263     pExpr->affExpr = sqlite3ExprAffinity(pExpr);
1264     pExpr->op = TK_COLUMN;
1265     pExpr->iTable = pX->iIdxCur;
1266     pExpr->iColumn = pX->iIdxCol;
1267     testcase( ExprHasProperty(pExpr, EP_Skip) );
1268     testcase( ExprHasProperty(pExpr, EP_Unlikely) );
1269     ExprClearProperty(pExpr, EP_Skip|EP_Unlikely|EP_WinFunc|EP_Subrtn);
1270     pExpr->y.pTab = 0;
1271     return WRC_Prune;
1272   }else{
1273     return WRC_Continue;
1274   }
1275 }
1276 
1277 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1278 /* A walker node callback that translates a column reference to a table
1279 ** into a corresponding column reference of an index.
1280 */
1281 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){
1282   if( pExpr->op==TK_COLUMN ){
1283     IdxExprTrans *pX = p->u.pIdxTrans;
1284     if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){
1285       assert( ExprUseYTab(pExpr) && pExpr->y.pTab!=0 );
1286       preserveExpr(pX, pExpr);
1287       pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn);
1288       pExpr->iTable = pX->iIdxCur;
1289       pExpr->iColumn = pX->iIdxCol;
1290       pExpr->y.pTab = 0;
1291     }
1292   }
1293   return WRC_Continue;
1294 }
1295 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1296 
1297 /*
1298 ** For an indexes on expression X, locate every instance of expression X
1299 ** in pExpr and change that subexpression into a reference to the appropriate
1300 ** column of the index.
1301 **
1302 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in
1303 ** the table into references to the corresponding (stored) column of the
1304 ** index.
1305 */
1306 static void whereIndexExprTrans(
1307   Index *pIdx,      /* The Index */
1308   int iTabCur,      /* Cursor of the table that is being indexed */
1309   int iIdxCur,      /* Cursor of the index itself */
1310   WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1311 ){
1312   int iIdxCol;               /* Column number of the index */
1313   ExprList *aColExpr;        /* Expressions that are indexed */
1314   Table *pTab;
1315   Walker w;
1316   IdxExprTrans x;
1317   aColExpr = pIdx->aColExpr;
1318   if( aColExpr==0 && !pIdx->bHasVCol ){
1319     /* The index does not reference any expressions or virtual columns
1320     ** so no translations are needed. */
1321     return;
1322   }
1323   pTab = pIdx->pTable;
1324   memset(&w, 0, sizeof(w));
1325   w.u.pIdxTrans = &x;
1326   x.iTabCur = iTabCur;
1327   x.iIdxCur = iIdxCur;
1328   x.pWInfo = pWInfo;
1329   x.db = pWInfo->pParse->db;
1330   for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){
1331     i16 iRef = pIdx->aiColumn[iIdxCol];
1332     if( iRef==XN_EXPR ){
1333       assert( aColExpr!=0 && aColExpr->a[iIdxCol].pExpr!=0 );
1334       x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1335       if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue;
1336       w.xExprCallback = whereIndexExprTransNode;
1337 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1338     }else if( iRef>=0
1339        && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0
1340        && ((pTab->aCol[iRef].colFlags & COLFLAG_HASCOLL)==0
1341            || sqlite3StrICmp(sqlite3ColumnColl(&pTab->aCol[iRef]),
1342                                                sqlite3StrBINARY)==0)
1343     ){
1344       /* Check to see if there are direct references to generated columns
1345       ** that are contained in the index.  Pulling the generated column
1346       ** out of the index is an optimization only - the main table is always
1347       ** available if the index cannot be used.  To avoid unnecessary
1348       ** complication, omit this optimization if the collating sequence for
1349       ** the column is non-standard */
1350       x.iTabCol = iRef;
1351       w.xExprCallback = whereIndexExprTransColumn;
1352 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1353     }else{
1354       continue;
1355     }
1356     x.iIdxCol = iIdxCol;
1357     sqlite3WalkExpr(&w, pWInfo->pWhere);
1358     sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1359     sqlite3WalkExprList(&w, pWInfo->pResultSet);
1360   }
1361 }
1362 
1363 /*
1364 ** The pTruth expression is always true because it is the WHERE clause
1365 ** a partial index that is driving a query loop.  Look through all of the
1366 ** WHERE clause terms on the query, and if any of those terms must be
1367 ** true because pTruth is true, then mark those WHERE clause terms as
1368 ** coded.
1369 */
1370 static void whereApplyPartialIndexConstraints(
1371   Expr *pTruth,
1372   int iTabCur,
1373   WhereClause *pWC
1374 ){
1375   int i;
1376   WhereTerm *pTerm;
1377   while( pTruth->op==TK_AND ){
1378     whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC);
1379     pTruth = pTruth->pRight;
1380   }
1381   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1382     Expr *pExpr;
1383     if( pTerm->wtFlags & TERM_CODED ) continue;
1384     pExpr = pTerm->pExpr;
1385     if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){
1386       pTerm->wtFlags |= TERM_CODED;
1387     }
1388   }
1389 }
1390 
1391 /*
1392 ** This routine is called right after An OP_Filter has been generated and
1393 ** before the corresponding index search has been performed.  This routine
1394 ** checks to see if there are additional Bloom filters in inner loops that
1395 ** can be checked prior to doing the index lookup.  If there are available
1396 ** inner-loop Bloom filters, then evaluate those filters now, before the
1397 ** index lookup.  The idea is that a Bloom filter check is way faster than
1398 ** an index lookup, and the Bloom filter might return false, meaning that
1399 ** the index lookup can be skipped.
1400 **
1401 ** We know that an inner loop uses a Bloom filter because it has the
1402 ** WhereLevel.regFilter set.  If an inner-loop Bloom filter is checked,
1403 ** then clear the WhereLevel.regFilter value to prevent the Bloom filter
1404 ** from being checked a second time when the inner loop is evaluated.
1405 */
1406 static SQLITE_NOINLINE void filterPullDown(
1407   Parse *pParse,       /* Parsing context */
1408   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1409   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1410   int addrNxt,         /* Jump here to bypass inner loops */
1411   Bitmask notReady     /* Loops that are not ready */
1412 ){
1413   while( ++iLevel < pWInfo->nLevel ){
1414     WhereLevel *pLevel = &pWInfo->a[iLevel];
1415     WhereLoop *pLoop = pLevel->pWLoop;
1416     if( pLevel->regFilter==0 ) continue;
1417     if( pLevel->pWLoop->nSkip ) continue;
1418     /*         ,--- Because sqlite3ConstructBloomFilter() has will not have set
1419     **  vvvvv--'    pLevel->regFilter if this were true. */
1420     if( NEVER(pLoop->prereq & notReady) ) continue;
1421     if( pLoop->wsFlags & WHERE_IPK ){
1422       WhereTerm *pTerm = pLoop->aLTerm[0];
1423       int regRowid;
1424       assert( pTerm!=0 );
1425       assert( pTerm->pExpr!=0 );
1426       testcase( pTerm->wtFlags & TERM_VIRTUAL );
1427       regRowid = sqlite3GetTempReg(pParse);
1428       regRowid = codeEqualityTerm(pParse, pTerm, pLevel, 0, 0, regRowid);
1429       sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter,
1430                            addrNxt, regRowid, 1);
1431       VdbeCoverage(pParse->pVdbe);
1432     }else{
1433       u16 nEq = pLoop->u.btree.nEq;
1434       int r1;
1435       char *zStartAff;
1436 
1437       assert( pLoop->wsFlags & WHERE_INDEXED );
1438       assert( (pLoop->wsFlags & WHERE_COLUMN_IN)==0 );
1439       r1 = codeAllEqualityTerms(pParse,pLevel,0,0,&zStartAff);
1440       codeApplyAffinity(pParse, r1, nEq, zStartAff);
1441       sqlite3DbFree(pParse->db, zStartAff);
1442       sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter,
1443                            addrNxt, r1, nEq);
1444       VdbeCoverage(pParse->pVdbe);
1445     }
1446     pLevel->regFilter = 0;
1447   }
1448 }
1449 
1450 /*
1451 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1452 ** implementation described by pWInfo.
1453 */
1454 Bitmask sqlite3WhereCodeOneLoopStart(
1455   Parse *pParse,       /* Parsing context */
1456   Vdbe *v,             /* Prepared statement under construction */
1457   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1458   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1459   WhereLevel *pLevel,  /* The current level pointer */
1460   Bitmask notReady     /* Which tables are currently available */
1461 ){
1462   int j, k;            /* Loop counters */
1463   int iCur;            /* The VDBE cursor for the table */
1464   int addrNxt;         /* Where to jump to continue with the next IN case */
1465   int bRev;            /* True if we need to scan in reverse order */
1466   WhereLoop *pLoop;    /* The WhereLoop object being coded */
1467   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
1468   WhereTerm *pTerm;               /* A WHERE clause term */
1469   sqlite3 *db;                    /* Database connection */
1470   SrcItem *pTabItem;              /* FROM clause term being coded */
1471   int addrBrk;                    /* Jump here to break out of the loop */
1472   int addrHalt;                   /* addrBrk for the outermost loop */
1473   int addrCont;                   /* Jump here to continue with next cycle */
1474   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
1475   int iReleaseReg = 0;      /* Temp register to free before returning */
1476   Index *pIdx = 0;          /* Index used by loop (if any) */
1477   int iLoop;                /* Iteration of constraint generator loop */
1478 
1479   pWC = &pWInfo->sWC;
1480   db = pParse->db;
1481   pLoop = pLevel->pWLoop;
1482   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1483   iCur = pTabItem->iCursor;
1484   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1485   bRev = (pWInfo->revMask>>iLevel)&1;
1486   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1487 #if WHERETRACE_ENABLED /* 0x20800 */
1488   if( sqlite3WhereTrace & 0x800 ){
1489     sqlite3DebugPrintf("Coding level %d of %d:  notReady=%llx  iFrom=%d\n",
1490        iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom);
1491     sqlite3WhereLoopPrint(pLoop, pWC);
1492   }
1493   if( sqlite3WhereTrace & 0x20000 ){
1494     if( iLevel==0 ){
1495       sqlite3DebugPrintf("WHERE clause being coded:\n");
1496       sqlite3TreeViewExpr(0, pWInfo->pWhere, 0);
1497     }
1498     sqlite3DebugPrintf("All WHERE-clause terms before coding:\n");
1499     sqlite3WhereClausePrint(pWC);
1500   }
1501 #endif
1502 
1503   /* Create labels for the "break" and "continue" instructions
1504   ** for the current loop.  Jump to addrBrk to break out of a loop.
1505   ** Jump to cont to go immediately to the next iteration of the
1506   ** loop.
1507   **
1508   ** When there is an IN operator, we also have a "addrNxt" label that
1509   ** means to continue with the next IN value combination.  When
1510   ** there are no IN operators in the constraints, the "addrNxt" label
1511   ** is the same as "addrBrk".
1512   */
1513   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
1514   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse);
1515 
1516   /* If this is the right table of a LEFT OUTER JOIN, allocate and
1517   ** initialize a memory cell that records if this table matches any
1518   ** row of the left table of the join.
1519   */
1520   assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))
1521        || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
1522   );
1523   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1524     pLevel->iLeftJoin = ++pParse->nMem;
1525     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1526     VdbeComment((v, "init LEFT JOIN no-match flag"));
1527   }
1528 
1529   /* Compute a safe address to jump to if we discover that the table for
1530   ** this loop is empty and can never contribute content. */
1531   for(j=iLevel; j>0; j--){
1532     if( pWInfo->a[j].iLeftJoin ) break;
1533     if( pWInfo->a[j].pRJ ) break;
1534   }
1535   addrHalt = pWInfo->a[j].addrBrk;
1536 
1537   /* Special case of a FROM clause subquery implemented as a co-routine */
1538   if( pTabItem->fg.viaCoroutine ){
1539     int regYield = pTabItem->regReturn;
1540     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1541     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1542     VdbeCoverage(v);
1543     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
1544     pLevel->op = OP_Goto;
1545   }else
1546 
1547 #ifndef SQLITE_OMIT_VIRTUALTABLE
1548   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1549     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
1550     **          to access the data.
1551     */
1552     int iReg;   /* P3 Value for OP_VFilter */
1553     int addrNotFound;
1554     int nConstraint = pLoop->nLTerm;
1555 
1556     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1557     addrNotFound = pLevel->addrBrk;
1558     for(j=0; j<nConstraint; j++){
1559       int iTarget = iReg+j+2;
1560       pTerm = pLoop->aLTerm[j];
1561       if( NEVER(pTerm==0) ) continue;
1562       if( pTerm->eOperator & WO_IN ){
1563         if( SMASKBIT32(j) & pLoop->u.vtab.mHandleIn ){
1564           int iTab = pParse->nTab++;
1565           int iCache = ++pParse->nMem;
1566           sqlite3CodeRhsOfIN(pParse, pTerm->pExpr, iTab);
1567           sqlite3VdbeAddOp3(v, OP_VInitIn, iTab, iTarget, iCache);
1568         }else{
1569           codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1570           addrNotFound = pLevel->addrNxt;
1571         }
1572       }else{
1573         Expr *pRight = pTerm->pExpr->pRight;
1574         codeExprOrVector(pParse, pRight, iTarget, 1);
1575         if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET
1576          && pLoop->u.vtab.bOmitOffset
1577         ){
1578           assert( pTerm->eOperator==WO_AUX );
1579           assert( pWInfo->pLimit!=0 );
1580           assert( pWInfo->pLimit->iOffset>0 );
1581           sqlite3VdbeAddOp2(v, OP_Integer, 0, pWInfo->pLimit->iOffset);
1582           VdbeComment((v,"Zero OFFSET counter"));
1583         }
1584       }
1585     }
1586     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1587     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1588     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1589                       pLoop->u.vtab.idxStr,
1590                       pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1591     VdbeCoverage(v);
1592     pLoop->u.vtab.needFree = 0;
1593     /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed
1594     ** the u.vtab.idxStr.  NULL it out to prevent a use-after-free */
1595     if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0;
1596     pLevel->p1 = iCur;
1597     pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1598     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1599     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
1600 
1601     for(j=0; j<nConstraint; j++){
1602       pTerm = pLoop->aLTerm[j];
1603       if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1604         disableTerm(pLevel, pTerm);
1605         continue;
1606       }
1607       if( (pTerm->eOperator & WO_IN)!=0
1608        && (SMASKBIT32(j) & pLoop->u.vtab.mHandleIn)==0
1609        && !db->mallocFailed
1610       ){
1611         Expr *pCompare;  /* The comparison operator */
1612         Expr *pRight;    /* RHS of the comparison */
1613         VdbeOp *pOp;     /* Opcode to access the value of the IN constraint */
1614         int iIn;         /* IN loop corresponding to the j-th constraint */
1615 
1616         /* Reload the constraint value into reg[iReg+j+2].  The same value
1617         ** was loaded into the same register prior to the OP_VFilter, but
1618         ** the xFilter implementation might have changed the datatype or
1619         ** encoding of the value in the register, so it *must* be reloaded.
1620         */
1621         for(iIn=0; ALWAYS(iIn<pLevel->u.in.nIn); iIn++){
1622           pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop);
1623           if( (pOp->opcode==OP_Column && pOp->p3==iReg+j+2)
1624            || (pOp->opcode==OP_Rowid && pOp->p2==iReg+j+2)
1625           ){
1626             testcase( pOp->opcode==OP_Rowid );
1627             sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1628             break;
1629           }
1630         }
1631 
1632         /* Generate code that will continue to the next row if
1633         ** the IN constraint is not satisfied
1634         */
1635         pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1636         if( !db->mallocFailed ){
1637           int iFld = pTerm->u.x.iField;
1638           Expr *pLeft = pTerm->pExpr->pLeft;
1639           assert( pLeft!=0 );
1640           if( iFld>0 ){
1641             assert( pLeft->op==TK_VECTOR );
1642             assert( ExprUseXList(pLeft) );
1643             assert( iFld<=pLeft->x.pList->nExpr );
1644             pCompare->pLeft = pLeft->x.pList->a[iFld-1].pExpr;
1645           }else{
1646             pCompare->pLeft = pLeft;
1647           }
1648           pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1649           if( pRight ){
1650             pRight->iTable = iReg+j+2;
1651             sqlite3ExprIfFalse(
1652                 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL
1653             );
1654           }
1655           pCompare->pLeft = 0;
1656         }
1657         sqlite3ExprDelete(db, pCompare);
1658       }
1659     }
1660 
1661     /* These registers need to be preserved in case there is an IN operator
1662     ** loop.  So we could deallocate the registers here (and potentially
1663     ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0.  But it seems
1664     ** simpler and safer to simply not reuse the registers.
1665     **
1666     **    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1667     */
1668   }else
1669 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1670 
1671   if( (pLoop->wsFlags & WHERE_IPK)!=0
1672    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1673   ){
1674     /* Case 2:  We can directly reference a single row using an
1675     **          equality comparison against the ROWID field.  Or
1676     **          we reference multiple rows using a "rowid IN (...)"
1677     **          construct.
1678     */
1679     assert( pLoop->u.btree.nEq==1 );
1680     pTerm = pLoop->aLTerm[0];
1681     assert( pTerm!=0 );
1682     assert( pTerm->pExpr!=0 );
1683     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1684     iReleaseReg = ++pParse->nMem;
1685     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1686     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1687     addrNxt = pLevel->addrNxt;
1688     if( pLevel->regFilter ){
1689       sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt,
1690                            iRowidReg, 1);
1691       VdbeCoverage(v);
1692       filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady);
1693     }
1694     sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1695     VdbeCoverage(v);
1696     pLevel->op = OP_Noop;
1697   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1698          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1699   ){
1700     /* Case 3:  We have an inequality comparison against the ROWID field.
1701     */
1702     int testOp = OP_Noop;
1703     int start;
1704     int memEndValue = 0;
1705     WhereTerm *pStart, *pEnd;
1706 
1707     j = 0;
1708     pStart = pEnd = 0;
1709     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1710     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1711     assert( pStart!=0 || pEnd!=0 );
1712     if( bRev ){
1713       pTerm = pStart;
1714       pStart = pEnd;
1715       pEnd = pTerm;
1716     }
1717     codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1718     if( pStart ){
1719       Expr *pX;             /* The expression that defines the start bound */
1720       int r1, rTemp;        /* Registers for holding the start boundary */
1721       int op;               /* Cursor seek operation */
1722 
1723       /* The following constant maps TK_xx codes into corresponding
1724       ** seek opcodes.  It depends on a particular ordering of TK_xx
1725       */
1726       const u8 aMoveOp[] = {
1727            /* TK_GT */  OP_SeekGT,
1728            /* TK_LE */  OP_SeekLE,
1729            /* TK_LT */  OP_SeekLT,
1730            /* TK_GE */  OP_SeekGE
1731       };
1732       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
1733       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
1734       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
1735 
1736       assert( (pStart->wtFlags & TERM_VNULL)==0 );
1737       testcase( pStart->wtFlags & TERM_VIRTUAL );
1738       pX = pStart->pExpr;
1739       assert( pX!=0 );
1740       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1741       if( sqlite3ExprIsVector(pX->pRight) ){
1742         r1 = rTemp = sqlite3GetTempReg(pParse);
1743         codeExprOrVector(pParse, pX->pRight, r1, 1);
1744         testcase( pX->op==TK_GT );
1745         testcase( pX->op==TK_GE );
1746         testcase( pX->op==TK_LT );
1747         testcase( pX->op==TK_LE );
1748         op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
1749         assert( pX->op!=TK_GT || op==OP_SeekGE );
1750         assert( pX->op!=TK_GE || op==OP_SeekGE );
1751         assert( pX->op!=TK_LT || op==OP_SeekLE );
1752         assert( pX->op!=TK_LE || op==OP_SeekLE );
1753       }else{
1754         r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1755         disableTerm(pLevel, pStart);
1756         op = aMoveOp[(pX->op - TK_GT)];
1757       }
1758       sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1759       VdbeComment((v, "pk"));
1760       VdbeCoverageIf(v, pX->op==TK_GT);
1761       VdbeCoverageIf(v, pX->op==TK_LE);
1762       VdbeCoverageIf(v, pX->op==TK_LT);
1763       VdbeCoverageIf(v, pX->op==TK_GE);
1764       sqlite3ReleaseTempReg(pParse, rTemp);
1765     }else{
1766       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1767       VdbeCoverageIf(v, bRev==0);
1768       VdbeCoverageIf(v, bRev!=0);
1769     }
1770     if( pEnd ){
1771       Expr *pX;
1772       pX = pEnd->pExpr;
1773       assert( pX!=0 );
1774       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1775       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1776       testcase( pEnd->wtFlags & TERM_VIRTUAL );
1777       memEndValue = ++pParse->nMem;
1778       codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1779       if( 0==sqlite3ExprIsVector(pX->pRight)
1780        && (pX->op==TK_LT || pX->op==TK_GT)
1781       ){
1782         testOp = bRev ? OP_Le : OP_Ge;
1783       }else{
1784         testOp = bRev ? OP_Lt : OP_Gt;
1785       }
1786       if( 0==sqlite3ExprIsVector(pX->pRight) ){
1787         disableTerm(pLevel, pEnd);
1788       }
1789     }
1790     start = sqlite3VdbeCurrentAddr(v);
1791     pLevel->op = bRev ? OP_Prev : OP_Next;
1792     pLevel->p1 = iCur;
1793     pLevel->p2 = start;
1794     assert( pLevel->p5==0 );
1795     if( testOp!=OP_Noop ){
1796       iRowidReg = ++pParse->nMem;
1797       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1798       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1799       VdbeCoverageIf(v, testOp==OP_Le);
1800       VdbeCoverageIf(v, testOp==OP_Lt);
1801       VdbeCoverageIf(v, testOp==OP_Ge);
1802       VdbeCoverageIf(v, testOp==OP_Gt);
1803       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1804     }
1805   }else if( pLoop->wsFlags & WHERE_INDEXED ){
1806     /* Case 4: A scan using an index.
1807     **
1808     **         The WHERE clause may contain zero or more equality
1809     **         terms ("==" or "IN" operators) that refer to the N
1810     **         left-most columns of the index. It may also contain
1811     **         inequality constraints (>, <, >= or <=) on the indexed
1812     **         column that immediately follows the N equalities. Only
1813     **         the right-most column can be an inequality - the rest must
1814     **         use the "==" and "IN" operators. For example, if the
1815     **         index is on (x,y,z), then the following clauses are all
1816     **         optimized:
1817     **
1818     **            x=5
1819     **            x=5 AND y=10
1820     **            x=5 AND y<10
1821     **            x=5 AND y>5 AND y<10
1822     **            x=5 AND y=5 AND z<=10
1823     **
1824     **         The z<10 term of the following cannot be used, only
1825     **         the x=5 term:
1826     **
1827     **            x=5 AND z<10
1828     **
1829     **         N may be zero if there are inequality constraints.
1830     **         If there are no inequality constraints, then N is at
1831     **         least one.
1832     **
1833     **         This case is also used when there are no WHERE clause
1834     **         constraints but an index is selected anyway, in order
1835     **         to force the output order to conform to an ORDER BY.
1836     */
1837     static const u8 aStartOp[] = {
1838       0,
1839       0,
1840       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
1841       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
1842       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
1843       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
1844       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
1845       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
1846     };
1847     static const u8 aEndOp[] = {
1848       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
1849       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
1850       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
1851       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
1852     };
1853     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
1854     u16 nBtm = pLoop->u.btree.nBtm;   /* Length of BTM vector */
1855     u16 nTop = pLoop->u.btree.nTop;   /* Length of TOP vector */
1856     int regBase;                 /* Base register holding constraint values */
1857     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
1858     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
1859     int startEq;                 /* True if range start uses ==, >= or <= */
1860     int endEq;                   /* True if range end uses ==, >= or <= */
1861     int start_constraints;       /* Start of range is constrained */
1862     int nConstraint;             /* Number of constraint terms */
1863     int iIdxCur;                 /* The VDBE cursor for the index */
1864     int nExtraReg = 0;           /* Number of extra registers needed */
1865     int op;                      /* Instruction opcode */
1866     char *zStartAff;             /* Affinity for start of range constraint */
1867     char *zEndAff = 0;           /* Affinity for end of range constraint */
1868     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
1869     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
1870     int omitTable;               /* True if we use the index only */
1871     int regBignull = 0;          /* big-null flag register */
1872     int addrSeekScan = 0;        /* Opcode of the OP_SeekScan, if any */
1873 
1874     pIdx = pLoop->u.btree.pIndex;
1875     iIdxCur = pLevel->iIdxCur;
1876     assert( nEq>=pLoop->nSkip );
1877 
1878     /* Find any inequality constraint terms for the start and end
1879     ** of the range.
1880     */
1881     j = nEq;
1882     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1883       pRangeStart = pLoop->aLTerm[j++];
1884       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1885       /* Like optimization range constraints always occur in pairs */
1886       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1887               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1888     }
1889     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1890       pRangeEnd = pLoop->aLTerm[j++];
1891       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1892 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1893       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1894         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
1895         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
1896         pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1897         sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1898         VdbeComment((v, "LIKE loop counter"));
1899         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1900         /* iLikeRepCntr actually stores 2x the counter register number.  The
1901         ** bottom bit indicates whether the search order is ASC or DESC. */
1902         testcase( bRev );
1903         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1904         assert( (bRev & ~1)==0 );
1905         pLevel->iLikeRepCntr <<=1;
1906         pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1907       }
1908 #endif
1909       if( pRangeStart==0 ){
1910         j = pIdx->aiColumn[nEq];
1911         if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1912           bSeekPastNull = 1;
1913         }
1914       }
1915     }
1916     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1917 
1918     /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
1919     ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
1920     ** FIRST). In both cases separate ordered scans are made of those
1921     ** index entries for which the column is null and for those for which
1922     ** it is not. For an ASC sort, the non-NULL entries are scanned first.
1923     ** For DESC, NULL entries are scanned first.
1924     */
1925     if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0
1926      && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0
1927     ){
1928       assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 );
1929       assert( pRangeEnd==0 && pRangeStart==0 );
1930       testcase( pLoop->nSkip>0 );
1931       nExtraReg = 1;
1932       bSeekPastNull = 1;
1933       pLevel->regBignull = regBignull = ++pParse->nMem;
1934       if( pLevel->iLeftJoin ){
1935         sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull);
1936       }
1937       pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse);
1938     }
1939 
1940     /* If we are doing a reverse order scan on an ascending index, or
1941     ** a forward order scan on a descending index, interchange the
1942     ** start and end terms (pRangeStart and pRangeEnd).
1943     */
1944     if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){
1945       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1946       SWAP(u8, bSeekPastNull, bStopAtNull);
1947       SWAP(u8, nBtm, nTop);
1948     }
1949 
1950     if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){
1951       /* In case OP_SeekScan is used, ensure that the index cursor does not
1952       ** point to a valid row for the first iteration of this loop. */
1953       sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
1954     }
1955 
1956     /* Generate code to evaluate all constraint terms using == or IN
1957     ** and store the values of those terms in an array of registers
1958     ** starting at regBase.
1959     */
1960     codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1961     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1962     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1963     if( zStartAff && nTop ){
1964       zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1965     }
1966     addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt);
1967 
1968     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1969     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1970     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1971     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1972     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1973     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1974     start_constraints = pRangeStart || nEq>0;
1975 
1976     /* Seek the index cursor to the start of the range. */
1977     nConstraint = nEq;
1978     if( pRangeStart ){
1979       Expr *pRight = pRangeStart->pExpr->pRight;
1980       codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1981       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1982       if( (pRangeStart->wtFlags & TERM_VNULL)==0
1983        && sqlite3ExprCanBeNull(pRight)
1984       ){
1985         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1986         VdbeCoverage(v);
1987       }
1988       if( zStartAff ){
1989         updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1990       }
1991       nConstraint += nBtm;
1992       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1993       if( sqlite3ExprIsVector(pRight)==0 ){
1994         disableTerm(pLevel, pRangeStart);
1995       }else{
1996         startEq = 1;
1997       }
1998       bSeekPastNull = 0;
1999     }else if( bSeekPastNull ){
2000       startEq = 0;
2001       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
2002       start_constraints = 1;
2003       nConstraint++;
2004     }else if( regBignull ){
2005       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
2006       start_constraints = 1;
2007       nConstraint++;
2008     }
2009     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
2010     if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
2011       /* The skip-scan logic inside the call to codeAllEqualityConstraints()
2012       ** above has already left the cursor sitting on the correct row,
2013       ** so no further seeking is needed */
2014     }else{
2015       if( regBignull ){
2016         sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull);
2017         VdbeComment((v, "NULL-scan pass ctr"));
2018       }
2019       if( pLevel->regFilter ){
2020         sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt,
2021                              regBase, nEq);
2022         VdbeCoverage(v);
2023         filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady);
2024       }
2025 
2026       op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
2027       assert( op!=0 );
2028       if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){
2029         assert( regBignull==0 );
2030         /* TUNING:  The OP_SeekScan opcode seeks to reduce the number
2031         ** of expensive seek operations by replacing a single seek with
2032         ** 1 or more step operations.  The question is, how many steps
2033         ** should we try before giving up and going with a seek.  The cost
2034         ** of a seek is proportional to the logarithm of the of the number
2035         ** of entries in the tree, so basing the number of steps to try
2036         ** on the estimated number of rows in the btree seems like a good
2037         ** guess. */
2038         addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan,
2039                                          (pIdx->aiRowLogEst[0]+9)/10);
2040         VdbeCoverage(v);
2041       }
2042       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
2043       VdbeCoverage(v);
2044       VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
2045       VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
2046       VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
2047       VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
2048       VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
2049       VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
2050 
2051       assert( bSeekPastNull==0 || bStopAtNull==0 );
2052       if( regBignull ){
2053         assert( bSeekPastNull==1 || bStopAtNull==1 );
2054         assert( bSeekPastNull==!bStopAtNull );
2055         assert( bStopAtNull==startEq );
2056         sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2);
2057         op = aStartOp[(nConstraint>1)*4 + 2 + bRev];
2058         sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
2059                              nConstraint-startEq);
2060         VdbeCoverage(v);
2061         VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
2062         VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
2063         VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
2064         VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
2065         assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE);
2066       }
2067     }
2068 
2069     /* Load the value for the inequality constraint at the end of the
2070     ** range (if any).
2071     */
2072     nConstraint = nEq;
2073     assert( pLevel->p2==0 );
2074     if( pRangeEnd ){
2075       Expr *pRight = pRangeEnd->pExpr->pRight;
2076       if( addrSeekScan ){
2077         /* For a seek-scan that has a range on the lowest term of the index,
2078         ** we have to make the top of the loop be code that sets the end
2079         ** condition of the range.  Otherwise, the OP_SeekScan might jump
2080         ** over that initialization, leaving the range-end value set to the
2081         ** range-start value, resulting in a wrong answer.
2082         ** See ticket 5981a8c041a3c2f3 (2021-11-02).
2083         */
2084         pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2085       }
2086       codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
2087       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
2088       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
2089        && sqlite3ExprCanBeNull(pRight)
2090       ){
2091         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
2092         VdbeCoverage(v);
2093       }
2094       if( zEndAff ){
2095         updateRangeAffinityStr(pRight, nTop, zEndAff);
2096         codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
2097       }else{
2098         assert( pParse->db->mallocFailed );
2099       }
2100       nConstraint += nTop;
2101       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
2102 
2103       if( sqlite3ExprIsVector(pRight)==0 ){
2104         disableTerm(pLevel, pRangeEnd);
2105       }else{
2106         endEq = 1;
2107       }
2108     }else if( bStopAtNull ){
2109       if( regBignull==0 ){
2110         sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
2111         endEq = 0;
2112       }
2113       nConstraint++;
2114     }
2115     sqlite3DbFree(db, zStartAff);
2116     sqlite3DbFree(db, zEndAff);
2117 
2118     /* Top of the loop body */
2119     if( pLevel->p2==0 ) pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2120 
2121     /* Check if the index cursor is past the end of the range. */
2122     if( nConstraint ){
2123       if( regBignull ){
2124         /* Except, skip the end-of-range check while doing the NULL-scan */
2125         sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3);
2126         VdbeComment((v, "If NULL-scan 2nd pass"));
2127         VdbeCoverage(v);
2128       }
2129       op = aEndOp[bRev*2 + endEq];
2130       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
2131       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
2132       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
2133       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
2134       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
2135       if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan);
2136     }
2137     if( regBignull ){
2138       /* During a NULL-scan, check to see if we have reached the end of
2139       ** the NULLs */
2140       assert( bSeekPastNull==!bStopAtNull );
2141       assert( bSeekPastNull+bStopAtNull==1 );
2142       assert( nConstraint+bSeekPastNull>0 );
2143       sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2);
2144       VdbeComment((v, "If NULL-scan 1st pass"));
2145       VdbeCoverage(v);
2146       op = aEndOp[bRev*2 + bSeekPastNull];
2147       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
2148                            nConstraint+bSeekPastNull);
2149       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
2150       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
2151       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
2152       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
2153     }
2154 
2155     if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){
2156       sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq);
2157     }
2158 
2159     /* Seek the table cursor, if required */
2160     omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
2161            && (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0;
2162     if( omitTable ){
2163       /* pIdx is a covering index.  No need to access the main table. */
2164     }else if( HasRowid(pIdx->pTable) ){
2165       codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
2166     }else if( iCur!=iIdxCur ){
2167       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
2168       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
2169       for(j=0; j<pPk->nKeyCol; j++){
2170         k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
2171         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
2172       }
2173       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
2174                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
2175     }
2176 
2177     if( pLevel->iLeftJoin==0 ){
2178       /* If pIdx is an index on one or more expressions, then look through
2179       ** all the expressions in pWInfo and try to transform matching expressions
2180       ** into reference to index columns.  Also attempt to translate references
2181       ** to virtual columns in the table into references to (stored) columns
2182       ** of the index.
2183       **
2184       ** Do not do this for the RHS of a LEFT JOIN. This is because the
2185       ** expression may be evaluated after OP_NullRow has been executed on
2186       ** the cursor. In this case it is important to do the full evaluation,
2187       ** as the result of the expression may not be NULL, even if all table
2188       ** column values are.  https://www.sqlite.org/src/info/7fa8049685b50b5a
2189       **
2190       ** Also, do not do this when processing one index an a multi-index
2191       ** OR clause, since the transformation will become invalid once we
2192       ** move forward to the next index.
2193       ** https://sqlite.org/src/info/4e8e4857d32d401f
2194       */
2195       if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 ){
2196         whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
2197       }
2198 
2199       /* If a partial index is driving the loop, try to eliminate WHERE clause
2200       ** terms from the query that must be true due to the WHERE clause of
2201       ** the partial index.
2202       **
2203       ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
2204       ** for a LEFT JOIN.
2205       */
2206       if( pIdx->pPartIdxWhere ){
2207         whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC);
2208       }
2209     }else{
2210       testcase( pIdx->pPartIdxWhere );
2211       /* The following assert() is not a requirement, merely an observation:
2212       ** The OR-optimization doesn't work for the right hand table of
2213       ** a LEFT JOIN: */
2214       assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 );
2215     }
2216 
2217     /* Record the instruction used to terminate the loop. */
2218     if( pLoop->wsFlags & WHERE_ONEROW ){
2219       pLevel->op = OP_Noop;
2220     }else if( bRev ){
2221       pLevel->op = OP_Prev;
2222     }else{
2223       pLevel->op = OP_Next;
2224     }
2225     pLevel->p1 = iIdxCur;
2226     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
2227     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
2228       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2229     }else{
2230       assert( pLevel->p5==0 );
2231     }
2232     if( omitTable ) pIdx = 0;
2233   }else
2234 
2235 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
2236   if( pLoop->wsFlags & WHERE_MULTI_OR ){
2237     /* Case 5:  Two or more separately indexed terms connected by OR
2238     **
2239     ** Example:
2240     **
2241     **   CREATE TABLE t1(a,b,c,d);
2242     **   CREATE INDEX i1 ON t1(a);
2243     **   CREATE INDEX i2 ON t1(b);
2244     **   CREATE INDEX i3 ON t1(c);
2245     **
2246     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
2247     **
2248     ** In the example, there are three indexed terms connected by OR.
2249     ** The top of the loop looks like this:
2250     **
2251     **          Null       1                # Zero the rowset in reg 1
2252     **
2253     ** Then, for each indexed term, the following. The arguments to
2254     ** RowSetTest are such that the rowid of the current row is inserted
2255     ** into the RowSet. If it is already present, control skips the
2256     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
2257     **
2258     **        sqlite3WhereBegin(<term>)
2259     **          RowSetTest                  # Insert rowid into rowset
2260     **          Gosub      2 A
2261     **        sqlite3WhereEnd()
2262     **
2263     ** Following the above, code to terminate the loop. Label A, the target
2264     ** of the Gosub above, jumps to the instruction right after the Goto.
2265     **
2266     **          Null       1                # Zero the rowset in reg 1
2267     **          Goto       B                # The loop is finished.
2268     **
2269     **       A: <loop body>                 # Return data, whatever.
2270     **
2271     **          Return     2                # Jump back to the Gosub
2272     **
2273     **       B: <after the loop>
2274     **
2275     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
2276     ** use an ephemeral index instead of a RowSet to record the primary
2277     ** keys of the rows we have already seen.
2278     **
2279     */
2280     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
2281     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
2282     Index *pCov = 0;             /* Potential covering index (or NULL) */
2283     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
2284 
2285     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
2286     int regRowset = 0;                        /* Register for RowSet object */
2287     int regRowid = 0;                         /* Register holding rowid */
2288     int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */
2289     int iRetInit;                             /* Address of regReturn init */
2290     int untestedTerms = 0;             /* Some terms not completely tested */
2291     int ii;                            /* Loop counter */
2292     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
2293     Table *pTab = pTabItem->pTab;
2294 
2295     pTerm = pLoop->aLTerm[0];
2296     assert( pTerm!=0 );
2297     assert( pTerm->eOperator & WO_OR );
2298     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
2299     pOrWc = &pTerm->u.pOrInfo->wc;
2300     pLevel->op = OP_Return;
2301     pLevel->p1 = regReturn;
2302 
2303     /* Set up a new SrcList in pOrTab containing the table being scanned
2304     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
2305     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
2306     */
2307     if( pWInfo->nLevel>1 ){
2308       int nNotReady;                 /* The number of notReady tables */
2309       SrcItem *origSrc;              /* Original list of tables */
2310       nNotReady = pWInfo->nLevel - iLevel - 1;
2311       pOrTab = sqlite3StackAllocRaw(db,
2312                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
2313       if( pOrTab==0 ) return notReady;
2314       pOrTab->nAlloc = (u8)(nNotReady + 1);
2315       pOrTab->nSrc = pOrTab->nAlloc;
2316       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
2317       origSrc = pWInfo->pTabList->a;
2318       for(k=1; k<=nNotReady; k++){
2319         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
2320       }
2321     }else{
2322       pOrTab = pWInfo->pTabList;
2323     }
2324 
2325     /* Initialize the rowset register to contain NULL. An SQL NULL is
2326     ** equivalent to an empty rowset.  Or, create an ephemeral index
2327     ** capable of holding primary keys in the case of a WITHOUT ROWID.
2328     **
2329     ** Also initialize regReturn to contain the address of the instruction
2330     ** immediately following the OP_Return at the bottom of the loop. This
2331     ** is required in a few obscure LEFT JOIN cases where control jumps
2332     ** over the top of the loop into the body of it. In this case the
2333     ** correct response for the end-of-loop code (the OP_Return) is to
2334     ** fall through to the next instruction, just as an OP_Next does if
2335     ** called on an uninitialized cursor.
2336     */
2337     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2338       if( HasRowid(pTab) ){
2339         regRowset = ++pParse->nMem;
2340         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
2341       }else{
2342         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2343         regRowset = pParse->nTab++;
2344         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
2345         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
2346       }
2347       regRowid = ++pParse->nMem;
2348     }
2349     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
2350 
2351     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
2352     ** Then for every term xN, evaluate as the subexpression: xN AND y
2353     ** That way, terms in y that are factored into the disjunction will
2354     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
2355     **
2356     ** Actually, each subexpression is converted to "xN AND w" where w is
2357     ** the "interesting" terms of z - terms that did not originate in the
2358     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
2359     ** indices.
2360     **
2361     ** This optimization also only applies if the (x1 OR x2 OR ...) term
2362     ** is not contained in the ON clause of a LEFT JOIN.
2363     ** See ticket http://www.sqlite.org/src/info/f2369304e4
2364     **
2365     ** 2022-02-04:  Do not push down slices of a row-value comparison.
2366     ** In other words, "w" or "y" may not be a slice of a vector.  Otherwise,
2367     ** the initialization of the right-hand operand of the vector comparison
2368     ** might not occur, or might occur only in an OR branch that is not
2369     ** taken.  dbsqlfuzz 80a9fade844b4fb43564efc972bcb2c68270f5d1.
2370     **
2371     ** 2022-03-03:  Do not push down expressions that involve subqueries.
2372     ** The subquery might get coded as a subroutine.  Any table-references
2373     ** in the subquery might be resolved to index-references for the index on
2374     ** the OR branch in which the subroutine is coded.  But if the subroutine
2375     ** is invoked from a different OR branch that uses a different index, such
2376     ** index-references will not work.  tag-20220303a
2377     ** https://sqlite.org/forum/forumpost/36937b197273d403
2378     */
2379     if( pWC->nTerm>1 ){
2380       int iTerm;
2381       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
2382         Expr *pExpr = pWC->a[iTerm].pExpr;
2383         if( &pWC->a[iTerm] == pTerm ) continue;
2384         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
2385         testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
2386         testcase( pWC->a[iTerm].wtFlags & TERM_SLICE );
2387         if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED|TERM_SLICE))!=0 ){
2388           continue;
2389         }
2390         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
2391         if( ExprHasProperty(pExpr, EP_Subquery) ) continue;  /* tag-20220303a */
2392         pExpr = sqlite3ExprDup(db, pExpr, 0);
2393         pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr);
2394       }
2395       if( pAndExpr ){
2396         /* The extra 0x10000 bit on the opcode is masked off and does not
2397         ** become part of the new Expr.op.  However, it does make the
2398         ** op==TK_AND comparison inside of sqlite3PExpr() false, and this
2399         ** prevents sqlite3PExpr() from applying the AND short-circuit
2400         ** optimization, which we do not want here. */
2401         pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr);
2402       }
2403     }
2404 
2405     /* Run a separate WHERE clause for each term of the OR clause.  After
2406     ** eliminating duplicates from other WHERE clauses, the action for each
2407     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
2408     */
2409     ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
2410     for(ii=0; ii<pOrWc->nTerm; ii++){
2411       WhereTerm *pOrTerm = &pOrWc->a[ii];
2412       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
2413         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
2414         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
2415         Expr *pDelete;                  /* Local copy of OR clause term */
2416         int jmp1 = 0;                   /* Address of jump operation */
2417         testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0
2418                && !ExprHasProperty(pOrExpr, EP_FromJoin)
2419         ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */
2420         pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0);
2421         if( db->mallocFailed ){
2422           sqlite3ExprDelete(db, pDelete);
2423           continue;
2424         }
2425         if( pAndExpr ){
2426           pAndExpr->pLeft = pOrExpr;
2427           pOrExpr = pAndExpr;
2428         }
2429         /* Loop through table entries that match term pOrTerm. */
2430         ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1));
2431         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
2432         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 0,
2433                                       WHERE_OR_SUBCLAUSE, iCovCur);
2434         assert( pSubWInfo || pParse->nErr );
2435         if( pSubWInfo ){
2436           WhereLoop *pSubLoop;
2437           int addrExplain = sqlite3WhereExplainOneScan(
2438               pParse, pOrTab, &pSubWInfo->a[0], 0
2439           );
2440           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
2441 
2442           /* This is the sub-WHERE clause body.  First skip over
2443           ** duplicate rows from prior sub-WHERE clauses, and record the
2444           ** rowid (or PRIMARY KEY) for the current row so that the same
2445           ** row will be skipped in subsequent sub-WHERE clauses.
2446           */
2447           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2448             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
2449             if( HasRowid(pTab) ){
2450               sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid);
2451               jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
2452                                           regRowid, iSet);
2453               VdbeCoverage(v);
2454             }else{
2455               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2456               int nPk = pPk->nKeyCol;
2457               int iPk;
2458               int r;
2459 
2460               /* Read the PK into an array of temp registers. */
2461               r = sqlite3GetTempRange(pParse, nPk);
2462               for(iPk=0; iPk<nPk; iPk++){
2463                 int iCol = pPk->aiColumn[iPk];
2464                 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2465               }
2466 
2467               /* Check if the temp table already contains this key. If so,
2468               ** the row has already been included in the result set and
2469               ** can be ignored (by jumping past the Gosub below). Otherwise,
2470               ** insert the key into the temp table and proceed with processing
2471               ** the row.
2472               **
2473               ** Use some of the same optimizations as OP_RowSetTest: If iSet
2474               ** is zero, assume that the key cannot already be present in
2475               ** the temp table. And if iSet is -1, assume that there is no
2476               ** need to insert the key into the temp table, as it will never
2477               ** be tested for.  */
2478               if( iSet ){
2479                 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
2480                 VdbeCoverage(v);
2481               }
2482               if( iSet>=0 ){
2483                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
2484                 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
2485                                      r, nPk);
2486                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2487               }
2488 
2489               /* Release the array of temp registers */
2490               sqlite3ReleaseTempRange(pParse, r, nPk);
2491             }
2492           }
2493 
2494           /* Invoke the main loop body as a subroutine */
2495           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2496 
2497           /* Jump here (skipping the main loop body subroutine) if the
2498           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2499           if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
2500 
2501           /* The pSubWInfo->untestedTerms flag means that this OR term
2502           ** contained one or more AND term from a notReady table.  The
2503           ** terms from the notReady table could not be tested and will
2504           ** need to be tested later.
2505           */
2506           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
2507 
2508           /* If all of the OR-connected terms are optimized using the same
2509           ** index, and the index is opened using the same cursor number
2510           ** by each call to sqlite3WhereBegin() made by this loop, it may
2511           ** be possible to use that index as a covering index.
2512           **
2513           ** If the call to sqlite3WhereBegin() above resulted in a scan that
2514           ** uses an index, and this is either the first OR-connected term
2515           ** processed or the index is the same as that used by all previous
2516           ** terms, set pCov to the candidate covering index. Otherwise, set
2517           ** pCov to NULL to indicate that no candidate covering index will
2518           ** be available.
2519           */
2520           pSubLoop = pSubWInfo->a[0].pWLoop;
2521           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2522           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2523            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2524            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2525           ){
2526             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2527             pCov = pSubLoop->u.btree.pIndex;
2528           }else{
2529             pCov = 0;
2530           }
2531           if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){
2532             pWInfo->bDeferredSeek = 1;
2533           }
2534 
2535           /* Finish the loop through table entries that match term pOrTerm. */
2536           sqlite3WhereEnd(pSubWInfo);
2537           ExplainQueryPlanPop(pParse);
2538         }
2539         sqlite3ExprDelete(db, pDelete);
2540       }
2541     }
2542     ExplainQueryPlanPop(pParse);
2543     assert( pLevel->pWLoop==pLoop );
2544     assert( (pLoop->wsFlags & WHERE_MULTI_OR)!=0 );
2545     assert( (pLoop->wsFlags & WHERE_IN_ABLE)==0 );
2546     pLevel->u.pCoveringIdx = pCov;
2547     if( pCov ) pLevel->iIdxCur = iCovCur;
2548     if( pAndExpr ){
2549       pAndExpr->pLeft = 0;
2550       sqlite3ExprDelete(db, pAndExpr);
2551     }
2552     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2553     sqlite3VdbeGoto(v, pLevel->addrBrk);
2554     sqlite3VdbeResolveLabel(v, iLoopBody);
2555 
2556     /* Set the P2 operand of the OP_Return opcode that will end the current
2557     ** loop to point to this spot, which is the top of the next containing
2558     ** loop.  The byte-code formatter will use that P2 value as a hint to
2559     ** indent everything in between the this point and the final OP_Return.
2560     ** See tag-20220407a in vdbe.c and shell.c */
2561     assert( pLevel->op==OP_Return );
2562     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2563 
2564     if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); }
2565     if( !untestedTerms ) disableTerm(pLevel, pTerm);
2566   }else
2567 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2568 
2569   {
2570     /* Case 6:  There is no usable index.  We must do a complete
2571     **          scan of the entire table.
2572     */
2573     static const u8 aStep[] = { OP_Next, OP_Prev };
2574     static const u8 aStart[] = { OP_Rewind, OP_Last };
2575     assert( bRev==0 || bRev==1 );
2576     if( pTabItem->fg.isRecursive ){
2577       /* Tables marked isRecursive have only a single row that is stored in
2578       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
2579       pLevel->op = OP_Noop;
2580     }else{
2581       codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2582       pLevel->op = aStep[bRev];
2583       pLevel->p1 = iCur;
2584       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2585       VdbeCoverageIf(v, bRev==0);
2586       VdbeCoverageIf(v, bRev!=0);
2587       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2588     }
2589   }
2590 
2591 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2592   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2593 #endif
2594 
2595   /* Insert code to test every subexpression that can be completely
2596   ** computed using the current set of tables.
2597   **
2598   ** This loop may run between one and three times, depending on the
2599   ** constraints to be generated. The value of stack variable iLoop
2600   ** determines the constraints coded by each iteration, as follows:
2601   **
2602   ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2603   ** iLoop==2: Code remaining expressions that do not contain correlated
2604   **           sub-queries.
2605   ** iLoop==3: Code all remaining expressions.
2606   **
2607   ** An effort is made to skip unnecessary iterations of the loop.
2608   */
2609   iLoop = (pIdx ? 1 : 2);
2610   do{
2611     int iNext = 0;                /* Next value for iLoop */
2612     for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2613       Expr *pE;
2614       int skipLikeAddr = 0;
2615       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2616       testcase( pTerm->wtFlags & TERM_CODED );
2617       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2618       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2619         testcase( pWInfo->untestedTerms==0
2620             && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2621         pWInfo->untestedTerms = 1;
2622         continue;
2623       }
2624       pE = pTerm->pExpr;
2625       assert( pE!=0 );
2626       if( (pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ))
2627        && !ExprHasProperty(pE,EP_FromJoin)
2628       ){
2629         continue;
2630       }
2631 
2632       if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2633         iNext = 2;
2634         continue;
2635       }
2636       if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2637         if( iNext==0 ) iNext = 3;
2638         continue;
2639       }
2640 
2641       if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
2642         /* If the TERM_LIKECOND flag is set, that means that the range search
2643         ** is sufficient to guarantee that the LIKE operator is true, so we
2644         ** can skip the call to the like(A,B) function.  But this only works
2645         ** for strings.  So do not skip the call to the function on the pass
2646         ** that compares BLOBs. */
2647 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2648         continue;
2649 #else
2650         u32 x = pLevel->iLikeRepCntr;
2651         if( x>0 ){
2652           skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
2653           VdbeCoverageIf(v, (x&1)==1);
2654           VdbeCoverageIf(v, (x&1)==0);
2655         }
2656 #endif
2657       }
2658 #ifdef WHERETRACE_ENABLED /* 0xffff */
2659       if( sqlite3WhereTrace ){
2660         VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2661                          pWC->nTerm-j, pTerm, iLoop));
2662       }
2663       if( sqlite3WhereTrace & 0x800 ){
2664         sqlite3DebugPrintf("Coding auxiliary constraint:\n");
2665         sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2666       }
2667 #endif
2668       sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2669       if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2670       pTerm->wtFlags |= TERM_CODED;
2671     }
2672     iLoop = iNext;
2673   }while( iLoop>0 );
2674 
2675   /* Insert code to test for implied constraints based on transitivity
2676   ** of the "==" operator.
2677   **
2678   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2679   ** and we are coding the t1 loop and the t2 loop has not yet coded,
2680   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2681   ** the implied "t1.a=123" constraint.
2682   */
2683   for(pTerm=pWC->a, j=pWC->nBase; j>0; j--, pTerm++){
2684     Expr *pE, sEAlt;
2685     WhereTerm *pAlt;
2686     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2687     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2688     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2689     if( pTerm->leftCursor!=iCur ) continue;
2690     if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ) ) continue;
2691     pE = pTerm->pExpr;
2692 #ifdef WHERETRACE_ENABLED /* 0x800 */
2693     if( sqlite3WhereTrace & 0x800 ){
2694       sqlite3DebugPrintf("Coding transitive constraint:\n");
2695       sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2696     }
2697 #endif
2698     assert( !ExprHasProperty(pE, EP_FromJoin) );
2699     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2700     assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
2701     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady,
2702                     WO_EQ|WO_IN|WO_IS, 0);
2703     if( pAlt==0 ) continue;
2704     if( pAlt->wtFlags & (TERM_CODED) ) continue;
2705     if( (pAlt->eOperator & WO_IN)
2706      && ExprUseXSelect(pAlt->pExpr)
2707      && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
2708     ){
2709       continue;
2710     }
2711     testcase( pAlt->eOperator & WO_EQ );
2712     testcase( pAlt->eOperator & WO_IS );
2713     testcase( pAlt->eOperator & WO_IN );
2714     VdbeModuleComment((v, "begin transitive constraint"));
2715     sEAlt = *pAlt->pExpr;
2716     sEAlt.pLeft = pE->pLeft;
2717     sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2718     pAlt->wtFlags |= TERM_CODED;
2719   }
2720 
2721   /* For a RIGHT OUTER JOIN, record the fact that the current row has
2722   ** been matched at least once.
2723   */
2724   if( pLevel->pRJ ){
2725     Table *pTab;
2726     int nPk;
2727     int r;
2728     int jmp1 = 0;
2729     WhereRightJoin *pRJ = pLevel->pRJ;
2730 
2731     /* pTab is the right-hand table of the RIGHT JOIN.  Generate code that
2732     ** will record that the current row of that table has been matched at
2733     ** least once.  This is accomplished by storing the PK for the row in
2734     ** both the iMatch index and the regBloom Bloom filter.
2735     */
2736     pTab = pWInfo->pTabList->a[pLevel->iFrom].pTab;
2737     if( HasRowid(pTab) ){
2738       r = sqlite3GetTempRange(pParse, 2);
2739       sqlite3ExprCodeGetColumnOfTable(v, pTab, pLevel->iTabCur, -1, r+1);
2740       nPk = 1;
2741     }else{
2742       int iPk;
2743       Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2744       nPk = pPk->nKeyCol;
2745       r = sqlite3GetTempRange(pParse, nPk+1);
2746       for(iPk=0; iPk<nPk; iPk++){
2747         int iCol = pPk->aiColumn[iPk];
2748         sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+1+iPk);
2749       }
2750     }
2751     jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, 0, r+1, nPk);
2752     VdbeCoverage(v);
2753     VdbeComment((v, "match against %s", pTab->zName));
2754     sqlite3VdbeAddOp3(v, OP_MakeRecord, r+1, nPk, r);
2755     sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pRJ->iMatch, r, r+1, nPk);
2756     sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pRJ->regBloom, 0, r+1, nPk);
2757     sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2758     sqlite3VdbeJumpHere(v, jmp1);
2759     sqlite3ReleaseTempRange(pParse, r, nPk+1);
2760   }
2761 
2762   /* For a LEFT OUTER JOIN, generate code that will record the fact that
2763   ** at least one row of the right table has matched the left table.
2764   */
2765   if( pLevel->iLeftJoin ){
2766     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2767     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2768     VdbeComment((v, "record LEFT JOIN hit"));
2769     for(pTerm=pWC->a, j=0; j<pWC->nBase; j++, pTerm++){
2770       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2771       testcase( pTerm->wtFlags & TERM_CODED );
2772       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2773       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2774         assert( pWInfo->untestedTerms );
2775         continue;
2776       }
2777       if( pTabItem->fg.jointype & JT_LTORJ ) continue;
2778       assert( pTerm->pExpr );
2779       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2780       pTerm->wtFlags |= TERM_CODED;
2781     }
2782   }
2783 
2784   if( pLevel->pRJ ){
2785     /* Create a subroutine used to process all interior loops and code
2786     ** of the RIGHT JOIN.  During normal operation, the subroutine will
2787     ** be in-line with the rest of the code.  But at the end, a separate
2788     ** loop will run that invokes this subroutine for unmatched rows
2789     ** of pTab, with all tables to left begin set to NULL.
2790     */
2791     WhereRightJoin *pRJ = pLevel->pRJ;
2792     sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pRJ->regReturn);
2793     pRJ->addrSubrtn = sqlite3VdbeCurrentAddr(v);
2794     assert( pParse->withinRJSubrtn < 255 );
2795     pParse->withinRJSubrtn++;
2796   }
2797 
2798 #if WHERETRACE_ENABLED /* 0x20800 */
2799   if( sqlite3WhereTrace & 0x20000 ){
2800     sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n",
2801                        iLevel);
2802     sqlite3WhereClausePrint(pWC);
2803   }
2804   if( sqlite3WhereTrace & 0x800 ){
2805     sqlite3DebugPrintf("End Coding level %d:  notReady=%llx\n",
2806        iLevel, (u64)pLevel->notReady);
2807   }
2808 #endif
2809   return pLevel->notReady;
2810 }
2811 
2812 /*
2813 ** Generate the code for the loop that finds all non-matched terms
2814 ** for a RIGHT JOIN.
2815 */
2816 SQLITE_NOINLINE void sqlite3WhereRightJoinLoop(
2817   WhereInfo *pWInfo,
2818   int iLevel,
2819   WhereLevel *pLevel
2820 ){
2821   Parse *pParse = pWInfo->pParse;
2822   Vdbe *v = pParse->pVdbe;
2823   WhereRightJoin *pRJ = pLevel->pRJ;
2824   Expr *pSubWhere = 0;
2825   WhereClause *pWC = &pWInfo->sWC;
2826   WhereInfo *pSubWInfo;
2827   WhereLoop *pLoop = pLevel->pWLoop;
2828   SrcItem *pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
2829   SrcList sFrom;
2830   Bitmask mAll = 0;
2831   int k;
2832 
2833   ExplainQueryPlan((pParse, 1, "RIGHT-JOIN %s", pTabItem->pTab->zName));
2834   sqlite3VdbeNoJumpsOutsideSubrtn(v, pRJ->addrSubrtn, pRJ->endSubrtn,
2835                                   pRJ->regReturn);
2836   for(k=0; k<iLevel; k++){
2837     int iIdxCur;
2838     mAll |= pWInfo->a[k].pWLoop->maskSelf;
2839     sqlite3VdbeAddOp1(v, OP_NullRow, pWInfo->a[k].iTabCur);
2840     iIdxCur = pWInfo->a[k].iIdxCur;
2841     if( iIdxCur ){
2842       sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
2843     }
2844   }
2845   if( (pTabItem->fg.jointype & JT_LTORJ)==0 ){
2846     mAll |= pLoop->maskSelf;
2847     for(k=0; k<pWC->nTerm; k++){
2848       WhereTerm *pTerm = &pWC->a[k];
2849       if( pTerm->wtFlags & TERM_VIRTUAL ) break;
2850       if( pTerm->prereqAll & ~mAll ) continue;
2851       if( ExprHasProperty(pTerm->pExpr, EP_FromJoin|EP_InnerJoin) ) continue;
2852       pSubWhere = sqlite3ExprAnd(pParse, pSubWhere,
2853                                  sqlite3ExprDup(pParse->db, pTerm->pExpr, 0));
2854     }
2855   }
2856   sFrom.nSrc = 1;
2857   sFrom.nAlloc = 1;
2858   memcpy(&sFrom.a[0], pTabItem, sizeof(SrcItem));
2859   sFrom.a[0].fg.jointype = 0;
2860   assert( pParse->withinRJSubrtn < 100 );
2861   pParse->withinRJSubrtn++;
2862   pSubWInfo = sqlite3WhereBegin(pParse, &sFrom, pSubWhere, 0, 0, 0,
2863                                 WHERE_RIGHT_JOIN, 0);
2864   if( pSubWInfo ){
2865     int iCur = pLevel->iTabCur;
2866     int r = ++pParse->nMem;
2867     int nPk;
2868     int jmp;
2869     int addrCont = sqlite3WhereContinueLabel(pSubWInfo);
2870     Table *pTab = pTabItem->pTab;
2871     if( HasRowid(pTab) ){
2872       sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, r);
2873       nPk = 1;
2874     }else{
2875       int iPk;
2876       Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2877       nPk = pPk->nKeyCol;
2878       pParse->nMem += nPk - 1;
2879       for(iPk=0; iPk<nPk; iPk++){
2880         int iCol = pPk->aiColumn[iPk];
2881         sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2882       }
2883     }
2884     jmp = sqlite3VdbeAddOp4Int(v, OP_Filter, pRJ->regBloom, 0, r, nPk);
2885     VdbeCoverage(v);
2886     sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, addrCont, r, nPk);
2887     VdbeCoverage(v);
2888     sqlite3VdbeJumpHere(v, jmp);
2889     sqlite3VdbeAddOp2(v, OP_Gosub, pRJ->regReturn, pRJ->addrSubrtn);
2890     sqlite3WhereEnd(pSubWInfo);
2891   }
2892   sqlite3ExprDelete(pParse->db, pSubWhere);
2893   ExplainQueryPlanPop(pParse);
2894   assert( pParse->withinRJSubrtn>0 );
2895   pParse->withinRJSubrtn--;
2896 }
2897