1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 25 /* 26 ** Return the name of the i-th column of the pIdx index. 27 */ 28 static const char *explainIndexColumnName(Index *pIdx, int i){ 29 i = pIdx->aiColumn[i]; 30 if( i==XN_EXPR ) return "<expr>"; 31 if( i==XN_ROWID ) return "rowid"; 32 return pIdx->pTable->aCol[i].zName; 33 } 34 35 /* 36 ** This routine is a helper for explainIndexRange() below 37 ** 38 ** pStr holds the text of an expression that we are building up one term 39 ** at a time. This routine adds a new term to the end of the expression. 40 ** Terms are separated by AND so add the "AND" text for second and subsequent 41 ** terms only. 42 */ 43 static void explainAppendTerm( 44 StrAccum *pStr, /* The text expression being built */ 45 Index *pIdx, /* Index to read column names from */ 46 int nTerm, /* Number of terms */ 47 int iTerm, /* Zero-based index of first term. */ 48 int bAnd, /* Non-zero to append " AND " */ 49 const char *zOp /* Name of the operator */ 50 ){ 51 int i; 52 53 assert( nTerm>=1 ); 54 if( bAnd ) sqlite3StrAccumAppend(pStr, " AND ", 5); 55 56 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1); 57 for(i=0; i<nTerm; i++){ 58 if( i ) sqlite3StrAccumAppend(pStr, ",", 1); 59 sqlite3StrAccumAppendAll(pStr, explainIndexColumnName(pIdx, iTerm+i)); 60 } 61 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1); 62 63 sqlite3StrAccumAppend(pStr, zOp, 1); 64 65 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1); 66 for(i=0; i<nTerm; i++){ 67 if( i ) sqlite3StrAccumAppend(pStr, ",", 1); 68 sqlite3StrAccumAppend(pStr, "?", 1); 69 } 70 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1); 71 } 72 73 /* 74 ** Argument pLevel describes a strategy for scanning table pTab. This 75 ** function appends text to pStr that describes the subset of table 76 ** rows scanned by the strategy in the form of an SQL expression. 77 ** 78 ** For example, if the query: 79 ** 80 ** SELECT * FROM t1 WHERE a=1 AND b>2; 81 ** 82 ** is run and there is an index on (a, b), then this function returns a 83 ** string similar to: 84 ** 85 ** "a=? AND b>?" 86 */ 87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 88 Index *pIndex = pLoop->u.btree.pIndex; 89 u16 nEq = pLoop->u.btree.nEq; 90 u16 nSkip = pLoop->nSkip; 91 int i, j; 92 93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 94 sqlite3StrAccumAppend(pStr, " (", 2); 95 for(i=0; i<nEq; i++){ 96 const char *z = explainIndexColumnName(pIndex, i); 97 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5); 98 sqlite3XPrintf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); 99 } 100 101 j = i; 102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); 104 i = 1; 105 } 106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); 108 } 109 sqlite3StrAccumAppend(pStr, ")", 1); 110 } 111 112 /* 113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 116 ** is added to the output to describe the table scan strategy in pLevel. 117 ** 118 ** If an OP_Explain opcode is added to the VM, its address is returned. 119 ** Otherwise, if no OP_Explain is coded, zero is returned. 120 */ 121 int sqlite3WhereExplainOneScan( 122 Parse *pParse, /* Parse context */ 123 SrcList *pTabList, /* Table list this loop refers to */ 124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 125 int iLevel, /* Value for "level" column of output */ 126 int iFrom, /* Value for "from" column of output */ 127 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 128 ){ 129 int ret = 0; 130 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 131 if( pParse->explain==2 ) 132 #endif 133 { 134 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 135 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 136 sqlite3 *db = pParse->db; /* Database handle */ 137 int iId = pParse->iSelectId; /* Select id (left-most output column) */ 138 int isSearch; /* True for a SEARCH. False for SCAN. */ 139 WhereLoop *pLoop; /* The controlling WhereLoop object */ 140 u32 flags; /* Flags that describe this loop */ 141 char *zMsg; /* Text to add to EQP output */ 142 StrAccum str; /* EQP output string */ 143 char zBuf[100]; /* Initial space for EQP output string */ 144 145 pLoop = pLevel->pWLoop; 146 flags = pLoop->wsFlags; 147 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; 148 149 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 150 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 151 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 152 153 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 154 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN"); 155 if( pItem->pSelect ){ 156 sqlite3XPrintf(&str, " SUBQUERY %d", pItem->iSelectId); 157 }else{ 158 sqlite3XPrintf(&str, " TABLE %s", pItem->zName); 159 } 160 161 if( pItem->zAlias ){ 162 sqlite3XPrintf(&str, " AS %s", pItem->zAlias); 163 } 164 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 165 const char *zFmt = 0; 166 Index *pIdx; 167 168 assert( pLoop->u.btree.pIndex!=0 ); 169 pIdx = pLoop->u.btree.pIndex; 170 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 171 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 172 if( isSearch ){ 173 zFmt = "PRIMARY KEY"; 174 } 175 }else if( flags & WHERE_PARTIALIDX ){ 176 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 177 }else if( flags & WHERE_AUTO_INDEX ){ 178 zFmt = "AUTOMATIC COVERING INDEX"; 179 }else if( flags & WHERE_IDX_ONLY ){ 180 zFmt = "COVERING INDEX %s"; 181 }else{ 182 zFmt = "INDEX %s"; 183 } 184 if( zFmt ){ 185 sqlite3StrAccumAppend(&str, " USING ", 7); 186 sqlite3XPrintf(&str, zFmt, pIdx->zName); 187 explainIndexRange(&str, pLoop); 188 } 189 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 190 const char *zRangeOp; 191 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 192 zRangeOp = "="; 193 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 194 zRangeOp = ">? AND rowid<"; 195 }else if( flags&WHERE_BTM_LIMIT ){ 196 zRangeOp = ">"; 197 }else{ 198 assert( flags&WHERE_TOP_LIMIT); 199 zRangeOp = "<"; 200 } 201 sqlite3XPrintf(&str, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp); 202 } 203 #ifndef SQLITE_OMIT_VIRTUALTABLE 204 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 205 sqlite3XPrintf(&str, " VIRTUAL TABLE INDEX %d:%s", 206 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 207 } 208 #endif 209 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 210 if( pLoop->nOut>=10 ){ 211 sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); 212 }else{ 213 sqlite3StrAccumAppend(&str, " (~1 row)", 9); 214 } 215 #endif 216 zMsg = sqlite3StrAccumFinish(&str); 217 ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC); 218 } 219 return ret; 220 } 221 #endif /* SQLITE_OMIT_EXPLAIN */ 222 223 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 224 /* 225 ** Configure the VM passed as the first argument with an 226 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 227 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 228 ** clause that the scan reads data from. 229 ** 230 ** If argument addrExplain is not 0, it must be the address of an 231 ** OP_Explain instruction that describes the same loop. 232 */ 233 void sqlite3WhereAddScanStatus( 234 Vdbe *v, /* Vdbe to add scanstatus entry to */ 235 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 236 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 237 int addrExplain /* Address of OP_Explain (or 0) */ 238 ){ 239 const char *zObj = 0; 240 WhereLoop *pLoop = pLvl->pWLoop; 241 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 242 zObj = pLoop->u.btree.pIndex->zName; 243 }else{ 244 zObj = pSrclist->a[pLvl->iFrom].zName; 245 } 246 sqlite3VdbeScanStatus( 247 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 248 ); 249 } 250 #endif 251 252 253 /* 254 ** Disable a term in the WHERE clause. Except, do not disable the term 255 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 256 ** or USING clause of that join. 257 ** 258 ** Consider the term t2.z='ok' in the following queries: 259 ** 260 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 261 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 262 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 263 ** 264 ** The t2.z='ok' is disabled in the in (2) because it originates 265 ** in the ON clause. The term is disabled in (3) because it is not part 266 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 267 ** 268 ** Disabling a term causes that term to not be tested in the inner loop 269 ** of the join. Disabling is an optimization. When terms are satisfied 270 ** by indices, we disable them to prevent redundant tests in the inner 271 ** loop. We would get the correct results if nothing were ever disabled, 272 ** but joins might run a little slower. The trick is to disable as much 273 ** as we can without disabling too much. If we disabled in (1), we'd get 274 ** the wrong answer. See ticket #813. 275 ** 276 ** If all the children of a term are disabled, then that term is also 277 ** automatically disabled. In this way, terms get disabled if derived 278 ** virtual terms are tested first. For example: 279 ** 280 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 281 ** \___________/ \______/ \_____/ 282 ** parent child1 child2 283 ** 284 ** Only the parent term was in the original WHERE clause. The child1 285 ** and child2 terms were added by the LIKE optimization. If both of 286 ** the virtual child terms are valid, then testing of the parent can be 287 ** skipped. 288 ** 289 ** Usually the parent term is marked as TERM_CODED. But if the parent 290 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 291 ** The TERM_LIKECOND marking indicates that the term should be coded inside 292 ** a conditional such that is only evaluated on the second pass of a 293 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 294 */ 295 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 296 int nLoop = 0; 297 while( ALWAYS(pTerm!=0) 298 && (pTerm->wtFlags & TERM_CODED)==0 299 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 300 && (pLevel->notReady & pTerm->prereqAll)==0 301 ){ 302 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 303 pTerm->wtFlags |= TERM_LIKECOND; 304 }else{ 305 pTerm->wtFlags |= TERM_CODED; 306 } 307 if( pTerm->iParent<0 ) break; 308 pTerm = &pTerm->pWC->a[pTerm->iParent]; 309 pTerm->nChild--; 310 if( pTerm->nChild!=0 ) break; 311 nLoop++; 312 } 313 } 314 315 /* 316 ** Code an OP_Affinity opcode to apply the column affinity string zAff 317 ** to the n registers starting at base. 318 ** 319 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the 320 ** beginning and end of zAff are ignored. If all entries in zAff are 321 ** SQLITE_AFF_BLOB, then no code gets generated. 322 ** 323 ** This routine makes its own copy of zAff so that the caller is free 324 ** to modify zAff after this routine returns. 325 */ 326 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 327 Vdbe *v = pParse->pVdbe; 328 if( zAff==0 ){ 329 assert( pParse->db->mallocFailed ); 330 return; 331 } 332 assert( v!=0 ); 333 334 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning 335 ** and end of the affinity string. 336 */ 337 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){ 338 n--; 339 base++; 340 zAff++; 341 } 342 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){ 343 n--; 344 } 345 346 /* Code the OP_Affinity opcode if there is anything left to do. */ 347 if( n>0 ){ 348 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 349 sqlite3ExprCacheAffinityChange(pParse, base, n); 350 } 351 } 352 353 /* 354 ** Expression pRight, which is the RHS of a comparison operation, is 355 ** either a vector of n elements or, if n==1, a scalar expression. 356 ** Before the comparison operation, affinity zAff is to be applied 357 ** to the pRight values. This function modifies characters within the 358 ** affinity string to SQLITE_AFF_BLOB if either: 359 ** 360 ** * the comparison will be performed with no affinity, or 361 ** * the affinity change in zAff is guaranteed not to change the value. 362 */ 363 static void updateRangeAffinityStr( 364 Expr *pRight, /* RHS of comparison */ 365 int n, /* Number of vector elements in comparison */ 366 char *zAff /* Affinity string to modify */ 367 ){ 368 int i; 369 for(i=0; i<n; i++){ 370 Expr *p = sqlite3VectorFieldSubexpr(pRight, i); 371 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB 372 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) 373 ){ 374 zAff[i] = SQLITE_AFF_BLOB; 375 } 376 } 377 } 378 379 /* 380 ** Generate code for a single equality term of the WHERE clause. An equality 381 ** term can be either X=expr or X IN (...). pTerm is the term to be 382 ** coded. 383 ** 384 ** The current value for the constraint is left in a register, the index 385 ** of which is returned. An attempt is made store the result in iTarget but 386 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the 387 ** constraint is a TK_EQ or TK_IS, then the current value might be left in 388 ** some other register and it is the caller's responsibility to compensate. 389 ** 390 ** For a constraint of the form X=expr, the expression is evaluated in 391 ** straight-line code. For constraints of the form X IN (...) 392 ** this routine sets up a loop that will iterate over all values of X. 393 */ 394 static int codeEqualityTerm( 395 Parse *pParse, /* The parsing context */ 396 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 397 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 398 int iEq, /* Index of the equality term within this level */ 399 int bRev, /* True for reverse-order IN operations */ 400 int iTarget /* Attempt to leave results in this register */ 401 ){ 402 Expr *pX = pTerm->pExpr; 403 Vdbe *v = pParse->pVdbe; 404 int iReg; /* Register holding results */ 405 406 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); 407 assert( iTarget>0 ); 408 if( pX->op==TK_EQ || pX->op==TK_IS ){ 409 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 410 }else if( pX->op==TK_ISNULL ){ 411 iReg = iTarget; 412 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 413 #ifndef SQLITE_OMIT_SUBQUERY 414 }else{ 415 int eType = IN_INDEX_NOOP; 416 int iTab; 417 struct InLoop *pIn; 418 WhereLoop *pLoop = pLevel->pWLoop; 419 int i; 420 int nEq = 0; 421 int *aiMap = 0; 422 423 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 424 && pLoop->u.btree.pIndex!=0 425 && pLoop->u.btree.pIndex->aSortOrder[iEq] 426 ){ 427 testcase( iEq==0 ); 428 testcase( bRev ); 429 bRev = !bRev; 430 } 431 assert( pX->op==TK_IN ); 432 iReg = iTarget; 433 434 for(i=0; i<iEq; i++){ 435 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ 436 disableTerm(pLevel, pTerm); 437 return iTarget; 438 } 439 } 440 for(i=iEq;i<pLoop->nLTerm; i++){ 441 if( ALWAYS(pLoop->aLTerm[i]) && pLoop->aLTerm[i]->pExpr==pX ) nEq++; 442 } 443 444 if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){ 445 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0); 446 }else{ 447 Select *pSelect = pX->x.pSelect; 448 sqlite3 *db = pParse->db; 449 u16 savedDbOptFlags = db->dbOptFlags; 450 ExprList *pOrigRhs = pSelect->pEList; 451 ExprList *pOrigLhs = pX->pLeft->x.pList; 452 ExprList *pRhs = 0; /* New Select.pEList for RHS */ 453 ExprList *pLhs = 0; /* New pX->pLeft vector */ 454 455 for(i=iEq;i<pLoop->nLTerm; i++){ 456 if( pLoop->aLTerm[i]->pExpr==pX ){ 457 int iField = pLoop->aLTerm[i]->iField - 1; 458 Expr *pNewRhs = sqlite3ExprDup(db, pOrigRhs->a[iField].pExpr, 0); 459 Expr *pNewLhs = sqlite3ExprDup(db, pOrigLhs->a[iField].pExpr, 0); 460 461 pRhs = sqlite3ExprListAppend(pParse, pRhs, pNewRhs); 462 pLhs = sqlite3ExprListAppend(pParse, pLhs, pNewLhs); 463 } 464 } 465 if( !db->mallocFailed ){ 466 Expr *pLeft = pX->pLeft; 467 468 if( pSelect->pOrderBy ){ 469 /* If the SELECT statement has an ORDER BY clause, zero the 470 ** iOrderByCol variables. These are set to non-zero when an 471 ** ORDER BY term exactly matches one of the terms of the 472 ** result-set. Since the result-set of the SELECT statement may 473 ** have been modified or reordered, these variables are no longer 474 ** set correctly. Since setting them is just an optimization, 475 ** it's easiest just to zero them here. */ 476 ExprList *pOrderBy = pSelect->pOrderBy; 477 for(i=0; i<pOrderBy->nExpr; i++){ 478 pOrderBy->a[i].u.x.iOrderByCol = 0; 479 } 480 } 481 482 /* Take care here not to generate a TK_VECTOR containing only a 483 ** single value. Since the parser never creates such a vector, some 484 ** of the subroutines do not handle this case. */ 485 if( pLhs->nExpr==1 ){ 486 pX->pLeft = pLhs->a[0].pExpr; 487 }else{ 488 pLeft->x.pList = pLhs; 489 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int) * nEq); 490 testcase( aiMap==0 ); 491 } 492 pSelect->pEList = pRhs; 493 db->dbOptFlags |= SQLITE_QueryFlattener; 494 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap); 495 db->dbOptFlags = savedDbOptFlags; 496 testcase( aiMap!=0 && aiMap[0]!=0 ); 497 pSelect->pEList = pOrigRhs; 498 pLeft->x.pList = pOrigLhs; 499 pX->pLeft = pLeft; 500 } 501 sqlite3ExprListDelete(pParse->db, pLhs); 502 sqlite3ExprListDelete(pParse->db, pRhs); 503 } 504 505 if( eType==IN_INDEX_INDEX_DESC ){ 506 testcase( bRev ); 507 bRev = !bRev; 508 } 509 iTab = pX->iTable; 510 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 511 VdbeCoverageIf(v, bRev); 512 VdbeCoverageIf(v, !bRev); 513 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 514 515 pLoop->wsFlags |= WHERE_IN_ABLE; 516 if( pLevel->u.in.nIn==0 ){ 517 pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 518 } 519 520 i = pLevel->u.in.nIn; 521 pLevel->u.in.nIn += nEq; 522 pLevel->u.in.aInLoop = 523 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 524 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 525 pIn = pLevel->u.in.aInLoop; 526 if( pIn ){ 527 int iMap = 0; /* Index in aiMap[] */ 528 pIn += i; 529 for(i=iEq;i<pLoop->nLTerm; i++){ 530 if( pLoop->aLTerm[i]->pExpr==pX ){ 531 int iOut = iReg + i - iEq; 532 if( eType==IN_INDEX_ROWID ){ 533 testcase( nEq>1 ); /* Happens with a UNIQUE index on ROWID */ 534 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); 535 }else{ 536 int iCol = aiMap ? aiMap[iMap++] : 0; 537 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); 538 } 539 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); 540 if( i==iEq ){ 541 pIn->iCur = iTab; 542 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; 543 }else{ 544 pIn->eEndLoopOp = OP_Noop; 545 } 546 pIn++; 547 } 548 } 549 }else{ 550 pLevel->u.in.nIn = 0; 551 } 552 sqlite3DbFree(pParse->db, aiMap); 553 #endif 554 } 555 disableTerm(pLevel, pTerm); 556 return iReg; 557 } 558 559 /* 560 ** Generate code that will evaluate all == and IN constraints for an 561 ** index scan. 562 ** 563 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 564 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 565 ** The index has as many as three equality constraints, but in this 566 ** example, the third "c" value is an inequality. So only two 567 ** constraints are coded. This routine will generate code to evaluate 568 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 569 ** in consecutive registers and the index of the first register is returned. 570 ** 571 ** In the example above nEq==2. But this subroutine works for any value 572 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 573 ** The only thing it does is allocate the pLevel->iMem memory cell and 574 ** compute the affinity string. 575 ** 576 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 577 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 578 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 579 ** occurs after the nEq quality constraints. 580 ** 581 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 582 ** the index of the first memory cell in that range. The code that 583 ** calls this routine will use that memory range to store keys for 584 ** start and termination conditions of the loop. 585 ** key value of the loop. If one or more IN operators appear, then 586 ** this routine allocates an additional nEq memory cells for internal 587 ** use. 588 ** 589 ** Before returning, *pzAff is set to point to a buffer containing a 590 ** copy of the column affinity string of the index allocated using 591 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 592 ** with equality constraints that use BLOB or NONE affinity are set to 593 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 594 ** 595 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 596 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 597 ** 598 ** In the example above, the index on t1(a) has TEXT affinity. But since 599 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 600 ** no conversion should be attempted before using a t2.b value as part of 601 ** a key to search the index. Hence the first byte in the returned affinity 602 ** string in this example would be set to SQLITE_AFF_BLOB. 603 */ 604 static int codeAllEqualityTerms( 605 Parse *pParse, /* Parsing context */ 606 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 607 int bRev, /* Reverse the order of IN operators */ 608 int nExtraReg, /* Number of extra registers to allocate */ 609 char **pzAff /* OUT: Set to point to affinity string */ 610 ){ 611 u16 nEq; /* The number of == or IN constraints to code */ 612 u16 nSkip; /* Number of left-most columns to skip */ 613 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 614 Index *pIdx; /* The index being used for this loop */ 615 WhereTerm *pTerm; /* A single constraint term */ 616 WhereLoop *pLoop; /* The WhereLoop object */ 617 int j; /* Loop counter */ 618 int regBase; /* Base register */ 619 int nReg; /* Number of registers to allocate */ 620 char *zAff; /* Affinity string to return */ 621 622 /* This module is only called on query plans that use an index. */ 623 pLoop = pLevel->pWLoop; 624 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 625 nEq = pLoop->u.btree.nEq; 626 nSkip = pLoop->nSkip; 627 pIdx = pLoop->u.btree.pIndex; 628 assert( pIdx!=0 ); 629 630 /* Figure out how many memory cells we will need then allocate them. 631 */ 632 regBase = pParse->nMem + 1; 633 nReg = pLoop->u.btree.nEq + nExtraReg; 634 pParse->nMem += nReg; 635 636 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 637 assert( zAff!=0 || pParse->db->mallocFailed ); 638 639 if( nSkip ){ 640 int iIdxCur = pLevel->iIdxCur; 641 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 642 VdbeCoverageIf(v, bRev==0); 643 VdbeCoverageIf(v, bRev!=0); 644 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 645 j = sqlite3VdbeAddOp0(v, OP_Goto); 646 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 647 iIdxCur, 0, regBase, nSkip); 648 VdbeCoverageIf(v, bRev==0); 649 VdbeCoverageIf(v, bRev!=0); 650 sqlite3VdbeJumpHere(v, j); 651 for(j=0; j<nSkip; j++){ 652 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 653 testcase( pIdx->aiColumn[j]==XN_EXPR ); 654 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 655 } 656 } 657 658 /* Evaluate the equality constraints 659 */ 660 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 661 for(j=nSkip; j<nEq; j++){ 662 int r1; 663 pTerm = pLoop->aLTerm[j]; 664 assert( pTerm!=0 ); 665 /* The following testcase is true for indices with redundant columns. 666 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 667 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 668 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 669 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 670 if( r1!=regBase+j ){ 671 if( nReg==1 ){ 672 sqlite3ReleaseTempReg(pParse, regBase); 673 regBase = r1; 674 }else{ 675 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 676 } 677 } 678 if( pTerm->eOperator & WO_IN ){ 679 if( pTerm->pExpr->flags & EP_xIsSelect ){ 680 /* No affinity ever needs to be (or should be) applied to a value 681 ** from the RHS of an "? IN (SELECT ...)" expression. The 682 ** sqlite3FindInIndex() routine has already ensured that the 683 ** affinity of the comparison has been applied to the value. */ 684 if( zAff ) zAff[j] = SQLITE_AFF_BLOB; 685 } 686 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ 687 Expr *pRight = pTerm->pExpr->pRight; 688 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 689 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 690 VdbeCoverage(v); 691 } 692 if( zAff ){ 693 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 694 zAff[j] = SQLITE_AFF_BLOB; 695 } 696 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 697 zAff[j] = SQLITE_AFF_BLOB; 698 } 699 } 700 } 701 } 702 *pzAff = zAff; 703 return regBase; 704 } 705 706 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 707 /* 708 ** If the most recently coded instruction is a constant range constraint 709 ** (a string literal) that originated from the LIKE optimization, then 710 ** set P3 and P5 on the OP_String opcode so that the string will be cast 711 ** to a BLOB at appropriate times. 712 ** 713 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 714 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 715 ** scan loop run twice, once for strings and a second time for BLOBs. 716 ** The OP_String opcodes on the second pass convert the upper and lower 717 ** bound string constants to blobs. This routine makes the necessary changes 718 ** to the OP_String opcodes for that to happen. 719 ** 720 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 721 ** only the one pass through the string space is required, so this routine 722 ** becomes a no-op. 723 */ 724 static void whereLikeOptimizationStringFixup( 725 Vdbe *v, /* prepared statement under construction */ 726 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 727 WhereTerm *pTerm /* The upper or lower bound just coded */ 728 ){ 729 if( pTerm->wtFlags & TERM_LIKEOPT ){ 730 VdbeOp *pOp; 731 assert( pLevel->iLikeRepCntr>0 ); 732 pOp = sqlite3VdbeGetOp(v, -1); 733 assert( pOp!=0 ); 734 assert( pOp->opcode==OP_String8 735 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 736 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ 737 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ 738 } 739 } 740 #else 741 # define whereLikeOptimizationStringFixup(A,B,C) 742 #endif 743 744 #ifdef SQLITE_ENABLE_CURSOR_HINTS 745 /* 746 ** Information is passed from codeCursorHint() down to individual nodes of 747 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 748 ** structure. 749 */ 750 struct CCurHint { 751 int iTabCur; /* Cursor for the main table */ 752 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 753 Index *pIdx; /* The index used to access the table */ 754 }; 755 756 /* 757 ** This function is called for every node of an expression that is a candidate 758 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 759 ** the table CCurHint.iTabCur, verify that the same column can be 760 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 761 */ 762 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 763 struct CCurHint *pHint = pWalker->u.pCCurHint; 764 assert( pHint->pIdx!=0 ); 765 if( pExpr->op==TK_COLUMN 766 && pExpr->iTable==pHint->iTabCur 767 && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0 768 ){ 769 pWalker->eCode = 1; 770 } 771 return WRC_Continue; 772 } 773 774 /* 775 ** Test whether or not expression pExpr, which was part of a WHERE clause, 776 ** should be included in the cursor-hint for a table that is on the rhs 777 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the 778 ** expression is not suitable. 779 ** 780 ** An expression is unsuitable if it might evaluate to non NULL even if 781 ** a TK_COLUMN node that does affect the value of the expression is set 782 ** to NULL. For example: 783 ** 784 ** col IS NULL 785 ** col IS NOT NULL 786 ** coalesce(col, 1) 787 ** CASE WHEN col THEN 0 ELSE 1 END 788 */ 789 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ 790 if( pExpr->op==TK_IS 791 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT 792 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE 793 ){ 794 pWalker->eCode = 1; 795 }else if( pExpr->op==TK_FUNCTION ){ 796 int d1; 797 char d2[3]; 798 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ 799 pWalker->eCode = 1; 800 } 801 } 802 803 return WRC_Continue; 804 } 805 806 807 /* 808 ** This function is called on every node of an expression tree used as an 809 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 810 ** that accesses any table other than the one identified by 811 ** CCurHint.iTabCur, then do the following: 812 ** 813 ** 1) allocate a register and code an OP_Column instruction to read 814 ** the specified column into the new register, and 815 ** 816 ** 2) transform the expression node to a TK_REGISTER node that reads 817 ** from the newly populated register. 818 ** 819 ** Also, if the node is a TK_COLUMN that does access the table idenified 820 ** by pCCurHint.iTabCur, and an index is being used (which we will 821 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 822 ** an access of the index rather than the original table. 823 */ 824 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 825 int rc = WRC_Continue; 826 struct CCurHint *pHint = pWalker->u.pCCurHint; 827 if( pExpr->op==TK_COLUMN ){ 828 if( pExpr->iTable!=pHint->iTabCur ){ 829 Vdbe *v = pWalker->pParse->pVdbe; 830 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 831 sqlite3ExprCodeGetColumnOfTable( 832 v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg 833 ); 834 pExpr->op = TK_REGISTER; 835 pExpr->iTable = reg; 836 }else if( pHint->pIdx!=0 ){ 837 pExpr->iTable = pHint->iIdxCur; 838 pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn); 839 assert( pExpr->iColumn>=0 ); 840 } 841 }else if( pExpr->op==TK_AGG_FUNCTION ){ 842 /* An aggregate function in the WHERE clause of a query means this must 843 ** be a correlated sub-query, and expression pExpr is an aggregate from 844 ** the parent context. Do not walk the function arguments in this case. 845 ** 846 ** todo: It should be possible to replace this node with a TK_REGISTER 847 ** expression, as the result of the expression must be stored in a 848 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 849 rc = WRC_Prune; 850 } 851 return rc; 852 } 853 854 /* 855 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 856 */ 857 static void codeCursorHint( 858 struct SrcList_item *pTabItem, /* FROM clause item */ 859 WhereInfo *pWInfo, /* The where clause */ 860 WhereLevel *pLevel, /* Which loop to provide hints for */ 861 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 862 ){ 863 Parse *pParse = pWInfo->pParse; 864 sqlite3 *db = pParse->db; 865 Vdbe *v = pParse->pVdbe; 866 Expr *pExpr = 0; 867 WhereLoop *pLoop = pLevel->pWLoop; 868 int iCur; 869 WhereClause *pWC; 870 WhereTerm *pTerm; 871 int i, j; 872 struct CCurHint sHint; 873 Walker sWalker; 874 875 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 876 iCur = pLevel->iTabCur; 877 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 878 sHint.iTabCur = iCur; 879 sHint.iIdxCur = pLevel->iIdxCur; 880 sHint.pIdx = pLoop->u.btree.pIndex; 881 memset(&sWalker, 0, sizeof(sWalker)); 882 sWalker.pParse = pParse; 883 sWalker.u.pCCurHint = &sHint; 884 pWC = &pWInfo->sWC; 885 for(i=0; i<pWC->nTerm; i++){ 886 pTerm = &pWC->a[i]; 887 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 888 if( pTerm->prereqAll & pLevel->notReady ) continue; 889 890 /* Any terms specified as part of the ON(...) clause for any LEFT 891 ** JOIN for which the current table is not the rhs are omitted 892 ** from the cursor-hint. 893 ** 894 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms 895 ** that were specified as part of the WHERE clause must be excluded. 896 ** This is to address the following: 897 ** 898 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; 899 ** 900 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its 901 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is 902 ** pushed down to the cursor, this row is filtered out, causing 903 ** SQLite to synthesize a row of NULL values. Which does match the 904 ** WHERE clause, and so the query returns a row. Which is incorrect. 905 ** 906 ** For the same reason, WHERE terms such as: 907 ** 908 ** WHERE 1 = (t2.c IS NULL) 909 ** 910 ** are also excluded. See codeCursorHintIsOrFunction() for details. 911 */ 912 if( pTabItem->fg.jointype & JT_LEFT ){ 913 Expr *pExpr = pTerm->pExpr; 914 if( !ExprHasProperty(pExpr, EP_FromJoin) 915 || pExpr->iRightJoinTable!=pTabItem->iCursor 916 ){ 917 sWalker.eCode = 0; 918 sWalker.xExprCallback = codeCursorHintIsOrFunction; 919 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 920 if( sWalker.eCode ) continue; 921 } 922 }else{ 923 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; 924 } 925 926 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 927 ** the cursor. These terms are not needed as hints for a pure range 928 ** scan (that has no == terms) so omit them. */ 929 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 930 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 931 if( j<pLoop->nLTerm ) continue; 932 } 933 934 /* No subqueries or non-deterministic functions allowed */ 935 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 936 937 /* For an index scan, make sure referenced columns are actually in 938 ** the index. */ 939 if( sHint.pIdx!=0 ){ 940 sWalker.eCode = 0; 941 sWalker.xExprCallback = codeCursorHintCheckExpr; 942 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 943 if( sWalker.eCode ) continue; 944 } 945 946 /* If we survive all prior tests, that means this term is worth hinting */ 947 pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 948 } 949 if( pExpr!=0 ){ 950 sWalker.xExprCallback = codeCursorHintFixExpr; 951 sqlite3WalkExpr(&sWalker, pExpr); 952 sqlite3VdbeAddOp4(v, OP_CursorHint, 953 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 954 (const char*)pExpr, P4_EXPR); 955 } 956 } 957 #else 958 # define codeCursorHint(A,B,C,D) /* No-op */ 959 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 960 961 /* 962 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains 963 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This 964 ** function generates code to do a deferred seek of cursor iCur to the 965 ** rowid stored in register iRowid. 966 ** 967 ** Normally, this is just: 968 ** 969 ** OP_Seek $iCur $iRowid 970 ** 971 ** However, if the scan currently being coded is a branch of an OR-loop and 972 ** the statement currently being coded is a SELECT, then P3 of the OP_Seek 973 ** is set to iIdxCur and P4 is set to point to an array of integers 974 ** containing one entry for each column of the table cursor iCur is open 975 ** on. For each table column, if the column is the i'th column of the 976 ** index, then the corresponding array entry is set to (i+1). If the column 977 ** does not appear in the index at all, the array entry is set to 0. 978 */ 979 static void codeDeferredSeek( 980 WhereInfo *pWInfo, /* Where clause context */ 981 Index *pIdx, /* Index scan is using */ 982 int iCur, /* Cursor for IPK b-tree */ 983 int iIdxCur /* Index cursor */ 984 ){ 985 Parse *pParse = pWInfo->pParse; /* Parse context */ 986 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ 987 988 assert( iIdxCur>0 ); 989 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); 990 991 sqlite3VdbeAddOp3(v, OP_Seek, iIdxCur, 0, iCur); 992 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 993 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) 994 ){ 995 int i; 996 Table *pTab = pIdx->pTable; 997 int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1)); 998 if( ai ){ 999 ai[0] = pTab->nCol; 1000 for(i=0; i<pIdx->nColumn-1; i++){ 1001 assert( pIdx->aiColumn[i]<pTab->nCol ); 1002 if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1; 1003 } 1004 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); 1005 } 1006 } 1007 } 1008 1009 /* 1010 ** If the expression passed as the second argument is a vector, generate 1011 ** code to write the first nReg elements of the vector into an array 1012 ** of registers starting with iReg. 1013 ** 1014 ** If the expression is not a vector, then nReg must be passed 1. In 1015 ** this case, generate code to evaluate the expression and leave the 1016 ** result in register iReg. 1017 */ 1018 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ 1019 assert( nReg>0 ); 1020 if( sqlite3ExprIsVector(p) ){ 1021 #ifndef SQLITE_OMIT_SUBQUERY 1022 if( (p->flags & EP_xIsSelect) ){ 1023 Vdbe *v = pParse->pVdbe; 1024 int iSelect = sqlite3CodeSubselect(pParse, p, 0, 0); 1025 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); 1026 }else 1027 #endif 1028 { 1029 int i; 1030 ExprList *pList = p->x.pList; 1031 assert( nReg<=pList->nExpr ); 1032 for(i=0; i<nReg; i++){ 1033 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i); 1034 } 1035 } 1036 }else{ 1037 assert( nReg==1 ); 1038 sqlite3ExprCode(pParse, p, iReg); 1039 } 1040 } 1041 1042 /* 1043 ** Generate code for the start of the iLevel-th loop in the WHERE clause 1044 ** implementation described by pWInfo. 1045 */ 1046 Bitmask sqlite3WhereCodeOneLoopStart( 1047 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1048 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1049 Bitmask notReady /* Which tables are currently available */ 1050 ){ 1051 int j, k; /* Loop counters */ 1052 int iCur; /* The VDBE cursor for the table */ 1053 int addrNxt; /* Where to jump to continue with the next IN case */ 1054 int omitTable; /* True if we use the index only */ 1055 int bRev; /* True if we need to scan in reverse order */ 1056 WhereLevel *pLevel; /* The where level to be coded */ 1057 WhereLoop *pLoop; /* The WhereLoop object being coded */ 1058 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 1059 WhereTerm *pTerm; /* A WHERE clause term */ 1060 Parse *pParse; /* Parsing context */ 1061 sqlite3 *db; /* Database connection */ 1062 Vdbe *v; /* The prepared stmt under constructions */ 1063 struct SrcList_item *pTabItem; /* FROM clause term being coded */ 1064 int addrBrk; /* Jump here to break out of the loop */ 1065 int addrCont; /* Jump here to continue with next cycle */ 1066 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 1067 int iReleaseReg = 0; /* Temp register to free before returning */ 1068 1069 pParse = pWInfo->pParse; 1070 v = pParse->pVdbe; 1071 pWC = &pWInfo->sWC; 1072 db = pParse->db; 1073 pLevel = &pWInfo->a[iLevel]; 1074 pLoop = pLevel->pWLoop; 1075 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1076 iCur = pTabItem->iCursor; 1077 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 1078 bRev = (pWInfo->revMask>>iLevel)&1; 1079 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 1080 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0; 1081 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 1082 1083 /* Create labels for the "break" and "continue" instructions 1084 ** for the current loop. Jump to addrBrk to break out of a loop. 1085 ** Jump to cont to go immediately to the next iteration of the 1086 ** loop. 1087 ** 1088 ** When there is an IN operator, we also have a "addrNxt" label that 1089 ** means to continue with the next IN value combination. When 1090 ** there are no IN operators in the constraints, the "addrNxt" label 1091 ** is the same as "addrBrk". 1092 */ 1093 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 1094 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); 1095 1096 /* If this is the right table of a LEFT OUTER JOIN, allocate and 1097 ** initialize a memory cell that records if this table matches any 1098 ** row of the left table of the join. 1099 */ 1100 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 1101 pLevel->iLeftJoin = ++pParse->nMem; 1102 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 1103 VdbeComment((v, "init LEFT JOIN no-match flag")); 1104 } 1105 1106 /* Special case of a FROM clause subquery implemented as a co-routine */ 1107 if( pTabItem->fg.viaCoroutine ){ 1108 int regYield = pTabItem->regReturn; 1109 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 1110 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 1111 VdbeCoverage(v); 1112 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); 1113 pLevel->op = OP_Goto; 1114 }else 1115 1116 #ifndef SQLITE_OMIT_VIRTUALTABLE 1117 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 1118 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 1119 ** to access the data. 1120 */ 1121 int iReg; /* P3 Value for OP_VFilter */ 1122 int addrNotFound; 1123 int nConstraint = pLoop->nLTerm; 1124 int iIn; /* Counter for IN constraints */ 1125 1126 sqlite3ExprCachePush(pParse); 1127 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 1128 addrNotFound = pLevel->addrBrk; 1129 for(j=0; j<nConstraint; j++){ 1130 int iTarget = iReg+j+2; 1131 pTerm = pLoop->aLTerm[j]; 1132 if( NEVER(pTerm==0) ) continue; 1133 if( pTerm->eOperator & WO_IN ){ 1134 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 1135 addrNotFound = pLevel->addrNxt; 1136 }else{ 1137 Expr *pRight = pTerm->pExpr->pRight; 1138 codeExprOrVector(pParse, pRight, iTarget, 1); 1139 } 1140 } 1141 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 1142 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 1143 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 1144 pLoop->u.vtab.idxStr, 1145 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); 1146 VdbeCoverage(v); 1147 pLoop->u.vtab.needFree = 0; 1148 pLevel->p1 = iCur; 1149 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 1150 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1151 iIn = pLevel->u.in.nIn; 1152 for(j=nConstraint-1; j>=0; j--){ 1153 pTerm = pLoop->aLTerm[j]; 1154 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ 1155 disableTerm(pLevel, pTerm); 1156 }else if( (pTerm->eOperator & WO_IN)!=0 ){ 1157 Expr *pCompare; /* The comparison operator */ 1158 Expr *pRight; /* RHS of the comparison */ 1159 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ 1160 1161 /* Reload the constraint value into reg[iReg+j+2]. The same value 1162 ** was loaded into the same register prior to the OP_VFilter, but 1163 ** the xFilter implementation might have changed the datatype or 1164 ** encoding of the value in the register, so it *must* be reloaded. */ 1165 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed ); 1166 if( !db->mallocFailed ){ 1167 assert( iIn>0 ); 1168 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[--iIn].addrInTop); 1169 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid ); 1170 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 ); 1171 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 ); 1172 testcase( pOp->opcode==OP_Rowid ); 1173 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); 1174 } 1175 1176 /* Generate code that will continue to the next row if 1177 ** the IN constraint is not satisfied */ 1178 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); 1179 assert( pCompare!=0 || db->mallocFailed ); 1180 if( pCompare ){ 1181 pCompare->pLeft = pTerm->pExpr->pLeft; 1182 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); 1183 if( pRight ){ 1184 pRight->iTable = iReg+j+2; 1185 sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0); 1186 } 1187 pCompare->pLeft = 0; 1188 sqlite3ExprDelete(db, pCompare); 1189 } 1190 } 1191 } 1192 /* These registers need to be preserved in case there is an IN operator 1193 ** loop. So we could deallocate the registers here (and potentially 1194 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems 1195 ** simpler and safer to simply not reuse the registers. 1196 ** 1197 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 1198 */ 1199 sqlite3ExprCachePop(pParse); 1200 }else 1201 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1202 1203 if( (pLoop->wsFlags & WHERE_IPK)!=0 1204 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 1205 ){ 1206 /* Case 2: We can directly reference a single row using an 1207 ** equality comparison against the ROWID field. Or 1208 ** we reference multiple rows using a "rowid IN (...)" 1209 ** construct. 1210 */ 1211 assert( pLoop->u.btree.nEq==1 ); 1212 pTerm = pLoop->aLTerm[0]; 1213 assert( pTerm!=0 ); 1214 assert( pTerm->pExpr!=0 ); 1215 assert( omitTable==0 ); 1216 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1217 iReleaseReg = ++pParse->nMem; 1218 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 1219 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 1220 addrNxt = pLevel->addrNxt; 1221 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); 1222 VdbeCoverage(v); 1223 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); 1224 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 1225 VdbeComment((v, "pk")); 1226 pLevel->op = OP_Noop; 1227 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 1228 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 1229 ){ 1230 /* Case 3: We have an inequality comparison against the ROWID field. 1231 */ 1232 int testOp = OP_Noop; 1233 int start; 1234 int memEndValue = 0; 1235 WhereTerm *pStart, *pEnd; 1236 1237 assert( omitTable==0 ); 1238 j = 0; 1239 pStart = pEnd = 0; 1240 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 1241 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 1242 assert( pStart!=0 || pEnd!=0 ); 1243 if( bRev ){ 1244 pTerm = pStart; 1245 pStart = pEnd; 1246 pEnd = pTerm; 1247 } 1248 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); 1249 if( pStart ){ 1250 Expr *pX; /* The expression that defines the start bound */ 1251 int r1, rTemp; /* Registers for holding the start boundary */ 1252 int op; /* Cursor seek operation */ 1253 1254 /* The following constant maps TK_xx codes into corresponding 1255 ** seek opcodes. It depends on a particular ordering of TK_xx 1256 */ 1257 const u8 aMoveOp[] = { 1258 /* TK_GT */ OP_SeekGT, 1259 /* TK_LE */ OP_SeekLE, 1260 /* TK_LT */ OP_SeekLT, 1261 /* TK_GE */ OP_SeekGE 1262 }; 1263 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 1264 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 1265 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 1266 1267 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 1268 testcase( pStart->wtFlags & TERM_VIRTUAL ); 1269 pX = pStart->pExpr; 1270 assert( pX!=0 ); 1271 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 1272 if( sqlite3ExprIsVector(pX->pRight) ){ 1273 r1 = rTemp = sqlite3GetTempReg(pParse); 1274 codeExprOrVector(pParse, pX->pRight, r1, 1); 1275 op = aMoveOp[(pX->op - TK_GT) | 0x0001]; 1276 }else{ 1277 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 1278 disableTerm(pLevel, pStart); 1279 op = aMoveOp[(pX->op - TK_GT)]; 1280 } 1281 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); 1282 VdbeComment((v, "pk")); 1283 VdbeCoverageIf(v, pX->op==TK_GT); 1284 VdbeCoverageIf(v, pX->op==TK_LE); 1285 VdbeCoverageIf(v, pX->op==TK_LT); 1286 VdbeCoverageIf(v, pX->op==TK_GE); 1287 sqlite3ExprCacheAffinityChange(pParse, r1, 1); 1288 sqlite3ReleaseTempReg(pParse, rTemp); 1289 }else{ 1290 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); 1291 VdbeCoverageIf(v, bRev==0); 1292 VdbeCoverageIf(v, bRev!=0); 1293 } 1294 if( pEnd ){ 1295 Expr *pX; 1296 pX = pEnd->pExpr; 1297 assert( pX!=0 ); 1298 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 1299 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 1300 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 1301 memEndValue = ++pParse->nMem; 1302 codeExprOrVector(pParse, pX->pRight, memEndValue, 1); 1303 if( 0==sqlite3ExprIsVector(pX->pRight) 1304 && (pX->op==TK_LT || pX->op==TK_GT) 1305 ){ 1306 testOp = bRev ? OP_Le : OP_Ge; 1307 }else{ 1308 testOp = bRev ? OP_Lt : OP_Gt; 1309 } 1310 if( 0==sqlite3ExprIsVector(pX->pRight) ){ 1311 disableTerm(pLevel, pEnd); 1312 } 1313 } 1314 start = sqlite3VdbeCurrentAddr(v); 1315 pLevel->op = bRev ? OP_Prev : OP_Next; 1316 pLevel->p1 = iCur; 1317 pLevel->p2 = start; 1318 assert( pLevel->p5==0 ); 1319 if( testOp!=OP_Noop ){ 1320 iRowidReg = ++pParse->nMem; 1321 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 1322 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 1323 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 1324 VdbeCoverageIf(v, testOp==OP_Le); 1325 VdbeCoverageIf(v, testOp==OP_Lt); 1326 VdbeCoverageIf(v, testOp==OP_Ge); 1327 VdbeCoverageIf(v, testOp==OP_Gt); 1328 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 1329 } 1330 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 1331 /* Case 4: A scan using an index. 1332 ** 1333 ** The WHERE clause may contain zero or more equality 1334 ** terms ("==" or "IN" operators) that refer to the N 1335 ** left-most columns of the index. It may also contain 1336 ** inequality constraints (>, <, >= or <=) on the indexed 1337 ** column that immediately follows the N equalities. Only 1338 ** the right-most column can be an inequality - the rest must 1339 ** use the "==" and "IN" operators. For example, if the 1340 ** index is on (x,y,z), then the following clauses are all 1341 ** optimized: 1342 ** 1343 ** x=5 1344 ** x=5 AND y=10 1345 ** x=5 AND y<10 1346 ** x=5 AND y>5 AND y<10 1347 ** x=5 AND y=5 AND z<=10 1348 ** 1349 ** The z<10 term of the following cannot be used, only 1350 ** the x=5 term: 1351 ** 1352 ** x=5 AND z<10 1353 ** 1354 ** N may be zero if there are inequality constraints. 1355 ** If there are no inequality constraints, then N is at 1356 ** least one. 1357 ** 1358 ** This case is also used when there are no WHERE clause 1359 ** constraints but an index is selected anyway, in order 1360 ** to force the output order to conform to an ORDER BY. 1361 */ 1362 static const u8 aStartOp[] = { 1363 0, 1364 0, 1365 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1366 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1367 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1368 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1369 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1370 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1371 }; 1372 static const u8 aEndOp[] = { 1373 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1374 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1375 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1376 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1377 }; 1378 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1379 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ 1380 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ 1381 int regBase; /* Base register holding constraint values */ 1382 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1383 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1384 int startEq; /* True if range start uses ==, >= or <= */ 1385 int endEq; /* True if range end uses ==, >= or <= */ 1386 int start_constraints; /* Start of range is constrained */ 1387 int nConstraint; /* Number of constraint terms */ 1388 Index *pIdx; /* The index we will be using */ 1389 int iIdxCur; /* The VDBE cursor for the index */ 1390 int nExtraReg = 0; /* Number of extra registers needed */ 1391 int op; /* Instruction opcode */ 1392 char *zStartAff; /* Affinity for start of range constraint */ 1393 char *zEndAff = 0; /* Affinity for end of range constraint */ 1394 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1395 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1396 1397 pIdx = pLoop->u.btree.pIndex; 1398 iIdxCur = pLevel->iIdxCur; 1399 assert( nEq>=pLoop->nSkip ); 1400 1401 /* If this loop satisfies a sort order (pOrderBy) request that 1402 ** was passed to this function to implement a "SELECT min(x) ..." 1403 ** query, then the caller will only allow the loop to run for 1404 ** a single iteration. This means that the first row returned 1405 ** should not have a NULL value stored in 'x'. If column 'x' is 1406 ** the first one after the nEq equality constraints in the index, 1407 ** this requires some special handling. 1408 */ 1409 assert( pWInfo->pOrderBy==0 1410 || pWInfo->pOrderBy->nExpr==1 1411 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); 1412 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 1413 && pWInfo->nOBSat>0 1414 && (pIdx->nKeyCol>nEq) 1415 ){ 1416 assert( pLoop->nSkip==0 ); 1417 bSeekPastNull = 1; 1418 nExtraReg = 1; 1419 } 1420 1421 /* Find any inequality constraint terms for the start and end 1422 ** of the range. 1423 */ 1424 j = nEq; 1425 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1426 pRangeStart = pLoop->aLTerm[j++]; 1427 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); 1428 /* Like optimization range constraints always occur in pairs */ 1429 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1430 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1431 } 1432 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1433 pRangeEnd = pLoop->aLTerm[j++]; 1434 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); 1435 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1436 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1437 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1438 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1439 pLevel->iLikeRepCntr = (u32)++pParse->nMem; 1440 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); 1441 VdbeComment((v, "LIKE loop counter")); 1442 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1443 /* iLikeRepCntr actually stores 2x the counter register number. The 1444 ** bottom bit indicates whether the search order is ASC or DESC. */ 1445 testcase( bRev ); 1446 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1447 assert( (bRev & ~1)==0 ); 1448 pLevel->iLikeRepCntr <<=1; 1449 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); 1450 } 1451 #endif 1452 if( pRangeStart==0 ){ 1453 j = pIdx->aiColumn[nEq]; 1454 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){ 1455 bSeekPastNull = 1; 1456 } 1457 } 1458 } 1459 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1460 1461 /* If we are doing a reverse order scan on an ascending index, or 1462 ** a forward order scan on a descending index, interchange the 1463 ** start and end terms (pRangeStart and pRangeEnd). 1464 */ 1465 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) 1466 || (bRev && pIdx->nKeyCol==nEq) 1467 ){ 1468 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1469 SWAP(u8, bSeekPastNull, bStopAtNull); 1470 SWAP(u8, nBtm, nTop); 1471 } 1472 1473 /* Generate code to evaluate all constraint terms using == or IN 1474 ** and store the values of those terms in an array of registers 1475 ** starting at regBase. 1476 */ 1477 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); 1478 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1479 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1480 if( zStartAff && nTop ){ 1481 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); 1482 } 1483 addrNxt = pLevel->addrNxt; 1484 1485 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1486 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1487 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1488 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1489 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1490 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1491 start_constraints = pRangeStart || nEq>0; 1492 1493 /* Seek the index cursor to the start of the range. */ 1494 nConstraint = nEq; 1495 if( pRangeStart ){ 1496 Expr *pRight = pRangeStart->pExpr->pRight; 1497 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); 1498 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1499 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1500 && sqlite3ExprCanBeNull(pRight) 1501 ){ 1502 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1503 VdbeCoverage(v); 1504 } 1505 if( zStartAff ){ 1506 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); 1507 } 1508 nConstraint += nBtm; 1509 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1510 if( sqlite3ExprIsVector(pRight)==0 ){ 1511 disableTerm(pLevel, pRangeStart); 1512 }else{ 1513 startEq = 1; 1514 } 1515 bSeekPastNull = 0; 1516 }else if( bSeekPastNull ){ 1517 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1518 nConstraint++; 1519 startEq = 0; 1520 start_constraints = 1; 1521 } 1522 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1523 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ 1524 /* The skip-scan logic inside the call to codeAllEqualityConstraints() 1525 ** above has already left the cursor sitting on the correct row, 1526 ** so no further seeking is needed */ 1527 }else{ 1528 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 1529 assert( op!=0 ); 1530 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1531 VdbeCoverage(v); 1532 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1533 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1534 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 1535 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1536 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1537 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 1538 } 1539 1540 /* Load the value for the inequality constraint at the end of the 1541 ** range (if any). 1542 */ 1543 nConstraint = nEq; 1544 if( pRangeEnd ){ 1545 Expr *pRight = pRangeEnd->pExpr->pRight; 1546 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); 1547 codeExprOrVector(pParse, pRight, regBase+nEq, nTop); 1548 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 1549 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 1550 && sqlite3ExprCanBeNull(pRight) 1551 ){ 1552 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1553 VdbeCoverage(v); 1554 } 1555 if( zEndAff ){ 1556 updateRangeAffinityStr(pRight, nTop, zEndAff); 1557 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); 1558 }else{ 1559 assert( pParse->db->mallocFailed ); 1560 } 1561 nConstraint += nTop; 1562 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 1563 1564 if( sqlite3ExprIsVector(pRight)==0 ){ 1565 disableTerm(pLevel, pRangeEnd); 1566 }else{ 1567 endEq = 1; 1568 } 1569 }else if( bStopAtNull ){ 1570 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1571 endEq = 0; 1572 nConstraint++; 1573 } 1574 sqlite3DbFree(db, zStartAff); 1575 sqlite3DbFree(db, zEndAff); 1576 1577 /* Top of the loop body */ 1578 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1579 1580 /* Check if the index cursor is past the end of the range. */ 1581 if( nConstraint ){ 1582 op = aEndOp[bRev*2 + endEq]; 1583 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1584 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1585 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1586 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1587 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1588 } 1589 1590 /* Seek the table cursor, if required */ 1591 if( omitTable ){ 1592 /* pIdx is a covering index. No need to access the main table. */ 1593 }else if( HasRowid(pIdx->pTable) ){ 1594 if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE)!=0 ){ 1595 iRowidReg = ++pParse->nMem; 1596 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); 1597 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 1598 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg); 1599 VdbeCoverage(v); 1600 }else{ 1601 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); 1602 } 1603 }else if( iCur!=iIdxCur ){ 1604 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1605 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1606 for(j=0; j<pPk->nKeyCol; j++){ 1607 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); 1608 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 1609 } 1610 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 1611 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 1612 } 1613 1614 /* Record the instruction used to terminate the loop. */ 1615 if( pLoop->wsFlags & WHERE_ONEROW ){ 1616 pLevel->op = OP_Noop; 1617 }else if( bRev ){ 1618 pLevel->op = OP_Prev; 1619 }else{ 1620 pLevel->op = OP_Next; 1621 } 1622 pLevel->p1 = iIdxCur; 1623 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 1624 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 1625 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 1626 }else{ 1627 assert( pLevel->p5==0 ); 1628 } 1629 }else 1630 1631 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 1632 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 1633 /* Case 5: Two or more separately indexed terms connected by OR 1634 ** 1635 ** Example: 1636 ** 1637 ** CREATE TABLE t1(a,b,c,d); 1638 ** CREATE INDEX i1 ON t1(a); 1639 ** CREATE INDEX i2 ON t1(b); 1640 ** CREATE INDEX i3 ON t1(c); 1641 ** 1642 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 1643 ** 1644 ** In the example, there are three indexed terms connected by OR. 1645 ** The top of the loop looks like this: 1646 ** 1647 ** Null 1 # Zero the rowset in reg 1 1648 ** 1649 ** Then, for each indexed term, the following. The arguments to 1650 ** RowSetTest are such that the rowid of the current row is inserted 1651 ** into the RowSet. If it is already present, control skips the 1652 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 1653 ** 1654 ** sqlite3WhereBegin(<term>) 1655 ** RowSetTest # Insert rowid into rowset 1656 ** Gosub 2 A 1657 ** sqlite3WhereEnd() 1658 ** 1659 ** Following the above, code to terminate the loop. Label A, the target 1660 ** of the Gosub above, jumps to the instruction right after the Goto. 1661 ** 1662 ** Null 1 # Zero the rowset in reg 1 1663 ** Goto B # The loop is finished. 1664 ** 1665 ** A: <loop body> # Return data, whatever. 1666 ** 1667 ** Return 2 # Jump back to the Gosub 1668 ** 1669 ** B: <after the loop> 1670 ** 1671 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 1672 ** use an ephemeral index instead of a RowSet to record the primary 1673 ** keys of the rows we have already seen. 1674 ** 1675 */ 1676 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 1677 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 1678 Index *pCov = 0; /* Potential covering index (or NULL) */ 1679 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 1680 1681 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 1682 int regRowset = 0; /* Register for RowSet object */ 1683 int regRowid = 0; /* Register holding rowid */ 1684 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ 1685 int iRetInit; /* Address of regReturn init */ 1686 int untestedTerms = 0; /* Some terms not completely tested */ 1687 int ii; /* Loop counter */ 1688 u16 wctrlFlags; /* Flags for sub-WHERE clause */ 1689 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 1690 Table *pTab = pTabItem->pTab; 1691 1692 pTerm = pLoop->aLTerm[0]; 1693 assert( pTerm!=0 ); 1694 assert( pTerm->eOperator & WO_OR ); 1695 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 1696 pOrWc = &pTerm->u.pOrInfo->wc; 1697 pLevel->op = OP_Return; 1698 pLevel->p1 = regReturn; 1699 1700 /* Set up a new SrcList in pOrTab containing the table being scanned 1701 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 1702 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 1703 */ 1704 if( pWInfo->nLevel>1 ){ 1705 int nNotReady; /* The number of notReady tables */ 1706 struct SrcList_item *origSrc; /* Original list of tables */ 1707 nNotReady = pWInfo->nLevel - iLevel - 1; 1708 pOrTab = sqlite3StackAllocRaw(db, 1709 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 1710 if( pOrTab==0 ) return notReady; 1711 pOrTab->nAlloc = (u8)(nNotReady + 1); 1712 pOrTab->nSrc = pOrTab->nAlloc; 1713 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 1714 origSrc = pWInfo->pTabList->a; 1715 for(k=1; k<=nNotReady; k++){ 1716 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 1717 } 1718 }else{ 1719 pOrTab = pWInfo->pTabList; 1720 } 1721 1722 /* Initialize the rowset register to contain NULL. An SQL NULL is 1723 ** equivalent to an empty rowset. Or, create an ephemeral index 1724 ** capable of holding primary keys in the case of a WITHOUT ROWID. 1725 ** 1726 ** Also initialize regReturn to contain the address of the instruction 1727 ** immediately following the OP_Return at the bottom of the loop. This 1728 ** is required in a few obscure LEFT JOIN cases where control jumps 1729 ** over the top of the loop into the body of it. In this case the 1730 ** correct response for the end-of-loop code (the OP_Return) is to 1731 ** fall through to the next instruction, just as an OP_Next does if 1732 ** called on an uninitialized cursor. 1733 */ 1734 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 1735 if( HasRowid(pTab) ){ 1736 regRowset = ++pParse->nMem; 1737 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 1738 }else{ 1739 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1740 regRowset = pParse->nTab++; 1741 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 1742 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 1743 } 1744 regRowid = ++pParse->nMem; 1745 } 1746 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 1747 1748 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 1749 ** Then for every term xN, evaluate as the subexpression: xN AND z 1750 ** That way, terms in y that are factored into the disjunction will 1751 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 1752 ** 1753 ** Actually, each subexpression is converted to "xN AND w" where w is 1754 ** the "interesting" terms of z - terms that did not originate in the 1755 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 1756 ** indices. 1757 ** 1758 ** This optimization also only applies if the (x1 OR x2 OR ...) term 1759 ** is not contained in the ON clause of a LEFT JOIN. 1760 ** See ticket http://www.sqlite.org/src/info/f2369304e4 1761 */ 1762 if( pWC->nTerm>1 ){ 1763 int iTerm; 1764 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 1765 Expr *pExpr = pWC->a[iTerm].pExpr; 1766 if( &pWC->a[iTerm] == pTerm ) continue; 1767 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; 1768 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); 1769 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); 1770 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue; 1771 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 1772 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); 1773 pExpr = sqlite3ExprDup(db, pExpr, 0); 1774 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); 1775 } 1776 if( pAndExpr ){ 1777 pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr); 1778 } 1779 } 1780 1781 /* Run a separate WHERE clause for each term of the OR clause. After 1782 ** eliminating duplicates from other WHERE clauses, the action for each 1783 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 1784 */ 1785 wctrlFlags = WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE); 1786 for(ii=0; ii<pOrWc->nTerm; ii++){ 1787 WhereTerm *pOrTerm = &pOrWc->a[ii]; 1788 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 1789 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 1790 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 1791 int jmp1 = 0; /* Address of jump operation */ 1792 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){ 1793 pAndExpr->pLeft = pOrExpr; 1794 pOrExpr = pAndExpr; 1795 } 1796 /* Loop through table entries that match term pOrTerm. */ 1797 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 1798 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 1799 wctrlFlags, iCovCur); 1800 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); 1801 if( pSubWInfo ){ 1802 WhereLoop *pSubLoop; 1803 int addrExplain = sqlite3WhereExplainOneScan( 1804 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 1805 ); 1806 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 1807 1808 /* This is the sub-WHERE clause body. First skip over 1809 ** duplicate rows from prior sub-WHERE clauses, and record the 1810 ** rowid (or PRIMARY KEY) for the current row so that the same 1811 ** row will be skipped in subsequent sub-WHERE clauses. 1812 */ 1813 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 1814 int r; 1815 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 1816 if( HasRowid(pTab) ){ 1817 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0); 1818 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 1819 r,iSet); 1820 VdbeCoverage(v); 1821 }else{ 1822 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1823 int nPk = pPk->nKeyCol; 1824 int iPk; 1825 1826 /* Read the PK into an array of temp registers. */ 1827 r = sqlite3GetTempRange(pParse, nPk); 1828 for(iPk=0; iPk<nPk; iPk++){ 1829 int iCol = pPk->aiColumn[iPk]; 1830 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk); 1831 } 1832 1833 /* Check if the temp table already contains this key. If so, 1834 ** the row has already been included in the result set and 1835 ** can be ignored (by jumping past the Gosub below). Otherwise, 1836 ** insert the key into the temp table and proceed with processing 1837 ** the row. 1838 ** 1839 ** Use some of the same optimizations as OP_RowSetTest: If iSet 1840 ** is zero, assume that the key cannot already be present in 1841 ** the temp table. And if iSet is -1, assume that there is no 1842 ** need to insert the key into the temp table, as it will never 1843 ** be tested for. */ 1844 if( iSet ){ 1845 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 1846 VdbeCoverage(v); 1847 } 1848 if( iSet>=0 ){ 1849 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 1850 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid, 1851 r, nPk); 1852 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1853 } 1854 1855 /* Release the array of temp registers */ 1856 sqlite3ReleaseTempRange(pParse, r, nPk); 1857 } 1858 } 1859 1860 /* Invoke the main loop body as a subroutine */ 1861 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 1862 1863 /* Jump here (skipping the main loop body subroutine) if the 1864 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 1865 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 1866 1867 /* The pSubWInfo->untestedTerms flag means that this OR term 1868 ** contained one or more AND term from a notReady table. The 1869 ** terms from the notReady table could not be tested and will 1870 ** need to be tested later. 1871 */ 1872 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 1873 1874 /* If all of the OR-connected terms are optimized using the same 1875 ** index, and the index is opened using the same cursor number 1876 ** by each call to sqlite3WhereBegin() made by this loop, it may 1877 ** be possible to use that index as a covering index. 1878 ** 1879 ** If the call to sqlite3WhereBegin() above resulted in a scan that 1880 ** uses an index, and this is either the first OR-connected term 1881 ** processed or the index is the same as that used by all previous 1882 ** terms, set pCov to the candidate covering index. Otherwise, set 1883 ** pCov to NULL to indicate that no candidate covering index will 1884 ** be available. 1885 */ 1886 pSubLoop = pSubWInfo->a[0].pWLoop; 1887 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 1888 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 1889 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 1890 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 1891 ){ 1892 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 1893 pCov = pSubLoop->u.btree.pIndex; 1894 }else{ 1895 pCov = 0; 1896 } 1897 1898 /* Finish the loop through table entries that match term pOrTerm. */ 1899 sqlite3WhereEnd(pSubWInfo); 1900 } 1901 } 1902 } 1903 pLevel->u.pCovidx = pCov; 1904 if( pCov ) pLevel->iIdxCur = iCovCur; 1905 if( pAndExpr ){ 1906 pAndExpr->pLeft = 0; 1907 sqlite3ExprDelete(db, pAndExpr); 1908 } 1909 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 1910 sqlite3VdbeGoto(v, pLevel->addrBrk); 1911 sqlite3VdbeResolveLabel(v, iLoopBody); 1912 1913 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab); 1914 if( !untestedTerms ) disableTerm(pLevel, pTerm); 1915 }else 1916 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1917 1918 { 1919 /* Case 6: There is no usable index. We must do a complete 1920 ** scan of the entire table. 1921 */ 1922 static const u8 aStep[] = { OP_Next, OP_Prev }; 1923 static const u8 aStart[] = { OP_Rewind, OP_Last }; 1924 assert( bRev==0 || bRev==1 ); 1925 if( pTabItem->fg.isRecursive ){ 1926 /* Tables marked isRecursive have only a single row that is stored in 1927 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 1928 pLevel->op = OP_Noop; 1929 }else{ 1930 codeCursorHint(pTabItem, pWInfo, pLevel, 0); 1931 pLevel->op = aStep[bRev]; 1932 pLevel->p1 = iCur; 1933 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); 1934 VdbeCoverageIf(v, bRev==0); 1935 VdbeCoverageIf(v, bRev!=0); 1936 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 1937 } 1938 } 1939 1940 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1941 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 1942 #endif 1943 1944 /* Insert code to test every subexpression that can be completely 1945 ** computed using the current set of tables. 1946 */ 1947 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 1948 Expr *pE; 1949 int skipLikeAddr = 0; 1950 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1951 testcase( pTerm->wtFlags & TERM_CODED ); 1952 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1953 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 1954 testcase( pWInfo->untestedTerms==0 1955 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); 1956 pWInfo->untestedTerms = 1; 1957 continue; 1958 } 1959 pE = pTerm->pExpr; 1960 assert( pE!=0 ); 1961 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 1962 continue; 1963 } 1964 if( pTerm->wtFlags & TERM_LIKECOND ){ 1965 /* If the TERM_LIKECOND flag is set, that means that the range search 1966 ** is sufficient to guarantee that the LIKE operator is true, so we 1967 ** can skip the call to the like(A,B) function. But this only works 1968 ** for strings. So do not skip the call to the function on the pass 1969 ** that compares BLOBs. */ 1970 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1971 continue; 1972 #else 1973 u32 x = pLevel->iLikeRepCntr; 1974 assert( x>0 ); 1975 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)? OP_IfNot : OP_If, (int)(x>>1)); 1976 VdbeCoverage(v); 1977 #endif 1978 } 1979 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 1980 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 1981 pTerm->wtFlags |= TERM_CODED; 1982 } 1983 1984 /* Insert code to test for implied constraints based on transitivity 1985 ** of the "==" operator. 1986 ** 1987 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 1988 ** and we are coding the t1 loop and the t2 loop has not yet coded, 1989 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 1990 ** the implied "t1.a=123" constraint. 1991 */ 1992 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 1993 Expr *pE, sEAlt; 1994 WhereTerm *pAlt; 1995 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1996 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 1997 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 1998 if( pTerm->leftCursor!=iCur ) continue; 1999 if( pLevel->iLeftJoin ) continue; 2000 pE = pTerm->pExpr; 2001 assert( !ExprHasProperty(pE, EP_FromJoin) ); 2002 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 2003 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady, 2004 WO_EQ|WO_IN|WO_IS, 0); 2005 if( pAlt==0 ) continue; 2006 if( pAlt->wtFlags & (TERM_CODED) ) continue; 2007 testcase( pAlt->eOperator & WO_EQ ); 2008 testcase( pAlt->eOperator & WO_IS ); 2009 testcase( pAlt->eOperator & WO_IN ); 2010 VdbeModuleComment((v, "begin transitive constraint")); 2011 sEAlt = *pAlt->pExpr; 2012 sEAlt.pLeft = pE->pLeft; 2013 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); 2014 } 2015 2016 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2017 ** at least one row of the right table has matched the left table. 2018 */ 2019 if( pLevel->iLeftJoin ){ 2020 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2021 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2022 VdbeComment((v, "record LEFT JOIN hit")); 2023 sqlite3ExprCacheClear(pParse); 2024 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 2025 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2026 testcase( pTerm->wtFlags & TERM_CODED ); 2027 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2028 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2029 assert( pWInfo->untestedTerms ); 2030 continue; 2031 } 2032 assert( pTerm->pExpr ); 2033 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 2034 pTerm->wtFlags |= TERM_CODED; 2035 } 2036 } 2037 2038 return pLevel->notReady; 2039 } 2040