xref: /sqlite-3.40.0/src/wherecode.c (revision 60c71b02)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 
25 /*
26 ** Return the name of the i-th column of the pIdx index.
27 */
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29   i = pIdx->aiColumn[i];
30   if( i==XN_EXPR ) return "<expr>";
31   if( i==XN_ROWID ) return "rowid";
32   return pIdx->pTable->aCol[i].zName;
33 }
34 
35 /*
36 ** This routine is a helper for explainIndexRange() below
37 **
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time.  This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
42 */
43 static void explainAppendTerm(
44   StrAccum *pStr,             /* The text expression being built */
45   Index *pIdx,                /* Index to read column names from */
46   int nTerm,                  /* Number of terms */
47   int iTerm,                  /* Zero-based index of first term. */
48   int bAnd,                   /* Non-zero to append " AND " */
49   const char *zOp             /* Name of the operator */
50 ){
51   int i;
52 
53   assert( nTerm>=1 );
54   if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
55 
56   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
57   for(i=0; i<nTerm; i++){
58     if( i ) sqlite3_str_append(pStr, ",", 1);
59     sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
60   }
61   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
62 
63   sqlite3_str_append(pStr, zOp, 1);
64 
65   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
66   for(i=0; i<nTerm; i++){
67     if( i ) sqlite3_str_append(pStr, ",", 1);
68     sqlite3_str_append(pStr, "?", 1);
69   }
70   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
71 }
72 
73 /*
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
77 **
78 ** For example, if the query:
79 **
80 **   SELECT * FROM t1 WHERE a=1 AND b>2;
81 **
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
84 **
85 **   "a=? AND b>?"
86 */
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88   Index *pIndex = pLoop->u.btree.pIndex;
89   u16 nEq = pLoop->u.btree.nEq;
90   u16 nSkip = pLoop->nSkip;
91   int i, j;
92 
93   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94   sqlite3_str_append(pStr, " (", 2);
95   for(i=0; i<nEq; i++){
96     const char *z = explainIndexColumnName(pIndex, i);
97     if( i ) sqlite3_str_append(pStr, " AND ", 5);
98     sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
99   }
100 
101   j = i;
102   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104     i = 1;
105   }
106   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
108   }
109   sqlite3_str_append(pStr, ")", 1);
110 }
111 
112 /*
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
117 **
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
120 */
121 int sqlite3WhereExplainOneScan(
122   Parse *pParse,                  /* Parse context */
123   SrcList *pTabList,              /* Table list this loop refers to */
124   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
125   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
126 ){
127   int ret = 0;
128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
129   if( sqlite3ParseToplevel(pParse)->explain==2 )
130 #endif
131   {
132     struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
133     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
134     sqlite3 *db = pParse->db;     /* Database handle */
135     int isSearch;                 /* True for a SEARCH. False for SCAN. */
136     WhereLoop *pLoop;             /* The controlling WhereLoop object */
137     u32 flags;                    /* Flags that describe this loop */
138     char *zMsg;                   /* Text to add to EQP output */
139     StrAccum str;                 /* EQP output string */
140     char zBuf[100];               /* Initial space for EQP output string */
141 
142     pLoop = pLevel->pWLoop;
143     flags = pLoop->wsFlags;
144     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
145 
146     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
147             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
148             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
149 
150     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
151     sqlite3_str_appendall(&str, isSearch ? "SEARCH" : "SCAN");
152     if( pItem->pSelect ){
153       sqlite3_str_appendf(&str, " SUBQUERY %u", pItem->pSelect->selId);
154     }else{
155       sqlite3_str_appendf(&str, " TABLE %s", pItem->zName);
156     }
157 
158     if( pItem->zAlias ){
159       sqlite3_str_appendf(&str, " AS %s", pItem->zAlias);
160     }
161     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
162       const char *zFmt = 0;
163       Index *pIdx;
164 
165       assert( pLoop->u.btree.pIndex!=0 );
166       pIdx = pLoop->u.btree.pIndex;
167       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
168       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
169         if( isSearch ){
170           zFmt = "PRIMARY KEY";
171         }
172       }else if( flags & WHERE_PARTIALIDX ){
173         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
174       }else if( flags & WHERE_AUTO_INDEX ){
175         zFmt = "AUTOMATIC COVERING INDEX";
176       }else if( flags & WHERE_IDX_ONLY ){
177         zFmt = "COVERING INDEX %s";
178       }else{
179         zFmt = "INDEX %s";
180       }
181       if( zFmt ){
182         sqlite3_str_append(&str, " USING ", 7);
183         sqlite3_str_appendf(&str, zFmt, pIdx->zName);
184         explainIndexRange(&str, pLoop);
185       }
186     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
187       const char *zRangeOp;
188       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
189         zRangeOp = "=";
190       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
191         zRangeOp = ">? AND rowid<";
192       }else if( flags&WHERE_BTM_LIMIT ){
193         zRangeOp = ">";
194       }else{
195         assert( flags&WHERE_TOP_LIMIT);
196         zRangeOp = "<";
197       }
198       sqlite3_str_appendf(&str,
199           " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
200     }
201 #ifndef SQLITE_OMIT_VIRTUALTABLE
202     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
203       sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
204                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
205     }
206 #endif
207 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
208     if( pLoop->nOut>=10 ){
209       sqlite3_str_appendf(&str, " (~%llu rows)",
210              sqlite3LogEstToInt(pLoop->nOut));
211     }else{
212       sqlite3_str_append(&str, " (~1 row)", 9);
213     }
214 #endif
215     zMsg = sqlite3StrAccumFinish(&str);
216     sqlite3ExplainBreakpoint("",zMsg);
217     ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
218                             pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
219   }
220   return ret;
221 }
222 #endif /* SQLITE_OMIT_EXPLAIN */
223 
224 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
225 /*
226 ** Configure the VM passed as the first argument with an
227 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
228 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
229 ** clause that the scan reads data from.
230 **
231 ** If argument addrExplain is not 0, it must be the address of an
232 ** OP_Explain instruction that describes the same loop.
233 */
234 void sqlite3WhereAddScanStatus(
235   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
236   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
237   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
238   int addrExplain                 /* Address of OP_Explain (or 0) */
239 ){
240   const char *zObj = 0;
241   WhereLoop *pLoop = pLvl->pWLoop;
242   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
243     zObj = pLoop->u.btree.pIndex->zName;
244   }else{
245     zObj = pSrclist->a[pLvl->iFrom].zName;
246   }
247   sqlite3VdbeScanStatus(
248       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
249   );
250 }
251 #endif
252 
253 
254 /*
255 ** Disable a term in the WHERE clause.  Except, do not disable the term
256 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
257 ** or USING clause of that join.
258 **
259 ** Consider the term t2.z='ok' in the following queries:
260 **
261 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
262 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
263 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
264 **
265 ** The t2.z='ok' is disabled in the in (2) because it originates
266 ** in the ON clause.  The term is disabled in (3) because it is not part
267 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
268 **
269 ** Disabling a term causes that term to not be tested in the inner loop
270 ** of the join.  Disabling is an optimization.  When terms are satisfied
271 ** by indices, we disable them to prevent redundant tests in the inner
272 ** loop.  We would get the correct results if nothing were ever disabled,
273 ** but joins might run a little slower.  The trick is to disable as much
274 ** as we can without disabling too much.  If we disabled in (1), we'd get
275 ** the wrong answer.  See ticket #813.
276 **
277 ** If all the children of a term are disabled, then that term is also
278 ** automatically disabled.  In this way, terms get disabled if derived
279 ** virtual terms are tested first.  For example:
280 **
281 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
282 **      \___________/     \______/     \_____/
283 **         parent          child1       child2
284 **
285 ** Only the parent term was in the original WHERE clause.  The child1
286 ** and child2 terms were added by the LIKE optimization.  If both of
287 ** the virtual child terms are valid, then testing of the parent can be
288 ** skipped.
289 **
290 ** Usually the parent term is marked as TERM_CODED.  But if the parent
291 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
292 ** The TERM_LIKECOND marking indicates that the term should be coded inside
293 ** a conditional such that is only evaluated on the second pass of a
294 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
295 */
296 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
297   int nLoop = 0;
298   assert( pTerm!=0 );
299   while( (pTerm->wtFlags & TERM_CODED)==0
300       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
301       && (pLevel->notReady & pTerm->prereqAll)==0
302   ){
303     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
304       pTerm->wtFlags |= TERM_LIKECOND;
305     }else{
306       pTerm->wtFlags |= TERM_CODED;
307     }
308     if( pTerm->iParent<0 ) break;
309     pTerm = &pTerm->pWC->a[pTerm->iParent];
310     assert( pTerm!=0 );
311     pTerm->nChild--;
312     if( pTerm->nChild!=0 ) break;
313     nLoop++;
314   }
315 }
316 
317 /*
318 ** Code an OP_Affinity opcode to apply the column affinity string zAff
319 ** to the n registers starting at base.
320 **
321 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
322 ** are no-ops) at the beginning and end of zAff are ignored.  If all entries
323 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
324 **
325 ** This routine makes its own copy of zAff so that the caller is free
326 ** to modify zAff after this routine returns.
327 */
328 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
329   Vdbe *v = pParse->pVdbe;
330   if( zAff==0 ){
331     assert( pParse->db->mallocFailed );
332     return;
333   }
334   assert( v!=0 );
335 
336   /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
337   ** entries at the beginning and end of the affinity string.
338   */
339   assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB );
340   while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){
341     n--;
342     base++;
343     zAff++;
344   }
345   while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){
346     n--;
347   }
348 
349   /* Code the OP_Affinity opcode if there is anything left to do. */
350   if( n>0 ){
351     sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
352   }
353 }
354 
355 /*
356 ** Expression pRight, which is the RHS of a comparison operation, is
357 ** either a vector of n elements or, if n==1, a scalar expression.
358 ** Before the comparison operation, affinity zAff is to be applied
359 ** to the pRight values. This function modifies characters within the
360 ** affinity string to SQLITE_AFF_BLOB if either:
361 **
362 **   * the comparison will be performed with no affinity, or
363 **   * the affinity change in zAff is guaranteed not to change the value.
364 */
365 static void updateRangeAffinityStr(
366   Expr *pRight,                   /* RHS of comparison */
367   int n,                          /* Number of vector elements in comparison */
368   char *zAff                      /* Affinity string to modify */
369 ){
370   int i;
371   for(i=0; i<n; i++){
372     Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
373     if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
374      || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
375     ){
376       zAff[i] = SQLITE_AFF_BLOB;
377     }
378   }
379 }
380 
381 
382 /*
383 ** pX is an expression of the form:  (vector) IN (SELECT ...)
384 ** In other words, it is a vector IN operator with a SELECT clause on the
385 ** LHS.  But not all terms in the vector are indexable and the terms might
386 ** not be in the correct order for indexing.
387 **
388 ** This routine makes a copy of the input pX expression and then adjusts
389 ** the vector on the LHS with corresponding changes to the SELECT so that
390 ** the vector contains only index terms and those terms are in the correct
391 ** order.  The modified IN expression is returned.  The caller is responsible
392 ** for deleting the returned expression.
393 **
394 ** Example:
395 **
396 **    CREATE TABLE t1(a,b,c,d,e,f);
397 **    CREATE INDEX t1x1 ON t1(e,c);
398 **    SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
399 **                           \_______________________________________/
400 **                                     The pX expression
401 **
402 ** Since only columns e and c can be used with the index, in that order,
403 ** the modified IN expression that is returned will be:
404 **
405 **        (e,c) IN (SELECT z,x FROM t2)
406 **
407 ** The reduced pX is different from the original (obviously) and thus is
408 ** only used for indexing, to improve performance.  The original unaltered
409 ** IN expression must also be run on each output row for correctness.
410 */
411 static Expr *removeUnindexableInClauseTerms(
412   Parse *pParse,        /* The parsing context */
413   int iEq,              /* Look at loop terms starting here */
414   WhereLoop *pLoop,     /* The current loop */
415   Expr *pX              /* The IN expression to be reduced */
416 ){
417   sqlite3 *db = pParse->db;
418   Expr *pNew;
419   pNew = sqlite3ExprDup(db, pX, 0);
420   if( db->mallocFailed==0 ){
421     ExprList *pOrigRhs = pNew->x.pSelect->pEList;  /* Original unmodified RHS */
422     ExprList *pOrigLhs = pNew->pLeft->x.pList;     /* Original unmodified LHS */
423     ExprList *pRhs = 0;         /* New RHS after modifications */
424     ExprList *pLhs = 0;         /* New LHS after mods */
425     int i;                      /* Loop counter */
426     Select *pSelect;            /* Pointer to the SELECT on the RHS */
427 
428     for(i=iEq; i<pLoop->nLTerm; i++){
429       if( pLoop->aLTerm[i]->pExpr==pX ){
430         int iField = pLoop->aLTerm[i]->iField - 1;
431         if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
432         pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
433         pOrigRhs->a[iField].pExpr = 0;
434         assert( pOrigLhs->a[iField].pExpr!=0 );
435         pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
436         pOrigLhs->a[iField].pExpr = 0;
437       }
438     }
439     sqlite3ExprListDelete(db, pOrigRhs);
440     sqlite3ExprListDelete(db, pOrigLhs);
441     pNew->pLeft->x.pList = pLhs;
442     pNew->x.pSelect->pEList = pRhs;
443     if( pLhs && pLhs->nExpr==1 ){
444       /* Take care here not to generate a TK_VECTOR containing only a
445       ** single value. Since the parser never creates such a vector, some
446       ** of the subroutines do not handle this case.  */
447       Expr *p = pLhs->a[0].pExpr;
448       pLhs->a[0].pExpr = 0;
449       sqlite3ExprDelete(db, pNew->pLeft);
450       pNew->pLeft = p;
451     }
452     pSelect = pNew->x.pSelect;
453     if( pSelect->pOrderBy ){
454       /* If the SELECT statement has an ORDER BY clause, zero the
455       ** iOrderByCol variables. These are set to non-zero when an
456       ** ORDER BY term exactly matches one of the terms of the
457       ** result-set. Since the result-set of the SELECT statement may
458       ** have been modified or reordered, these variables are no longer
459       ** set correctly.  Since setting them is just an optimization,
460       ** it's easiest just to zero them here.  */
461       ExprList *pOrderBy = pSelect->pOrderBy;
462       for(i=0; i<pOrderBy->nExpr; i++){
463         pOrderBy->a[i].u.x.iOrderByCol = 0;
464       }
465     }
466 
467 #if 0
468     printf("For indexing, change the IN expr:\n");
469     sqlite3TreeViewExpr(0, pX, 0);
470     printf("Into:\n");
471     sqlite3TreeViewExpr(0, pNew, 0);
472 #endif
473   }
474   return pNew;
475 }
476 
477 
478 /*
479 ** Generate code for a single equality term of the WHERE clause.  An equality
480 ** term can be either X=expr or X IN (...).   pTerm is the term to be
481 ** coded.
482 **
483 ** The current value for the constraint is left in a register, the index
484 ** of which is returned.  An attempt is made store the result in iTarget but
485 ** this is only guaranteed for TK_ISNULL and TK_IN constraints.  If the
486 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
487 ** some other register and it is the caller's responsibility to compensate.
488 **
489 ** For a constraint of the form X=expr, the expression is evaluated in
490 ** straight-line code.  For constraints of the form X IN (...)
491 ** this routine sets up a loop that will iterate over all values of X.
492 */
493 static int codeEqualityTerm(
494   Parse *pParse,      /* The parsing context */
495   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
496   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
497   int iEq,            /* Index of the equality term within this level */
498   int bRev,           /* True for reverse-order IN operations */
499   int iTarget         /* Attempt to leave results in this register */
500 ){
501   Expr *pX = pTerm->pExpr;
502   Vdbe *v = pParse->pVdbe;
503   int iReg;                  /* Register holding results */
504 
505   assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
506   assert( iTarget>0 );
507   if( pX->op==TK_EQ || pX->op==TK_IS ){
508     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
509   }else if( pX->op==TK_ISNULL ){
510     iReg = iTarget;
511     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
512 #ifndef SQLITE_OMIT_SUBQUERY
513   }else{
514     int eType = IN_INDEX_NOOP;
515     int iTab;
516     struct InLoop *pIn;
517     WhereLoop *pLoop = pLevel->pWLoop;
518     int i;
519     int nEq = 0;
520     int *aiMap = 0;
521 
522     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
523       && pLoop->u.btree.pIndex!=0
524       && pLoop->u.btree.pIndex->aSortOrder[iEq]
525     ){
526       testcase( iEq==0 );
527       testcase( bRev );
528       bRev = !bRev;
529     }
530     assert( pX->op==TK_IN );
531     iReg = iTarget;
532 
533     for(i=0; i<iEq; i++){
534       if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
535         disableTerm(pLevel, pTerm);
536         return iTarget;
537       }
538     }
539     for(i=iEq;i<pLoop->nLTerm; i++){
540       assert( pLoop->aLTerm[i]!=0 );
541       if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
542     }
543 
544     iTab = 0;
545     if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){
546       eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab);
547     }else{
548       sqlite3 *db = pParse->db;
549       pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
550 
551       if( !db->mallocFailed ){
552         aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
553         eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab);
554         pTerm->pExpr->iTable = iTab;
555       }
556       sqlite3ExprDelete(db, pX);
557       pX = pTerm->pExpr;
558     }
559 
560     if( eType==IN_INDEX_INDEX_DESC ){
561       testcase( bRev );
562       bRev = !bRev;
563     }
564     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
565     VdbeCoverageIf(v, bRev);
566     VdbeCoverageIf(v, !bRev);
567     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
568 
569     pLoop->wsFlags |= WHERE_IN_ABLE;
570     if( pLevel->u.in.nIn==0 ){
571       pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
572     }
573     if( iEq>0 ){
574       pLoop->wsFlags |= WHERE_IN_EARLYOUT;
575     }
576 
577     i = pLevel->u.in.nIn;
578     pLevel->u.in.nIn += nEq;
579     pLevel->u.in.aInLoop =
580        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
581                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
582     pIn = pLevel->u.in.aInLoop;
583     if( pIn ){
584       int iMap = 0;               /* Index in aiMap[] */
585       pIn += i;
586       for(i=iEq;i<pLoop->nLTerm; i++){
587         if( pLoop->aLTerm[i]->pExpr==pX ){
588           int iOut = iReg + i - iEq;
589           if( eType==IN_INDEX_ROWID ){
590             pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
591           }else{
592             int iCol = aiMap ? aiMap[iMap++] : 0;
593             pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
594           }
595           sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
596           if( i==iEq ){
597             pIn->iCur = iTab;
598             pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
599             if( iEq>0 ){
600               pIn->iBase = iReg - i;
601               pIn->nPrefix = i;
602             }else{
603               pIn->nPrefix = 0;
604             }
605           }else{
606             pIn->eEndLoopOp = OP_Noop;
607           }
608           pIn++;
609         }
610       }
611       if( iEq>0 ){
612         sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq);
613       }
614     }else{
615       pLevel->u.in.nIn = 0;
616     }
617     sqlite3DbFree(pParse->db, aiMap);
618 #endif
619   }
620   disableTerm(pLevel, pTerm);
621   return iReg;
622 }
623 
624 /*
625 ** Generate code that will evaluate all == and IN constraints for an
626 ** index scan.
627 **
628 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
629 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
630 ** The index has as many as three equality constraints, but in this
631 ** example, the third "c" value is an inequality.  So only two
632 ** constraints are coded.  This routine will generate code to evaluate
633 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
634 ** in consecutive registers and the index of the first register is returned.
635 **
636 ** In the example above nEq==2.  But this subroutine works for any value
637 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
638 ** The only thing it does is allocate the pLevel->iMem memory cell and
639 ** compute the affinity string.
640 **
641 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
642 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
643 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
644 ** occurs after the nEq quality constraints.
645 **
646 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
647 ** the index of the first memory cell in that range. The code that
648 ** calls this routine will use that memory range to store keys for
649 ** start and termination conditions of the loop.
650 ** key value of the loop.  If one or more IN operators appear, then
651 ** this routine allocates an additional nEq memory cells for internal
652 ** use.
653 **
654 ** Before returning, *pzAff is set to point to a buffer containing a
655 ** copy of the column affinity string of the index allocated using
656 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
657 ** with equality constraints that use BLOB or NONE affinity are set to
658 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
659 **
660 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
661 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
662 **
663 ** In the example above, the index on t1(a) has TEXT affinity. But since
664 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
665 ** no conversion should be attempted before using a t2.b value as part of
666 ** a key to search the index. Hence the first byte in the returned affinity
667 ** string in this example would be set to SQLITE_AFF_BLOB.
668 */
669 static int codeAllEqualityTerms(
670   Parse *pParse,        /* Parsing context */
671   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
672   int bRev,             /* Reverse the order of IN operators */
673   int nExtraReg,        /* Number of extra registers to allocate */
674   char **pzAff          /* OUT: Set to point to affinity string */
675 ){
676   u16 nEq;                      /* The number of == or IN constraints to code */
677   u16 nSkip;                    /* Number of left-most columns to skip */
678   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
679   Index *pIdx;                  /* The index being used for this loop */
680   WhereTerm *pTerm;             /* A single constraint term */
681   WhereLoop *pLoop;             /* The WhereLoop object */
682   int j;                        /* Loop counter */
683   int regBase;                  /* Base register */
684   int nReg;                     /* Number of registers to allocate */
685   char *zAff;                   /* Affinity string to return */
686 
687   /* This module is only called on query plans that use an index. */
688   pLoop = pLevel->pWLoop;
689   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
690   nEq = pLoop->u.btree.nEq;
691   nSkip = pLoop->nSkip;
692   pIdx = pLoop->u.btree.pIndex;
693   assert( pIdx!=0 );
694 
695   /* Figure out how many memory cells we will need then allocate them.
696   */
697   regBase = pParse->nMem + 1;
698   nReg = pLoop->u.btree.nEq + nExtraReg;
699   pParse->nMem += nReg;
700 
701   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
702   assert( zAff!=0 || pParse->db->mallocFailed );
703 
704   if( nSkip ){
705     int iIdxCur = pLevel->iIdxCur;
706     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
707     VdbeCoverageIf(v, bRev==0);
708     VdbeCoverageIf(v, bRev!=0);
709     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
710     j = sqlite3VdbeAddOp0(v, OP_Goto);
711     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
712                             iIdxCur, 0, regBase, nSkip);
713     VdbeCoverageIf(v, bRev==0);
714     VdbeCoverageIf(v, bRev!=0);
715     sqlite3VdbeJumpHere(v, j);
716     for(j=0; j<nSkip; j++){
717       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
718       testcase( pIdx->aiColumn[j]==XN_EXPR );
719       VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
720     }
721   }
722 
723   /* Evaluate the equality constraints
724   */
725   assert( zAff==0 || (int)strlen(zAff)>=nEq );
726   for(j=nSkip; j<nEq; j++){
727     int r1;
728     pTerm = pLoop->aLTerm[j];
729     assert( pTerm!=0 );
730     /* The following testcase is true for indices with redundant columns.
731     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
732     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
733     testcase( pTerm->wtFlags & TERM_VIRTUAL );
734     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
735     if( r1!=regBase+j ){
736       if( nReg==1 ){
737         sqlite3ReleaseTempReg(pParse, regBase);
738         regBase = r1;
739       }else{
740         sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
741       }
742     }
743     if( pTerm->eOperator & WO_IN ){
744       if( pTerm->pExpr->flags & EP_xIsSelect ){
745         /* No affinity ever needs to be (or should be) applied to a value
746         ** from the RHS of an "? IN (SELECT ...)" expression. The
747         ** sqlite3FindInIndex() routine has already ensured that the
748         ** affinity of the comparison has been applied to the value.  */
749         if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
750       }
751     }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
752       Expr *pRight = pTerm->pExpr->pRight;
753       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
754         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
755         VdbeCoverage(v);
756       }
757       if( zAff ){
758         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
759           zAff[j] = SQLITE_AFF_BLOB;
760         }
761         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
762           zAff[j] = SQLITE_AFF_BLOB;
763         }
764       }
765     }
766   }
767   *pzAff = zAff;
768   return regBase;
769 }
770 
771 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
772 /*
773 ** If the most recently coded instruction is a constant range constraint
774 ** (a string literal) that originated from the LIKE optimization, then
775 ** set P3 and P5 on the OP_String opcode so that the string will be cast
776 ** to a BLOB at appropriate times.
777 **
778 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
779 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
780 ** scan loop run twice, once for strings and a second time for BLOBs.
781 ** The OP_String opcodes on the second pass convert the upper and lower
782 ** bound string constants to blobs.  This routine makes the necessary changes
783 ** to the OP_String opcodes for that to happen.
784 **
785 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
786 ** only the one pass through the string space is required, so this routine
787 ** becomes a no-op.
788 */
789 static void whereLikeOptimizationStringFixup(
790   Vdbe *v,                /* prepared statement under construction */
791   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
792   WhereTerm *pTerm        /* The upper or lower bound just coded */
793 ){
794   if( pTerm->wtFlags & TERM_LIKEOPT ){
795     VdbeOp *pOp;
796     assert( pLevel->iLikeRepCntr>0 );
797     pOp = sqlite3VdbeGetOp(v, -1);
798     assert( pOp!=0 );
799     assert( pOp->opcode==OP_String8
800             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
801     pOp->p3 = (int)(pLevel->iLikeRepCntr>>1);  /* Register holding counter */
802     pOp->p5 = (u8)(pLevel->iLikeRepCntr&1);    /* ASC or DESC */
803   }
804 }
805 #else
806 # define whereLikeOptimizationStringFixup(A,B,C)
807 #endif
808 
809 #ifdef SQLITE_ENABLE_CURSOR_HINTS
810 /*
811 ** Information is passed from codeCursorHint() down to individual nodes of
812 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
813 ** structure.
814 */
815 struct CCurHint {
816   int iTabCur;    /* Cursor for the main table */
817   int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
818   Index *pIdx;    /* The index used to access the table */
819 };
820 
821 /*
822 ** This function is called for every node of an expression that is a candidate
823 ** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
824 ** the table CCurHint.iTabCur, verify that the same column can be
825 ** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
826 */
827 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
828   struct CCurHint *pHint = pWalker->u.pCCurHint;
829   assert( pHint->pIdx!=0 );
830   if( pExpr->op==TK_COLUMN
831    && pExpr->iTable==pHint->iTabCur
832    && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0
833   ){
834     pWalker->eCode = 1;
835   }
836   return WRC_Continue;
837 }
838 
839 /*
840 ** Test whether or not expression pExpr, which was part of a WHERE clause,
841 ** should be included in the cursor-hint for a table that is on the rhs
842 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
843 ** expression is not suitable.
844 **
845 ** An expression is unsuitable if it might evaluate to non NULL even if
846 ** a TK_COLUMN node that does affect the value of the expression is set
847 ** to NULL. For example:
848 **
849 **   col IS NULL
850 **   col IS NOT NULL
851 **   coalesce(col, 1)
852 **   CASE WHEN col THEN 0 ELSE 1 END
853 */
854 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
855   if( pExpr->op==TK_IS
856    || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
857    || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
858   ){
859     pWalker->eCode = 1;
860   }else if( pExpr->op==TK_FUNCTION ){
861     int d1;
862     char d2[4];
863     if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
864       pWalker->eCode = 1;
865     }
866   }
867 
868   return WRC_Continue;
869 }
870 
871 
872 /*
873 ** This function is called on every node of an expression tree used as an
874 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
875 ** that accesses any table other than the one identified by
876 ** CCurHint.iTabCur, then do the following:
877 **
878 **   1) allocate a register and code an OP_Column instruction to read
879 **      the specified column into the new register, and
880 **
881 **   2) transform the expression node to a TK_REGISTER node that reads
882 **      from the newly populated register.
883 **
884 ** Also, if the node is a TK_COLUMN that does access the table idenified
885 ** by pCCurHint.iTabCur, and an index is being used (which we will
886 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
887 ** an access of the index rather than the original table.
888 */
889 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
890   int rc = WRC_Continue;
891   struct CCurHint *pHint = pWalker->u.pCCurHint;
892   if( pExpr->op==TK_COLUMN ){
893     if( pExpr->iTable!=pHint->iTabCur ){
894       int reg = ++pWalker->pParse->nMem;   /* Register for column value */
895       sqlite3ExprCode(pWalker->pParse, pExpr, reg);
896       pExpr->op = TK_REGISTER;
897       pExpr->iTable = reg;
898     }else if( pHint->pIdx!=0 ){
899       pExpr->iTable = pHint->iIdxCur;
900       pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn);
901       assert( pExpr->iColumn>=0 );
902     }
903   }else if( pExpr->op==TK_AGG_FUNCTION ){
904     /* An aggregate function in the WHERE clause of a query means this must
905     ** be a correlated sub-query, and expression pExpr is an aggregate from
906     ** the parent context. Do not walk the function arguments in this case.
907     **
908     ** todo: It should be possible to replace this node with a TK_REGISTER
909     ** expression, as the result of the expression must be stored in a
910     ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
911     rc = WRC_Prune;
912   }
913   return rc;
914 }
915 
916 /*
917 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
918 */
919 static void codeCursorHint(
920   struct SrcList_item *pTabItem,  /* FROM clause item */
921   WhereInfo *pWInfo,    /* The where clause */
922   WhereLevel *pLevel,   /* Which loop to provide hints for */
923   WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
924 ){
925   Parse *pParse = pWInfo->pParse;
926   sqlite3 *db = pParse->db;
927   Vdbe *v = pParse->pVdbe;
928   Expr *pExpr = 0;
929   WhereLoop *pLoop = pLevel->pWLoop;
930   int iCur;
931   WhereClause *pWC;
932   WhereTerm *pTerm;
933   int i, j;
934   struct CCurHint sHint;
935   Walker sWalker;
936 
937   if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
938   iCur = pLevel->iTabCur;
939   assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
940   sHint.iTabCur = iCur;
941   sHint.iIdxCur = pLevel->iIdxCur;
942   sHint.pIdx = pLoop->u.btree.pIndex;
943   memset(&sWalker, 0, sizeof(sWalker));
944   sWalker.pParse = pParse;
945   sWalker.u.pCCurHint = &sHint;
946   pWC = &pWInfo->sWC;
947   for(i=0; i<pWC->nTerm; i++){
948     pTerm = &pWC->a[i];
949     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
950     if( pTerm->prereqAll & pLevel->notReady ) continue;
951 
952     /* Any terms specified as part of the ON(...) clause for any LEFT
953     ** JOIN for which the current table is not the rhs are omitted
954     ** from the cursor-hint.
955     **
956     ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
957     ** that were specified as part of the WHERE clause must be excluded.
958     ** This is to address the following:
959     **
960     **   SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
961     **
962     ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
963     ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
964     ** pushed down to the cursor, this row is filtered out, causing
965     ** SQLite to synthesize a row of NULL values. Which does match the
966     ** WHERE clause, and so the query returns a row. Which is incorrect.
967     **
968     ** For the same reason, WHERE terms such as:
969     **
970     **   WHERE 1 = (t2.c IS NULL)
971     **
972     ** are also excluded. See codeCursorHintIsOrFunction() for details.
973     */
974     if( pTabItem->fg.jointype & JT_LEFT ){
975       Expr *pExpr = pTerm->pExpr;
976       if( !ExprHasProperty(pExpr, EP_FromJoin)
977        || pExpr->iRightJoinTable!=pTabItem->iCursor
978       ){
979         sWalker.eCode = 0;
980         sWalker.xExprCallback = codeCursorHintIsOrFunction;
981         sqlite3WalkExpr(&sWalker, pTerm->pExpr);
982         if( sWalker.eCode ) continue;
983       }
984     }else{
985       if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
986     }
987 
988     /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
989     ** the cursor.  These terms are not needed as hints for a pure range
990     ** scan (that has no == terms) so omit them. */
991     if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
992       for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
993       if( j<pLoop->nLTerm ) continue;
994     }
995 
996     /* No subqueries or non-deterministic functions allowed */
997     if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
998 
999     /* For an index scan, make sure referenced columns are actually in
1000     ** the index. */
1001     if( sHint.pIdx!=0 ){
1002       sWalker.eCode = 0;
1003       sWalker.xExprCallback = codeCursorHintCheckExpr;
1004       sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1005       if( sWalker.eCode ) continue;
1006     }
1007 
1008     /* If we survive all prior tests, that means this term is worth hinting */
1009     pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
1010   }
1011   if( pExpr!=0 ){
1012     sWalker.xExprCallback = codeCursorHintFixExpr;
1013     sqlite3WalkExpr(&sWalker, pExpr);
1014     sqlite3VdbeAddOp4(v, OP_CursorHint,
1015                       (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
1016                       (const char*)pExpr, P4_EXPR);
1017   }
1018 }
1019 #else
1020 # define codeCursorHint(A,B,C,D)  /* No-op */
1021 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1022 
1023 /*
1024 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1025 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1026 ** function generates code to do a deferred seek of cursor iCur to the
1027 ** rowid stored in register iRowid.
1028 **
1029 ** Normally, this is just:
1030 **
1031 **   OP_DeferredSeek $iCur $iRowid
1032 **
1033 ** However, if the scan currently being coded is a branch of an OR-loop and
1034 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek
1035 ** is set to iIdxCur and P4 is set to point to an array of integers
1036 ** containing one entry for each column of the table cursor iCur is open
1037 ** on. For each table column, if the column is the i'th column of the
1038 ** index, then the corresponding array entry is set to (i+1). If the column
1039 ** does not appear in the index at all, the array entry is set to 0.
1040 */
1041 static void codeDeferredSeek(
1042   WhereInfo *pWInfo,              /* Where clause context */
1043   Index *pIdx,                    /* Index scan is using */
1044   int iCur,                       /* Cursor for IPK b-tree */
1045   int iIdxCur                     /* Index cursor */
1046 ){
1047   Parse *pParse = pWInfo->pParse; /* Parse context */
1048   Vdbe *v = pParse->pVdbe;        /* Vdbe to generate code within */
1049 
1050   assert( iIdxCur>0 );
1051   assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1052 
1053   pWInfo->bDeferredSeek = 1;
1054   sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1055   if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1056    && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1057   ){
1058     int i;
1059     Table *pTab = pIdx->pTable;
1060     u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1));
1061     if( ai ){
1062       ai[0] = pTab->nCol;
1063       for(i=0; i<pIdx->nColumn-1; i++){
1064         int x1, x2;
1065         assert( pIdx->aiColumn[i]<pTab->nCol );
1066         x1 = pIdx->aiColumn[i];
1067         x2 = sqlite3TableColumnToStorage(pTab, x1);
1068         testcase( x1!=x2 );
1069         if( x1>=0 ) ai[x2+1] = i+1;
1070       }
1071       sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1072     }
1073   }
1074 }
1075 
1076 /*
1077 ** If the expression passed as the second argument is a vector, generate
1078 ** code to write the first nReg elements of the vector into an array
1079 ** of registers starting with iReg.
1080 **
1081 ** If the expression is not a vector, then nReg must be passed 1. In
1082 ** this case, generate code to evaluate the expression and leave the
1083 ** result in register iReg.
1084 */
1085 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1086   assert( nReg>0 );
1087   if( p && sqlite3ExprIsVector(p) ){
1088 #ifndef SQLITE_OMIT_SUBQUERY
1089     if( (p->flags & EP_xIsSelect) ){
1090       Vdbe *v = pParse->pVdbe;
1091       int iSelect;
1092       assert( p->op==TK_SELECT );
1093       iSelect = sqlite3CodeSubselect(pParse, p);
1094       sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1095     }else
1096 #endif
1097     {
1098       int i;
1099       ExprList *pList = p->x.pList;
1100       assert( nReg<=pList->nExpr );
1101       for(i=0; i<nReg; i++){
1102         sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1103       }
1104     }
1105   }else{
1106     assert( nReg==1 );
1107     sqlite3ExprCode(pParse, p, iReg);
1108   }
1109 }
1110 
1111 /* An instance of the IdxExprTrans object carries information about a
1112 ** mapping from an expression on table columns into a column in an index
1113 ** down through the Walker.
1114 */
1115 typedef struct IdxExprTrans {
1116   Expr *pIdxExpr;    /* The index expression */
1117   int iTabCur;       /* The cursor of the corresponding table */
1118   int iIdxCur;       /* The cursor for the index */
1119   int iIdxCol;       /* The column for the index */
1120   int iTabCol;       /* The column for the table */
1121   WhereInfo *pWInfo; /* Complete WHERE clause information */
1122   sqlite3 *db;       /* Database connection (for malloc()) */
1123 } IdxExprTrans;
1124 
1125 /*
1126 ** Preserve pExpr on the WhereETrans list of the WhereInfo.
1127 */
1128 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){
1129   WhereExprMod *pNew;
1130   pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew));
1131   if( pNew==0 ) return;
1132   pNew->pNext = pTrans->pWInfo->pExprMods;
1133   pTrans->pWInfo->pExprMods = pNew;
1134   pNew->pExpr = pExpr;
1135   memcpy(&pNew->orig, pExpr, sizeof(*pExpr));
1136 }
1137 
1138 /* The walker node callback used to transform matching expressions into
1139 ** a reference to an index column for an index on an expression.
1140 **
1141 ** If pExpr matches, then transform it into a reference to the index column
1142 ** that contains the value of pExpr.
1143 */
1144 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1145   IdxExprTrans *pX = p->u.pIdxTrans;
1146   if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1147     preserveExpr(pX, pExpr);
1148     pExpr->affExpr = sqlite3ExprAffinity(pExpr);
1149     pExpr->op = TK_COLUMN;
1150     pExpr->iTable = pX->iIdxCur;
1151     pExpr->iColumn = pX->iIdxCol;
1152     pExpr->y.pTab = 0;
1153     testcase( ExprHasProperty(pExpr, EP_Skip) );
1154     testcase( ExprHasProperty(pExpr, EP_Unlikely) );
1155     ExprClearProperty(pExpr, EP_Skip|EP_Unlikely);
1156     return WRC_Prune;
1157   }else{
1158     return WRC_Continue;
1159   }
1160 }
1161 
1162 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1163 /* A walker node callback that translates a column reference to a table
1164 ** into a corresponding column reference of an index.
1165 */
1166 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){
1167   if( pExpr->op==TK_COLUMN ){
1168     IdxExprTrans *pX = p->u.pIdxTrans;
1169     if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){
1170       assert( pExpr->y.pTab!=0 );
1171       preserveExpr(pX, pExpr);
1172       pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn);
1173       pExpr->iTable = pX->iIdxCur;
1174       pExpr->iColumn = pX->iIdxCol;
1175       pExpr->y.pTab = 0;
1176     }
1177   }
1178   return WRC_Continue;
1179 }
1180 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1181 
1182 /*
1183 ** For an indexes on expression X, locate every instance of expression X
1184 ** in pExpr and change that subexpression into a reference to the appropriate
1185 ** column of the index.
1186 **
1187 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in
1188 ** the table into references to the corresponding (stored) column of the
1189 ** index.
1190 */
1191 static void whereIndexExprTrans(
1192   Index *pIdx,      /* The Index */
1193   int iTabCur,      /* Cursor of the table that is being indexed */
1194   int iIdxCur,      /* Cursor of the index itself */
1195   WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1196 ){
1197   int iIdxCol;               /* Column number of the index */
1198   ExprList *aColExpr;        /* Expressions that are indexed */
1199   Table *pTab;
1200   Walker w;
1201   IdxExprTrans x;
1202   aColExpr = pIdx->aColExpr;
1203   if( aColExpr==0 && !pIdx->bHasVCol ){
1204     /* The index does not reference any expressions or virtual columns
1205     ** so no translations are needed. */
1206     return;
1207   }
1208   pTab = pIdx->pTable;
1209   memset(&w, 0, sizeof(w));
1210   w.u.pIdxTrans = &x;
1211   x.iTabCur = iTabCur;
1212   x.iIdxCur = iIdxCur;
1213   x.pWInfo = pWInfo;
1214   x.db = pWInfo->pParse->db;
1215   for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){
1216     i16 iRef = pIdx->aiColumn[iIdxCol];
1217     if( iRef==XN_EXPR ){
1218       assert( aColExpr->a[iIdxCol].pExpr!=0 );
1219       x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1220       if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue;
1221       w.xExprCallback = whereIndexExprTransNode;
1222 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1223     }else if( iRef>=0
1224        && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0
1225        && (pTab->aCol[iRef].zColl==0
1226            || sqlite3StrICmp(pTab->aCol[iRef].zColl, sqlite3StrBINARY)==0)
1227     ){
1228       /* Check to see if there are direct references to generated columns
1229       ** that are contained in the index.  Pulling the generated column
1230       ** out of the index is an optimization only - the main table is always
1231       ** available if the index cannot be used.  To avoid unnecessary
1232       ** complication, omit this optimization if the collating sequence for
1233       ** the column is non-standard */
1234       x.iTabCol = iRef;
1235       w.xExprCallback = whereIndexExprTransColumn;
1236 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1237     }else{
1238       continue;
1239     }
1240     x.iIdxCol = iIdxCol;
1241     sqlite3WalkExpr(&w, pWInfo->pWhere);
1242     sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1243     sqlite3WalkExprList(&w, pWInfo->pResultSet);
1244   }
1245 }
1246 
1247 /*
1248 ** The pTruth expression is always true because it is the WHERE clause
1249 ** a partial index that is driving a query loop.  Look through all of the
1250 ** WHERE clause terms on the query, and if any of those terms must be
1251 ** true because pTruth is true, then mark those WHERE clause terms as
1252 ** coded.
1253 */
1254 static void whereApplyPartialIndexConstraints(
1255   Expr *pTruth,
1256   int iTabCur,
1257   WhereClause *pWC
1258 ){
1259   int i;
1260   WhereTerm *pTerm;
1261   while( pTruth->op==TK_AND ){
1262     whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC);
1263     pTruth = pTruth->pRight;
1264   }
1265   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1266     Expr *pExpr;
1267     if( pTerm->wtFlags & TERM_CODED ) continue;
1268     pExpr = pTerm->pExpr;
1269     if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){
1270       pTerm->wtFlags |= TERM_CODED;
1271     }
1272   }
1273 }
1274 
1275 /*
1276 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1277 ** implementation described by pWInfo.
1278 */
1279 Bitmask sqlite3WhereCodeOneLoopStart(
1280   Parse *pParse,       /* Parsing context */
1281   Vdbe *v,             /* Prepared statement under construction */
1282   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1283   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1284   WhereLevel *pLevel,  /* The current level pointer */
1285   Bitmask notReady     /* Which tables are currently available */
1286 ){
1287   int j, k;            /* Loop counters */
1288   int iCur;            /* The VDBE cursor for the table */
1289   int addrNxt;         /* Where to jump to continue with the next IN case */
1290   int bRev;            /* True if we need to scan in reverse order */
1291   WhereLoop *pLoop;    /* The WhereLoop object being coded */
1292   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
1293   WhereTerm *pTerm;               /* A WHERE clause term */
1294   sqlite3 *db;                    /* Database connection */
1295   struct SrcList_item *pTabItem;  /* FROM clause term being coded */
1296   int addrBrk;                    /* Jump here to break out of the loop */
1297   int addrHalt;                   /* addrBrk for the outermost loop */
1298   int addrCont;                   /* Jump here to continue with next cycle */
1299   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
1300   int iReleaseReg = 0;      /* Temp register to free before returning */
1301   Index *pIdx = 0;          /* Index used by loop (if any) */
1302   int iLoop;                /* Iteration of constraint generator loop */
1303 
1304   pWC = &pWInfo->sWC;
1305   db = pParse->db;
1306   pLoop = pLevel->pWLoop;
1307   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1308   iCur = pTabItem->iCursor;
1309   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1310   bRev = (pWInfo->revMask>>iLevel)&1;
1311   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1312 #if WHERETRACE_ENABLED /* 0x20800 */
1313   if( sqlite3WhereTrace & 0x800 ){
1314     sqlite3DebugPrintf("Coding level %d of %d:  notReady=%llx  iFrom=%d\n",
1315        iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom);
1316     sqlite3WhereLoopPrint(pLoop, pWC);
1317   }
1318   if( sqlite3WhereTrace & 0x20000 ){
1319     if( iLevel==0 ){
1320       sqlite3DebugPrintf("WHERE clause being coded:\n");
1321       sqlite3TreeViewExpr(0, pWInfo->pWhere, 0);
1322     }
1323     sqlite3DebugPrintf("All WHERE-clause terms before coding:\n");
1324     sqlite3WhereClausePrint(pWC);
1325   }
1326 #endif
1327 
1328   /* Create labels for the "break" and "continue" instructions
1329   ** for the current loop.  Jump to addrBrk to break out of a loop.
1330   ** Jump to cont to go immediately to the next iteration of the
1331   ** loop.
1332   **
1333   ** When there is an IN operator, we also have a "addrNxt" label that
1334   ** means to continue with the next IN value combination.  When
1335   ** there are no IN operators in the constraints, the "addrNxt" label
1336   ** is the same as "addrBrk".
1337   */
1338   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
1339   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse);
1340 
1341   /* If this is the right table of a LEFT OUTER JOIN, allocate and
1342   ** initialize a memory cell that records if this table matches any
1343   ** row of the left table of the join.
1344   */
1345   assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1346        || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
1347   );
1348   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1349     pLevel->iLeftJoin = ++pParse->nMem;
1350     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1351     VdbeComment((v, "init LEFT JOIN no-match flag"));
1352   }
1353 
1354   /* Compute a safe address to jump to if we discover that the table for
1355   ** this loop is empty and can never contribute content. */
1356   for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){}
1357   addrHalt = pWInfo->a[j].addrBrk;
1358 
1359   /* Special case of a FROM clause subquery implemented as a co-routine */
1360   if( pTabItem->fg.viaCoroutine ){
1361     int regYield = pTabItem->regReturn;
1362     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1363     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1364     VdbeCoverage(v);
1365     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
1366     pLevel->op = OP_Goto;
1367   }else
1368 
1369 #ifndef SQLITE_OMIT_VIRTUALTABLE
1370   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1371     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
1372     **          to access the data.
1373     */
1374     int iReg;   /* P3 Value for OP_VFilter */
1375     int addrNotFound;
1376     int nConstraint = pLoop->nLTerm;
1377     int iIn;    /* Counter for IN constraints */
1378 
1379     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1380     addrNotFound = pLevel->addrBrk;
1381     for(j=0; j<nConstraint; j++){
1382       int iTarget = iReg+j+2;
1383       pTerm = pLoop->aLTerm[j];
1384       if( NEVER(pTerm==0) ) continue;
1385       if( pTerm->eOperator & WO_IN ){
1386         codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1387         addrNotFound = pLevel->addrNxt;
1388       }else{
1389         Expr *pRight = pTerm->pExpr->pRight;
1390         codeExprOrVector(pParse, pRight, iTarget, 1);
1391       }
1392     }
1393     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1394     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1395     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1396                       pLoop->u.vtab.idxStr,
1397                       pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1398     VdbeCoverage(v);
1399     pLoop->u.vtab.needFree = 0;
1400     pLevel->p1 = iCur;
1401     pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1402     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1403     iIn = pLevel->u.in.nIn;
1404     for(j=nConstraint-1; j>=0; j--){
1405       pTerm = pLoop->aLTerm[j];
1406       if( (pTerm->eOperator & WO_IN)!=0 ) iIn--;
1407       if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1408         disableTerm(pLevel, pTerm);
1409       }else if( (pTerm->eOperator & WO_IN)!=0
1410         && sqlite3ExprVectorSize(pTerm->pExpr->pLeft)==1
1411       ){
1412         Expr *pCompare;  /* The comparison operator */
1413         Expr *pRight;    /* RHS of the comparison */
1414         VdbeOp *pOp;     /* Opcode to access the value of the IN constraint */
1415 
1416         /* Reload the constraint value into reg[iReg+j+2].  The same value
1417         ** was loaded into the same register prior to the OP_VFilter, but
1418         ** the xFilter implementation might have changed the datatype or
1419         ** encoding of the value in the register, so it *must* be reloaded. */
1420         assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed );
1421         if( !db->mallocFailed ){
1422           assert( iIn>=0 && iIn<pLevel->u.in.nIn );
1423           pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop);
1424           assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid );
1425           assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 );
1426           assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 );
1427           testcase( pOp->opcode==OP_Rowid );
1428           sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1429         }
1430 
1431         /* Generate code that will continue to the next row if
1432         ** the IN constraint is not satisfied */
1433         pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1434         assert( pCompare!=0 || db->mallocFailed );
1435         if( pCompare ){
1436           pCompare->pLeft = pTerm->pExpr->pLeft;
1437           pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1438           if( pRight ){
1439             pRight->iTable = iReg+j+2;
1440             sqlite3ExprIfFalse(
1441                 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL
1442             );
1443           }
1444           pCompare->pLeft = 0;
1445           sqlite3ExprDelete(db, pCompare);
1446         }
1447       }
1448     }
1449     assert( iIn==0 || db->mallocFailed );
1450     /* These registers need to be preserved in case there is an IN operator
1451     ** loop.  So we could deallocate the registers here (and potentially
1452     ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0.  But it seems
1453     ** simpler and safer to simply not reuse the registers.
1454     **
1455     **    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1456     */
1457   }else
1458 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1459 
1460   if( (pLoop->wsFlags & WHERE_IPK)!=0
1461    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1462   ){
1463     /* Case 2:  We can directly reference a single row using an
1464     **          equality comparison against the ROWID field.  Or
1465     **          we reference multiple rows using a "rowid IN (...)"
1466     **          construct.
1467     */
1468     assert( pLoop->u.btree.nEq==1 );
1469     pTerm = pLoop->aLTerm[0];
1470     assert( pTerm!=0 );
1471     assert( pTerm->pExpr!=0 );
1472     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1473     iReleaseReg = ++pParse->nMem;
1474     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1475     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1476     addrNxt = pLevel->addrNxt;
1477     sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1478     VdbeCoverage(v);
1479     pLevel->op = OP_Noop;
1480     if( (pTerm->prereqAll & pLevel->notReady)==0 ){
1481       pTerm->wtFlags |= TERM_CODED;
1482     }
1483   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1484          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1485   ){
1486     /* Case 3:  We have an inequality comparison against the ROWID field.
1487     */
1488     int testOp = OP_Noop;
1489     int start;
1490     int memEndValue = 0;
1491     WhereTerm *pStart, *pEnd;
1492 
1493     j = 0;
1494     pStart = pEnd = 0;
1495     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1496     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1497     assert( pStart!=0 || pEnd!=0 );
1498     if( bRev ){
1499       pTerm = pStart;
1500       pStart = pEnd;
1501       pEnd = pTerm;
1502     }
1503     codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1504     if( pStart ){
1505       Expr *pX;             /* The expression that defines the start bound */
1506       int r1, rTemp;        /* Registers for holding the start boundary */
1507       int op;               /* Cursor seek operation */
1508 
1509       /* The following constant maps TK_xx codes into corresponding
1510       ** seek opcodes.  It depends on a particular ordering of TK_xx
1511       */
1512       const u8 aMoveOp[] = {
1513            /* TK_GT */  OP_SeekGT,
1514            /* TK_LE */  OP_SeekLE,
1515            /* TK_LT */  OP_SeekLT,
1516            /* TK_GE */  OP_SeekGE
1517       };
1518       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
1519       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
1520       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
1521 
1522       assert( (pStart->wtFlags & TERM_VNULL)==0 );
1523       testcase( pStart->wtFlags & TERM_VIRTUAL );
1524       pX = pStart->pExpr;
1525       assert( pX!=0 );
1526       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1527       if( sqlite3ExprIsVector(pX->pRight) ){
1528         r1 = rTemp = sqlite3GetTempReg(pParse);
1529         codeExprOrVector(pParse, pX->pRight, r1, 1);
1530         testcase( pX->op==TK_GT );
1531         testcase( pX->op==TK_GE );
1532         testcase( pX->op==TK_LT );
1533         testcase( pX->op==TK_LE );
1534         op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
1535         assert( pX->op!=TK_GT || op==OP_SeekGE );
1536         assert( pX->op!=TK_GE || op==OP_SeekGE );
1537         assert( pX->op!=TK_LT || op==OP_SeekLE );
1538         assert( pX->op!=TK_LE || op==OP_SeekLE );
1539       }else{
1540         r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1541         disableTerm(pLevel, pStart);
1542         op = aMoveOp[(pX->op - TK_GT)];
1543       }
1544       sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1545       VdbeComment((v, "pk"));
1546       VdbeCoverageIf(v, pX->op==TK_GT);
1547       VdbeCoverageIf(v, pX->op==TK_LE);
1548       VdbeCoverageIf(v, pX->op==TK_LT);
1549       VdbeCoverageIf(v, pX->op==TK_GE);
1550       sqlite3ReleaseTempReg(pParse, rTemp);
1551     }else{
1552       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1553       VdbeCoverageIf(v, bRev==0);
1554       VdbeCoverageIf(v, bRev!=0);
1555     }
1556     if( pEnd ){
1557       Expr *pX;
1558       pX = pEnd->pExpr;
1559       assert( pX!=0 );
1560       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1561       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1562       testcase( pEnd->wtFlags & TERM_VIRTUAL );
1563       memEndValue = ++pParse->nMem;
1564       codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1565       if( 0==sqlite3ExprIsVector(pX->pRight)
1566        && (pX->op==TK_LT || pX->op==TK_GT)
1567       ){
1568         testOp = bRev ? OP_Le : OP_Ge;
1569       }else{
1570         testOp = bRev ? OP_Lt : OP_Gt;
1571       }
1572       if( 0==sqlite3ExprIsVector(pX->pRight) ){
1573         disableTerm(pLevel, pEnd);
1574       }
1575     }
1576     start = sqlite3VdbeCurrentAddr(v);
1577     pLevel->op = bRev ? OP_Prev : OP_Next;
1578     pLevel->p1 = iCur;
1579     pLevel->p2 = start;
1580     assert( pLevel->p5==0 );
1581     if( testOp!=OP_Noop ){
1582       iRowidReg = ++pParse->nMem;
1583       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1584       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1585       VdbeCoverageIf(v, testOp==OP_Le);
1586       VdbeCoverageIf(v, testOp==OP_Lt);
1587       VdbeCoverageIf(v, testOp==OP_Ge);
1588       VdbeCoverageIf(v, testOp==OP_Gt);
1589       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1590     }
1591   }else if( pLoop->wsFlags & WHERE_INDEXED ){
1592     /* Case 4: A scan using an index.
1593     **
1594     **         The WHERE clause may contain zero or more equality
1595     **         terms ("==" or "IN" operators) that refer to the N
1596     **         left-most columns of the index. It may also contain
1597     **         inequality constraints (>, <, >= or <=) on the indexed
1598     **         column that immediately follows the N equalities. Only
1599     **         the right-most column can be an inequality - the rest must
1600     **         use the "==" and "IN" operators. For example, if the
1601     **         index is on (x,y,z), then the following clauses are all
1602     **         optimized:
1603     **
1604     **            x=5
1605     **            x=5 AND y=10
1606     **            x=5 AND y<10
1607     **            x=5 AND y>5 AND y<10
1608     **            x=5 AND y=5 AND z<=10
1609     **
1610     **         The z<10 term of the following cannot be used, only
1611     **         the x=5 term:
1612     **
1613     **            x=5 AND z<10
1614     **
1615     **         N may be zero if there are inequality constraints.
1616     **         If there are no inequality constraints, then N is at
1617     **         least one.
1618     **
1619     **         This case is also used when there are no WHERE clause
1620     **         constraints but an index is selected anyway, in order
1621     **         to force the output order to conform to an ORDER BY.
1622     */
1623     static const u8 aStartOp[] = {
1624       0,
1625       0,
1626       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
1627       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
1628       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
1629       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
1630       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
1631       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
1632     };
1633     static const u8 aEndOp[] = {
1634       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
1635       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
1636       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
1637       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
1638     };
1639     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
1640     u16 nBtm = pLoop->u.btree.nBtm;   /* Length of BTM vector */
1641     u16 nTop = pLoop->u.btree.nTop;   /* Length of TOP vector */
1642     int regBase;                 /* Base register holding constraint values */
1643     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
1644     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
1645     int startEq;                 /* True if range start uses ==, >= or <= */
1646     int endEq;                   /* True if range end uses ==, >= or <= */
1647     int start_constraints;       /* Start of range is constrained */
1648     int nConstraint;             /* Number of constraint terms */
1649     int iIdxCur;                 /* The VDBE cursor for the index */
1650     int nExtraReg = 0;           /* Number of extra registers needed */
1651     int op;                      /* Instruction opcode */
1652     char *zStartAff;             /* Affinity for start of range constraint */
1653     char *zEndAff = 0;           /* Affinity for end of range constraint */
1654     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
1655     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
1656     int omitTable;               /* True if we use the index only */
1657     int regBignull = 0;          /* big-null flag register */
1658 
1659     pIdx = pLoop->u.btree.pIndex;
1660     iIdxCur = pLevel->iIdxCur;
1661     assert( nEq>=pLoop->nSkip );
1662 
1663     /* Find any inequality constraint terms for the start and end
1664     ** of the range.
1665     */
1666     j = nEq;
1667     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1668       pRangeStart = pLoop->aLTerm[j++];
1669       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1670       /* Like optimization range constraints always occur in pairs */
1671       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1672               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1673     }
1674     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1675       pRangeEnd = pLoop->aLTerm[j++];
1676       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1677 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1678       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1679         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
1680         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
1681         pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1682         sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1683         VdbeComment((v, "LIKE loop counter"));
1684         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1685         /* iLikeRepCntr actually stores 2x the counter register number.  The
1686         ** bottom bit indicates whether the search order is ASC or DESC. */
1687         testcase( bRev );
1688         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1689         assert( (bRev & ~1)==0 );
1690         pLevel->iLikeRepCntr <<=1;
1691         pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1692       }
1693 #endif
1694       if( pRangeStart==0 ){
1695         j = pIdx->aiColumn[nEq];
1696         if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1697           bSeekPastNull = 1;
1698         }
1699       }
1700     }
1701     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1702 
1703     /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
1704     ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
1705     ** FIRST). In both cases separate ordered scans are made of those
1706     ** index entries for which the column is null and for those for which
1707     ** it is not. For an ASC sort, the non-NULL entries are scanned first.
1708     ** For DESC, NULL entries are scanned first.
1709     */
1710     if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0
1711      && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0
1712     ){
1713       assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 );
1714       assert( pRangeEnd==0 && pRangeStart==0 );
1715       testcase( pLoop->nSkip>0 );
1716       nExtraReg = 1;
1717       bSeekPastNull = 1;
1718       pLevel->regBignull = regBignull = ++pParse->nMem;
1719       if( pLevel->iLeftJoin ){
1720         sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull);
1721       }
1722       pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse);
1723     }
1724 
1725     /* If we are doing a reverse order scan on an ascending index, or
1726     ** a forward order scan on a descending index, interchange the
1727     ** start and end terms (pRangeStart and pRangeEnd).
1728     */
1729     if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1730      || (bRev && pIdx->nKeyCol==nEq)
1731     ){
1732       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1733       SWAP(u8, bSeekPastNull, bStopAtNull);
1734       SWAP(u8, nBtm, nTop);
1735     }
1736 
1737     /* Generate code to evaluate all constraint terms using == or IN
1738     ** and store the values of those terms in an array of registers
1739     ** starting at regBase.
1740     */
1741     codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1742     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1743     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1744     if( zStartAff && nTop ){
1745       zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1746     }
1747     addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt);
1748 
1749     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1750     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1751     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1752     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1753     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1754     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1755     start_constraints = pRangeStart || nEq>0;
1756 
1757     /* Seek the index cursor to the start of the range. */
1758     nConstraint = nEq;
1759     if( pRangeStart ){
1760       Expr *pRight = pRangeStart->pExpr->pRight;
1761       codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1762       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1763       if( !bRev
1764        && (pRangeStart->wtFlags & TERM_VNULL)==0
1765        && sqlite3ExprCanBeNull(pRight)
1766       ){
1767         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1768         VdbeCoverage(v);
1769       }
1770       if( zStartAff ){
1771         updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1772       }
1773       nConstraint += nBtm;
1774       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1775       if( sqlite3ExprIsVector(pRight)==0 ){
1776         disableTerm(pLevel, pRangeStart);
1777       }else{
1778         startEq = 1;
1779       }
1780       bSeekPastNull = 0;
1781     }else if( bSeekPastNull ){
1782       startEq = 0;
1783       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1784       start_constraints = 1;
1785       nConstraint++;
1786     }else if( regBignull ){
1787       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1788       start_constraints = 1;
1789       nConstraint++;
1790     }
1791     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1792     if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1793       /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1794       ** above has already left the cursor sitting on the correct row,
1795       ** so no further seeking is needed */
1796     }else{
1797       if( regBignull ){
1798         sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull);
1799         VdbeComment((v, "NULL-scan pass ctr"));
1800       }
1801 
1802       op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1803       assert( op!=0 );
1804       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1805       VdbeCoverage(v);
1806       VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1807       VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1808       VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
1809       VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1810       VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1811       VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
1812 
1813       assert( bSeekPastNull==0 || bStopAtNull==0 );
1814       if( regBignull ){
1815         assert( bSeekPastNull==1 || bStopAtNull==1 );
1816         assert( bSeekPastNull==!bStopAtNull );
1817         assert( bStopAtNull==startEq );
1818         sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2);
1819         op = aStartOp[(nConstraint>1)*4 + 2 + bRev];
1820         sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1821                              nConstraint-startEq);
1822         VdbeCoverage(v);
1823         VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1824         VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1825         VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1826         VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1827         assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE);
1828       }
1829     }
1830 
1831     /* Load the value for the inequality constraint at the end of the
1832     ** range (if any).
1833     */
1834     nConstraint = nEq;
1835     if( pRangeEnd ){
1836       Expr *pRight = pRangeEnd->pExpr->pRight;
1837       codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
1838       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1839       if( bRev
1840        && (pRangeEnd->wtFlags & TERM_VNULL)==0
1841        && sqlite3ExprCanBeNull(pRight)
1842       ){
1843         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1844         VdbeCoverage(v);
1845       }
1846       if( zEndAff ){
1847         updateRangeAffinityStr(pRight, nTop, zEndAff);
1848         codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1849       }else{
1850         assert( pParse->db->mallocFailed );
1851       }
1852       nConstraint += nTop;
1853       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1854 
1855       if( sqlite3ExprIsVector(pRight)==0 ){
1856         disableTerm(pLevel, pRangeEnd);
1857       }else{
1858         endEq = 1;
1859       }
1860     }else if( bStopAtNull ){
1861       if( regBignull==0 ){
1862         sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1863         endEq = 0;
1864       }
1865       nConstraint++;
1866     }
1867     sqlite3DbFree(db, zStartAff);
1868     sqlite3DbFree(db, zEndAff);
1869 
1870     /* Top of the loop body */
1871     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1872 
1873     /* Check if the index cursor is past the end of the range. */
1874     if( nConstraint ){
1875       if( regBignull ){
1876         /* Except, skip the end-of-range check while doing the NULL-scan */
1877         sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3);
1878         VdbeComment((v, "If NULL-scan 2nd pass"));
1879         VdbeCoverage(v);
1880       }
1881       op = aEndOp[bRev*2 + endEq];
1882       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1883       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1884       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1885       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1886       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1887     }
1888     if( regBignull ){
1889       /* During a NULL-scan, check to see if we have reached the end of
1890       ** the NULLs */
1891       assert( bSeekPastNull==!bStopAtNull );
1892       assert( bSeekPastNull+bStopAtNull==1 );
1893       assert( nConstraint+bSeekPastNull>0 );
1894       sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2);
1895       VdbeComment((v, "If NULL-scan 1st pass"));
1896       VdbeCoverage(v);
1897       op = aEndOp[bRev*2 + bSeekPastNull];
1898       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1899                            nConstraint+bSeekPastNull);
1900       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1901       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1902       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1903       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1904     }
1905 
1906     if( pLoop->wsFlags & WHERE_IN_EARLYOUT ){
1907       sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq);
1908     }
1909 
1910     /* Seek the table cursor, if required */
1911     omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
1912            && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
1913     if( omitTable ){
1914       /* pIdx is a covering index.  No need to access the main table. */
1915     }else if( HasRowid(pIdx->pTable) ){
1916       codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
1917     }else if( iCur!=iIdxCur ){
1918       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1919       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1920       for(j=0; j<pPk->nKeyCol; j++){
1921         k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
1922         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1923       }
1924       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1925                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1926     }
1927 
1928     if( pLevel->iLeftJoin==0 ){
1929       /* If pIdx is an index on one or more expressions, then look through
1930       ** all the expressions in pWInfo and try to transform matching expressions
1931       ** into reference to index columns.  Also attempt to translate references
1932       ** to virtual columns in the table into references to (stored) columns
1933       ** of the index.
1934       **
1935       ** Do not do this for the RHS of a LEFT JOIN. This is because the
1936       ** expression may be evaluated after OP_NullRow has been executed on
1937       ** the cursor. In this case it is important to do the full evaluation,
1938       ** as the result of the expression may not be NULL, even if all table
1939       ** column values are.  https://www.sqlite.org/src/info/7fa8049685b50b5a
1940       **
1941       ** Also, do not do this when processing one index an a multi-index
1942       ** OR clause, since the transformation will become invalid once we
1943       ** move forward to the next index.
1944       ** https://sqlite.org/src/info/4e8e4857d32d401f
1945       */
1946       if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
1947         whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
1948       }
1949 
1950       /* If a partial index is driving the loop, try to eliminate WHERE clause
1951       ** terms from the query that must be true due to the WHERE clause of
1952       ** the partial index.
1953       **
1954       ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
1955       ** for a LEFT JOIN.
1956       */
1957       if( pIdx->pPartIdxWhere ){
1958         whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC);
1959       }
1960     }else{
1961       testcase( pIdx->pPartIdxWhere );
1962       /* The following assert() is not a requirement, merely an observation:
1963       ** The OR-optimization doesn't work for the right hand table of
1964       ** a LEFT JOIN: */
1965       assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 );
1966     }
1967 
1968     /* Record the instruction used to terminate the loop. */
1969     if( pLoop->wsFlags & WHERE_ONEROW ){
1970       pLevel->op = OP_Noop;
1971     }else if( bRev ){
1972       pLevel->op = OP_Prev;
1973     }else{
1974       pLevel->op = OP_Next;
1975     }
1976     pLevel->p1 = iIdxCur;
1977     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1978     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1979       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1980     }else{
1981       assert( pLevel->p5==0 );
1982     }
1983     if( omitTable ) pIdx = 0;
1984   }else
1985 
1986 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1987   if( pLoop->wsFlags & WHERE_MULTI_OR ){
1988     /* Case 5:  Two or more separately indexed terms connected by OR
1989     **
1990     ** Example:
1991     **
1992     **   CREATE TABLE t1(a,b,c,d);
1993     **   CREATE INDEX i1 ON t1(a);
1994     **   CREATE INDEX i2 ON t1(b);
1995     **   CREATE INDEX i3 ON t1(c);
1996     **
1997     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
1998     **
1999     ** In the example, there are three indexed terms connected by OR.
2000     ** The top of the loop looks like this:
2001     **
2002     **          Null       1                # Zero the rowset in reg 1
2003     **
2004     ** Then, for each indexed term, the following. The arguments to
2005     ** RowSetTest are such that the rowid of the current row is inserted
2006     ** into the RowSet. If it is already present, control skips the
2007     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
2008     **
2009     **        sqlite3WhereBegin(<term>)
2010     **          RowSetTest                  # Insert rowid into rowset
2011     **          Gosub      2 A
2012     **        sqlite3WhereEnd()
2013     **
2014     ** Following the above, code to terminate the loop. Label A, the target
2015     ** of the Gosub above, jumps to the instruction right after the Goto.
2016     **
2017     **          Null       1                # Zero the rowset in reg 1
2018     **          Goto       B                # The loop is finished.
2019     **
2020     **       A: <loop body>                 # Return data, whatever.
2021     **
2022     **          Return     2                # Jump back to the Gosub
2023     **
2024     **       B: <after the loop>
2025     **
2026     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
2027     ** use an ephemeral index instead of a RowSet to record the primary
2028     ** keys of the rows we have already seen.
2029     **
2030     */
2031     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
2032     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
2033     Index *pCov = 0;             /* Potential covering index (or NULL) */
2034     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
2035 
2036     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
2037     int regRowset = 0;                        /* Register for RowSet object */
2038     int regRowid = 0;                         /* Register holding rowid */
2039     int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */
2040     int iRetInit;                             /* Address of regReturn init */
2041     int untestedTerms = 0;             /* Some terms not completely tested */
2042     int ii;                            /* Loop counter */
2043     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
2044     Table *pTab = pTabItem->pTab;
2045 
2046     pTerm = pLoop->aLTerm[0];
2047     assert( pTerm!=0 );
2048     assert( pTerm->eOperator & WO_OR );
2049     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
2050     pOrWc = &pTerm->u.pOrInfo->wc;
2051     pLevel->op = OP_Return;
2052     pLevel->p1 = regReturn;
2053 
2054     /* Set up a new SrcList in pOrTab containing the table being scanned
2055     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
2056     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
2057     */
2058     if( pWInfo->nLevel>1 ){
2059       int nNotReady;                 /* The number of notReady tables */
2060       struct SrcList_item *origSrc;     /* Original list of tables */
2061       nNotReady = pWInfo->nLevel - iLevel - 1;
2062       pOrTab = sqlite3StackAllocRaw(db,
2063                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
2064       if( pOrTab==0 ) return notReady;
2065       pOrTab->nAlloc = (u8)(nNotReady + 1);
2066       pOrTab->nSrc = pOrTab->nAlloc;
2067       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
2068       origSrc = pWInfo->pTabList->a;
2069       for(k=1; k<=nNotReady; k++){
2070         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
2071       }
2072     }else{
2073       pOrTab = pWInfo->pTabList;
2074     }
2075 
2076     /* Initialize the rowset register to contain NULL. An SQL NULL is
2077     ** equivalent to an empty rowset.  Or, create an ephemeral index
2078     ** capable of holding primary keys in the case of a WITHOUT ROWID.
2079     **
2080     ** Also initialize regReturn to contain the address of the instruction
2081     ** immediately following the OP_Return at the bottom of the loop. This
2082     ** is required in a few obscure LEFT JOIN cases where control jumps
2083     ** over the top of the loop into the body of it. In this case the
2084     ** correct response for the end-of-loop code (the OP_Return) is to
2085     ** fall through to the next instruction, just as an OP_Next does if
2086     ** called on an uninitialized cursor.
2087     */
2088     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2089       if( HasRowid(pTab) ){
2090         regRowset = ++pParse->nMem;
2091         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
2092       }else{
2093         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2094         regRowset = pParse->nTab++;
2095         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
2096         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
2097       }
2098       regRowid = ++pParse->nMem;
2099     }
2100     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
2101 
2102     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
2103     ** Then for every term xN, evaluate as the subexpression: xN AND z
2104     ** That way, terms in y that are factored into the disjunction will
2105     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
2106     **
2107     ** Actually, each subexpression is converted to "xN AND w" where w is
2108     ** the "interesting" terms of z - terms that did not originate in the
2109     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
2110     ** indices.
2111     **
2112     ** This optimization also only applies if the (x1 OR x2 OR ...) term
2113     ** is not contained in the ON clause of a LEFT JOIN.
2114     ** See ticket http://www.sqlite.org/src/info/f2369304e4
2115     */
2116     if( pWC->nTerm>1 ){
2117       int iTerm;
2118       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
2119         Expr *pExpr = pWC->a[iTerm].pExpr;
2120         if( &pWC->a[iTerm] == pTerm ) continue;
2121         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
2122         testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
2123         if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
2124         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
2125         testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
2126         pExpr = sqlite3ExprDup(db, pExpr, 0);
2127         pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr);
2128       }
2129       if( pAndExpr ){
2130         /* The extra 0x10000 bit on the opcode is masked off and does not
2131         ** become part of the new Expr.op.  However, it does make the
2132         ** op==TK_AND comparison inside of sqlite3PExpr() false, and this
2133         ** prevents sqlite3PExpr() from implementing AND short-circuit
2134         ** optimization, which we do not want here. */
2135         pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr);
2136       }
2137     }
2138 
2139     /* Run a separate WHERE clause for each term of the OR clause.  After
2140     ** eliminating duplicates from other WHERE clauses, the action for each
2141     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
2142     */
2143     ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
2144     for(ii=0; ii<pOrWc->nTerm; ii++){
2145       WhereTerm *pOrTerm = &pOrWc->a[ii];
2146       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
2147         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
2148         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
2149         int jmp1 = 0;                   /* Address of jump operation */
2150         testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0
2151                && !ExprHasProperty(pOrExpr, EP_FromJoin)
2152         ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */
2153         if( pAndExpr ){
2154           pAndExpr->pLeft = pOrExpr;
2155           pOrExpr = pAndExpr;
2156         }
2157         /* Loop through table entries that match term pOrTerm. */
2158         ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1));
2159         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
2160         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
2161                                       WHERE_OR_SUBCLAUSE, iCovCur);
2162         assert( pSubWInfo || pParse->nErr || db->mallocFailed );
2163         if( pSubWInfo ){
2164           WhereLoop *pSubLoop;
2165           int addrExplain = sqlite3WhereExplainOneScan(
2166               pParse, pOrTab, &pSubWInfo->a[0], 0
2167           );
2168           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
2169 
2170           /* This is the sub-WHERE clause body.  First skip over
2171           ** duplicate rows from prior sub-WHERE clauses, and record the
2172           ** rowid (or PRIMARY KEY) for the current row so that the same
2173           ** row will be skipped in subsequent sub-WHERE clauses.
2174           */
2175           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2176             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
2177             if( HasRowid(pTab) ){
2178               sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid);
2179               jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
2180                                           regRowid, iSet);
2181               VdbeCoverage(v);
2182             }else{
2183               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2184               int nPk = pPk->nKeyCol;
2185               int iPk;
2186               int r;
2187 
2188               /* Read the PK into an array of temp registers. */
2189               r = sqlite3GetTempRange(pParse, nPk);
2190               for(iPk=0; iPk<nPk; iPk++){
2191                 int iCol = pPk->aiColumn[iPk];
2192                 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2193               }
2194 
2195               /* Check if the temp table already contains this key. If so,
2196               ** the row has already been included in the result set and
2197               ** can be ignored (by jumping past the Gosub below). Otherwise,
2198               ** insert the key into the temp table and proceed with processing
2199               ** the row.
2200               **
2201               ** Use some of the same optimizations as OP_RowSetTest: If iSet
2202               ** is zero, assume that the key cannot already be present in
2203               ** the temp table. And if iSet is -1, assume that there is no
2204               ** need to insert the key into the temp table, as it will never
2205               ** be tested for.  */
2206               if( iSet ){
2207                 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
2208                 VdbeCoverage(v);
2209               }
2210               if( iSet>=0 ){
2211                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
2212                 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
2213                                      r, nPk);
2214                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2215               }
2216 
2217               /* Release the array of temp registers */
2218               sqlite3ReleaseTempRange(pParse, r, nPk);
2219             }
2220           }
2221 
2222           /* Invoke the main loop body as a subroutine */
2223           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2224 
2225           /* Jump here (skipping the main loop body subroutine) if the
2226           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2227           if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
2228 
2229           /* The pSubWInfo->untestedTerms flag means that this OR term
2230           ** contained one or more AND term from a notReady table.  The
2231           ** terms from the notReady table could not be tested and will
2232           ** need to be tested later.
2233           */
2234           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
2235 
2236           /* If all of the OR-connected terms are optimized using the same
2237           ** index, and the index is opened using the same cursor number
2238           ** by each call to sqlite3WhereBegin() made by this loop, it may
2239           ** be possible to use that index as a covering index.
2240           **
2241           ** If the call to sqlite3WhereBegin() above resulted in a scan that
2242           ** uses an index, and this is either the first OR-connected term
2243           ** processed or the index is the same as that used by all previous
2244           ** terms, set pCov to the candidate covering index. Otherwise, set
2245           ** pCov to NULL to indicate that no candidate covering index will
2246           ** be available.
2247           */
2248           pSubLoop = pSubWInfo->a[0].pWLoop;
2249           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2250           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2251            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2252            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2253           ){
2254             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2255             pCov = pSubLoop->u.btree.pIndex;
2256           }else{
2257             pCov = 0;
2258           }
2259           if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){
2260             pWInfo->bDeferredSeek = 1;
2261           }
2262 
2263           /* Finish the loop through table entries that match term pOrTerm. */
2264           sqlite3WhereEnd(pSubWInfo);
2265           ExplainQueryPlanPop(pParse);
2266         }
2267       }
2268     }
2269     ExplainQueryPlanPop(pParse);
2270     pLevel->u.pCovidx = pCov;
2271     if( pCov ) pLevel->iIdxCur = iCovCur;
2272     if( pAndExpr ){
2273       pAndExpr->pLeft = 0;
2274       sqlite3ExprDelete(db, pAndExpr);
2275     }
2276     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2277     sqlite3VdbeGoto(v, pLevel->addrBrk);
2278     sqlite3VdbeResolveLabel(v, iLoopBody);
2279 
2280     if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); }
2281     if( !untestedTerms ) disableTerm(pLevel, pTerm);
2282   }else
2283 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2284 
2285   {
2286     /* Case 6:  There is no usable index.  We must do a complete
2287     **          scan of the entire table.
2288     */
2289     static const u8 aStep[] = { OP_Next, OP_Prev };
2290     static const u8 aStart[] = { OP_Rewind, OP_Last };
2291     assert( bRev==0 || bRev==1 );
2292     if( pTabItem->fg.isRecursive ){
2293       /* Tables marked isRecursive have only a single row that is stored in
2294       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
2295       pLevel->op = OP_Noop;
2296     }else{
2297       codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2298       pLevel->op = aStep[bRev];
2299       pLevel->p1 = iCur;
2300       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2301       VdbeCoverageIf(v, bRev==0);
2302       VdbeCoverageIf(v, bRev!=0);
2303       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2304     }
2305   }
2306 
2307 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2308   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2309 #endif
2310 
2311   /* Insert code to test every subexpression that can be completely
2312   ** computed using the current set of tables.
2313   **
2314   ** This loop may run between one and three times, depending on the
2315   ** constraints to be generated. The value of stack variable iLoop
2316   ** determines the constraints coded by each iteration, as follows:
2317   **
2318   ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2319   ** iLoop==2: Code remaining expressions that do not contain correlated
2320   **           sub-queries.
2321   ** iLoop==3: Code all remaining expressions.
2322   **
2323   ** An effort is made to skip unnecessary iterations of the loop.
2324   */
2325   iLoop = (pIdx ? 1 : 2);
2326   do{
2327     int iNext = 0;                /* Next value for iLoop */
2328     for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2329       Expr *pE;
2330       int skipLikeAddr = 0;
2331       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2332       testcase( pTerm->wtFlags & TERM_CODED );
2333       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2334       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2335         testcase( pWInfo->untestedTerms==0
2336             && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2337         pWInfo->untestedTerms = 1;
2338         continue;
2339       }
2340       pE = pTerm->pExpr;
2341       assert( pE!=0 );
2342       if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){
2343         continue;
2344       }
2345 
2346       if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2347         iNext = 2;
2348         continue;
2349       }
2350       if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2351         if( iNext==0 ) iNext = 3;
2352         continue;
2353       }
2354 
2355       if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
2356         /* If the TERM_LIKECOND flag is set, that means that the range search
2357         ** is sufficient to guarantee that the LIKE operator is true, so we
2358         ** can skip the call to the like(A,B) function.  But this only works
2359         ** for strings.  So do not skip the call to the function on the pass
2360         ** that compares BLOBs. */
2361 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2362         continue;
2363 #else
2364         u32 x = pLevel->iLikeRepCntr;
2365         if( x>0 ){
2366           skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
2367           VdbeCoverageIf(v, (x&1)==1);
2368           VdbeCoverageIf(v, (x&1)==0);
2369         }
2370 #endif
2371       }
2372 #ifdef WHERETRACE_ENABLED /* 0xffff */
2373       if( sqlite3WhereTrace ){
2374         VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2375                          pWC->nTerm-j, pTerm, iLoop));
2376       }
2377       if( sqlite3WhereTrace & 0x800 ){
2378         sqlite3DebugPrintf("Coding auxiliary constraint:\n");
2379         sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2380       }
2381 #endif
2382       sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2383       if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2384       pTerm->wtFlags |= TERM_CODED;
2385     }
2386     iLoop = iNext;
2387   }while( iLoop>0 );
2388 
2389   /* Insert code to test for implied constraints based on transitivity
2390   ** of the "==" operator.
2391   **
2392   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2393   ** and we are coding the t1 loop and the t2 loop has not yet coded,
2394   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2395   ** the implied "t1.a=123" constraint.
2396   */
2397   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2398     Expr *pE, sEAlt;
2399     WhereTerm *pAlt;
2400     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2401     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2402     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2403     if( pTerm->leftCursor!=iCur ) continue;
2404     if( pTabItem->fg.jointype & JT_LEFT ) continue;
2405     pE = pTerm->pExpr;
2406 #ifdef WHERETRACE_ENABLED /* 0x800 */
2407     if( sqlite3WhereTrace & 0x800 ){
2408       sqlite3DebugPrintf("Coding transitive constraint:\n");
2409       sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2410     }
2411 #endif
2412     assert( !ExprHasProperty(pE, EP_FromJoin) );
2413     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2414     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
2415                     WO_EQ|WO_IN|WO_IS, 0);
2416     if( pAlt==0 ) continue;
2417     if( pAlt->wtFlags & (TERM_CODED) ) continue;
2418     if( (pAlt->eOperator & WO_IN)
2419      && (pAlt->pExpr->flags & EP_xIsSelect)
2420      && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
2421     ){
2422       continue;
2423     }
2424     testcase( pAlt->eOperator & WO_EQ );
2425     testcase( pAlt->eOperator & WO_IS );
2426     testcase( pAlt->eOperator & WO_IN );
2427     VdbeModuleComment((v, "begin transitive constraint"));
2428     sEAlt = *pAlt->pExpr;
2429     sEAlt.pLeft = pE->pLeft;
2430     sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2431   }
2432 
2433   /* For a LEFT OUTER JOIN, generate code that will record the fact that
2434   ** at least one row of the right table has matched the left table.
2435   */
2436   if( pLevel->iLeftJoin ){
2437     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2438     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2439     VdbeComment((v, "record LEFT JOIN hit"));
2440     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
2441       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2442       testcase( pTerm->wtFlags & TERM_CODED );
2443       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2444       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2445         assert( pWInfo->untestedTerms );
2446         continue;
2447       }
2448       assert( pTerm->pExpr );
2449       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2450       pTerm->wtFlags |= TERM_CODED;
2451     }
2452   }
2453 
2454 #if WHERETRACE_ENABLED /* 0x20800 */
2455   if( sqlite3WhereTrace & 0x20000 ){
2456     sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n",
2457                        iLevel);
2458     sqlite3WhereClausePrint(pWC);
2459   }
2460   if( sqlite3WhereTrace & 0x800 ){
2461     sqlite3DebugPrintf("End Coding level %d:  notReady=%llx\n",
2462        iLevel, (u64)pLevel->notReady);
2463   }
2464 #endif
2465   return pLevel->notReady;
2466 }
2467