xref: /sqlite-3.40.0/src/wherecode.c (revision 6a5e2114)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 
25 /*
26 ** Return the name of the i-th column of the pIdx index.
27 */
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29   i = pIdx->aiColumn[i];
30   if( i==XN_EXPR ) return "<expr>";
31   if( i==XN_ROWID ) return "rowid";
32   return pIdx->pTable->aCol[i].zName;
33 }
34 
35 /*
36 ** This routine is a helper for explainIndexRange() below
37 **
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time.  This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
42 */
43 static void explainAppendTerm(
44   StrAccum *pStr,             /* The text expression being built */
45   Index *pIdx,                /* Index to read column names from */
46   int nTerm,                  /* Number of terms */
47   int iTerm,                  /* Zero-based index of first term. */
48   int bAnd,                   /* Non-zero to append " AND " */
49   const char *zOp             /* Name of the operator */
50 ){
51   int i;
52 
53   assert( nTerm>=1 );
54   if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
55 
56   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
57   for(i=0; i<nTerm; i++){
58     if( i ) sqlite3_str_append(pStr, ",", 1);
59     sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
60   }
61   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
62 
63   sqlite3_str_append(pStr, zOp, 1);
64 
65   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
66   for(i=0; i<nTerm; i++){
67     if( i ) sqlite3_str_append(pStr, ",", 1);
68     sqlite3_str_append(pStr, "?", 1);
69   }
70   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
71 }
72 
73 /*
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
77 **
78 ** For example, if the query:
79 **
80 **   SELECT * FROM t1 WHERE a=1 AND b>2;
81 **
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
84 **
85 **   "a=? AND b>?"
86 */
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88   Index *pIndex = pLoop->u.btree.pIndex;
89   u16 nEq = pLoop->u.btree.nEq;
90   u16 nSkip = pLoop->nSkip;
91   int i, j;
92 
93   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94   sqlite3_str_append(pStr, " (", 2);
95   for(i=0; i<nEq; i++){
96     const char *z = explainIndexColumnName(pIndex, i);
97     if( i ) sqlite3_str_append(pStr, " AND ", 5);
98     sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
99   }
100 
101   j = i;
102   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104     i = 1;
105   }
106   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
108   }
109   sqlite3_str_append(pStr, ")", 1);
110 }
111 
112 /*
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
117 **
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
120 */
121 int sqlite3WhereExplainOneScan(
122   Parse *pParse,                  /* Parse context */
123   SrcList *pTabList,              /* Table list this loop refers to */
124   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
125   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
126 ){
127   int ret = 0;
128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
129   if( sqlite3ParseToplevel(pParse)->explain==2 )
130 #endif
131   {
132     struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
133     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
134     sqlite3 *db = pParse->db;     /* Database handle */
135     int isSearch;                 /* True for a SEARCH. False for SCAN. */
136     WhereLoop *pLoop;             /* The controlling WhereLoop object */
137     u32 flags;                    /* Flags that describe this loop */
138     char *zMsg;                   /* Text to add to EQP output */
139     StrAccum str;                 /* EQP output string */
140     char zBuf[100];               /* Initial space for EQP output string */
141 
142     pLoop = pLevel->pWLoop;
143     flags = pLoop->wsFlags;
144     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
145 
146     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
147             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
148             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
149 
150     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
151     sqlite3_str_appendall(&str, isSearch ? "SEARCH" : "SCAN");
152     if( pItem->pSelect ){
153       sqlite3_str_appendf(&str, " SUBQUERY %u", pItem->pSelect->selId);
154     }else{
155       sqlite3_str_appendf(&str, " TABLE %s", pItem->zName);
156     }
157 
158     if( pItem->zAlias ){
159       sqlite3_str_appendf(&str, " AS %s", pItem->zAlias);
160     }
161     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
162       const char *zFmt = 0;
163       Index *pIdx;
164 
165       assert( pLoop->u.btree.pIndex!=0 );
166       pIdx = pLoop->u.btree.pIndex;
167       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
168       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
169         if( isSearch ){
170           zFmt = "PRIMARY KEY";
171         }
172       }else if( flags & WHERE_PARTIALIDX ){
173         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
174       }else if( flags & WHERE_AUTO_INDEX ){
175         zFmt = "AUTOMATIC COVERING INDEX";
176       }else if( flags & WHERE_IDX_ONLY ){
177         zFmt = "COVERING INDEX %s";
178       }else{
179         zFmt = "INDEX %s";
180       }
181       if( zFmt ){
182         sqlite3_str_append(&str, " USING ", 7);
183         sqlite3_str_appendf(&str, zFmt, pIdx->zName);
184         explainIndexRange(&str, pLoop);
185       }
186     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
187       const char *zRangeOp;
188       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
189         zRangeOp = "=";
190       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
191         zRangeOp = ">? AND rowid<";
192       }else if( flags&WHERE_BTM_LIMIT ){
193         zRangeOp = ">";
194       }else{
195         assert( flags&WHERE_TOP_LIMIT);
196         zRangeOp = "<";
197       }
198       sqlite3_str_appendf(&str,
199           " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
200     }
201 #ifndef SQLITE_OMIT_VIRTUALTABLE
202     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
203       sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
204                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
205     }
206 #endif
207 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
208     if( pLoop->nOut>=10 ){
209       sqlite3_str_appendf(&str, " (~%llu rows)",
210              sqlite3LogEstToInt(pLoop->nOut));
211     }else{
212       sqlite3_str_append(&str, " (~1 row)", 9);
213     }
214 #endif
215     zMsg = sqlite3StrAccumFinish(&str);
216     sqlite3ExplainBreakpoint("",zMsg);
217     ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
218                             pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
219   }
220   return ret;
221 }
222 #endif /* SQLITE_OMIT_EXPLAIN */
223 
224 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
225 /*
226 ** Configure the VM passed as the first argument with an
227 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
228 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
229 ** clause that the scan reads data from.
230 **
231 ** If argument addrExplain is not 0, it must be the address of an
232 ** OP_Explain instruction that describes the same loop.
233 */
234 void sqlite3WhereAddScanStatus(
235   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
236   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
237   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
238   int addrExplain                 /* Address of OP_Explain (or 0) */
239 ){
240   const char *zObj = 0;
241   WhereLoop *pLoop = pLvl->pWLoop;
242   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
243     zObj = pLoop->u.btree.pIndex->zName;
244   }else{
245     zObj = pSrclist->a[pLvl->iFrom].zName;
246   }
247   sqlite3VdbeScanStatus(
248       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
249   );
250 }
251 #endif
252 
253 
254 /*
255 ** Disable a term in the WHERE clause.  Except, do not disable the term
256 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
257 ** or USING clause of that join.
258 **
259 ** Consider the term t2.z='ok' in the following queries:
260 **
261 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
262 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
263 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
264 **
265 ** The t2.z='ok' is disabled in the in (2) because it originates
266 ** in the ON clause.  The term is disabled in (3) because it is not part
267 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
268 **
269 ** Disabling a term causes that term to not be tested in the inner loop
270 ** of the join.  Disabling is an optimization.  When terms are satisfied
271 ** by indices, we disable them to prevent redundant tests in the inner
272 ** loop.  We would get the correct results if nothing were ever disabled,
273 ** but joins might run a little slower.  The trick is to disable as much
274 ** as we can without disabling too much.  If we disabled in (1), we'd get
275 ** the wrong answer.  See ticket #813.
276 **
277 ** If all the children of a term are disabled, then that term is also
278 ** automatically disabled.  In this way, terms get disabled if derived
279 ** virtual terms are tested first.  For example:
280 **
281 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
282 **      \___________/     \______/     \_____/
283 **         parent          child1       child2
284 **
285 ** Only the parent term was in the original WHERE clause.  The child1
286 ** and child2 terms were added by the LIKE optimization.  If both of
287 ** the virtual child terms are valid, then testing of the parent can be
288 ** skipped.
289 **
290 ** Usually the parent term is marked as TERM_CODED.  But if the parent
291 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
292 ** The TERM_LIKECOND marking indicates that the term should be coded inside
293 ** a conditional such that is only evaluated on the second pass of a
294 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
295 */
296 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
297   int nLoop = 0;
298   assert( pTerm!=0 );
299   while( (pTerm->wtFlags & TERM_CODED)==0
300       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
301       && (pLevel->notReady & pTerm->prereqAll)==0
302   ){
303     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
304       pTerm->wtFlags |= TERM_LIKECOND;
305     }else{
306       pTerm->wtFlags |= TERM_CODED;
307     }
308     if( pTerm->iParent<0 ) break;
309     pTerm = &pTerm->pWC->a[pTerm->iParent];
310     assert( pTerm!=0 );
311     pTerm->nChild--;
312     if( pTerm->nChild!=0 ) break;
313     nLoop++;
314   }
315 }
316 
317 /*
318 ** Code an OP_Affinity opcode to apply the column affinity string zAff
319 ** to the n registers starting at base.
320 **
321 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
322 ** are no-ops) at the beginning and end of zAff are ignored.  If all entries
323 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
324 **
325 ** This routine makes its own copy of zAff so that the caller is free
326 ** to modify zAff after this routine returns.
327 */
328 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
329   Vdbe *v = pParse->pVdbe;
330   if( zAff==0 ){
331     assert( pParse->db->mallocFailed );
332     return;
333   }
334   assert( v!=0 );
335 
336   /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
337   ** entries at the beginning and end of the affinity string.
338   */
339   assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB );
340   while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){
341     n--;
342     base++;
343     zAff++;
344   }
345   while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){
346     n--;
347   }
348 
349   /* Code the OP_Affinity opcode if there is anything left to do. */
350   if( n>0 ){
351     sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
352   }
353 }
354 
355 /*
356 ** Expression pRight, which is the RHS of a comparison operation, is
357 ** either a vector of n elements or, if n==1, a scalar expression.
358 ** Before the comparison operation, affinity zAff is to be applied
359 ** to the pRight values. This function modifies characters within the
360 ** affinity string to SQLITE_AFF_BLOB if either:
361 **
362 **   * the comparison will be performed with no affinity, or
363 **   * the affinity change in zAff is guaranteed not to change the value.
364 */
365 static void updateRangeAffinityStr(
366   Expr *pRight,                   /* RHS of comparison */
367   int n,                          /* Number of vector elements in comparison */
368   char *zAff                      /* Affinity string to modify */
369 ){
370   int i;
371   for(i=0; i<n; i++){
372     Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
373     if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
374      || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
375     ){
376       zAff[i] = SQLITE_AFF_BLOB;
377     }
378   }
379 }
380 
381 
382 /*
383 ** pX is an expression of the form:  (vector) IN (SELECT ...)
384 ** In other words, it is a vector IN operator with a SELECT clause on the
385 ** LHS.  But not all terms in the vector are indexable and the terms might
386 ** not be in the correct order for indexing.
387 **
388 ** This routine makes a copy of the input pX expression and then adjusts
389 ** the vector on the LHS with corresponding changes to the SELECT so that
390 ** the vector contains only index terms and those terms are in the correct
391 ** order.  The modified IN expression is returned.  The caller is responsible
392 ** for deleting the returned expression.
393 **
394 ** Example:
395 **
396 **    CREATE TABLE t1(a,b,c,d,e,f);
397 **    CREATE INDEX t1x1 ON t1(e,c);
398 **    SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
399 **                           \_______________________________________/
400 **                                     The pX expression
401 **
402 ** Since only columns e and c can be used with the index, in that order,
403 ** the modified IN expression that is returned will be:
404 **
405 **        (e,c) IN (SELECT z,x FROM t2)
406 **
407 ** The reduced pX is different from the original (obviously) and thus is
408 ** only used for indexing, to improve performance.  The original unaltered
409 ** IN expression must also be run on each output row for correctness.
410 */
411 static Expr *removeUnindexableInClauseTerms(
412   Parse *pParse,        /* The parsing context */
413   int iEq,              /* Look at loop terms starting here */
414   WhereLoop *pLoop,     /* The current loop */
415   Expr *pX              /* The IN expression to be reduced */
416 ){
417   sqlite3 *db = pParse->db;
418   Expr *pNew;
419   pNew = sqlite3ExprDup(db, pX, 0);
420   if( db->mallocFailed==0 ){
421     ExprList *pOrigRhs = pNew->x.pSelect->pEList;  /* Original unmodified RHS */
422     ExprList *pOrigLhs = pNew->pLeft->x.pList;     /* Original unmodified LHS */
423     ExprList *pRhs = 0;         /* New RHS after modifications */
424     ExprList *pLhs = 0;         /* New LHS after mods */
425     int i;                      /* Loop counter */
426     Select *pSelect;            /* Pointer to the SELECT on the RHS */
427 
428     for(i=iEq; i<pLoop->nLTerm; i++){
429       if( pLoop->aLTerm[i]->pExpr==pX ){
430         int iField = pLoop->aLTerm[i]->u.x.iField - 1;
431         if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
432         pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
433         pOrigRhs->a[iField].pExpr = 0;
434         assert( pOrigLhs->a[iField].pExpr!=0 );
435         pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
436         pOrigLhs->a[iField].pExpr = 0;
437       }
438     }
439     sqlite3ExprListDelete(db, pOrigRhs);
440     sqlite3ExprListDelete(db, pOrigLhs);
441     pNew->pLeft->x.pList = pLhs;
442     pNew->x.pSelect->pEList = pRhs;
443     if( pLhs && pLhs->nExpr==1 ){
444       /* Take care here not to generate a TK_VECTOR containing only a
445       ** single value. Since the parser never creates such a vector, some
446       ** of the subroutines do not handle this case.  */
447       Expr *p = pLhs->a[0].pExpr;
448       pLhs->a[0].pExpr = 0;
449       sqlite3ExprDelete(db, pNew->pLeft);
450       pNew->pLeft = p;
451     }
452     pSelect = pNew->x.pSelect;
453     if( pSelect->pOrderBy ){
454       /* If the SELECT statement has an ORDER BY clause, zero the
455       ** iOrderByCol variables. These are set to non-zero when an
456       ** ORDER BY term exactly matches one of the terms of the
457       ** result-set. Since the result-set of the SELECT statement may
458       ** have been modified or reordered, these variables are no longer
459       ** set correctly.  Since setting them is just an optimization,
460       ** it's easiest just to zero them here.  */
461       ExprList *pOrderBy = pSelect->pOrderBy;
462       for(i=0; i<pOrderBy->nExpr; i++){
463         pOrderBy->a[i].u.x.iOrderByCol = 0;
464       }
465     }
466 
467 #if 0
468     printf("For indexing, change the IN expr:\n");
469     sqlite3TreeViewExpr(0, pX, 0);
470     printf("Into:\n");
471     sqlite3TreeViewExpr(0, pNew, 0);
472 #endif
473   }
474   return pNew;
475 }
476 
477 
478 /*
479 ** Generate code for a single equality term of the WHERE clause.  An equality
480 ** term can be either X=expr or X IN (...).   pTerm is the term to be
481 ** coded.
482 **
483 ** The current value for the constraint is left in a register, the index
484 ** of which is returned.  An attempt is made store the result in iTarget but
485 ** this is only guaranteed for TK_ISNULL and TK_IN constraints.  If the
486 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
487 ** some other register and it is the caller's responsibility to compensate.
488 **
489 ** For a constraint of the form X=expr, the expression is evaluated in
490 ** straight-line code.  For constraints of the form X IN (...)
491 ** this routine sets up a loop that will iterate over all values of X.
492 */
493 static int codeEqualityTerm(
494   Parse *pParse,      /* The parsing context */
495   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
496   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
497   int iEq,            /* Index of the equality term within this level */
498   int bRev,           /* True for reverse-order IN operations */
499   int iTarget         /* Attempt to leave results in this register */
500 ){
501   Expr *pX = pTerm->pExpr;
502   Vdbe *v = pParse->pVdbe;
503   int iReg;                  /* Register holding results */
504 
505   assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
506   assert( iTarget>0 );
507   if( pX->op==TK_EQ || pX->op==TK_IS ){
508     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
509   }else if( pX->op==TK_ISNULL ){
510     iReg = iTarget;
511     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
512 #ifndef SQLITE_OMIT_SUBQUERY
513   }else{
514     int eType = IN_INDEX_NOOP;
515     int iTab;
516     struct InLoop *pIn;
517     WhereLoop *pLoop = pLevel->pWLoop;
518     int i;
519     int nEq = 0;
520     int *aiMap = 0;
521 
522     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
523       && pLoop->u.btree.pIndex!=0
524       && pLoop->u.btree.pIndex->aSortOrder[iEq]
525     ){
526       testcase( iEq==0 );
527       testcase( bRev );
528       bRev = !bRev;
529     }
530     assert( pX->op==TK_IN );
531     iReg = iTarget;
532 
533     for(i=0; i<iEq; i++){
534       if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
535         disableTerm(pLevel, pTerm);
536         return iTarget;
537       }
538     }
539     for(i=iEq;i<pLoop->nLTerm; i++){
540       assert( pLoop->aLTerm[i]!=0 );
541       if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
542     }
543 
544     iTab = 0;
545     if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){
546       eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab);
547     }else{
548       sqlite3 *db = pParse->db;
549       pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
550 
551       if( !db->mallocFailed ){
552         aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
553         eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab);
554         pTerm->pExpr->iTable = iTab;
555       }
556       sqlite3ExprDelete(db, pX);
557       pX = pTerm->pExpr;
558     }
559 
560     if( eType==IN_INDEX_INDEX_DESC ){
561       testcase( bRev );
562       bRev = !bRev;
563     }
564     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
565     VdbeCoverageIf(v, bRev);
566     VdbeCoverageIf(v, !bRev);
567     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
568 
569     pLoop->wsFlags |= WHERE_IN_ABLE;
570     if( pLevel->u.in.nIn==0 ){
571       pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
572     }
573     if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){
574       pLoop->wsFlags |= WHERE_IN_EARLYOUT;
575     }
576 
577     i = pLevel->u.in.nIn;
578     pLevel->u.in.nIn += nEq;
579     pLevel->u.in.aInLoop =
580        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
581                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
582     pIn = pLevel->u.in.aInLoop;
583     if( pIn ){
584       int iMap = 0;               /* Index in aiMap[] */
585       pIn += i;
586       for(i=iEq;i<pLoop->nLTerm; i++){
587         if( pLoop->aLTerm[i]->pExpr==pX ){
588           int iOut = iReg + i - iEq;
589           if( eType==IN_INDEX_ROWID ){
590             pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
591           }else{
592             int iCol = aiMap ? aiMap[iMap++] : 0;
593             pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
594           }
595           sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
596           if( i==iEq ){
597             pIn->iCur = iTab;
598             pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
599             if( iEq>0 ){
600               pIn->iBase = iReg - i;
601               pIn->nPrefix = i;
602             }else{
603               pIn->nPrefix = 0;
604             }
605           }else{
606             pIn->eEndLoopOp = OP_Noop;
607           }
608           pIn++;
609         }
610       }
611       testcase( iEq>0
612                 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
613                 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 );
614       if( iEq>0
615        && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0
616       ){
617         sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq);
618       }
619     }else{
620       pLevel->u.in.nIn = 0;
621     }
622     sqlite3DbFree(pParse->db, aiMap);
623 #endif
624   }
625   disableTerm(pLevel, pTerm);
626   return iReg;
627 }
628 
629 /*
630 ** Generate code that will evaluate all == and IN constraints for an
631 ** index scan.
632 **
633 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
634 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
635 ** The index has as many as three equality constraints, but in this
636 ** example, the third "c" value is an inequality.  So only two
637 ** constraints are coded.  This routine will generate code to evaluate
638 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
639 ** in consecutive registers and the index of the first register is returned.
640 **
641 ** In the example above nEq==2.  But this subroutine works for any value
642 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
643 ** The only thing it does is allocate the pLevel->iMem memory cell and
644 ** compute the affinity string.
645 **
646 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
647 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
648 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
649 ** occurs after the nEq quality constraints.
650 **
651 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
652 ** the index of the first memory cell in that range. The code that
653 ** calls this routine will use that memory range to store keys for
654 ** start and termination conditions of the loop.
655 ** key value of the loop.  If one or more IN operators appear, then
656 ** this routine allocates an additional nEq memory cells for internal
657 ** use.
658 **
659 ** Before returning, *pzAff is set to point to a buffer containing a
660 ** copy of the column affinity string of the index allocated using
661 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
662 ** with equality constraints that use BLOB or NONE affinity are set to
663 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
664 **
665 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
666 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
667 **
668 ** In the example above, the index on t1(a) has TEXT affinity. But since
669 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
670 ** no conversion should be attempted before using a t2.b value as part of
671 ** a key to search the index. Hence the first byte in the returned affinity
672 ** string in this example would be set to SQLITE_AFF_BLOB.
673 */
674 static int codeAllEqualityTerms(
675   Parse *pParse,        /* Parsing context */
676   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
677   int bRev,             /* Reverse the order of IN operators */
678   int nExtraReg,        /* Number of extra registers to allocate */
679   char **pzAff          /* OUT: Set to point to affinity string */
680 ){
681   u16 nEq;                      /* The number of == or IN constraints to code */
682   u16 nSkip;                    /* Number of left-most columns to skip */
683   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
684   Index *pIdx;                  /* The index being used for this loop */
685   WhereTerm *pTerm;             /* A single constraint term */
686   WhereLoop *pLoop;             /* The WhereLoop object */
687   int j;                        /* Loop counter */
688   int regBase;                  /* Base register */
689   int nReg;                     /* Number of registers to allocate */
690   char *zAff;                   /* Affinity string to return */
691 
692   /* This module is only called on query plans that use an index. */
693   pLoop = pLevel->pWLoop;
694   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
695   nEq = pLoop->u.btree.nEq;
696   nSkip = pLoop->nSkip;
697   pIdx = pLoop->u.btree.pIndex;
698   assert( pIdx!=0 );
699 
700   /* Figure out how many memory cells we will need then allocate them.
701   */
702   regBase = pParse->nMem + 1;
703   nReg = pLoop->u.btree.nEq + nExtraReg;
704   pParse->nMem += nReg;
705 
706   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
707   assert( zAff!=0 || pParse->db->mallocFailed );
708 
709   if( nSkip ){
710     int iIdxCur = pLevel->iIdxCur;
711     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
712     VdbeCoverageIf(v, bRev==0);
713     VdbeCoverageIf(v, bRev!=0);
714     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
715     j = sqlite3VdbeAddOp0(v, OP_Goto);
716     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
717                             iIdxCur, 0, regBase, nSkip);
718     VdbeCoverageIf(v, bRev==0);
719     VdbeCoverageIf(v, bRev!=0);
720     sqlite3VdbeJumpHere(v, j);
721     for(j=0; j<nSkip; j++){
722       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
723       testcase( pIdx->aiColumn[j]==XN_EXPR );
724       VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
725     }
726   }
727 
728   /* Evaluate the equality constraints
729   */
730   assert( zAff==0 || (int)strlen(zAff)>=nEq );
731   for(j=nSkip; j<nEq; j++){
732     int r1;
733     pTerm = pLoop->aLTerm[j];
734     assert( pTerm!=0 );
735     /* The following testcase is true for indices with redundant columns.
736     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
737     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
738     testcase( pTerm->wtFlags & TERM_VIRTUAL );
739     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
740     if( r1!=regBase+j ){
741       if( nReg==1 ){
742         sqlite3ReleaseTempReg(pParse, regBase);
743         regBase = r1;
744       }else{
745         sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
746       }
747     }
748     if( pTerm->eOperator & WO_IN ){
749       if( pTerm->pExpr->flags & EP_xIsSelect ){
750         /* No affinity ever needs to be (or should be) applied to a value
751         ** from the RHS of an "? IN (SELECT ...)" expression. The
752         ** sqlite3FindInIndex() routine has already ensured that the
753         ** affinity of the comparison has been applied to the value.  */
754         if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
755       }
756     }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
757       Expr *pRight = pTerm->pExpr->pRight;
758       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
759         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
760         VdbeCoverage(v);
761       }
762       if( zAff ){
763         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
764           zAff[j] = SQLITE_AFF_BLOB;
765         }
766         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
767           zAff[j] = SQLITE_AFF_BLOB;
768         }
769       }
770     }
771   }
772   *pzAff = zAff;
773   return regBase;
774 }
775 
776 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
777 /*
778 ** If the most recently coded instruction is a constant range constraint
779 ** (a string literal) that originated from the LIKE optimization, then
780 ** set P3 and P5 on the OP_String opcode so that the string will be cast
781 ** to a BLOB at appropriate times.
782 **
783 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
784 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
785 ** scan loop run twice, once for strings and a second time for BLOBs.
786 ** The OP_String opcodes on the second pass convert the upper and lower
787 ** bound string constants to blobs.  This routine makes the necessary changes
788 ** to the OP_String opcodes for that to happen.
789 **
790 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
791 ** only the one pass through the string space is required, so this routine
792 ** becomes a no-op.
793 */
794 static void whereLikeOptimizationStringFixup(
795   Vdbe *v,                /* prepared statement under construction */
796   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
797   WhereTerm *pTerm        /* The upper or lower bound just coded */
798 ){
799   if( pTerm->wtFlags & TERM_LIKEOPT ){
800     VdbeOp *pOp;
801     assert( pLevel->iLikeRepCntr>0 );
802     pOp = sqlite3VdbeGetOp(v, -1);
803     assert( pOp!=0 );
804     assert( pOp->opcode==OP_String8
805             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
806     pOp->p3 = (int)(pLevel->iLikeRepCntr>>1);  /* Register holding counter */
807     pOp->p5 = (u8)(pLevel->iLikeRepCntr&1);    /* ASC or DESC */
808   }
809 }
810 #else
811 # define whereLikeOptimizationStringFixup(A,B,C)
812 #endif
813 
814 #ifdef SQLITE_ENABLE_CURSOR_HINTS
815 /*
816 ** Information is passed from codeCursorHint() down to individual nodes of
817 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
818 ** structure.
819 */
820 struct CCurHint {
821   int iTabCur;    /* Cursor for the main table */
822   int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
823   Index *pIdx;    /* The index used to access the table */
824 };
825 
826 /*
827 ** This function is called for every node of an expression that is a candidate
828 ** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
829 ** the table CCurHint.iTabCur, verify that the same column can be
830 ** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
831 */
832 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
833   struct CCurHint *pHint = pWalker->u.pCCurHint;
834   assert( pHint->pIdx!=0 );
835   if( pExpr->op==TK_COLUMN
836    && pExpr->iTable==pHint->iTabCur
837    && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0
838   ){
839     pWalker->eCode = 1;
840   }
841   return WRC_Continue;
842 }
843 
844 /*
845 ** Test whether or not expression pExpr, which was part of a WHERE clause,
846 ** should be included in the cursor-hint for a table that is on the rhs
847 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
848 ** expression is not suitable.
849 **
850 ** An expression is unsuitable if it might evaluate to non NULL even if
851 ** a TK_COLUMN node that does affect the value of the expression is set
852 ** to NULL. For example:
853 **
854 **   col IS NULL
855 **   col IS NOT NULL
856 **   coalesce(col, 1)
857 **   CASE WHEN col THEN 0 ELSE 1 END
858 */
859 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
860   if( pExpr->op==TK_IS
861    || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
862    || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
863   ){
864     pWalker->eCode = 1;
865   }else if( pExpr->op==TK_FUNCTION ){
866     int d1;
867     char d2[4];
868     if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
869       pWalker->eCode = 1;
870     }
871   }
872 
873   return WRC_Continue;
874 }
875 
876 
877 /*
878 ** This function is called on every node of an expression tree used as an
879 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
880 ** that accesses any table other than the one identified by
881 ** CCurHint.iTabCur, then do the following:
882 **
883 **   1) allocate a register and code an OP_Column instruction to read
884 **      the specified column into the new register, and
885 **
886 **   2) transform the expression node to a TK_REGISTER node that reads
887 **      from the newly populated register.
888 **
889 ** Also, if the node is a TK_COLUMN that does access the table idenified
890 ** by pCCurHint.iTabCur, and an index is being used (which we will
891 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
892 ** an access of the index rather than the original table.
893 */
894 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
895   int rc = WRC_Continue;
896   struct CCurHint *pHint = pWalker->u.pCCurHint;
897   if( pExpr->op==TK_COLUMN ){
898     if( pExpr->iTable!=pHint->iTabCur ){
899       int reg = ++pWalker->pParse->nMem;   /* Register for column value */
900       sqlite3ExprCode(pWalker->pParse, pExpr, reg);
901       pExpr->op = TK_REGISTER;
902       pExpr->iTable = reg;
903     }else if( pHint->pIdx!=0 ){
904       pExpr->iTable = pHint->iIdxCur;
905       pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn);
906       assert( pExpr->iColumn>=0 );
907     }
908   }else if( pExpr->op==TK_AGG_FUNCTION ){
909     /* An aggregate function in the WHERE clause of a query means this must
910     ** be a correlated sub-query, and expression pExpr is an aggregate from
911     ** the parent context. Do not walk the function arguments in this case.
912     **
913     ** todo: It should be possible to replace this node with a TK_REGISTER
914     ** expression, as the result of the expression must be stored in a
915     ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
916     rc = WRC_Prune;
917   }
918   return rc;
919 }
920 
921 /*
922 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
923 */
924 static void codeCursorHint(
925   struct SrcList_item *pTabItem,  /* FROM clause item */
926   WhereInfo *pWInfo,    /* The where clause */
927   WhereLevel *pLevel,   /* Which loop to provide hints for */
928   WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
929 ){
930   Parse *pParse = pWInfo->pParse;
931   sqlite3 *db = pParse->db;
932   Vdbe *v = pParse->pVdbe;
933   Expr *pExpr = 0;
934   WhereLoop *pLoop = pLevel->pWLoop;
935   int iCur;
936   WhereClause *pWC;
937   WhereTerm *pTerm;
938   int i, j;
939   struct CCurHint sHint;
940   Walker sWalker;
941 
942   if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
943   iCur = pLevel->iTabCur;
944   assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
945   sHint.iTabCur = iCur;
946   sHint.iIdxCur = pLevel->iIdxCur;
947   sHint.pIdx = pLoop->u.btree.pIndex;
948   memset(&sWalker, 0, sizeof(sWalker));
949   sWalker.pParse = pParse;
950   sWalker.u.pCCurHint = &sHint;
951   pWC = &pWInfo->sWC;
952   for(i=0; i<pWC->nTerm; i++){
953     pTerm = &pWC->a[i];
954     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
955     if( pTerm->prereqAll & pLevel->notReady ) continue;
956 
957     /* Any terms specified as part of the ON(...) clause for any LEFT
958     ** JOIN for which the current table is not the rhs are omitted
959     ** from the cursor-hint.
960     **
961     ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
962     ** that were specified as part of the WHERE clause must be excluded.
963     ** This is to address the following:
964     **
965     **   SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
966     **
967     ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
968     ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
969     ** pushed down to the cursor, this row is filtered out, causing
970     ** SQLite to synthesize a row of NULL values. Which does match the
971     ** WHERE clause, and so the query returns a row. Which is incorrect.
972     **
973     ** For the same reason, WHERE terms such as:
974     **
975     **   WHERE 1 = (t2.c IS NULL)
976     **
977     ** are also excluded. See codeCursorHintIsOrFunction() for details.
978     */
979     if( pTabItem->fg.jointype & JT_LEFT ){
980       Expr *pExpr = pTerm->pExpr;
981       if( !ExprHasProperty(pExpr, EP_FromJoin)
982        || pExpr->iRightJoinTable!=pTabItem->iCursor
983       ){
984         sWalker.eCode = 0;
985         sWalker.xExprCallback = codeCursorHintIsOrFunction;
986         sqlite3WalkExpr(&sWalker, pTerm->pExpr);
987         if( sWalker.eCode ) continue;
988       }
989     }else{
990       if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
991     }
992 
993     /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
994     ** the cursor.  These terms are not needed as hints for a pure range
995     ** scan (that has no == terms) so omit them. */
996     if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
997       for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
998       if( j<pLoop->nLTerm ) continue;
999     }
1000 
1001     /* No subqueries or non-deterministic functions allowed */
1002     if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
1003 
1004     /* For an index scan, make sure referenced columns are actually in
1005     ** the index. */
1006     if( sHint.pIdx!=0 ){
1007       sWalker.eCode = 0;
1008       sWalker.xExprCallback = codeCursorHintCheckExpr;
1009       sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1010       if( sWalker.eCode ) continue;
1011     }
1012 
1013     /* If we survive all prior tests, that means this term is worth hinting */
1014     pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
1015   }
1016   if( pExpr!=0 ){
1017     sWalker.xExprCallback = codeCursorHintFixExpr;
1018     sqlite3WalkExpr(&sWalker, pExpr);
1019     sqlite3VdbeAddOp4(v, OP_CursorHint,
1020                       (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
1021                       (const char*)pExpr, P4_EXPR);
1022   }
1023 }
1024 #else
1025 # define codeCursorHint(A,B,C,D)  /* No-op */
1026 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1027 
1028 /*
1029 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1030 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1031 ** function generates code to do a deferred seek of cursor iCur to the
1032 ** rowid stored in register iRowid.
1033 **
1034 ** Normally, this is just:
1035 **
1036 **   OP_DeferredSeek $iCur $iRowid
1037 **
1038 ** However, if the scan currently being coded is a branch of an OR-loop and
1039 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek
1040 ** is set to iIdxCur and P4 is set to point to an array of integers
1041 ** containing one entry for each column of the table cursor iCur is open
1042 ** on. For each table column, if the column is the i'th column of the
1043 ** index, then the corresponding array entry is set to (i+1). If the column
1044 ** does not appear in the index at all, the array entry is set to 0.
1045 */
1046 static void codeDeferredSeek(
1047   WhereInfo *pWInfo,              /* Where clause context */
1048   Index *pIdx,                    /* Index scan is using */
1049   int iCur,                       /* Cursor for IPK b-tree */
1050   int iIdxCur                     /* Index cursor */
1051 ){
1052   Parse *pParse = pWInfo->pParse; /* Parse context */
1053   Vdbe *v = pParse->pVdbe;        /* Vdbe to generate code within */
1054 
1055   assert( iIdxCur>0 );
1056   assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1057 
1058   pWInfo->bDeferredSeek = 1;
1059   sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1060   if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1061    && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1062   ){
1063     int i;
1064     Table *pTab = pIdx->pTable;
1065     u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1));
1066     if( ai ){
1067       ai[0] = pTab->nCol;
1068       for(i=0; i<pIdx->nColumn-1; i++){
1069         int x1, x2;
1070         assert( pIdx->aiColumn[i]<pTab->nCol );
1071         x1 = pIdx->aiColumn[i];
1072         x2 = sqlite3TableColumnToStorage(pTab, x1);
1073         testcase( x1!=x2 );
1074         if( x1>=0 ) ai[x2+1] = i+1;
1075       }
1076       sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1077     }
1078   }
1079 }
1080 
1081 /*
1082 ** If the expression passed as the second argument is a vector, generate
1083 ** code to write the first nReg elements of the vector into an array
1084 ** of registers starting with iReg.
1085 **
1086 ** If the expression is not a vector, then nReg must be passed 1. In
1087 ** this case, generate code to evaluate the expression and leave the
1088 ** result in register iReg.
1089 */
1090 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1091   assert( nReg>0 );
1092   if( p && sqlite3ExprIsVector(p) ){
1093 #ifndef SQLITE_OMIT_SUBQUERY
1094     if( (p->flags & EP_xIsSelect) ){
1095       Vdbe *v = pParse->pVdbe;
1096       int iSelect;
1097       assert( p->op==TK_SELECT );
1098       iSelect = sqlite3CodeSubselect(pParse, p);
1099       sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1100     }else
1101 #endif
1102     {
1103       int i;
1104       ExprList *pList = p->x.pList;
1105       assert( nReg<=pList->nExpr );
1106       for(i=0; i<nReg; i++){
1107         sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1108       }
1109     }
1110   }else{
1111     assert( nReg==1 );
1112     sqlite3ExprCode(pParse, p, iReg);
1113   }
1114 }
1115 
1116 /* An instance of the IdxExprTrans object carries information about a
1117 ** mapping from an expression on table columns into a column in an index
1118 ** down through the Walker.
1119 */
1120 typedef struct IdxExprTrans {
1121   Expr *pIdxExpr;    /* The index expression */
1122   int iTabCur;       /* The cursor of the corresponding table */
1123   int iIdxCur;       /* The cursor for the index */
1124   int iIdxCol;       /* The column for the index */
1125   int iTabCol;       /* The column for the table */
1126   WhereInfo *pWInfo; /* Complete WHERE clause information */
1127   sqlite3 *db;       /* Database connection (for malloc()) */
1128 } IdxExprTrans;
1129 
1130 /*
1131 ** Preserve pExpr on the WhereETrans list of the WhereInfo.
1132 */
1133 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){
1134   WhereExprMod *pNew;
1135   pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew));
1136   if( pNew==0 ) return;
1137   pNew->pNext = pTrans->pWInfo->pExprMods;
1138   pTrans->pWInfo->pExprMods = pNew;
1139   pNew->pExpr = pExpr;
1140   memcpy(&pNew->orig, pExpr, sizeof(*pExpr));
1141 }
1142 
1143 /* The walker node callback used to transform matching expressions into
1144 ** a reference to an index column for an index on an expression.
1145 **
1146 ** If pExpr matches, then transform it into a reference to the index column
1147 ** that contains the value of pExpr.
1148 */
1149 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1150   IdxExprTrans *pX = p->u.pIdxTrans;
1151   if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1152     preserveExpr(pX, pExpr);
1153     pExpr->affExpr = sqlite3ExprAffinity(pExpr);
1154     pExpr->op = TK_COLUMN;
1155     pExpr->iTable = pX->iIdxCur;
1156     pExpr->iColumn = pX->iIdxCol;
1157     pExpr->y.pTab = 0;
1158     testcase( ExprHasProperty(pExpr, EP_Skip) );
1159     testcase( ExprHasProperty(pExpr, EP_Unlikely) );
1160     ExprClearProperty(pExpr, EP_Skip|EP_Unlikely);
1161     return WRC_Prune;
1162   }else{
1163     return WRC_Continue;
1164   }
1165 }
1166 
1167 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1168 /* A walker node callback that translates a column reference to a table
1169 ** into a corresponding column reference of an index.
1170 */
1171 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){
1172   if( pExpr->op==TK_COLUMN ){
1173     IdxExprTrans *pX = p->u.pIdxTrans;
1174     if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){
1175       assert( pExpr->y.pTab!=0 );
1176       preserveExpr(pX, pExpr);
1177       pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn);
1178       pExpr->iTable = pX->iIdxCur;
1179       pExpr->iColumn = pX->iIdxCol;
1180       pExpr->y.pTab = 0;
1181     }
1182   }
1183   return WRC_Continue;
1184 }
1185 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1186 
1187 /*
1188 ** For an indexes on expression X, locate every instance of expression X
1189 ** in pExpr and change that subexpression into a reference to the appropriate
1190 ** column of the index.
1191 **
1192 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in
1193 ** the table into references to the corresponding (stored) column of the
1194 ** index.
1195 */
1196 static void whereIndexExprTrans(
1197   Index *pIdx,      /* The Index */
1198   int iTabCur,      /* Cursor of the table that is being indexed */
1199   int iIdxCur,      /* Cursor of the index itself */
1200   WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1201 ){
1202   int iIdxCol;               /* Column number of the index */
1203   ExprList *aColExpr;        /* Expressions that are indexed */
1204   Table *pTab;
1205   Walker w;
1206   IdxExprTrans x;
1207   aColExpr = pIdx->aColExpr;
1208   if( aColExpr==0 && !pIdx->bHasVCol ){
1209     /* The index does not reference any expressions or virtual columns
1210     ** so no translations are needed. */
1211     return;
1212   }
1213   pTab = pIdx->pTable;
1214   memset(&w, 0, sizeof(w));
1215   w.u.pIdxTrans = &x;
1216   x.iTabCur = iTabCur;
1217   x.iIdxCur = iIdxCur;
1218   x.pWInfo = pWInfo;
1219   x.db = pWInfo->pParse->db;
1220   for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){
1221     i16 iRef = pIdx->aiColumn[iIdxCol];
1222     if( iRef==XN_EXPR ){
1223       assert( aColExpr->a[iIdxCol].pExpr!=0 );
1224       x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1225       if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue;
1226       w.xExprCallback = whereIndexExprTransNode;
1227 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1228     }else if( iRef>=0
1229        && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0
1230        && (pTab->aCol[iRef].zColl==0
1231            || sqlite3StrICmp(pTab->aCol[iRef].zColl, sqlite3StrBINARY)==0)
1232     ){
1233       /* Check to see if there are direct references to generated columns
1234       ** that are contained in the index.  Pulling the generated column
1235       ** out of the index is an optimization only - the main table is always
1236       ** available if the index cannot be used.  To avoid unnecessary
1237       ** complication, omit this optimization if the collating sequence for
1238       ** the column is non-standard */
1239       x.iTabCol = iRef;
1240       w.xExprCallback = whereIndexExprTransColumn;
1241 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1242     }else{
1243       continue;
1244     }
1245     x.iIdxCol = iIdxCol;
1246     sqlite3WalkExpr(&w, pWInfo->pWhere);
1247     sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1248     sqlite3WalkExprList(&w, pWInfo->pResultSet);
1249   }
1250 }
1251 
1252 /*
1253 ** The pTruth expression is always true because it is the WHERE clause
1254 ** a partial index that is driving a query loop.  Look through all of the
1255 ** WHERE clause terms on the query, and if any of those terms must be
1256 ** true because pTruth is true, then mark those WHERE clause terms as
1257 ** coded.
1258 */
1259 static void whereApplyPartialIndexConstraints(
1260   Expr *pTruth,
1261   int iTabCur,
1262   WhereClause *pWC
1263 ){
1264   int i;
1265   WhereTerm *pTerm;
1266   while( pTruth->op==TK_AND ){
1267     whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC);
1268     pTruth = pTruth->pRight;
1269   }
1270   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1271     Expr *pExpr;
1272     if( pTerm->wtFlags & TERM_CODED ) continue;
1273     pExpr = pTerm->pExpr;
1274     if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){
1275       pTerm->wtFlags |= TERM_CODED;
1276     }
1277   }
1278 }
1279 
1280 /*
1281 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1282 ** implementation described by pWInfo.
1283 */
1284 Bitmask sqlite3WhereCodeOneLoopStart(
1285   Parse *pParse,       /* Parsing context */
1286   Vdbe *v,             /* Prepared statement under construction */
1287   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1288   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1289   WhereLevel *pLevel,  /* The current level pointer */
1290   Bitmask notReady     /* Which tables are currently available */
1291 ){
1292   int j, k;            /* Loop counters */
1293   int iCur;            /* The VDBE cursor for the table */
1294   int addrNxt;         /* Where to jump to continue with the next IN case */
1295   int bRev;            /* True if we need to scan in reverse order */
1296   WhereLoop *pLoop;    /* The WhereLoop object being coded */
1297   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
1298   WhereTerm *pTerm;               /* A WHERE clause term */
1299   sqlite3 *db;                    /* Database connection */
1300   struct SrcList_item *pTabItem;  /* FROM clause term being coded */
1301   int addrBrk;                    /* Jump here to break out of the loop */
1302   int addrHalt;                   /* addrBrk for the outermost loop */
1303   int addrCont;                   /* Jump here to continue with next cycle */
1304   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
1305   int iReleaseReg = 0;      /* Temp register to free before returning */
1306   Index *pIdx = 0;          /* Index used by loop (if any) */
1307   int iLoop;                /* Iteration of constraint generator loop */
1308 
1309   pWC = &pWInfo->sWC;
1310   db = pParse->db;
1311   pLoop = pLevel->pWLoop;
1312   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1313   iCur = pTabItem->iCursor;
1314   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1315   bRev = (pWInfo->revMask>>iLevel)&1;
1316   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1317 #if WHERETRACE_ENABLED /* 0x20800 */
1318   if( sqlite3WhereTrace & 0x800 ){
1319     sqlite3DebugPrintf("Coding level %d of %d:  notReady=%llx  iFrom=%d\n",
1320        iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom);
1321     sqlite3WhereLoopPrint(pLoop, pWC);
1322   }
1323   if( sqlite3WhereTrace & 0x20000 ){
1324     if( iLevel==0 ){
1325       sqlite3DebugPrintf("WHERE clause being coded:\n");
1326       sqlite3TreeViewExpr(0, pWInfo->pWhere, 0);
1327     }
1328     sqlite3DebugPrintf("All WHERE-clause terms before coding:\n");
1329     sqlite3WhereClausePrint(pWC);
1330   }
1331 #endif
1332 
1333   /* Create labels for the "break" and "continue" instructions
1334   ** for the current loop.  Jump to addrBrk to break out of a loop.
1335   ** Jump to cont to go immediately to the next iteration of the
1336   ** loop.
1337   **
1338   ** When there is an IN operator, we also have a "addrNxt" label that
1339   ** means to continue with the next IN value combination.  When
1340   ** there are no IN operators in the constraints, the "addrNxt" label
1341   ** is the same as "addrBrk".
1342   */
1343   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
1344   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse);
1345 
1346   /* If this is the right table of a LEFT OUTER JOIN, allocate and
1347   ** initialize a memory cell that records if this table matches any
1348   ** row of the left table of the join.
1349   */
1350   assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1351        || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
1352   );
1353   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1354     pLevel->iLeftJoin = ++pParse->nMem;
1355     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1356     VdbeComment((v, "init LEFT JOIN no-match flag"));
1357   }
1358 
1359   /* Compute a safe address to jump to if we discover that the table for
1360   ** this loop is empty and can never contribute content. */
1361   for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){}
1362   addrHalt = pWInfo->a[j].addrBrk;
1363 
1364   /* Special case of a FROM clause subquery implemented as a co-routine */
1365   if( pTabItem->fg.viaCoroutine ){
1366     int regYield = pTabItem->regReturn;
1367     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1368     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1369     VdbeCoverage(v);
1370     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
1371     pLevel->op = OP_Goto;
1372   }else
1373 
1374 #ifndef SQLITE_OMIT_VIRTUALTABLE
1375   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1376     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
1377     **          to access the data.
1378     */
1379     int iReg;   /* P3 Value for OP_VFilter */
1380     int addrNotFound;
1381     int nConstraint = pLoop->nLTerm;
1382     int iIn;    /* Counter for IN constraints */
1383 
1384     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1385     addrNotFound = pLevel->addrBrk;
1386     for(j=0; j<nConstraint; j++){
1387       int iTarget = iReg+j+2;
1388       pTerm = pLoop->aLTerm[j];
1389       if( NEVER(pTerm==0) ) continue;
1390       if( pTerm->eOperator & WO_IN ){
1391         codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1392         addrNotFound = pLevel->addrNxt;
1393       }else{
1394         Expr *pRight = pTerm->pExpr->pRight;
1395         codeExprOrVector(pParse, pRight, iTarget, 1);
1396       }
1397     }
1398     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1399     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1400     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1401                       pLoop->u.vtab.idxStr,
1402                       pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1403     VdbeCoverage(v);
1404     pLoop->u.vtab.needFree = 0;
1405     /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed
1406     ** the u.vtab.idxStr.  NULL it out to prevent a use-after-free */
1407     if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0;
1408     pLevel->p1 = iCur;
1409     pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1410     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1411     iIn = pLevel->u.in.nIn;
1412     for(j=nConstraint-1; j>=0; j--){
1413       pTerm = pLoop->aLTerm[j];
1414       if( (pTerm->eOperator & WO_IN)!=0 ) iIn--;
1415       if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1416         disableTerm(pLevel, pTerm);
1417       }else if( (pTerm->eOperator & WO_IN)!=0
1418         && sqlite3ExprVectorSize(pTerm->pExpr->pLeft)==1
1419       ){
1420         Expr *pCompare;  /* The comparison operator */
1421         Expr *pRight;    /* RHS of the comparison */
1422         VdbeOp *pOp;     /* Opcode to access the value of the IN constraint */
1423 
1424         /* Reload the constraint value into reg[iReg+j+2].  The same value
1425         ** was loaded into the same register prior to the OP_VFilter, but
1426         ** the xFilter implementation might have changed the datatype or
1427         ** encoding of the value in the register, so it *must* be reloaded. */
1428         assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed );
1429         if( !db->mallocFailed ){
1430           assert( iIn>=0 && iIn<pLevel->u.in.nIn );
1431           pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop);
1432           assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid );
1433           assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 );
1434           assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 );
1435           testcase( pOp->opcode==OP_Rowid );
1436           sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1437         }
1438 
1439         /* Generate code that will continue to the next row if
1440         ** the IN constraint is not satisfied */
1441         pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1442         assert( pCompare!=0 || db->mallocFailed );
1443         if( pCompare ){
1444           pCompare->pLeft = pTerm->pExpr->pLeft;
1445           pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1446           if( pRight ){
1447             pRight->iTable = iReg+j+2;
1448             sqlite3ExprIfFalse(
1449                 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL
1450             );
1451           }
1452           pCompare->pLeft = 0;
1453           sqlite3ExprDelete(db, pCompare);
1454         }
1455       }
1456     }
1457     assert( iIn==0 || db->mallocFailed );
1458     /* These registers need to be preserved in case there is an IN operator
1459     ** loop.  So we could deallocate the registers here (and potentially
1460     ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0.  But it seems
1461     ** simpler and safer to simply not reuse the registers.
1462     **
1463     **    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1464     */
1465   }else
1466 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1467 
1468   if( (pLoop->wsFlags & WHERE_IPK)!=0
1469    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1470   ){
1471     /* Case 2:  We can directly reference a single row using an
1472     **          equality comparison against the ROWID field.  Or
1473     **          we reference multiple rows using a "rowid IN (...)"
1474     **          construct.
1475     */
1476     assert( pLoop->u.btree.nEq==1 );
1477     pTerm = pLoop->aLTerm[0];
1478     assert( pTerm!=0 );
1479     assert( pTerm->pExpr!=0 );
1480     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1481     iReleaseReg = ++pParse->nMem;
1482     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1483     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1484     addrNxt = pLevel->addrNxt;
1485     sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1486     VdbeCoverage(v);
1487     pLevel->op = OP_Noop;
1488     if( (pTerm->prereqAll & pLevel->notReady)==0 ){
1489       pTerm->wtFlags |= TERM_CODED;
1490     }
1491   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1492          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1493   ){
1494     /* Case 3:  We have an inequality comparison against the ROWID field.
1495     */
1496     int testOp = OP_Noop;
1497     int start;
1498     int memEndValue = 0;
1499     WhereTerm *pStart, *pEnd;
1500 
1501     j = 0;
1502     pStart = pEnd = 0;
1503     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1504     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1505     assert( pStart!=0 || pEnd!=0 );
1506     if( bRev ){
1507       pTerm = pStart;
1508       pStart = pEnd;
1509       pEnd = pTerm;
1510     }
1511     codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1512     if( pStart ){
1513       Expr *pX;             /* The expression that defines the start bound */
1514       int r1, rTemp;        /* Registers for holding the start boundary */
1515       int op;               /* Cursor seek operation */
1516 
1517       /* The following constant maps TK_xx codes into corresponding
1518       ** seek opcodes.  It depends on a particular ordering of TK_xx
1519       */
1520       const u8 aMoveOp[] = {
1521            /* TK_GT */  OP_SeekGT,
1522            /* TK_LE */  OP_SeekLE,
1523            /* TK_LT */  OP_SeekLT,
1524            /* TK_GE */  OP_SeekGE
1525       };
1526       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
1527       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
1528       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
1529 
1530       assert( (pStart->wtFlags & TERM_VNULL)==0 );
1531       testcase( pStart->wtFlags & TERM_VIRTUAL );
1532       pX = pStart->pExpr;
1533       assert( pX!=0 );
1534       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1535       if( sqlite3ExprIsVector(pX->pRight) ){
1536         r1 = rTemp = sqlite3GetTempReg(pParse);
1537         codeExprOrVector(pParse, pX->pRight, r1, 1);
1538         testcase( pX->op==TK_GT );
1539         testcase( pX->op==TK_GE );
1540         testcase( pX->op==TK_LT );
1541         testcase( pX->op==TK_LE );
1542         op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
1543         assert( pX->op!=TK_GT || op==OP_SeekGE );
1544         assert( pX->op!=TK_GE || op==OP_SeekGE );
1545         assert( pX->op!=TK_LT || op==OP_SeekLE );
1546         assert( pX->op!=TK_LE || op==OP_SeekLE );
1547       }else{
1548         r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1549         disableTerm(pLevel, pStart);
1550         op = aMoveOp[(pX->op - TK_GT)];
1551       }
1552       sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1553       VdbeComment((v, "pk"));
1554       VdbeCoverageIf(v, pX->op==TK_GT);
1555       VdbeCoverageIf(v, pX->op==TK_LE);
1556       VdbeCoverageIf(v, pX->op==TK_LT);
1557       VdbeCoverageIf(v, pX->op==TK_GE);
1558       sqlite3ReleaseTempReg(pParse, rTemp);
1559     }else{
1560       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1561       VdbeCoverageIf(v, bRev==0);
1562       VdbeCoverageIf(v, bRev!=0);
1563     }
1564     if( pEnd ){
1565       Expr *pX;
1566       pX = pEnd->pExpr;
1567       assert( pX!=0 );
1568       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1569       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1570       testcase( pEnd->wtFlags & TERM_VIRTUAL );
1571       memEndValue = ++pParse->nMem;
1572       codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1573       if( 0==sqlite3ExprIsVector(pX->pRight)
1574        && (pX->op==TK_LT || pX->op==TK_GT)
1575       ){
1576         testOp = bRev ? OP_Le : OP_Ge;
1577       }else{
1578         testOp = bRev ? OP_Lt : OP_Gt;
1579       }
1580       if( 0==sqlite3ExprIsVector(pX->pRight) ){
1581         disableTerm(pLevel, pEnd);
1582       }
1583     }
1584     start = sqlite3VdbeCurrentAddr(v);
1585     pLevel->op = bRev ? OP_Prev : OP_Next;
1586     pLevel->p1 = iCur;
1587     pLevel->p2 = start;
1588     assert( pLevel->p5==0 );
1589     if( testOp!=OP_Noop ){
1590       iRowidReg = ++pParse->nMem;
1591       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1592       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1593       VdbeCoverageIf(v, testOp==OP_Le);
1594       VdbeCoverageIf(v, testOp==OP_Lt);
1595       VdbeCoverageIf(v, testOp==OP_Ge);
1596       VdbeCoverageIf(v, testOp==OP_Gt);
1597       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1598     }
1599   }else if( pLoop->wsFlags & WHERE_INDEXED ){
1600     /* Case 4: A scan using an index.
1601     **
1602     **         The WHERE clause may contain zero or more equality
1603     **         terms ("==" or "IN" operators) that refer to the N
1604     **         left-most columns of the index. It may also contain
1605     **         inequality constraints (>, <, >= or <=) on the indexed
1606     **         column that immediately follows the N equalities. Only
1607     **         the right-most column can be an inequality - the rest must
1608     **         use the "==" and "IN" operators. For example, if the
1609     **         index is on (x,y,z), then the following clauses are all
1610     **         optimized:
1611     **
1612     **            x=5
1613     **            x=5 AND y=10
1614     **            x=5 AND y<10
1615     **            x=5 AND y>5 AND y<10
1616     **            x=5 AND y=5 AND z<=10
1617     **
1618     **         The z<10 term of the following cannot be used, only
1619     **         the x=5 term:
1620     **
1621     **            x=5 AND z<10
1622     **
1623     **         N may be zero if there are inequality constraints.
1624     **         If there are no inequality constraints, then N is at
1625     **         least one.
1626     **
1627     **         This case is also used when there are no WHERE clause
1628     **         constraints but an index is selected anyway, in order
1629     **         to force the output order to conform to an ORDER BY.
1630     */
1631     static const u8 aStartOp[] = {
1632       0,
1633       0,
1634       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
1635       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
1636       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
1637       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
1638       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
1639       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
1640     };
1641     static const u8 aEndOp[] = {
1642       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
1643       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
1644       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
1645       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
1646     };
1647     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
1648     u16 nBtm = pLoop->u.btree.nBtm;   /* Length of BTM vector */
1649     u16 nTop = pLoop->u.btree.nTop;   /* Length of TOP vector */
1650     int regBase;                 /* Base register holding constraint values */
1651     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
1652     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
1653     int startEq;                 /* True if range start uses ==, >= or <= */
1654     int endEq;                   /* True if range end uses ==, >= or <= */
1655     int start_constraints;       /* Start of range is constrained */
1656     int nConstraint;             /* Number of constraint terms */
1657     int iIdxCur;                 /* The VDBE cursor for the index */
1658     int nExtraReg = 0;           /* Number of extra registers needed */
1659     int op;                      /* Instruction opcode */
1660     char *zStartAff;             /* Affinity for start of range constraint */
1661     char *zEndAff = 0;           /* Affinity for end of range constraint */
1662     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
1663     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
1664     int omitTable;               /* True if we use the index only */
1665     int regBignull = 0;          /* big-null flag register */
1666     int addrSeekScan = 0;        /* Opcode of the OP_SeekScan, if any */
1667 
1668     pIdx = pLoop->u.btree.pIndex;
1669     iIdxCur = pLevel->iIdxCur;
1670     assert( nEq>=pLoop->nSkip );
1671 
1672     /* Find any inequality constraint terms for the start and end
1673     ** of the range.
1674     */
1675     j = nEq;
1676     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1677       pRangeStart = pLoop->aLTerm[j++];
1678       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1679       /* Like optimization range constraints always occur in pairs */
1680       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1681               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1682     }
1683     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1684       pRangeEnd = pLoop->aLTerm[j++];
1685       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1686 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1687       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1688         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
1689         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
1690         pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1691         sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1692         VdbeComment((v, "LIKE loop counter"));
1693         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1694         /* iLikeRepCntr actually stores 2x the counter register number.  The
1695         ** bottom bit indicates whether the search order is ASC or DESC. */
1696         testcase( bRev );
1697         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1698         assert( (bRev & ~1)==0 );
1699         pLevel->iLikeRepCntr <<=1;
1700         pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1701       }
1702 #endif
1703       if( pRangeStart==0 ){
1704         j = pIdx->aiColumn[nEq];
1705         if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1706           bSeekPastNull = 1;
1707         }
1708       }
1709     }
1710     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1711 
1712     /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
1713     ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
1714     ** FIRST). In both cases separate ordered scans are made of those
1715     ** index entries for which the column is null and for those for which
1716     ** it is not. For an ASC sort, the non-NULL entries are scanned first.
1717     ** For DESC, NULL entries are scanned first.
1718     */
1719     if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0
1720      && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0
1721     ){
1722       assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 );
1723       assert( pRangeEnd==0 && pRangeStart==0 );
1724       testcase( pLoop->nSkip>0 );
1725       nExtraReg = 1;
1726       bSeekPastNull = 1;
1727       pLevel->regBignull = regBignull = ++pParse->nMem;
1728       if( pLevel->iLeftJoin ){
1729         sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull);
1730       }
1731       pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse);
1732     }
1733 
1734     /* If we are doing a reverse order scan on an ascending index, or
1735     ** a forward order scan on a descending index, interchange the
1736     ** start and end terms (pRangeStart and pRangeEnd).
1737     */
1738     if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1739      || (bRev && pIdx->nKeyCol==nEq)
1740     ){
1741       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1742       SWAP(u8, bSeekPastNull, bStopAtNull);
1743       SWAP(u8, nBtm, nTop);
1744     }
1745 
1746     /* Generate code to evaluate all constraint terms using == or IN
1747     ** and store the values of those terms in an array of registers
1748     ** starting at regBase.
1749     */
1750     codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1751     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1752     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1753     if( zStartAff && nTop ){
1754       zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1755     }
1756     addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt);
1757 
1758     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1759     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1760     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1761     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1762     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1763     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1764     start_constraints = pRangeStart || nEq>0;
1765 
1766     /* Seek the index cursor to the start of the range. */
1767     nConstraint = nEq;
1768     if( pRangeStart ){
1769       Expr *pRight = pRangeStart->pExpr->pRight;
1770       codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1771       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1772       if( (pRangeStart->wtFlags & TERM_VNULL)==0
1773        && sqlite3ExprCanBeNull(pRight)
1774       ){
1775         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1776         VdbeCoverage(v);
1777       }
1778       if( zStartAff ){
1779         updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1780       }
1781       nConstraint += nBtm;
1782       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1783       if( sqlite3ExprIsVector(pRight)==0 ){
1784         disableTerm(pLevel, pRangeStart);
1785       }else{
1786         startEq = 1;
1787       }
1788       bSeekPastNull = 0;
1789     }else if( bSeekPastNull ){
1790       startEq = 0;
1791       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1792       start_constraints = 1;
1793       nConstraint++;
1794     }else if( regBignull ){
1795       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1796       start_constraints = 1;
1797       nConstraint++;
1798     }
1799     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1800     if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1801       /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1802       ** above has already left the cursor sitting on the correct row,
1803       ** so no further seeking is needed */
1804     }else{
1805       if( regBignull ){
1806         sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull);
1807         VdbeComment((v, "NULL-scan pass ctr"));
1808       }
1809 
1810       op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1811       assert( op!=0 );
1812       if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){
1813         assert( regBignull==0 );
1814         /* TUNING:  The OP_SeekScan opcode seeks to reduce the number
1815         ** of expensive seek operations by replacing a single seek with
1816         ** 1 or more step operations.  The question is, how many steps
1817         ** should we try before giving up and going with a seek.  The cost
1818         ** of a seek is proportional to the logarithm of the of the number
1819         ** of entries in the tree, so basing the number of steps to try
1820         ** on the estimated number of rows in the btree seems like a good
1821         ** guess. */
1822         addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan,
1823                                          (pIdx->aiRowLogEst[0]+9)/10);
1824         VdbeCoverage(v);
1825       }
1826       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1827       VdbeCoverage(v);
1828       VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1829       VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1830       VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
1831       VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1832       VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1833       VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
1834 
1835       assert( bSeekPastNull==0 || bStopAtNull==0 );
1836       if( regBignull ){
1837         assert( bSeekPastNull==1 || bStopAtNull==1 );
1838         assert( bSeekPastNull==!bStopAtNull );
1839         assert( bStopAtNull==startEq );
1840         sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2);
1841         op = aStartOp[(nConstraint>1)*4 + 2 + bRev];
1842         sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1843                              nConstraint-startEq);
1844         VdbeCoverage(v);
1845         VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1846         VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1847         VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1848         VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1849         assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE);
1850       }
1851     }
1852 
1853     /* Load the value for the inequality constraint at the end of the
1854     ** range (if any).
1855     */
1856     nConstraint = nEq;
1857     if( pRangeEnd ){
1858       Expr *pRight = pRangeEnd->pExpr->pRight;
1859       codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
1860       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1861       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1862        && sqlite3ExprCanBeNull(pRight)
1863       ){
1864         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1865         VdbeCoverage(v);
1866       }
1867       if( zEndAff ){
1868         updateRangeAffinityStr(pRight, nTop, zEndAff);
1869         codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1870       }else{
1871         assert( pParse->db->mallocFailed );
1872       }
1873       nConstraint += nTop;
1874       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1875 
1876       if( sqlite3ExprIsVector(pRight)==0 ){
1877         disableTerm(pLevel, pRangeEnd);
1878       }else{
1879         endEq = 1;
1880       }
1881     }else if( bStopAtNull ){
1882       if( regBignull==0 ){
1883         sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1884         endEq = 0;
1885       }
1886       nConstraint++;
1887     }
1888     sqlite3DbFree(db, zStartAff);
1889     sqlite3DbFree(db, zEndAff);
1890 
1891     /* Top of the loop body */
1892     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1893 
1894     /* Check if the index cursor is past the end of the range. */
1895     if( nConstraint ){
1896       if( regBignull ){
1897         /* Except, skip the end-of-range check while doing the NULL-scan */
1898         sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3);
1899         VdbeComment((v, "If NULL-scan 2nd pass"));
1900         VdbeCoverage(v);
1901       }
1902       op = aEndOp[bRev*2 + endEq];
1903       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1904       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1905       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1906       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1907       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1908       if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan);
1909     }
1910     if( regBignull ){
1911       /* During a NULL-scan, check to see if we have reached the end of
1912       ** the NULLs */
1913       assert( bSeekPastNull==!bStopAtNull );
1914       assert( bSeekPastNull+bStopAtNull==1 );
1915       assert( nConstraint+bSeekPastNull>0 );
1916       sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2);
1917       VdbeComment((v, "If NULL-scan 1st pass"));
1918       VdbeCoverage(v);
1919       op = aEndOp[bRev*2 + bSeekPastNull];
1920       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1921                            nConstraint+bSeekPastNull);
1922       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1923       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1924       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1925       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1926     }
1927 
1928     if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){
1929       sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq);
1930     }
1931 
1932     /* Seek the table cursor, if required */
1933     omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
1934            && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
1935     if( omitTable ){
1936       /* pIdx is a covering index.  No need to access the main table. */
1937     }else if( HasRowid(pIdx->pTable) ){
1938       codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
1939     }else if( iCur!=iIdxCur ){
1940       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1941       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1942       for(j=0; j<pPk->nKeyCol; j++){
1943         k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
1944         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1945       }
1946       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1947                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1948     }
1949 
1950     if( pLevel->iLeftJoin==0 ){
1951       /* If pIdx is an index on one or more expressions, then look through
1952       ** all the expressions in pWInfo and try to transform matching expressions
1953       ** into reference to index columns.  Also attempt to translate references
1954       ** to virtual columns in the table into references to (stored) columns
1955       ** of the index.
1956       **
1957       ** Do not do this for the RHS of a LEFT JOIN. This is because the
1958       ** expression may be evaluated after OP_NullRow has been executed on
1959       ** the cursor. In this case it is important to do the full evaluation,
1960       ** as the result of the expression may not be NULL, even if all table
1961       ** column values are.  https://www.sqlite.org/src/info/7fa8049685b50b5a
1962       **
1963       ** Also, do not do this when processing one index an a multi-index
1964       ** OR clause, since the transformation will become invalid once we
1965       ** move forward to the next index.
1966       ** https://sqlite.org/src/info/4e8e4857d32d401f
1967       */
1968       if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
1969         whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
1970       }
1971 
1972       /* If a partial index is driving the loop, try to eliminate WHERE clause
1973       ** terms from the query that must be true due to the WHERE clause of
1974       ** the partial index.
1975       **
1976       ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
1977       ** for a LEFT JOIN.
1978       */
1979       if( pIdx->pPartIdxWhere ){
1980         whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC);
1981       }
1982     }else{
1983       testcase( pIdx->pPartIdxWhere );
1984       /* The following assert() is not a requirement, merely an observation:
1985       ** The OR-optimization doesn't work for the right hand table of
1986       ** a LEFT JOIN: */
1987       assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 );
1988     }
1989 
1990     /* Record the instruction used to terminate the loop. */
1991     if( pLoop->wsFlags & WHERE_ONEROW ){
1992       pLevel->op = OP_Noop;
1993     }else if( bRev ){
1994       pLevel->op = OP_Prev;
1995     }else{
1996       pLevel->op = OP_Next;
1997     }
1998     pLevel->p1 = iIdxCur;
1999     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
2000     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
2001       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2002     }else{
2003       assert( pLevel->p5==0 );
2004     }
2005     if( omitTable ) pIdx = 0;
2006   }else
2007 
2008 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
2009   if( pLoop->wsFlags & WHERE_MULTI_OR ){
2010     /* Case 5:  Two or more separately indexed terms connected by OR
2011     **
2012     ** Example:
2013     **
2014     **   CREATE TABLE t1(a,b,c,d);
2015     **   CREATE INDEX i1 ON t1(a);
2016     **   CREATE INDEX i2 ON t1(b);
2017     **   CREATE INDEX i3 ON t1(c);
2018     **
2019     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
2020     **
2021     ** In the example, there are three indexed terms connected by OR.
2022     ** The top of the loop looks like this:
2023     **
2024     **          Null       1                # Zero the rowset in reg 1
2025     **
2026     ** Then, for each indexed term, the following. The arguments to
2027     ** RowSetTest are such that the rowid of the current row is inserted
2028     ** into the RowSet. If it is already present, control skips the
2029     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
2030     **
2031     **        sqlite3WhereBegin(<term>)
2032     **          RowSetTest                  # Insert rowid into rowset
2033     **          Gosub      2 A
2034     **        sqlite3WhereEnd()
2035     **
2036     ** Following the above, code to terminate the loop. Label A, the target
2037     ** of the Gosub above, jumps to the instruction right after the Goto.
2038     **
2039     **          Null       1                # Zero the rowset in reg 1
2040     **          Goto       B                # The loop is finished.
2041     **
2042     **       A: <loop body>                 # Return data, whatever.
2043     **
2044     **          Return     2                # Jump back to the Gosub
2045     **
2046     **       B: <after the loop>
2047     **
2048     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
2049     ** use an ephemeral index instead of a RowSet to record the primary
2050     ** keys of the rows we have already seen.
2051     **
2052     */
2053     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
2054     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
2055     Index *pCov = 0;             /* Potential covering index (or NULL) */
2056     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
2057 
2058     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
2059     int regRowset = 0;                        /* Register for RowSet object */
2060     int regRowid = 0;                         /* Register holding rowid */
2061     int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */
2062     int iRetInit;                             /* Address of regReturn init */
2063     int untestedTerms = 0;             /* Some terms not completely tested */
2064     int ii;                            /* Loop counter */
2065     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
2066     Table *pTab = pTabItem->pTab;
2067 
2068     pTerm = pLoop->aLTerm[0];
2069     assert( pTerm!=0 );
2070     assert( pTerm->eOperator & WO_OR );
2071     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
2072     pOrWc = &pTerm->u.pOrInfo->wc;
2073     pLevel->op = OP_Return;
2074     pLevel->p1 = regReturn;
2075 
2076     /* Set up a new SrcList in pOrTab containing the table being scanned
2077     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
2078     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
2079     */
2080     if( pWInfo->nLevel>1 ){
2081       int nNotReady;                 /* The number of notReady tables */
2082       struct SrcList_item *origSrc;     /* Original list of tables */
2083       nNotReady = pWInfo->nLevel - iLevel - 1;
2084       pOrTab = sqlite3StackAllocRaw(db,
2085                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
2086       if( pOrTab==0 ) return notReady;
2087       pOrTab->nAlloc = (u8)(nNotReady + 1);
2088       pOrTab->nSrc = pOrTab->nAlloc;
2089       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
2090       origSrc = pWInfo->pTabList->a;
2091       for(k=1; k<=nNotReady; k++){
2092         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
2093       }
2094     }else{
2095       pOrTab = pWInfo->pTabList;
2096     }
2097 
2098     /* Initialize the rowset register to contain NULL. An SQL NULL is
2099     ** equivalent to an empty rowset.  Or, create an ephemeral index
2100     ** capable of holding primary keys in the case of a WITHOUT ROWID.
2101     **
2102     ** Also initialize regReturn to contain the address of the instruction
2103     ** immediately following the OP_Return at the bottom of the loop. This
2104     ** is required in a few obscure LEFT JOIN cases where control jumps
2105     ** over the top of the loop into the body of it. In this case the
2106     ** correct response for the end-of-loop code (the OP_Return) is to
2107     ** fall through to the next instruction, just as an OP_Next does if
2108     ** called on an uninitialized cursor.
2109     */
2110     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2111       if( HasRowid(pTab) ){
2112         regRowset = ++pParse->nMem;
2113         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
2114       }else{
2115         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2116         regRowset = pParse->nTab++;
2117         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
2118         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
2119       }
2120       regRowid = ++pParse->nMem;
2121     }
2122     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
2123 
2124     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
2125     ** Then for every term xN, evaluate as the subexpression: xN AND z
2126     ** That way, terms in y that are factored into the disjunction will
2127     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
2128     **
2129     ** Actually, each subexpression is converted to "xN AND w" where w is
2130     ** the "interesting" terms of z - terms that did not originate in the
2131     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
2132     ** indices.
2133     **
2134     ** This optimization also only applies if the (x1 OR x2 OR ...) term
2135     ** is not contained in the ON clause of a LEFT JOIN.
2136     ** See ticket http://www.sqlite.org/src/info/f2369304e4
2137     */
2138     if( pWC->nTerm>1 ){
2139       int iTerm;
2140       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
2141         Expr *pExpr = pWC->a[iTerm].pExpr;
2142         if( &pWC->a[iTerm] == pTerm ) continue;
2143         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
2144         testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
2145         if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
2146         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
2147         testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
2148         pExpr = sqlite3ExprDup(db, pExpr, 0);
2149         pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr);
2150       }
2151       if( pAndExpr ){
2152         /* The extra 0x10000 bit on the opcode is masked off and does not
2153         ** become part of the new Expr.op.  However, it does make the
2154         ** op==TK_AND comparison inside of sqlite3PExpr() false, and this
2155         ** prevents sqlite3PExpr() from implementing AND short-circuit
2156         ** optimization, which we do not want here. */
2157         pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr);
2158       }
2159     }
2160 
2161     /* Run a separate WHERE clause for each term of the OR clause.  After
2162     ** eliminating duplicates from other WHERE clauses, the action for each
2163     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
2164     */
2165     ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
2166     for(ii=0; ii<pOrWc->nTerm; ii++){
2167       WhereTerm *pOrTerm = &pOrWc->a[ii];
2168       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
2169         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
2170         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
2171         int jmp1 = 0;                   /* Address of jump operation */
2172         testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0
2173                && !ExprHasProperty(pOrExpr, EP_FromJoin)
2174         ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */
2175         if( pAndExpr ){
2176           pAndExpr->pLeft = pOrExpr;
2177           pOrExpr = pAndExpr;
2178         }
2179         /* Loop through table entries that match term pOrTerm. */
2180         ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1));
2181         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
2182         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
2183                                       WHERE_OR_SUBCLAUSE, iCovCur);
2184         assert( pSubWInfo || pParse->nErr || db->mallocFailed );
2185         if( pSubWInfo ){
2186           WhereLoop *pSubLoop;
2187           int addrExplain = sqlite3WhereExplainOneScan(
2188               pParse, pOrTab, &pSubWInfo->a[0], 0
2189           );
2190           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
2191 
2192           /* This is the sub-WHERE clause body.  First skip over
2193           ** duplicate rows from prior sub-WHERE clauses, and record the
2194           ** rowid (or PRIMARY KEY) for the current row so that the same
2195           ** row will be skipped in subsequent sub-WHERE clauses.
2196           */
2197           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2198             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
2199             if( HasRowid(pTab) ){
2200               sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid);
2201               jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
2202                                           regRowid, iSet);
2203               VdbeCoverage(v);
2204             }else{
2205               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2206               int nPk = pPk->nKeyCol;
2207               int iPk;
2208               int r;
2209 
2210               /* Read the PK into an array of temp registers. */
2211               r = sqlite3GetTempRange(pParse, nPk);
2212               for(iPk=0; iPk<nPk; iPk++){
2213                 int iCol = pPk->aiColumn[iPk];
2214                 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2215               }
2216 
2217               /* Check if the temp table already contains this key. If so,
2218               ** the row has already been included in the result set and
2219               ** can be ignored (by jumping past the Gosub below). Otherwise,
2220               ** insert the key into the temp table and proceed with processing
2221               ** the row.
2222               **
2223               ** Use some of the same optimizations as OP_RowSetTest: If iSet
2224               ** is zero, assume that the key cannot already be present in
2225               ** the temp table. And if iSet is -1, assume that there is no
2226               ** need to insert the key into the temp table, as it will never
2227               ** be tested for.  */
2228               if( iSet ){
2229                 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
2230                 VdbeCoverage(v);
2231               }
2232               if( iSet>=0 ){
2233                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
2234                 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
2235                                      r, nPk);
2236                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2237               }
2238 
2239               /* Release the array of temp registers */
2240               sqlite3ReleaseTempRange(pParse, r, nPk);
2241             }
2242           }
2243 
2244           /* Invoke the main loop body as a subroutine */
2245           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2246 
2247           /* Jump here (skipping the main loop body subroutine) if the
2248           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2249           if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
2250 
2251           /* The pSubWInfo->untestedTerms flag means that this OR term
2252           ** contained one or more AND term from a notReady table.  The
2253           ** terms from the notReady table could not be tested and will
2254           ** need to be tested later.
2255           */
2256           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
2257 
2258           /* If all of the OR-connected terms are optimized using the same
2259           ** index, and the index is opened using the same cursor number
2260           ** by each call to sqlite3WhereBegin() made by this loop, it may
2261           ** be possible to use that index as a covering index.
2262           **
2263           ** If the call to sqlite3WhereBegin() above resulted in a scan that
2264           ** uses an index, and this is either the first OR-connected term
2265           ** processed or the index is the same as that used by all previous
2266           ** terms, set pCov to the candidate covering index. Otherwise, set
2267           ** pCov to NULL to indicate that no candidate covering index will
2268           ** be available.
2269           */
2270           pSubLoop = pSubWInfo->a[0].pWLoop;
2271           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2272           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2273            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2274            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2275           ){
2276             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2277             pCov = pSubLoop->u.btree.pIndex;
2278           }else{
2279             pCov = 0;
2280           }
2281           if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){
2282             pWInfo->bDeferredSeek = 1;
2283           }
2284 
2285           /* Finish the loop through table entries that match term pOrTerm. */
2286           sqlite3WhereEnd(pSubWInfo);
2287           ExplainQueryPlanPop(pParse);
2288         }
2289       }
2290     }
2291     ExplainQueryPlanPop(pParse);
2292     pLevel->u.pCovidx = pCov;
2293     if( pCov ) pLevel->iIdxCur = iCovCur;
2294     if( pAndExpr ){
2295       pAndExpr->pLeft = 0;
2296       sqlite3ExprDelete(db, pAndExpr);
2297     }
2298     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2299     sqlite3VdbeGoto(v, pLevel->addrBrk);
2300     sqlite3VdbeResolveLabel(v, iLoopBody);
2301 
2302     if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); }
2303     if( !untestedTerms ) disableTerm(pLevel, pTerm);
2304   }else
2305 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2306 
2307   {
2308     /* Case 6:  There is no usable index.  We must do a complete
2309     **          scan of the entire table.
2310     */
2311     static const u8 aStep[] = { OP_Next, OP_Prev };
2312     static const u8 aStart[] = { OP_Rewind, OP_Last };
2313     assert( bRev==0 || bRev==1 );
2314     if( pTabItem->fg.isRecursive ){
2315       /* Tables marked isRecursive have only a single row that is stored in
2316       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
2317       pLevel->op = OP_Noop;
2318     }else{
2319       codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2320       pLevel->op = aStep[bRev];
2321       pLevel->p1 = iCur;
2322       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2323       VdbeCoverageIf(v, bRev==0);
2324       VdbeCoverageIf(v, bRev!=0);
2325       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2326     }
2327   }
2328 
2329 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2330   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2331 #endif
2332 
2333   /* Insert code to test every subexpression that can be completely
2334   ** computed using the current set of tables.
2335   **
2336   ** This loop may run between one and three times, depending on the
2337   ** constraints to be generated. The value of stack variable iLoop
2338   ** determines the constraints coded by each iteration, as follows:
2339   **
2340   ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2341   ** iLoop==2: Code remaining expressions that do not contain correlated
2342   **           sub-queries.
2343   ** iLoop==3: Code all remaining expressions.
2344   **
2345   ** An effort is made to skip unnecessary iterations of the loop.
2346   */
2347   iLoop = (pIdx ? 1 : 2);
2348   do{
2349     int iNext = 0;                /* Next value for iLoop */
2350     for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2351       Expr *pE;
2352       int skipLikeAddr = 0;
2353       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2354       testcase( pTerm->wtFlags & TERM_CODED );
2355       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2356       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2357         testcase( pWInfo->untestedTerms==0
2358             && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2359         pWInfo->untestedTerms = 1;
2360         continue;
2361       }
2362       pE = pTerm->pExpr;
2363       assert( pE!=0 );
2364       if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){
2365         continue;
2366       }
2367 
2368       if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2369         iNext = 2;
2370         continue;
2371       }
2372       if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2373         if( iNext==0 ) iNext = 3;
2374         continue;
2375       }
2376 
2377       if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
2378         /* If the TERM_LIKECOND flag is set, that means that the range search
2379         ** is sufficient to guarantee that the LIKE operator is true, so we
2380         ** can skip the call to the like(A,B) function.  But this only works
2381         ** for strings.  So do not skip the call to the function on the pass
2382         ** that compares BLOBs. */
2383 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2384         continue;
2385 #else
2386         u32 x = pLevel->iLikeRepCntr;
2387         if( x>0 ){
2388           skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
2389           VdbeCoverageIf(v, (x&1)==1);
2390           VdbeCoverageIf(v, (x&1)==0);
2391         }
2392 #endif
2393       }
2394 #ifdef WHERETRACE_ENABLED /* 0xffff */
2395       if( sqlite3WhereTrace ){
2396         VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2397                          pWC->nTerm-j, pTerm, iLoop));
2398       }
2399       if( sqlite3WhereTrace & 0x800 ){
2400         sqlite3DebugPrintf("Coding auxiliary constraint:\n");
2401         sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2402       }
2403 #endif
2404       sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2405       if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2406       pTerm->wtFlags |= TERM_CODED;
2407     }
2408     iLoop = iNext;
2409   }while( iLoop>0 );
2410 
2411   /* Insert code to test for implied constraints based on transitivity
2412   ** of the "==" operator.
2413   **
2414   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2415   ** and we are coding the t1 loop and the t2 loop has not yet coded,
2416   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2417   ** the implied "t1.a=123" constraint.
2418   */
2419   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2420     Expr *pE, sEAlt;
2421     WhereTerm *pAlt;
2422     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2423     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2424     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2425     if( pTerm->leftCursor!=iCur ) continue;
2426     if( pTabItem->fg.jointype & JT_LEFT ) continue;
2427     pE = pTerm->pExpr;
2428 #ifdef WHERETRACE_ENABLED /* 0x800 */
2429     if( sqlite3WhereTrace & 0x800 ){
2430       sqlite3DebugPrintf("Coding transitive constraint:\n");
2431       sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2432     }
2433 #endif
2434     assert( !ExprHasProperty(pE, EP_FromJoin) );
2435     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2436     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady,
2437                     WO_EQ|WO_IN|WO_IS, 0);
2438     if( pAlt==0 ) continue;
2439     if( pAlt->wtFlags & (TERM_CODED) ) continue;
2440     if( (pAlt->eOperator & WO_IN)
2441      && (pAlt->pExpr->flags & EP_xIsSelect)
2442      && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
2443     ){
2444       continue;
2445     }
2446     testcase( pAlt->eOperator & WO_EQ );
2447     testcase( pAlt->eOperator & WO_IS );
2448     testcase( pAlt->eOperator & WO_IN );
2449     VdbeModuleComment((v, "begin transitive constraint"));
2450     sEAlt = *pAlt->pExpr;
2451     sEAlt.pLeft = pE->pLeft;
2452     sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2453   }
2454 
2455   /* For a LEFT OUTER JOIN, generate code that will record the fact that
2456   ** at least one row of the right table has matched the left table.
2457   */
2458   if( pLevel->iLeftJoin ){
2459     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2460     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2461     VdbeComment((v, "record LEFT JOIN hit"));
2462     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
2463       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2464       testcase( pTerm->wtFlags & TERM_CODED );
2465       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2466       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2467         assert( pWInfo->untestedTerms );
2468         continue;
2469       }
2470       assert( pTerm->pExpr );
2471       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2472       pTerm->wtFlags |= TERM_CODED;
2473     }
2474   }
2475 
2476 #if WHERETRACE_ENABLED /* 0x20800 */
2477   if( sqlite3WhereTrace & 0x20000 ){
2478     sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n",
2479                        iLevel);
2480     sqlite3WhereClausePrint(pWC);
2481   }
2482   if( sqlite3WhereTrace & 0x800 ){
2483     sqlite3DebugPrintf("End Coding level %d:  notReady=%llx\n",
2484        iLevel, (u64)pLevel->notReady);
2485   }
2486 #endif
2487   return pLevel->notReady;
2488 }
2489