xref: /sqlite-3.40.0/src/wherecode.c (revision 735ff4a8)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 /*
25 ** This routine is a helper for explainIndexRange() below
26 **
27 ** pStr holds the text of an expression that we are building up one term
28 ** at a time.  This routine adds a new term to the end of the expression.
29 ** Terms are separated by AND so add the "AND" text for second and subsequent
30 ** terms only.
31 */
32 static void explainAppendTerm(
33   StrAccum *pStr,             /* The text expression being built */
34   int iTerm,                  /* Index of this term.  First is zero */
35   const char *zColumn,        /* Name of the column */
36   const char *zOp             /* Name of the operator */
37 ){
38   if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5);
39   sqlite3StrAccumAppendAll(pStr, zColumn);
40   sqlite3StrAccumAppend(pStr, zOp, 1);
41   sqlite3StrAccumAppend(pStr, "?", 1);
42 }
43 
44 /*
45 ** Return the name of the i-th column of the pIdx index.
46 */
47 static const char *explainIndexColumnName(Index *pIdx, int i){
48   i = pIdx->aiColumn[i];
49   if( i==XN_EXPR ) return "<expr>";
50   if( i==XN_ROWID ) return "rowid";
51   return pIdx->pTable->aCol[i].zName;
52 }
53 
54 /*
55 ** Argument pLevel describes a strategy for scanning table pTab. This
56 ** function appends text to pStr that describes the subset of table
57 ** rows scanned by the strategy in the form of an SQL expression.
58 **
59 ** For example, if the query:
60 **
61 **   SELECT * FROM t1 WHERE a=1 AND b>2;
62 **
63 ** is run and there is an index on (a, b), then this function returns a
64 ** string similar to:
65 **
66 **   "a=? AND b>?"
67 */
68 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
69   Index *pIndex = pLoop->u.btree.pIndex;
70   u16 nEq = pLoop->u.btree.nEq;
71   u16 nSkip = pLoop->nSkip;
72   int i, j;
73 
74   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
75   sqlite3StrAccumAppend(pStr, " (", 2);
76   for(i=0; i<nEq; i++){
77     const char *z = explainIndexColumnName(pIndex, i);
78     if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
79     sqlite3XPrintf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
80   }
81 
82   j = i;
83   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
84     const char *z = explainIndexColumnName(pIndex, i);
85     explainAppendTerm(pStr, i++, z, ">");
86   }
87   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
88     const char *z = explainIndexColumnName(pIndex, j);
89     explainAppendTerm(pStr, i, z, "<");
90   }
91   sqlite3StrAccumAppend(pStr, ")", 1);
92 }
93 
94 /*
95 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
96 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
97 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
98 ** is added to the output to describe the table scan strategy in pLevel.
99 **
100 ** If an OP_Explain opcode is added to the VM, its address is returned.
101 ** Otherwise, if no OP_Explain is coded, zero is returned.
102 */
103 int sqlite3WhereExplainOneScan(
104   Parse *pParse,                  /* Parse context */
105   SrcList *pTabList,              /* Table list this loop refers to */
106   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
107   int iLevel,                     /* Value for "level" column of output */
108   int iFrom,                      /* Value for "from" column of output */
109   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
110 ){
111   int ret = 0;
112 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
113   if( pParse->explain==2 )
114 #endif
115   {
116     struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
117     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
118     sqlite3 *db = pParse->db;     /* Database handle */
119     int iId = pParse->iSelectId;  /* Select id (left-most output column) */
120     int isSearch;                 /* True for a SEARCH. False for SCAN. */
121     WhereLoop *pLoop;             /* The controlling WhereLoop object */
122     u32 flags;                    /* Flags that describe this loop */
123     char *zMsg;                   /* Text to add to EQP output */
124     StrAccum str;                 /* EQP output string */
125     char zBuf[100];               /* Initial space for EQP output string */
126 
127     pLoop = pLevel->pWLoop;
128     flags = pLoop->wsFlags;
129     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return 0;
130 
131     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
132             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
133             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
134 
135     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
136     sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
137     if( pItem->pSelect ){
138       sqlite3XPrintf(&str, " SUBQUERY %d", pItem->iSelectId);
139     }else{
140       sqlite3XPrintf(&str, " TABLE %s", pItem->zName);
141     }
142 
143     if( pItem->zAlias ){
144       sqlite3XPrintf(&str, " AS %s", pItem->zAlias);
145     }
146     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
147       const char *zFmt = 0;
148       Index *pIdx;
149 
150       assert( pLoop->u.btree.pIndex!=0 );
151       pIdx = pLoop->u.btree.pIndex;
152       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
153       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
154         if( isSearch ){
155           zFmt = "PRIMARY KEY";
156         }
157       }else if( flags & WHERE_PARTIALIDX ){
158         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
159       }else if( flags & WHERE_AUTO_INDEX ){
160         zFmt = "AUTOMATIC COVERING INDEX";
161       }else if( flags & WHERE_IDX_ONLY ){
162         zFmt = "COVERING INDEX %s";
163       }else{
164         zFmt = "INDEX %s";
165       }
166       if( zFmt ){
167         sqlite3StrAccumAppend(&str, " USING ", 7);
168         sqlite3XPrintf(&str, zFmt, pIdx->zName);
169         explainIndexRange(&str, pLoop);
170       }
171     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
172       const char *zRangeOp;
173       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
174         zRangeOp = "=";
175       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
176         zRangeOp = ">? AND rowid<";
177       }else if( flags&WHERE_BTM_LIMIT ){
178         zRangeOp = ">";
179       }else{
180         assert( flags&WHERE_TOP_LIMIT);
181         zRangeOp = "<";
182       }
183       sqlite3XPrintf(&str, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
184     }
185 #ifndef SQLITE_OMIT_VIRTUALTABLE
186     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
187       sqlite3XPrintf(&str, " VIRTUAL TABLE INDEX %d:%s",
188                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
189     }
190 #endif
191 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
192     if( pLoop->nOut>=10 ){
193       sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
194     }else{
195       sqlite3StrAccumAppend(&str, " (~1 row)", 9);
196     }
197 #endif
198     zMsg = sqlite3StrAccumFinish(&str);
199     ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC);
200   }
201   return ret;
202 }
203 #endif /* SQLITE_OMIT_EXPLAIN */
204 
205 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
206 /*
207 ** Configure the VM passed as the first argument with an
208 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
209 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
210 ** clause that the scan reads data from.
211 **
212 ** If argument addrExplain is not 0, it must be the address of an
213 ** OP_Explain instruction that describes the same loop.
214 */
215 void sqlite3WhereAddScanStatus(
216   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
217   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
218   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
219   int addrExplain                 /* Address of OP_Explain (or 0) */
220 ){
221   const char *zObj = 0;
222   WhereLoop *pLoop = pLvl->pWLoop;
223   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
224     zObj = pLoop->u.btree.pIndex->zName;
225   }else{
226     zObj = pSrclist->a[pLvl->iFrom].zName;
227   }
228   sqlite3VdbeScanStatus(
229       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
230   );
231 }
232 #endif
233 
234 
235 /*
236 ** Disable a term in the WHERE clause.  Except, do not disable the term
237 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
238 ** or USING clause of that join.
239 **
240 ** Consider the term t2.z='ok' in the following queries:
241 **
242 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
243 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
244 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
245 **
246 ** The t2.z='ok' is disabled in the in (2) because it originates
247 ** in the ON clause.  The term is disabled in (3) because it is not part
248 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
249 **
250 ** Disabling a term causes that term to not be tested in the inner loop
251 ** of the join.  Disabling is an optimization.  When terms are satisfied
252 ** by indices, we disable them to prevent redundant tests in the inner
253 ** loop.  We would get the correct results if nothing were ever disabled,
254 ** but joins might run a little slower.  The trick is to disable as much
255 ** as we can without disabling too much.  If we disabled in (1), we'd get
256 ** the wrong answer.  See ticket #813.
257 **
258 ** If all the children of a term are disabled, then that term is also
259 ** automatically disabled.  In this way, terms get disabled if derived
260 ** virtual terms are tested first.  For example:
261 **
262 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
263 **      \___________/     \______/     \_____/
264 **         parent          child1       child2
265 **
266 ** Only the parent term was in the original WHERE clause.  The child1
267 ** and child2 terms were added by the LIKE optimization.  If both of
268 ** the virtual child terms are valid, then testing of the parent can be
269 ** skipped.
270 **
271 ** Usually the parent term is marked as TERM_CODED.  But if the parent
272 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
273 ** The TERM_LIKECOND marking indicates that the term should be coded inside
274 ** a conditional such that is only evaluated on the second pass of a
275 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
276 */
277 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
278   int nLoop = 0;
279   while( pTerm
280       && (pTerm->wtFlags & TERM_CODED)==0
281       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
282       && (pLevel->notReady & pTerm->prereqAll)==0
283   ){
284     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
285       pTerm->wtFlags |= TERM_LIKECOND;
286     }else{
287       pTerm->wtFlags |= TERM_CODED;
288     }
289     if( pTerm->iParent<0 ) break;
290     pTerm = &pTerm->pWC->a[pTerm->iParent];
291     pTerm->nChild--;
292     if( pTerm->nChild!=0 ) break;
293     nLoop++;
294   }
295 }
296 
297 /*
298 ** Code an OP_Affinity opcode to apply the column affinity string zAff
299 ** to the n registers starting at base.
300 **
301 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the
302 ** beginning and end of zAff are ignored.  If all entries in zAff are
303 ** SQLITE_AFF_BLOB, then no code gets generated.
304 **
305 ** This routine makes its own copy of zAff so that the caller is free
306 ** to modify zAff after this routine returns.
307 */
308 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
309   Vdbe *v = pParse->pVdbe;
310   if( zAff==0 ){
311     assert( pParse->db->mallocFailed );
312     return;
313   }
314   assert( v!=0 );
315 
316   /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning
317   ** and end of the affinity string.
318   */
319   while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){
320     n--;
321     base++;
322     zAff++;
323   }
324   while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){
325     n--;
326   }
327 
328   /* Code the OP_Affinity opcode if there is anything left to do. */
329   if( n>0 ){
330     sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
331     sqlite3ExprCacheAffinityChange(pParse, base, n);
332   }
333 }
334 
335 
336 /*
337 ** Generate code for a single equality term of the WHERE clause.  An equality
338 ** term can be either X=expr or X IN (...).   pTerm is the term to be
339 ** coded.
340 **
341 ** The current value for the constraint is left in register iReg.
342 **
343 ** For a constraint of the form X=expr, the expression is evaluated and its
344 ** result is left on the stack.  For constraints of the form X IN (...)
345 ** this routine sets up a loop that will iterate over all values of X.
346 */
347 static int codeEqualityTerm(
348   Parse *pParse,      /* The parsing context */
349   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
350   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
351   int iEq,            /* Index of the equality term within this level */
352   int bRev,           /* True for reverse-order IN operations */
353   int iTarget         /* Attempt to leave results in this register */
354 ){
355   Expr *pX = pTerm->pExpr;
356   Vdbe *v = pParse->pVdbe;
357   int iReg;                  /* Register holding results */
358 
359   assert( iTarget>0 );
360   if( pX->op==TK_EQ || pX->op==TK_IS ){
361     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
362   }else if( pX->op==TK_ISNULL ){
363     iReg = iTarget;
364     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
365 #ifndef SQLITE_OMIT_SUBQUERY
366   }else{
367     int eType;
368     int iTab;
369     struct InLoop *pIn;
370     WhereLoop *pLoop = pLevel->pWLoop;
371 
372     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
373       && pLoop->u.btree.pIndex!=0
374       && pLoop->u.btree.pIndex->aSortOrder[iEq]
375     ){
376       testcase( iEq==0 );
377       testcase( bRev );
378       bRev = !bRev;
379     }
380     assert( pX->op==TK_IN );
381     iReg = iTarget;
382     eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0);
383     if( eType==IN_INDEX_INDEX_DESC ){
384       testcase( bRev );
385       bRev = !bRev;
386     }
387     iTab = pX->iTable;
388     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
389     VdbeCoverageIf(v, bRev);
390     VdbeCoverageIf(v, !bRev);
391     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
392     pLoop->wsFlags |= WHERE_IN_ABLE;
393     if( pLevel->u.in.nIn==0 ){
394       pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
395     }
396     pLevel->u.in.nIn++;
397     pLevel->u.in.aInLoop =
398        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
399                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
400     pIn = pLevel->u.in.aInLoop;
401     if( pIn ){
402       pIn += pLevel->u.in.nIn - 1;
403       pIn->iCur = iTab;
404       if( eType==IN_INDEX_ROWID ){
405         pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
406       }else{
407         pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
408       }
409       pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen;
410       sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v);
411     }else{
412       pLevel->u.in.nIn = 0;
413     }
414 #endif
415   }
416   disableTerm(pLevel, pTerm);
417   return iReg;
418 }
419 
420 /*
421 ** Generate code that will evaluate all == and IN constraints for an
422 ** index scan.
423 **
424 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
425 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
426 ** The index has as many as three equality constraints, but in this
427 ** example, the third "c" value is an inequality.  So only two
428 ** constraints are coded.  This routine will generate code to evaluate
429 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
430 ** in consecutive registers and the index of the first register is returned.
431 **
432 ** In the example above nEq==2.  But this subroutine works for any value
433 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
434 ** The only thing it does is allocate the pLevel->iMem memory cell and
435 ** compute the affinity string.
436 **
437 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
438 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
439 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
440 ** occurs after the nEq quality constraints.
441 **
442 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
443 ** the index of the first memory cell in that range. The code that
444 ** calls this routine will use that memory range to store keys for
445 ** start and termination conditions of the loop.
446 ** key value of the loop.  If one or more IN operators appear, then
447 ** this routine allocates an additional nEq memory cells for internal
448 ** use.
449 **
450 ** Before returning, *pzAff is set to point to a buffer containing a
451 ** copy of the column affinity string of the index allocated using
452 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
453 ** with equality constraints that use BLOB or NONE affinity are set to
454 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
455 **
456 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
457 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
458 **
459 ** In the example above, the index on t1(a) has TEXT affinity. But since
460 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
461 ** no conversion should be attempted before using a t2.b value as part of
462 ** a key to search the index. Hence the first byte in the returned affinity
463 ** string in this example would be set to SQLITE_AFF_BLOB.
464 */
465 static int codeAllEqualityTerms(
466   Parse *pParse,        /* Parsing context */
467   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
468   int bRev,             /* Reverse the order of IN operators */
469   int nExtraReg,        /* Number of extra registers to allocate */
470   char **pzAff          /* OUT: Set to point to affinity string */
471 ){
472   u16 nEq;                      /* The number of == or IN constraints to code */
473   u16 nSkip;                    /* Number of left-most columns to skip */
474   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
475   Index *pIdx;                  /* The index being used for this loop */
476   WhereTerm *pTerm;             /* A single constraint term */
477   WhereLoop *pLoop;             /* The WhereLoop object */
478   int j;                        /* Loop counter */
479   int regBase;                  /* Base register */
480   int nReg;                     /* Number of registers to allocate */
481   char *zAff;                   /* Affinity string to return */
482 
483   /* This module is only called on query plans that use an index. */
484   pLoop = pLevel->pWLoop;
485   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
486   nEq = pLoop->u.btree.nEq;
487   nSkip = pLoop->nSkip;
488   pIdx = pLoop->u.btree.pIndex;
489   assert( pIdx!=0 );
490 
491   /* Figure out how many memory cells we will need then allocate them.
492   */
493   regBase = pParse->nMem + 1;
494   nReg = pLoop->u.btree.nEq + nExtraReg;
495   pParse->nMem += nReg;
496 
497   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
498   if( !zAff ){
499     pParse->db->mallocFailed = 1;
500   }
501 
502   if( nSkip ){
503     int iIdxCur = pLevel->iIdxCur;
504     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
505     VdbeCoverageIf(v, bRev==0);
506     VdbeCoverageIf(v, bRev!=0);
507     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
508     j = sqlite3VdbeAddOp0(v, OP_Goto);
509     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
510                             iIdxCur, 0, regBase, nSkip);
511     VdbeCoverageIf(v, bRev==0);
512     VdbeCoverageIf(v, bRev!=0);
513     sqlite3VdbeJumpHere(v, j);
514     for(j=0; j<nSkip; j++){
515       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
516       testcase( pIdx->aiColumn[j]==XN_EXPR );
517       VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
518     }
519   }
520 
521   /* Evaluate the equality constraints
522   */
523   assert( zAff==0 || (int)strlen(zAff)>=nEq );
524   for(j=nSkip; j<nEq; j++){
525     int r1;
526     pTerm = pLoop->aLTerm[j];
527     assert( pTerm!=0 );
528     /* The following testcase is true for indices with redundant columns.
529     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
530     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
531     testcase( pTerm->wtFlags & TERM_VIRTUAL );
532     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
533     if( r1!=regBase+j ){
534       if( nReg==1 ){
535         sqlite3ReleaseTempReg(pParse, regBase);
536         regBase = r1;
537       }else{
538         sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
539       }
540     }
541     testcase( pTerm->eOperator & WO_ISNULL );
542     testcase( pTerm->eOperator & WO_IN );
543     if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
544       Expr *pRight = pTerm->pExpr->pRight;
545       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
546         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
547         VdbeCoverage(v);
548       }
549       if( zAff ){
550         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
551           zAff[j] = SQLITE_AFF_BLOB;
552         }
553         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
554           zAff[j] = SQLITE_AFF_BLOB;
555         }
556       }
557     }
558   }
559   *pzAff = zAff;
560   return regBase;
561 }
562 
563 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
564 /*
565 ** If the most recently coded instruction is a constant range contraint
566 ** that originated from the LIKE optimization, then change the P3 to be
567 ** pLoop->iLikeRepCntr and set P5.
568 **
569 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
570 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
571 ** scan loop run twice, once for strings and a second time for BLOBs.
572 ** The OP_String opcodes on the second pass convert the upper and lower
573 ** bound string contants to blobs.  This routine makes the necessary changes
574 ** to the OP_String opcodes for that to happen.
575 **
576 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
577 ** only the one pass through the string space is required, so this routine
578 ** becomes a no-op.
579 */
580 static void whereLikeOptimizationStringFixup(
581   Vdbe *v,                /* prepared statement under construction */
582   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
583   WhereTerm *pTerm        /* The upper or lower bound just coded */
584 ){
585   if( pTerm->wtFlags & TERM_LIKEOPT ){
586     VdbeOp *pOp;
587     assert( pLevel->iLikeRepCntr>0 );
588     pOp = sqlite3VdbeGetOp(v, -1);
589     assert( pOp!=0 );
590     assert( pOp->opcode==OP_String8
591             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
592     pOp->p3 = pLevel->iLikeRepCntr;
593     pOp->p5 = 1;
594   }
595 }
596 #else
597 # define whereLikeOptimizationStringFixup(A,B,C)
598 #endif
599 
600 #ifdef SQLITE_ENABLE_CURSOR_HINTS
601 /*
602 ** Information is passed from codeCursorHint() down to individual nodes of
603 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
604 ** structure.
605 */
606 struct CCurHint {
607   int iTabCur;    /* Cursor for the main table */
608   int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
609   Index *pIdx;    /* The index used to access the table */
610 };
611 
612 /*
613 ** This function is called for every node of an expression that is a candidate
614 ** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
615 ** the table CCurHint.iTabCur, verify that the same column can be
616 ** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
617 */
618 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
619   struct CCurHint *pHint = pWalker->u.pCCurHint;
620   assert( pHint->pIdx!=0 );
621   if( pExpr->op==TK_COLUMN
622    && pExpr->iTable==pHint->iTabCur
623    && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0
624   ){
625     pWalker->eCode = 1;
626   }
627   return WRC_Continue;
628 }
629 
630 
631 /*
632 ** This function is called on every node of an expression tree used as an
633 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
634 ** that accesses any table other than the one identified by
635 ** CCurHint.iTabCur, then do the following:
636 **
637 **   1) allocate a register and code an OP_Column instruction to read
638 **      the specified column into the new register, and
639 **
640 **   2) transform the expression node to a TK_REGISTER node that reads
641 **      from the newly populated register.
642 **
643 ** Also, if the node is a TK_COLUMN that does access the table idenified
644 ** by pCCurHint.iTabCur, and an index is being used (which we will
645 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
646 ** an access of the index rather than the original table.
647 */
648 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
649   int rc = WRC_Continue;
650   struct CCurHint *pHint = pWalker->u.pCCurHint;
651   if( pExpr->op==TK_COLUMN ){
652     if( pExpr->iTable!=pHint->iTabCur ){
653       Vdbe *v = pWalker->pParse->pVdbe;
654       int reg = ++pWalker->pParse->nMem;   /* Register for column value */
655       sqlite3ExprCodeGetColumnOfTable(
656           v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg
657       );
658       pExpr->op = TK_REGISTER;
659       pExpr->iTable = reg;
660     }else if( pHint->pIdx!=0 ){
661       pExpr->iTable = pHint->iIdxCur;
662       pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn);
663       assert( pExpr->iColumn>=0 );
664     }
665   }else if( pExpr->op==TK_AGG_FUNCTION ){
666     /* An aggregate function in the WHERE clause of a query means this must
667     ** be a correlated sub-query, and expression pExpr is an aggregate from
668     ** the parent context. Do not walk the function arguments in this case.
669     **
670     ** todo: It should be possible to replace this node with a TK_REGISTER
671     ** expression, as the result of the expression must be stored in a
672     ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
673     rc = WRC_Prune;
674   }
675   return rc;
676 }
677 
678 /*
679 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
680 */
681 static void codeCursorHint(
682   WhereInfo *pWInfo,    /* The where clause */
683   WhereLevel *pLevel,   /* Which loop to provide hints for */
684   WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
685 ){
686   Parse *pParse = pWInfo->pParse;
687   sqlite3 *db = pParse->db;
688   Vdbe *v = pParse->pVdbe;
689   Expr *pExpr = 0;
690   WhereLoop *pLoop = pLevel->pWLoop;
691   int iCur;
692   WhereClause *pWC;
693   WhereTerm *pTerm;
694   int i, j;
695   struct CCurHint sHint;
696   Walker sWalker;
697 
698   if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
699   iCur = pLevel->iTabCur;
700   assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
701   sHint.iTabCur = iCur;
702   sHint.iIdxCur = pLevel->iIdxCur;
703   sHint.pIdx = pLoop->u.btree.pIndex;
704   memset(&sWalker, 0, sizeof(sWalker));
705   sWalker.pParse = pParse;
706   sWalker.u.pCCurHint = &sHint;
707   pWC = &pWInfo->sWC;
708   for(i=0; i<pWC->nTerm; i++){
709     pTerm = &pWC->a[i];
710     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
711     if( pTerm->prereqAll & pLevel->notReady ) continue;
712     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
713 
714     /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
715     ** the cursor.  These terms are not needed as hints for a pure range
716     ** scan (that has no == terms) so omit them. */
717     if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
718       for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
719       if( j<pLoop->nLTerm ) continue;
720     }
721 
722     /* No subqueries or non-deterministic functions allowed */
723     if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
724 
725     /* For an index scan, make sure referenced columns are actually in
726     ** the index. */
727     if( sHint.pIdx!=0 ){
728       sWalker.eCode = 0;
729       sWalker.xExprCallback = codeCursorHintCheckExpr;
730       sqlite3WalkExpr(&sWalker, pTerm->pExpr);
731       if( sWalker.eCode ) continue;
732     }
733 
734     /* If we survive all prior tests, that means this term is worth hinting */
735     pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
736   }
737   if( pExpr!=0 ){
738     sWalker.xExprCallback = codeCursorHintFixExpr;
739     sqlite3WalkExpr(&sWalker, pExpr);
740     sqlite3VdbeAddOp4(v, OP_CursorHint,
741                       (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
742                       (const char*)pExpr, P4_EXPR);
743   }
744 }
745 #else
746 # define codeCursorHint(A,B,C)  /* No-op */
747 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
748 
749 /*
750 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
751 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
752 ** function generates code to do a deferred seek of cursor iCur to the
753 ** rowid stored in register iRowid.
754 **
755 ** Normally, this is just:
756 **
757 **   OP_Seek $iCur $iRowid
758 **
759 ** However, if the scan currently being coded is a branch of an OR-loop and
760 ** the statement currently being coded is a SELECT, then P3 of the OP_Seek
761 ** is set to iIdxCur and P4 is set to point to an array of integers
762 ** containing one entry for each column of the table cursor iCur is open
763 ** on. For each table column, if the column is the i'th column of the
764 ** index, then the corresponding array entry is set to (i+1). If the column
765 ** does not appear in the index at all, the array entry is set to 0.
766 */
767 static void codeDeferredSeek(
768   WhereInfo *pWInfo,              /* Where clause context */
769   Index *pIdx,                    /* Index scan is using */
770   int iCur,                       /* Cursor for IPK b-tree */
771   int iIdxCur                     /* Index cursor */
772 ){
773   Parse *pParse = pWInfo->pParse; /* Parse context */
774   Vdbe *v = pParse->pVdbe;        /* Vdbe to generate code within */
775 
776   assert( iIdxCur>0 );
777   assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
778 
779   sqlite3VdbeAddOp3(v, OP_Seek, iIdxCur, 0, iCur);
780   if( (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)
781    && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
782   ){
783     int i;
784     Table *pTab = pIdx->pTable;
785     int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1));
786     if( ai ){
787       ai[0] = pTab->nCol;
788       for(i=0; i<pIdx->nColumn-1; i++){
789         assert( pIdx->aiColumn[i]<pTab->nCol );
790         if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1;
791       }
792       sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
793     }
794   }
795 }
796 
797 /*
798 ** Generate code for the start of the iLevel-th loop in the WHERE clause
799 ** implementation described by pWInfo.
800 */
801 Bitmask sqlite3WhereCodeOneLoopStart(
802   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
803   int iLevel,          /* Which level of pWInfo->a[] should be coded */
804   Bitmask notReady     /* Which tables are currently available */
805 ){
806   int j, k;            /* Loop counters */
807   int iCur;            /* The VDBE cursor for the table */
808   int addrNxt;         /* Where to jump to continue with the next IN case */
809   int omitTable;       /* True if we use the index only */
810   int bRev;            /* True if we need to scan in reverse order */
811   WhereLevel *pLevel;  /* The where level to be coded */
812   WhereLoop *pLoop;    /* The WhereLoop object being coded */
813   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
814   WhereTerm *pTerm;               /* A WHERE clause term */
815   Parse *pParse;                  /* Parsing context */
816   sqlite3 *db;                    /* Database connection */
817   Vdbe *v;                        /* The prepared stmt under constructions */
818   struct SrcList_item *pTabItem;  /* FROM clause term being coded */
819   int addrBrk;                    /* Jump here to break out of the loop */
820   int addrCont;                   /* Jump here to continue with next cycle */
821   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
822   int iReleaseReg = 0;      /* Temp register to free before returning */
823 
824   pParse = pWInfo->pParse;
825   v = pParse->pVdbe;
826   pWC = &pWInfo->sWC;
827   db = pParse->db;
828   pLevel = &pWInfo->a[iLevel];
829   pLoop = pLevel->pWLoop;
830   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
831   iCur = pTabItem->iCursor;
832   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
833   bRev = (pWInfo->revMask>>iLevel)&1;
834   omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
835            && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0;
836   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
837 
838   /* Create labels for the "break" and "continue" instructions
839   ** for the current loop.  Jump to addrBrk to break out of a loop.
840   ** Jump to cont to go immediately to the next iteration of the
841   ** loop.
842   **
843   ** When there is an IN operator, we also have a "addrNxt" label that
844   ** means to continue with the next IN value combination.  When
845   ** there are no IN operators in the constraints, the "addrNxt" label
846   ** is the same as "addrBrk".
847   */
848   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
849   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
850 
851   /* If this is the right table of a LEFT OUTER JOIN, allocate and
852   ** initialize a memory cell that records if this table matches any
853   ** row of the left table of the join.
854   */
855   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
856     pLevel->iLeftJoin = ++pParse->nMem;
857     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
858     VdbeComment((v, "init LEFT JOIN no-match flag"));
859   }
860 
861   /* Special case of a FROM clause subquery implemented as a co-routine */
862   if( pTabItem->fg.viaCoroutine ){
863     int regYield = pTabItem->regReturn;
864     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
865     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
866     VdbeCoverage(v);
867     VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
868     pLevel->op = OP_Goto;
869   }else
870 
871 #ifndef SQLITE_OMIT_VIRTUALTABLE
872   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
873     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
874     **          to access the data.
875     */
876     int iReg;   /* P3 Value for OP_VFilter */
877     int addrNotFound;
878     int nConstraint = pLoop->nLTerm;
879 
880     sqlite3ExprCachePush(pParse);
881     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
882     addrNotFound = pLevel->addrBrk;
883     for(j=0; j<nConstraint; j++){
884       int iTarget = iReg+j+2;
885       pTerm = pLoop->aLTerm[j];
886       if( pTerm==0 ) continue;
887       if( pTerm->eOperator & WO_IN ){
888         codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
889         addrNotFound = pLevel->addrNxt;
890       }else{
891         sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget);
892       }
893     }
894     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
895     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
896     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
897                       pLoop->u.vtab.idxStr,
898                       pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC);
899     VdbeCoverage(v);
900     pLoop->u.vtab.needFree = 0;
901     for(j=0; j<nConstraint && j<16; j++){
902       if( (pLoop->u.vtab.omitMask>>j)&1 ){
903         disableTerm(pLevel, pLoop->aLTerm[j]);
904       }
905     }
906     pLevel->p1 = iCur;
907     pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
908     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
909     sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
910     sqlite3ExprCachePop(pParse);
911   }else
912 #endif /* SQLITE_OMIT_VIRTUALTABLE */
913 
914   if( (pLoop->wsFlags & WHERE_IPK)!=0
915    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
916   ){
917     /* Case 2:  We can directly reference a single row using an
918     **          equality comparison against the ROWID field.  Or
919     **          we reference multiple rows using a "rowid IN (...)"
920     **          construct.
921     */
922     assert( pLoop->u.btree.nEq==1 );
923     pTerm = pLoop->aLTerm[0];
924     assert( pTerm!=0 );
925     assert( pTerm->pExpr!=0 );
926     assert( omitTable==0 );
927     testcase( pTerm->wtFlags & TERM_VIRTUAL );
928     iReleaseReg = ++pParse->nMem;
929     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
930     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
931     addrNxt = pLevel->addrNxt;
932     sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v);
933     sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
934     VdbeCoverage(v);
935     sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
936     sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
937     VdbeComment((v, "pk"));
938     pLevel->op = OP_Noop;
939   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
940          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
941   ){
942     /* Case 3:  We have an inequality comparison against the ROWID field.
943     */
944     int testOp = OP_Noop;
945     int start;
946     int memEndValue = 0;
947     WhereTerm *pStart, *pEnd;
948 
949     assert( omitTable==0 );
950     j = 0;
951     pStart = pEnd = 0;
952     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
953     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
954     assert( pStart!=0 || pEnd!=0 );
955     if( bRev ){
956       pTerm = pStart;
957       pStart = pEnd;
958       pEnd = pTerm;
959     }
960     codeCursorHint(pWInfo, pLevel, pEnd);
961     if( pStart ){
962       Expr *pX;             /* The expression that defines the start bound */
963       int r1, rTemp;        /* Registers for holding the start boundary */
964 
965       /* The following constant maps TK_xx codes into corresponding
966       ** seek opcodes.  It depends on a particular ordering of TK_xx
967       */
968       const u8 aMoveOp[] = {
969            /* TK_GT */  OP_SeekGT,
970            /* TK_LE */  OP_SeekLE,
971            /* TK_LT */  OP_SeekLT,
972            /* TK_GE */  OP_SeekGE
973       };
974       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
975       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
976       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
977 
978       assert( (pStart->wtFlags & TERM_VNULL)==0 );
979       testcase( pStart->wtFlags & TERM_VIRTUAL );
980       pX = pStart->pExpr;
981       assert( pX!=0 );
982       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
983       r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
984       sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
985       VdbeComment((v, "pk"));
986       VdbeCoverageIf(v, pX->op==TK_GT);
987       VdbeCoverageIf(v, pX->op==TK_LE);
988       VdbeCoverageIf(v, pX->op==TK_LT);
989       VdbeCoverageIf(v, pX->op==TK_GE);
990       sqlite3ExprCacheAffinityChange(pParse, r1, 1);
991       sqlite3ReleaseTempReg(pParse, rTemp);
992       disableTerm(pLevel, pStart);
993     }else{
994       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
995       VdbeCoverageIf(v, bRev==0);
996       VdbeCoverageIf(v, bRev!=0);
997     }
998     if( pEnd ){
999       Expr *pX;
1000       pX = pEnd->pExpr;
1001       assert( pX!=0 );
1002       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1003       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1004       testcase( pEnd->wtFlags & TERM_VIRTUAL );
1005       memEndValue = ++pParse->nMem;
1006       sqlite3ExprCode(pParse, pX->pRight, memEndValue);
1007       if( pX->op==TK_LT || pX->op==TK_GT ){
1008         testOp = bRev ? OP_Le : OP_Ge;
1009       }else{
1010         testOp = bRev ? OP_Lt : OP_Gt;
1011       }
1012       disableTerm(pLevel, pEnd);
1013     }
1014     start = sqlite3VdbeCurrentAddr(v);
1015     pLevel->op = bRev ? OP_Prev : OP_Next;
1016     pLevel->p1 = iCur;
1017     pLevel->p2 = start;
1018     assert( pLevel->p5==0 );
1019     if( testOp!=OP_Noop ){
1020       iRowidReg = ++pParse->nMem;
1021       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1022       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1023       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1024       VdbeCoverageIf(v, testOp==OP_Le);
1025       VdbeCoverageIf(v, testOp==OP_Lt);
1026       VdbeCoverageIf(v, testOp==OP_Ge);
1027       VdbeCoverageIf(v, testOp==OP_Gt);
1028       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1029     }
1030   }else if( pLoop->wsFlags & WHERE_INDEXED ){
1031     /* Case 4: A scan using an index.
1032     **
1033     **         The WHERE clause may contain zero or more equality
1034     **         terms ("==" or "IN" operators) that refer to the N
1035     **         left-most columns of the index. It may also contain
1036     **         inequality constraints (>, <, >= or <=) on the indexed
1037     **         column that immediately follows the N equalities. Only
1038     **         the right-most column can be an inequality - the rest must
1039     **         use the "==" and "IN" operators. For example, if the
1040     **         index is on (x,y,z), then the following clauses are all
1041     **         optimized:
1042     **
1043     **            x=5
1044     **            x=5 AND y=10
1045     **            x=5 AND y<10
1046     **            x=5 AND y>5 AND y<10
1047     **            x=5 AND y=5 AND z<=10
1048     **
1049     **         The z<10 term of the following cannot be used, only
1050     **         the x=5 term:
1051     **
1052     **            x=5 AND z<10
1053     **
1054     **         N may be zero if there are inequality constraints.
1055     **         If there are no inequality constraints, then N is at
1056     **         least one.
1057     **
1058     **         This case is also used when there are no WHERE clause
1059     **         constraints but an index is selected anyway, in order
1060     **         to force the output order to conform to an ORDER BY.
1061     */
1062     static const u8 aStartOp[] = {
1063       0,
1064       0,
1065       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
1066       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
1067       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
1068       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
1069       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
1070       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
1071     };
1072     static const u8 aEndOp[] = {
1073       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
1074       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
1075       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
1076       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
1077     };
1078     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
1079     int regBase;                 /* Base register holding constraint values */
1080     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
1081     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
1082     int startEq;                 /* True if range start uses ==, >= or <= */
1083     int endEq;                   /* True if range end uses ==, >= or <= */
1084     int start_constraints;       /* Start of range is constrained */
1085     int nConstraint;             /* Number of constraint terms */
1086     Index *pIdx;                 /* The index we will be using */
1087     int iIdxCur;                 /* The VDBE cursor for the index */
1088     int nExtraReg = 0;           /* Number of extra registers needed */
1089     int op;                      /* Instruction opcode */
1090     char *zStartAff;             /* Affinity for start of range constraint */
1091     char cEndAff = 0;            /* Affinity for end of range constraint */
1092     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
1093     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
1094 
1095     pIdx = pLoop->u.btree.pIndex;
1096     iIdxCur = pLevel->iIdxCur;
1097     assert( nEq>=pLoop->nSkip );
1098 
1099     /* If this loop satisfies a sort order (pOrderBy) request that
1100     ** was passed to this function to implement a "SELECT min(x) ..."
1101     ** query, then the caller will only allow the loop to run for
1102     ** a single iteration. This means that the first row returned
1103     ** should not have a NULL value stored in 'x'. If column 'x' is
1104     ** the first one after the nEq equality constraints in the index,
1105     ** this requires some special handling.
1106     */
1107     assert( pWInfo->pOrderBy==0
1108          || pWInfo->pOrderBy->nExpr==1
1109          || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
1110     if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
1111      && pWInfo->nOBSat>0
1112      && (pIdx->nKeyCol>nEq)
1113     ){
1114       assert( pLoop->nSkip==0 );
1115       bSeekPastNull = 1;
1116       nExtraReg = 1;
1117     }
1118 
1119     /* Find any inequality constraint terms for the start and end
1120     ** of the range.
1121     */
1122     j = nEq;
1123     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1124       pRangeStart = pLoop->aLTerm[j++];
1125       nExtraReg = 1;
1126       /* Like optimization range constraints always occur in pairs */
1127       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1128               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1129     }
1130     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1131       pRangeEnd = pLoop->aLTerm[j++];
1132       nExtraReg = 1;
1133 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1134       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1135         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
1136         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
1137         pLevel->iLikeRepCntr = ++pParse->nMem;
1138         testcase( bRev );
1139         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1140         sqlite3VdbeAddOp2(v, OP_Integer,
1141                           bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC),
1142                           pLevel->iLikeRepCntr);
1143         VdbeComment((v, "LIKE loop counter"));
1144         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1145       }
1146 #endif
1147       if( pRangeStart==0
1148        && (j = pIdx->aiColumn[nEq])>=0
1149        && pIdx->pTable->aCol[j].notNull==0
1150       ){
1151         bSeekPastNull = 1;
1152       }
1153     }
1154     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1155 
1156     /* If we are doing a reverse order scan on an ascending index, or
1157     ** a forward order scan on a descending index, interchange the
1158     ** start and end terms (pRangeStart and pRangeEnd).
1159     */
1160     if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1161      || (bRev && pIdx->nKeyCol==nEq)
1162     ){
1163       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1164       SWAP(u8, bSeekPastNull, bStopAtNull);
1165     }
1166 
1167     /* Generate code to evaluate all constraint terms using == or IN
1168     ** and store the values of those terms in an array of registers
1169     ** starting at regBase.
1170     */
1171     codeCursorHint(pWInfo, pLevel, pRangeEnd);
1172     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1173     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1174     if( zStartAff ) cEndAff = zStartAff[nEq];
1175     addrNxt = pLevel->addrNxt;
1176 
1177     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1178     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1179     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1180     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1181     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1182     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1183     start_constraints = pRangeStart || nEq>0;
1184 
1185     /* Seek the index cursor to the start of the range. */
1186     nConstraint = nEq;
1187     if( pRangeStart ){
1188       Expr *pRight = pRangeStart->pExpr->pRight;
1189       sqlite3ExprCode(pParse, pRight, regBase+nEq);
1190       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1191       if( (pRangeStart->wtFlags & TERM_VNULL)==0
1192        && sqlite3ExprCanBeNull(pRight)
1193       ){
1194         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1195         VdbeCoverage(v);
1196       }
1197       if( zStartAff ){
1198         if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_BLOB){
1199           /* Since the comparison is to be performed with no conversions
1200           ** applied to the operands, set the affinity to apply to pRight to
1201           ** SQLITE_AFF_BLOB.  */
1202           zStartAff[nEq] = SQLITE_AFF_BLOB;
1203         }
1204         if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
1205           zStartAff[nEq] = SQLITE_AFF_BLOB;
1206         }
1207       }
1208       nConstraint++;
1209       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1210     }else if( bSeekPastNull ){
1211       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1212       nConstraint++;
1213       startEq = 0;
1214       start_constraints = 1;
1215     }
1216     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1217     op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1218     assert( op!=0 );
1219     sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1220     VdbeCoverage(v);
1221     VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1222     VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1223     VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
1224     VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1225     VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1226     VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
1227 
1228     /* Load the value for the inequality constraint at the end of the
1229     ** range (if any).
1230     */
1231     nConstraint = nEq;
1232     if( pRangeEnd ){
1233       Expr *pRight = pRangeEnd->pExpr->pRight;
1234       sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
1235       sqlite3ExprCode(pParse, pRight, regBase+nEq);
1236       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1237       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1238        && sqlite3ExprCanBeNull(pRight)
1239       ){
1240         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1241         VdbeCoverage(v);
1242       }
1243       if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_BLOB
1244        && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff)
1245       ){
1246         codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff);
1247       }
1248       nConstraint++;
1249       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1250     }else if( bStopAtNull ){
1251       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1252       endEq = 0;
1253       nConstraint++;
1254     }
1255     sqlite3DbFree(db, zStartAff);
1256 
1257     /* Top of the loop body */
1258     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1259 
1260     /* Check if the index cursor is past the end of the range. */
1261     if( nConstraint ){
1262       op = aEndOp[bRev*2 + endEq];
1263       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1264       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1265       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1266       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1267       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1268     }
1269 
1270     /* Seek the table cursor, if required */
1271     disableTerm(pLevel, pRangeStart);
1272     disableTerm(pLevel, pRangeEnd);
1273     if( omitTable ){
1274       /* pIdx is a covering index.  No need to access the main table. */
1275     }else if( HasRowid(pIdx->pTable) ){
1276       if( pWInfo->eOnePass!=ONEPASS_OFF ){
1277         iRowidReg = ++pParse->nMem;
1278         sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
1279         sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1280         sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
1281         VdbeCoverage(v);
1282       }else{
1283         codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
1284       }
1285     }else if( iCur!=iIdxCur ){
1286       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1287       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1288       for(j=0; j<pPk->nKeyCol; j++){
1289         k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1290         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1291       }
1292       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1293                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1294     }
1295 
1296     /* Record the instruction used to terminate the loop. Disable
1297     ** WHERE clause terms made redundant by the index range scan.
1298     */
1299     if( pLoop->wsFlags & WHERE_ONEROW ){
1300       pLevel->op = OP_Noop;
1301     }else if( bRev ){
1302       pLevel->op = OP_Prev;
1303     }else{
1304       pLevel->op = OP_Next;
1305     }
1306     pLevel->p1 = iIdxCur;
1307     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1308     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1309       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1310     }else{
1311       assert( pLevel->p5==0 );
1312     }
1313   }else
1314 
1315 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1316   if( pLoop->wsFlags & WHERE_MULTI_OR ){
1317     /* Case 5:  Two or more separately indexed terms connected by OR
1318     **
1319     ** Example:
1320     **
1321     **   CREATE TABLE t1(a,b,c,d);
1322     **   CREATE INDEX i1 ON t1(a);
1323     **   CREATE INDEX i2 ON t1(b);
1324     **   CREATE INDEX i3 ON t1(c);
1325     **
1326     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
1327     **
1328     ** In the example, there are three indexed terms connected by OR.
1329     ** The top of the loop looks like this:
1330     **
1331     **          Null       1                # Zero the rowset in reg 1
1332     **
1333     ** Then, for each indexed term, the following. The arguments to
1334     ** RowSetTest are such that the rowid of the current row is inserted
1335     ** into the RowSet. If it is already present, control skips the
1336     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
1337     **
1338     **        sqlite3WhereBegin(<term>)
1339     **          RowSetTest                  # Insert rowid into rowset
1340     **          Gosub      2 A
1341     **        sqlite3WhereEnd()
1342     **
1343     ** Following the above, code to terminate the loop. Label A, the target
1344     ** of the Gosub above, jumps to the instruction right after the Goto.
1345     **
1346     **          Null       1                # Zero the rowset in reg 1
1347     **          Goto       B                # The loop is finished.
1348     **
1349     **       A: <loop body>                 # Return data, whatever.
1350     **
1351     **          Return     2                # Jump back to the Gosub
1352     **
1353     **       B: <after the loop>
1354     **
1355     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
1356     ** use an ephemeral index instead of a RowSet to record the primary
1357     ** keys of the rows we have already seen.
1358     **
1359     */
1360     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
1361     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
1362     Index *pCov = 0;             /* Potential covering index (or NULL) */
1363     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
1364 
1365     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
1366     int regRowset = 0;                        /* Register for RowSet object */
1367     int regRowid = 0;                         /* Register holding rowid */
1368     int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
1369     int iRetInit;                             /* Address of regReturn init */
1370     int untestedTerms = 0;             /* Some terms not completely tested */
1371     int ii;                            /* Loop counter */
1372     u16 wctrlFlags;                    /* Flags for sub-WHERE clause */
1373     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
1374     Table *pTab = pTabItem->pTab;
1375 
1376     pTerm = pLoop->aLTerm[0];
1377     assert( pTerm!=0 );
1378     assert( pTerm->eOperator & WO_OR );
1379     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
1380     pOrWc = &pTerm->u.pOrInfo->wc;
1381     pLevel->op = OP_Return;
1382     pLevel->p1 = regReturn;
1383 
1384     /* Set up a new SrcList in pOrTab containing the table being scanned
1385     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
1386     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
1387     */
1388     if( pWInfo->nLevel>1 ){
1389       int nNotReady;                 /* The number of notReady tables */
1390       struct SrcList_item *origSrc;     /* Original list of tables */
1391       nNotReady = pWInfo->nLevel - iLevel - 1;
1392       pOrTab = sqlite3StackAllocRaw(db,
1393                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
1394       if( pOrTab==0 ) return notReady;
1395       pOrTab->nAlloc = (u8)(nNotReady + 1);
1396       pOrTab->nSrc = pOrTab->nAlloc;
1397       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
1398       origSrc = pWInfo->pTabList->a;
1399       for(k=1; k<=nNotReady; k++){
1400         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
1401       }
1402     }else{
1403       pOrTab = pWInfo->pTabList;
1404     }
1405 
1406     /* Initialize the rowset register to contain NULL. An SQL NULL is
1407     ** equivalent to an empty rowset.  Or, create an ephemeral index
1408     ** capable of holding primary keys in the case of a WITHOUT ROWID.
1409     **
1410     ** Also initialize regReturn to contain the address of the instruction
1411     ** immediately following the OP_Return at the bottom of the loop. This
1412     ** is required in a few obscure LEFT JOIN cases where control jumps
1413     ** over the top of the loop into the body of it. In this case the
1414     ** correct response for the end-of-loop code (the OP_Return) is to
1415     ** fall through to the next instruction, just as an OP_Next does if
1416     ** called on an uninitialized cursor.
1417     */
1418     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1419       if( HasRowid(pTab) ){
1420         regRowset = ++pParse->nMem;
1421         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
1422       }else{
1423         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1424         regRowset = pParse->nTab++;
1425         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
1426         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
1427       }
1428       regRowid = ++pParse->nMem;
1429     }
1430     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
1431 
1432     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
1433     ** Then for every term xN, evaluate as the subexpression: xN AND z
1434     ** That way, terms in y that are factored into the disjunction will
1435     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
1436     **
1437     ** Actually, each subexpression is converted to "xN AND w" where w is
1438     ** the "interesting" terms of z - terms that did not originate in the
1439     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
1440     ** indices.
1441     **
1442     ** This optimization also only applies if the (x1 OR x2 OR ...) term
1443     ** is not contained in the ON clause of a LEFT JOIN.
1444     ** See ticket http://www.sqlite.org/src/info/f2369304e4
1445     */
1446     if( pWC->nTerm>1 ){
1447       int iTerm;
1448       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
1449         Expr *pExpr = pWC->a[iTerm].pExpr;
1450         if( &pWC->a[iTerm] == pTerm ) continue;
1451         if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
1452         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
1453         testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
1454         if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
1455         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
1456         testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
1457         pExpr = sqlite3ExprDup(db, pExpr, 0);
1458         pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
1459       }
1460       if( pAndExpr ){
1461         pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr, 0);
1462       }
1463     }
1464 
1465     /* Run a separate WHERE clause for each term of the OR clause.  After
1466     ** eliminating duplicates from other WHERE clauses, the action for each
1467     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
1468     */
1469     wctrlFlags =  WHERE_OMIT_OPEN_CLOSE
1470                 | WHERE_FORCE_TABLE
1471                 | WHERE_ONETABLE_ONLY
1472                 | WHERE_NO_AUTOINDEX;
1473     for(ii=0; ii<pOrWc->nTerm; ii++){
1474       WhereTerm *pOrTerm = &pOrWc->a[ii];
1475       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
1476         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
1477         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
1478         int jmp1 = 0;                   /* Address of jump operation */
1479         if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
1480           pAndExpr->pLeft = pOrExpr;
1481           pOrExpr = pAndExpr;
1482         }
1483         /* Loop through table entries that match term pOrTerm. */
1484         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
1485         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
1486                                       wctrlFlags, iCovCur);
1487         assert( pSubWInfo || pParse->nErr || db->mallocFailed );
1488         if( pSubWInfo ){
1489           WhereLoop *pSubLoop;
1490           int addrExplain = sqlite3WhereExplainOneScan(
1491               pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
1492           );
1493           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
1494 
1495           /* This is the sub-WHERE clause body.  First skip over
1496           ** duplicate rows from prior sub-WHERE clauses, and record the
1497           ** rowid (or PRIMARY KEY) for the current row so that the same
1498           ** row will be skipped in subsequent sub-WHERE clauses.
1499           */
1500           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1501             int r;
1502             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
1503             if( HasRowid(pTab) ){
1504               r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0);
1505               jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
1506                                            r,iSet);
1507               VdbeCoverage(v);
1508             }else{
1509               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1510               int nPk = pPk->nKeyCol;
1511               int iPk;
1512 
1513               /* Read the PK into an array of temp registers. */
1514               r = sqlite3GetTempRange(pParse, nPk);
1515               for(iPk=0; iPk<nPk; iPk++){
1516                 int iCol = pPk->aiColumn[iPk];
1517                 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk);
1518               }
1519 
1520               /* Check if the temp table already contains this key. If so,
1521               ** the row has already been included in the result set and
1522               ** can be ignored (by jumping past the Gosub below). Otherwise,
1523               ** insert the key into the temp table and proceed with processing
1524               ** the row.
1525               **
1526               ** Use some of the same optimizations as OP_RowSetTest: If iSet
1527               ** is zero, assume that the key cannot already be present in
1528               ** the temp table. And if iSet is -1, assume that there is no
1529               ** need to insert the key into the temp table, as it will never
1530               ** be tested for.  */
1531               if( iSet ){
1532                 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
1533                 VdbeCoverage(v);
1534               }
1535               if( iSet>=0 ){
1536                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
1537                 sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0);
1538                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1539               }
1540 
1541               /* Release the array of temp registers */
1542               sqlite3ReleaseTempRange(pParse, r, nPk);
1543             }
1544           }
1545 
1546           /* Invoke the main loop body as a subroutine */
1547           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
1548 
1549           /* Jump here (skipping the main loop body subroutine) if the
1550           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
1551           if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
1552 
1553           /* The pSubWInfo->untestedTerms flag means that this OR term
1554           ** contained one or more AND term from a notReady table.  The
1555           ** terms from the notReady table could not be tested and will
1556           ** need to be tested later.
1557           */
1558           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
1559 
1560           /* If all of the OR-connected terms are optimized using the same
1561           ** index, and the index is opened using the same cursor number
1562           ** by each call to sqlite3WhereBegin() made by this loop, it may
1563           ** be possible to use that index as a covering index.
1564           **
1565           ** If the call to sqlite3WhereBegin() above resulted in a scan that
1566           ** uses an index, and this is either the first OR-connected term
1567           ** processed or the index is the same as that used by all previous
1568           ** terms, set pCov to the candidate covering index. Otherwise, set
1569           ** pCov to NULL to indicate that no candidate covering index will
1570           ** be available.
1571           */
1572           pSubLoop = pSubWInfo->a[0].pWLoop;
1573           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
1574           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
1575            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
1576            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
1577           ){
1578             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
1579             pCov = pSubLoop->u.btree.pIndex;
1580             wctrlFlags |= WHERE_REOPEN_IDX;
1581           }else{
1582             pCov = 0;
1583           }
1584 
1585           /* Finish the loop through table entries that match term pOrTerm. */
1586           sqlite3WhereEnd(pSubWInfo);
1587         }
1588       }
1589     }
1590     pLevel->u.pCovidx = pCov;
1591     if( pCov ) pLevel->iIdxCur = iCovCur;
1592     if( pAndExpr ){
1593       pAndExpr->pLeft = 0;
1594       sqlite3ExprDelete(db, pAndExpr);
1595     }
1596     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
1597     sqlite3VdbeGoto(v, pLevel->addrBrk);
1598     sqlite3VdbeResolveLabel(v, iLoopBody);
1599 
1600     if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
1601     if( !untestedTerms ) disableTerm(pLevel, pTerm);
1602   }else
1603 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1604 
1605   {
1606     /* Case 6:  There is no usable index.  We must do a complete
1607     **          scan of the entire table.
1608     */
1609     static const u8 aStep[] = { OP_Next, OP_Prev };
1610     static const u8 aStart[] = { OP_Rewind, OP_Last };
1611     assert( bRev==0 || bRev==1 );
1612     if( pTabItem->fg.isRecursive ){
1613       /* Tables marked isRecursive have only a single row that is stored in
1614       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
1615       pLevel->op = OP_Noop;
1616     }else{
1617       codeCursorHint(pWInfo, pLevel, 0);
1618       pLevel->op = aStep[bRev];
1619       pLevel->p1 = iCur;
1620       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
1621       VdbeCoverageIf(v, bRev==0);
1622       VdbeCoverageIf(v, bRev!=0);
1623       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1624     }
1625   }
1626 
1627 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1628   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
1629 #endif
1630 
1631   /* Insert code to test every subexpression that can be completely
1632   ** computed using the current set of tables.
1633   */
1634   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1635     Expr *pE;
1636     int skipLikeAddr = 0;
1637     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1638     testcase( pTerm->wtFlags & TERM_CODED );
1639     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1640     if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
1641       testcase( pWInfo->untestedTerms==0
1642                && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
1643       pWInfo->untestedTerms = 1;
1644       continue;
1645     }
1646     pE = pTerm->pExpr;
1647     assert( pE!=0 );
1648     if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
1649       continue;
1650     }
1651     if( pTerm->wtFlags & TERM_LIKECOND ){
1652 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1653       continue;
1654 #else
1655       assert( pLevel->iLikeRepCntr>0 );
1656       skipLikeAddr = sqlite3VdbeAddOp1(v, OP_IfNot, pLevel->iLikeRepCntr);
1657       VdbeCoverage(v);
1658 #endif
1659     }
1660     sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
1661     if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
1662     pTerm->wtFlags |= TERM_CODED;
1663   }
1664 
1665   /* Insert code to test for implied constraints based on transitivity
1666   ** of the "==" operator.
1667   **
1668   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
1669   ** and we are coding the t1 loop and the t2 loop has not yet coded,
1670   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
1671   ** the implied "t1.a=123" constraint.
1672   */
1673   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1674     Expr *pE, *pEAlt;
1675     WhereTerm *pAlt;
1676     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1677     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
1678     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
1679     if( pTerm->leftCursor!=iCur ) continue;
1680     if( pLevel->iLeftJoin ) continue;
1681     pE = pTerm->pExpr;
1682     assert( !ExprHasProperty(pE, EP_FromJoin) );
1683     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
1684     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
1685                     WO_EQ|WO_IN|WO_IS, 0);
1686     if( pAlt==0 ) continue;
1687     if( pAlt->wtFlags & (TERM_CODED) ) continue;
1688     testcase( pAlt->eOperator & WO_EQ );
1689     testcase( pAlt->eOperator & WO_IS );
1690     testcase( pAlt->eOperator & WO_IN );
1691     VdbeModuleComment((v, "begin transitive constraint"));
1692     pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt));
1693     if( pEAlt ){
1694       *pEAlt = *pAlt->pExpr;
1695       pEAlt->pLeft = pE->pLeft;
1696       sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL);
1697       sqlite3StackFree(db, pEAlt);
1698     }
1699   }
1700 
1701   /* For a LEFT OUTER JOIN, generate code that will record the fact that
1702   ** at least one row of the right table has matched the left table.
1703   */
1704   if( pLevel->iLeftJoin ){
1705     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
1706     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
1707     VdbeComment((v, "record LEFT JOIN hit"));
1708     sqlite3ExprCacheClear(pParse);
1709     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
1710       testcase( pTerm->wtFlags & TERM_VIRTUAL );
1711       testcase( pTerm->wtFlags & TERM_CODED );
1712       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1713       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
1714         assert( pWInfo->untestedTerms );
1715         continue;
1716       }
1717       assert( pTerm->pExpr );
1718       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
1719       pTerm->wtFlags |= TERM_CODED;
1720     }
1721   }
1722 
1723   return pLevel->notReady;
1724 }
1725