1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 25 /* 26 ** Return the name of the i-th column of the pIdx index. 27 */ 28 static const char *explainIndexColumnName(Index *pIdx, int i){ 29 i = pIdx->aiColumn[i]; 30 if( i==XN_EXPR ) return "<expr>"; 31 if( i==XN_ROWID ) return "rowid"; 32 return pIdx->pTable->aCol[i].zName; 33 } 34 35 /* 36 ** This routine is a helper for explainIndexRange() below 37 ** 38 ** pStr holds the text of an expression that we are building up one term 39 ** at a time. This routine adds a new term to the end of the expression. 40 ** Terms are separated by AND so add the "AND" text for second and subsequent 41 ** terms only. 42 */ 43 static void explainAppendTerm( 44 StrAccum *pStr, /* The text expression being built */ 45 Index *pIdx, /* Index to read column names from */ 46 int nTerm, /* Number of terms */ 47 int iTerm, /* Zero-based index of first term. */ 48 int bAnd, /* Non-zero to append " AND " */ 49 const char *zOp /* Name of the operator */ 50 ){ 51 int i; 52 53 assert( nTerm>=1 ); 54 if( bAnd ) sqlite3_str_append(pStr, " AND ", 5); 55 56 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 57 for(i=0; i<nTerm; i++){ 58 if( i ) sqlite3_str_append(pStr, ",", 1); 59 sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i)); 60 } 61 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 62 63 sqlite3_str_append(pStr, zOp, 1); 64 65 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 66 for(i=0; i<nTerm; i++){ 67 if( i ) sqlite3_str_append(pStr, ",", 1); 68 sqlite3_str_append(pStr, "?", 1); 69 } 70 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 71 } 72 73 /* 74 ** Argument pLevel describes a strategy for scanning table pTab. This 75 ** function appends text to pStr that describes the subset of table 76 ** rows scanned by the strategy in the form of an SQL expression. 77 ** 78 ** For example, if the query: 79 ** 80 ** SELECT * FROM t1 WHERE a=1 AND b>2; 81 ** 82 ** is run and there is an index on (a, b), then this function returns a 83 ** string similar to: 84 ** 85 ** "a=? AND b>?" 86 */ 87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 88 Index *pIndex = pLoop->u.btree.pIndex; 89 u16 nEq = pLoop->u.btree.nEq; 90 u16 nSkip = pLoop->nSkip; 91 int i, j; 92 93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 94 sqlite3_str_append(pStr, " (", 2); 95 for(i=0; i<nEq; i++){ 96 const char *z = explainIndexColumnName(pIndex, i); 97 if( i ) sqlite3_str_append(pStr, " AND ", 5); 98 sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); 99 } 100 101 j = i; 102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); 104 i = 1; 105 } 106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); 108 } 109 sqlite3_str_append(pStr, ")", 1); 110 } 111 112 /* 113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 116 ** is added to the output to describe the table scan strategy in pLevel. 117 ** 118 ** If an OP_Explain opcode is added to the VM, its address is returned. 119 ** Otherwise, if no OP_Explain is coded, zero is returned. 120 */ 121 int sqlite3WhereExplainOneScan( 122 Parse *pParse, /* Parse context */ 123 SrcList *pTabList, /* Table list this loop refers to */ 124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 125 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 126 ){ 127 int ret = 0; 128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 129 if( sqlite3ParseToplevel(pParse)->explain==2 ) 130 #endif 131 { 132 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 133 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 134 sqlite3 *db = pParse->db; /* Database handle */ 135 int isSearch; /* True for a SEARCH. False for SCAN. */ 136 WhereLoop *pLoop; /* The controlling WhereLoop object */ 137 u32 flags; /* Flags that describe this loop */ 138 char *zMsg; /* Text to add to EQP output */ 139 StrAccum str; /* EQP output string */ 140 char zBuf[100]; /* Initial space for EQP output string */ 141 142 pLoop = pLevel->pWLoop; 143 flags = pLoop->wsFlags; 144 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; 145 146 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 147 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 148 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 149 150 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 151 sqlite3_str_appendall(&str, isSearch ? "SEARCH" : "SCAN"); 152 if( pItem->pSelect ){ 153 sqlite3_str_appendf(&str, " SUBQUERY %u", pItem->pSelect->selId); 154 }else{ 155 sqlite3_str_appendf(&str, " TABLE %s", pItem->zName); 156 } 157 158 if( pItem->zAlias ){ 159 sqlite3_str_appendf(&str, " AS %s", pItem->zAlias); 160 } 161 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 162 const char *zFmt = 0; 163 Index *pIdx; 164 165 assert( pLoop->u.btree.pIndex!=0 ); 166 pIdx = pLoop->u.btree.pIndex; 167 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 168 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 169 if( isSearch ){ 170 zFmt = "PRIMARY KEY"; 171 } 172 }else if( flags & WHERE_PARTIALIDX ){ 173 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 174 }else if( flags & WHERE_AUTO_INDEX ){ 175 zFmt = "AUTOMATIC COVERING INDEX"; 176 }else if( flags & WHERE_IDX_ONLY ){ 177 zFmt = "COVERING INDEX %s"; 178 }else{ 179 zFmt = "INDEX %s"; 180 } 181 if( zFmt ){ 182 sqlite3_str_append(&str, " USING ", 7); 183 sqlite3_str_appendf(&str, zFmt, pIdx->zName); 184 explainIndexRange(&str, pLoop); 185 } 186 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 187 const char *zRangeOp; 188 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 189 zRangeOp = "="; 190 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 191 zRangeOp = ">? AND rowid<"; 192 }else if( flags&WHERE_BTM_LIMIT ){ 193 zRangeOp = ">"; 194 }else{ 195 assert( flags&WHERE_TOP_LIMIT); 196 zRangeOp = "<"; 197 } 198 sqlite3_str_appendf(&str, 199 " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp); 200 } 201 #ifndef SQLITE_OMIT_VIRTUALTABLE 202 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 203 sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s", 204 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 205 } 206 #endif 207 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 208 if( pLoop->nOut>=10 ){ 209 sqlite3_str_appendf(&str, " (~%llu rows)", 210 sqlite3LogEstToInt(pLoop->nOut)); 211 }else{ 212 sqlite3_str_append(&str, " (~1 row)", 9); 213 } 214 #endif 215 zMsg = sqlite3StrAccumFinish(&str); 216 sqlite3ExplainBreakpoint("",zMsg); 217 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), 218 pParse->addrExplain, 0, zMsg,P4_DYNAMIC); 219 } 220 return ret; 221 } 222 #endif /* SQLITE_OMIT_EXPLAIN */ 223 224 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 225 /* 226 ** Configure the VM passed as the first argument with an 227 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 228 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 229 ** clause that the scan reads data from. 230 ** 231 ** If argument addrExplain is not 0, it must be the address of an 232 ** OP_Explain instruction that describes the same loop. 233 */ 234 void sqlite3WhereAddScanStatus( 235 Vdbe *v, /* Vdbe to add scanstatus entry to */ 236 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 237 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 238 int addrExplain /* Address of OP_Explain (or 0) */ 239 ){ 240 const char *zObj = 0; 241 WhereLoop *pLoop = pLvl->pWLoop; 242 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 243 zObj = pLoop->u.btree.pIndex->zName; 244 }else{ 245 zObj = pSrclist->a[pLvl->iFrom].zName; 246 } 247 sqlite3VdbeScanStatus( 248 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 249 ); 250 } 251 #endif 252 253 254 /* 255 ** Disable a term in the WHERE clause. Except, do not disable the term 256 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 257 ** or USING clause of that join. 258 ** 259 ** Consider the term t2.z='ok' in the following queries: 260 ** 261 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 262 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 263 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 264 ** 265 ** The t2.z='ok' is disabled in the in (2) because it originates 266 ** in the ON clause. The term is disabled in (3) because it is not part 267 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 268 ** 269 ** Disabling a term causes that term to not be tested in the inner loop 270 ** of the join. Disabling is an optimization. When terms are satisfied 271 ** by indices, we disable them to prevent redundant tests in the inner 272 ** loop. We would get the correct results if nothing were ever disabled, 273 ** but joins might run a little slower. The trick is to disable as much 274 ** as we can without disabling too much. If we disabled in (1), we'd get 275 ** the wrong answer. See ticket #813. 276 ** 277 ** If all the children of a term are disabled, then that term is also 278 ** automatically disabled. In this way, terms get disabled if derived 279 ** virtual terms are tested first. For example: 280 ** 281 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 282 ** \___________/ \______/ \_____/ 283 ** parent child1 child2 284 ** 285 ** Only the parent term was in the original WHERE clause. The child1 286 ** and child2 terms were added by the LIKE optimization. If both of 287 ** the virtual child terms are valid, then testing of the parent can be 288 ** skipped. 289 ** 290 ** Usually the parent term is marked as TERM_CODED. But if the parent 291 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 292 ** The TERM_LIKECOND marking indicates that the term should be coded inside 293 ** a conditional such that is only evaluated on the second pass of a 294 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 295 */ 296 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 297 int nLoop = 0; 298 assert( pTerm!=0 ); 299 while( (pTerm->wtFlags & TERM_CODED)==0 300 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 301 && (pLevel->notReady & pTerm->prereqAll)==0 302 ){ 303 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 304 pTerm->wtFlags |= TERM_LIKECOND; 305 }else{ 306 pTerm->wtFlags |= TERM_CODED; 307 } 308 if( pTerm->iParent<0 ) break; 309 pTerm = &pTerm->pWC->a[pTerm->iParent]; 310 assert( pTerm!=0 ); 311 pTerm->nChild--; 312 if( pTerm->nChild!=0 ) break; 313 nLoop++; 314 } 315 } 316 317 /* 318 ** Code an OP_Affinity opcode to apply the column affinity string zAff 319 ** to the n registers starting at base. 320 ** 321 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which 322 ** are no-ops) at the beginning and end of zAff are ignored. If all entries 323 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated. 324 ** 325 ** This routine makes its own copy of zAff so that the caller is free 326 ** to modify zAff after this routine returns. 327 */ 328 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 329 Vdbe *v = pParse->pVdbe; 330 if( zAff==0 ){ 331 assert( pParse->db->mallocFailed ); 332 return; 333 } 334 assert( v!=0 ); 335 336 /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE 337 ** entries at the beginning and end of the affinity string. 338 */ 339 assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB ); 340 while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){ 341 n--; 342 base++; 343 zAff++; 344 } 345 while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){ 346 n--; 347 } 348 349 /* Code the OP_Affinity opcode if there is anything left to do. */ 350 if( n>0 ){ 351 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 352 } 353 } 354 355 /* 356 ** Expression pRight, which is the RHS of a comparison operation, is 357 ** either a vector of n elements or, if n==1, a scalar expression. 358 ** Before the comparison operation, affinity zAff is to be applied 359 ** to the pRight values. This function modifies characters within the 360 ** affinity string to SQLITE_AFF_BLOB if either: 361 ** 362 ** * the comparison will be performed with no affinity, or 363 ** * the affinity change in zAff is guaranteed not to change the value. 364 */ 365 static void updateRangeAffinityStr( 366 Expr *pRight, /* RHS of comparison */ 367 int n, /* Number of vector elements in comparison */ 368 char *zAff /* Affinity string to modify */ 369 ){ 370 int i; 371 for(i=0; i<n; i++){ 372 Expr *p = sqlite3VectorFieldSubexpr(pRight, i); 373 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB 374 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) 375 ){ 376 zAff[i] = SQLITE_AFF_BLOB; 377 } 378 } 379 } 380 381 382 /* 383 ** pX is an expression of the form: (vector) IN (SELECT ...) 384 ** In other words, it is a vector IN operator with a SELECT clause on the 385 ** LHS. But not all terms in the vector are indexable and the terms might 386 ** not be in the correct order for indexing. 387 ** 388 ** This routine makes a copy of the input pX expression and then adjusts 389 ** the vector on the LHS with corresponding changes to the SELECT so that 390 ** the vector contains only index terms and those terms are in the correct 391 ** order. The modified IN expression is returned. The caller is responsible 392 ** for deleting the returned expression. 393 ** 394 ** Example: 395 ** 396 ** CREATE TABLE t1(a,b,c,d,e,f); 397 ** CREATE INDEX t1x1 ON t1(e,c); 398 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2) 399 ** \_______________________________________/ 400 ** The pX expression 401 ** 402 ** Since only columns e and c can be used with the index, in that order, 403 ** the modified IN expression that is returned will be: 404 ** 405 ** (e,c) IN (SELECT z,x FROM t2) 406 ** 407 ** The reduced pX is different from the original (obviously) and thus is 408 ** only used for indexing, to improve performance. The original unaltered 409 ** IN expression must also be run on each output row for correctness. 410 */ 411 static Expr *removeUnindexableInClauseTerms( 412 Parse *pParse, /* The parsing context */ 413 int iEq, /* Look at loop terms starting here */ 414 WhereLoop *pLoop, /* The current loop */ 415 Expr *pX /* The IN expression to be reduced */ 416 ){ 417 sqlite3 *db = pParse->db; 418 Expr *pNew; 419 pNew = sqlite3ExprDup(db, pX, 0); 420 if( db->mallocFailed==0 ){ 421 ExprList *pOrigRhs = pNew->x.pSelect->pEList; /* Original unmodified RHS */ 422 ExprList *pOrigLhs = pNew->pLeft->x.pList; /* Original unmodified LHS */ 423 ExprList *pRhs = 0; /* New RHS after modifications */ 424 ExprList *pLhs = 0; /* New LHS after mods */ 425 int i; /* Loop counter */ 426 Select *pSelect; /* Pointer to the SELECT on the RHS */ 427 428 for(i=iEq; i<pLoop->nLTerm; i++){ 429 if( pLoop->aLTerm[i]->pExpr==pX ){ 430 int iField = pLoop->aLTerm[i]->u.x.iField - 1; 431 if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */ 432 pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr); 433 pOrigRhs->a[iField].pExpr = 0; 434 assert( pOrigLhs->a[iField].pExpr!=0 ); 435 pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr); 436 pOrigLhs->a[iField].pExpr = 0; 437 } 438 } 439 sqlite3ExprListDelete(db, pOrigRhs); 440 sqlite3ExprListDelete(db, pOrigLhs); 441 pNew->pLeft->x.pList = pLhs; 442 pNew->x.pSelect->pEList = pRhs; 443 if( pLhs && pLhs->nExpr==1 ){ 444 /* Take care here not to generate a TK_VECTOR containing only a 445 ** single value. Since the parser never creates such a vector, some 446 ** of the subroutines do not handle this case. */ 447 Expr *p = pLhs->a[0].pExpr; 448 pLhs->a[0].pExpr = 0; 449 sqlite3ExprDelete(db, pNew->pLeft); 450 pNew->pLeft = p; 451 } 452 pSelect = pNew->x.pSelect; 453 if( pSelect->pOrderBy ){ 454 /* If the SELECT statement has an ORDER BY clause, zero the 455 ** iOrderByCol variables. These are set to non-zero when an 456 ** ORDER BY term exactly matches one of the terms of the 457 ** result-set. Since the result-set of the SELECT statement may 458 ** have been modified or reordered, these variables are no longer 459 ** set correctly. Since setting them is just an optimization, 460 ** it's easiest just to zero them here. */ 461 ExprList *pOrderBy = pSelect->pOrderBy; 462 for(i=0; i<pOrderBy->nExpr; i++){ 463 pOrderBy->a[i].u.x.iOrderByCol = 0; 464 } 465 } 466 467 #if 0 468 printf("For indexing, change the IN expr:\n"); 469 sqlite3TreeViewExpr(0, pX, 0); 470 printf("Into:\n"); 471 sqlite3TreeViewExpr(0, pNew, 0); 472 #endif 473 } 474 return pNew; 475 } 476 477 478 /* 479 ** Generate code for a single equality term of the WHERE clause. An equality 480 ** term can be either X=expr or X IN (...). pTerm is the term to be 481 ** coded. 482 ** 483 ** The current value for the constraint is left in a register, the index 484 ** of which is returned. An attempt is made store the result in iTarget but 485 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the 486 ** constraint is a TK_EQ or TK_IS, then the current value might be left in 487 ** some other register and it is the caller's responsibility to compensate. 488 ** 489 ** For a constraint of the form X=expr, the expression is evaluated in 490 ** straight-line code. For constraints of the form X IN (...) 491 ** this routine sets up a loop that will iterate over all values of X. 492 */ 493 static int codeEqualityTerm( 494 Parse *pParse, /* The parsing context */ 495 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 496 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 497 int iEq, /* Index of the equality term within this level */ 498 int bRev, /* True for reverse-order IN operations */ 499 int iTarget /* Attempt to leave results in this register */ 500 ){ 501 Expr *pX = pTerm->pExpr; 502 Vdbe *v = pParse->pVdbe; 503 int iReg; /* Register holding results */ 504 505 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); 506 assert( iTarget>0 ); 507 if( pX->op==TK_EQ || pX->op==TK_IS ){ 508 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 509 }else if( pX->op==TK_ISNULL ){ 510 iReg = iTarget; 511 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 512 #ifndef SQLITE_OMIT_SUBQUERY 513 }else{ 514 int eType = IN_INDEX_NOOP; 515 int iTab; 516 struct InLoop *pIn; 517 WhereLoop *pLoop = pLevel->pWLoop; 518 int i; 519 int nEq = 0; 520 int *aiMap = 0; 521 522 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 523 && pLoop->u.btree.pIndex!=0 524 && pLoop->u.btree.pIndex->aSortOrder[iEq] 525 ){ 526 testcase( iEq==0 ); 527 testcase( bRev ); 528 bRev = !bRev; 529 } 530 assert( pX->op==TK_IN ); 531 iReg = iTarget; 532 533 for(i=0; i<iEq; i++){ 534 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ 535 disableTerm(pLevel, pTerm); 536 return iTarget; 537 } 538 } 539 for(i=iEq;i<pLoop->nLTerm; i++){ 540 assert( pLoop->aLTerm[i]!=0 ); 541 if( pLoop->aLTerm[i]->pExpr==pX ) nEq++; 542 } 543 544 iTab = 0; 545 if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){ 546 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab); 547 }else{ 548 sqlite3 *db = pParse->db; 549 pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX); 550 551 if( !db->mallocFailed ){ 552 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq); 553 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab); 554 pTerm->pExpr->iTable = iTab; 555 } 556 sqlite3ExprDelete(db, pX); 557 pX = pTerm->pExpr; 558 } 559 560 if( eType==IN_INDEX_INDEX_DESC ){ 561 testcase( bRev ); 562 bRev = !bRev; 563 } 564 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 565 VdbeCoverageIf(v, bRev); 566 VdbeCoverageIf(v, !bRev); 567 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 568 569 pLoop->wsFlags |= WHERE_IN_ABLE; 570 if( pLevel->u.in.nIn==0 ){ 571 pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 572 } 573 if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){ 574 pLoop->wsFlags |= WHERE_IN_EARLYOUT; 575 } 576 577 i = pLevel->u.in.nIn; 578 pLevel->u.in.nIn += nEq; 579 pLevel->u.in.aInLoop = 580 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 581 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 582 pIn = pLevel->u.in.aInLoop; 583 if( pIn ){ 584 int iMap = 0; /* Index in aiMap[] */ 585 pIn += i; 586 for(i=iEq;i<pLoop->nLTerm; i++){ 587 if( pLoop->aLTerm[i]->pExpr==pX ){ 588 int iOut = iReg + i - iEq; 589 if( eType==IN_INDEX_ROWID ){ 590 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); 591 }else{ 592 int iCol = aiMap ? aiMap[iMap++] : 0; 593 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); 594 } 595 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); 596 if( i==iEq ){ 597 pIn->iCur = iTab; 598 pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next; 599 if( iEq>0 ){ 600 pIn->iBase = iReg - i; 601 pIn->nPrefix = i; 602 }else{ 603 pIn->nPrefix = 0; 604 } 605 }else{ 606 pIn->eEndLoopOp = OP_Noop; 607 } 608 pIn++; 609 } 610 } 611 testcase( iEq>0 612 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 613 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ); 614 if( iEq>0 615 && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0 616 ){ 617 sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq); 618 } 619 }else{ 620 pLevel->u.in.nIn = 0; 621 } 622 sqlite3DbFree(pParse->db, aiMap); 623 #endif 624 } 625 disableTerm(pLevel, pTerm); 626 return iReg; 627 } 628 629 /* 630 ** Generate code that will evaluate all == and IN constraints for an 631 ** index scan. 632 ** 633 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 634 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 635 ** The index has as many as three equality constraints, but in this 636 ** example, the third "c" value is an inequality. So only two 637 ** constraints are coded. This routine will generate code to evaluate 638 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 639 ** in consecutive registers and the index of the first register is returned. 640 ** 641 ** In the example above nEq==2. But this subroutine works for any value 642 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 643 ** The only thing it does is allocate the pLevel->iMem memory cell and 644 ** compute the affinity string. 645 ** 646 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 647 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 648 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 649 ** occurs after the nEq quality constraints. 650 ** 651 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 652 ** the index of the first memory cell in that range. The code that 653 ** calls this routine will use that memory range to store keys for 654 ** start and termination conditions of the loop. 655 ** key value of the loop. If one or more IN operators appear, then 656 ** this routine allocates an additional nEq memory cells for internal 657 ** use. 658 ** 659 ** Before returning, *pzAff is set to point to a buffer containing a 660 ** copy of the column affinity string of the index allocated using 661 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 662 ** with equality constraints that use BLOB or NONE affinity are set to 663 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 664 ** 665 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 666 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 667 ** 668 ** In the example above, the index on t1(a) has TEXT affinity. But since 669 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 670 ** no conversion should be attempted before using a t2.b value as part of 671 ** a key to search the index. Hence the first byte in the returned affinity 672 ** string in this example would be set to SQLITE_AFF_BLOB. 673 */ 674 static int codeAllEqualityTerms( 675 Parse *pParse, /* Parsing context */ 676 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 677 int bRev, /* Reverse the order of IN operators */ 678 int nExtraReg, /* Number of extra registers to allocate */ 679 char **pzAff /* OUT: Set to point to affinity string */ 680 ){ 681 u16 nEq; /* The number of == or IN constraints to code */ 682 u16 nSkip; /* Number of left-most columns to skip */ 683 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 684 Index *pIdx; /* The index being used for this loop */ 685 WhereTerm *pTerm; /* A single constraint term */ 686 WhereLoop *pLoop; /* The WhereLoop object */ 687 int j; /* Loop counter */ 688 int regBase; /* Base register */ 689 int nReg; /* Number of registers to allocate */ 690 char *zAff; /* Affinity string to return */ 691 692 /* This module is only called on query plans that use an index. */ 693 pLoop = pLevel->pWLoop; 694 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 695 nEq = pLoop->u.btree.nEq; 696 nSkip = pLoop->nSkip; 697 pIdx = pLoop->u.btree.pIndex; 698 assert( pIdx!=0 ); 699 700 /* Figure out how many memory cells we will need then allocate them. 701 */ 702 regBase = pParse->nMem + 1; 703 nReg = pLoop->u.btree.nEq + nExtraReg; 704 pParse->nMem += nReg; 705 706 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 707 assert( zAff!=0 || pParse->db->mallocFailed ); 708 709 if( nSkip ){ 710 int iIdxCur = pLevel->iIdxCur; 711 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 712 VdbeCoverageIf(v, bRev==0); 713 VdbeCoverageIf(v, bRev!=0); 714 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 715 j = sqlite3VdbeAddOp0(v, OP_Goto); 716 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 717 iIdxCur, 0, regBase, nSkip); 718 VdbeCoverageIf(v, bRev==0); 719 VdbeCoverageIf(v, bRev!=0); 720 sqlite3VdbeJumpHere(v, j); 721 for(j=0; j<nSkip; j++){ 722 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 723 testcase( pIdx->aiColumn[j]==XN_EXPR ); 724 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 725 } 726 } 727 728 /* Evaluate the equality constraints 729 */ 730 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 731 for(j=nSkip; j<nEq; j++){ 732 int r1; 733 pTerm = pLoop->aLTerm[j]; 734 assert( pTerm!=0 ); 735 /* The following testcase is true for indices with redundant columns. 736 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 737 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 738 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 739 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 740 if( r1!=regBase+j ){ 741 if( nReg==1 ){ 742 sqlite3ReleaseTempReg(pParse, regBase); 743 regBase = r1; 744 }else{ 745 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 746 } 747 } 748 if( pTerm->eOperator & WO_IN ){ 749 if( pTerm->pExpr->flags & EP_xIsSelect ){ 750 /* No affinity ever needs to be (or should be) applied to a value 751 ** from the RHS of an "? IN (SELECT ...)" expression. The 752 ** sqlite3FindInIndex() routine has already ensured that the 753 ** affinity of the comparison has been applied to the value. */ 754 if( zAff ) zAff[j] = SQLITE_AFF_BLOB; 755 } 756 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ 757 Expr *pRight = pTerm->pExpr->pRight; 758 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 759 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 760 VdbeCoverage(v); 761 } 762 if( zAff ){ 763 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 764 zAff[j] = SQLITE_AFF_BLOB; 765 } 766 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 767 zAff[j] = SQLITE_AFF_BLOB; 768 } 769 } 770 } 771 } 772 *pzAff = zAff; 773 return regBase; 774 } 775 776 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 777 /* 778 ** If the most recently coded instruction is a constant range constraint 779 ** (a string literal) that originated from the LIKE optimization, then 780 ** set P3 and P5 on the OP_String opcode so that the string will be cast 781 ** to a BLOB at appropriate times. 782 ** 783 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 784 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 785 ** scan loop run twice, once for strings and a second time for BLOBs. 786 ** The OP_String opcodes on the second pass convert the upper and lower 787 ** bound string constants to blobs. This routine makes the necessary changes 788 ** to the OP_String opcodes for that to happen. 789 ** 790 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 791 ** only the one pass through the string space is required, so this routine 792 ** becomes a no-op. 793 */ 794 static void whereLikeOptimizationStringFixup( 795 Vdbe *v, /* prepared statement under construction */ 796 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 797 WhereTerm *pTerm /* The upper or lower bound just coded */ 798 ){ 799 if( pTerm->wtFlags & TERM_LIKEOPT ){ 800 VdbeOp *pOp; 801 assert( pLevel->iLikeRepCntr>0 ); 802 pOp = sqlite3VdbeGetOp(v, -1); 803 assert( pOp!=0 ); 804 assert( pOp->opcode==OP_String8 805 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 806 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ 807 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ 808 } 809 } 810 #else 811 # define whereLikeOptimizationStringFixup(A,B,C) 812 #endif 813 814 #ifdef SQLITE_ENABLE_CURSOR_HINTS 815 /* 816 ** Information is passed from codeCursorHint() down to individual nodes of 817 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 818 ** structure. 819 */ 820 struct CCurHint { 821 int iTabCur; /* Cursor for the main table */ 822 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 823 Index *pIdx; /* The index used to access the table */ 824 }; 825 826 /* 827 ** This function is called for every node of an expression that is a candidate 828 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 829 ** the table CCurHint.iTabCur, verify that the same column can be 830 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 831 */ 832 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 833 struct CCurHint *pHint = pWalker->u.pCCurHint; 834 assert( pHint->pIdx!=0 ); 835 if( pExpr->op==TK_COLUMN 836 && pExpr->iTable==pHint->iTabCur 837 && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0 838 ){ 839 pWalker->eCode = 1; 840 } 841 return WRC_Continue; 842 } 843 844 /* 845 ** Test whether or not expression pExpr, which was part of a WHERE clause, 846 ** should be included in the cursor-hint for a table that is on the rhs 847 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the 848 ** expression is not suitable. 849 ** 850 ** An expression is unsuitable if it might evaluate to non NULL even if 851 ** a TK_COLUMN node that does affect the value of the expression is set 852 ** to NULL. For example: 853 ** 854 ** col IS NULL 855 ** col IS NOT NULL 856 ** coalesce(col, 1) 857 ** CASE WHEN col THEN 0 ELSE 1 END 858 */ 859 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ 860 if( pExpr->op==TK_IS 861 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT 862 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE 863 ){ 864 pWalker->eCode = 1; 865 }else if( pExpr->op==TK_FUNCTION ){ 866 int d1; 867 char d2[4]; 868 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ 869 pWalker->eCode = 1; 870 } 871 } 872 873 return WRC_Continue; 874 } 875 876 877 /* 878 ** This function is called on every node of an expression tree used as an 879 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 880 ** that accesses any table other than the one identified by 881 ** CCurHint.iTabCur, then do the following: 882 ** 883 ** 1) allocate a register and code an OP_Column instruction to read 884 ** the specified column into the new register, and 885 ** 886 ** 2) transform the expression node to a TK_REGISTER node that reads 887 ** from the newly populated register. 888 ** 889 ** Also, if the node is a TK_COLUMN that does access the table idenified 890 ** by pCCurHint.iTabCur, and an index is being used (which we will 891 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 892 ** an access of the index rather than the original table. 893 */ 894 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 895 int rc = WRC_Continue; 896 struct CCurHint *pHint = pWalker->u.pCCurHint; 897 if( pExpr->op==TK_COLUMN ){ 898 if( pExpr->iTable!=pHint->iTabCur ){ 899 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 900 sqlite3ExprCode(pWalker->pParse, pExpr, reg); 901 pExpr->op = TK_REGISTER; 902 pExpr->iTable = reg; 903 }else if( pHint->pIdx!=0 ){ 904 pExpr->iTable = pHint->iIdxCur; 905 pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn); 906 assert( pExpr->iColumn>=0 ); 907 } 908 }else if( pExpr->op==TK_AGG_FUNCTION ){ 909 /* An aggregate function in the WHERE clause of a query means this must 910 ** be a correlated sub-query, and expression pExpr is an aggregate from 911 ** the parent context. Do not walk the function arguments in this case. 912 ** 913 ** todo: It should be possible to replace this node with a TK_REGISTER 914 ** expression, as the result of the expression must be stored in a 915 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 916 rc = WRC_Prune; 917 } 918 return rc; 919 } 920 921 /* 922 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 923 */ 924 static void codeCursorHint( 925 struct SrcList_item *pTabItem, /* FROM clause item */ 926 WhereInfo *pWInfo, /* The where clause */ 927 WhereLevel *pLevel, /* Which loop to provide hints for */ 928 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 929 ){ 930 Parse *pParse = pWInfo->pParse; 931 sqlite3 *db = pParse->db; 932 Vdbe *v = pParse->pVdbe; 933 Expr *pExpr = 0; 934 WhereLoop *pLoop = pLevel->pWLoop; 935 int iCur; 936 WhereClause *pWC; 937 WhereTerm *pTerm; 938 int i, j; 939 struct CCurHint sHint; 940 Walker sWalker; 941 942 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 943 iCur = pLevel->iTabCur; 944 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 945 sHint.iTabCur = iCur; 946 sHint.iIdxCur = pLevel->iIdxCur; 947 sHint.pIdx = pLoop->u.btree.pIndex; 948 memset(&sWalker, 0, sizeof(sWalker)); 949 sWalker.pParse = pParse; 950 sWalker.u.pCCurHint = &sHint; 951 pWC = &pWInfo->sWC; 952 for(i=0; i<pWC->nTerm; i++){ 953 pTerm = &pWC->a[i]; 954 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 955 if( pTerm->prereqAll & pLevel->notReady ) continue; 956 957 /* Any terms specified as part of the ON(...) clause for any LEFT 958 ** JOIN for which the current table is not the rhs are omitted 959 ** from the cursor-hint. 960 ** 961 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms 962 ** that were specified as part of the WHERE clause must be excluded. 963 ** This is to address the following: 964 ** 965 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; 966 ** 967 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its 968 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is 969 ** pushed down to the cursor, this row is filtered out, causing 970 ** SQLite to synthesize a row of NULL values. Which does match the 971 ** WHERE clause, and so the query returns a row. Which is incorrect. 972 ** 973 ** For the same reason, WHERE terms such as: 974 ** 975 ** WHERE 1 = (t2.c IS NULL) 976 ** 977 ** are also excluded. See codeCursorHintIsOrFunction() for details. 978 */ 979 if( pTabItem->fg.jointype & JT_LEFT ){ 980 Expr *pExpr = pTerm->pExpr; 981 if( !ExprHasProperty(pExpr, EP_FromJoin) 982 || pExpr->iRightJoinTable!=pTabItem->iCursor 983 ){ 984 sWalker.eCode = 0; 985 sWalker.xExprCallback = codeCursorHintIsOrFunction; 986 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 987 if( sWalker.eCode ) continue; 988 } 989 }else{ 990 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; 991 } 992 993 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 994 ** the cursor. These terms are not needed as hints for a pure range 995 ** scan (that has no == terms) so omit them. */ 996 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 997 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 998 if( j<pLoop->nLTerm ) continue; 999 } 1000 1001 /* No subqueries or non-deterministic functions allowed */ 1002 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 1003 1004 /* For an index scan, make sure referenced columns are actually in 1005 ** the index. */ 1006 if( sHint.pIdx!=0 ){ 1007 sWalker.eCode = 0; 1008 sWalker.xExprCallback = codeCursorHintCheckExpr; 1009 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 1010 if( sWalker.eCode ) continue; 1011 } 1012 1013 /* If we survive all prior tests, that means this term is worth hinting */ 1014 pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 1015 } 1016 if( pExpr!=0 ){ 1017 sWalker.xExprCallback = codeCursorHintFixExpr; 1018 sqlite3WalkExpr(&sWalker, pExpr); 1019 sqlite3VdbeAddOp4(v, OP_CursorHint, 1020 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 1021 (const char*)pExpr, P4_EXPR); 1022 } 1023 } 1024 #else 1025 # define codeCursorHint(A,B,C,D) /* No-op */ 1026 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 1027 1028 /* 1029 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains 1030 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This 1031 ** function generates code to do a deferred seek of cursor iCur to the 1032 ** rowid stored in register iRowid. 1033 ** 1034 ** Normally, this is just: 1035 ** 1036 ** OP_DeferredSeek $iCur $iRowid 1037 ** 1038 ** However, if the scan currently being coded is a branch of an OR-loop and 1039 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek 1040 ** is set to iIdxCur and P4 is set to point to an array of integers 1041 ** containing one entry for each column of the table cursor iCur is open 1042 ** on. For each table column, if the column is the i'th column of the 1043 ** index, then the corresponding array entry is set to (i+1). If the column 1044 ** does not appear in the index at all, the array entry is set to 0. 1045 */ 1046 static void codeDeferredSeek( 1047 WhereInfo *pWInfo, /* Where clause context */ 1048 Index *pIdx, /* Index scan is using */ 1049 int iCur, /* Cursor for IPK b-tree */ 1050 int iIdxCur /* Index cursor */ 1051 ){ 1052 Parse *pParse = pWInfo->pParse; /* Parse context */ 1053 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ 1054 1055 assert( iIdxCur>0 ); 1056 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); 1057 1058 pWInfo->bDeferredSeek = 1; 1059 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur); 1060 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 1061 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) 1062 ){ 1063 int i; 1064 Table *pTab = pIdx->pTable; 1065 u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1)); 1066 if( ai ){ 1067 ai[0] = pTab->nCol; 1068 for(i=0; i<pIdx->nColumn-1; i++){ 1069 int x1, x2; 1070 assert( pIdx->aiColumn[i]<pTab->nCol ); 1071 x1 = pIdx->aiColumn[i]; 1072 x2 = sqlite3TableColumnToStorage(pTab, x1); 1073 testcase( x1!=x2 ); 1074 if( x1>=0 ) ai[x2+1] = i+1; 1075 } 1076 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); 1077 } 1078 } 1079 } 1080 1081 /* 1082 ** If the expression passed as the second argument is a vector, generate 1083 ** code to write the first nReg elements of the vector into an array 1084 ** of registers starting with iReg. 1085 ** 1086 ** If the expression is not a vector, then nReg must be passed 1. In 1087 ** this case, generate code to evaluate the expression and leave the 1088 ** result in register iReg. 1089 */ 1090 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ 1091 assert( nReg>0 ); 1092 if( p && sqlite3ExprIsVector(p) ){ 1093 #ifndef SQLITE_OMIT_SUBQUERY 1094 if( (p->flags & EP_xIsSelect) ){ 1095 Vdbe *v = pParse->pVdbe; 1096 int iSelect; 1097 assert( p->op==TK_SELECT ); 1098 iSelect = sqlite3CodeSubselect(pParse, p); 1099 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); 1100 }else 1101 #endif 1102 { 1103 int i; 1104 ExprList *pList = p->x.pList; 1105 assert( nReg<=pList->nExpr ); 1106 for(i=0; i<nReg; i++){ 1107 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i); 1108 } 1109 } 1110 }else{ 1111 assert( nReg==1 ); 1112 sqlite3ExprCode(pParse, p, iReg); 1113 } 1114 } 1115 1116 /* An instance of the IdxExprTrans object carries information about a 1117 ** mapping from an expression on table columns into a column in an index 1118 ** down through the Walker. 1119 */ 1120 typedef struct IdxExprTrans { 1121 Expr *pIdxExpr; /* The index expression */ 1122 int iTabCur; /* The cursor of the corresponding table */ 1123 int iIdxCur; /* The cursor for the index */ 1124 int iIdxCol; /* The column for the index */ 1125 int iTabCol; /* The column for the table */ 1126 WhereInfo *pWInfo; /* Complete WHERE clause information */ 1127 sqlite3 *db; /* Database connection (for malloc()) */ 1128 } IdxExprTrans; 1129 1130 /* 1131 ** Preserve pExpr on the WhereETrans list of the WhereInfo. 1132 */ 1133 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){ 1134 WhereExprMod *pNew; 1135 pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew)); 1136 if( pNew==0 ) return; 1137 pNew->pNext = pTrans->pWInfo->pExprMods; 1138 pTrans->pWInfo->pExprMods = pNew; 1139 pNew->pExpr = pExpr; 1140 memcpy(&pNew->orig, pExpr, sizeof(*pExpr)); 1141 } 1142 1143 /* The walker node callback used to transform matching expressions into 1144 ** a reference to an index column for an index on an expression. 1145 ** 1146 ** If pExpr matches, then transform it into a reference to the index column 1147 ** that contains the value of pExpr. 1148 */ 1149 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){ 1150 IdxExprTrans *pX = p->u.pIdxTrans; 1151 if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){ 1152 preserveExpr(pX, pExpr); 1153 pExpr->affExpr = sqlite3ExprAffinity(pExpr); 1154 pExpr->op = TK_COLUMN; 1155 pExpr->iTable = pX->iIdxCur; 1156 pExpr->iColumn = pX->iIdxCol; 1157 pExpr->y.pTab = 0; 1158 testcase( ExprHasProperty(pExpr, EP_Skip) ); 1159 testcase( ExprHasProperty(pExpr, EP_Unlikely) ); 1160 ExprClearProperty(pExpr, EP_Skip|EP_Unlikely); 1161 return WRC_Prune; 1162 }else{ 1163 return WRC_Continue; 1164 } 1165 } 1166 1167 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1168 /* A walker node callback that translates a column reference to a table 1169 ** into a corresponding column reference of an index. 1170 */ 1171 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){ 1172 if( pExpr->op==TK_COLUMN ){ 1173 IdxExprTrans *pX = p->u.pIdxTrans; 1174 if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){ 1175 assert( pExpr->y.pTab!=0 ); 1176 preserveExpr(pX, pExpr); 1177 pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn); 1178 pExpr->iTable = pX->iIdxCur; 1179 pExpr->iColumn = pX->iIdxCol; 1180 pExpr->y.pTab = 0; 1181 } 1182 } 1183 return WRC_Continue; 1184 } 1185 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1186 1187 /* 1188 ** For an indexes on expression X, locate every instance of expression X 1189 ** in pExpr and change that subexpression into a reference to the appropriate 1190 ** column of the index. 1191 ** 1192 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in 1193 ** the table into references to the corresponding (stored) column of the 1194 ** index. 1195 */ 1196 static void whereIndexExprTrans( 1197 Index *pIdx, /* The Index */ 1198 int iTabCur, /* Cursor of the table that is being indexed */ 1199 int iIdxCur, /* Cursor of the index itself */ 1200 WhereInfo *pWInfo /* Transform expressions in this WHERE clause */ 1201 ){ 1202 int iIdxCol; /* Column number of the index */ 1203 ExprList *aColExpr; /* Expressions that are indexed */ 1204 Table *pTab; 1205 Walker w; 1206 IdxExprTrans x; 1207 aColExpr = pIdx->aColExpr; 1208 if( aColExpr==0 && !pIdx->bHasVCol ){ 1209 /* The index does not reference any expressions or virtual columns 1210 ** so no translations are needed. */ 1211 return; 1212 } 1213 pTab = pIdx->pTable; 1214 memset(&w, 0, sizeof(w)); 1215 w.u.pIdxTrans = &x; 1216 x.iTabCur = iTabCur; 1217 x.iIdxCur = iIdxCur; 1218 x.pWInfo = pWInfo; 1219 x.db = pWInfo->pParse->db; 1220 for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){ 1221 i16 iRef = pIdx->aiColumn[iIdxCol]; 1222 if( iRef==XN_EXPR ){ 1223 assert( aColExpr->a[iIdxCol].pExpr!=0 ); 1224 x.pIdxExpr = aColExpr->a[iIdxCol].pExpr; 1225 if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue; 1226 w.xExprCallback = whereIndexExprTransNode; 1227 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1228 }else if( iRef>=0 1229 && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0 1230 && (pTab->aCol[iRef].zColl==0 1231 || sqlite3StrICmp(pTab->aCol[iRef].zColl, sqlite3StrBINARY)==0) 1232 ){ 1233 /* Check to see if there are direct references to generated columns 1234 ** that are contained in the index. Pulling the generated column 1235 ** out of the index is an optimization only - the main table is always 1236 ** available if the index cannot be used. To avoid unnecessary 1237 ** complication, omit this optimization if the collating sequence for 1238 ** the column is non-standard */ 1239 x.iTabCol = iRef; 1240 w.xExprCallback = whereIndexExprTransColumn; 1241 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1242 }else{ 1243 continue; 1244 } 1245 x.iIdxCol = iIdxCol; 1246 sqlite3WalkExpr(&w, pWInfo->pWhere); 1247 sqlite3WalkExprList(&w, pWInfo->pOrderBy); 1248 sqlite3WalkExprList(&w, pWInfo->pResultSet); 1249 } 1250 } 1251 1252 /* 1253 ** The pTruth expression is always true because it is the WHERE clause 1254 ** a partial index that is driving a query loop. Look through all of the 1255 ** WHERE clause terms on the query, and if any of those terms must be 1256 ** true because pTruth is true, then mark those WHERE clause terms as 1257 ** coded. 1258 */ 1259 static void whereApplyPartialIndexConstraints( 1260 Expr *pTruth, 1261 int iTabCur, 1262 WhereClause *pWC 1263 ){ 1264 int i; 1265 WhereTerm *pTerm; 1266 while( pTruth->op==TK_AND ){ 1267 whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC); 1268 pTruth = pTruth->pRight; 1269 } 1270 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1271 Expr *pExpr; 1272 if( pTerm->wtFlags & TERM_CODED ) continue; 1273 pExpr = pTerm->pExpr; 1274 if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){ 1275 pTerm->wtFlags |= TERM_CODED; 1276 } 1277 } 1278 } 1279 1280 /* 1281 ** Generate code for the start of the iLevel-th loop in the WHERE clause 1282 ** implementation described by pWInfo. 1283 */ 1284 Bitmask sqlite3WhereCodeOneLoopStart( 1285 Parse *pParse, /* Parsing context */ 1286 Vdbe *v, /* Prepared statement under construction */ 1287 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1288 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1289 WhereLevel *pLevel, /* The current level pointer */ 1290 Bitmask notReady /* Which tables are currently available */ 1291 ){ 1292 int j, k; /* Loop counters */ 1293 int iCur; /* The VDBE cursor for the table */ 1294 int addrNxt; /* Where to jump to continue with the next IN case */ 1295 int bRev; /* True if we need to scan in reverse order */ 1296 WhereLoop *pLoop; /* The WhereLoop object being coded */ 1297 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 1298 WhereTerm *pTerm; /* A WHERE clause term */ 1299 sqlite3 *db; /* Database connection */ 1300 struct SrcList_item *pTabItem; /* FROM clause term being coded */ 1301 int addrBrk; /* Jump here to break out of the loop */ 1302 int addrHalt; /* addrBrk for the outermost loop */ 1303 int addrCont; /* Jump here to continue with next cycle */ 1304 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 1305 int iReleaseReg = 0; /* Temp register to free before returning */ 1306 Index *pIdx = 0; /* Index used by loop (if any) */ 1307 int iLoop; /* Iteration of constraint generator loop */ 1308 1309 pWC = &pWInfo->sWC; 1310 db = pParse->db; 1311 pLoop = pLevel->pWLoop; 1312 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1313 iCur = pTabItem->iCursor; 1314 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 1315 bRev = (pWInfo->revMask>>iLevel)&1; 1316 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 1317 #if WHERETRACE_ENABLED /* 0x20800 */ 1318 if( sqlite3WhereTrace & 0x800 ){ 1319 sqlite3DebugPrintf("Coding level %d of %d: notReady=%llx iFrom=%d\n", 1320 iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom); 1321 sqlite3WhereLoopPrint(pLoop, pWC); 1322 } 1323 if( sqlite3WhereTrace & 0x20000 ){ 1324 if( iLevel==0 ){ 1325 sqlite3DebugPrintf("WHERE clause being coded:\n"); 1326 sqlite3TreeViewExpr(0, pWInfo->pWhere, 0); 1327 } 1328 sqlite3DebugPrintf("All WHERE-clause terms before coding:\n"); 1329 sqlite3WhereClausePrint(pWC); 1330 } 1331 #endif 1332 1333 /* Create labels for the "break" and "continue" instructions 1334 ** for the current loop. Jump to addrBrk to break out of a loop. 1335 ** Jump to cont to go immediately to the next iteration of the 1336 ** loop. 1337 ** 1338 ** When there is an IN operator, we also have a "addrNxt" label that 1339 ** means to continue with the next IN value combination. When 1340 ** there are no IN operators in the constraints, the "addrNxt" label 1341 ** is the same as "addrBrk". 1342 */ 1343 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 1344 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse); 1345 1346 /* If this is the right table of a LEFT OUTER JOIN, allocate and 1347 ** initialize a memory cell that records if this table matches any 1348 ** row of the left table of the join. 1349 */ 1350 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 1351 || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0 1352 ); 1353 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 1354 pLevel->iLeftJoin = ++pParse->nMem; 1355 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 1356 VdbeComment((v, "init LEFT JOIN no-match flag")); 1357 } 1358 1359 /* Compute a safe address to jump to if we discover that the table for 1360 ** this loop is empty and can never contribute content. */ 1361 for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){} 1362 addrHalt = pWInfo->a[j].addrBrk; 1363 1364 /* Special case of a FROM clause subquery implemented as a co-routine */ 1365 if( pTabItem->fg.viaCoroutine ){ 1366 int regYield = pTabItem->regReturn; 1367 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 1368 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 1369 VdbeCoverage(v); 1370 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 1371 pLevel->op = OP_Goto; 1372 }else 1373 1374 #ifndef SQLITE_OMIT_VIRTUALTABLE 1375 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 1376 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 1377 ** to access the data. 1378 */ 1379 int iReg; /* P3 Value for OP_VFilter */ 1380 int addrNotFound; 1381 int nConstraint = pLoop->nLTerm; 1382 int iIn; /* Counter for IN constraints */ 1383 1384 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 1385 addrNotFound = pLevel->addrBrk; 1386 for(j=0; j<nConstraint; j++){ 1387 int iTarget = iReg+j+2; 1388 pTerm = pLoop->aLTerm[j]; 1389 if( NEVER(pTerm==0) ) continue; 1390 if( pTerm->eOperator & WO_IN ){ 1391 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 1392 addrNotFound = pLevel->addrNxt; 1393 }else{ 1394 Expr *pRight = pTerm->pExpr->pRight; 1395 codeExprOrVector(pParse, pRight, iTarget, 1); 1396 } 1397 } 1398 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 1399 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 1400 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 1401 pLoop->u.vtab.idxStr, 1402 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); 1403 VdbeCoverage(v); 1404 pLoop->u.vtab.needFree = 0; 1405 /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed 1406 ** the u.vtab.idxStr. NULL it out to prevent a use-after-free */ 1407 if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0; 1408 pLevel->p1 = iCur; 1409 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 1410 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1411 iIn = pLevel->u.in.nIn; 1412 for(j=nConstraint-1; j>=0; j--){ 1413 pTerm = pLoop->aLTerm[j]; 1414 if( (pTerm->eOperator & WO_IN)!=0 ) iIn--; 1415 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ 1416 disableTerm(pLevel, pTerm); 1417 }else if( (pTerm->eOperator & WO_IN)!=0 1418 && sqlite3ExprVectorSize(pTerm->pExpr->pLeft)==1 1419 ){ 1420 Expr *pCompare; /* The comparison operator */ 1421 Expr *pRight; /* RHS of the comparison */ 1422 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ 1423 1424 /* Reload the constraint value into reg[iReg+j+2]. The same value 1425 ** was loaded into the same register prior to the OP_VFilter, but 1426 ** the xFilter implementation might have changed the datatype or 1427 ** encoding of the value in the register, so it *must* be reloaded. */ 1428 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed ); 1429 if( !db->mallocFailed ){ 1430 assert( iIn>=0 && iIn<pLevel->u.in.nIn ); 1431 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop); 1432 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid ); 1433 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 ); 1434 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 ); 1435 testcase( pOp->opcode==OP_Rowid ); 1436 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); 1437 } 1438 1439 /* Generate code that will continue to the next row if 1440 ** the IN constraint is not satisfied */ 1441 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); 1442 assert( pCompare!=0 || db->mallocFailed ); 1443 if( pCompare ){ 1444 pCompare->pLeft = pTerm->pExpr->pLeft; 1445 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); 1446 if( pRight ){ 1447 pRight->iTable = iReg+j+2; 1448 sqlite3ExprIfFalse( 1449 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL 1450 ); 1451 } 1452 pCompare->pLeft = 0; 1453 sqlite3ExprDelete(db, pCompare); 1454 } 1455 } 1456 } 1457 assert( iIn==0 || db->mallocFailed ); 1458 /* These registers need to be preserved in case there is an IN operator 1459 ** loop. So we could deallocate the registers here (and potentially 1460 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems 1461 ** simpler and safer to simply not reuse the registers. 1462 ** 1463 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 1464 */ 1465 }else 1466 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1467 1468 if( (pLoop->wsFlags & WHERE_IPK)!=0 1469 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 1470 ){ 1471 /* Case 2: We can directly reference a single row using an 1472 ** equality comparison against the ROWID field. Or 1473 ** we reference multiple rows using a "rowid IN (...)" 1474 ** construct. 1475 */ 1476 assert( pLoop->u.btree.nEq==1 ); 1477 pTerm = pLoop->aLTerm[0]; 1478 assert( pTerm!=0 ); 1479 assert( pTerm->pExpr!=0 ); 1480 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1481 iReleaseReg = ++pParse->nMem; 1482 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 1483 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 1484 addrNxt = pLevel->addrNxt; 1485 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); 1486 VdbeCoverage(v); 1487 pLevel->op = OP_Noop; 1488 if( (pTerm->prereqAll & pLevel->notReady)==0 ){ 1489 pTerm->wtFlags |= TERM_CODED; 1490 } 1491 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 1492 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 1493 ){ 1494 /* Case 3: We have an inequality comparison against the ROWID field. 1495 */ 1496 int testOp = OP_Noop; 1497 int start; 1498 int memEndValue = 0; 1499 WhereTerm *pStart, *pEnd; 1500 1501 j = 0; 1502 pStart = pEnd = 0; 1503 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 1504 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 1505 assert( pStart!=0 || pEnd!=0 ); 1506 if( bRev ){ 1507 pTerm = pStart; 1508 pStart = pEnd; 1509 pEnd = pTerm; 1510 } 1511 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); 1512 if( pStart ){ 1513 Expr *pX; /* The expression that defines the start bound */ 1514 int r1, rTemp; /* Registers for holding the start boundary */ 1515 int op; /* Cursor seek operation */ 1516 1517 /* The following constant maps TK_xx codes into corresponding 1518 ** seek opcodes. It depends on a particular ordering of TK_xx 1519 */ 1520 const u8 aMoveOp[] = { 1521 /* TK_GT */ OP_SeekGT, 1522 /* TK_LE */ OP_SeekLE, 1523 /* TK_LT */ OP_SeekLT, 1524 /* TK_GE */ OP_SeekGE 1525 }; 1526 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 1527 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 1528 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 1529 1530 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 1531 testcase( pStart->wtFlags & TERM_VIRTUAL ); 1532 pX = pStart->pExpr; 1533 assert( pX!=0 ); 1534 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 1535 if( sqlite3ExprIsVector(pX->pRight) ){ 1536 r1 = rTemp = sqlite3GetTempReg(pParse); 1537 codeExprOrVector(pParse, pX->pRight, r1, 1); 1538 testcase( pX->op==TK_GT ); 1539 testcase( pX->op==TK_GE ); 1540 testcase( pX->op==TK_LT ); 1541 testcase( pX->op==TK_LE ); 1542 op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1]; 1543 assert( pX->op!=TK_GT || op==OP_SeekGE ); 1544 assert( pX->op!=TK_GE || op==OP_SeekGE ); 1545 assert( pX->op!=TK_LT || op==OP_SeekLE ); 1546 assert( pX->op!=TK_LE || op==OP_SeekLE ); 1547 }else{ 1548 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 1549 disableTerm(pLevel, pStart); 1550 op = aMoveOp[(pX->op - TK_GT)]; 1551 } 1552 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); 1553 VdbeComment((v, "pk")); 1554 VdbeCoverageIf(v, pX->op==TK_GT); 1555 VdbeCoverageIf(v, pX->op==TK_LE); 1556 VdbeCoverageIf(v, pX->op==TK_LT); 1557 VdbeCoverageIf(v, pX->op==TK_GE); 1558 sqlite3ReleaseTempReg(pParse, rTemp); 1559 }else{ 1560 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt); 1561 VdbeCoverageIf(v, bRev==0); 1562 VdbeCoverageIf(v, bRev!=0); 1563 } 1564 if( pEnd ){ 1565 Expr *pX; 1566 pX = pEnd->pExpr; 1567 assert( pX!=0 ); 1568 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 1569 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 1570 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 1571 memEndValue = ++pParse->nMem; 1572 codeExprOrVector(pParse, pX->pRight, memEndValue, 1); 1573 if( 0==sqlite3ExprIsVector(pX->pRight) 1574 && (pX->op==TK_LT || pX->op==TK_GT) 1575 ){ 1576 testOp = bRev ? OP_Le : OP_Ge; 1577 }else{ 1578 testOp = bRev ? OP_Lt : OP_Gt; 1579 } 1580 if( 0==sqlite3ExprIsVector(pX->pRight) ){ 1581 disableTerm(pLevel, pEnd); 1582 } 1583 } 1584 start = sqlite3VdbeCurrentAddr(v); 1585 pLevel->op = bRev ? OP_Prev : OP_Next; 1586 pLevel->p1 = iCur; 1587 pLevel->p2 = start; 1588 assert( pLevel->p5==0 ); 1589 if( testOp!=OP_Noop ){ 1590 iRowidReg = ++pParse->nMem; 1591 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 1592 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 1593 VdbeCoverageIf(v, testOp==OP_Le); 1594 VdbeCoverageIf(v, testOp==OP_Lt); 1595 VdbeCoverageIf(v, testOp==OP_Ge); 1596 VdbeCoverageIf(v, testOp==OP_Gt); 1597 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 1598 } 1599 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 1600 /* Case 4: A scan using an index. 1601 ** 1602 ** The WHERE clause may contain zero or more equality 1603 ** terms ("==" or "IN" operators) that refer to the N 1604 ** left-most columns of the index. It may also contain 1605 ** inequality constraints (>, <, >= or <=) on the indexed 1606 ** column that immediately follows the N equalities. Only 1607 ** the right-most column can be an inequality - the rest must 1608 ** use the "==" and "IN" operators. For example, if the 1609 ** index is on (x,y,z), then the following clauses are all 1610 ** optimized: 1611 ** 1612 ** x=5 1613 ** x=5 AND y=10 1614 ** x=5 AND y<10 1615 ** x=5 AND y>5 AND y<10 1616 ** x=5 AND y=5 AND z<=10 1617 ** 1618 ** The z<10 term of the following cannot be used, only 1619 ** the x=5 term: 1620 ** 1621 ** x=5 AND z<10 1622 ** 1623 ** N may be zero if there are inequality constraints. 1624 ** If there are no inequality constraints, then N is at 1625 ** least one. 1626 ** 1627 ** This case is also used when there are no WHERE clause 1628 ** constraints but an index is selected anyway, in order 1629 ** to force the output order to conform to an ORDER BY. 1630 */ 1631 static const u8 aStartOp[] = { 1632 0, 1633 0, 1634 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1635 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1636 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1637 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1638 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1639 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1640 }; 1641 static const u8 aEndOp[] = { 1642 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1643 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1644 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1645 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1646 }; 1647 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1648 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ 1649 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ 1650 int regBase; /* Base register holding constraint values */ 1651 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1652 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1653 int startEq; /* True if range start uses ==, >= or <= */ 1654 int endEq; /* True if range end uses ==, >= or <= */ 1655 int start_constraints; /* Start of range is constrained */ 1656 int nConstraint; /* Number of constraint terms */ 1657 int iIdxCur; /* The VDBE cursor for the index */ 1658 int nExtraReg = 0; /* Number of extra registers needed */ 1659 int op; /* Instruction opcode */ 1660 char *zStartAff; /* Affinity for start of range constraint */ 1661 char *zEndAff = 0; /* Affinity for end of range constraint */ 1662 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1663 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1664 int omitTable; /* True if we use the index only */ 1665 int regBignull = 0; /* big-null flag register */ 1666 int addrSeekScan = 0; /* Opcode of the OP_SeekScan, if any */ 1667 1668 pIdx = pLoop->u.btree.pIndex; 1669 iIdxCur = pLevel->iIdxCur; 1670 assert( nEq>=pLoop->nSkip ); 1671 1672 /* Find any inequality constraint terms for the start and end 1673 ** of the range. 1674 */ 1675 j = nEq; 1676 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1677 pRangeStart = pLoop->aLTerm[j++]; 1678 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); 1679 /* Like optimization range constraints always occur in pairs */ 1680 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1681 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1682 } 1683 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1684 pRangeEnd = pLoop->aLTerm[j++]; 1685 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); 1686 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1687 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1688 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1689 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1690 pLevel->iLikeRepCntr = (u32)++pParse->nMem; 1691 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); 1692 VdbeComment((v, "LIKE loop counter")); 1693 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1694 /* iLikeRepCntr actually stores 2x the counter register number. The 1695 ** bottom bit indicates whether the search order is ASC or DESC. */ 1696 testcase( bRev ); 1697 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1698 assert( (bRev & ~1)==0 ); 1699 pLevel->iLikeRepCntr <<=1; 1700 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); 1701 } 1702 #endif 1703 if( pRangeStart==0 ){ 1704 j = pIdx->aiColumn[nEq]; 1705 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){ 1706 bSeekPastNull = 1; 1707 } 1708 } 1709 } 1710 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1711 1712 /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses 1713 ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS 1714 ** FIRST). In both cases separate ordered scans are made of those 1715 ** index entries for which the column is null and for those for which 1716 ** it is not. For an ASC sort, the non-NULL entries are scanned first. 1717 ** For DESC, NULL entries are scanned first. 1718 */ 1719 if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0 1720 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0 1721 ){ 1722 assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 ); 1723 assert( pRangeEnd==0 && pRangeStart==0 ); 1724 testcase( pLoop->nSkip>0 ); 1725 nExtraReg = 1; 1726 bSeekPastNull = 1; 1727 pLevel->regBignull = regBignull = ++pParse->nMem; 1728 if( pLevel->iLeftJoin ){ 1729 sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull); 1730 } 1731 pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse); 1732 } 1733 1734 /* If we are doing a reverse order scan on an ascending index, or 1735 ** a forward order scan on a descending index, interchange the 1736 ** start and end terms (pRangeStart and pRangeEnd). 1737 */ 1738 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) 1739 || (bRev && pIdx->nKeyCol==nEq) 1740 ){ 1741 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1742 SWAP(u8, bSeekPastNull, bStopAtNull); 1743 SWAP(u8, nBtm, nTop); 1744 } 1745 1746 /* Generate code to evaluate all constraint terms using == or IN 1747 ** and store the values of those terms in an array of registers 1748 ** starting at regBase. 1749 */ 1750 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); 1751 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1752 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1753 if( zStartAff && nTop ){ 1754 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); 1755 } 1756 addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt); 1757 1758 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1759 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1760 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1761 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1762 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1763 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1764 start_constraints = pRangeStart || nEq>0; 1765 1766 /* Seek the index cursor to the start of the range. */ 1767 nConstraint = nEq; 1768 if( pRangeStart ){ 1769 Expr *pRight = pRangeStart->pExpr->pRight; 1770 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); 1771 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1772 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1773 && sqlite3ExprCanBeNull(pRight) 1774 ){ 1775 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1776 VdbeCoverage(v); 1777 } 1778 if( zStartAff ){ 1779 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); 1780 } 1781 nConstraint += nBtm; 1782 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1783 if( sqlite3ExprIsVector(pRight)==0 ){ 1784 disableTerm(pLevel, pRangeStart); 1785 }else{ 1786 startEq = 1; 1787 } 1788 bSeekPastNull = 0; 1789 }else if( bSeekPastNull ){ 1790 startEq = 0; 1791 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1792 start_constraints = 1; 1793 nConstraint++; 1794 }else if( regBignull ){ 1795 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1796 start_constraints = 1; 1797 nConstraint++; 1798 } 1799 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1800 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ 1801 /* The skip-scan logic inside the call to codeAllEqualityConstraints() 1802 ** above has already left the cursor sitting on the correct row, 1803 ** so no further seeking is needed */ 1804 }else{ 1805 if( regBignull ){ 1806 sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull); 1807 VdbeComment((v, "NULL-scan pass ctr")); 1808 } 1809 1810 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 1811 assert( op!=0 ); 1812 if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){ 1813 assert( regBignull==0 ); 1814 /* TUNING: The OP_SeekScan opcode seeks to reduce the number 1815 ** of expensive seek operations by replacing a single seek with 1816 ** 1 or more step operations. The question is, how many steps 1817 ** should we try before giving up and going with a seek. The cost 1818 ** of a seek is proportional to the logarithm of the of the number 1819 ** of entries in the tree, so basing the number of steps to try 1820 ** on the estimated number of rows in the btree seems like a good 1821 ** guess. */ 1822 addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan, 1823 (pIdx->aiRowLogEst[0]+9)/10); 1824 VdbeCoverage(v); 1825 } 1826 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1827 VdbeCoverage(v); 1828 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1829 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1830 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 1831 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1832 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1833 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 1834 1835 assert( bSeekPastNull==0 || bStopAtNull==0 ); 1836 if( regBignull ){ 1837 assert( bSeekPastNull==1 || bStopAtNull==1 ); 1838 assert( bSeekPastNull==!bStopAtNull ); 1839 assert( bStopAtNull==startEq ); 1840 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2); 1841 op = aStartOp[(nConstraint>1)*4 + 2 + bRev]; 1842 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 1843 nConstraint-startEq); 1844 VdbeCoverage(v); 1845 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1846 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1847 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1848 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1849 assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE); 1850 } 1851 } 1852 1853 /* Load the value for the inequality constraint at the end of the 1854 ** range (if any). 1855 */ 1856 nConstraint = nEq; 1857 if( pRangeEnd ){ 1858 Expr *pRight = pRangeEnd->pExpr->pRight; 1859 codeExprOrVector(pParse, pRight, regBase+nEq, nTop); 1860 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 1861 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 1862 && sqlite3ExprCanBeNull(pRight) 1863 ){ 1864 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1865 VdbeCoverage(v); 1866 } 1867 if( zEndAff ){ 1868 updateRangeAffinityStr(pRight, nTop, zEndAff); 1869 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); 1870 }else{ 1871 assert( pParse->db->mallocFailed ); 1872 } 1873 nConstraint += nTop; 1874 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 1875 1876 if( sqlite3ExprIsVector(pRight)==0 ){ 1877 disableTerm(pLevel, pRangeEnd); 1878 }else{ 1879 endEq = 1; 1880 } 1881 }else if( bStopAtNull ){ 1882 if( regBignull==0 ){ 1883 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1884 endEq = 0; 1885 } 1886 nConstraint++; 1887 } 1888 sqlite3DbFree(db, zStartAff); 1889 sqlite3DbFree(db, zEndAff); 1890 1891 /* Top of the loop body */ 1892 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1893 1894 /* Check if the index cursor is past the end of the range. */ 1895 if( nConstraint ){ 1896 if( regBignull ){ 1897 /* Except, skip the end-of-range check while doing the NULL-scan */ 1898 sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3); 1899 VdbeComment((v, "If NULL-scan 2nd pass")); 1900 VdbeCoverage(v); 1901 } 1902 op = aEndOp[bRev*2 + endEq]; 1903 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1904 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1905 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1906 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1907 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1908 if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan); 1909 } 1910 if( regBignull ){ 1911 /* During a NULL-scan, check to see if we have reached the end of 1912 ** the NULLs */ 1913 assert( bSeekPastNull==!bStopAtNull ); 1914 assert( bSeekPastNull+bStopAtNull==1 ); 1915 assert( nConstraint+bSeekPastNull>0 ); 1916 sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2); 1917 VdbeComment((v, "If NULL-scan 1st pass")); 1918 VdbeCoverage(v); 1919 op = aEndOp[bRev*2 + bSeekPastNull]; 1920 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 1921 nConstraint+bSeekPastNull); 1922 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1923 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1924 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1925 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1926 } 1927 1928 if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){ 1929 sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq); 1930 } 1931 1932 /* Seek the table cursor, if required */ 1933 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 1934 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0; 1935 if( omitTable ){ 1936 /* pIdx is a covering index. No need to access the main table. */ 1937 }else if( HasRowid(pIdx->pTable) ){ 1938 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); 1939 }else if( iCur!=iIdxCur ){ 1940 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1941 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1942 for(j=0; j<pPk->nKeyCol; j++){ 1943 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]); 1944 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 1945 } 1946 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 1947 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 1948 } 1949 1950 if( pLevel->iLeftJoin==0 ){ 1951 /* If pIdx is an index on one or more expressions, then look through 1952 ** all the expressions in pWInfo and try to transform matching expressions 1953 ** into reference to index columns. Also attempt to translate references 1954 ** to virtual columns in the table into references to (stored) columns 1955 ** of the index. 1956 ** 1957 ** Do not do this for the RHS of a LEFT JOIN. This is because the 1958 ** expression may be evaluated after OP_NullRow has been executed on 1959 ** the cursor. In this case it is important to do the full evaluation, 1960 ** as the result of the expression may not be NULL, even if all table 1961 ** column values are. https://www.sqlite.org/src/info/7fa8049685b50b5a 1962 ** 1963 ** Also, do not do this when processing one index an a multi-index 1964 ** OR clause, since the transformation will become invalid once we 1965 ** move forward to the next index. 1966 ** https://sqlite.org/src/info/4e8e4857d32d401f 1967 */ 1968 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ 1969 whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo); 1970 } 1971 1972 /* If a partial index is driving the loop, try to eliminate WHERE clause 1973 ** terms from the query that must be true due to the WHERE clause of 1974 ** the partial index. 1975 ** 1976 ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work 1977 ** for a LEFT JOIN. 1978 */ 1979 if( pIdx->pPartIdxWhere ){ 1980 whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC); 1981 } 1982 }else{ 1983 testcase( pIdx->pPartIdxWhere ); 1984 /* The following assert() is not a requirement, merely an observation: 1985 ** The OR-optimization doesn't work for the right hand table of 1986 ** a LEFT JOIN: */ 1987 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ); 1988 } 1989 1990 /* Record the instruction used to terminate the loop. */ 1991 if( pLoop->wsFlags & WHERE_ONEROW ){ 1992 pLevel->op = OP_Noop; 1993 }else if( bRev ){ 1994 pLevel->op = OP_Prev; 1995 }else{ 1996 pLevel->op = OP_Next; 1997 } 1998 pLevel->p1 = iIdxCur; 1999 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 2000 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 2001 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2002 }else{ 2003 assert( pLevel->p5==0 ); 2004 } 2005 if( omitTable ) pIdx = 0; 2006 }else 2007 2008 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 2009 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 2010 /* Case 5: Two or more separately indexed terms connected by OR 2011 ** 2012 ** Example: 2013 ** 2014 ** CREATE TABLE t1(a,b,c,d); 2015 ** CREATE INDEX i1 ON t1(a); 2016 ** CREATE INDEX i2 ON t1(b); 2017 ** CREATE INDEX i3 ON t1(c); 2018 ** 2019 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 2020 ** 2021 ** In the example, there are three indexed terms connected by OR. 2022 ** The top of the loop looks like this: 2023 ** 2024 ** Null 1 # Zero the rowset in reg 1 2025 ** 2026 ** Then, for each indexed term, the following. The arguments to 2027 ** RowSetTest are such that the rowid of the current row is inserted 2028 ** into the RowSet. If it is already present, control skips the 2029 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 2030 ** 2031 ** sqlite3WhereBegin(<term>) 2032 ** RowSetTest # Insert rowid into rowset 2033 ** Gosub 2 A 2034 ** sqlite3WhereEnd() 2035 ** 2036 ** Following the above, code to terminate the loop. Label A, the target 2037 ** of the Gosub above, jumps to the instruction right after the Goto. 2038 ** 2039 ** Null 1 # Zero the rowset in reg 1 2040 ** Goto B # The loop is finished. 2041 ** 2042 ** A: <loop body> # Return data, whatever. 2043 ** 2044 ** Return 2 # Jump back to the Gosub 2045 ** 2046 ** B: <after the loop> 2047 ** 2048 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 2049 ** use an ephemeral index instead of a RowSet to record the primary 2050 ** keys of the rows we have already seen. 2051 ** 2052 */ 2053 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 2054 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 2055 Index *pCov = 0; /* Potential covering index (or NULL) */ 2056 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 2057 2058 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 2059 int regRowset = 0; /* Register for RowSet object */ 2060 int regRowid = 0; /* Register holding rowid */ 2061 int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */ 2062 int iRetInit; /* Address of regReturn init */ 2063 int untestedTerms = 0; /* Some terms not completely tested */ 2064 int ii; /* Loop counter */ 2065 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 2066 Table *pTab = pTabItem->pTab; 2067 2068 pTerm = pLoop->aLTerm[0]; 2069 assert( pTerm!=0 ); 2070 assert( pTerm->eOperator & WO_OR ); 2071 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 2072 pOrWc = &pTerm->u.pOrInfo->wc; 2073 pLevel->op = OP_Return; 2074 pLevel->p1 = regReturn; 2075 2076 /* Set up a new SrcList in pOrTab containing the table being scanned 2077 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 2078 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 2079 */ 2080 if( pWInfo->nLevel>1 ){ 2081 int nNotReady; /* The number of notReady tables */ 2082 struct SrcList_item *origSrc; /* Original list of tables */ 2083 nNotReady = pWInfo->nLevel - iLevel - 1; 2084 pOrTab = sqlite3StackAllocRaw(db, 2085 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 2086 if( pOrTab==0 ) return notReady; 2087 pOrTab->nAlloc = (u8)(nNotReady + 1); 2088 pOrTab->nSrc = pOrTab->nAlloc; 2089 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 2090 origSrc = pWInfo->pTabList->a; 2091 for(k=1; k<=nNotReady; k++){ 2092 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 2093 } 2094 }else{ 2095 pOrTab = pWInfo->pTabList; 2096 } 2097 2098 /* Initialize the rowset register to contain NULL. An SQL NULL is 2099 ** equivalent to an empty rowset. Or, create an ephemeral index 2100 ** capable of holding primary keys in the case of a WITHOUT ROWID. 2101 ** 2102 ** Also initialize regReturn to contain the address of the instruction 2103 ** immediately following the OP_Return at the bottom of the loop. This 2104 ** is required in a few obscure LEFT JOIN cases where control jumps 2105 ** over the top of the loop into the body of it. In this case the 2106 ** correct response for the end-of-loop code (the OP_Return) is to 2107 ** fall through to the next instruction, just as an OP_Next does if 2108 ** called on an uninitialized cursor. 2109 */ 2110 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2111 if( HasRowid(pTab) ){ 2112 regRowset = ++pParse->nMem; 2113 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 2114 }else{ 2115 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2116 regRowset = pParse->nTab++; 2117 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 2118 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 2119 } 2120 regRowid = ++pParse->nMem; 2121 } 2122 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 2123 2124 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 2125 ** Then for every term xN, evaluate as the subexpression: xN AND z 2126 ** That way, terms in y that are factored into the disjunction will 2127 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 2128 ** 2129 ** Actually, each subexpression is converted to "xN AND w" where w is 2130 ** the "interesting" terms of z - terms that did not originate in the 2131 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 2132 ** indices. 2133 ** 2134 ** This optimization also only applies if the (x1 OR x2 OR ...) term 2135 ** is not contained in the ON clause of a LEFT JOIN. 2136 ** See ticket http://www.sqlite.org/src/info/f2369304e4 2137 */ 2138 if( pWC->nTerm>1 ){ 2139 int iTerm; 2140 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 2141 Expr *pExpr = pWC->a[iTerm].pExpr; 2142 if( &pWC->a[iTerm] == pTerm ) continue; 2143 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); 2144 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); 2145 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue; 2146 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 2147 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); 2148 pExpr = sqlite3ExprDup(db, pExpr, 0); 2149 pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr); 2150 } 2151 if( pAndExpr ){ 2152 /* The extra 0x10000 bit on the opcode is masked off and does not 2153 ** become part of the new Expr.op. However, it does make the 2154 ** op==TK_AND comparison inside of sqlite3PExpr() false, and this 2155 ** prevents sqlite3PExpr() from implementing AND short-circuit 2156 ** optimization, which we do not want here. */ 2157 pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr); 2158 } 2159 } 2160 2161 /* Run a separate WHERE clause for each term of the OR clause. After 2162 ** eliminating duplicates from other WHERE clauses, the action for each 2163 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 2164 */ 2165 ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR")); 2166 for(ii=0; ii<pOrWc->nTerm; ii++){ 2167 WhereTerm *pOrTerm = &pOrWc->a[ii]; 2168 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 2169 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 2170 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 2171 int jmp1 = 0; /* Address of jump operation */ 2172 testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0 2173 && !ExprHasProperty(pOrExpr, EP_FromJoin) 2174 ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */ 2175 if( pAndExpr ){ 2176 pAndExpr->pLeft = pOrExpr; 2177 pOrExpr = pAndExpr; 2178 } 2179 /* Loop through table entries that match term pOrTerm. */ 2180 ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1)); 2181 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 2182 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 2183 WHERE_OR_SUBCLAUSE, iCovCur); 2184 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); 2185 if( pSubWInfo ){ 2186 WhereLoop *pSubLoop; 2187 int addrExplain = sqlite3WhereExplainOneScan( 2188 pParse, pOrTab, &pSubWInfo->a[0], 0 2189 ); 2190 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 2191 2192 /* This is the sub-WHERE clause body. First skip over 2193 ** duplicate rows from prior sub-WHERE clauses, and record the 2194 ** rowid (or PRIMARY KEY) for the current row so that the same 2195 ** row will be skipped in subsequent sub-WHERE clauses. 2196 */ 2197 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2198 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 2199 if( HasRowid(pTab) ){ 2200 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid); 2201 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 2202 regRowid, iSet); 2203 VdbeCoverage(v); 2204 }else{ 2205 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2206 int nPk = pPk->nKeyCol; 2207 int iPk; 2208 int r; 2209 2210 /* Read the PK into an array of temp registers. */ 2211 r = sqlite3GetTempRange(pParse, nPk); 2212 for(iPk=0; iPk<nPk; iPk++){ 2213 int iCol = pPk->aiColumn[iPk]; 2214 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk); 2215 } 2216 2217 /* Check if the temp table already contains this key. If so, 2218 ** the row has already been included in the result set and 2219 ** can be ignored (by jumping past the Gosub below). Otherwise, 2220 ** insert the key into the temp table and proceed with processing 2221 ** the row. 2222 ** 2223 ** Use some of the same optimizations as OP_RowSetTest: If iSet 2224 ** is zero, assume that the key cannot already be present in 2225 ** the temp table. And if iSet is -1, assume that there is no 2226 ** need to insert the key into the temp table, as it will never 2227 ** be tested for. */ 2228 if( iSet ){ 2229 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 2230 VdbeCoverage(v); 2231 } 2232 if( iSet>=0 ){ 2233 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 2234 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid, 2235 r, nPk); 2236 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2237 } 2238 2239 /* Release the array of temp registers */ 2240 sqlite3ReleaseTempRange(pParse, r, nPk); 2241 } 2242 } 2243 2244 /* Invoke the main loop body as a subroutine */ 2245 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 2246 2247 /* Jump here (skipping the main loop body subroutine) if the 2248 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 2249 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 2250 2251 /* The pSubWInfo->untestedTerms flag means that this OR term 2252 ** contained one or more AND term from a notReady table. The 2253 ** terms from the notReady table could not be tested and will 2254 ** need to be tested later. 2255 */ 2256 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 2257 2258 /* If all of the OR-connected terms are optimized using the same 2259 ** index, and the index is opened using the same cursor number 2260 ** by each call to sqlite3WhereBegin() made by this loop, it may 2261 ** be possible to use that index as a covering index. 2262 ** 2263 ** If the call to sqlite3WhereBegin() above resulted in a scan that 2264 ** uses an index, and this is either the first OR-connected term 2265 ** processed or the index is the same as that used by all previous 2266 ** terms, set pCov to the candidate covering index. Otherwise, set 2267 ** pCov to NULL to indicate that no candidate covering index will 2268 ** be available. 2269 */ 2270 pSubLoop = pSubWInfo->a[0].pWLoop; 2271 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2272 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 2273 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 2274 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 2275 ){ 2276 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 2277 pCov = pSubLoop->u.btree.pIndex; 2278 }else{ 2279 pCov = 0; 2280 } 2281 if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){ 2282 pWInfo->bDeferredSeek = 1; 2283 } 2284 2285 /* Finish the loop through table entries that match term pOrTerm. */ 2286 sqlite3WhereEnd(pSubWInfo); 2287 ExplainQueryPlanPop(pParse); 2288 } 2289 } 2290 } 2291 ExplainQueryPlanPop(pParse); 2292 pLevel->u.pCovidx = pCov; 2293 if( pCov ) pLevel->iIdxCur = iCovCur; 2294 if( pAndExpr ){ 2295 pAndExpr->pLeft = 0; 2296 sqlite3ExprDelete(db, pAndExpr); 2297 } 2298 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 2299 sqlite3VdbeGoto(v, pLevel->addrBrk); 2300 sqlite3VdbeResolveLabel(v, iLoopBody); 2301 2302 if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); } 2303 if( !untestedTerms ) disableTerm(pLevel, pTerm); 2304 }else 2305 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 2306 2307 { 2308 /* Case 6: There is no usable index. We must do a complete 2309 ** scan of the entire table. 2310 */ 2311 static const u8 aStep[] = { OP_Next, OP_Prev }; 2312 static const u8 aStart[] = { OP_Rewind, OP_Last }; 2313 assert( bRev==0 || bRev==1 ); 2314 if( pTabItem->fg.isRecursive ){ 2315 /* Tables marked isRecursive have only a single row that is stored in 2316 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 2317 pLevel->op = OP_Noop; 2318 }else{ 2319 codeCursorHint(pTabItem, pWInfo, pLevel, 0); 2320 pLevel->op = aStep[bRev]; 2321 pLevel->p1 = iCur; 2322 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt); 2323 VdbeCoverageIf(v, bRev==0); 2324 VdbeCoverageIf(v, bRev!=0); 2325 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2326 } 2327 } 2328 2329 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2330 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 2331 #endif 2332 2333 /* Insert code to test every subexpression that can be completely 2334 ** computed using the current set of tables. 2335 ** 2336 ** This loop may run between one and three times, depending on the 2337 ** constraints to be generated. The value of stack variable iLoop 2338 ** determines the constraints coded by each iteration, as follows: 2339 ** 2340 ** iLoop==1: Code only expressions that are entirely covered by pIdx. 2341 ** iLoop==2: Code remaining expressions that do not contain correlated 2342 ** sub-queries. 2343 ** iLoop==3: Code all remaining expressions. 2344 ** 2345 ** An effort is made to skip unnecessary iterations of the loop. 2346 */ 2347 iLoop = (pIdx ? 1 : 2); 2348 do{ 2349 int iNext = 0; /* Next value for iLoop */ 2350 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2351 Expr *pE; 2352 int skipLikeAddr = 0; 2353 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2354 testcase( pTerm->wtFlags & TERM_CODED ); 2355 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2356 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2357 testcase( pWInfo->untestedTerms==0 2358 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); 2359 pWInfo->untestedTerms = 1; 2360 continue; 2361 } 2362 pE = pTerm->pExpr; 2363 assert( pE!=0 ); 2364 if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){ 2365 continue; 2366 } 2367 2368 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){ 2369 iNext = 2; 2370 continue; 2371 } 2372 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){ 2373 if( iNext==0 ) iNext = 3; 2374 continue; 2375 } 2376 2377 if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){ 2378 /* If the TERM_LIKECOND flag is set, that means that the range search 2379 ** is sufficient to guarantee that the LIKE operator is true, so we 2380 ** can skip the call to the like(A,B) function. But this only works 2381 ** for strings. So do not skip the call to the function on the pass 2382 ** that compares BLOBs. */ 2383 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 2384 continue; 2385 #else 2386 u32 x = pLevel->iLikeRepCntr; 2387 if( x>0 ){ 2388 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1)); 2389 VdbeCoverageIf(v, (x&1)==1); 2390 VdbeCoverageIf(v, (x&1)==0); 2391 } 2392 #endif 2393 } 2394 #ifdef WHERETRACE_ENABLED /* 0xffff */ 2395 if( sqlite3WhereTrace ){ 2396 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d", 2397 pWC->nTerm-j, pTerm, iLoop)); 2398 } 2399 if( sqlite3WhereTrace & 0x800 ){ 2400 sqlite3DebugPrintf("Coding auxiliary constraint:\n"); 2401 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2402 } 2403 #endif 2404 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 2405 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 2406 pTerm->wtFlags |= TERM_CODED; 2407 } 2408 iLoop = iNext; 2409 }while( iLoop>0 ); 2410 2411 /* Insert code to test for implied constraints based on transitivity 2412 ** of the "==" operator. 2413 ** 2414 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 2415 ** and we are coding the t1 loop and the t2 loop has not yet coded, 2416 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 2417 ** the implied "t1.a=123" constraint. 2418 */ 2419 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2420 Expr *pE, sEAlt; 2421 WhereTerm *pAlt; 2422 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2423 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 2424 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 2425 if( pTerm->leftCursor!=iCur ) continue; 2426 if( pTabItem->fg.jointype & JT_LEFT ) continue; 2427 pE = pTerm->pExpr; 2428 #ifdef WHERETRACE_ENABLED /* 0x800 */ 2429 if( sqlite3WhereTrace & 0x800 ){ 2430 sqlite3DebugPrintf("Coding transitive constraint:\n"); 2431 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2432 } 2433 #endif 2434 assert( !ExprHasProperty(pE, EP_FromJoin) ); 2435 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 2436 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady, 2437 WO_EQ|WO_IN|WO_IS, 0); 2438 if( pAlt==0 ) continue; 2439 if( pAlt->wtFlags & (TERM_CODED) ) continue; 2440 if( (pAlt->eOperator & WO_IN) 2441 && (pAlt->pExpr->flags & EP_xIsSelect) 2442 && (pAlt->pExpr->x.pSelect->pEList->nExpr>1) 2443 ){ 2444 continue; 2445 } 2446 testcase( pAlt->eOperator & WO_EQ ); 2447 testcase( pAlt->eOperator & WO_IS ); 2448 testcase( pAlt->eOperator & WO_IN ); 2449 VdbeModuleComment((v, "begin transitive constraint")); 2450 sEAlt = *pAlt->pExpr; 2451 sEAlt.pLeft = pE->pLeft; 2452 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); 2453 } 2454 2455 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2456 ** at least one row of the right table has matched the left table. 2457 */ 2458 if( pLevel->iLeftJoin ){ 2459 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2460 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2461 VdbeComment((v, "record LEFT JOIN hit")); 2462 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 2463 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2464 testcase( pTerm->wtFlags & TERM_CODED ); 2465 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2466 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2467 assert( pWInfo->untestedTerms ); 2468 continue; 2469 } 2470 assert( pTerm->pExpr ); 2471 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 2472 pTerm->wtFlags |= TERM_CODED; 2473 } 2474 } 2475 2476 #if WHERETRACE_ENABLED /* 0x20800 */ 2477 if( sqlite3WhereTrace & 0x20000 ){ 2478 sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n", 2479 iLevel); 2480 sqlite3WhereClausePrint(pWC); 2481 } 2482 if( sqlite3WhereTrace & 0x800 ){ 2483 sqlite3DebugPrintf("End Coding level %d: notReady=%llx\n", 2484 iLevel, (u64)pLevel->notReady); 2485 } 2486 #endif 2487 return pLevel->notReady; 2488 } 2489