1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 25 /* 26 ** Return the name of the i-th column of the pIdx index. 27 */ 28 static const char *explainIndexColumnName(Index *pIdx, int i){ 29 i = pIdx->aiColumn[i]; 30 if( i==XN_EXPR ) return "<expr>"; 31 if( i==XN_ROWID ) return "rowid"; 32 return pIdx->pTable->aCol[i].zName; 33 } 34 35 /* 36 ** This routine is a helper for explainIndexRange() below 37 ** 38 ** pStr holds the text of an expression that we are building up one term 39 ** at a time. This routine adds a new term to the end of the expression. 40 ** Terms are separated by AND so add the "AND" text for second and subsequent 41 ** terms only. 42 */ 43 static void explainAppendTerm( 44 StrAccum *pStr, /* The text expression being built */ 45 Index *pIdx, /* Index to read column names from */ 46 int nTerm, /* Number of terms */ 47 int iTerm, /* Zero-based index of first term. */ 48 int bAnd, /* Non-zero to append " AND " */ 49 const char *zOp /* Name of the operator */ 50 ){ 51 int i; 52 53 assert( nTerm>=1 ); 54 if( bAnd ) sqlite3StrAccumAppend(pStr, " AND ", 5); 55 56 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1); 57 for(i=0; i<nTerm; i++){ 58 if( i ) sqlite3StrAccumAppend(pStr, ",", 1); 59 sqlite3StrAccumAppendAll(pStr, explainIndexColumnName(pIdx, iTerm+i)); 60 } 61 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1); 62 63 sqlite3StrAccumAppend(pStr, zOp, 1); 64 65 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1); 66 for(i=0; i<nTerm; i++){ 67 if( i ) sqlite3StrAccumAppend(pStr, ",", 1); 68 sqlite3StrAccumAppend(pStr, "?", 1); 69 } 70 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1); 71 } 72 73 /* 74 ** Argument pLevel describes a strategy for scanning table pTab. This 75 ** function appends text to pStr that describes the subset of table 76 ** rows scanned by the strategy in the form of an SQL expression. 77 ** 78 ** For example, if the query: 79 ** 80 ** SELECT * FROM t1 WHERE a=1 AND b>2; 81 ** 82 ** is run and there is an index on (a, b), then this function returns a 83 ** string similar to: 84 ** 85 ** "a=? AND b>?" 86 */ 87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 88 Index *pIndex = pLoop->u.btree.pIndex; 89 u16 nEq = pLoop->u.btree.nEq; 90 u16 nSkip = pLoop->nSkip; 91 int i, j; 92 93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 94 sqlite3StrAccumAppend(pStr, " (", 2); 95 for(i=0; i<nEq; i++){ 96 const char *z = explainIndexColumnName(pIndex, i); 97 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5); 98 sqlite3XPrintf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); 99 } 100 101 j = i; 102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); 104 i = 1; 105 } 106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); 108 } 109 sqlite3StrAccumAppend(pStr, ")", 1); 110 } 111 112 /* 113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 116 ** is added to the output to describe the table scan strategy in pLevel. 117 ** 118 ** If an OP_Explain opcode is added to the VM, its address is returned. 119 ** Otherwise, if no OP_Explain is coded, zero is returned. 120 */ 121 int sqlite3WhereExplainOneScan( 122 Parse *pParse, /* Parse context */ 123 SrcList *pTabList, /* Table list this loop refers to */ 124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 125 int iLevel, /* Value for "level" column of output */ 126 int iFrom, /* Value for "from" column of output */ 127 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 128 ){ 129 int ret = 0; 130 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 131 if( pParse->explain==2 ) 132 #endif 133 { 134 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 135 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 136 sqlite3 *db = pParse->db; /* Database handle */ 137 int iId = pParse->iSelectId; /* Select id (left-most output column) */ 138 int isSearch; /* True for a SEARCH. False for SCAN. */ 139 WhereLoop *pLoop; /* The controlling WhereLoop object */ 140 u32 flags; /* Flags that describe this loop */ 141 char *zMsg; /* Text to add to EQP output */ 142 StrAccum str; /* EQP output string */ 143 char zBuf[100]; /* Initial space for EQP output string */ 144 145 pLoop = pLevel->pWLoop; 146 flags = pLoop->wsFlags; 147 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; 148 149 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 150 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 151 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 152 153 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 154 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN"); 155 if( pItem->pSelect ){ 156 sqlite3XPrintf(&str, " SUBQUERY %d", pItem->iSelectId); 157 }else{ 158 sqlite3XPrintf(&str, " TABLE %s", pItem->zName); 159 } 160 161 if( pItem->zAlias ){ 162 sqlite3XPrintf(&str, " AS %s", pItem->zAlias); 163 } 164 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 165 const char *zFmt = 0; 166 Index *pIdx; 167 168 assert( pLoop->u.btree.pIndex!=0 ); 169 pIdx = pLoop->u.btree.pIndex; 170 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 171 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 172 if( isSearch ){ 173 zFmt = "PRIMARY KEY"; 174 } 175 }else if( flags & WHERE_PARTIALIDX ){ 176 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 177 }else if( flags & WHERE_AUTO_INDEX ){ 178 zFmt = "AUTOMATIC COVERING INDEX"; 179 }else if( flags & WHERE_IDX_ONLY ){ 180 zFmt = "COVERING INDEX %s"; 181 }else{ 182 zFmt = "INDEX %s"; 183 } 184 if( zFmt ){ 185 sqlite3StrAccumAppend(&str, " USING ", 7); 186 sqlite3XPrintf(&str, zFmt, pIdx->zName); 187 explainIndexRange(&str, pLoop); 188 } 189 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 190 const char *zRangeOp; 191 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 192 zRangeOp = "="; 193 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 194 zRangeOp = ">? AND rowid<"; 195 }else if( flags&WHERE_BTM_LIMIT ){ 196 zRangeOp = ">"; 197 }else{ 198 assert( flags&WHERE_TOP_LIMIT); 199 zRangeOp = "<"; 200 } 201 sqlite3XPrintf(&str, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp); 202 } 203 #ifndef SQLITE_OMIT_VIRTUALTABLE 204 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 205 sqlite3XPrintf(&str, " VIRTUAL TABLE INDEX %d:%s", 206 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 207 } 208 #endif 209 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 210 if( pLoop->nOut>=10 ){ 211 sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); 212 }else{ 213 sqlite3StrAccumAppend(&str, " (~1 row)", 9); 214 } 215 #endif 216 zMsg = sqlite3StrAccumFinish(&str); 217 ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC); 218 } 219 return ret; 220 } 221 #endif /* SQLITE_OMIT_EXPLAIN */ 222 223 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 224 /* 225 ** Configure the VM passed as the first argument with an 226 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 227 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 228 ** clause that the scan reads data from. 229 ** 230 ** If argument addrExplain is not 0, it must be the address of an 231 ** OP_Explain instruction that describes the same loop. 232 */ 233 void sqlite3WhereAddScanStatus( 234 Vdbe *v, /* Vdbe to add scanstatus entry to */ 235 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 236 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 237 int addrExplain /* Address of OP_Explain (or 0) */ 238 ){ 239 const char *zObj = 0; 240 WhereLoop *pLoop = pLvl->pWLoop; 241 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 242 zObj = pLoop->u.btree.pIndex->zName; 243 }else{ 244 zObj = pSrclist->a[pLvl->iFrom].zName; 245 } 246 sqlite3VdbeScanStatus( 247 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 248 ); 249 } 250 #endif 251 252 253 /* 254 ** Disable a term in the WHERE clause. Except, do not disable the term 255 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 256 ** or USING clause of that join. 257 ** 258 ** Consider the term t2.z='ok' in the following queries: 259 ** 260 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 261 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 262 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 263 ** 264 ** The t2.z='ok' is disabled in the in (2) because it originates 265 ** in the ON clause. The term is disabled in (3) because it is not part 266 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 267 ** 268 ** Disabling a term causes that term to not be tested in the inner loop 269 ** of the join. Disabling is an optimization. When terms are satisfied 270 ** by indices, we disable them to prevent redundant tests in the inner 271 ** loop. We would get the correct results if nothing were ever disabled, 272 ** but joins might run a little slower. The trick is to disable as much 273 ** as we can without disabling too much. If we disabled in (1), we'd get 274 ** the wrong answer. See ticket #813. 275 ** 276 ** If all the children of a term are disabled, then that term is also 277 ** automatically disabled. In this way, terms get disabled if derived 278 ** virtual terms are tested first. For example: 279 ** 280 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 281 ** \___________/ \______/ \_____/ 282 ** parent child1 child2 283 ** 284 ** Only the parent term was in the original WHERE clause. The child1 285 ** and child2 terms were added by the LIKE optimization. If both of 286 ** the virtual child terms are valid, then testing of the parent can be 287 ** skipped. 288 ** 289 ** Usually the parent term is marked as TERM_CODED. But if the parent 290 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 291 ** The TERM_LIKECOND marking indicates that the term should be coded inside 292 ** a conditional such that is only evaluated on the second pass of a 293 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 294 */ 295 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 296 int nLoop = 0; 297 while( ALWAYS(pTerm!=0) 298 && (pTerm->wtFlags & TERM_CODED)==0 299 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 300 && (pLevel->notReady & pTerm->prereqAll)==0 301 ){ 302 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 303 pTerm->wtFlags |= TERM_LIKECOND; 304 }else{ 305 pTerm->wtFlags |= TERM_CODED; 306 } 307 if( pTerm->iParent<0 ) break; 308 pTerm = &pTerm->pWC->a[pTerm->iParent]; 309 pTerm->nChild--; 310 if( pTerm->nChild!=0 ) break; 311 nLoop++; 312 } 313 } 314 315 /* 316 ** Code an OP_Affinity opcode to apply the column affinity string zAff 317 ** to the n registers starting at base. 318 ** 319 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the 320 ** beginning and end of zAff are ignored. If all entries in zAff are 321 ** SQLITE_AFF_BLOB, then no code gets generated. 322 ** 323 ** This routine makes its own copy of zAff so that the caller is free 324 ** to modify zAff after this routine returns. 325 */ 326 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 327 Vdbe *v = pParse->pVdbe; 328 if( zAff==0 ){ 329 assert( pParse->db->mallocFailed ); 330 return; 331 } 332 assert( v!=0 ); 333 334 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning 335 ** and end of the affinity string. 336 */ 337 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){ 338 n--; 339 base++; 340 zAff++; 341 } 342 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){ 343 n--; 344 } 345 346 /* Code the OP_Affinity opcode if there is anything left to do. */ 347 if( n>0 ){ 348 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 349 sqlite3ExprCacheAffinityChange(pParse, base, n); 350 } 351 } 352 353 /* 354 ** Expression pRight, which is the RHS of a comparison operation, is 355 ** either a vector of n elements or, if n==1, a scalar expression. 356 ** Before the comparison operation, affinity zAff is to be applied 357 ** to the pRight values. This function modifies characters within the 358 ** affinity string to SQLITE_AFF_BLOB if either: 359 ** 360 ** * the comparison will be performed with no affinity, or 361 ** * the affinity change in zAff is guaranteed not to change the value. 362 */ 363 static void updateRangeAffinityStr( 364 Expr *pRight, /* RHS of comparison */ 365 int n, /* Number of vector elements in comparison */ 366 char *zAff /* Affinity string to modify */ 367 ){ 368 int i; 369 for(i=0; i<n; i++){ 370 Expr *p = sqlite3VectorFieldSubexpr(pRight, i); 371 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB 372 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) 373 ){ 374 zAff[i] = SQLITE_AFF_BLOB; 375 } 376 } 377 } 378 379 /* 380 ** Generate code for a single equality term of the WHERE clause. An equality 381 ** term can be either X=expr or X IN (...). pTerm is the term to be 382 ** coded. 383 ** 384 ** The current value for the constraint is left in a register, the index 385 ** of which is returned. An attempt is made store the result in iTarget but 386 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the 387 ** constraint is a TK_EQ or TK_IS, then the current value might be left in 388 ** some other register and it is the caller's responsibility to compensate. 389 ** 390 ** For a constraint of the form X=expr, the expression is evaluated in 391 ** straight-line code. For constraints of the form X IN (...) 392 ** this routine sets up a loop that will iterate over all values of X. 393 */ 394 static int codeEqualityTerm( 395 Parse *pParse, /* The parsing context */ 396 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 397 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 398 int iEq, /* Index of the equality term within this level */ 399 int bRev, /* True for reverse-order IN operations */ 400 int iTarget /* Attempt to leave results in this register */ 401 ){ 402 Expr *pX = pTerm->pExpr; 403 Vdbe *v = pParse->pVdbe; 404 int iReg; /* Register holding results */ 405 406 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); 407 assert( iTarget>0 ); 408 if( pX->op==TK_EQ || pX->op==TK_IS ){ 409 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 410 }else if( pX->op==TK_ISNULL ){ 411 iReg = iTarget; 412 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 413 #ifndef SQLITE_OMIT_SUBQUERY 414 }else{ 415 int eType = IN_INDEX_NOOP; 416 int iTab; 417 struct InLoop *pIn; 418 WhereLoop *pLoop = pLevel->pWLoop; 419 int i; 420 int nEq = 0; 421 int *aiMap = 0; 422 423 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 424 && pLoop->u.btree.pIndex!=0 425 && pLoop->u.btree.pIndex->aSortOrder[iEq] 426 ){ 427 testcase( iEq==0 ); 428 testcase( bRev ); 429 bRev = !bRev; 430 } 431 assert( pX->op==TK_IN ); 432 iReg = iTarget; 433 434 for(i=0; i<iEq; i++){ 435 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ 436 disableTerm(pLevel, pTerm); 437 return iTarget; 438 } 439 } 440 for(i=iEq;i<pLoop->nLTerm; i++){ 441 if( ALWAYS(pLoop->aLTerm[i]) && pLoop->aLTerm[i]->pExpr==pX ) nEq++; 442 } 443 444 if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){ 445 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0); 446 }else{ 447 Select *pSelect = pX->x.pSelect; 448 sqlite3 *db = pParse->db; 449 u16 savedDbOptFlags = db->dbOptFlags; 450 ExprList *pOrigRhs = pSelect->pEList; 451 ExprList *pOrigLhs = pX->pLeft->x.pList; 452 ExprList *pRhs = 0; /* New Select.pEList for RHS */ 453 ExprList *pLhs = 0; /* New pX->pLeft vector */ 454 455 for(i=iEq;i<pLoop->nLTerm; i++){ 456 if( pLoop->aLTerm[i]->pExpr==pX ){ 457 int iField = pLoop->aLTerm[i]->iField - 1; 458 Expr *pNewRhs = sqlite3ExprDup(db, pOrigRhs->a[iField].pExpr, 0); 459 Expr *pNewLhs = sqlite3ExprDup(db, pOrigLhs->a[iField].pExpr, 0); 460 461 pRhs = sqlite3ExprListAppend(pParse, pRhs, pNewRhs); 462 pLhs = sqlite3ExprListAppend(pParse, pLhs, pNewLhs); 463 } 464 } 465 if( !db->mallocFailed ){ 466 Expr *pLeft = pX->pLeft; 467 468 if( pSelect->pOrderBy ){ 469 /* If the SELECT statement has an ORDER BY clause, zero the 470 ** iOrderByCol variables. These are set to non-zero when an 471 ** ORDER BY term exactly matches one of the terms of the 472 ** result-set. Since the result-set of the SELECT statement may 473 ** have been modified or reordered, these variables are no longer 474 ** set correctly. Since setting them is just an optimization, 475 ** it's easiest just to zero them here. */ 476 ExprList *pOrderBy = pSelect->pOrderBy; 477 for(i=0; i<pOrderBy->nExpr; i++){ 478 pOrderBy->a[i].u.x.iOrderByCol = 0; 479 } 480 } 481 482 /* Take care here not to generate a TK_VECTOR containing only a 483 ** single value. Since the parser never creates such a vector, some 484 ** of the subroutines do not handle this case. */ 485 if( pLhs->nExpr==1 ){ 486 pX->pLeft = pLhs->a[0].pExpr; 487 }else{ 488 pLeft->x.pList = pLhs; 489 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int) * nEq); 490 testcase( aiMap==0 ); 491 } 492 pSelect->pEList = pRhs; 493 db->dbOptFlags |= SQLITE_QueryFlattener; 494 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap); 495 db->dbOptFlags = savedDbOptFlags; 496 testcase( aiMap!=0 && aiMap[0]!=0 ); 497 pSelect->pEList = pOrigRhs; 498 pLeft->x.pList = pOrigLhs; 499 pX->pLeft = pLeft; 500 } 501 sqlite3ExprListDelete(pParse->db, pLhs); 502 sqlite3ExprListDelete(pParse->db, pRhs); 503 } 504 505 if( eType==IN_INDEX_INDEX_DESC ){ 506 testcase( bRev ); 507 bRev = !bRev; 508 } 509 iTab = pX->iTable; 510 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 511 VdbeCoverageIf(v, bRev); 512 VdbeCoverageIf(v, !bRev); 513 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 514 515 pLoop->wsFlags |= WHERE_IN_ABLE; 516 if( pLevel->u.in.nIn==0 ){ 517 pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 518 } 519 520 i = pLevel->u.in.nIn; 521 pLevel->u.in.nIn += nEq; 522 pLevel->u.in.aInLoop = 523 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 524 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 525 pIn = pLevel->u.in.aInLoop; 526 if( pIn ){ 527 int iMap = 0; /* Index in aiMap[] */ 528 pIn += i; 529 for(i=iEq;i<pLoop->nLTerm; i++){ 530 if( pLoop->aLTerm[i]->pExpr==pX ){ 531 int iOut = iReg + i - iEq; 532 if( eType==IN_INDEX_ROWID ){ 533 testcase( nEq>1 ); /* Happens with a UNIQUE index on ROWID */ 534 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); 535 }else{ 536 int iCol = aiMap ? aiMap[iMap++] : 0; 537 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); 538 } 539 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); 540 if( i==iEq ){ 541 pIn->iCur = iTab; 542 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; 543 }else{ 544 pIn->eEndLoopOp = OP_Noop; 545 } 546 pIn++; 547 } 548 } 549 }else{ 550 pLevel->u.in.nIn = 0; 551 } 552 sqlite3DbFree(pParse->db, aiMap); 553 #endif 554 } 555 disableTerm(pLevel, pTerm); 556 return iReg; 557 } 558 559 /* 560 ** Generate code that will evaluate all == and IN constraints for an 561 ** index scan. 562 ** 563 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 564 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 565 ** The index has as many as three equality constraints, but in this 566 ** example, the third "c" value is an inequality. So only two 567 ** constraints are coded. This routine will generate code to evaluate 568 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 569 ** in consecutive registers and the index of the first register is returned. 570 ** 571 ** In the example above nEq==2. But this subroutine works for any value 572 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 573 ** The only thing it does is allocate the pLevel->iMem memory cell and 574 ** compute the affinity string. 575 ** 576 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 577 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 578 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 579 ** occurs after the nEq quality constraints. 580 ** 581 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 582 ** the index of the first memory cell in that range. The code that 583 ** calls this routine will use that memory range to store keys for 584 ** start and termination conditions of the loop. 585 ** key value of the loop. If one or more IN operators appear, then 586 ** this routine allocates an additional nEq memory cells for internal 587 ** use. 588 ** 589 ** Before returning, *pzAff is set to point to a buffer containing a 590 ** copy of the column affinity string of the index allocated using 591 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 592 ** with equality constraints that use BLOB or NONE affinity are set to 593 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 594 ** 595 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 596 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 597 ** 598 ** In the example above, the index on t1(a) has TEXT affinity. But since 599 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 600 ** no conversion should be attempted before using a t2.b value as part of 601 ** a key to search the index. Hence the first byte in the returned affinity 602 ** string in this example would be set to SQLITE_AFF_BLOB. 603 */ 604 static int codeAllEqualityTerms( 605 Parse *pParse, /* Parsing context */ 606 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 607 int bRev, /* Reverse the order of IN operators */ 608 int nExtraReg, /* Number of extra registers to allocate */ 609 char **pzAff /* OUT: Set to point to affinity string */ 610 ){ 611 u16 nEq; /* The number of == or IN constraints to code */ 612 u16 nSkip; /* Number of left-most columns to skip */ 613 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 614 Index *pIdx; /* The index being used for this loop */ 615 WhereTerm *pTerm; /* A single constraint term */ 616 WhereLoop *pLoop; /* The WhereLoop object */ 617 int j; /* Loop counter */ 618 int regBase; /* Base register */ 619 int nReg; /* Number of registers to allocate */ 620 char *zAff; /* Affinity string to return */ 621 622 /* This module is only called on query plans that use an index. */ 623 pLoop = pLevel->pWLoop; 624 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 625 nEq = pLoop->u.btree.nEq; 626 nSkip = pLoop->nSkip; 627 pIdx = pLoop->u.btree.pIndex; 628 assert( pIdx!=0 ); 629 630 /* Figure out how many memory cells we will need then allocate them. 631 */ 632 regBase = pParse->nMem + 1; 633 nReg = pLoop->u.btree.nEq + nExtraReg; 634 pParse->nMem += nReg; 635 636 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 637 assert( zAff!=0 || pParse->db->mallocFailed ); 638 639 if( nSkip ){ 640 int iIdxCur = pLevel->iIdxCur; 641 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 642 VdbeCoverageIf(v, bRev==0); 643 VdbeCoverageIf(v, bRev!=0); 644 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 645 j = sqlite3VdbeAddOp0(v, OP_Goto); 646 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 647 iIdxCur, 0, regBase, nSkip); 648 VdbeCoverageIf(v, bRev==0); 649 VdbeCoverageIf(v, bRev!=0); 650 sqlite3VdbeJumpHere(v, j); 651 for(j=0; j<nSkip; j++){ 652 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 653 testcase( pIdx->aiColumn[j]==XN_EXPR ); 654 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 655 } 656 } 657 658 /* Evaluate the equality constraints 659 */ 660 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 661 for(j=nSkip; j<nEq; j++){ 662 int r1; 663 pTerm = pLoop->aLTerm[j]; 664 assert( pTerm!=0 ); 665 /* The following testcase is true for indices with redundant columns. 666 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 667 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 668 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 669 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 670 if( r1!=regBase+j ){ 671 if( nReg==1 ){ 672 sqlite3ReleaseTempReg(pParse, regBase); 673 regBase = r1; 674 }else{ 675 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 676 } 677 } 678 if( pTerm->eOperator & WO_IN ){ 679 if( pTerm->pExpr->flags & EP_xIsSelect ){ 680 /* No affinity ever needs to be (or should be) applied to a value 681 ** from the RHS of an "? IN (SELECT ...)" expression. The 682 ** sqlite3FindInIndex() routine has already ensured that the 683 ** affinity of the comparison has been applied to the value. */ 684 if( zAff ) zAff[j] = SQLITE_AFF_BLOB; 685 } 686 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ 687 Expr *pRight = pTerm->pExpr->pRight; 688 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 689 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 690 VdbeCoverage(v); 691 } 692 if( zAff ){ 693 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 694 zAff[j] = SQLITE_AFF_BLOB; 695 } 696 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 697 zAff[j] = SQLITE_AFF_BLOB; 698 } 699 } 700 } 701 } 702 *pzAff = zAff; 703 return regBase; 704 } 705 706 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 707 /* 708 ** If the most recently coded instruction is a constant range constraint 709 ** (a string literal) that originated from the LIKE optimization, then 710 ** set P3 and P5 on the OP_String opcode so that the string will be cast 711 ** to a BLOB at appropriate times. 712 ** 713 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 714 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 715 ** scan loop run twice, once for strings and a second time for BLOBs. 716 ** The OP_String opcodes on the second pass convert the upper and lower 717 ** bound string constants to blobs. This routine makes the necessary changes 718 ** to the OP_String opcodes for that to happen. 719 ** 720 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 721 ** only the one pass through the string space is required, so this routine 722 ** becomes a no-op. 723 */ 724 static void whereLikeOptimizationStringFixup( 725 Vdbe *v, /* prepared statement under construction */ 726 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 727 WhereTerm *pTerm /* The upper or lower bound just coded */ 728 ){ 729 if( pTerm->wtFlags & TERM_LIKEOPT ){ 730 VdbeOp *pOp; 731 assert( pLevel->iLikeRepCntr>0 ); 732 pOp = sqlite3VdbeGetOp(v, -1); 733 assert( pOp!=0 ); 734 assert( pOp->opcode==OP_String8 735 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 736 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ 737 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ 738 } 739 } 740 #else 741 # define whereLikeOptimizationStringFixup(A,B,C) 742 #endif 743 744 #ifdef SQLITE_ENABLE_CURSOR_HINTS 745 /* 746 ** Information is passed from codeCursorHint() down to individual nodes of 747 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 748 ** structure. 749 */ 750 struct CCurHint { 751 int iTabCur; /* Cursor for the main table */ 752 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 753 Index *pIdx; /* The index used to access the table */ 754 }; 755 756 /* 757 ** This function is called for every node of an expression that is a candidate 758 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 759 ** the table CCurHint.iTabCur, verify that the same column can be 760 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 761 */ 762 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 763 struct CCurHint *pHint = pWalker->u.pCCurHint; 764 assert( pHint->pIdx!=0 ); 765 if( pExpr->op==TK_COLUMN 766 && pExpr->iTable==pHint->iTabCur 767 && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0 768 ){ 769 pWalker->eCode = 1; 770 } 771 return WRC_Continue; 772 } 773 774 /* 775 ** Test whether or not expression pExpr, which was part of a WHERE clause, 776 ** should be included in the cursor-hint for a table that is on the rhs 777 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the 778 ** expression is not suitable. 779 ** 780 ** An expression is unsuitable if it might evaluate to non NULL even if 781 ** a TK_COLUMN node that does affect the value of the expression is set 782 ** to NULL. For example: 783 ** 784 ** col IS NULL 785 ** col IS NOT NULL 786 ** coalesce(col, 1) 787 ** CASE WHEN col THEN 0 ELSE 1 END 788 */ 789 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ 790 if( pExpr->op==TK_IS 791 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT 792 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE 793 ){ 794 pWalker->eCode = 1; 795 }else if( pExpr->op==TK_FUNCTION ){ 796 int d1; 797 char d2[3]; 798 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ 799 pWalker->eCode = 1; 800 } 801 } 802 803 return WRC_Continue; 804 } 805 806 807 /* 808 ** This function is called on every node of an expression tree used as an 809 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 810 ** that accesses any table other than the one identified by 811 ** CCurHint.iTabCur, then do the following: 812 ** 813 ** 1) allocate a register and code an OP_Column instruction to read 814 ** the specified column into the new register, and 815 ** 816 ** 2) transform the expression node to a TK_REGISTER node that reads 817 ** from the newly populated register. 818 ** 819 ** Also, if the node is a TK_COLUMN that does access the table idenified 820 ** by pCCurHint.iTabCur, and an index is being used (which we will 821 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 822 ** an access of the index rather than the original table. 823 */ 824 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 825 int rc = WRC_Continue; 826 struct CCurHint *pHint = pWalker->u.pCCurHint; 827 if( pExpr->op==TK_COLUMN ){ 828 if( pExpr->iTable!=pHint->iTabCur ){ 829 Vdbe *v = pWalker->pParse->pVdbe; 830 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 831 sqlite3ExprCodeGetColumnOfTable( 832 v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg 833 ); 834 pExpr->op = TK_REGISTER; 835 pExpr->iTable = reg; 836 }else if( pHint->pIdx!=0 ){ 837 pExpr->iTable = pHint->iIdxCur; 838 pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn); 839 assert( pExpr->iColumn>=0 ); 840 } 841 }else if( pExpr->op==TK_AGG_FUNCTION ){ 842 /* An aggregate function in the WHERE clause of a query means this must 843 ** be a correlated sub-query, and expression pExpr is an aggregate from 844 ** the parent context. Do not walk the function arguments in this case. 845 ** 846 ** todo: It should be possible to replace this node with a TK_REGISTER 847 ** expression, as the result of the expression must be stored in a 848 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 849 rc = WRC_Prune; 850 } 851 return rc; 852 } 853 854 /* 855 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 856 */ 857 static void codeCursorHint( 858 struct SrcList_item *pTabItem, /* FROM clause item */ 859 WhereInfo *pWInfo, /* The where clause */ 860 WhereLevel *pLevel, /* Which loop to provide hints for */ 861 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 862 ){ 863 Parse *pParse = pWInfo->pParse; 864 sqlite3 *db = pParse->db; 865 Vdbe *v = pParse->pVdbe; 866 Expr *pExpr = 0; 867 WhereLoop *pLoop = pLevel->pWLoop; 868 int iCur; 869 WhereClause *pWC; 870 WhereTerm *pTerm; 871 int i, j; 872 struct CCurHint sHint; 873 Walker sWalker; 874 875 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 876 iCur = pLevel->iTabCur; 877 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 878 sHint.iTabCur = iCur; 879 sHint.iIdxCur = pLevel->iIdxCur; 880 sHint.pIdx = pLoop->u.btree.pIndex; 881 memset(&sWalker, 0, sizeof(sWalker)); 882 sWalker.pParse = pParse; 883 sWalker.u.pCCurHint = &sHint; 884 pWC = &pWInfo->sWC; 885 for(i=0; i<pWC->nTerm; i++){ 886 pTerm = &pWC->a[i]; 887 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 888 if( pTerm->prereqAll & pLevel->notReady ) continue; 889 890 /* Any terms specified as part of the ON(...) clause for any LEFT 891 ** JOIN for which the current table is not the rhs are omitted 892 ** from the cursor-hint. 893 ** 894 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms 895 ** that were specified as part of the WHERE clause must be excluded. 896 ** This is to address the following: 897 ** 898 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; 899 ** 900 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its 901 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is 902 ** pushed down to the cursor, this row is filtered out, causing 903 ** SQLite to synthesize a row of NULL values. Which does match the 904 ** WHERE clause, and so the query returns a row. Which is incorrect. 905 ** 906 ** For the same reason, WHERE terms such as: 907 ** 908 ** WHERE 1 = (t2.c IS NULL) 909 ** 910 ** are also excluded. See codeCursorHintIsOrFunction() for details. 911 */ 912 if( pTabItem->fg.jointype & JT_LEFT ){ 913 Expr *pExpr = pTerm->pExpr; 914 if( !ExprHasProperty(pExpr, EP_FromJoin) 915 || pExpr->iRightJoinTable!=pTabItem->iCursor 916 ){ 917 sWalker.eCode = 0; 918 sWalker.xExprCallback = codeCursorHintIsOrFunction; 919 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 920 if( sWalker.eCode ) continue; 921 } 922 }else{ 923 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; 924 } 925 926 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 927 ** the cursor. These terms are not needed as hints for a pure range 928 ** scan (that has no == terms) so omit them. */ 929 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 930 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 931 if( j<pLoop->nLTerm ) continue; 932 } 933 934 /* No subqueries or non-deterministic functions allowed */ 935 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 936 937 /* For an index scan, make sure referenced columns are actually in 938 ** the index. */ 939 if( sHint.pIdx!=0 ){ 940 sWalker.eCode = 0; 941 sWalker.xExprCallback = codeCursorHintCheckExpr; 942 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 943 if( sWalker.eCode ) continue; 944 } 945 946 /* If we survive all prior tests, that means this term is worth hinting */ 947 pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 948 } 949 if( pExpr!=0 ){ 950 sWalker.xExprCallback = codeCursorHintFixExpr; 951 sqlite3WalkExpr(&sWalker, pExpr); 952 sqlite3VdbeAddOp4(v, OP_CursorHint, 953 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 954 (const char*)pExpr, P4_EXPR); 955 } 956 } 957 #else 958 # define codeCursorHint(A,B,C,D) /* No-op */ 959 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 960 961 /* 962 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains 963 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This 964 ** function generates code to do a deferred seek of cursor iCur to the 965 ** rowid stored in register iRowid. 966 ** 967 ** Normally, this is just: 968 ** 969 ** OP_Seek $iCur $iRowid 970 ** 971 ** However, if the scan currently being coded is a branch of an OR-loop and 972 ** the statement currently being coded is a SELECT, then P3 of the OP_Seek 973 ** is set to iIdxCur and P4 is set to point to an array of integers 974 ** containing one entry for each column of the table cursor iCur is open 975 ** on. For each table column, if the column is the i'th column of the 976 ** index, then the corresponding array entry is set to (i+1). If the column 977 ** does not appear in the index at all, the array entry is set to 0. 978 */ 979 static void codeDeferredSeek( 980 WhereInfo *pWInfo, /* Where clause context */ 981 Index *pIdx, /* Index scan is using */ 982 int iCur, /* Cursor for IPK b-tree */ 983 int iIdxCur /* Index cursor */ 984 ){ 985 Parse *pParse = pWInfo->pParse; /* Parse context */ 986 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ 987 988 assert( iIdxCur>0 ); 989 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); 990 991 sqlite3VdbeAddOp3(v, OP_Seek, iIdxCur, 0, iCur); 992 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 993 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) 994 ){ 995 int i; 996 Table *pTab = pIdx->pTable; 997 int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1)); 998 if( ai ){ 999 ai[0] = pTab->nCol; 1000 for(i=0; i<pIdx->nColumn-1; i++){ 1001 assert( pIdx->aiColumn[i]<pTab->nCol ); 1002 if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1; 1003 } 1004 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); 1005 } 1006 } 1007 } 1008 1009 /* 1010 ** If the expression passed as the second argument is a vector, generate 1011 ** code to write the first nReg elements of the vector into an array 1012 ** of registers starting with iReg. 1013 ** 1014 ** If the expression is not a vector, then nReg must be passed 1. In 1015 ** this case, generate code to evaluate the expression and leave the 1016 ** result in register iReg. 1017 */ 1018 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ 1019 assert( nReg>0 ); 1020 if( sqlite3ExprIsVector(p) ){ 1021 #ifndef SQLITE_OMIT_SUBQUERY 1022 if( (p->flags & EP_xIsSelect) ){ 1023 Vdbe *v = pParse->pVdbe; 1024 int iSelect = sqlite3CodeSubselect(pParse, p, 0, 0); 1025 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); 1026 }else 1027 #endif 1028 { 1029 int i; 1030 ExprList *pList = p->x.pList; 1031 assert( nReg<=pList->nExpr ); 1032 for(i=0; i<nReg; i++){ 1033 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i); 1034 } 1035 } 1036 }else{ 1037 assert( nReg==1 ); 1038 sqlite3ExprCode(pParse, p, iReg); 1039 } 1040 } 1041 1042 /* 1043 ** Generate code for the start of the iLevel-th loop in the WHERE clause 1044 ** implementation described by pWInfo. 1045 */ 1046 Bitmask sqlite3WhereCodeOneLoopStart( 1047 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1048 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1049 Bitmask notReady /* Which tables are currently available */ 1050 ){ 1051 int j, k; /* Loop counters */ 1052 int iCur; /* The VDBE cursor for the table */ 1053 int addrNxt; /* Where to jump to continue with the next IN case */ 1054 int omitTable; /* True if we use the index only */ 1055 int bRev; /* True if we need to scan in reverse order */ 1056 WhereLevel *pLevel; /* The where level to be coded */ 1057 WhereLoop *pLoop; /* The WhereLoop object being coded */ 1058 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 1059 WhereTerm *pTerm; /* A WHERE clause term */ 1060 Parse *pParse; /* Parsing context */ 1061 sqlite3 *db; /* Database connection */ 1062 Vdbe *v; /* The prepared stmt under constructions */ 1063 struct SrcList_item *pTabItem; /* FROM clause term being coded */ 1064 int addrBrk; /* Jump here to break out of the loop */ 1065 int addrHalt; /* addrBrk for the outermost loop */ 1066 int addrCont; /* Jump here to continue with next cycle */ 1067 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 1068 int iReleaseReg = 0; /* Temp register to free before returning */ 1069 1070 pParse = pWInfo->pParse; 1071 v = pParse->pVdbe; 1072 pWC = &pWInfo->sWC; 1073 db = pParse->db; 1074 pLevel = &pWInfo->a[iLevel]; 1075 pLoop = pLevel->pWLoop; 1076 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1077 iCur = pTabItem->iCursor; 1078 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 1079 bRev = (pWInfo->revMask>>iLevel)&1; 1080 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 1081 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0; 1082 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 1083 1084 /* Create labels for the "break" and "continue" instructions 1085 ** for the current loop. Jump to addrBrk to break out of a loop. 1086 ** Jump to cont to go immediately to the next iteration of the 1087 ** loop. 1088 ** 1089 ** When there is an IN operator, we also have a "addrNxt" label that 1090 ** means to continue with the next IN value combination. When 1091 ** there are no IN operators in the constraints, the "addrNxt" label 1092 ** is the same as "addrBrk". 1093 */ 1094 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 1095 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); 1096 1097 /* If this is the right table of a LEFT OUTER JOIN, allocate and 1098 ** initialize a memory cell that records if this table matches any 1099 ** row of the left table of the join. 1100 */ 1101 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 1102 pLevel->iLeftJoin = ++pParse->nMem; 1103 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 1104 VdbeComment((v, "init LEFT JOIN no-match flag")); 1105 } 1106 1107 /* Compute a safe address to jump to if we discover that the table for 1108 ** this loop is empty and can never contribute content. */ 1109 for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){} 1110 addrHalt = pWInfo->a[j].addrBrk; 1111 1112 /* Special case of a FROM clause subquery implemented as a co-routine */ 1113 if( pTabItem->fg.viaCoroutine ){ 1114 int regYield = pTabItem->regReturn; 1115 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 1116 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 1117 VdbeCoverage(v); 1118 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); 1119 pLevel->op = OP_Goto; 1120 }else 1121 1122 #ifndef SQLITE_OMIT_VIRTUALTABLE 1123 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 1124 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 1125 ** to access the data. 1126 */ 1127 int iReg; /* P3 Value for OP_VFilter */ 1128 int addrNotFound; 1129 int nConstraint = pLoop->nLTerm; 1130 int iIn; /* Counter for IN constraints */ 1131 1132 sqlite3ExprCachePush(pParse); 1133 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 1134 addrNotFound = pLevel->addrBrk; 1135 for(j=0; j<nConstraint; j++){ 1136 int iTarget = iReg+j+2; 1137 pTerm = pLoop->aLTerm[j]; 1138 if( NEVER(pTerm==0) ) continue; 1139 if( pTerm->eOperator & WO_IN ){ 1140 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 1141 addrNotFound = pLevel->addrNxt; 1142 }else{ 1143 Expr *pRight = pTerm->pExpr->pRight; 1144 codeExprOrVector(pParse, pRight, iTarget, 1); 1145 } 1146 } 1147 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 1148 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 1149 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 1150 pLoop->u.vtab.idxStr, 1151 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); 1152 VdbeCoverage(v); 1153 pLoop->u.vtab.needFree = 0; 1154 pLevel->p1 = iCur; 1155 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 1156 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1157 iIn = pLevel->u.in.nIn; 1158 for(j=nConstraint-1; j>=0; j--){ 1159 pTerm = pLoop->aLTerm[j]; 1160 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ 1161 disableTerm(pLevel, pTerm); 1162 }else if( (pTerm->eOperator & WO_IN)!=0 ){ 1163 Expr *pCompare; /* The comparison operator */ 1164 Expr *pRight; /* RHS of the comparison */ 1165 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ 1166 1167 /* Reload the constraint value into reg[iReg+j+2]. The same value 1168 ** was loaded into the same register prior to the OP_VFilter, but 1169 ** the xFilter implementation might have changed the datatype or 1170 ** encoding of the value in the register, so it *must* be reloaded. */ 1171 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed ); 1172 if( !db->mallocFailed ){ 1173 assert( iIn>0 ); 1174 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[--iIn].addrInTop); 1175 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid ); 1176 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 ); 1177 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 ); 1178 testcase( pOp->opcode==OP_Rowid ); 1179 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); 1180 } 1181 1182 /* Generate code that will continue to the next row if 1183 ** the IN constraint is not satisfied */ 1184 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); 1185 assert( pCompare!=0 || db->mallocFailed ); 1186 if( pCompare ){ 1187 pCompare->pLeft = pTerm->pExpr->pLeft; 1188 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); 1189 if( pRight ){ 1190 pRight->iTable = iReg+j+2; 1191 sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0); 1192 } 1193 pCompare->pLeft = 0; 1194 sqlite3ExprDelete(db, pCompare); 1195 } 1196 } 1197 } 1198 /* These registers need to be preserved in case there is an IN operator 1199 ** loop. So we could deallocate the registers here (and potentially 1200 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems 1201 ** simpler and safer to simply not reuse the registers. 1202 ** 1203 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 1204 */ 1205 sqlite3ExprCachePop(pParse); 1206 }else 1207 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1208 1209 if( (pLoop->wsFlags & WHERE_IPK)!=0 1210 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 1211 ){ 1212 /* Case 2: We can directly reference a single row using an 1213 ** equality comparison against the ROWID field. Or 1214 ** we reference multiple rows using a "rowid IN (...)" 1215 ** construct. 1216 */ 1217 assert( pLoop->u.btree.nEq==1 ); 1218 pTerm = pLoop->aLTerm[0]; 1219 assert( pTerm!=0 ); 1220 assert( pTerm->pExpr!=0 ); 1221 assert( omitTable==0 ); 1222 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1223 iReleaseReg = ++pParse->nMem; 1224 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 1225 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 1226 addrNxt = pLevel->addrNxt; 1227 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); 1228 VdbeCoverage(v); 1229 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); 1230 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 1231 VdbeComment((v, "pk")); 1232 pLevel->op = OP_Noop; 1233 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 1234 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 1235 ){ 1236 /* Case 3: We have an inequality comparison against the ROWID field. 1237 */ 1238 int testOp = OP_Noop; 1239 int start; 1240 int memEndValue = 0; 1241 WhereTerm *pStart, *pEnd; 1242 1243 assert( omitTable==0 ); 1244 j = 0; 1245 pStart = pEnd = 0; 1246 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 1247 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 1248 assert( pStart!=0 || pEnd!=0 ); 1249 if( bRev ){ 1250 pTerm = pStart; 1251 pStart = pEnd; 1252 pEnd = pTerm; 1253 } 1254 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); 1255 if( pStart ){ 1256 Expr *pX; /* The expression that defines the start bound */ 1257 int r1, rTemp; /* Registers for holding the start boundary */ 1258 int op; /* Cursor seek operation */ 1259 1260 /* The following constant maps TK_xx codes into corresponding 1261 ** seek opcodes. It depends on a particular ordering of TK_xx 1262 */ 1263 const u8 aMoveOp[] = { 1264 /* TK_GT */ OP_SeekGT, 1265 /* TK_LE */ OP_SeekLE, 1266 /* TK_LT */ OP_SeekLT, 1267 /* TK_GE */ OP_SeekGE 1268 }; 1269 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 1270 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 1271 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 1272 1273 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 1274 testcase( pStart->wtFlags & TERM_VIRTUAL ); 1275 pX = pStart->pExpr; 1276 assert( pX!=0 ); 1277 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 1278 if( sqlite3ExprIsVector(pX->pRight) ){ 1279 r1 = rTemp = sqlite3GetTempReg(pParse); 1280 codeExprOrVector(pParse, pX->pRight, r1, 1); 1281 op = aMoveOp[(pX->op - TK_GT) | 0x0001]; 1282 }else{ 1283 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 1284 disableTerm(pLevel, pStart); 1285 op = aMoveOp[(pX->op - TK_GT)]; 1286 } 1287 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); 1288 VdbeComment((v, "pk")); 1289 VdbeCoverageIf(v, pX->op==TK_GT); 1290 VdbeCoverageIf(v, pX->op==TK_LE); 1291 VdbeCoverageIf(v, pX->op==TK_LT); 1292 VdbeCoverageIf(v, pX->op==TK_GE); 1293 sqlite3ExprCacheAffinityChange(pParse, r1, 1); 1294 sqlite3ReleaseTempReg(pParse, rTemp); 1295 }else{ 1296 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt); 1297 VdbeCoverageIf(v, bRev==0); 1298 VdbeCoverageIf(v, bRev!=0); 1299 } 1300 if( pEnd ){ 1301 Expr *pX; 1302 pX = pEnd->pExpr; 1303 assert( pX!=0 ); 1304 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 1305 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 1306 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 1307 memEndValue = ++pParse->nMem; 1308 codeExprOrVector(pParse, pX->pRight, memEndValue, 1); 1309 if( 0==sqlite3ExprIsVector(pX->pRight) 1310 && (pX->op==TK_LT || pX->op==TK_GT) 1311 ){ 1312 testOp = bRev ? OP_Le : OP_Ge; 1313 }else{ 1314 testOp = bRev ? OP_Lt : OP_Gt; 1315 } 1316 if( 0==sqlite3ExprIsVector(pX->pRight) ){ 1317 disableTerm(pLevel, pEnd); 1318 } 1319 } 1320 start = sqlite3VdbeCurrentAddr(v); 1321 pLevel->op = bRev ? OP_Prev : OP_Next; 1322 pLevel->p1 = iCur; 1323 pLevel->p2 = start; 1324 assert( pLevel->p5==0 ); 1325 if( testOp!=OP_Noop ){ 1326 iRowidReg = ++pParse->nMem; 1327 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 1328 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 1329 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 1330 VdbeCoverageIf(v, testOp==OP_Le); 1331 VdbeCoverageIf(v, testOp==OP_Lt); 1332 VdbeCoverageIf(v, testOp==OP_Ge); 1333 VdbeCoverageIf(v, testOp==OP_Gt); 1334 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 1335 } 1336 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 1337 /* Case 4: A scan using an index. 1338 ** 1339 ** The WHERE clause may contain zero or more equality 1340 ** terms ("==" or "IN" operators) that refer to the N 1341 ** left-most columns of the index. It may also contain 1342 ** inequality constraints (>, <, >= or <=) on the indexed 1343 ** column that immediately follows the N equalities. Only 1344 ** the right-most column can be an inequality - the rest must 1345 ** use the "==" and "IN" operators. For example, if the 1346 ** index is on (x,y,z), then the following clauses are all 1347 ** optimized: 1348 ** 1349 ** x=5 1350 ** x=5 AND y=10 1351 ** x=5 AND y<10 1352 ** x=5 AND y>5 AND y<10 1353 ** x=5 AND y=5 AND z<=10 1354 ** 1355 ** The z<10 term of the following cannot be used, only 1356 ** the x=5 term: 1357 ** 1358 ** x=5 AND z<10 1359 ** 1360 ** N may be zero if there are inequality constraints. 1361 ** If there are no inequality constraints, then N is at 1362 ** least one. 1363 ** 1364 ** This case is also used when there are no WHERE clause 1365 ** constraints but an index is selected anyway, in order 1366 ** to force the output order to conform to an ORDER BY. 1367 */ 1368 static const u8 aStartOp[] = { 1369 0, 1370 0, 1371 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1372 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1373 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1374 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1375 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1376 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1377 }; 1378 static const u8 aEndOp[] = { 1379 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1380 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1381 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1382 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1383 }; 1384 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1385 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ 1386 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ 1387 int regBase; /* Base register holding constraint values */ 1388 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1389 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1390 int startEq; /* True if range start uses ==, >= or <= */ 1391 int endEq; /* True if range end uses ==, >= or <= */ 1392 int start_constraints; /* Start of range is constrained */ 1393 int nConstraint; /* Number of constraint terms */ 1394 Index *pIdx; /* The index we will be using */ 1395 int iIdxCur; /* The VDBE cursor for the index */ 1396 int nExtraReg = 0; /* Number of extra registers needed */ 1397 int op; /* Instruction opcode */ 1398 char *zStartAff; /* Affinity for start of range constraint */ 1399 char *zEndAff = 0; /* Affinity for end of range constraint */ 1400 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1401 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1402 1403 pIdx = pLoop->u.btree.pIndex; 1404 iIdxCur = pLevel->iIdxCur; 1405 assert( nEq>=pLoop->nSkip ); 1406 1407 /* If this loop satisfies a sort order (pOrderBy) request that 1408 ** was passed to this function to implement a "SELECT min(x) ..." 1409 ** query, then the caller will only allow the loop to run for 1410 ** a single iteration. This means that the first row returned 1411 ** should not have a NULL value stored in 'x'. If column 'x' is 1412 ** the first one after the nEq equality constraints in the index, 1413 ** this requires some special handling. 1414 */ 1415 assert( pWInfo->pOrderBy==0 1416 || pWInfo->pOrderBy->nExpr==1 1417 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); 1418 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 1419 && pWInfo->nOBSat>0 1420 && (pIdx->nKeyCol>nEq) 1421 ){ 1422 assert( pLoop->nSkip==0 ); 1423 bSeekPastNull = 1; 1424 nExtraReg = 1; 1425 } 1426 1427 /* Find any inequality constraint terms for the start and end 1428 ** of the range. 1429 */ 1430 j = nEq; 1431 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1432 pRangeStart = pLoop->aLTerm[j++]; 1433 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); 1434 /* Like optimization range constraints always occur in pairs */ 1435 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1436 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1437 } 1438 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1439 pRangeEnd = pLoop->aLTerm[j++]; 1440 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); 1441 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1442 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1443 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1444 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1445 pLevel->iLikeRepCntr = (u32)++pParse->nMem; 1446 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); 1447 VdbeComment((v, "LIKE loop counter")); 1448 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1449 /* iLikeRepCntr actually stores 2x the counter register number. The 1450 ** bottom bit indicates whether the search order is ASC or DESC. */ 1451 testcase( bRev ); 1452 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1453 assert( (bRev & ~1)==0 ); 1454 pLevel->iLikeRepCntr <<=1; 1455 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); 1456 } 1457 #endif 1458 if( pRangeStart==0 ){ 1459 j = pIdx->aiColumn[nEq]; 1460 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){ 1461 bSeekPastNull = 1; 1462 } 1463 } 1464 } 1465 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1466 1467 /* If we are doing a reverse order scan on an ascending index, or 1468 ** a forward order scan on a descending index, interchange the 1469 ** start and end terms (pRangeStart and pRangeEnd). 1470 */ 1471 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) 1472 || (bRev && pIdx->nKeyCol==nEq) 1473 ){ 1474 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1475 SWAP(u8, bSeekPastNull, bStopAtNull); 1476 SWAP(u8, nBtm, nTop); 1477 } 1478 1479 /* Generate code to evaluate all constraint terms using == or IN 1480 ** and store the values of those terms in an array of registers 1481 ** starting at regBase. 1482 */ 1483 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); 1484 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1485 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1486 if( zStartAff && nTop ){ 1487 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); 1488 } 1489 addrNxt = pLevel->addrNxt; 1490 1491 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1492 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1493 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1494 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1495 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1496 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1497 start_constraints = pRangeStart || nEq>0; 1498 1499 /* Seek the index cursor to the start of the range. */ 1500 nConstraint = nEq; 1501 if( pRangeStart ){ 1502 Expr *pRight = pRangeStart->pExpr->pRight; 1503 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); 1504 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1505 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1506 && sqlite3ExprCanBeNull(pRight) 1507 ){ 1508 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1509 VdbeCoverage(v); 1510 } 1511 if( zStartAff ){ 1512 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); 1513 } 1514 nConstraint += nBtm; 1515 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1516 if( sqlite3ExprIsVector(pRight)==0 ){ 1517 disableTerm(pLevel, pRangeStart); 1518 }else{ 1519 startEq = 1; 1520 } 1521 bSeekPastNull = 0; 1522 }else if( bSeekPastNull ){ 1523 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1524 nConstraint++; 1525 startEq = 0; 1526 start_constraints = 1; 1527 } 1528 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1529 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ 1530 /* The skip-scan logic inside the call to codeAllEqualityConstraints() 1531 ** above has already left the cursor sitting on the correct row, 1532 ** so no further seeking is needed */ 1533 }else{ 1534 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 1535 assert( op!=0 ); 1536 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1537 VdbeCoverage(v); 1538 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1539 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1540 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 1541 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1542 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1543 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 1544 } 1545 1546 /* Load the value for the inequality constraint at the end of the 1547 ** range (if any). 1548 */ 1549 nConstraint = nEq; 1550 if( pRangeEnd ){ 1551 Expr *pRight = pRangeEnd->pExpr->pRight; 1552 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); 1553 codeExprOrVector(pParse, pRight, regBase+nEq, nTop); 1554 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 1555 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 1556 && sqlite3ExprCanBeNull(pRight) 1557 ){ 1558 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1559 VdbeCoverage(v); 1560 } 1561 if( zEndAff ){ 1562 updateRangeAffinityStr(pRight, nTop, zEndAff); 1563 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); 1564 }else{ 1565 assert( pParse->db->mallocFailed ); 1566 } 1567 nConstraint += nTop; 1568 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 1569 1570 if( sqlite3ExprIsVector(pRight)==0 ){ 1571 disableTerm(pLevel, pRangeEnd); 1572 }else{ 1573 endEq = 1; 1574 } 1575 }else if( bStopAtNull ){ 1576 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1577 endEq = 0; 1578 nConstraint++; 1579 } 1580 sqlite3DbFree(db, zStartAff); 1581 sqlite3DbFree(db, zEndAff); 1582 1583 /* Top of the loop body */ 1584 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1585 1586 /* Check if the index cursor is past the end of the range. */ 1587 if( nConstraint ){ 1588 op = aEndOp[bRev*2 + endEq]; 1589 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1590 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1591 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1592 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1593 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1594 } 1595 1596 /* Seek the table cursor, if required */ 1597 if( omitTable ){ 1598 /* pIdx is a covering index. No need to access the main table. */ 1599 }else if( HasRowid(pIdx->pTable) ){ 1600 if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE) || ( 1601 (pWInfo->wctrlFlags & WHERE_SEEK_UNIQ_TABLE) 1602 && (pWInfo->eOnePass==ONEPASS_SINGLE) 1603 )){ 1604 iRowidReg = ++pParse->nMem; 1605 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); 1606 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 1607 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg); 1608 VdbeCoverage(v); 1609 }else{ 1610 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); 1611 } 1612 }else if( iCur!=iIdxCur ){ 1613 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1614 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1615 for(j=0; j<pPk->nKeyCol; j++){ 1616 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); 1617 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 1618 } 1619 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 1620 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 1621 } 1622 1623 /* Record the instruction used to terminate the loop. */ 1624 if( pLoop->wsFlags & WHERE_ONEROW ){ 1625 pLevel->op = OP_Noop; 1626 }else if( bRev ){ 1627 pLevel->op = OP_Prev; 1628 }else{ 1629 pLevel->op = OP_Next; 1630 } 1631 pLevel->p1 = iIdxCur; 1632 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 1633 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 1634 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 1635 }else{ 1636 assert( pLevel->p5==0 ); 1637 } 1638 }else 1639 1640 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 1641 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 1642 /* Case 5: Two or more separately indexed terms connected by OR 1643 ** 1644 ** Example: 1645 ** 1646 ** CREATE TABLE t1(a,b,c,d); 1647 ** CREATE INDEX i1 ON t1(a); 1648 ** CREATE INDEX i2 ON t1(b); 1649 ** CREATE INDEX i3 ON t1(c); 1650 ** 1651 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 1652 ** 1653 ** In the example, there are three indexed terms connected by OR. 1654 ** The top of the loop looks like this: 1655 ** 1656 ** Null 1 # Zero the rowset in reg 1 1657 ** 1658 ** Then, for each indexed term, the following. The arguments to 1659 ** RowSetTest are such that the rowid of the current row is inserted 1660 ** into the RowSet. If it is already present, control skips the 1661 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 1662 ** 1663 ** sqlite3WhereBegin(<term>) 1664 ** RowSetTest # Insert rowid into rowset 1665 ** Gosub 2 A 1666 ** sqlite3WhereEnd() 1667 ** 1668 ** Following the above, code to terminate the loop. Label A, the target 1669 ** of the Gosub above, jumps to the instruction right after the Goto. 1670 ** 1671 ** Null 1 # Zero the rowset in reg 1 1672 ** Goto B # The loop is finished. 1673 ** 1674 ** A: <loop body> # Return data, whatever. 1675 ** 1676 ** Return 2 # Jump back to the Gosub 1677 ** 1678 ** B: <after the loop> 1679 ** 1680 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 1681 ** use an ephemeral index instead of a RowSet to record the primary 1682 ** keys of the rows we have already seen. 1683 ** 1684 */ 1685 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 1686 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 1687 Index *pCov = 0; /* Potential covering index (or NULL) */ 1688 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 1689 1690 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 1691 int regRowset = 0; /* Register for RowSet object */ 1692 int regRowid = 0; /* Register holding rowid */ 1693 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ 1694 int iRetInit; /* Address of regReturn init */ 1695 int untestedTerms = 0; /* Some terms not completely tested */ 1696 int ii; /* Loop counter */ 1697 u16 wctrlFlags; /* Flags for sub-WHERE clause */ 1698 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 1699 Table *pTab = pTabItem->pTab; 1700 1701 pTerm = pLoop->aLTerm[0]; 1702 assert( pTerm!=0 ); 1703 assert( pTerm->eOperator & WO_OR ); 1704 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 1705 pOrWc = &pTerm->u.pOrInfo->wc; 1706 pLevel->op = OP_Return; 1707 pLevel->p1 = regReturn; 1708 1709 /* Set up a new SrcList in pOrTab containing the table being scanned 1710 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 1711 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 1712 */ 1713 if( pWInfo->nLevel>1 ){ 1714 int nNotReady; /* The number of notReady tables */ 1715 struct SrcList_item *origSrc; /* Original list of tables */ 1716 nNotReady = pWInfo->nLevel - iLevel - 1; 1717 pOrTab = sqlite3StackAllocRaw(db, 1718 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 1719 if( pOrTab==0 ) return notReady; 1720 pOrTab->nAlloc = (u8)(nNotReady + 1); 1721 pOrTab->nSrc = pOrTab->nAlloc; 1722 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 1723 origSrc = pWInfo->pTabList->a; 1724 for(k=1; k<=nNotReady; k++){ 1725 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 1726 } 1727 }else{ 1728 pOrTab = pWInfo->pTabList; 1729 } 1730 1731 /* Initialize the rowset register to contain NULL. An SQL NULL is 1732 ** equivalent to an empty rowset. Or, create an ephemeral index 1733 ** capable of holding primary keys in the case of a WITHOUT ROWID. 1734 ** 1735 ** Also initialize regReturn to contain the address of the instruction 1736 ** immediately following the OP_Return at the bottom of the loop. This 1737 ** is required in a few obscure LEFT JOIN cases where control jumps 1738 ** over the top of the loop into the body of it. In this case the 1739 ** correct response for the end-of-loop code (the OP_Return) is to 1740 ** fall through to the next instruction, just as an OP_Next does if 1741 ** called on an uninitialized cursor. 1742 */ 1743 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 1744 if( HasRowid(pTab) ){ 1745 regRowset = ++pParse->nMem; 1746 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 1747 }else{ 1748 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1749 regRowset = pParse->nTab++; 1750 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 1751 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 1752 } 1753 regRowid = ++pParse->nMem; 1754 } 1755 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 1756 1757 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 1758 ** Then for every term xN, evaluate as the subexpression: xN AND z 1759 ** That way, terms in y that are factored into the disjunction will 1760 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 1761 ** 1762 ** Actually, each subexpression is converted to "xN AND w" where w is 1763 ** the "interesting" terms of z - terms that did not originate in the 1764 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 1765 ** indices. 1766 ** 1767 ** This optimization also only applies if the (x1 OR x2 OR ...) term 1768 ** is not contained in the ON clause of a LEFT JOIN. 1769 ** See ticket http://www.sqlite.org/src/info/f2369304e4 1770 */ 1771 if( pWC->nTerm>1 ){ 1772 int iTerm; 1773 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 1774 Expr *pExpr = pWC->a[iTerm].pExpr; 1775 if( &pWC->a[iTerm] == pTerm ) continue; 1776 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; 1777 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); 1778 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); 1779 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue; 1780 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 1781 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); 1782 pExpr = sqlite3ExprDup(db, pExpr, 0); 1783 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); 1784 } 1785 if( pAndExpr ){ 1786 pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr); 1787 } 1788 } 1789 1790 /* Run a separate WHERE clause for each term of the OR clause. After 1791 ** eliminating duplicates from other WHERE clauses, the action for each 1792 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 1793 */ 1794 wctrlFlags = WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE); 1795 for(ii=0; ii<pOrWc->nTerm; ii++){ 1796 WhereTerm *pOrTerm = &pOrWc->a[ii]; 1797 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 1798 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 1799 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 1800 int jmp1 = 0; /* Address of jump operation */ 1801 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){ 1802 pAndExpr->pLeft = pOrExpr; 1803 pOrExpr = pAndExpr; 1804 } 1805 /* Loop through table entries that match term pOrTerm. */ 1806 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 1807 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 1808 wctrlFlags, iCovCur); 1809 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); 1810 if( pSubWInfo ){ 1811 WhereLoop *pSubLoop; 1812 int addrExplain = sqlite3WhereExplainOneScan( 1813 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 1814 ); 1815 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 1816 1817 /* This is the sub-WHERE clause body. First skip over 1818 ** duplicate rows from prior sub-WHERE clauses, and record the 1819 ** rowid (or PRIMARY KEY) for the current row so that the same 1820 ** row will be skipped in subsequent sub-WHERE clauses. 1821 */ 1822 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 1823 int r; 1824 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 1825 if( HasRowid(pTab) ){ 1826 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0); 1827 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 1828 r,iSet); 1829 VdbeCoverage(v); 1830 }else{ 1831 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1832 int nPk = pPk->nKeyCol; 1833 int iPk; 1834 1835 /* Read the PK into an array of temp registers. */ 1836 r = sqlite3GetTempRange(pParse, nPk); 1837 for(iPk=0; iPk<nPk; iPk++){ 1838 int iCol = pPk->aiColumn[iPk]; 1839 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk); 1840 } 1841 1842 /* Check if the temp table already contains this key. If so, 1843 ** the row has already been included in the result set and 1844 ** can be ignored (by jumping past the Gosub below). Otherwise, 1845 ** insert the key into the temp table and proceed with processing 1846 ** the row. 1847 ** 1848 ** Use some of the same optimizations as OP_RowSetTest: If iSet 1849 ** is zero, assume that the key cannot already be present in 1850 ** the temp table. And if iSet is -1, assume that there is no 1851 ** need to insert the key into the temp table, as it will never 1852 ** be tested for. */ 1853 if( iSet ){ 1854 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 1855 VdbeCoverage(v); 1856 } 1857 if( iSet>=0 ){ 1858 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 1859 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid, 1860 r, nPk); 1861 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1862 } 1863 1864 /* Release the array of temp registers */ 1865 sqlite3ReleaseTempRange(pParse, r, nPk); 1866 } 1867 } 1868 1869 /* Invoke the main loop body as a subroutine */ 1870 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 1871 1872 /* Jump here (skipping the main loop body subroutine) if the 1873 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 1874 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 1875 1876 /* The pSubWInfo->untestedTerms flag means that this OR term 1877 ** contained one or more AND term from a notReady table. The 1878 ** terms from the notReady table could not be tested and will 1879 ** need to be tested later. 1880 */ 1881 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 1882 1883 /* If all of the OR-connected terms are optimized using the same 1884 ** index, and the index is opened using the same cursor number 1885 ** by each call to sqlite3WhereBegin() made by this loop, it may 1886 ** be possible to use that index as a covering index. 1887 ** 1888 ** If the call to sqlite3WhereBegin() above resulted in a scan that 1889 ** uses an index, and this is either the first OR-connected term 1890 ** processed or the index is the same as that used by all previous 1891 ** terms, set pCov to the candidate covering index. Otherwise, set 1892 ** pCov to NULL to indicate that no candidate covering index will 1893 ** be available. 1894 */ 1895 pSubLoop = pSubWInfo->a[0].pWLoop; 1896 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 1897 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 1898 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 1899 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 1900 ){ 1901 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 1902 pCov = pSubLoop->u.btree.pIndex; 1903 }else{ 1904 pCov = 0; 1905 } 1906 1907 /* Finish the loop through table entries that match term pOrTerm. */ 1908 sqlite3WhereEnd(pSubWInfo); 1909 } 1910 } 1911 } 1912 pLevel->u.pCovidx = pCov; 1913 if( pCov ) pLevel->iIdxCur = iCovCur; 1914 if( pAndExpr ){ 1915 pAndExpr->pLeft = 0; 1916 sqlite3ExprDelete(db, pAndExpr); 1917 } 1918 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 1919 sqlite3VdbeGoto(v, pLevel->addrBrk); 1920 sqlite3VdbeResolveLabel(v, iLoopBody); 1921 1922 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab); 1923 if( !untestedTerms ) disableTerm(pLevel, pTerm); 1924 }else 1925 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1926 1927 { 1928 /* Case 6: There is no usable index. We must do a complete 1929 ** scan of the entire table. 1930 */ 1931 static const u8 aStep[] = { OP_Next, OP_Prev }; 1932 static const u8 aStart[] = { OP_Rewind, OP_Last }; 1933 assert( bRev==0 || bRev==1 ); 1934 if( pTabItem->fg.isRecursive ){ 1935 /* Tables marked isRecursive have only a single row that is stored in 1936 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 1937 pLevel->op = OP_Noop; 1938 }else{ 1939 codeCursorHint(pTabItem, pWInfo, pLevel, 0); 1940 pLevel->op = aStep[bRev]; 1941 pLevel->p1 = iCur; 1942 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt); 1943 VdbeCoverageIf(v, bRev==0); 1944 VdbeCoverageIf(v, bRev!=0); 1945 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 1946 } 1947 } 1948 1949 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1950 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 1951 #endif 1952 1953 /* Insert code to test every subexpression that can be completely 1954 ** computed using the current set of tables. 1955 */ 1956 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 1957 Expr *pE; 1958 int skipLikeAddr = 0; 1959 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1960 testcase( pTerm->wtFlags & TERM_CODED ); 1961 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1962 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 1963 testcase( pWInfo->untestedTerms==0 1964 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); 1965 pWInfo->untestedTerms = 1; 1966 continue; 1967 } 1968 pE = pTerm->pExpr; 1969 assert( pE!=0 ); 1970 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 1971 continue; 1972 } 1973 if( pTerm->wtFlags & TERM_LIKECOND ){ 1974 /* If the TERM_LIKECOND flag is set, that means that the range search 1975 ** is sufficient to guarantee that the LIKE operator is true, so we 1976 ** can skip the call to the like(A,B) function. But this only works 1977 ** for strings. So do not skip the call to the function on the pass 1978 ** that compares BLOBs. */ 1979 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1980 continue; 1981 #else 1982 u32 x = pLevel->iLikeRepCntr; 1983 assert( x>0 ); 1984 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)? OP_IfNot : OP_If, (int)(x>>1)); 1985 VdbeCoverage(v); 1986 #endif 1987 } 1988 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 1989 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 1990 pTerm->wtFlags |= TERM_CODED; 1991 } 1992 1993 /* Insert code to test for implied constraints based on transitivity 1994 ** of the "==" operator. 1995 ** 1996 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 1997 ** and we are coding the t1 loop and the t2 loop has not yet coded, 1998 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 1999 ** the implied "t1.a=123" constraint. 2000 */ 2001 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2002 Expr *pE, sEAlt; 2003 WhereTerm *pAlt; 2004 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2005 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 2006 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 2007 if( pTerm->leftCursor!=iCur ) continue; 2008 if( pLevel->iLeftJoin ) continue; 2009 pE = pTerm->pExpr; 2010 assert( !ExprHasProperty(pE, EP_FromJoin) ); 2011 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 2012 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady, 2013 WO_EQ|WO_IN|WO_IS, 0); 2014 if( pAlt==0 ) continue; 2015 if( pAlt->wtFlags & (TERM_CODED) ) continue; 2016 testcase( pAlt->eOperator & WO_EQ ); 2017 testcase( pAlt->eOperator & WO_IS ); 2018 testcase( pAlt->eOperator & WO_IN ); 2019 VdbeModuleComment((v, "begin transitive constraint")); 2020 sEAlt = *pAlt->pExpr; 2021 sEAlt.pLeft = pE->pLeft; 2022 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); 2023 } 2024 2025 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2026 ** at least one row of the right table has matched the left table. 2027 */ 2028 if( pLevel->iLeftJoin ){ 2029 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2030 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2031 VdbeComment((v, "record LEFT JOIN hit")); 2032 sqlite3ExprCacheClear(pParse); 2033 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 2034 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2035 testcase( pTerm->wtFlags & TERM_CODED ); 2036 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2037 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2038 assert( pWInfo->untestedTerms ); 2039 continue; 2040 } 2041 assert( pTerm->pExpr ); 2042 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 2043 pTerm->wtFlags |= TERM_CODED; 2044 } 2045 } 2046 2047 return pLevel->notReady; 2048 } 2049