1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 25 /* 26 ** Return the name of the i-th column of the pIdx index. 27 */ 28 static const char *explainIndexColumnName(Index *pIdx, int i){ 29 i = pIdx->aiColumn[i]; 30 if( i==XN_EXPR ) return "<expr>"; 31 if( i==XN_ROWID ) return "rowid"; 32 return pIdx->pTable->aCol[i].zName; 33 } 34 35 /* 36 ** This routine is a helper for explainIndexRange() below 37 ** 38 ** pStr holds the text of an expression that we are building up one term 39 ** at a time. This routine adds a new term to the end of the expression. 40 ** Terms are separated by AND so add the "AND" text for second and subsequent 41 ** terms only. 42 */ 43 static void explainAppendTerm( 44 StrAccum *pStr, /* The text expression being built */ 45 Index *pIdx, /* Index to read column names from */ 46 int nTerm, /* Number of terms */ 47 int iTerm, /* Zero-based index of first term. */ 48 int bAnd, /* Non-zero to append " AND " */ 49 const char *zOp /* Name of the operator */ 50 ){ 51 int i; 52 53 assert( nTerm>=1 ); 54 if( bAnd ) sqlite3_str_append(pStr, " AND ", 5); 55 56 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 57 for(i=0; i<nTerm; i++){ 58 if( i ) sqlite3_str_append(pStr, ",", 1); 59 sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i)); 60 } 61 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 62 63 sqlite3_str_append(pStr, zOp, 1); 64 65 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 66 for(i=0; i<nTerm; i++){ 67 if( i ) sqlite3_str_append(pStr, ",", 1); 68 sqlite3_str_append(pStr, "?", 1); 69 } 70 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 71 } 72 73 /* 74 ** Argument pLevel describes a strategy for scanning table pTab. This 75 ** function appends text to pStr that describes the subset of table 76 ** rows scanned by the strategy in the form of an SQL expression. 77 ** 78 ** For example, if the query: 79 ** 80 ** SELECT * FROM t1 WHERE a=1 AND b>2; 81 ** 82 ** is run and there is an index on (a, b), then this function returns a 83 ** string similar to: 84 ** 85 ** "a=? AND b>?" 86 */ 87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 88 Index *pIndex = pLoop->u.btree.pIndex; 89 u16 nEq = pLoop->u.btree.nEq; 90 u16 nSkip = pLoop->nSkip; 91 int i, j; 92 93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 94 sqlite3_str_append(pStr, " (", 2); 95 for(i=0; i<nEq; i++){ 96 const char *z = explainIndexColumnName(pIndex, i); 97 if( i ) sqlite3_str_append(pStr, " AND ", 5); 98 sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); 99 } 100 101 j = i; 102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); 104 i = 1; 105 } 106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); 108 } 109 sqlite3_str_append(pStr, ")", 1); 110 } 111 112 /* 113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 116 ** is added to the output to describe the table scan strategy in pLevel. 117 ** 118 ** If an OP_Explain opcode is added to the VM, its address is returned. 119 ** Otherwise, if no OP_Explain is coded, zero is returned. 120 */ 121 int sqlite3WhereExplainOneScan( 122 Parse *pParse, /* Parse context */ 123 SrcList *pTabList, /* Table list this loop refers to */ 124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 125 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 126 ){ 127 int ret = 0; 128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 129 if( sqlite3ParseToplevel(pParse)->explain==2 ) 130 #endif 131 { 132 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 133 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 134 sqlite3 *db = pParse->db; /* Database handle */ 135 int isSearch; /* True for a SEARCH. False for SCAN. */ 136 WhereLoop *pLoop; /* The controlling WhereLoop object */ 137 u32 flags; /* Flags that describe this loop */ 138 char *zMsg; /* Text to add to EQP output */ 139 StrAccum str; /* EQP output string */ 140 char zBuf[100]; /* Initial space for EQP output string */ 141 142 pLoop = pLevel->pWLoop; 143 flags = pLoop->wsFlags; 144 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; 145 146 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 147 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 148 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 149 150 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 151 sqlite3_str_appendall(&str, isSearch ? "SEARCH" : "SCAN"); 152 if( pItem->pSelect ){ 153 sqlite3_str_appendf(&str, " SUBQUERY %u", pItem->pSelect->selId); 154 }else{ 155 sqlite3_str_appendf(&str, " TABLE %s", pItem->zName); 156 } 157 158 if( pItem->zAlias ){ 159 sqlite3_str_appendf(&str, " AS %s", pItem->zAlias); 160 } 161 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 162 const char *zFmt = 0; 163 Index *pIdx; 164 165 assert( pLoop->u.btree.pIndex!=0 ); 166 pIdx = pLoop->u.btree.pIndex; 167 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 168 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 169 if( isSearch ){ 170 zFmt = "PRIMARY KEY"; 171 } 172 }else if( flags & WHERE_PARTIALIDX ){ 173 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 174 }else if( flags & WHERE_AUTO_INDEX ){ 175 zFmt = "AUTOMATIC COVERING INDEX"; 176 }else if( flags & WHERE_IDX_ONLY ){ 177 zFmt = "COVERING INDEX %s"; 178 }else{ 179 zFmt = "INDEX %s"; 180 } 181 if( zFmt ){ 182 sqlite3_str_append(&str, " USING ", 7); 183 sqlite3_str_appendf(&str, zFmt, pIdx->zName); 184 explainIndexRange(&str, pLoop); 185 } 186 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 187 const char *zRangeOp; 188 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 189 zRangeOp = "="; 190 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 191 zRangeOp = ">? AND rowid<"; 192 }else if( flags&WHERE_BTM_LIMIT ){ 193 zRangeOp = ">"; 194 }else{ 195 assert( flags&WHERE_TOP_LIMIT); 196 zRangeOp = "<"; 197 } 198 sqlite3_str_appendf(&str, 199 " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp); 200 } 201 #ifndef SQLITE_OMIT_VIRTUALTABLE 202 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 203 sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s", 204 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 205 } 206 #endif 207 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 208 if( pLoop->nOut>=10 ){ 209 sqlite3_str_appendf(&str, " (~%llu rows)", 210 sqlite3LogEstToInt(pLoop->nOut)); 211 }else{ 212 sqlite3_str_append(&str, " (~1 row)", 9); 213 } 214 #endif 215 zMsg = sqlite3StrAccumFinish(&str); 216 sqlite3ExplainBreakpoint("",zMsg); 217 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), 218 pParse->addrExplain, 0, zMsg,P4_DYNAMIC); 219 } 220 return ret; 221 } 222 #endif /* SQLITE_OMIT_EXPLAIN */ 223 224 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 225 /* 226 ** Configure the VM passed as the first argument with an 227 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 228 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 229 ** clause that the scan reads data from. 230 ** 231 ** If argument addrExplain is not 0, it must be the address of an 232 ** OP_Explain instruction that describes the same loop. 233 */ 234 void sqlite3WhereAddScanStatus( 235 Vdbe *v, /* Vdbe to add scanstatus entry to */ 236 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 237 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 238 int addrExplain /* Address of OP_Explain (or 0) */ 239 ){ 240 const char *zObj = 0; 241 WhereLoop *pLoop = pLvl->pWLoop; 242 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 243 zObj = pLoop->u.btree.pIndex->zName; 244 }else{ 245 zObj = pSrclist->a[pLvl->iFrom].zName; 246 } 247 sqlite3VdbeScanStatus( 248 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 249 ); 250 } 251 #endif 252 253 254 /* 255 ** Disable a term in the WHERE clause. Except, do not disable the term 256 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 257 ** or USING clause of that join. 258 ** 259 ** Consider the term t2.z='ok' in the following queries: 260 ** 261 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 262 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 263 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 264 ** 265 ** The t2.z='ok' is disabled in the in (2) because it originates 266 ** in the ON clause. The term is disabled in (3) because it is not part 267 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 268 ** 269 ** Disabling a term causes that term to not be tested in the inner loop 270 ** of the join. Disabling is an optimization. When terms are satisfied 271 ** by indices, we disable them to prevent redundant tests in the inner 272 ** loop. We would get the correct results if nothing were ever disabled, 273 ** but joins might run a little slower. The trick is to disable as much 274 ** as we can without disabling too much. If we disabled in (1), we'd get 275 ** the wrong answer. See ticket #813. 276 ** 277 ** If all the children of a term are disabled, then that term is also 278 ** automatically disabled. In this way, terms get disabled if derived 279 ** virtual terms are tested first. For example: 280 ** 281 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 282 ** \___________/ \______/ \_____/ 283 ** parent child1 child2 284 ** 285 ** Only the parent term was in the original WHERE clause. The child1 286 ** and child2 terms were added by the LIKE optimization. If both of 287 ** the virtual child terms are valid, then testing of the parent can be 288 ** skipped. 289 ** 290 ** Usually the parent term is marked as TERM_CODED. But if the parent 291 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 292 ** The TERM_LIKECOND marking indicates that the term should be coded inside 293 ** a conditional such that is only evaluated on the second pass of a 294 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 295 */ 296 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 297 int nLoop = 0; 298 assert( pTerm!=0 ); 299 while( (pTerm->wtFlags & TERM_CODED)==0 300 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 301 && (pLevel->notReady & pTerm->prereqAll)==0 302 ){ 303 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 304 pTerm->wtFlags |= TERM_LIKECOND; 305 }else{ 306 pTerm->wtFlags |= TERM_CODED; 307 } 308 if( pTerm->iParent<0 ) break; 309 pTerm = &pTerm->pWC->a[pTerm->iParent]; 310 assert( pTerm!=0 ); 311 pTerm->nChild--; 312 if( pTerm->nChild!=0 ) break; 313 nLoop++; 314 } 315 } 316 317 /* 318 ** Code an OP_Affinity opcode to apply the column affinity string zAff 319 ** to the n registers starting at base. 320 ** 321 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which 322 ** are no-ops) at the beginning and end of zAff are ignored. If all entries 323 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated. 324 ** 325 ** This routine makes its own copy of zAff so that the caller is free 326 ** to modify zAff after this routine returns. 327 */ 328 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 329 Vdbe *v = pParse->pVdbe; 330 if( zAff==0 ){ 331 assert( pParse->db->mallocFailed ); 332 return; 333 } 334 assert( v!=0 ); 335 336 /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE 337 ** entries at the beginning and end of the affinity string. 338 */ 339 assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB ); 340 while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){ 341 n--; 342 base++; 343 zAff++; 344 } 345 while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){ 346 n--; 347 } 348 349 /* Code the OP_Affinity opcode if there is anything left to do. */ 350 if( n>0 ){ 351 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 352 } 353 } 354 355 /* 356 ** Expression pRight, which is the RHS of a comparison operation, is 357 ** either a vector of n elements or, if n==1, a scalar expression. 358 ** Before the comparison operation, affinity zAff is to be applied 359 ** to the pRight values. This function modifies characters within the 360 ** affinity string to SQLITE_AFF_BLOB if either: 361 ** 362 ** * the comparison will be performed with no affinity, or 363 ** * the affinity change in zAff is guaranteed not to change the value. 364 */ 365 static void updateRangeAffinityStr( 366 Expr *pRight, /* RHS of comparison */ 367 int n, /* Number of vector elements in comparison */ 368 char *zAff /* Affinity string to modify */ 369 ){ 370 int i; 371 for(i=0; i<n; i++){ 372 Expr *p = sqlite3VectorFieldSubexpr(pRight, i); 373 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB 374 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) 375 ){ 376 zAff[i] = SQLITE_AFF_BLOB; 377 } 378 } 379 } 380 381 382 /* 383 ** pX is an expression of the form: (vector) IN (SELECT ...) 384 ** In other words, it is a vector IN operator with a SELECT clause on the 385 ** LHS. But not all terms in the vector are indexable and the terms might 386 ** not be in the correct order for indexing. 387 ** 388 ** This routine makes a copy of the input pX expression and then adjusts 389 ** the vector on the LHS with corresponding changes to the SELECT so that 390 ** the vector contains only index terms and those terms are in the correct 391 ** order. The modified IN expression is returned. The caller is responsible 392 ** for deleting the returned expression. 393 ** 394 ** Example: 395 ** 396 ** CREATE TABLE t1(a,b,c,d,e,f); 397 ** CREATE INDEX t1x1 ON t1(e,c); 398 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2) 399 ** \_______________________________________/ 400 ** The pX expression 401 ** 402 ** Since only columns e and c can be used with the index, in that order, 403 ** the modified IN expression that is returned will be: 404 ** 405 ** (e,c) IN (SELECT z,x FROM t2) 406 ** 407 ** The reduced pX is different from the original (obviously) and thus is 408 ** only used for indexing, to improve performance. The original unaltered 409 ** IN expression must also be run on each output row for correctness. 410 */ 411 static Expr *removeUnindexableInClauseTerms( 412 Parse *pParse, /* The parsing context */ 413 int iEq, /* Look at loop terms starting here */ 414 WhereLoop *pLoop, /* The current loop */ 415 Expr *pX /* The IN expression to be reduced */ 416 ){ 417 sqlite3 *db = pParse->db; 418 Expr *pNew; 419 pNew = sqlite3ExprDup(db, pX, 0); 420 if( db->mallocFailed==0 ){ 421 ExprList *pOrigRhs = pNew->x.pSelect->pEList; /* Original unmodified RHS */ 422 ExprList *pOrigLhs = pNew->pLeft->x.pList; /* Original unmodified LHS */ 423 ExprList *pRhs = 0; /* New RHS after modifications */ 424 ExprList *pLhs = 0; /* New LHS after mods */ 425 int i; /* Loop counter */ 426 Select *pSelect; /* Pointer to the SELECT on the RHS */ 427 428 for(i=iEq; i<pLoop->nLTerm; i++){ 429 if( pLoop->aLTerm[i]->pExpr==pX ){ 430 int iField = pLoop->aLTerm[i]->iField - 1; 431 if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */ 432 pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr); 433 pOrigRhs->a[iField].pExpr = 0; 434 assert( pOrigLhs->a[iField].pExpr!=0 ); 435 pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr); 436 pOrigLhs->a[iField].pExpr = 0; 437 } 438 } 439 sqlite3ExprListDelete(db, pOrigRhs); 440 sqlite3ExprListDelete(db, pOrigLhs); 441 pNew->pLeft->x.pList = pLhs; 442 pNew->x.pSelect->pEList = pRhs; 443 if( pLhs && pLhs->nExpr==1 ){ 444 /* Take care here not to generate a TK_VECTOR containing only a 445 ** single value. Since the parser never creates such a vector, some 446 ** of the subroutines do not handle this case. */ 447 Expr *p = pLhs->a[0].pExpr; 448 pLhs->a[0].pExpr = 0; 449 sqlite3ExprDelete(db, pNew->pLeft); 450 pNew->pLeft = p; 451 } 452 pSelect = pNew->x.pSelect; 453 if( pSelect->pOrderBy ){ 454 /* If the SELECT statement has an ORDER BY clause, zero the 455 ** iOrderByCol variables. These are set to non-zero when an 456 ** ORDER BY term exactly matches one of the terms of the 457 ** result-set. Since the result-set of the SELECT statement may 458 ** have been modified or reordered, these variables are no longer 459 ** set correctly. Since setting them is just an optimization, 460 ** it's easiest just to zero them here. */ 461 ExprList *pOrderBy = pSelect->pOrderBy; 462 for(i=0; i<pOrderBy->nExpr; i++){ 463 pOrderBy->a[i].u.x.iOrderByCol = 0; 464 } 465 } 466 467 #if 0 468 printf("For indexing, change the IN expr:\n"); 469 sqlite3TreeViewExpr(0, pX, 0); 470 printf("Into:\n"); 471 sqlite3TreeViewExpr(0, pNew, 0); 472 #endif 473 } 474 return pNew; 475 } 476 477 478 /* 479 ** Generate code for a single equality term of the WHERE clause. An equality 480 ** term can be either X=expr or X IN (...). pTerm is the term to be 481 ** coded. 482 ** 483 ** The current value for the constraint is left in a register, the index 484 ** of which is returned. An attempt is made store the result in iTarget but 485 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the 486 ** constraint is a TK_EQ or TK_IS, then the current value might be left in 487 ** some other register and it is the caller's responsibility to compensate. 488 ** 489 ** For a constraint of the form X=expr, the expression is evaluated in 490 ** straight-line code. For constraints of the form X IN (...) 491 ** this routine sets up a loop that will iterate over all values of X. 492 */ 493 static int codeEqualityTerm( 494 Parse *pParse, /* The parsing context */ 495 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 496 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 497 int iEq, /* Index of the equality term within this level */ 498 int bRev, /* True for reverse-order IN operations */ 499 int iTarget /* Attempt to leave results in this register */ 500 ){ 501 Expr *pX = pTerm->pExpr; 502 Vdbe *v = pParse->pVdbe; 503 int iReg; /* Register holding results */ 504 505 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); 506 assert( iTarget>0 ); 507 if( pX->op==TK_EQ || pX->op==TK_IS ){ 508 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 509 }else if( pX->op==TK_ISNULL ){ 510 iReg = iTarget; 511 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 512 #ifndef SQLITE_OMIT_SUBQUERY 513 }else{ 514 int eType = IN_INDEX_NOOP; 515 int iTab; 516 struct InLoop *pIn; 517 WhereLoop *pLoop = pLevel->pWLoop; 518 int i; 519 int nEq = 0; 520 int *aiMap = 0; 521 522 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 523 && pLoop->u.btree.pIndex!=0 524 && pLoop->u.btree.pIndex->aSortOrder[iEq] 525 ){ 526 testcase( iEq==0 ); 527 testcase( bRev ); 528 bRev = !bRev; 529 } 530 assert( pX->op==TK_IN ); 531 iReg = iTarget; 532 533 for(i=0; i<iEq; i++){ 534 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ 535 disableTerm(pLevel, pTerm); 536 return iTarget; 537 } 538 } 539 for(i=iEq;i<pLoop->nLTerm; i++){ 540 assert( pLoop->aLTerm[i]!=0 ); 541 if( pLoop->aLTerm[i]->pExpr==pX ) nEq++; 542 } 543 544 iTab = 0; 545 if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){ 546 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab); 547 }else{ 548 sqlite3 *db = pParse->db; 549 pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX); 550 551 if( !db->mallocFailed ){ 552 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq); 553 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab); 554 pTerm->pExpr->iTable = iTab; 555 } 556 sqlite3ExprDelete(db, pX); 557 pX = pTerm->pExpr; 558 } 559 560 if( eType==IN_INDEX_INDEX_DESC ){ 561 testcase( bRev ); 562 bRev = !bRev; 563 } 564 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 565 VdbeCoverageIf(v, bRev); 566 VdbeCoverageIf(v, !bRev); 567 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 568 569 pLoop->wsFlags |= WHERE_IN_ABLE; 570 if( pLevel->u.in.nIn==0 ){ 571 pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 572 } 573 if( iEq>0 ){ 574 pLoop->wsFlags |= WHERE_IN_EARLYOUT; 575 } 576 577 i = pLevel->u.in.nIn; 578 pLevel->u.in.nIn += nEq; 579 pLevel->u.in.aInLoop = 580 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 581 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 582 pIn = pLevel->u.in.aInLoop; 583 if( pIn ){ 584 int iMap = 0; /* Index in aiMap[] */ 585 pIn += i; 586 for(i=iEq;i<pLoop->nLTerm; i++){ 587 if( pLoop->aLTerm[i]->pExpr==pX ){ 588 int iOut = iReg + i - iEq; 589 if( eType==IN_INDEX_ROWID ){ 590 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); 591 }else{ 592 int iCol = aiMap ? aiMap[iMap++] : 0; 593 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); 594 } 595 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); 596 if( i==iEq ){ 597 pIn->iCur = iTab; 598 pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next; 599 if( iEq>0 ){ 600 pIn->iBase = iReg - i; 601 pIn->nPrefix = i; 602 }else{ 603 pIn->nPrefix = 0; 604 } 605 }else{ 606 pIn->eEndLoopOp = OP_Noop; 607 } 608 pIn++; 609 } 610 } 611 if( iEq>0 ){ 612 sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq); 613 } 614 }else{ 615 pLevel->u.in.nIn = 0; 616 } 617 sqlite3DbFree(pParse->db, aiMap); 618 #endif 619 } 620 disableTerm(pLevel, pTerm); 621 return iReg; 622 } 623 624 /* 625 ** Generate code that will evaluate all == and IN constraints for an 626 ** index scan. 627 ** 628 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 629 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 630 ** The index has as many as three equality constraints, but in this 631 ** example, the third "c" value is an inequality. So only two 632 ** constraints are coded. This routine will generate code to evaluate 633 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 634 ** in consecutive registers and the index of the first register is returned. 635 ** 636 ** In the example above nEq==2. But this subroutine works for any value 637 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 638 ** The only thing it does is allocate the pLevel->iMem memory cell and 639 ** compute the affinity string. 640 ** 641 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 642 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 643 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 644 ** occurs after the nEq quality constraints. 645 ** 646 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 647 ** the index of the first memory cell in that range. The code that 648 ** calls this routine will use that memory range to store keys for 649 ** start and termination conditions of the loop. 650 ** key value of the loop. If one or more IN operators appear, then 651 ** this routine allocates an additional nEq memory cells for internal 652 ** use. 653 ** 654 ** Before returning, *pzAff is set to point to a buffer containing a 655 ** copy of the column affinity string of the index allocated using 656 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 657 ** with equality constraints that use BLOB or NONE affinity are set to 658 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 659 ** 660 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 661 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 662 ** 663 ** In the example above, the index on t1(a) has TEXT affinity. But since 664 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 665 ** no conversion should be attempted before using a t2.b value as part of 666 ** a key to search the index. Hence the first byte in the returned affinity 667 ** string in this example would be set to SQLITE_AFF_BLOB. 668 */ 669 static int codeAllEqualityTerms( 670 Parse *pParse, /* Parsing context */ 671 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 672 int bRev, /* Reverse the order of IN operators */ 673 int nExtraReg, /* Number of extra registers to allocate */ 674 char **pzAff /* OUT: Set to point to affinity string */ 675 ){ 676 u16 nEq; /* The number of == or IN constraints to code */ 677 u16 nSkip; /* Number of left-most columns to skip */ 678 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 679 Index *pIdx; /* The index being used for this loop */ 680 WhereTerm *pTerm; /* A single constraint term */ 681 WhereLoop *pLoop; /* The WhereLoop object */ 682 int j; /* Loop counter */ 683 int regBase; /* Base register */ 684 int nReg; /* Number of registers to allocate */ 685 char *zAff; /* Affinity string to return */ 686 687 /* This module is only called on query plans that use an index. */ 688 pLoop = pLevel->pWLoop; 689 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 690 nEq = pLoop->u.btree.nEq; 691 nSkip = pLoop->nSkip; 692 pIdx = pLoop->u.btree.pIndex; 693 assert( pIdx!=0 ); 694 695 /* Figure out how many memory cells we will need then allocate them. 696 */ 697 regBase = pParse->nMem + 1; 698 nReg = pLoop->u.btree.nEq + nExtraReg; 699 pParse->nMem += nReg; 700 701 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 702 assert( zAff!=0 || pParse->db->mallocFailed ); 703 704 if( nSkip ){ 705 int iIdxCur = pLevel->iIdxCur; 706 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 707 VdbeCoverageIf(v, bRev==0); 708 VdbeCoverageIf(v, bRev!=0); 709 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 710 j = sqlite3VdbeAddOp0(v, OP_Goto); 711 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 712 iIdxCur, 0, regBase, nSkip); 713 VdbeCoverageIf(v, bRev==0); 714 VdbeCoverageIf(v, bRev!=0); 715 sqlite3VdbeJumpHere(v, j); 716 for(j=0; j<nSkip; j++){ 717 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 718 testcase( pIdx->aiColumn[j]==XN_EXPR ); 719 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 720 } 721 } 722 723 /* Evaluate the equality constraints 724 */ 725 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 726 for(j=nSkip; j<nEq; j++){ 727 int r1; 728 pTerm = pLoop->aLTerm[j]; 729 assert( pTerm!=0 ); 730 /* The following testcase is true for indices with redundant columns. 731 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 732 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 733 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 734 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 735 if( r1!=regBase+j ){ 736 if( nReg==1 ){ 737 sqlite3ReleaseTempReg(pParse, regBase); 738 regBase = r1; 739 }else{ 740 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 741 } 742 } 743 if( pTerm->eOperator & WO_IN ){ 744 if( pTerm->pExpr->flags & EP_xIsSelect ){ 745 /* No affinity ever needs to be (or should be) applied to a value 746 ** from the RHS of an "? IN (SELECT ...)" expression. The 747 ** sqlite3FindInIndex() routine has already ensured that the 748 ** affinity of the comparison has been applied to the value. */ 749 if( zAff ) zAff[j] = SQLITE_AFF_BLOB; 750 } 751 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ 752 Expr *pRight = pTerm->pExpr->pRight; 753 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 754 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 755 VdbeCoverage(v); 756 } 757 if( zAff ){ 758 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 759 zAff[j] = SQLITE_AFF_BLOB; 760 } 761 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 762 zAff[j] = SQLITE_AFF_BLOB; 763 } 764 } 765 } 766 } 767 *pzAff = zAff; 768 return regBase; 769 } 770 771 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 772 /* 773 ** If the most recently coded instruction is a constant range constraint 774 ** (a string literal) that originated from the LIKE optimization, then 775 ** set P3 and P5 on the OP_String opcode so that the string will be cast 776 ** to a BLOB at appropriate times. 777 ** 778 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 779 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 780 ** scan loop run twice, once for strings and a second time for BLOBs. 781 ** The OP_String opcodes on the second pass convert the upper and lower 782 ** bound string constants to blobs. This routine makes the necessary changes 783 ** to the OP_String opcodes for that to happen. 784 ** 785 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 786 ** only the one pass through the string space is required, so this routine 787 ** becomes a no-op. 788 */ 789 static void whereLikeOptimizationStringFixup( 790 Vdbe *v, /* prepared statement under construction */ 791 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 792 WhereTerm *pTerm /* The upper or lower bound just coded */ 793 ){ 794 if( pTerm->wtFlags & TERM_LIKEOPT ){ 795 VdbeOp *pOp; 796 assert( pLevel->iLikeRepCntr>0 ); 797 pOp = sqlite3VdbeGetOp(v, -1); 798 assert( pOp!=0 ); 799 assert( pOp->opcode==OP_String8 800 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 801 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ 802 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ 803 } 804 } 805 #else 806 # define whereLikeOptimizationStringFixup(A,B,C) 807 #endif 808 809 #ifdef SQLITE_ENABLE_CURSOR_HINTS 810 /* 811 ** Information is passed from codeCursorHint() down to individual nodes of 812 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 813 ** structure. 814 */ 815 struct CCurHint { 816 int iTabCur; /* Cursor for the main table */ 817 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 818 Index *pIdx; /* The index used to access the table */ 819 }; 820 821 /* 822 ** This function is called for every node of an expression that is a candidate 823 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 824 ** the table CCurHint.iTabCur, verify that the same column can be 825 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 826 */ 827 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 828 struct CCurHint *pHint = pWalker->u.pCCurHint; 829 assert( pHint->pIdx!=0 ); 830 if( pExpr->op==TK_COLUMN 831 && pExpr->iTable==pHint->iTabCur 832 && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0 833 ){ 834 pWalker->eCode = 1; 835 } 836 return WRC_Continue; 837 } 838 839 /* 840 ** Test whether or not expression pExpr, which was part of a WHERE clause, 841 ** should be included in the cursor-hint for a table that is on the rhs 842 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the 843 ** expression is not suitable. 844 ** 845 ** An expression is unsuitable if it might evaluate to non NULL even if 846 ** a TK_COLUMN node that does affect the value of the expression is set 847 ** to NULL. For example: 848 ** 849 ** col IS NULL 850 ** col IS NOT NULL 851 ** coalesce(col, 1) 852 ** CASE WHEN col THEN 0 ELSE 1 END 853 */ 854 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ 855 if( pExpr->op==TK_IS 856 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT 857 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE 858 ){ 859 pWalker->eCode = 1; 860 }else if( pExpr->op==TK_FUNCTION ){ 861 int d1; 862 char d2[4]; 863 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ 864 pWalker->eCode = 1; 865 } 866 } 867 868 return WRC_Continue; 869 } 870 871 872 /* 873 ** This function is called on every node of an expression tree used as an 874 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 875 ** that accesses any table other than the one identified by 876 ** CCurHint.iTabCur, then do the following: 877 ** 878 ** 1) allocate a register and code an OP_Column instruction to read 879 ** the specified column into the new register, and 880 ** 881 ** 2) transform the expression node to a TK_REGISTER node that reads 882 ** from the newly populated register. 883 ** 884 ** Also, if the node is a TK_COLUMN that does access the table idenified 885 ** by pCCurHint.iTabCur, and an index is being used (which we will 886 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 887 ** an access of the index rather than the original table. 888 */ 889 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 890 int rc = WRC_Continue; 891 struct CCurHint *pHint = pWalker->u.pCCurHint; 892 if( pExpr->op==TK_COLUMN ){ 893 if( pExpr->iTable!=pHint->iTabCur ){ 894 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 895 sqlite3ExprCode(pWalker->pParse, pExpr, reg); 896 pExpr->op = TK_REGISTER; 897 pExpr->iTable = reg; 898 }else if( pHint->pIdx!=0 ){ 899 pExpr->iTable = pHint->iIdxCur; 900 pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn); 901 assert( pExpr->iColumn>=0 ); 902 } 903 }else if( pExpr->op==TK_AGG_FUNCTION ){ 904 /* An aggregate function in the WHERE clause of a query means this must 905 ** be a correlated sub-query, and expression pExpr is an aggregate from 906 ** the parent context. Do not walk the function arguments in this case. 907 ** 908 ** todo: It should be possible to replace this node with a TK_REGISTER 909 ** expression, as the result of the expression must be stored in a 910 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 911 rc = WRC_Prune; 912 } 913 return rc; 914 } 915 916 /* 917 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 918 */ 919 static void codeCursorHint( 920 struct SrcList_item *pTabItem, /* FROM clause item */ 921 WhereInfo *pWInfo, /* The where clause */ 922 WhereLevel *pLevel, /* Which loop to provide hints for */ 923 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 924 ){ 925 Parse *pParse = pWInfo->pParse; 926 sqlite3 *db = pParse->db; 927 Vdbe *v = pParse->pVdbe; 928 Expr *pExpr = 0; 929 WhereLoop *pLoop = pLevel->pWLoop; 930 int iCur; 931 WhereClause *pWC; 932 WhereTerm *pTerm; 933 int i, j; 934 struct CCurHint sHint; 935 Walker sWalker; 936 937 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 938 iCur = pLevel->iTabCur; 939 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 940 sHint.iTabCur = iCur; 941 sHint.iIdxCur = pLevel->iIdxCur; 942 sHint.pIdx = pLoop->u.btree.pIndex; 943 memset(&sWalker, 0, sizeof(sWalker)); 944 sWalker.pParse = pParse; 945 sWalker.u.pCCurHint = &sHint; 946 pWC = &pWInfo->sWC; 947 for(i=0; i<pWC->nTerm; i++){ 948 pTerm = &pWC->a[i]; 949 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 950 if( pTerm->prereqAll & pLevel->notReady ) continue; 951 952 /* Any terms specified as part of the ON(...) clause for any LEFT 953 ** JOIN for which the current table is not the rhs are omitted 954 ** from the cursor-hint. 955 ** 956 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms 957 ** that were specified as part of the WHERE clause must be excluded. 958 ** This is to address the following: 959 ** 960 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; 961 ** 962 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its 963 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is 964 ** pushed down to the cursor, this row is filtered out, causing 965 ** SQLite to synthesize a row of NULL values. Which does match the 966 ** WHERE clause, and so the query returns a row. Which is incorrect. 967 ** 968 ** For the same reason, WHERE terms such as: 969 ** 970 ** WHERE 1 = (t2.c IS NULL) 971 ** 972 ** are also excluded. See codeCursorHintIsOrFunction() for details. 973 */ 974 if( pTabItem->fg.jointype & JT_LEFT ){ 975 Expr *pExpr = pTerm->pExpr; 976 if( !ExprHasProperty(pExpr, EP_FromJoin) 977 || pExpr->iRightJoinTable!=pTabItem->iCursor 978 ){ 979 sWalker.eCode = 0; 980 sWalker.xExprCallback = codeCursorHintIsOrFunction; 981 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 982 if( sWalker.eCode ) continue; 983 } 984 }else{ 985 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; 986 } 987 988 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 989 ** the cursor. These terms are not needed as hints for a pure range 990 ** scan (that has no == terms) so omit them. */ 991 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 992 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 993 if( j<pLoop->nLTerm ) continue; 994 } 995 996 /* No subqueries or non-deterministic functions allowed */ 997 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 998 999 /* For an index scan, make sure referenced columns are actually in 1000 ** the index. */ 1001 if( sHint.pIdx!=0 ){ 1002 sWalker.eCode = 0; 1003 sWalker.xExprCallback = codeCursorHintCheckExpr; 1004 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 1005 if( sWalker.eCode ) continue; 1006 } 1007 1008 /* If we survive all prior tests, that means this term is worth hinting */ 1009 pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 1010 } 1011 if( pExpr!=0 ){ 1012 sWalker.xExprCallback = codeCursorHintFixExpr; 1013 sqlite3WalkExpr(&sWalker, pExpr); 1014 sqlite3VdbeAddOp4(v, OP_CursorHint, 1015 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 1016 (const char*)pExpr, P4_EXPR); 1017 } 1018 } 1019 #else 1020 # define codeCursorHint(A,B,C,D) /* No-op */ 1021 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 1022 1023 /* 1024 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains 1025 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This 1026 ** function generates code to do a deferred seek of cursor iCur to the 1027 ** rowid stored in register iRowid. 1028 ** 1029 ** Normally, this is just: 1030 ** 1031 ** OP_DeferredSeek $iCur $iRowid 1032 ** 1033 ** However, if the scan currently being coded is a branch of an OR-loop and 1034 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek 1035 ** is set to iIdxCur and P4 is set to point to an array of integers 1036 ** containing one entry for each column of the table cursor iCur is open 1037 ** on. For each table column, if the column is the i'th column of the 1038 ** index, then the corresponding array entry is set to (i+1). If the column 1039 ** does not appear in the index at all, the array entry is set to 0. 1040 */ 1041 static void codeDeferredSeek( 1042 WhereInfo *pWInfo, /* Where clause context */ 1043 Index *pIdx, /* Index scan is using */ 1044 int iCur, /* Cursor for IPK b-tree */ 1045 int iIdxCur /* Index cursor */ 1046 ){ 1047 Parse *pParse = pWInfo->pParse; /* Parse context */ 1048 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ 1049 1050 assert( iIdxCur>0 ); 1051 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); 1052 1053 pWInfo->bDeferredSeek = 1; 1054 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur); 1055 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 1056 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) 1057 ){ 1058 int i; 1059 Table *pTab = pIdx->pTable; 1060 u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1)); 1061 if( ai ){ 1062 ai[0] = pTab->nCol; 1063 for(i=0; i<pIdx->nColumn-1; i++){ 1064 int x1, x2; 1065 assert( pIdx->aiColumn[i]<pTab->nCol ); 1066 x1 = pIdx->aiColumn[i]; 1067 x2 = sqlite3TableColumnToStorage(pTab, x1); 1068 testcase( x1!=x2 ); 1069 if( x1>=0 ) ai[x2+1] = i+1; 1070 } 1071 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); 1072 } 1073 } 1074 } 1075 1076 /* 1077 ** If the expression passed as the second argument is a vector, generate 1078 ** code to write the first nReg elements of the vector into an array 1079 ** of registers starting with iReg. 1080 ** 1081 ** If the expression is not a vector, then nReg must be passed 1. In 1082 ** this case, generate code to evaluate the expression and leave the 1083 ** result in register iReg. 1084 */ 1085 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ 1086 assert( nReg>0 ); 1087 if( p && sqlite3ExprIsVector(p) ){ 1088 #ifndef SQLITE_OMIT_SUBQUERY 1089 if( (p->flags & EP_xIsSelect) ){ 1090 Vdbe *v = pParse->pVdbe; 1091 int iSelect; 1092 assert( p->op==TK_SELECT ); 1093 iSelect = sqlite3CodeSubselect(pParse, p); 1094 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); 1095 }else 1096 #endif 1097 { 1098 int i; 1099 ExprList *pList = p->x.pList; 1100 assert( nReg<=pList->nExpr ); 1101 for(i=0; i<nReg; i++){ 1102 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i); 1103 } 1104 } 1105 }else{ 1106 assert( nReg==1 ); 1107 sqlite3ExprCode(pParse, p, iReg); 1108 } 1109 } 1110 1111 /* An instance of the IdxExprTrans object carries information about a 1112 ** mapping from an expression on table columns into a column in an index 1113 ** down through the Walker. 1114 */ 1115 typedef struct IdxExprTrans { 1116 Expr *pIdxExpr; /* The index expression */ 1117 int iTabCur; /* The cursor of the corresponding table */ 1118 int iIdxCur; /* The cursor for the index */ 1119 int iIdxCol; /* The column for the index */ 1120 int iTabCol; /* The column for the table */ 1121 WhereInfo *pWInfo; /* Complete WHERE clause information */ 1122 sqlite3 *db; /* Database connection (for malloc()) */ 1123 } IdxExprTrans; 1124 1125 /* 1126 ** Preserve pExpr on the WhereETrans list of the WhereInfo. 1127 */ 1128 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){ 1129 WhereExprMod *pNew; 1130 pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew)); 1131 if( pNew==0 ) return; 1132 pNew->pNext = pTrans->pWInfo->pExprMods; 1133 pTrans->pWInfo->pExprMods = pNew; 1134 pNew->pExpr = pExpr; 1135 memcpy(&pNew->orig, pExpr, sizeof(*pExpr)); 1136 } 1137 1138 /* The walker node callback used to transform matching expressions into 1139 ** a reference to an index column for an index on an expression. 1140 ** 1141 ** If pExpr matches, then transform it into a reference to the index column 1142 ** that contains the value of pExpr. 1143 */ 1144 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){ 1145 IdxExprTrans *pX = p->u.pIdxTrans; 1146 if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){ 1147 preserveExpr(pX, pExpr); 1148 pExpr->affExpr = sqlite3ExprAffinity(pExpr); 1149 pExpr->op = TK_COLUMN; 1150 pExpr->iTable = pX->iIdxCur; 1151 pExpr->iColumn = pX->iIdxCol; 1152 pExpr->y.pTab = 0; 1153 testcase( ExprHasProperty(pExpr, EP_Skip) ); 1154 testcase( ExprHasProperty(pExpr, EP_Unlikely) ); 1155 ExprClearProperty(pExpr, EP_Skip|EP_Unlikely); 1156 return WRC_Prune; 1157 }else{ 1158 return WRC_Continue; 1159 } 1160 } 1161 1162 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1163 /* A walker node callback that translates a column reference to a table 1164 ** into a corresponding column reference of an index. 1165 */ 1166 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){ 1167 if( pExpr->op==TK_COLUMN ){ 1168 IdxExprTrans *pX = p->u.pIdxTrans; 1169 if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){ 1170 assert( pExpr->y.pTab!=0 ); 1171 preserveExpr(pX, pExpr); 1172 pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn); 1173 pExpr->iTable = pX->iIdxCur; 1174 pExpr->iColumn = pX->iIdxCol; 1175 pExpr->y.pTab = 0; 1176 } 1177 } 1178 return WRC_Continue; 1179 } 1180 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1181 1182 /* 1183 ** For an indexes on expression X, locate every instance of expression X 1184 ** in pExpr and change that subexpression into a reference to the appropriate 1185 ** column of the index. 1186 ** 1187 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in 1188 ** the table into references to the corresponding (stored) column of the 1189 ** index. 1190 */ 1191 static void whereIndexExprTrans( 1192 Index *pIdx, /* The Index */ 1193 int iTabCur, /* Cursor of the table that is being indexed */ 1194 int iIdxCur, /* Cursor of the index itself */ 1195 WhereInfo *pWInfo /* Transform expressions in this WHERE clause */ 1196 ){ 1197 int iIdxCol; /* Column number of the index */ 1198 ExprList *aColExpr; /* Expressions that are indexed */ 1199 Table *pTab; 1200 Walker w; 1201 IdxExprTrans x; 1202 aColExpr = pIdx->aColExpr; 1203 if( aColExpr==0 && !pIdx->bHasVCol ){ 1204 /* The index does not reference any expressions or virtual columns 1205 ** so no translations are needed. */ 1206 return; 1207 } 1208 pTab = pIdx->pTable; 1209 memset(&w, 0, sizeof(w)); 1210 w.u.pIdxTrans = &x; 1211 x.iTabCur = iTabCur; 1212 x.iIdxCur = iIdxCur; 1213 x.pWInfo = pWInfo; 1214 x.db = pWInfo->pParse->db; 1215 for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){ 1216 i16 iRef = pIdx->aiColumn[iIdxCol]; 1217 if( iRef==XN_EXPR ){ 1218 assert( aColExpr->a[iIdxCol].pExpr!=0 ); 1219 x.pIdxExpr = aColExpr->a[iIdxCol].pExpr; 1220 if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue; 1221 w.xExprCallback = whereIndexExprTransNode; 1222 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1223 }else if( iRef>=0 1224 && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0 1225 && (pTab->aCol[iRef].zColl==0 1226 || sqlite3StrICmp(pTab->aCol[iRef].zColl, sqlite3StrBINARY)==0) 1227 ){ 1228 /* Check to see if there are direct references to generated columns 1229 ** that are contained in the index. Pulling the generated column 1230 ** out of the index is an optimization only - the main table is always 1231 ** available if the index cannot be used. To avoid unnecessary 1232 ** complication, omit this optimization if the collating sequence for 1233 ** the column is non-standard */ 1234 x.iTabCol = iRef; 1235 w.xExprCallback = whereIndexExprTransColumn; 1236 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1237 }else{ 1238 continue; 1239 } 1240 x.iIdxCol = iIdxCol; 1241 sqlite3WalkExpr(&w, pWInfo->pWhere); 1242 sqlite3WalkExprList(&w, pWInfo->pOrderBy); 1243 sqlite3WalkExprList(&w, pWInfo->pResultSet); 1244 } 1245 } 1246 1247 /* 1248 ** The pTruth expression is always true because it is the WHERE clause 1249 ** a partial index that is driving a query loop. Look through all of the 1250 ** WHERE clause terms on the query, and if any of those terms must be 1251 ** true because pTruth is true, then mark those WHERE clause terms as 1252 ** coded. 1253 */ 1254 static void whereApplyPartialIndexConstraints( 1255 Expr *pTruth, 1256 int iTabCur, 1257 WhereClause *pWC 1258 ){ 1259 int i; 1260 WhereTerm *pTerm; 1261 while( pTruth->op==TK_AND ){ 1262 whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC); 1263 pTruth = pTruth->pRight; 1264 } 1265 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1266 Expr *pExpr; 1267 if( pTerm->wtFlags & TERM_CODED ) continue; 1268 pExpr = pTerm->pExpr; 1269 if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){ 1270 pTerm->wtFlags |= TERM_CODED; 1271 } 1272 } 1273 } 1274 1275 /* 1276 ** Generate code for the start of the iLevel-th loop in the WHERE clause 1277 ** implementation described by pWInfo. 1278 */ 1279 Bitmask sqlite3WhereCodeOneLoopStart( 1280 Parse *pParse, /* Parsing context */ 1281 Vdbe *v, /* Prepared statement under construction */ 1282 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1283 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1284 WhereLevel *pLevel, /* The current level pointer */ 1285 Bitmask notReady /* Which tables are currently available */ 1286 ){ 1287 int j, k; /* Loop counters */ 1288 int iCur; /* The VDBE cursor for the table */ 1289 int addrNxt; /* Where to jump to continue with the next IN case */ 1290 int bRev; /* True if we need to scan in reverse order */ 1291 WhereLoop *pLoop; /* The WhereLoop object being coded */ 1292 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 1293 WhereTerm *pTerm; /* A WHERE clause term */ 1294 sqlite3 *db; /* Database connection */ 1295 struct SrcList_item *pTabItem; /* FROM clause term being coded */ 1296 int addrBrk; /* Jump here to break out of the loop */ 1297 int addrHalt; /* addrBrk for the outermost loop */ 1298 int addrCont; /* Jump here to continue with next cycle */ 1299 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 1300 int iReleaseReg = 0; /* Temp register to free before returning */ 1301 Index *pIdx = 0; /* Index used by loop (if any) */ 1302 int iLoop; /* Iteration of constraint generator loop */ 1303 1304 pWC = &pWInfo->sWC; 1305 db = pParse->db; 1306 pLoop = pLevel->pWLoop; 1307 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1308 iCur = pTabItem->iCursor; 1309 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 1310 bRev = (pWInfo->revMask>>iLevel)&1; 1311 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 1312 #if WHERETRACE_ENABLED /* 0x20800 */ 1313 if( sqlite3WhereTrace & 0x800 ){ 1314 sqlite3DebugPrintf("Coding level %d of %d: notReady=%llx iFrom=%d\n", 1315 iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom); 1316 sqlite3WhereLoopPrint(pLoop, pWC); 1317 } 1318 if( sqlite3WhereTrace & 0x20000 ){ 1319 if( iLevel==0 ){ 1320 sqlite3DebugPrintf("WHERE clause being coded:\n"); 1321 sqlite3TreeViewExpr(0, pWInfo->pWhere, 0); 1322 } 1323 sqlite3DebugPrintf("All WHERE-clause terms before coding:\n"); 1324 sqlite3WhereClausePrint(pWC); 1325 } 1326 #endif 1327 1328 /* Create labels for the "break" and "continue" instructions 1329 ** for the current loop. Jump to addrBrk to break out of a loop. 1330 ** Jump to cont to go immediately to the next iteration of the 1331 ** loop. 1332 ** 1333 ** When there is an IN operator, we also have a "addrNxt" label that 1334 ** means to continue with the next IN value combination. When 1335 ** there are no IN operators in the constraints, the "addrNxt" label 1336 ** is the same as "addrBrk". 1337 */ 1338 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 1339 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse); 1340 1341 /* If this is the right table of a LEFT OUTER JOIN, allocate and 1342 ** initialize a memory cell that records if this table matches any 1343 ** row of the left table of the join. 1344 */ 1345 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 1346 || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0 1347 ); 1348 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 1349 pLevel->iLeftJoin = ++pParse->nMem; 1350 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 1351 VdbeComment((v, "init LEFT JOIN no-match flag")); 1352 } 1353 1354 /* Compute a safe address to jump to if we discover that the table for 1355 ** this loop is empty and can never contribute content. */ 1356 for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){} 1357 addrHalt = pWInfo->a[j].addrBrk; 1358 1359 /* Special case of a FROM clause subquery implemented as a co-routine */ 1360 if( pTabItem->fg.viaCoroutine ){ 1361 int regYield = pTabItem->regReturn; 1362 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 1363 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 1364 VdbeCoverage(v); 1365 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 1366 pLevel->op = OP_Goto; 1367 }else 1368 1369 #ifndef SQLITE_OMIT_VIRTUALTABLE 1370 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 1371 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 1372 ** to access the data. 1373 */ 1374 int iReg; /* P3 Value for OP_VFilter */ 1375 int addrNotFound; 1376 int nConstraint = pLoop->nLTerm; 1377 int iIn; /* Counter for IN constraints */ 1378 1379 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 1380 addrNotFound = pLevel->addrBrk; 1381 for(j=0; j<nConstraint; j++){ 1382 int iTarget = iReg+j+2; 1383 pTerm = pLoop->aLTerm[j]; 1384 if( NEVER(pTerm==0) ) continue; 1385 if( pTerm->eOperator & WO_IN ){ 1386 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 1387 addrNotFound = pLevel->addrNxt; 1388 }else{ 1389 Expr *pRight = pTerm->pExpr->pRight; 1390 codeExprOrVector(pParse, pRight, iTarget, 1); 1391 } 1392 } 1393 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 1394 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 1395 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 1396 pLoop->u.vtab.idxStr, 1397 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); 1398 VdbeCoverage(v); 1399 pLoop->u.vtab.needFree = 0; 1400 pLevel->p1 = iCur; 1401 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 1402 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1403 iIn = pLevel->u.in.nIn; 1404 for(j=nConstraint-1; j>=0; j--){ 1405 pTerm = pLoop->aLTerm[j]; 1406 if( (pTerm->eOperator & WO_IN)!=0 ) iIn--; 1407 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ 1408 disableTerm(pLevel, pTerm); 1409 }else if( (pTerm->eOperator & WO_IN)!=0 1410 && sqlite3ExprVectorSize(pTerm->pExpr->pLeft)==1 1411 ){ 1412 Expr *pCompare; /* The comparison operator */ 1413 Expr *pRight; /* RHS of the comparison */ 1414 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ 1415 1416 /* Reload the constraint value into reg[iReg+j+2]. The same value 1417 ** was loaded into the same register prior to the OP_VFilter, but 1418 ** the xFilter implementation might have changed the datatype or 1419 ** encoding of the value in the register, so it *must* be reloaded. */ 1420 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed ); 1421 if( !db->mallocFailed ){ 1422 assert( iIn>=0 && iIn<pLevel->u.in.nIn ); 1423 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop); 1424 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid ); 1425 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 ); 1426 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 ); 1427 testcase( pOp->opcode==OP_Rowid ); 1428 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); 1429 } 1430 1431 /* Generate code that will continue to the next row if 1432 ** the IN constraint is not satisfied */ 1433 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); 1434 assert( pCompare!=0 || db->mallocFailed ); 1435 if( pCompare ){ 1436 pCompare->pLeft = pTerm->pExpr->pLeft; 1437 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); 1438 if( pRight ){ 1439 pRight->iTable = iReg+j+2; 1440 sqlite3ExprIfFalse( 1441 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL 1442 ); 1443 } 1444 pCompare->pLeft = 0; 1445 sqlite3ExprDelete(db, pCompare); 1446 } 1447 } 1448 } 1449 assert( iIn==0 || db->mallocFailed ); 1450 /* These registers need to be preserved in case there is an IN operator 1451 ** loop. So we could deallocate the registers here (and potentially 1452 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems 1453 ** simpler and safer to simply not reuse the registers. 1454 ** 1455 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 1456 */ 1457 }else 1458 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1459 1460 if( (pLoop->wsFlags & WHERE_IPK)!=0 1461 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 1462 ){ 1463 /* Case 2: We can directly reference a single row using an 1464 ** equality comparison against the ROWID field. Or 1465 ** we reference multiple rows using a "rowid IN (...)" 1466 ** construct. 1467 */ 1468 assert( pLoop->u.btree.nEq==1 ); 1469 pTerm = pLoop->aLTerm[0]; 1470 assert( pTerm!=0 ); 1471 assert( pTerm->pExpr!=0 ); 1472 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1473 iReleaseReg = ++pParse->nMem; 1474 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 1475 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 1476 addrNxt = pLevel->addrNxt; 1477 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); 1478 VdbeCoverage(v); 1479 pLevel->op = OP_Noop; 1480 if( (pTerm->prereqAll & pLevel->notReady)==0 ){ 1481 pTerm->wtFlags |= TERM_CODED; 1482 } 1483 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 1484 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 1485 ){ 1486 /* Case 3: We have an inequality comparison against the ROWID field. 1487 */ 1488 int testOp = OP_Noop; 1489 int start; 1490 int memEndValue = 0; 1491 WhereTerm *pStart, *pEnd; 1492 1493 j = 0; 1494 pStart = pEnd = 0; 1495 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 1496 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 1497 assert( pStart!=0 || pEnd!=0 ); 1498 if( bRev ){ 1499 pTerm = pStart; 1500 pStart = pEnd; 1501 pEnd = pTerm; 1502 } 1503 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); 1504 if( pStart ){ 1505 Expr *pX; /* The expression that defines the start bound */ 1506 int r1, rTemp; /* Registers for holding the start boundary */ 1507 int op; /* Cursor seek operation */ 1508 1509 /* The following constant maps TK_xx codes into corresponding 1510 ** seek opcodes. It depends on a particular ordering of TK_xx 1511 */ 1512 const u8 aMoveOp[] = { 1513 /* TK_GT */ OP_SeekGT, 1514 /* TK_LE */ OP_SeekLE, 1515 /* TK_LT */ OP_SeekLT, 1516 /* TK_GE */ OP_SeekGE 1517 }; 1518 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 1519 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 1520 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 1521 1522 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 1523 testcase( pStart->wtFlags & TERM_VIRTUAL ); 1524 pX = pStart->pExpr; 1525 assert( pX!=0 ); 1526 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 1527 if( sqlite3ExprIsVector(pX->pRight) ){ 1528 r1 = rTemp = sqlite3GetTempReg(pParse); 1529 codeExprOrVector(pParse, pX->pRight, r1, 1); 1530 testcase( pX->op==TK_GT ); 1531 testcase( pX->op==TK_GE ); 1532 testcase( pX->op==TK_LT ); 1533 testcase( pX->op==TK_LE ); 1534 op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1]; 1535 assert( pX->op!=TK_GT || op==OP_SeekGE ); 1536 assert( pX->op!=TK_GE || op==OP_SeekGE ); 1537 assert( pX->op!=TK_LT || op==OP_SeekLE ); 1538 assert( pX->op!=TK_LE || op==OP_SeekLE ); 1539 }else{ 1540 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 1541 disableTerm(pLevel, pStart); 1542 op = aMoveOp[(pX->op - TK_GT)]; 1543 } 1544 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); 1545 VdbeComment((v, "pk")); 1546 VdbeCoverageIf(v, pX->op==TK_GT); 1547 VdbeCoverageIf(v, pX->op==TK_LE); 1548 VdbeCoverageIf(v, pX->op==TK_LT); 1549 VdbeCoverageIf(v, pX->op==TK_GE); 1550 sqlite3ReleaseTempReg(pParse, rTemp); 1551 }else{ 1552 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt); 1553 VdbeCoverageIf(v, bRev==0); 1554 VdbeCoverageIf(v, bRev!=0); 1555 } 1556 if( pEnd ){ 1557 Expr *pX; 1558 pX = pEnd->pExpr; 1559 assert( pX!=0 ); 1560 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 1561 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 1562 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 1563 memEndValue = ++pParse->nMem; 1564 codeExprOrVector(pParse, pX->pRight, memEndValue, 1); 1565 if( 0==sqlite3ExprIsVector(pX->pRight) 1566 && (pX->op==TK_LT || pX->op==TK_GT) 1567 ){ 1568 testOp = bRev ? OP_Le : OP_Ge; 1569 }else{ 1570 testOp = bRev ? OP_Lt : OP_Gt; 1571 } 1572 if( 0==sqlite3ExprIsVector(pX->pRight) ){ 1573 disableTerm(pLevel, pEnd); 1574 } 1575 } 1576 start = sqlite3VdbeCurrentAddr(v); 1577 pLevel->op = bRev ? OP_Prev : OP_Next; 1578 pLevel->p1 = iCur; 1579 pLevel->p2 = start; 1580 assert( pLevel->p5==0 ); 1581 if( testOp!=OP_Noop ){ 1582 iRowidReg = ++pParse->nMem; 1583 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 1584 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 1585 VdbeCoverageIf(v, testOp==OP_Le); 1586 VdbeCoverageIf(v, testOp==OP_Lt); 1587 VdbeCoverageIf(v, testOp==OP_Ge); 1588 VdbeCoverageIf(v, testOp==OP_Gt); 1589 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 1590 } 1591 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 1592 /* Case 4: A scan using an index. 1593 ** 1594 ** The WHERE clause may contain zero or more equality 1595 ** terms ("==" or "IN" operators) that refer to the N 1596 ** left-most columns of the index. It may also contain 1597 ** inequality constraints (>, <, >= or <=) on the indexed 1598 ** column that immediately follows the N equalities. Only 1599 ** the right-most column can be an inequality - the rest must 1600 ** use the "==" and "IN" operators. For example, if the 1601 ** index is on (x,y,z), then the following clauses are all 1602 ** optimized: 1603 ** 1604 ** x=5 1605 ** x=5 AND y=10 1606 ** x=5 AND y<10 1607 ** x=5 AND y>5 AND y<10 1608 ** x=5 AND y=5 AND z<=10 1609 ** 1610 ** The z<10 term of the following cannot be used, only 1611 ** the x=5 term: 1612 ** 1613 ** x=5 AND z<10 1614 ** 1615 ** N may be zero if there are inequality constraints. 1616 ** If there are no inequality constraints, then N is at 1617 ** least one. 1618 ** 1619 ** This case is also used when there are no WHERE clause 1620 ** constraints but an index is selected anyway, in order 1621 ** to force the output order to conform to an ORDER BY. 1622 */ 1623 static const u8 aStartOp[] = { 1624 0, 1625 0, 1626 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1627 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1628 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1629 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1630 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1631 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1632 }; 1633 static const u8 aEndOp[] = { 1634 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1635 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1636 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1637 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1638 }; 1639 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1640 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ 1641 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ 1642 int regBase; /* Base register holding constraint values */ 1643 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1644 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1645 int startEq; /* True if range start uses ==, >= or <= */ 1646 int endEq; /* True if range end uses ==, >= or <= */ 1647 int start_constraints; /* Start of range is constrained */ 1648 int nConstraint; /* Number of constraint terms */ 1649 int iIdxCur; /* The VDBE cursor for the index */ 1650 int nExtraReg = 0; /* Number of extra registers needed */ 1651 int op; /* Instruction opcode */ 1652 char *zStartAff; /* Affinity for start of range constraint */ 1653 char *zEndAff = 0; /* Affinity for end of range constraint */ 1654 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1655 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1656 int omitTable; /* True if we use the index only */ 1657 int regBignull = 0; /* big-null flag register */ 1658 1659 pIdx = pLoop->u.btree.pIndex; 1660 iIdxCur = pLevel->iIdxCur; 1661 assert( nEq>=pLoop->nSkip ); 1662 1663 /* Find any inequality constraint terms for the start and end 1664 ** of the range. 1665 */ 1666 j = nEq; 1667 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1668 pRangeStart = pLoop->aLTerm[j++]; 1669 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); 1670 /* Like optimization range constraints always occur in pairs */ 1671 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1672 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1673 } 1674 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1675 pRangeEnd = pLoop->aLTerm[j++]; 1676 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); 1677 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1678 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1679 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1680 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1681 pLevel->iLikeRepCntr = (u32)++pParse->nMem; 1682 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); 1683 VdbeComment((v, "LIKE loop counter")); 1684 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1685 /* iLikeRepCntr actually stores 2x the counter register number. The 1686 ** bottom bit indicates whether the search order is ASC or DESC. */ 1687 testcase( bRev ); 1688 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1689 assert( (bRev & ~1)==0 ); 1690 pLevel->iLikeRepCntr <<=1; 1691 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); 1692 } 1693 #endif 1694 if( pRangeStart==0 ){ 1695 j = pIdx->aiColumn[nEq]; 1696 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){ 1697 bSeekPastNull = 1; 1698 } 1699 } 1700 } 1701 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1702 1703 /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses 1704 ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS 1705 ** FIRST). In both cases separate ordered scans are made of those 1706 ** index entries for which the column is null and for those for which 1707 ** it is not. For an ASC sort, the non-NULL entries are scanned first. 1708 ** For DESC, NULL entries are scanned first. 1709 */ 1710 if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0 1711 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0 1712 ){ 1713 assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 ); 1714 assert( pRangeEnd==0 && pRangeStart==0 ); 1715 testcase( pLoop->nSkip>0 ); 1716 nExtraReg = 1; 1717 bSeekPastNull = 1; 1718 pLevel->regBignull = regBignull = ++pParse->nMem; 1719 if( pLevel->iLeftJoin ){ 1720 sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull); 1721 } 1722 pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse); 1723 } 1724 1725 /* If we are doing a reverse order scan on an ascending index, or 1726 ** a forward order scan on a descending index, interchange the 1727 ** start and end terms (pRangeStart and pRangeEnd). 1728 */ 1729 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) 1730 || (bRev && pIdx->nKeyCol==nEq) 1731 ){ 1732 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1733 SWAP(u8, bSeekPastNull, bStopAtNull); 1734 SWAP(u8, nBtm, nTop); 1735 } 1736 1737 /* Generate code to evaluate all constraint terms using == or IN 1738 ** and store the values of those terms in an array of registers 1739 ** starting at regBase. 1740 */ 1741 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); 1742 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1743 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1744 if( zStartAff && nTop ){ 1745 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); 1746 } 1747 addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt); 1748 1749 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1750 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1751 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1752 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1753 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1754 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1755 start_constraints = pRangeStart || nEq>0; 1756 1757 /* Seek the index cursor to the start of the range. */ 1758 nConstraint = nEq; 1759 if( pRangeStart ){ 1760 Expr *pRight = pRangeStart->pExpr->pRight; 1761 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); 1762 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1763 if( !bRev 1764 && (pRangeStart->wtFlags & TERM_VNULL)==0 1765 && sqlite3ExprCanBeNull(pRight) 1766 ){ 1767 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1768 VdbeCoverage(v); 1769 } 1770 if( zStartAff ){ 1771 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); 1772 } 1773 nConstraint += nBtm; 1774 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1775 if( sqlite3ExprIsVector(pRight)==0 ){ 1776 disableTerm(pLevel, pRangeStart); 1777 }else{ 1778 startEq = 1; 1779 } 1780 bSeekPastNull = 0; 1781 }else if( bSeekPastNull ){ 1782 startEq = 0; 1783 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1784 start_constraints = 1; 1785 nConstraint++; 1786 }else if( regBignull ){ 1787 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1788 start_constraints = 1; 1789 nConstraint++; 1790 } 1791 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1792 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ 1793 /* The skip-scan logic inside the call to codeAllEqualityConstraints() 1794 ** above has already left the cursor sitting on the correct row, 1795 ** so no further seeking is needed */ 1796 }else{ 1797 if( regBignull ){ 1798 sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull); 1799 VdbeComment((v, "NULL-scan pass ctr")); 1800 } 1801 1802 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 1803 assert( op!=0 ); 1804 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1805 VdbeCoverage(v); 1806 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1807 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1808 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 1809 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1810 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1811 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 1812 1813 assert( bSeekPastNull==0 || bStopAtNull==0 ); 1814 if( regBignull ){ 1815 assert( bSeekPastNull==1 || bStopAtNull==1 ); 1816 assert( bSeekPastNull==!bStopAtNull ); 1817 assert( bStopAtNull==startEq ); 1818 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2); 1819 op = aStartOp[(nConstraint>1)*4 + 2 + bRev]; 1820 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 1821 nConstraint-startEq); 1822 VdbeCoverage(v); 1823 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1824 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1825 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1826 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1827 assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE); 1828 } 1829 } 1830 1831 /* Load the value for the inequality constraint at the end of the 1832 ** range (if any). 1833 */ 1834 nConstraint = nEq; 1835 if( pRangeEnd ){ 1836 Expr *pRight = pRangeEnd->pExpr->pRight; 1837 codeExprOrVector(pParse, pRight, regBase+nEq, nTop); 1838 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 1839 if( bRev 1840 && (pRangeEnd->wtFlags & TERM_VNULL)==0 1841 && sqlite3ExprCanBeNull(pRight) 1842 ){ 1843 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1844 VdbeCoverage(v); 1845 } 1846 if( zEndAff ){ 1847 updateRangeAffinityStr(pRight, nTop, zEndAff); 1848 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); 1849 }else{ 1850 assert( pParse->db->mallocFailed ); 1851 } 1852 nConstraint += nTop; 1853 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 1854 1855 if( sqlite3ExprIsVector(pRight)==0 ){ 1856 disableTerm(pLevel, pRangeEnd); 1857 }else{ 1858 endEq = 1; 1859 } 1860 }else if( bStopAtNull ){ 1861 if( regBignull==0 ){ 1862 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1863 endEq = 0; 1864 } 1865 nConstraint++; 1866 } 1867 sqlite3DbFree(db, zStartAff); 1868 sqlite3DbFree(db, zEndAff); 1869 1870 /* Top of the loop body */ 1871 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1872 1873 /* Check if the index cursor is past the end of the range. */ 1874 if( nConstraint ){ 1875 if( regBignull ){ 1876 /* Except, skip the end-of-range check while doing the NULL-scan */ 1877 sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3); 1878 VdbeComment((v, "If NULL-scan 2nd pass")); 1879 VdbeCoverage(v); 1880 } 1881 op = aEndOp[bRev*2 + endEq]; 1882 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1883 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1884 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1885 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1886 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1887 } 1888 if( regBignull ){ 1889 /* During a NULL-scan, check to see if we have reached the end of 1890 ** the NULLs */ 1891 assert( bSeekPastNull==!bStopAtNull ); 1892 assert( bSeekPastNull+bStopAtNull==1 ); 1893 assert( nConstraint+bSeekPastNull>0 ); 1894 sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2); 1895 VdbeComment((v, "If NULL-scan 1st pass")); 1896 VdbeCoverage(v); 1897 op = aEndOp[bRev*2 + bSeekPastNull]; 1898 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 1899 nConstraint+bSeekPastNull); 1900 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1901 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1902 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1903 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1904 } 1905 1906 if( pLoop->wsFlags & WHERE_IN_EARLYOUT ){ 1907 sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq); 1908 } 1909 1910 /* Seek the table cursor, if required */ 1911 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 1912 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0; 1913 if( omitTable ){ 1914 /* pIdx is a covering index. No need to access the main table. */ 1915 }else if( HasRowid(pIdx->pTable) ){ 1916 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); 1917 }else if( iCur!=iIdxCur ){ 1918 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1919 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1920 for(j=0; j<pPk->nKeyCol; j++){ 1921 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]); 1922 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 1923 } 1924 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 1925 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 1926 } 1927 1928 if( pLevel->iLeftJoin==0 ){ 1929 /* If pIdx is an index on one or more expressions, then look through 1930 ** all the expressions in pWInfo and try to transform matching expressions 1931 ** into reference to index columns. Also attempt to translate references 1932 ** to virtual columns in the table into references to (stored) columns 1933 ** of the index. 1934 ** 1935 ** Do not do this for the RHS of a LEFT JOIN. This is because the 1936 ** expression may be evaluated after OP_NullRow has been executed on 1937 ** the cursor. In this case it is important to do the full evaluation, 1938 ** as the result of the expression may not be NULL, even if all table 1939 ** column values are. https://www.sqlite.org/src/info/7fa8049685b50b5a 1940 ** 1941 ** Also, do not do this when processing one index an a multi-index 1942 ** OR clause, since the transformation will become invalid once we 1943 ** move forward to the next index. 1944 ** https://sqlite.org/src/info/4e8e4857d32d401f 1945 */ 1946 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ 1947 whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo); 1948 } 1949 1950 /* If a partial index is driving the loop, try to eliminate WHERE clause 1951 ** terms from the query that must be true due to the WHERE clause of 1952 ** the partial index. 1953 ** 1954 ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work 1955 ** for a LEFT JOIN. 1956 */ 1957 if( pIdx->pPartIdxWhere ){ 1958 whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC); 1959 } 1960 }else{ 1961 testcase( pIdx->pPartIdxWhere ); 1962 /* The following assert() is not a requirement, merely an observation: 1963 ** The OR-optimization doesn't work for the right hand table of 1964 ** a LEFT JOIN: */ 1965 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ); 1966 } 1967 1968 /* Record the instruction used to terminate the loop. */ 1969 if( pLoop->wsFlags & WHERE_ONEROW ){ 1970 pLevel->op = OP_Noop; 1971 }else if( bRev ){ 1972 pLevel->op = OP_Prev; 1973 }else{ 1974 pLevel->op = OP_Next; 1975 } 1976 pLevel->p1 = iIdxCur; 1977 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 1978 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 1979 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 1980 }else{ 1981 assert( pLevel->p5==0 ); 1982 } 1983 if( omitTable ) pIdx = 0; 1984 }else 1985 1986 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 1987 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 1988 /* Case 5: Two or more separately indexed terms connected by OR 1989 ** 1990 ** Example: 1991 ** 1992 ** CREATE TABLE t1(a,b,c,d); 1993 ** CREATE INDEX i1 ON t1(a); 1994 ** CREATE INDEX i2 ON t1(b); 1995 ** CREATE INDEX i3 ON t1(c); 1996 ** 1997 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 1998 ** 1999 ** In the example, there are three indexed terms connected by OR. 2000 ** The top of the loop looks like this: 2001 ** 2002 ** Null 1 # Zero the rowset in reg 1 2003 ** 2004 ** Then, for each indexed term, the following. The arguments to 2005 ** RowSetTest are such that the rowid of the current row is inserted 2006 ** into the RowSet. If it is already present, control skips the 2007 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 2008 ** 2009 ** sqlite3WhereBegin(<term>) 2010 ** RowSetTest # Insert rowid into rowset 2011 ** Gosub 2 A 2012 ** sqlite3WhereEnd() 2013 ** 2014 ** Following the above, code to terminate the loop. Label A, the target 2015 ** of the Gosub above, jumps to the instruction right after the Goto. 2016 ** 2017 ** Null 1 # Zero the rowset in reg 1 2018 ** Goto B # The loop is finished. 2019 ** 2020 ** A: <loop body> # Return data, whatever. 2021 ** 2022 ** Return 2 # Jump back to the Gosub 2023 ** 2024 ** B: <after the loop> 2025 ** 2026 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 2027 ** use an ephemeral index instead of a RowSet to record the primary 2028 ** keys of the rows we have already seen. 2029 ** 2030 */ 2031 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 2032 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 2033 Index *pCov = 0; /* Potential covering index (or NULL) */ 2034 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 2035 2036 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 2037 int regRowset = 0; /* Register for RowSet object */ 2038 int regRowid = 0; /* Register holding rowid */ 2039 int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */ 2040 int iRetInit; /* Address of regReturn init */ 2041 int untestedTerms = 0; /* Some terms not completely tested */ 2042 int ii; /* Loop counter */ 2043 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 2044 Table *pTab = pTabItem->pTab; 2045 2046 pTerm = pLoop->aLTerm[0]; 2047 assert( pTerm!=0 ); 2048 assert( pTerm->eOperator & WO_OR ); 2049 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 2050 pOrWc = &pTerm->u.pOrInfo->wc; 2051 pLevel->op = OP_Return; 2052 pLevel->p1 = regReturn; 2053 2054 /* Set up a new SrcList in pOrTab containing the table being scanned 2055 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 2056 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 2057 */ 2058 if( pWInfo->nLevel>1 ){ 2059 int nNotReady; /* The number of notReady tables */ 2060 struct SrcList_item *origSrc; /* Original list of tables */ 2061 nNotReady = pWInfo->nLevel - iLevel - 1; 2062 pOrTab = sqlite3StackAllocRaw(db, 2063 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 2064 if( pOrTab==0 ) return notReady; 2065 pOrTab->nAlloc = (u8)(nNotReady + 1); 2066 pOrTab->nSrc = pOrTab->nAlloc; 2067 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 2068 origSrc = pWInfo->pTabList->a; 2069 for(k=1; k<=nNotReady; k++){ 2070 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 2071 } 2072 }else{ 2073 pOrTab = pWInfo->pTabList; 2074 } 2075 2076 /* Initialize the rowset register to contain NULL. An SQL NULL is 2077 ** equivalent to an empty rowset. Or, create an ephemeral index 2078 ** capable of holding primary keys in the case of a WITHOUT ROWID. 2079 ** 2080 ** Also initialize regReturn to contain the address of the instruction 2081 ** immediately following the OP_Return at the bottom of the loop. This 2082 ** is required in a few obscure LEFT JOIN cases where control jumps 2083 ** over the top of the loop into the body of it. In this case the 2084 ** correct response for the end-of-loop code (the OP_Return) is to 2085 ** fall through to the next instruction, just as an OP_Next does if 2086 ** called on an uninitialized cursor. 2087 */ 2088 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2089 if( HasRowid(pTab) ){ 2090 regRowset = ++pParse->nMem; 2091 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 2092 }else{ 2093 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2094 regRowset = pParse->nTab++; 2095 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 2096 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 2097 } 2098 regRowid = ++pParse->nMem; 2099 } 2100 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 2101 2102 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 2103 ** Then for every term xN, evaluate as the subexpression: xN AND z 2104 ** That way, terms in y that are factored into the disjunction will 2105 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 2106 ** 2107 ** Actually, each subexpression is converted to "xN AND w" where w is 2108 ** the "interesting" terms of z - terms that did not originate in the 2109 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 2110 ** indices. 2111 ** 2112 ** This optimization also only applies if the (x1 OR x2 OR ...) term 2113 ** is not contained in the ON clause of a LEFT JOIN. 2114 ** See ticket http://www.sqlite.org/src/info/f2369304e4 2115 */ 2116 if( pWC->nTerm>1 ){ 2117 int iTerm; 2118 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 2119 Expr *pExpr = pWC->a[iTerm].pExpr; 2120 if( &pWC->a[iTerm] == pTerm ) continue; 2121 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); 2122 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); 2123 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue; 2124 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 2125 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); 2126 pExpr = sqlite3ExprDup(db, pExpr, 0); 2127 pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr); 2128 } 2129 if( pAndExpr ){ 2130 /* The extra 0x10000 bit on the opcode is masked off and does not 2131 ** become part of the new Expr.op. However, it does make the 2132 ** op==TK_AND comparison inside of sqlite3PExpr() false, and this 2133 ** prevents sqlite3PExpr() from implementing AND short-circuit 2134 ** optimization, which we do not want here. */ 2135 pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr); 2136 } 2137 } 2138 2139 /* Run a separate WHERE clause for each term of the OR clause. After 2140 ** eliminating duplicates from other WHERE clauses, the action for each 2141 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 2142 */ 2143 ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR")); 2144 for(ii=0; ii<pOrWc->nTerm; ii++){ 2145 WhereTerm *pOrTerm = &pOrWc->a[ii]; 2146 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 2147 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 2148 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 2149 int jmp1 = 0; /* Address of jump operation */ 2150 testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0 2151 && !ExprHasProperty(pOrExpr, EP_FromJoin) 2152 ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */ 2153 if( pAndExpr ){ 2154 pAndExpr->pLeft = pOrExpr; 2155 pOrExpr = pAndExpr; 2156 } 2157 /* Loop through table entries that match term pOrTerm. */ 2158 ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1)); 2159 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 2160 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 2161 WHERE_OR_SUBCLAUSE, iCovCur); 2162 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); 2163 if( pSubWInfo ){ 2164 WhereLoop *pSubLoop; 2165 int addrExplain = sqlite3WhereExplainOneScan( 2166 pParse, pOrTab, &pSubWInfo->a[0], 0 2167 ); 2168 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 2169 2170 /* This is the sub-WHERE clause body. First skip over 2171 ** duplicate rows from prior sub-WHERE clauses, and record the 2172 ** rowid (or PRIMARY KEY) for the current row so that the same 2173 ** row will be skipped in subsequent sub-WHERE clauses. 2174 */ 2175 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2176 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 2177 if( HasRowid(pTab) ){ 2178 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid); 2179 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 2180 regRowid, iSet); 2181 VdbeCoverage(v); 2182 }else{ 2183 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2184 int nPk = pPk->nKeyCol; 2185 int iPk; 2186 int r; 2187 2188 /* Read the PK into an array of temp registers. */ 2189 r = sqlite3GetTempRange(pParse, nPk); 2190 for(iPk=0; iPk<nPk; iPk++){ 2191 int iCol = pPk->aiColumn[iPk]; 2192 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk); 2193 } 2194 2195 /* Check if the temp table already contains this key. If so, 2196 ** the row has already been included in the result set and 2197 ** can be ignored (by jumping past the Gosub below). Otherwise, 2198 ** insert the key into the temp table and proceed with processing 2199 ** the row. 2200 ** 2201 ** Use some of the same optimizations as OP_RowSetTest: If iSet 2202 ** is zero, assume that the key cannot already be present in 2203 ** the temp table. And if iSet is -1, assume that there is no 2204 ** need to insert the key into the temp table, as it will never 2205 ** be tested for. */ 2206 if( iSet ){ 2207 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 2208 VdbeCoverage(v); 2209 } 2210 if( iSet>=0 ){ 2211 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 2212 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid, 2213 r, nPk); 2214 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2215 } 2216 2217 /* Release the array of temp registers */ 2218 sqlite3ReleaseTempRange(pParse, r, nPk); 2219 } 2220 } 2221 2222 /* Invoke the main loop body as a subroutine */ 2223 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 2224 2225 /* Jump here (skipping the main loop body subroutine) if the 2226 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 2227 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 2228 2229 /* The pSubWInfo->untestedTerms flag means that this OR term 2230 ** contained one or more AND term from a notReady table. The 2231 ** terms from the notReady table could not be tested and will 2232 ** need to be tested later. 2233 */ 2234 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 2235 2236 /* If all of the OR-connected terms are optimized using the same 2237 ** index, and the index is opened using the same cursor number 2238 ** by each call to sqlite3WhereBegin() made by this loop, it may 2239 ** be possible to use that index as a covering index. 2240 ** 2241 ** If the call to sqlite3WhereBegin() above resulted in a scan that 2242 ** uses an index, and this is either the first OR-connected term 2243 ** processed or the index is the same as that used by all previous 2244 ** terms, set pCov to the candidate covering index. Otherwise, set 2245 ** pCov to NULL to indicate that no candidate covering index will 2246 ** be available. 2247 */ 2248 pSubLoop = pSubWInfo->a[0].pWLoop; 2249 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2250 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 2251 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 2252 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 2253 ){ 2254 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 2255 pCov = pSubLoop->u.btree.pIndex; 2256 }else{ 2257 pCov = 0; 2258 } 2259 if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){ 2260 pWInfo->bDeferredSeek = 1; 2261 } 2262 2263 /* Finish the loop through table entries that match term pOrTerm. */ 2264 sqlite3WhereEnd(pSubWInfo); 2265 ExplainQueryPlanPop(pParse); 2266 } 2267 } 2268 } 2269 ExplainQueryPlanPop(pParse); 2270 pLevel->u.pCovidx = pCov; 2271 if( pCov ) pLevel->iIdxCur = iCovCur; 2272 if( pAndExpr ){ 2273 pAndExpr->pLeft = 0; 2274 sqlite3ExprDelete(db, pAndExpr); 2275 } 2276 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 2277 sqlite3VdbeGoto(v, pLevel->addrBrk); 2278 sqlite3VdbeResolveLabel(v, iLoopBody); 2279 2280 if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); } 2281 if( !untestedTerms ) disableTerm(pLevel, pTerm); 2282 }else 2283 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 2284 2285 { 2286 /* Case 6: There is no usable index. We must do a complete 2287 ** scan of the entire table. 2288 */ 2289 static const u8 aStep[] = { OP_Next, OP_Prev }; 2290 static const u8 aStart[] = { OP_Rewind, OP_Last }; 2291 assert( bRev==0 || bRev==1 ); 2292 if( pTabItem->fg.isRecursive ){ 2293 /* Tables marked isRecursive have only a single row that is stored in 2294 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 2295 pLevel->op = OP_Noop; 2296 }else{ 2297 codeCursorHint(pTabItem, pWInfo, pLevel, 0); 2298 pLevel->op = aStep[bRev]; 2299 pLevel->p1 = iCur; 2300 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt); 2301 VdbeCoverageIf(v, bRev==0); 2302 VdbeCoverageIf(v, bRev!=0); 2303 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2304 } 2305 } 2306 2307 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2308 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 2309 #endif 2310 2311 /* Insert code to test every subexpression that can be completely 2312 ** computed using the current set of tables. 2313 ** 2314 ** This loop may run between one and three times, depending on the 2315 ** constraints to be generated. The value of stack variable iLoop 2316 ** determines the constraints coded by each iteration, as follows: 2317 ** 2318 ** iLoop==1: Code only expressions that are entirely covered by pIdx. 2319 ** iLoop==2: Code remaining expressions that do not contain correlated 2320 ** sub-queries. 2321 ** iLoop==3: Code all remaining expressions. 2322 ** 2323 ** An effort is made to skip unnecessary iterations of the loop. 2324 */ 2325 iLoop = (pIdx ? 1 : 2); 2326 do{ 2327 int iNext = 0; /* Next value for iLoop */ 2328 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2329 Expr *pE; 2330 int skipLikeAddr = 0; 2331 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2332 testcase( pTerm->wtFlags & TERM_CODED ); 2333 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2334 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2335 testcase( pWInfo->untestedTerms==0 2336 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); 2337 pWInfo->untestedTerms = 1; 2338 continue; 2339 } 2340 pE = pTerm->pExpr; 2341 assert( pE!=0 ); 2342 if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){ 2343 continue; 2344 } 2345 2346 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){ 2347 iNext = 2; 2348 continue; 2349 } 2350 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){ 2351 if( iNext==0 ) iNext = 3; 2352 continue; 2353 } 2354 2355 if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){ 2356 /* If the TERM_LIKECOND flag is set, that means that the range search 2357 ** is sufficient to guarantee that the LIKE operator is true, so we 2358 ** can skip the call to the like(A,B) function. But this only works 2359 ** for strings. So do not skip the call to the function on the pass 2360 ** that compares BLOBs. */ 2361 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 2362 continue; 2363 #else 2364 u32 x = pLevel->iLikeRepCntr; 2365 if( x>0 ){ 2366 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1)); 2367 VdbeCoverageIf(v, (x&1)==1); 2368 VdbeCoverageIf(v, (x&1)==0); 2369 } 2370 #endif 2371 } 2372 #ifdef WHERETRACE_ENABLED /* 0xffff */ 2373 if( sqlite3WhereTrace ){ 2374 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d", 2375 pWC->nTerm-j, pTerm, iLoop)); 2376 } 2377 if( sqlite3WhereTrace & 0x800 ){ 2378 sqlite3DebugPrintf("Coding auxiliary constraint:\n"); 2379 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2380 } 2381 #endif 2382 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 2383 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 2384 pTerm->wtFlags |= TERM_CODED; 2385 } 2386 iLoop = iNext; 2387 }while( iLoop>0 ); 2388 2389 /* Insert code to test for implied constraints based on transitivity 2390 ** of the "==" operator. 2391 ** 2392 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 2393 ** and we are coding the t1 loop and the t2 loop has not yet coded, 2394 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 2395 ** the implied "t1.a=123" constraint. 2396 */ 2397 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2398 Expr *pE, sEAlt; 2399 WhereTerm *pAlt; 2400 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2401 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 2402 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 2403 if( pTerm->leftCursor!=iCur ) continue; 2404 if( pTabItem->fg.jointype & JT_LEFT ) continue; 2405 pE = pTerm->pExpr; 2406 #ifdef WHERETRACE_ENABLED /* 0x800 */ 2407 if( sqlite3WhereTrace & 0x800 ){ 2408 sqlite3DebugPrintf("Coding transitive constraint:\n"); 2409 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2410 } 2411 #endif 2412 assert( !ExprHasProperty(pE, EP_FromJoin) ); 2413 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 2414 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady, 2415 WO_EQ|WO_IN|WO_IS, 0); 2416 if( pAlt==0 ) continue; 2417 if( pAlt->wtFlags & (TERM_CODED) ) continue; 2418 if( (pAlt->eOperator & WO_IN) 2419 && (pAlt->pExpr->flags & EP_xIsSelect) 2420 && (pAlt->pExpr->x.pSelect->pEList->nExpr>1) 2421 ){ 2422 continue; 2423 } 2424 testcase( pAlt->eOperator & WO_EQ ); 2425 testcase( pAlt->eOperator & WO_IS ); 2426 testcase( pAlt->eOperator & WO_IN ); 2427 VdbeModuleComment((v, "begin transitive constraint")); 2428 sEAlt = *pAlt->pExpr; 2429 sEAlt.pLeft = pE->pLeft; 2430 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); 2431 } 2432 2433 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2434 ** at least one row of the right table has matched the left table. 2435 */ 2436 if( pLevel->iLeftJoin ){ 2437 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2438 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2439 VdbeComment((v, "record LEFT JOIN hit")); 2440 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 2441 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2442 testcase( pTerm->wtFlags & TERM_CODED ); 2443 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2444 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2445 assert( pWInfo->untestedTerms ); 2446 continue; 2447 } 2448 assert( pTerm->pExpr ); 2449 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 2450 pTerm->wtFlags |= TERM_CODED; 2451 } 2452 } 2453 2454 #if WHERETRACE_ENABLED /* 0x20800 */ 2455 if( sqlite3WhereTrace & 0x20000 ){ 2456 sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n", 2457 iLevel); 2458 sqlite3WhereClausePrint(pWC); 2459 } 2460 if( sqlite3WhereTrace & 0x800 ){ 2461 sqlite3DebugPrintf("End Coding level %d: notReady=%llx\n", 2462 iLevel, (u64)pLevel->notReady); 2463 } 2464 #endif 2465 return pLevel->notReady; 2466 } 2467