xref: /sqlite-3.40.0/src/wherecode.c (revision 4e8ad3bc)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 
25 /*
26 ** Return the name of the i-th column of the pIdx index.
27 */
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29   i = pIdx->aiColumn[i];
30   if( i==XN_EXPR ) return "<expr>";
31   if( i==XN_ROWID ) return "rowid";
32   return pIdx->pTable->aCol[i].zName;
33 }
34 
35 /*
36 ** This routine is a helper for explainIndexRange() below
37 **
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time.  This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
42 */
43 static void explainAppendTerm(
44   StrAccum *pStr,             /* The text expression being built */
45   Index *pIdx,                /* Index to read column names from */
46   int nTerm,                  /* Number of terms */
47   int iTerm,                  /* Zero-based index of first term. */
48   int bAnd,                   /* Non-zero to append " AND " */
49   const char *zOp             /* Name of the operator */
50 ){
51   int i;
52 
53   assert( nTerm>=1 );
54   if( bAnd ) sqlite3StrAccumAppend(pStr, " AND ", 5);
55 
56   if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1);
57   for(i=0; i<nTerm; i++){
58     if( i ) sqlite3StrAccumAppend(pStr, ",", 1);
59     sqlite3StrAccumAppendAll(pStr, explainIndexColumnName(pIdx, iTerm+i));
60   }
61   if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1);
62 
63   sqlite3StrAccumAppend(pStr, zOp, 1);
64 
65   if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1);
66   for(i=0; i<nTerm; i++){
67     if( i ) sqlite3StrAccumAppend(pStr, ",", 1);
68     sqlite3StrAccumAppend(pStr, "?", 1);
69   }
70   if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1);
71 }
72 
73 /*
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
77 **
78 ** For example, if the query:
79 **
80 **   SELECT * FROM t1 WHERE a=1 AND b>2;
81 **
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
84 **
85 **   "a=? AND b>?"
86 */
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88   Index *pIndex = pLoop->u.btree.pIndex;
89   u16 nEq = pLoop->u.btree.nEq;
90   u16 nSkip = pLoop->nSkip;
91   int i, j;
92 
93   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94   sqlite3StrAccumAppend(pStr, " (", 2);
95   for(i=0; i<nEq; i++){
96     const char *z = explainIndexColumnName(pIndex, i);
97     if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
98     sqlite3XPrintf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
99   }
100 
101   j = i;
102   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104     i = 1;
105   }
106   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
108   }
109   sqlite3StrAccumAppend(pStr, ")", 1);
110 }
111 
112 /*
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
117 **
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
120 */
121 int sqlite3WhereExplainOneScan(
122   Parse *pParse,                  /* Parse context */
123   SrcList *pTabList,              /* Table list this loop refers to */
124   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
125   int iLevel,                     /* Value for "level" column of output */
126   int iFrom,                      /* Value for "from" column of output */
127   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
128 ){
129   int ret = 0;
130 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
131   if( pParse->explain==2 )
132 #endif
133   {
134     struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
135     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
136     sqlite3 *db = pParse->db;     /* Database handle */
137     int iId = pParse->iSelectId;  /* Select id (left-most output column) */
138     int isSearch;                 /* True for a SEARCH. False for SCAN. */
139     WhereLoop *pLoop;             /* The controlling WhereLoop object */
140     u32 flags;                    /* Flags that describe this loop */
141     char *zMsg;                   /* Text to add to EQP output */
142     StrAccum str;                 /* EQP output string */
143     char zBuf[100];               /* Initial space for EQP output string */
144 
145     pLoop = pLevel->pWLoop;
146     flags = pLoop->wsFlags;
147     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
148 
149     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
150             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
151             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
152 
153     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
154     sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
155     if( pItem->pSelect ){
156       sqlite3XPrintf(&str, " SUBQUERY %d", pItem->iSelectId);
157     }else{
158       sqlite3XPrintf(&str, " TABLE %s", pItem->zName);
159     }
160 
161     if( pItem->zAlias ){
162       sqlite3XPrintf(&str, " AS %s", pItem->zAlias);
163     }
164     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
165       const char *zFmt = 0;
166       Index *pIdx;
167 
168       assert( pLoop->u.btree.pIndex!=0 );
169       pIdx = pLoop->u.btree.pIndex;
170       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
171       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
172         if( isSearch ){
173           zFmt = "PRIMARY KEY";
174         }
175       }else if( flags & WHERE_PARTIALIDX ){
176         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
177       }else if( flags & WHERE_AUTO_INDEX ){
178         zFmt = "AUTOMATIC COVERING INDEX";
179       }else if( flags & WHERE_IDX_ONLY ){
180         zFmt = "COVERING INDEX %s";
181       }else{
182         zFmt = "INDEX %s";
183       }
184       if( zFmt ){
185         sqlite3StrAccumAppend(&str, " USING ", 7);
186         sqlite3XPrintf(&str, zFmt, pIdx->zName);
187         explainIndexRange(&str, pLoop);
188       }
189     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
190       const char *zRangeOp;
191       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
192         zRangeOp = "=";
193       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
194         zRangeOp = ">? AND rowid<";
195       }else if( flags&WHERE_BTM_LIMIT ){
196         zRangeOp = ">";
197       }else{
198         assert( flags&WHERE_TOP_LIMIT);
199         zRangeOp = "<";
200       }
201       sqlite3XPrintf(&str, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
202     }
203 #ifndef SQLITE_OMIT_VIRTUALTABLE
204     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
205       sqlite3XPrintf(&str, " VIRTUAL TABLE INDEX %d:%s",
206                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
207     }
208 #endif
209 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
210     if( pLoop->nOut>=10 ){
211       sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
212     }else{
213       sqlite3StrAccumAppend(&str, " (~1 row)", 9);
214     }
215 #endif
216     zMsg = sqlite3StrAccumFinish(&str);
217     ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC);
218   }
219   return ret;
220 }
221 #endif /* SQLITE_OMIT_EXPLAIN */
222 
223 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
224 /*
225 ** Configure the VM passed as the first argument with an
226 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
227 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
228 ** clause that the scan reads data from.
229 **
230 ** If argument addrExplain is not 0, it must be the address of an
231 ** OP_Explain instruction that describes the same loop.
232 */
233 void sqlite3WhereAddScanStatus(
234   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
235   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
236   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
237   int addrExplain                 /* Address of OP_Explain (or 0) */
238 ){
239   const char *zObj = 0;
240   WhereLoop *pLoop = pLvl->pWLoop;
241   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
242     zObj = pLoop->u.btree.pIndex->zName;
243   }else{
244     zObj = pSrclist->a[pLvl->iFrom].zName;
245   }
246   sqlite3VdbeScanStatus(
247       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
248   );
249 }
250 #endif
251 
252 
253 /*
254 ** Disable a term in the WHERE clause.  Except, do not disable the term
255 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
256 ** or USING clause of that join.
257 **
258 ** Consider the term t2.z='ok' in the following queries:
259 **
260 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
261 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
262 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
263 **
264 ** The t2.z='ok' is disabled in the in (2) because it originates
265 ** in the ON clause.  The term is disabled in (3) because it is not part
266 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
267 **
268 ** Disabling a term causes that term to not be tested in the inner loop
269 ** of the join.  Disabling is an optimization.  When terms are satisfied
270 ** by indices, we disable them to prevent redundant tests in the inner
271 ** loop.  We would get the correct results if nothing were ever disabled,
272 ** but joins might run a little slower.  The trick is to disable as much
273 ** as we can without disabling too much.  If we disabled in (1), we'd get
274 ** the wrong answer.  See ticket #813.
275 **
276 ** If all the children of a term are disabled, then that term is also
277 ** automatically disabled.  In this way, terms get disabled if derived
278 ** virtual terms are tested first.  For example:
279 **
280 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
281 **      \___________/     \______/     \_____/
282 **         parent          child1       child2
283 **
284 ** Only the parent term was in the original WHERE clause.  The child1
285 ** and child2 terms were added by the LIKE optimization.  If both of
286 ** the virtual child terms are valid, then testing of the parent can be
287 ** skipped.
288 **
289 ** Usually the parent term is marked as TERM_CODED.  But if the parent
290 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
291 ** The TERM_LIKECOND marking indicates that the term should be coded inside
292 ** a conditional such that is only evaluated on the second pass of a
293 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
294 */
295 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
296   int nLoop = 0;
297   assert( pTerm!=0 );
298   while( (pTerm->wtFlags & TERM_CODED)==0
299       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
300       && (pLevel->notReady & pTerm->prereqAll)==0
301   ){
302     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
303       pTerm->wtFlags |= TERM_LIKECOND;
304     }else{
305       pTerm->wtFlags |= TERM_CODED;
306     }
307     if( pTerm->iParent<0 ) break;
308     pTerm = &pTerm->pWC->a[pTerm->iParent];
309     assert( pTerm!=0 );
310     pTerm->nChild--;
311     if( pTerm->nChild!=0 ) break;
312     nLoop++;
313   }
314 }
315 
316 /*
317 ** Code an OP_Affinity opcode to apply the column affinity string zAff
318 ** to the n registers starting at base.
319 **
320 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the
321 ** beginning and end of zAff are ignored.  If all entries in zAff are
322 ** SQLITE_AFF_BLOB, then no code gets generated.
323 **
324 ** This routine makes its own copy of zAff so that the caller is free
325 ** to modify zAff after this routine returns.
326 */
327 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
328   Vdbe *v = pParse->pVdbe;
329   if( zAff==0 ){
330     assert( pParse->db->mallocFailed );
331     return;
332   }
333   assert( v!=0 );
334 
335   /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning
336   ** and end of the affinity string.
337   */
338   while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){
339     n--;
340     base++;
341     zAff++;
342   }
343   while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){
344     n--;
345   }
346 
347   /* Code the OP_Affinity opcode if there is anything left to do. */
348   if( n>0 ){
349     sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
350     sqlite3ExprCacheAffinityChange(pParse, base, n);
351   }
352 }
353 
354 /*
355 ** Expression pRight, which is the RHS of a comparison operation, is
356 ** either a vector of n elements or, if n==1, a scalar expression.
357 ** Before the comparison operation, affinity zAff is to be applied
358 ** to the pRight values. This function modifies characters within the
359 ** affinity string to SQLITE_AFF_BLOB if either:
360 **
361 **   * the comparison will be performed with no affinity, or
362 **   * the affinity change in zAff is guaranteed not to change the value.
363 */
364 static void updateRangeAffinityStr(
365   Expr *pRight,                   /* RHS of comparison */
366   int n,                          /* Number of vector elements in comparison */
367   char *zAff                      /* Affinity string to modify */
368 ){
369   int i;
370   for(i=0; i<n; i++){
371     Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
372     if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
373      || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
374     ){
375       zAff[i] = SQLITE_AFF_BLOB;
376     }
377   }
378 }
379 
380 /*
381 ** Generate code for a single equality term of the WHERE clause.  An equality
382 ** term can be either X=expr or X IN (...).   pTerm is the term to be
383 ** coded.
384 **
385 ** The current value for the constraint is left in a register, the index
386 ** of which is returned.  An attempt is made store the result in iTarget but
387 ** this is only guaranteed for TK_ISNULL and TK_IN constraints.  If the
388 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
389 ** some other register and it is the caller's responsibility to compensate.
390 **
391 ** For a constraint of the form X=expr, the expression is evaluated in
392 ** straight-line code.  For constraints of the form X IN (...)
393 ** this routine sets up a loop that will iterate over all values of X.
394 */
395 static int codeEqualityTerm(
396   Parse *pParse,      /* The parsing context */
397   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
398   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
399   int iEq,            /* Index of the equality term within this level */
400   int bRev,           /* True for reverse-order IN operations */
401   int iTarget         /* Attempt to leave results in this register */
402 ){
403   Expr *pX = pTerm->pExpr;
404   Vdbe *v = pParse->pVdbe;
405   int iReg;                  /* Register holding results */
406 
407   assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
408   assert( iTarget>0 );
409   if( pX->op==TK_EQ || pX->op==TK_IS ){
410     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
411   }else if( pX->op==TK_ISNULL ){
412     iReg = iTarget;
413     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
414 #ifndef SQLITE_OMIT_SUBQUERY
415   }else{
416     int eType = IN_INDEX_NOOP;
417     int iTab;
418     struct InLoop *pIn;
419     WhereLoop *pLoop = pLevel->pWLoop;
420     int i;
421     int nEq = 0;
422     int *aiMap = 0;
423 
424     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
425       && pLoop->u.btree.pIndex!=0
426       && pLoop->u.btree.pIndex->aSortOrder[iEq]
427     ){
428       testcase( iEq==0 );
429       testcase( bRev );
430       bRev = !bRev;
431     }
432     assert( pX->op==TK_IN );
433     iReg = iTarget;
434 
435     for(i=0; i<iEq; i++){
436       if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
437         disableTerm(pLevel, pTerm);
438         return iTarget;
439       }
440     }
441     for(i=iEq;i<pLoop->nLTerm; i++){
442       if( ALWAYS(pLoop->aLTerm[i]) && pLoop->aLTerm[i]->pExpr==pX ) nEq++;
443     }
444 
445     if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){
446       eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0);
447     }else{
448       Select *pSelect = pX->x.pSelect;
449       sqlite3 *db = pParse->db;
450       u16 savedDbOptFlags = db->dbOptFlags;
451       ExprList *pOrigRhs = pSelect->pEList;
452       ExprList *pOrigLhs = pX->pLeft->x.pList;
453       ExprList *pRhs = 0;         /* New Select.pEList for RHS */
454       ExprList *pLhs = 0;         /* New pX->pLeft vector */
455 
456       for(i=iEq;i<pLoop->nLTerm; i++){
457         if( pLoop->aLTerm[i]->pExpr==pX ){
458           int iField = pLoop->aLTerm[i]->iField - 1;
459           Expr *pNewRhs = sqlite3ExprDup(db, pOrigRhs->a[iField].pExpr, 0);
460           Expr *pNewLhs = sqlite3ExprDup(db, pOrigLhs->a[iField].pExpr, 0);
461 
462           pRhs = sqlite3ExprListAppend(pParse, pRhs, pNewRhs);
463           pLhs = sqlite3ExprListAppend(pParse, pLhs, pNewLhs);
464         }
465       }
466       if( !db->mallocFailed ){
467         Expr *pLeft = pX->pLeft;
468 
469         if( pSelect->pOrderBy ){
470           /* If the SELECT statement has an ORDER BY clause, zero the
471           ** iOrderByCol variables. These are set to non-zero when an
472           ** ORDER BY term exactly matches one of the terms of the
473           ** result-set. Since the result-set of the SELECT statement may
474           ** have been modified or reordered, these variables are no longer
475           ** set correctly.  Since setting them is just an optimization,
476           ** it's easiest just to zero them here.  */
477           ExprList *pOrderBy = pSelect->pOrderBy;
478           for(i=0; i<pOrderBy->nExpr; i++){
479             pOrderBy->a[i].u.x.iOrderByCol = 0;
480           }
481         }
482 
483         /* Take care here not to generate a TK_VECTOR containing only a
484         ** single value. Since the parser never creates such a vector, some
485         ** of the subroutines do not handle this case.  */
486         if( pLhs->nExpr==1 ){
487           pX->pLeft = pLhs->a[0].pExpr;
488         }else{
489           pLeft->x.pList = pLhs;
490           aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int) * nEq);
491           testcase( aiMap==0 );
492         }
493         pSelect->pEList = pRhs;
494         db->dbOptFlags |= SQLITE_QueryFlattener;
495         eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap);
496         db->dbOptFlags = savedDbOptFlags;
497         testcase( aiMap!=0 && aiMap[0]!=0 );
498         pSelect->pEList = pOrigRhs;
499         pLeft->x.pList = pOrigLhs;
500         pX->pLeft = pLeft;
501       }
502       sqlite3ExprListDelete(pParse->db, pLhs);
503       sqlite3ExprListDelete(pParse->db, pRhs);
504     }
505 
506     if( eType==IN_INDEX_INDEX_DESC ){
507       testcase( bRev );
508       bRev = !bRev;
509     }
510     iTab = pX->iTable;
511     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
512     VdbeCoverageIf(v, bRev);
513     VdbeCoverageIf(v, !bRev);
514     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
515 
516     pLoop->wsFlags |= WHERE_IN_ABLE;
517     if( pLevel->u.in.nIn==0 ){
518       pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
519     }
520 
521     i = pLevel->u.in.nIn;
522     pLevel->u.in.nIn += nEq;
523     pLevel->u.in.aInLoop =
524        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
525                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
526     pIn = pLevel->u.in.aInLoop;
527     if( pIn ){
528       int iMap = 0;               /* Index in aiMap[] */
529       pIn += i;
530       for(i=iEq;i<pLoop->nLTerm; i++){
531         if( pLoop->aLTerm[i]->pExpr==pX ){
532           int iOut = iReg + i - iEq;
533           if( eType==IN_INDEX_ROWID ){
534             testcase( nEq>1 );  /* Happens with a UNIQUE index on ROWID */
535             pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
536           }else{
537             int iCol = aiMap ? aiMap[iMap++] : 0;
538             pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
539           }
540           sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
541           if( i==iEq ){
542             pIn->iCur = iTab;
543             pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen;
544           }else{
545             pIn->eEndLoopOp = OP_Noop;
546           }
547           pIn++;
548         }
549       }
550     }else{
551       pLevel->u.in.nIn = 0;
552     }
553     sqlite3DbFree(pParse->db, aiMap);
554 #endif
555   }
556   disableTerm(pLevel, pTerm);
557   return iReg;
558 }
559 
560 /*
561 ** Generate code that will evaluate all == and IN constraints for an
562 ** index scan.
563 **
564 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
565 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
566 ** The index has as many as three equality constraints, but in this
567 ** example, the third "c" value is an inequality.  So only two
568 ** constraints are coded.  This routine will generate code to evaluate
569 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
570 ** in consecutive registers and the index of the first register is returned.
571 **
572 ** In the example above nEq==2.  But this subroutine works for any value
573 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
574 ** The only thing it does is allocate the pLevel->iMem memory cell and
575 ** compute the affinity string.
576 **
577 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
578 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
579 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
580 ** occurs after the nEq quality constraints.
581 **
582 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
583 ** the index of the first memory cell in that range. The code that
584 ** calls this routine will use that memory range to store keys for
585 ** start and termination conditions of the loop.
586 ** key value of the loop.  If one or more IN operators appear, then
587 ** this routine allocates an additional nEq memory cells for internal
588 ** use.
589 **
590 ** Before returning, *pzAff is set to point to a buffer containing a
591 ** copy of the column affinity string of the index allocated using
592 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
593 ** with equality constraints that use BLOB or NONE affinity are set to
594 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
595 **
596 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
597 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
598 **
599 ** In the example above, the index on t1(a) has TEXT affinity. But since
600 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
601 ** no conversion should be attempted before using a t2.b value as part of
602 ** a key to search the index. Hence the first byte in the returned affinity
603 ** string in this example would be set to SQLITE_AFF_BLOB.
604 */
605 static int codeAllEqualityTerms(
606   Parse *pParse,        /* Parsing context */
607   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
608   int bRev,             /* Reverse the order of IN operators */
609   int nExtraReg,        /* Number of extra registers to allocate */
610   char **pzAff          /* OUT: Set to point to affinity string */
611 ){
612   u16 nEq;                      /* The number of == or IN constraints to code */
613   u16 nSkip;                    /* Number of left-most columns to skip */
614   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
615   Index *pIdx;                  /* The index being used for this loop */
616   WhereTerm *pTerm;             /* A single constraint term */
617   WhereLoop *pLoop;             /* The WhereLoop object */
618   int j;                        /* Loop counter */
619   int regBase;                  /* Base register */
620   int nReg;                     /* Number of registers to allocate */
621   char *zAff;                   /* Affinity string to return */
622 
623   /* This module is only called on query plans that use an index. */
624   pLoop = pLevel->pWLoop;
625   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
626   nEq = pLoop->u.btree.nEq;
627   nSkip = pLoop->nSkip;
628   pIdx = pLoop->u.btree.pIndex;
629   assert( pIdx!=0 );
630 
631   /* Figure out how many memory cells we will need then allocate them.
632   */
633   regBase = pParse->nMem + 1;
634   nReg = pLoop->u.btree.nEq + nExtraReg;
635   pParse->nMem += nReg;
636 
637   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
638   assert( zAff!=0 || pParse->db->mallocFailed );
639 
640   if( nSkip ){
641     int iIdxCur = pLevel->iIdxCur;
642     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
643     VdbeCoverageIf(v, bRev==0);
644     VdbeCoverageIf(v, bRev!=0);
645     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
646     j = sqlite3VdbeAddOp0(v, OP_Goto);
647     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
648                             iIdxCur, 0, regBase, nSkip);
649     VdbeCoverageIf(v, bRev==0);
650     VdbeCoverageIf(v, bRev!=0);
651     sqlite3VdbeJumpHere(v, j);
652     for(j=0; j<nSkip; j++){
653       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
654       testcase( pIdx->aiColumn[j]==XN_EXPR );
655       VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
656     }
657   }
658 
659   /* Evaluate the equality constraints
660   */
661   assert( zAff==0 || (int)strlen(zAff)>=nEq );
662   for(j=nSkip; j<nEq; j++){
663     int r1;
664     pTerm = pLoop->aLTerm[j];
665     assert( pTerm!=0 );
666     /* The following testcase is true for indices with redundant columns.
667     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
668     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
669     testcase( pTerm->wtFlags & TERM_VIRTUAL );
670     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
671     if( r1!=regBase+j ){
672       if( nReg==1 ){
673         sqlite3ReleaseTempReg(pParse, regBase);
674         regBase = r1;
675       }else{
676         sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
677       }
678     }
679     if( pTerm->eOperator & WO_IN ){
680       if( pTerm->pExpr->flags & EP_xIsSelect ){
681         /* No affinity ever needs to be (or should be) applied to a value
682         ** from the RHS of an "? IN (SELECT ...)" expression. The
683         ** sqlite3FindInIndex() routine has already ensured that the
684         ** affinity of the comparison has been applied to the value.  */
685         if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
686       }
687     }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
688       Expr *pRight = pTerm->pExpr->pRight;
689       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
690         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
691         VdbeCoverage(v);
692       }
693       if( zAff ){
694         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
695           zAff[j] = SQLITE_AFF_BLOB;
696         }
697         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
698           zAff[j] = SQLITE_AFF_BLOB;
699         }
700       }
701     }
702   }
703   *pzAff = zAff;
704   return regBase;
705 }
706 
707 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
708 /*
709 ** If the most recently coded instruction is a constant range constraint
710 ** (a string literal) that originated from the LIKE optimization, then
711 ** set P3 and P5 on the OP_String opcode so that the string will be cast
712 ** to a BLOB at appropriate times.
713 **
714 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
715 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
716 ** scan loop run twice, once for strings and a second time for BLOBs.
717 ** The OP_String opcodes on the second pass convert the upper and lower
718 ** bound string constants to blobs.  This routine makes the necessary changes
719 ** to the OP_String opcodes for that to happen.
720 **
721 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
722 ** only the one pass through the string space is required, so this routine
723 ** becomes a no-op.
724 */
725 static void whereLikeOptimizationStringFixup(
726   Vdbe *v,                /* prepared statement under construction */
727   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
728   WhereTerm *pTerm        /* The upper or lower bound just coded */
729 ){
730   if( pTerm->wtFlags & TERM_LIKEOPT ){
731     VdbeOp *pOp;
732     assert( pLevel->iLikeRepCntr>0 );
733     pOp = sqlite3VdbeGetOp(v, -1);
734     assert( pOp!=0 );
735     assert( pOp->opcode==OP_String8
736             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
737     pOp->p3 = (int)(pLevel->iLikeRepCntr>>1);  /* Register holding counter */
738     pOp->p5 = (u8)(pLevel->iLikeRepCntr&1);    /* ASC or DESC */
739   }
740 }
741 #else
742 # define whereLikeOptimizationStringFixup(A,B,C)
743 #endif
744 
745 #ifdef SQLITE_ENABLE_CURSOR_HINTS
746 /*
747 ** Information is passed from codeCursorHint() down to individual nodes of
748 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
749 ** structure.
750 */
751 struct CCurHint {
752   int iTabCur;    /* Cursor for the main table */
753   int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
754   Index *pIdx;    /* The index used to access the table */
755 };
756 
757 /*
758 ** This function is called for every node of an expression that is a candidate
759 ** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
760 ** the table CCurHint.iTabCur, verify that the same column can be
761 ** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
762 */
763 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
764   struct CCurHint *pHint = pWalker->u.pCCurHint;
765   assert( pHint->pIdx!=0 );
766   if( pExpr->op==TK_COLUMN
767    && pExpr->iTable==pHint->iTabCur
768    && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0
769   ){
770     pWalker->eCode = 1;
771   }
772   return WRC_Continue;
773 }
774 
775 /*
776 ** Test whether or not expression pExpr, which was part of a WHERE clause,
777 ** should be included in the cursor-hint for a table that is on the rhs
778 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
779 ** expression is not suitable.
780 **
781 ** An expression is unsuitable if it might evaluate to non NULL even if
782 ** a TK_COLUMN node that does affect the value of the expression is set
783 ** to NULL. For example:
784 **
785 **   col IS NULL
786 **   col IS NOT NULL
787 **   coalesce(col, 1)
788 **   CASE WHEN col THEN 0 ELSE 1 END
789 */
790 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
791   if( pExpr->op==TK_IS
792    || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
793    || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
794   ){
795     pWalker->eCode = 1;
796   }else if( pExpr->op==TK_FUNCTION ){
797     int d1;
798     char d2[4];
799     if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
800       pWalker->eCode = 1;
801     }
802   }
803 
804   return WRC_Continue;
805 }
806 
807 
808 /*
809 ** This function is called on every node of an expression tree used as an
810 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
811 ** that accesses any table other than the one identified by
812 ** CCurHint.iTabCur, then do the following:
813 **
814 **   1) allocate a register and code an OP_Column instruction to read
815 **      the specified column into the new register, and
816 **
817 **   2) transform the expression node to a TK_REGISTER node that reads
818 **      from the newly populated register.
819 **
820 ** Also, if the node is a TK_COLUMN that does access the table idenified
821 ** by pCCurHint.iTabCur, and an index is being used (which we will
822 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
823 ** an access of the index rather than the original table.
824 */
825 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
826   int rc = WRC_Continue;
827   struct CCurHint *pHint = pWalker->u.pCCurHint;
828   if( pExpr->op==TK_COLUMN ){
829     if( pExpr->iTable!=pHint->iTabCur ){
830       Vdbe *v = pWalker->pParse->pVdbe;
831       int reg = ++pWalker->pParse->nMem;   /* Register for column value */
832       sqlite3ExprCodeGetColumnOfTable(
833           v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg
834       );
835       pExpr->op = TK_REGISTER;
836       pExpr->iTable = reg;
837     }else if( pHint->pIdx!=0 ){
838       pExpr->iTable = pHint->iIdxCur;
839       pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn);
840       assert( pExpr->iColumn>=0 );
841     }
842   }else if( pExpr->op==TK_AGG_FUNCTION ){
843     /* An aggregate function in the WHERE clause of a query means this must
844     ** be a correlated sub-query, and expression pExpr is an aggregate from
845     ** the parent context. Do not walk the function arguments in this case.
846     **
847     ** todo: It should be possible to replace this node with a TK_REGISTER
848     ** expression, as the result of the expression must be stored in a
849     ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
850     rc = WRC_Prune;
851   }
852   return rc;
853 }
854 
855 /*
856 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
857 */
858 static void codeCursorHint(
859   struct SrcList_item *pTabItem,  /* FROM clause item */
860   WhereInfo *pWInfo,    /* The where clause */
861   WhereLevel *pLevel,   /* Which loop to provide hints for */
862   WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
863 ){
864   Parse *pParse = pWInfo->pParse;
865   sqlite3 *db = pParse->db;
866   Vdbe *v = pParse->pVdbe;
867   Expr *pExpr = 0;
868   WhereLoop *pLoop = pLevel->pWLoop;
869   int iCur;
870   WhereClause *pWC;
871   WhereTerm *pTerm;
872   int i, j;
873   struct CCurHint sHint;
874   Walker sWalker;
875 
876   if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
877   iCur = pLevel->iTabCur;
878   assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
879   sHint.iTabCur = iCur;
880   sHint.iIdxCur = pLevel->iIdxCur;
881   sHint.pIdx = pLoop->u.btree.pIndex;
882   memset(&sWalker, 0, sizeof(sWalker));
883   sWalker.pParse = pParse;
884   sWalker.u.pCCurHint = &sHint;
885   pWC = &pWInfo->sWC;
886   for(i=0; i<pWC->nTerm; i++){
887     pTerm = &pWC->a[i];
888     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
889     if( pTerm->prereqAll & pLevel->notReady ) continue;
890 
891     /* Any terms specified as part of the ON(...) clause for any LEFT
892     ** JOIN for which the current table is not the rhs are omitted
893     ** from the cursor-hint.
894     **
895     ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
896     ** that were specified as part of the WHERE clause must be excluded.
897     ** This is to address the following:
898     **
899     **   SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
900     **
901     ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
902     ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
903     ** pushed down to the cursor, this row is filtered out, causing
904     ** SQLite to synthesize a row of NULL values. Which does match the
905     ** WHERE clause, and so the query returns a row. Which is incorrect.
906     **
907     ** For the same reason, WHERE terms such as:
908     **
909     **   WHERE 1 = (t2.c IS NULL)
910     **
911     ** are also excluded. See codeCursorHintIsOrFunction() for details.
912     */
913     if( pTabItem->fg.jointype & JT_LEFT ){
914       Expr *pExpr = pTerm->pExpr;
915       if( !ExprHasProperty(pExpr, EP_FromJoin)
916        || pExpr->iRightJoinTable!=pTabItem->iCursor
917       ){
918         sWalker.eCode = 0;
919         sWalker.xExprCallback = codeCursorHintIsOrFunction;
920         sqlite3WalkExpr(&sWalker, pTerm->pExpr);
921         if( sWalker.eCode ) continue;
922       }
923     }else{
924       if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
925     }
926 
927     /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
928     ** the cursor.  These terms are not needed as hints for a pure range
929     ** scan (that has no == terms) so omit them. */
930     if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
931       for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
932       if( j<pLoop->nLTerm ) continue;
933     }
934 
935     /* No subqueries or non-deterministic functions allowed */
936     if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
937 
938     /* For an index scan, make sure referenced columns are actually in
939     ** the index. */
940     if( sHint.pIdx!=0 ){
941       sWalker.eCode = 0;
942       sWalker.xExprCallback = codeCursorHintCheckExpr;
943       sqlite3WalkExpr(&sWalker, pTerm->pExpr);
944       if( sWalker.eCode ) continue;
945     }
946 
947     /* If we survive all prior tests, that means this term is worth hinting */
948     pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
949   }
950   if( pExpr!=0 ){
951     sWalker.xExprCallback = codeCursorHintFixExpr;
952     sqlite3WalkExpr(&sWalker, pExpr);
953     sqlite3VdbeAddOp4(v, OP_CursorHint,
954                       (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
955                       (const char*)pExpr, P4_EXPR);
956   }
957 }
958 #else
959 # define codeCursorHint(A,B,C,D)  /* No-op */
960 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
961 
962 /*
963 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
964 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
965 ** function generates code to do a deferred seek of cursor iCur to the
966 ** rowid stored in register iRowid.
967 **
968 ** Normally, this is just:
969 **
970 **   OP_DeferredSeek $iCur $iRowid
971 **
972 ** However, if the scan currently being coded is a branch of an OR-loop and
973 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek
974 ** is set to iIdxCur and P4 is set to point to an array of integers
975 ** containing one entry for each column of the table cursor iCur is open
976 ** on. For each table column, if the column is the i'th column of the
977 ** index, then the corresponding array entry is set to (i+1). If the column
978 ** does not appear in the index at all, the array entry is set to 0.
979 */
980 static void codeDeferredSeek(
981   WhereInfo *pWInfo,              /* Where clause context */
982   Index *pIdx,                    /* Index scan is using */
983   int iCur,                       /* Cursor for IPK b-tree */
984   int iIdxCur                     /* Index cursor */
985 ){
986   Parse *pParse = pWInfo->pParse; /* Parse context */
987   Vdbe *v = pParse->pVdbe;        /* Vdbe to generate code within */
988 
989   assert( iIdxCur>0 );
990   assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
991 
992   sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
993   if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
994    && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
995   ){
996     int i;
997     Table *pTab = pIdx->pTable;
998     int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1));
999     if( ai ){
1000       ai[0] = pTab->nCol;
1001       for(i=0; i<pIdx->nColumn-1; i++){
1002         assert( pIdx->aiColumn[i]<pTab->nCol );
1003         if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1;
1004       }
1005       sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1006     }
1007   }
1008 }
1009 
1010 /*
1011 ** If the expression passed as the second argument is a vector, generate
1012 ** code to write the first nReg elements of the vector into an array
1013 ** of registers starting with iReg.
1014 **
1015 ** If the expression is not a vector, then nReg must be passed 1. In
1016 ** this case, generate code to evaluate the expression and leave the
1017 ** result in register iReg.
1018 */
1019 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1020   assert( nReg>0 );
1021   if( p && sqlite3ExprIsVector(p) ){
1022 #ifndef SQLITE_OMIT_SUBQUERY
1023     if( (p->flags & EP_xIsSelect) ){
1024       Vdbe *v = pParse->pVdbe;
1025       int iSelect = sqlite3CodeSubselect(pParse, p, 0, 0);
1026       sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1027     }else
1028 #endif
1029     {
1030       int i;
1031       ExprList *pList = p->x.pList;
1032       assert( nReg<=pList->nExpr );
1033       for(i=0; i<nReg; i++){
1034         sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1035       }
1036     }
1037   }else{
1038     assert( nReg==1 );
1039     sqlite3ExprCode(pParse, p, iReg);
1040   }
1041 }
1042 
1043 /* An instance of the IdxExprTrans object carries information about a
1044 ** mapping from an expression on table columns into a column in an index
1045 ** down through the Walker.
1046 */
1047 typedef struct IdxExprTrans {
1048   Expr *pIdxExpr;    /* The index expression */
1049   int iTabCur;       /* The cursor of the corresponding table */
1050   int iIdxCur;       /* The cursor for the index */
1051   int iIdxCol;       /* The column for the index */
1052 } IdxExprTrans;
1053 
1054 /* The walker node callback used to transform matching expressions into
1055 ** a reference to an index column for an index on an expression.
1056 **
1057 ** If pExpr matches, then transform it into a reference to the index column
1058 ** that contains the value of pExpr.
1059 */
1060 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1061   IdxExprTrans *pX = p->u.pIdxTrans;
1062   if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1063     pExpr->op = TK_COLUMN;
1064     pExpr->iTable = pX->iIdxCur;
1065     pExpr->iColumn = pX->iIdxCol;
1066     pExpr->pTab = 0;
1067     return WRC_Prune;
1068   }else{
1069     return WRC_Continue;
1070   }
1071 }
1072 
1073 /*
1074 ** For an indexes on expression X, locate every instance of expression X
1075 ** in pExpr and change that subexpression into a reference to the appropriate
1076 ** column of the index.
1077 */
1078 static void whereIndexExprTrans(
1079   Index *pIdx,      /* The Index */
1080   int iTabCur,      /* Cursor of the table that is being indexed */
1081   int iIdxCur,      /* Cursor of the index itself */
1082   WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1083 ){
1084   int iIdxCol;               /* Column number of the index */
1085   ExprList *aColExpr;        /* Expressions that are indexed */
1086   Walker w;
1087   IdxExprTrans x;
1088   aColExpr = pIdx->aColExpr;
1089   if( aColExpr==0 ) return;  /* Not an index on expressions */
1090   memset(&w, 0, sizeof(w));
1091   w.xExprCallback = whereIndexExprTransNode;
1092   w.u.pIdxTrans = &x;
1093   x.iTabCur = iTabCur;
1094   x.iIdxCur = iIdxCur;
1095   for(iIdxCol=0; iIdxCol<aColExpr->nExpr; iIdxCol++){
1096     if( pIdx->aiColumn[iIdxCol]!=XN_EXPR ) continue;
1097     assert( aColExpr->a[iIdxCol].pExpr!=0 );
1098     x.iIdxCol = iIdxCol;
1099     x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1100     sqlite3WalkExpr(&w, pWInfo->pWhere);
1101     sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1102     sqlite3WalkExprList(&w, pWInfo->pResultSet);
1103   }
1104 }
1105 
1106 /*
1107 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1108 ** implementation described by pWInfo.
1109 */
1110 Bitmask sqlite3WhereCodeOneLoopStart(
1111   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1112   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1113   Bitmask notReady     /* Which tables are currently available */
1114 ){
1115   int j, k;            /* Loop counters */
1116   int iCur;            /* The VDBE cursor for the table */
1117   int addrNxt;         /* Where to jump to continue with the next IN case */
1118   int omitTable;       /* True if we use the index only */
1119   int bRev;            /* True if we need to scan in reverse order */
1120   WhereLevel *pLevel;  /* The where level to be coded */
1121   WhereLoop *pLoop;    /* The WhereLoop object being coded */
1122   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
1123   WhereTerm *pTerm;               /* A WHERE clause term */
1124   Parse *pParse;                  /* Parsing context */
1125   sqlite3 *db;                    /* Database connection */
1126   Vdbe *v;                        /* The prepared stmt under constructions */
1127   struct SrcList_item *pTabItem;  /* FROM clause term being coded */
1128   int addrBrk;                    /* Jump here to break out of the loop */
1129   int addrHalt;                   /* addrBrk for the outermost loop */
1130   int addrCont;                   /* Jump here to continue with next cycle */
1131   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
1132   int iReleaseReg = 0;      /* Temp register to free before returning */
1133   Index *pIdx = 0;          /* Index used by loop (if any) */
1134   int iLoop;                /* Iteration of constraint generator loop */
1135 
1136   pParse = pWInfo->pParse;
1137   v = pParse->pVdbe;
1138   pWC = &pWInfo->sWC;
1139   db = pParse->db;
1140   pLevel = &pWInfo->a[iLevel];
1141   pLoop = pLevel->pWLoop;
1142   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1143   iCur = pTabItem->iCursor;
1144   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1145   bRev = (pWInfo->revMask>>iLevel)&1;
1146   omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
1147            && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
1148   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1149 
1150   /* Create labels for the "break" and "continue" instructions
1151   ** for the current loop.  Jump to addrBrk to break out of a loop.
1152   ** Jump to cont to go immediately to the next iteration of the
1153   ** loop.
1154   **
1155   ** When there is an IN operator, we also have a "addrNxt" label that
1156   ** means to continue with the next IN value combination.  When
1157   ** there are no IN operators in the constraints, the "addrNxt" label
1158   ** is the same as "addrBrk".
1159   */
1160   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
1161   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
1162 
1163   /* If this is the right table of a LEFT OUTER JOIN, allocate and
1164   ** initialize a memory cell that records if this table matches any
1165   ** row of the left table of the join.
1166   */
1167   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1168     pLevel->iLeftJoin = ++pParse->nMem;
1169     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1170     VdbeComment((v, "init LEFT JOIN no-match flag"));
1171   }
1172 
1173   /* Compute a safe address to jump to if we discover that the table for
1174   ** this loop is empty and can never contribute content. */
1175   for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){}
1176   addrHalt = pWInfo->a[j].addrBrk;
1177 
1178   /* Special case of a FROM clause subquery implemented as a co-routine */
1179   if( pTabItem->fg.viaCoroutine ){
1180     int regYield = pTabItem->regReturn;
1181     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1182     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1183     VdbeCoverage(v);
1184     VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
1185     pLevel->op = OP_Goto;
1186   }else
1187 
1188 #ifndef SQLITE_OMIT_VIRTUALTABLE
1189   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1190     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
1191     **          to access the data.
1192     */
1193     int iReg;   /* P3 Value for OP_VFilter */
1194     int addrNotFound;
1195     int nConstraint = pLoop->nLTerm;
1196     int iIn;    /* Counter for IN constraints */
1197 
1198     sqlite3ExprCachePush(pParse);
1199     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1200     addrNotFound = pLevel->addrBrk;
1201     for(j=0; j<nConstraint; j++){
1202       int iTarget = iReg+j+2;
1203       pTerm = pLoop->aLTerm[j];
1204       if( NEVER(pTerm==0) ) continue;
1205       if( pTerm->eOperator & WO_IN ){
1206         codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1207         addrNotFound = pLevel->addrNxt;
1208       }else{
1209         Expr *pRight = pTerm->pExpr->pRight;
1210         codeExprOrVector(pParse, pRight, iTarget, 1);
1211       }
1212     }
1213     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1214     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1215     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1216                       pLoop->u.vtab.idxStr,
1217                       pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1218     VdbeCoverage(v);
1219     pLoop->u.vtab.needFree = 0;
1220     pLevel->p1 = iCur;
1221     pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1222     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1223     iIn = pLevel->u.in.nIn;
1224     for(j=nConstraint-1; j>=0; j--){
1225       pTerm = pLoop->aLTerm[j];
1226       if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1227         disableTerm(pLevel, pTerm);
1228       }else if( (pTerm->eOperator & WO_IN)!=0 ){
1229         Expr *pCompare;  /* The comparison operator */
1230         Expr *pRight;    /* RHS of the comparison */
1231         VdbeOp *pOp;     /* Opcode to access the value of the IN constraint */
1232 
1233         /* Reload the constraint value into reg[iReg+j+2].  The same value
1234         ** was loaded into the same register prior to the OP_VFilter, but
1235         ** the xFilter implementation might have changed the datatype or
1236         ** encoding of the value in the register, so it *must* be reloaded. */
1237         assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed );
1238         if( !db->mallocFailed ){
1239           assert( iIn>0 );
1240           pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[--iIn].addrInTop);
1241           assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid );
1242           assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 );
1243           assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 );
1244           testcase( pOp->opcode==OP_Rowid );
1245           sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1246         }
1247 
1248         /* Generate code that will continue to the next row if
1249         ** the IN constraint is not satisfied */
1250         pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1251         assert( pCompare!=0 || db->mallocFailed );
1252         if( pCompare ){
1253           pCompare->pLeft = pTerm->pExpr->pLeft;
1254           pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1255           if( pRight ){
1256             pRight->iTable = iReg+j+2;
1257             sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0);
1258           }
1259           pCompare->pLeft = 0;
1260           sqlite3ExprDelete(db, pCompare);
1261         }
1262       }
1263     }
1264     /* These registers need to be preserved in case there is an IN operator
1265     ** loop.  So we could deallocate the registers here (and potentially
1266     ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0.  But it seems
1267     ** simpler and safer to simply not reuse the registers.
1268     **
1269     **    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1270     */
1271     sqlite3ExprCachePop(pParse);
1272   }else
1273 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1274 
1275   if( (pLoop->wsFlags & WHERE_IPK)!=0
1276    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1277   ){
1278     /* Case 2:  We can directly reference a single row using an
1279     **          equality comparison against the ROWID field.  Or
1280     **          we reference multiple rows using a "rowid IN (...)"
1281     **          construct.
1282     */
1283     assert( pLoop->u.btree.nEq==1 );
1284     pTerm = pLoop->aLTerm[0];
1285     assert( pTerm!=0 );
1286     assert( pTerm->pExpr!=0 );
1287     assert( omitTable==0 );
1288     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1289     iReleaseReg = ++pParse->nMem;
1290     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1291     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1292     addrNxt = pLevel->addrNxt;
1293     sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1294     VdbeCoverage(v);
1295     sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
1296     sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1297     VdbeComment((v, "pk"));
1298     pLevel->op = OP_Noop;
1299   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1300          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1301   ){
1302     /* Case 3:  We have an inequality comparison against the ROWID field.
1303     */
1304     int testOp = OP_Noop;
1305     int start;
1306     int memEndValue = 0;
1307     WhereTerm *pStart, *pEnd;
1308 
1309     assert( omitTable==0 );
1310     j = 0;
1311     pStart = pEnd = 0;
1312     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1313     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1314     assert( pStart!=0 || pEnd!=0 );
1315     if( bRev ){
1316       pTerm = pStart;
1317       pStart = pEnd;
1318       pEnd = pTerm;
1319     }
1320     codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1321     if( pStart ){
1322       Expr *pX;             /* The expression that defines the start bound */
1323       int r1, rTemp;        /* Registers for holding the start boundary */
1324       int op;               /* Cursor seek operation */
1325 
1326       /* The following constant maps TK_xx codes into corresponding
1327       ** seek opcodes.  It depends on a particular ordering of TK_xx
1328       */
1329       const u8 aMoveOp[] = {
1330            /* TK_GT */  OP_SeekGT,
1331            /* TK_LE */  OP_SeekLE,
1332            /* TK_LT */  OP_SeekLT,
1333            /* TK_GE */  OP_SeekGE
1334       };
1335       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
1336       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
1337       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
1338 
1339       assert( (pStart->wtFlags & TERM_VNULL)==0 );
1340       testcase( pStart->wtFlags & TERM_VIRTUAL );
1341       pX = pStart->pExpr;
1342       assert( pX!=0 );
1343       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1344       if( sqlite3ExprIsVector(pX->pRight) ){
1345         r1 = rTemp = sqlite3GetTempReg(pParse);
1346         codeExprOrVector(pParse, pX->pRight, r1, 1);
1347         op = aMoveOp[(pX->op - TK_GT) | 0x0001];
1348       }else{
1349         r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1350         disableTerm(pLevel, pStart);
1351         op = aMoveOp[(pX->op - TK_GT)];
1352       }
1353       sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1354       VdbeComment((v, "pk"));
1355       VdbeCoverageIf(v, pX->op==TK_GT);
1356       VdbeCoverageIf(v, pX->op==TK_LE);
1357       VdbeCoverageIf(v, pX->op==TK_LT);
1358       VdbeCoverageIf(v, pX->op==TK_GE);
1359       sqlite3ExprCacheAffinityChange(pParse, r1, 1);
1360       sqlite3ReleaseTempReg(pParse, rTemp);
1361     }else{
1362       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1363       VdbeCoverageIf(v, bRev==0);
1364       VdbeCoverageIf(v, bRev!=0);
1365     }
1366     if( pEnd ){
1367       Expr *pX;
1368       pX = pEnd->pExpr;
1369       assert( pX!=0 );
1370       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1371       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1372       testcase( pEnd->wtFlags & TERM_VIRTUAL );
1373       memEndValue = ++pParse->nMem;
1374       codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1375       if( 0==sqlite3ExprIsVector(pX->pRight)
1376        && (pX->op==TK_LT || pX->op==TK_GT)
1377       ){
1378         testOp = bRev ? OP_Le : OP_Ge;
1379       }else{
1380         testOp = bRev ? OP_Lt : OP_Gt;
1381       }
1382       if( 0==sqlite3ExprIsVector(pX->pRight) ){
1383         disableTerm(pLevel, pEnd);
1384       }
1385     }
1386     start = sqlite3VdbeCurrentAddr(v);
1387     pLevel->op = bRev ? OP_Prev : OP_Next;
1388     pLevel->p1 = iCur;
1389     pLevel->p2 = start;
1390     assert( pLevel->p5==0 );
1391     if( testOp!=OP_Noop ){
1392       iRowidReg = ++pParse->nMem;
1393       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1394       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1395       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1396       VdbeCoverageIf(v, testOp==OP_Le);
1397       VdbeCoverageIf(v, testOp==OP_Lt);
1398       VdbeCoverageIf(v, testOp==OP_Ge);
1399       VdbeCoverageIf(v, testOp==OP_Gt);
1400       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1401     }
1402   }else if( pLoop->wsFlags & WHERE_INDEXED ){
1403     /* Case 4: A scan using an index.
1404     **
1405     **         The WHERE clause may contain zero or more equality
1406     **         terms ("==" or "IN" operators) that refer to the N
1407     **         left-most columns of the index. It may also contain
1408     **         inequality constraints (>, <, >= or <=) on the indexed
1409     **         column that immediately follows the N equalities. Only
1410     **         the right-most column can be an inequality - the rest must
1411     **         use the "==" and "IN" operators. For example, if the
1412     **         index is on (x,y,z), then the following clauses are all
1413     **         optimized:
1414     **
1415     **            x=5
1416     **            x=5 AND y=10
1417     **            x=5 AND y<10
1418     **            x=5 AND y>5 AND y<10
1419     **            x=5 AND y=5 AND z<=10
1420     **
1421     **         The z<10 term of the following cannot be used, only
1422     **         the x=5 term:
1423     **
1424     **            x=5 AND z<10
1425     **
1426     **         N may be zero if there are inequality constraints.
1427     **         If there are no inequality constraints, then N is at
1428     **         least one.
1429     **
1430     **         This case is also used when there are no WHERE clause
1431     **         constraints but an index is selected anyway, in order
1432     **         to force the output order to conform to an ORDER BY.
1433     */
1434     static const u8 aStartOp[] = {
1435       0,
1436       0,
1437       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
1438       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
1439       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
1440       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
1441       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
1442       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
1443     };
1444     static const u8 aEndOp[] = {
1445       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
1446       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
1447       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
1448       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
1449     };
1450     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
1451     u16 nBtm = pLoop->u.btree.nBtm;   /* Length of BTM vector */
1452     u16 nTop = pLoop->u.btree.nTop;   /* Length of TOP vector */
1453     int regBase;                 /* Base register holding constraint values */
1454     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
1455     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
1456     int startEq;                 /* True if range start uses ==, >= or <= */
1457     int endEq;                   /* True if range end uses ==, >= or <= */
1458     int start_constraints;       /* Start of range is constrained */
1459     int nConstraint;             /* Number of constraint terms */
1460     int iIdxCur;                 /* The VDBE cursor for the index */
1461     int nExtraReg = 0;           /* Number of extra registers needed */
1462     int op;                      /* Instruction opcode */
1463     char *zStartAff;             /* Affinity for start of range constraint */
1464     char *zEndAff = 0;           /* Affinity for end of range constraint */
1465     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
1466     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
1467 
1468     pIdx = pLoop->u.btree.pIndex;
1469     iIdxCur = pLevel->iIdxCur;
1470     assert( nEq>=pLoop->nSkip );
1471 
1472     /* If this loop satisfies a sort order (pOrderBy) request that
1473     ** was passed to this function to implement a "SELECT min(x) ..."
1474     ** query, then the caller will only allow the loop to run for
1475     ** a single iteration. This means that the first row returned
1476     ** should not have a NULL value stored in 'x'. If column 'x' is
1477     ** the first one after the nEq equality constraints in the index,
1478     ** this requires some special handling.
1479     */
1480     assert( pWInfo->pOrderBy==0
1481          || pWInfo->pOrderBy->nExpr==1
1482          || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
1483     if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
1484      && pWInfo->nOBSat>0
1485      && (pIdx->nKeyCol>nEq)
1486     ){
1487       assert( pLoop->nSkip==0 );
1488       bSeekPastNull = 1;
1489       nExtraReg = 1;
1490     }
1491 
1492     /* Find any inequality constraint terms for the start and end
1493     ** of the range.
1494     */
1495     j = nEq;
1496     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1497       pRangeStart = pLoop->aLTerm[j++];
1498       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1499       /* Like optimization range constraints always occur in pairs */
1500       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1501               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1502     }
1503     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1504       pRangeEnd = pLoop->aLTerm[j++];
1505       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1506 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1507       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1508         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
1509         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
1510         pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1511         sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1512         VdbeComment((v, "LIKE loop counter"));
1513         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1514         /* iLikeRepCntr actually stores 2x the counter register number.  The
1515         ** bottom bit indicates whether the search order is ASC or DESC. */
1516         testcase( bRev );
1517         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1518         assert( (bRev & ~1)==0 );
1519         pLevel->iLikeRepCntr <<=1;
1520         pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1521       }
1522 #endif
1523       if( pRangeStart==0 ){
1524         j = pIdx->aiColumn[nEq];
1525         if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1526           bSeekPastNull = 1;
1527         }
1528       }
1529     }
1530     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1531 
1532     /* If we are doing a reverse order scan on an ascending index, or
1533     ** a forward order scan on a descending index, interchange the
1534     ** start and end terms (pRangeStart and pRangeEnd).
1535     */
1536     if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1537      || (bRev && pIdx->nKeyCol==nEq)
1538     ){
1539       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1540       SWAP(u8, bSeekPastNull, bStopAtNull);
1541       SWAP(u8, nBtm, nTop);
1542     }
1543 
1544     /* Generate code to evaluate all constraint terms using == or IN
1545     ** and store the values of those terms in an array of registers
1546     ** starting at regBase.
1547     */
1548     codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1549     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1550     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1551     if( zStartAff && nTop ){
1552       zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1553     }
1554     addrNxt = pLevel->addrNxt;
1555 
1556     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1557     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1558     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1559     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1560     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1561     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1562     start_constraints = pRangeStart || nEq>0;
1563 
1564     /* Seek the index cursor to the start of the range. */
1565     nConstraint = nEq;
1566     if( pRangeStart ){
1567       Expr *pRight = pRangeStart->pExpr->pRight;
1568       codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1569       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1570       if( (pRangeStart->wtFlags & TERM_VNULL)==0
1571        && sqlite3ExprCanBeNull(pRight)
1572       ){
1573         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1574         VdbeCoverage(v);
1575       }
1576       if( zStartAff ){
1577         updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1578       }
1579       nConstraint += nBtm;
1580       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1581       if( sqlite3ExprIsVector(pRight)==0 ){
1582         disableTerm(pLevel, pRangeStart);
1583       }else{
1584         startEq = 1;
1585       }
1586       bSeekPastNull = 0;
1587     }else if( bSeekPastNull ){
1588       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1589       nConstraint++;
1590       startEq = 0;
1591       start_constraints = 1;
1592     }
1593     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1594     if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1595       /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1596       ** above has already left the cursor sitting on the correct row,
1597       ** so no further seeking is needed */
1598     }else{
1599       op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1600       assert( op!=0 );
1601       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1602       VdbeCoverage(v);
1603       VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1604       VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1605       VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
1606       VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1607       VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1608       VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
1609     }
1610 
1611     /* Load the value for the inequality constraint at the end of the
1612     ** range (if any).
1613     */
1614     nConstraint = nEq;
1615     if( pRangeEnd ){
1616       Expr *pRight = pRangeEnd->pExpr->pRight;
1617       sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
1618       codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
1619       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1620       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1621        && sqlite3ExprCanBeNull(pRight)
1622       ){
1623         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1624         VdbeCoverage(v);
1625       }
1626       if( zEndAff ){
1627         updateRangeAffinityStr(pRight, nTop, zEndAff);
1628         codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1629       }else{
1630         assert( pParse->db->mallocFailed );
1631       }
1632       nConstraint += nTop;
1633       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1634 
1635       if( sqlite3ExprIsVector(pRight)==0 ){
1636         disableTerm(pLevel, pRangeEnd);
1637       }else{
1638         endEq = 1;
1639       }
1640     }else if( bStopAtNull ){
1641       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1642       endEq = 0;
1643       nConstraint++;
1644     }
1645     sqlite3DbFree(db, zStartAff);
1646     sqlite3DbFree(db, zEndAff);
1647 
1648     /* Top of the loop body */
1649     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1650 
1651     /* Check if the index cursor is past the end of the range. */
1652     if( nConstraint ){
1653       op = aEndOp[bRev*2 + endEq];
1654       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1655       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1656       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1657       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1658       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1659     }
1660 
1661     /* Seek the table cursor, if required */
1662     if( omitTable ){
1663       /* pIdx is a covering index.  No need to access the main table. */
1664     }else if( HasRowid(pIdx->pTable) ){
1665       if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE) || (
1666           (pWInfo->wctrlFlags & WHERE_SEEK_UNIQ_TABLE)
1667        && (pWInfo->eOnePass==ONEPASS_SINGLE)
1668       )){
1669         iRowidReg = ++pParse->nMem;
1670         sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
1671         sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1672         sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
1673         VdbeCoverage(v);
1674       }else{
1675         codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
1676       }
1677     }else if( iCur!=iIdxCur ){
1678       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1679       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1680       for(j=0; j<pPk->nKeyCol; j++){
1681         k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1682         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1683       }
1684       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1685                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1686     }
1687 
1688     /* If pIdx is an index on one or more expressions, then look through
1689     ** all the expressions in pWInfo and try to transform matching expressions
1690     ** into reference to index columns.
1691     */
1692     whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
1693 
1694 
1695     /* Record the instruction used to terminate the loop. */
1696     if( pLoop->wsFlags & WHERE_ONEROW ){
1697       pLevel->op = OP_Noop;
1698     }else if( bRev ){
1699       pLevel->op = OP_Prev;
1700     }else{
1701       pLevel->op = OP_Next;
1702     }
1703     pLevel->p1 = iIdxCur;
1704     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1705     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1706       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1707     }else{
1708       assert( pLevel->p5==0 );
1709     }
1710     if( omitTable ) pIdx = 0;
1711   }else
1712 
1713 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1714   if( pLoop->wsFlags & WHERE_MULTI_OR ){
1715     /* Case 5:  Two or more separately indexed terms connected by OR
1716     **
1717     ** Example:
1718     **
1719     **   CREATE TABLE t1(a,b,c,d);
1720     **   CREATE INDEX i1 ON t1(a);
1721     **   CREATE INDEX i2 ON t1(b);
1722     **   CREATE INDEX i3 ON t1(c);
1723     **
1724     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
1725     **
1726     ** In the example, there are three indexed terms connected by OR.
1727     ** The top of the loop looks like this:
1728     **
1729     **          Null       1                # Zero the rowset in reg 1
1730     **
1731     ** Then, for each indexed term, the following. The arguments to
1732     ** RowSetTest are such that the rowid of the current row is inserted
1733     ** into the RowSet. If it is already present, control skips the
1734     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
1735     **
1736     **        sqlite3WhereBegin(<term>)
1737     **          RowSetTest                  # Insert rowid into rowset
1738     **          Gosub      2 A
1739     **        sqlite3WhereEnd()
1740     **
1741     ** Following the above, code to terminate the loop. Label A, the target
1742     ** of the Gosub above, jumps to the instruction right after the Goto.
1743     **
1744     **          Null       1                # Zero the rowset in reg 1
1745     **          Goto       B                # The loop is finished.
1746     **
1747     **       A: <loop body>                 # Return data, whatever.
1748     **
1749     **          Return     2                # Jump back to the Gosub
1750     **
1751     **       B: <after the loop>
1752     **
1753     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
1754     ** use an ephemeral index instead of a RowSet to record the primary
1755     ** keys of the rows we have already seen.
1756     **
1757     */
1758     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
1759     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
1760     Index *pCov = 0;             /* Potential covering index (or NULL) */
1761     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
1762 
1763     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
1764     int regRowset = 0;                        /* Register for RowSet object */
1765     int regRowid = 0;                         /* Register holding rowid */
1766     int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
1767     int iRetInit;                             /* Address of regReturn init */
1768     int untestedTerms = 0;             /* Some terms not completely tested */
1769     int ii;                            /* Loop counter */
1770     u16 wctrlFlags;                    /* Flags for sub-WHERE clause */
1771     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
1772     Table *pTab = pTabItem->pTab;
1773 
1774     pTerm = pLoop->aLTerm[0];
1775     assert( pTerm!=0 );
1776     assert( pTerm->eOperator & WO_OR );
1777     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
1778     pOrWc = &pTerm->u.pOrInfo->wc;
1779     pLevel->op = OP_Return;
1780     pLevel->p1 = regReturn;
1781 
1782     /* Set up a new SrcList in pOrTab containing the table being scanned
1783     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
1784     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
1785     */
1786     if( pWInfo->nLevel>1 ){
1787       int nNotReady;                 /* The number of notReady tables */
1788       struct SrcList_item *origSrc;     /* Original list of tables */
1789       nNotReady = pWInfo->nLevel - iLevel - 1;
1790       pOrTab = sqlite3StackAllocRaw(db,
1791                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
1792       if( pOrTab==0 ) return notReady;
1793       pOrTab->nAlloc = (u8)(nNotReady + 1);
1794       pOrTab->nSrc = pOrTab->nAlloc;
1795       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
1796       origSrc = pWInfo->pTabList->a;
1797       for(k=1; k<=nNotReady; k++){
1798         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
1799       }
1800     }else{
1801       pOrTab = pWInfo->pTabList;
1802     }
1803 
1804     /* Initialize the rowset register to contain NULL. An SQL NULL is
1805     ** equivalent to an empty rowset.  Or, create an ephemeral index
1806     ** capable of holding primary keys in the case of a WITHOUT ROWID.
1807     **
1808     ** Also initialize regReturn to contain the address of the instruction
1809     ** immediately following the OP_Return at the bottom of the loop. This
1810     ** is required in a few obscure LEFT JOIN cases where control jumps
1811     ** over the top of the loop into the body of it. In this case the
1812     ** correct response for the end-of-loop code (the OP_Return) is to
1813     ** fall through to the next instruction, just as an OP_Next does if
1814     ** called on an uninitialized cursor.
1815     */
1816     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1817       if( HasRowid(pTab) ){
1818         regRowset = ++pParse->nMem;
1819         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
1820       }else{
1821         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1822         regRowset = pParse->nTab++;
1823         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
1824         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
1825       }
1826       regRowid = ++pParse->nMem;
1827     }
1828     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
1829 
1830     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
1831     ** Then for every term xN, evaluate as the subexpression: xN AND z
1832     ** That way, terms in y that are factored into the disjunction will
1833     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
1834     **
1835     ** Actually, each subexpression is converted to "xN AND w" where w is
1836     ** the "interesting" terms of z - terms that did not originate in the
1837     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
1838     ** indices.
1839     **
1840     ** This optimization also only applies if the (x1 OR x2 OR ...) term
1841     ** is not contained in the ON clause of a LEFT JOIN.
1842     ** See ticket http://www.sqlite.org/src/info/f2369304e4
1843     */
1844     if( pWC->nTerm>1 ){
1845       int iTerm;
1846       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
1847         Expr *pExpr = pWC->a[iTerm].pExpr;
1848         if( &pWC->a[iTerm] == pTerm ) continue;
1849         if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
1850         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
1851         testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
1852         if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
1853         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
1854         testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
1855         pExpr = sqlite3ExprDup(db, pExpr, 0);
1856         pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
1857       }
1858       if( pAndExpr ){
1859         pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr);
1860       }
1861     }
1862 
1863     /* Run a separate WHERE clause for each term of the OR clause.  After
1864     ** eliminating duplicates from other WHERE clauses, the action for each
1865     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
1866     */
1867     wctrlFlags =  WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE);
1868     for(ii=0; ii<pOrWc->nTerm; ii++){
1869       WhereTerm *pOrTerm = &pOrWc->a[ii];
1870       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
1871         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
1872         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
1873         int jmp1 = 0;                   /* Address of jump operation */
1874         if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
1875           pAndExpr->pLeft = pOrExpr;
1876           pOrExpr = pAndExpr;
1877         }
1878         /* Loop through table entries that match term pOrTerm. */
1879         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
1880         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
1881                                       wctrlFlags, iCovCur);
1882         assert( pSubWInfo || pParse->nErr || db->mallocFailed );
1883         if( pSubWInfo ){
1884           WhereLoop *pSubLoop;
1885           int addrExplain = sqlite3WhereExplainOneScan(
1886               pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
1887           );
1888           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
1889 
1890           /* This is the sub-WHERE clause body.  First skip over
1891           ** duplicate rows from prior sub-WHERE clauses, and record the
1892           ** rowid (or PRIMARY KEY) for the current row so that the same
1893           ** row will be skipped in subsequent sub-WHERE clauses.
1894           */
1895           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1896             int r;
1897             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
1898             if( HasRowid(pTab) ){
1899               r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0);
1900               jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
1901                                            r,iSet);
1902               VdbeCoverage(v);
1903             }else{
1904               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1905               int nPk = pPk->nKeyCol;
1906               int iPk;
1907 
1908               /* Read the PK into an array of temp registers. */
1909               r = sqlite3GetTempRange(pParse, nPk);
1910               for(iPk=0; iPk<nPk; iPk++){
1911                 int iCol = pPk->aiColumn[iPk];
1912                 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk);
1913               }
1914 
1915               /* Check if the temp table already contains this key. If so,
1916               ** the row has already been included in the result set and
1917               ** can be ignored (by jumping past the Gosub below). Otherwise,
1918               ** insert the key into the temp table and proceed with processing
1919               ** the row.
1920               **
1921               ** Use some of the same optimizations as OP_RowSetTest: If iSet
1922               ** is zero, assume that the key cannot already be present in
1923               ** the temp table. And if iSet is -1, assume that there is no
1924               ** need to insert the key into the temp table, as it will never
1925               ** be tested for.  */
1926               if( iSet ){
1927                 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
1928                 VdbeCoverage(v);
1929               }
1930               if( iSet>=0 ){
1931                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
1932                 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
1933                                      r, nPk);
1934                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1935               }
1936 
1937               /* Release the array of temp registers */
1938               sqlite3ReleaseTempRange(pParse, r, nPk);
1939             }
1940           }
1941 
1942           /* Invoke the main loop body as a subroutine */
1943           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
1944 
1945           /* Jump here (skipping the main loop body subroutine) if the
1946           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
1947           if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
1948 
1949           /* The pSubWInfo->untestedTerms flag means that this OR term
1950           ** contained one or more AND term from a notReady table.  The
1951           ** terms from the notReady table could not be tested and will
1952           ** need to be tested later.
1953           */
1954           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
1955 
1956           /* If all of the OR-connected terms are optimized using the same
1957           ** index, and the index is opened using the same cursor number
1958           ** by each call to sqlite3WhereBegin() made by this loop, it may
1959           ** be possible to use that index as a covering index.
1960           **
1961           ** If the call to sqlite3WhereBegin() above resulted in a scan that
1962           ** uses an index, and this is either the first OR-connected term
1963           ** processed or the index is the same as that used by all previous
1964           ** terms, set pCov to the candidate covering index. Otherwise, set
1965           ** pCov to NULL to indicate that no candidate covering index will
1966           ** be available.
1967           */
1968           pSubLoop = pSubWInfo->a[0].pWLoop;
1969           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
1970           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
1971            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
1972            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
1973           ){
1974             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
1975             pCov = pSubLoop->u.btree.pIndex;
1976           }else{
1977             pCov = 0;
1978           }
1979 
1980           /* Finish the loop through table entries that match term pOrTerm. */
1981           sqlite3WhereEnd(pSubWInfo);
1982         }
1983       }
1984     }
1985     pLevel->u.pCovidx = pCov;
1986     if( pCov ) pLevel->iIdxCur = iCovCur;
1987     if( pAndExpr ){
1988       pAndExpr->pLeft = 0;
1989       sqlite3ExprDelete(db, pAndExpr);
1990     }
1991     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
1992     sqlite3VdbeGoto(v, pLevel->addrBrk);
1993     sqlite3VdbeResolveLabel(v, iLoopBody);
1994 
1995     if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
1996     if( !untestedTerms ) disableTerm(pLevel, pTerm);
1997   }else
1998 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1999 
2000   {
2001     /* Case 6:  There is no usable index.  We must do a complete
2002     **          scan of the entire table.
2003     */
2004     static const u8 aStep[] = { OP_Next, OP_Prev };
2005     static const u8 aStart[] = { OP_Rewind, OP_Last };
2006     assert( bRev==0 || bRev==1 );
2007     if( pTabItem->fg.isRecursive ){
2008       /* Tables marked isRecursive have only a single row that is stored in
2009       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
2010       pLevel->op = OP_Noop;
2011     }else{
2012       codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2013       pLevel->op = aStep[bRev];
2014       pLevel->p1 = iCur;
2015       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2016       VdbeCoverageIf(v, bRev==0);
2017       VdbeCoverageIf(v, bRev!=0);
2018       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2019     }
2020   }
2021 
2022 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2023   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2024 #endif
2025 
2026   /* Insert code to test every subexpression that can be completely
2027   ** computed using the current set of tables.
2028   **
2029   ** This loop may run between one and three times, depending on the
2030   ** constraints to be generated. The value of stack variable iLoop
2031   ** determines the constraints coded by each iteration, as follows:
2032   **
2033   ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2034   ** iLoop==2: Code remaining expressions that do not contain correlated
2035   **           sub-queries.
2036   ** iLoop==3: Code all remaining expressions.
2037   **
2038   ** An effort is made to skip unnecessary iterations of the loop.
2039   */
2040   iLoop = (pIdx ? 1 : 2);
2041   do{
2042     int iNext = 0;                /* Next value for iLoop */
2043     for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2044       Expr *pE;
2045       int skipLikeAddr = 0;
2046       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2047       testcase( pTerm->wtFlags & TERM_CODED );
2048       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2049       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2050         testcase( pWInfo->untestedTerms==0
2051             && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2052         pWInfo->untestedTerms = 1;
2053         continue;
2054       }
2055       pE = pTerm->pExpr;
2056       assert( pE!=0 );
2057       if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
2058         continue;
2059       }
2060 
2061       if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2062         iNext = 2;
2063         continue;
2064       }
2065       if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2066         if( iNext==0 ) iNext = 3;
2067         continue;
2068       }
2069 
2070       if( pTerm->wtFlags & TERM_LIKECOND ){
2071         /* If the TERM_LIKECOND flag is set, that means that the range search
2072         ** is sufficient to guarantee that the LIKE operator is true, so we
2073         ** can skip the call to the like(A,B) function.  But this only works
2074         ** for strings.  So do not skip the call to the function on the pass
2075         ** that compares BLOBs. */
2076 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2077         continue;
2078 #else
2079         u32 x = pLevel->iLikeRepCntr;
2080         assert( x>0 );
2081         skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If, (int)(x>>1));
2082         VdbeCoverage(v);
2083 #endif
2084       }
2085 #ifdef WHERETRACE_ENABLED /* 0xffff */
2086       if( sqlite3WhereTrace ){
2087         VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2088                          pWC->nTerm-j, pTerm, iLoop));
2089       }
2090 #endif
2091       sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2092       if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2093       pTerm->wtFlags |= TERM_CODED;
2094     }
2095     iLoop = iNext;
2096   }while( iLoop>0 );
2097 
2098   /* Insert code to test for implied constraints based on transitivity
2099   ** of the "==" operator.
2100   **
2101   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2102   ** and we are coding the t1 loop and the t2 loop has not yet coded,
2103   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2104   ** the implied "t1.a=123" constraint.
2105   */
2106   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2107     Expr *pE, sEAlt;
2108     WhereTerm *pAlt;
2109     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2110     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2111     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2112     if( pTerm->leftCursor!=iCur ) continue;
2113     if( pLevel->iLeftJoin ) continue;
2114     pE = pTerm->pExpr;
2115     assert( !ExprHasProperty(pE, EP_FromJoin) );
2116     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2117     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
2118                     WO_EQ|WO_IN|WO_IS, 0);
2119     if( pAlt==0 ) continue;
2120     if( pAlt->wtFlags & (TERM_CODED) ) continue;
2121     testcase( pAlt->eOperator & WO_EQ );
2122     testcase( pAlt->eOperator & WO_IS );
2123     testcase( pAlt->eOperator & WO_IN );
2124     VdbeModuleComment((v, "begin transitive constraint"));
2125     sEAlt = *pAlt->pExpr;
2126     sEAlt.pLeft = pE->pLeft;
2127     sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2128   }
2129 
2130   /* For a LEFT OUTER JOIN, generate code that will record the fact that
2131   ** at least one row of the right table has matched the left table.
2132   */
2133   if( pLevel->iLeftJoin ){
2134     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2135     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2136     VdbeComment((v, "record LEFT JOIN hit"));
2137     sqlite3ExprCacheClear(pParse);
2138     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
2139       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2140       testcase( pTerm->wtFlags & TERM_CODED );
2141       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2142       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2143         assert( pWInfo->untestedTerms );
2144         continue;
2145       }
2146       assert( pTerm->pExpr );
2147       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2148       pTerm->wtFlags |= TERM_CODED;
2149     }
2150   }
2151 
2152   return pLevel->notReady;
2153 }
2154