1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 25 /* 26 ** Return the name of the i-th column of the pIdx index. 27 */ 28 static const char *explainIndexColumnName(Index *pIdx, int i){ 29 i = pIdx->aiColumn[i]; 30 if( i==XN_EXPR ) return "<expr>"; 31 if( i==XN_ROWID ) return "rowid"; 32 return pIdx->pTable->aCol[i].zName; 33 } 34 35 /* 36 ** This routine is a helper for explainIndexRange() below 37 ** 38 ** pStr holds the text of an expression that we are building up one term 39 ** at a time. This routine adds a new term to the end of the expression. 40 ** Terms are separated by AND so add the "AND" text for second and subsequent 41 ** terms only. 42 */ 43 static void explainAppendTerm( 44 StrAccum *pStr, /* The text expression being built */ 45 Index *pIdx, /* Index to read column names from */ 46 int nTerm, /* Number of terms */ 47 int iTerm, /* Zero-based index of first term. */ 48 int bAnd, /* Non-zero to append " AND " */ 49 const char *zOp /* Name of the operator */ 50 ){ 51 int i; 52 53 assert( nTerm>=1 ); 54 if( bAnd ) sqlite3StrAccumAppend(pStr, " AND ", 5); 55 56 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1); 57 for(i=0; i<nTerm; i++){ 58 if( i ) sqlite3StrAccumAppend(pStr, ",", 1); 59 sqlite3StrAccumAppendAll(pStr, explainIndexColumnName(pIdx, iTerm+i)); 60 } 61 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1); 62 63 sqlite3StrAccumAppend(pStr, zOp, 1); 64 65 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1); 66 for(i=0; i<nTerm; i++){ 67 if( i ) sqlite3StrAccumAppend(pStr, ",", 1); 68 sqlite3StrAccumAppend(pStr, "?", 1); 69 } 70 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1); 71 } 72 73 /* 74 ** Argument pLevel describes a strategy for scanning table pTab. This 75 ** function appends text to pStr that describes the subset of table 76 ** rows scanned by the strategy in the form of an SQL expression. 77 ** 78 ** For example, if the query: 79 ** 80 ** SELECT * FROM t1 WHERE a=1 AND b>2; 81 ** 82 ** is run and there is an index on (a, b), then this function returns a 83 ** string similar to: 84 ** 85 ** "a=? AND b>?" 86 */ 87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 88 Index *pIndex = pLoop->u.btree.pIndex; 89 u16 nEq = pLoop->u.btree.nEq; 90 u16 nSkip = pLoop->nSkip; 91 int i, j; 92 93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 94 sqlite3StrAccumAppend(pStr, " (", 2); 95 for(i=0; i<nEq; i++){ 96 const char *z = explainIndexColumnName(pIndex, i); 97 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5); 98 sqlite3XPrintf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); 99 } 100 101 j = i; 102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); 104 i = 1; 105 } 106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); 108 } 109 sqlite3StrAccumAppend(pStr, ")", 1); 110 } 111 112 /* 113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 116 ** is added to the output to describe the table scan strategy in pLevel. 117 ** 118 ** If an OP_Explain opcode is added to the VM, its address is returned. 119 ** Otherwise, if no OP_Explain is coded, zero is returned. 120 */ 121 int sqlite3WhereExplainOneScan( 122 Parse *pParse, /* Parse context */ 123 SrcList *pTabList, /* Table list this loop refers to */ 124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 125 int iLevel, /* Value for "level" column of output */ 126 int iFrom, /* Value for "from" column of output */ 127 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 128 ){ 129 int ret = 0; 130 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 131 if( pParse->explain==2 ) 132 #endif 133 { 134 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 135 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 136 sqlite3 *db = pParse->db; /* Database handle */ 137 int iId = pParse->iSelectId; /* Select id (left-most output column) */ 138 int isSearch; /* True for a SEARCH. False for SCAN. */ 139 WhereLoop *pLoop; /* The controlling WhereLoop object */ 140 u32 flags; /* Flags that describe this loop */ 141 char *zMsg; /* Text to add to EQP output */ 142 StrAccum str; /* EQP output string */ 143 char zBuf[100]; /* Initial space for EQP output string */ 144 145 pLoop = pLevel->pWLoop; 146 flags = pLoop->wsFlags; 147 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; 148 149 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 150 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 151 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 152 153 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 154 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN"); 155 if( pItem->pSelect ){ 156 sqlite3XPrintf(&str, " SUBQUERY %d", pItem->iSelectId); 157 }else{ 158 sqlite3XPrintf(&str, " TABLE %s", pItem->zName); 159 } 160 161 if( pItem->zAlias ){ 162 sqlite3XPrintf(&str, " AS %s", pItem->zAlias); 163 } 164 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 165 const char *zFmt = 0; 166 Index *pIdx; 167 168 assert( pLoop->u.btree.pIndex!=0 ); 169 pIdx = pLoop->u.btree.pIndex; 170 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 171 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 172 if( isSearch ){ 173 zFmt = "PRIMARY KEY"; 174 } 175 }else if( flags & WHERE_PARTIALIDX ){ 176 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 177 }else if( flags & WHERE_AUTO_INDEX ){ 178 zFmt = "AUTOMATIC COVERING INDEX"; 179 }else if( flags & WHERE_IDX_ONLY ){ 180 zFmt = "COVERING INDEX %s"; 181 }else{ 182 zFmt = "INDEX %s"; 183 } 184 if( zFmt ){ 185 sqlite3StrAccumAppend(&str, " USING ", 7); 186 sqlite3XPrintf(&str, zFmt, pIdx->zName); 187 explainIndexRange(&str, pLoop); 188 } 189 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 190 const char *zRangeOp; 191 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 192 zRangeOp = "="; 193 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 194 zRangeOp = ">? AND rowid<"; 195 }else if( flags&WHERE_BTM_LIMIT ){ 196 zRangeOp = ">"; 197 }else{ 198 assert( flags&WHERE_TOP_LIMIT); 199 zRangeOp = "<"; 200 } 201 sqlite3XPrintf(&str, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp); 202 } 203 #ifndef SQLITE_OMIT_VIRTUALTABLE 204 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 205 sqlite3XPrintf(&str, " VIRTUAL TABLE INDEX %d:%s", 206 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 207 } 208 #endif 209 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 210 if( pLoop->nOut>=10 ){ 211 sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); 212 }else{ 213 sqlite3StrAccumAppend(&str, " (~1 row)", 9); 214 } 215 #endif 216 zMsg = sqlite3StrAccumFinish(&str); 217 ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC); 218 } 219 return ret; 220 } 221 #endif /* SQLITE_OMIT_EXPLAIN */ 222 223 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 224 /* 225 ** Configure the VM passed as the first argument with an 226 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 227 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 228 ** clause that the scan reads data from. 229 ** 230 ** If argument addrExplain is not 0, it must be the address of an 231 ** OP_Explain instruction that describes the same loop. 232 */ 233 void sqlite3WhereAddScanStatus( 234 Vdbe *v, /* Vdbe to add scanstatus entry to */ 235 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 236 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 237 int addrExplain /* Address of OP_Explain (or 0) */ 238 ){ 239 const char *zObj = 0; 240 WhereLoop *pLoop = pLvl->pWLoop; 241 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 242 zObj = pLoop->u.btree.pIndex->zName; 243 }else{ 244 zObj = pSrclist->a[pLvl->iFrom].zName; 245 } 246 sqlite3VdbeScanStatus( 247 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 248 ); 249 } 250 #endif 251 252 253 /* 254 ** Disable a term in the WHERE clause. Except, do not disable the term 255 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 256 ** or USING clause of that join. 257 ** 258 ** Consider the term t2.z='ok' in the following queries: 259 ** 260 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 261 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 262 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 263 ** 264 ** The t2.z='ok' is disabled in the in (2) because it originates 265 ** in the ON clause. The term is disabled in (3) because it is not part 266 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 267 ** 268 ** Disabling a term causes that term to not be tested in the inner loop 269 ** of the join. Disabling is an optimization. When terms are satisfied 270 ** by indices, we disable them to prevent redundant tests in the inner 271 ** loop. We would get the correct results if nothing were ever disabled, 272 ** but joins might run a little slower. The trick is to disable as much 273 ** as we can without disabling too much. If we disabled in (1), we'd get 274 ** the wrong answer. See ticket #813. 275 ** 276 ** If all the children of a term are disabled, then that term is also 277 ** automatically disabled. In this way, terms get disabled if derived 278 ** virtual terms are tested first. For example: 279 ** 280 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 281 ** \___________/ \______/ \_____/ 282 ** parent child1 child2 283 ** 284 ** Only the parent term was in the original WHERE clause. The child1 285 ** and child2 terms were added by the LIKE optimization. If both of 286 ** the virtual child terms are valid, then testing of the parent can be 287 ** skipped. 288 ** 289 ** Usually the parent term is marked as TERM_CODED. But if the parent 290 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 291 ** The TERM_LIKECOND marking indicates that the term should be coded inside 292 ** a conditional such that is only evaluated on the second pass of a 293 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 294 */ 295 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 296 int nLoop = 0; 297 assert( pTerm!=0 ); 298 while( (pTerm->wtFlags & TERM_CODED)==0 299 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 300 && (pLevel->notReady & pTerm->prereqAll)==0 301 ){ 302 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 303 pTerm->wtFlags |= TERM_LIKECOND; 304 }else{ 305 pTerm->wtFlags |= TERM_CODED; 306 } 307 if( pTerm->iParent<0 ) break; 308 pTerm = &pTerm->pWC->a[pTerm->iParent]; 309 assert( pTerm!=0 ); 310 pTerm->nChild--; 311 if( pTerm->nChild!=0 ) break; 312 nLoop++; 313 } 314 } 315 316 /* 317 ** Code an OP_Affinity opcode to apply the column affinity string zAff 318 ** to the n registers starting at base. 319 ** 320 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the 321 ** beginning and end of zAff are ignored. If all entries in zAff are 322 ** SQLITE_AFF_BLOB, then no code gets generated. 323 ** 324 ** This routine makes its own copy of zAff so that the caller is free 325 ** to modify zAff after this routine returns. 326 */ 327 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 328 Vdbe *v = pParse->pVdbe; 329 if( zAff==0 ){ 330 assert( pParse->db->mallocFailed ); 331 return; 332 } 333 assert( v!=0 ); 334 335 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning 336 ** and end of the affinity string. 337 */ 338 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){ 339 n--; 340 base++; 341 zAff++; 342 } 343 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){ 344 n--; 345 } 346 347 /* Code the OP_Affinity opcode if there is anything left to do. */ 348 if( n>0 ){ 349 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 350 sqlite3ExprCacheAffinityChange(pParse, base, n); 351 } 352 } 353 354 /* 355 ** Expression pRight, which is the RHS of a comparison operation, is 356 ** either a vector of n elements or, if n==1, a scalar expression. 357 ** Before the comparison operation, affinity zAff is to be applied 358 ** to the pRight values. This function modifies characters within the 359 ** affinity string to SQLITE_AFF_BLOB if either: 360 ** 361 ** * the comparison will be performed with no affinity, or 362 ** * the affinity change in zAff is guaranteed not to change the value. 363 */ 364 static void updateRangeAffinityStr( 365 Expr *pRight, /* RHS of comparison */ 366 int n, /* Number of vector elements in comparison */ 367 char *zAff /* Affinity string to modify */ 368 ){ 369 int i; 370 for(i=0; i<n; i++){ 371 Expr *p = sqlite3VectorFieldSubexpr(pRight, i); 372 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB 373 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) 374 ){ 375 zAff[i] = SQLITE_AFF_BLOB; 376 } 377 } 378 } 379 380 /* 381 ** Generate code for a single equality term of the WHERE clause. An equality 382 ** term can be either X=expr or X IN (...). pTerm is the term to be 383 ** coded. 384 ** 385 ** The current value for the constraint is left in a register, the index 386 ** of which is returned. An attempt is made store the result in iTarget but 387 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the 388 ** constraint is a TK_EQ or TK_IS, then the current value might be left in 389 ** some other register and it is the caller's responsibility to compensate. 390 ** 391 ** For a constraint of the form X=expr, the expression is evaluated in 392 ** straight-line code. For constraints of the form X IN (...) 393 ** this routine sets up a loop that will iterate over all values of X. 394 */ 395 static int codeEqualityTerm( 396 Parse *pParse, /* The parsing context */ 397 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 398 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 399 int iEq, /* Index of the equality term within this level */ 400 int bRev, /* True for reverse-order IN operations */ 401 int iTarget /* Attempt to leave results in this register */ 402 ){ 403 Expr *pX = pTerm->pExpr; 404 Vdbe *v = pParse->pVdbe; 405 int iReg; /* Register holding results */ 406 407 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); 408 assert( iTarget>0 ); 409 if( pX->op==TK_EQ || pX->op==TK_IS ){ 410 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 411 }else if( pX->op==TK_ISNULL ){ 412 iReg = iTarget; 413 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 414 #ifndef SQLITE_OMIT_SUBQUERY 415 }else{ 416 int eType = IN_INDEX_NOOP; 417 int iTab; 418 struct InLoop *pIn; 419 WhereLoop *pLoop = pLevel->pWLoop; 420 int i; 421 int nEq = 0; 422 int *aiMap = 0; 423 424 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 425 && pLoop->u.btree.pIndex!=0 426 && pLoop->u.btree.pIndex->aSortOrder[iEq] 427 ){ 428 testcase( iEq==0 ); 429 testcase( bRev ); 430 bRev = !bRev; 431 } 432 assert( pX->op==TK_IN ); 433 iReg = iTarget; 434 435 for(i=0; i<iEq; i++){ 436 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ 437 disableTerm(pLevel, pTerm); 438 return iTarget; 439 } 440 } 441 for(i=iEq;i<pLoop->nLTerm; i++){ 442 if( ALWAYS(pLoop->aLTerm[i]) && pLoop->aLTerm[i]->pExpr==pX ) nEq++; 443 } 444 445 if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){ 446 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0); 447 }else{ 448 Select *pSelect = pX->x.pSelect; 449 sqlite3 *db = pParse->db; 450 u16 savedDbOptFlags = db->dbOptFlags; 451 ExprList *pOrigRhs = pSelect->pEList; 452 ExprList *pOrigLhs = pX->pLeft->x.pList; 453 ExprList *pRhs = 0; /* New Select.pEList for RHS */ 454 ExprList *pLhs = 0; /* New pX->pLeft vector */ 455 456 for(i=iEq;i<pLoop->nLTerm; i++){ 457 if( pLoop->aLTerm[i]->pExpr==pX ){ 458 int iField = pLoop->aLTerm[i]->iField - 1; 459 Expr *pNewRhs = sqlite3ExprDup(db, pOrigRhs->a[iField].pExpr, 0); 460 Expr *pNewLhs = sqlite3ExprDup(db, pOrigLhs->a[iField].pExpr, 0); 461 462 pRhs = sqlite3ExprListAppend(pParse, pRhs, pNewRhs); 463 pLhs = sqlite3ExprListAppend(pParse, pLhs, pNewLhs); 464 } 465 } 466 if( !db->mallocFailed ){ 467 Expr *pLeft = pX->pLeft; 468 469 if( pSelect->pOrderBy ){ 470 /* If the SELECT statement has an ORDER BY clause, zero the 471 ** iOrderByCol variables. These are set to non-zero when an 472 ** ORDER BY term exactly matches one of the terms of the 473 ** result-set. Since the result-set of the SELECT statement may 474 ** have been modified or reordered, these variables are no longer 475 ** set correctly. Since setting them is just an optimization, 476 ** it's easiest just to zero them here. */ 477 ExprList *pOrderBy = pSelect->pOrderBy; 478 for(i=0; i<pOrderBy->nExpr; i++){ 479 pOrderBy->a[i].u.x.iOrderByCol = 0; 480 } 481 } 482 483 /* Take care here not to generate a TK_VECTOR containing only a 484 ** single value. Since the parser never creates such a vector, some 485 ** of the subroutines do not handle this case. */ 486 if( pLhs->nExpr==1 ){ 487 pX->pLeft = pLhs->a[0].pExpr; 488 }else{ 489 pLeft->x.pList = pLhs; 490 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int) * nEq); 491 testcase( aiMap==0 ); 492 } 493 pSelect->pEList = pRhs; 494 db->dbOptFlags |= SQLITE_QueryFlattener; 495 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap); 496 db->dbOptFlags = savedDbOptFlags; 497 testcase( aiMap!=0 && aiMap[0]!=0 ); 498 pSelect->pEList = pOrigRhs; 499 pLeft->x.pList = pOrigLhs; 500 pX->pLeft = pLeft; 501 } 502 sqlite3ExprListDelete(pParse->db, pLhs); 503 sqlite3ExprListDelete(pParse->db, pRhs); 504 } 505 506 if( eType==IN_INDEX_INDEX_DESC ){ 507 testcase( bRev ); 508 bRev = !bRev; 509 } 510 iTab = pX->iTable; 511 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 512 VdbeCoverageIf(v, bRev); 513 VdbeCoverageIf(v, !bRev); 514 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 515 516 pLoop->wsFlags |= WHERE_IN_ABLE; 517 if( pLevel->u.in.nIn==0 ){ 518 pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 519 } 520 521 i = pLevel->u.in.nIn; 522 pLevel->u.in.nIn += nEq; 523 pLevel->u.in.aInLoop = 524 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 525 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 526 pIn = pLevel->u.in.aInLoop; 527 if( pIn ){ 528 int iMap = 0; /* Index in aiMap[] */ 529 pIn += i; 530 for(i=iEq;i<pLoop->nLTerm; i++){ 531 if( pLoop->aLTerm[i]->pExpr==pX ){ 532 int iOut = iReg + i - iEq; 533 if( eType==IN_INDEX_ROWID ){ 534 testcase( nEq>1 ); /* Happens with a UNIQUE index on ROWID */ 535 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); 536 }else{ 537 int iCol = aiMap ? aiMap[iMap++] : 0; 538 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); 539 } 540 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); 541 if( i==iEq ){ 542 pIn->iCur = iTab; 543 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; 544 }else{ 545 pIn->eEndLoopOp = OP_Noop; 546 } 547 pIn++; 548 } 549 } 550 }else{ 551 pLevel->u.in.nIn = 0; 552 } 553 sqlite3DbFree(pParse->db, aiMap); 554 #endif 555 } 556 disableTerm(pLevel, pTerm); 557 return iReg; 558 } 559 560 /* 561 ** Generate code that will evaluate all == and IN constraints for an 562 ** index scan. 563 ** 564 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 565 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 566 ** The index has as many as three equality constraints, but in this 567 ** example, the third "c" value is an inequality. So only two 568 ** constraints are coded. This routine will generate code to evaluate 569 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 570 ** in consecutive registers and the index of the first register is returned. 571 ** 572 ** In the example above nEq==2. But this subroutine works for any value 573 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 574 ** The only thing it does is allocate the pLevel->iMem memory cell and 575 ** compute the affinity string. 576 ** 577 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 578 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 579 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 580 ** occurs after the nEq quality constraints. 581 ** 582 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 583 ** the index of the first memory cell in that range. The code that 584 ** calls this routine will use that memory range to store keys for 585 ** start and termination conditions of the loop. 586 ** key value of the loop. If one or more IN operators appear, then 587 ** this routine allocates an additional nEq memory cells for internal 588 ** use. 589 ** 590 ** Before returning, *pzAff is set to point to a buffer containing a 591 ** copy of the column affinity string of the index allocated using 592 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 593 ** with equality constraints that use BLOB or NONE affinity are set to 594 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 595 ** 596 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 597 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 598 ** 599 ** In the example above, the index on t1(a) has TEXT affinity. But since 600 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 601 ** no conversion should be attempted before using a t2.b value as part of 602 ** a key to search the index. Hence the first byte in the returned affinity 603 ** string in this example would be set to SQLITE_AFF_BLOB. 604 */ 605 static int codeAllEqualityTerms( 606 Parse *pParse, /* Parsing context */ 607 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 608 int bRev, /* Reverse the order of IN operators */ 609 int nExtraReg, /* Number of extra registers to allocate */ 610 char **pzAff /* OUT: Set to point to affinity string */ 611 ){ 612 u16 nEq; /* The number of == or IN constraints to code */ 613 u16 nSkip; /* Number of left-most columns to skip */ 614 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 615 Index *pIdx; /* The index being used for this loop */ 616 WhereTerm *pTerm; /* A single constraint term */ 617 WhereLoop *pLoop; /* The WhereLoop object */ 618 int j; /* Loop counter */ 619 int regBase; /* Base register */ 620 int nReg; /* Number of registers to allocate */ 621 char *zAff; /* Affinity string to return */ 622 623 /* This module is only called on query plans that use an index. */ 624 pLoop = pLevel->pWLoop; 625 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 626 nEq = pLoop->u.btree.nEq; 627 nSkip = pLoop->nSkip; 628 pIdx = pLoop->u.btree.pIndex; 629 assert( pIdx!=0 ); 630 631 /* Figure out how many memory cells we will need then allocate them. 632 */ 633 regBase = pParse->nMem + 1; 634 nReg = pLoop->u.btree.nEq + nExtraReg; 635 pParse->nMem += nReg; 636 637 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 638 assert( zAff!=0 || pParse->db->mallocFailed ); 639 640 if( nSkip ){ 641 int iIdxCur = pLevel->iIdxCur; 642 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 643 VdbeCoverageIf(v, bRev==0); 644 VdbeCoverageIf(v, bRev!=0); 645 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 646 j = sqlite3VdbeAddOp0(v, OP_Goto); 647 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 648 iIdxCur, 0, regBase, nSkip); 649 VdbeCoverageIf(v, bRev==0); 650 VdbeCoverageIf(v, bRev!=0); 651 sqlite3VdbeJumpHere(v, j); 652 for(j=0; j<nSkip; j++){ 653 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 654 testcase( pIdx->aiColumn[j]==XN_EXPR ); 655 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 656 } 657 } 658 659 /* Evaluate the equality constraints 660 */ 661 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 662 for(j=nSkip; j<nEq; j++){ 663 int r1; 664 pTerm = pLoop->aLTerm[j]; 665 assert( pTerm!=0 ); 666 /* The following testcase is true for indices with redundant columns. 667 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 668 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 669 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 670 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 671 if( r1!=regBase+j ){ 672 if( nReg==1 ){ 673 sqlite3ReleaseTempReg(pParse, regBase); 674 regBase = r1; 675 }else{ 676 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 677 } 678 } 679 if( pTerm->eOperator & WO_IN ){ 680 if( pTerm->pExpr->flags & EP_xIsSelect ){ 681 /* No affinity ever needs to be (or should be) applied to a value 682 ** from the RHS of an "? IN (SELECT ...)" expression. The 683 ** sqlite3FindInIndex() routine has already ensured that the 684 ** affinity of the comparison has been applied to the value. */ 685 if( zAff ) zAff[j] = SQLITE_AFF_BLOB; 686 } 687 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ 688 Expr *pRight = pTerm->pExpr->pRight; 689 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 690 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 691 VdbeCoverage(v); 692 } 693 if( zAff ){ 694 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 695 zAff[j] = SQLITE_AFF_BLOB; 696 } 697 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 698 zAff[j] = SQLITE_AFF_BLOB; 699 } 700 } 701 } 702 } 703 *pzAff = zAff; 704 return regBase; 705 } 706 707 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 708 /* 709 ** If the most recently coded instruction is a constant range constraint 710 ** (a string literal) that originated from the LIKE optimization, then 711 ** set P3 and P5 on the OP_String opcode so that the string will be cast 712 ** to a BLOB at appropriate times. 713 ** 714 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 715 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 716 ** scan loop run twice, once for strings and a second time for BLOBs. 717 ** The OP_String opcodes on the second pass convert the upper and lower 718 ** bound string constants to blobs. This routine makes the necessary changes 719 ** to the OP_String opcodes for that to happen. 720 ** 721 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 722 ** only the one pass through the string space is required, so this routine 723 ** becomes a no-op. 724 */ 725 static void whereLikeOptimizationStringFixup( 726 Vdbe *v, /* prepared statement under construction */ 727 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 728 WhereTerm *pTerm /* The upper or lower bound just coded */ 729 ){ 730 if( pTerm->wtFlags & TERM_LIKEOPT ){ 731 VdbeOp *pOp; 732 assert( pLevel->iLikeRepCntr>0 ); 733 pOp = sqlite3VdbeGetOp(v, -1); 734 assert( pOp!=0 ); 735 assert( pOp->opcode==OP_String8 736 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 737 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ 738 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ 739 } 740 } 741 #else 742 # define whereLikeOptimizationStringFixup(A,B,C) 743 #endif 744 745 #ifdef SQLITE_ENABLE_CURSOR_HINTS 746 /* 747 ** Information is passed from codeCursorHint() down to individual nodes of 748 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 749 ** structure. 750 */ 751 struct CCurHint { 752 int iTabCur; /* Cursor for the main table */ 753 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 754 Index *pIdx; /* The index used to access the table */ 755 }; 756 757 /* 758 ** This function is called for every node of an expression that is a candidate 759 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 760 ** the table CCurHint.iTabCur, verify that the same column can be 761 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 762 */ 763 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 764 struct CCurHint *pHint = pWalker->u.pCCurHint; 765 assert( pHint->pIdx!=0 ); 766 if( pExpr->op==TK_COLUMN 767 && pExpr->iTable==pHint->iTabCur 768 && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0 769 ){ 770 pWalker->eCode = 1; 771 } 772 return WRC_Continue; 773 } 774 775 /* 776 ** Test whether or not expression pExpr, which was part of a WHERE clause, 777 ** should be included in the cursor-hint for a table that is on the rhs 778 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the 779 ** expression is not suitable. 780 ** 781 ** An expression is unsuitable if it might evaluate to non NULL even if 782 ** a TK_COLUMN node that does affect the value of the expression is set 783 ** to NULL. For example: 784 ** 785 ** col IS NULL 786 ** col IS NOT NULL 787 ** coalesce(col, 1) 788 ** CASE WHEN col THEN 0 ELSE 1 END 789 */ 790 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ 791 if( pExpr->op==TK_IS 792 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT 793 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE 794 ){ 795 pWalker->eCode = 1; 796 }else if( pExpr->op==TK_FUNCTION ){ 797 int d1; 798 char d2[4]; 799 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ 800 pWalker->eCode = 1; 801 } 802 } 803 804 return WRC_Continue; 805 } 806 807 808 /* 809 ** This function is called on every node of an expression tree used as an 810 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 811 ** that accesses any table other than the one identified by 812 ** CCurHint.iTabCur, then do the following: 813 ** 814 ** 1) allocate a register and code an OP_Column instruction to read 815 ** the specified column into the new register, and 816 ** 817 ** 2) transform the expression node to a TK_REGISTER node that reads 818 ** from the newly populated register. 819 ** 820 ** Also, if the node is a TK_COLUMN that does access the table idenified 821 ** by pCCurHint.iTabCur, and an index is being used (which we will 822 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 823 ** an access of the index rather than the original table. 824 */ 825 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 826 int rc = WRC_Continue; 827 struct CCurHint *pHint = pWalker->u.pCCurHint; 828 if( pExpr->op==TK_COLUMN ){ 829 if( pExpr->iTable!=pHint->iTabCur ){ 830 Vdbe *v = pWalker->pParse->pVdbe; 831 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 832 sqlite3ExprCodeGetColumnOfTable( 833 v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg 834 ); 835 pExpr->op = TK_REGISTER; 836 pExpr->iTable = reg; 837 }else if( pHint->pIdx!=0 ){ 838 pExpr->iTable = pHint->iIdxCur; 839 pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn); 840 assert( pExpr->iColumn>=0 ); 841 } 842 }else if( pExpr->op==TK_AGG_FUNCTION ){ 843 /* An aggregate function in the WHERE clause of a query means this must 844 ** be a correlated sub-query, and expression pExpr is an aggregate from 845 ** the parent context. Do not walk the function arguments in this case. 846 ** 847 ** todo: It should be possible to replace this node with a TK_REGISTER 848 ** expression, as the result of the expression must be stored in a 849 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 850 rc = WRC_Prune; 851 } 852 return rc; 853 } 854 855 /* 856 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 857 */ 858 static void codeCursorHint( 859 struct SrcList_item *pTabItem, /* FROM clause item */ 860 WhereInfo *pWInfo, /* The where clause */ 861 WhereLevel *pLevel, /* Which loop to provide hints for */ 862 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 863 ){ 864 Parse *pParse = pWInfo->pParse; 865 sqlite3 *db = pParse->db; 866 Vdbe *v = pParse->pVdbe; 867 Expr *pExpr = 0; 868 WhereLoop *pLoop = pLevel->pWLoop; 869 int iCur; 870 WhereClause *pWC; 871 WhereTerm *pTerm; 872 int i, j; 873 struct CCurHint sHint; 874 Walker sWalker; 875 876 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 877 iCur = pLevel->iTabCur; 878 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 879 sHint.iTabCur = iCur; 880 sHint.iIdxCur = pLevel->iIdxCur; 881 sHint.pIdx = pLoop->u.btree.pIndex; 882 memset(&sWalker, 0, sizeof(sWalker)); 883 sWalker.pParse = pParse; 884 sWalker.u.pCCurHint = &sHint; 885 pWC = &pWInfo->sWC; 886 for(i=0; i<pWC->nTerm; i++){ 887 pTerm = &pWC->a[i]; 888 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 889 if( pTerm->prereqAll & pLevel->notReady ) continue; 890 891 /* Any terms specified as part of the ON(...) clause for any LEFT 892 ** JOIN for which the current table is not the rhs are omitted 893 ** from the cursor-hint. 894 ** 895 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms 896 ** that were specified as part of the WHERE clause must be excluded. 897 ** This is to address the following: 898 ** 899 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; 900 ** 901 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its 902 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is 903 ** pushed down to the cursor, this row is filtered out, causing 904 ** SQLite to synthesize a row of NULL values. Which does match the 905 ** WHERE clause, and so the query returns a row. Which is incorrect. 906 ** 907 ** For the same reason, WHERE terms such as: 908 ** 909 ** WHERE 1 = (t2.c IS NULL) 910 ** 911 ** are also excluded. See codeCursorHintIsOrFunction() for details. 912 */ 913 if( pTabItem->fg.jointype & JT_LEFT ){ 914 Expr *pExpr = pTerm->pExpr; 915 if( !ExprHasProperty(pExpr, EP_FromJoin) 916 || pExpr->iRightJoinTable!=pTabItem->iCursor 917 ){ 918 sWalker.eCode = 0; 919 sWalker.xExprCallback = codeCursorHintIsOrFunction; 920 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 921 if( sWalker.eCode ) continue; 922 } 923 }else{ 924 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; 925 } 926 927 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 928 ** the cursor. These terms are not needed as hints for a pure range 929 ** scan (that has no == terms) so omit them. */ 930 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 931 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 932 if( j<pLoop->nLTerm ) continue; 933 } 934 935 /* No subqueries or non-deterministic functions allowed */ 936 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 937 938 /* For an index scan, make sure referenced columns are actually in 939 ** the index. */ 940 if( sHint.pIdx!=0 ){ 941 sWalker.eCode = 0; 942 sWalker.xExprCallback = codeCursorHintCheckExpr; 943 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 944 if( sWalker.eCode ) continue; 945 } 946 947 /* If we survive all prior tests, that means this term is worth hinting */ 948 pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 949 } 950 if( pExpr!=0 ){ 951 sWalker.xExprCallback = codeCursorHintFixExpr; 952 sqlite3WalkExpr(&sWalker, pExpr); 953 sqlite3VdbeAddOp4(v, OP_CursorHint, 954 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 955 (const char*)pExpr, P4_EXPR); 956 } 957 } 958 #else 959 # define codeCursorHint(A,B,C,D) /* No-op */ 960 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 961 962 /* 963 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains 964 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This 965 ** function generates code to do a deferred seek of cursor iCur to the 966 ** rowid stored in register iRowid. 967 ** 968 ** Normally, this is just: 969 ** 970 ** OP_DeferredSeek $iCur $iRowid 971 ** 972 ** However, if the scan currently being coded is a branch of an OR-loop and 973 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek 974 ** is set to iIdxCur and P4 is set to point to an array of integers 975 ** containing one entry for each column of the table cursor iCur is open 976 ** on. For each table column, if the column is the i'th column of the 977 ** index, then the corresponding array entry is set to (i+1). If the column 978 ** does not appear in the index at all, the array entry is set to 0. 979 */ 980 static void codeDeferredSeek( 981 WhereInfo *pWInfo, /* Where clause context */ 982 Index *pIdx, /* Index scan is using */ 983 int iCur, /* Cursor for IPK b-tree */ 984 int iIdxCur /* Index cursor */ 985 ){ 986 Parse *pParse = pWInfo->pParse; /* Parse context */ 987 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ 988 989 assert( iIdxCur>0 ); 990 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); 991 992 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur); 993 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 994 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) 995 ){ 996 int i; 997 Table *pTab = pIdx->pTable; 998 int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1)); 999 if( ai ){ 1000 ai[0] = pTab->nCol; 1001 for(i=0; i<pIdx->nColumn-1; i++){ 1002 assert( pIdx->aiColumn[i]<pTab->nCol ); 1003 if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1; 1004 } 1005 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); 1006 } 1007 } 1008 } 1009 1010 /* 1011 ** If the expression passed as the second argument is a vector, generate 1012 ** code to write the first nReg elements of the vector into an array 1013 ** of registers starting with iReg. 1014 ** 1015 ** If the expression is not a vector, then nReg must be passed 1. In 1016 ** this case, generate code to evaluate the expression and leave the 1017 ** result in register iReg. 1018 */ 1019 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ 1020 assert( nReg>0 ); 1021 if( p && sqlite3ExprIsVector(p) ){ 1022 #ifndef SQLITE_OMIT_SUBQUERY 1023 if( (p->flags & EP_xIsSelect) ){ 1024 Vdbe *v = pParse->pVdbe; 1025 int iSelect = sqlite3CodeSubselect(pParse, p, 0, 0); 1026 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); 1027 }else 1028 #endif 1029 { 1030 int i; 1031 ExprList *pList = p->x.pList; 1032 assert( nReg<=pList->nExpr ); 1033 for(i=0; i<nReg; i++){ 1034 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i); 1035 } 1036 } 1037 }else{ 1038 assert( nReg==1 ); 1039 sqlite3ExprCode(pParse, p, iReg); 1040 } 1041 } 1042 1043 /* An instance of the IdxExprTrans object carries information about a 1044 ** mapping from an expression on table columns into a column in an index 1045 ** down through the Walker. 1046 */ 1047 typedef struct IdxExprTrans { 1048 Expr *pIdxExpr; /* The index expression */ 1049 int iTabCur; /* The cursor of the corresponding table */ 1050 int iIdxCur; /* The cursor for the index */ 1051 int iIdxCol; /* The column for the index */ 1052 } IdxExprTrans; 1053 1054 /* The walker node callback used to transform matching expressions into 1055 ** a reference to an index column for an index on an expression. 1056 ** 1057 ** If pExpr matches, then transform it into a reference to the index column 1058 ** that contains the value of pExpr. 1059 */ 1060 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){ 1061 IdxExprTrans *pX = p->u.pIdxTrans; 1062 if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){ 1063 pExpr->op = TK_COLUMN; 1064 pExpr->iTable = pX->iIdxCur; 1065 pExpr->iColumn = pX->iIdxCol; 1066 pExpr->pTab = 0; 1067 return WRC_Prune; 1068 }else{ 1069 return WRC_Continue; 1070 } 1071 } 1072 1073 /* 1074 ** For an indexes on expression X, locate every instance of expression X 1075 ** in pExpr and change that subexpression into a reference to the appropriate 1076 ** column of the index. 1077 */ 1078 static void whereIndexExprTrans( 1079 Index *pIdx, /* The Index */ 1080 int iTabCur, /* Cursor of the table that is being indexed */ 1081 int iIdxCur, /* Cursor of the index itself */ 1082 WhereInfo *pWInfo /* Transform expressions in this WHERE clause */ 1083 ){ 1084 int iIdxCol; /* Column number of the index */ 1085 ExprList *aColExpr; /* Expressions that are indexed */ 1086 Walker w; 1087 IdxExprTrans x; 1088 aColExpr = pIdx->aColExpr; 1089 if( aColExpr==0 ) return; /* Not an index on expressions */ 1090 memset(&w, 0, sizeof(w)); 1091 w.xExprCallback = whereIndexExprTransNode; 1092 w.u.pIdxTrans = &x; 1093 x.iTabCur = iTabCur; 1094 x.iIdxCur = iIdxCur; 1095 for(iIdxCol=0; iIdxCol<aColExpr->nExpr; iIdxCol++){ 1096 if( pIdx->aiColumn[iIdxCol]!=XN_EXPR ) continue; 1097 assert( aColExpr->a[iIdxCol].pExpr!=0 ); 1098 x.iIdxCol = iIdxCol; 1099 x.pIdxExpr = aColExpr->a[iIdxCol].pExpr; 1100 sqlite3WalkExpr(&w, pWInfo->pWhere); 1101 sqlite3WalkExprList(&w, pWInfo->pOrderBy); 1102 sqlite3WalkExprList(&w, pWInfo->pResultSet); 1103 } 1104 } 1105 1106 /* 1107 ** Generate code for the start of the iLevel-th loop in the WHERE clause 1108 ** implementation described by pWInfo. 1109 */ 1110 Bitmask sqlite3WhereCodeOneLoopStart( 1111 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1112 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1113 Bitmask notReady /* Which tables are currently available */ 1114 ){ 1115 int j, k; /* Loop counters */ 1116 int iCur; /* The VDBE cursor for the table */ 1117 int addrNxt; /* Where to jump to continue with the next IN case */ 1118 int omitTable; /* True if we use the index only */ 1119 int bRev; /* True if we need to scan in reverse order */ 1120 WhereLevel *pLevel; /* The where level to be coded */ 1121 WhereLoop *pLoop; /* The WhereLoop object being coded */ 1122 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 1123 WhereTerm *pTerm; /* A WHERE clause term */ 1124 Parse *pParse; /* Parsing context */ 1125 sqlite3 *db; /* Database connection */ 1126 Vdbe *v; /* The prepared stmt under constructions */ 1127 struct SrcList_item *pTabItem; /* FROM clause term being coded */ 1128 int addrBrk; /* Jump here to break out of the loop */ 1129 int addrHalt; /* addrBrk for the outermost loop */ 1130 int addrCont; /* Jump here to continue with next cycle */ 1131 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 1132 int iReleaseReg = 0; /* Temp register to free before returning */ 1133 Index *pIdx = 0; /* Index used by loop (if any) */ 1134 int iLoop; /* Iteration of constraint generator loop */ 1135 1136 pParse = pWInfo->pParse; 1137 v = pParse->pVdbe; 1138 pWC = &pWInfo->sWC; 1139 db = pParse->db; 1140 pLevel = &pWInfo->a[iLevel]; 1141 pLoop = pLevel->pWLoop; 1142 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1143 iCur = pTabItem->iCursor; 1144 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 1145 bRev = (pWInfo->revMask>>iLevel)&1; 1146 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 1147 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0; 1148 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 1149 1150 /* Create labels for the "break" and "continue" instructions 1151 ** for the current loop. Jump to addrBrk to break out of a loop. 1152 ** Jump to cont to go immediately to the next iteration of the 1153 ** loop. 1154 ** 1155 ** When there is an IN operator, we also have a "addrNxt" label that 1156 ** means to continue with the next IN value combination. When 1157 ** there are no IN operators in the constraints, the "addrNxt" label 1158 ** is the same as "addrBrk". 1159 */ 1160 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 1161 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); 1162 1163 /* If this is the right table of a LEFT OUTER JOIN, allocate and 1164 ** initialize a memory cell that records if this table matches any 1165 ** row of the left table of the join. 1166 */ 1167 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 1168 pLevel->iLeftJoin = ++pParse->nMem; 1169 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 1170 VdbeComment((v, "init LEFT JOIN no-match flag")); 1171 } 1172 1173 /* Compute a safe address to jump to if we discover that the table for 1174 ** this loop is empty and can never contribute content. */ 1175 for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){} 1176 addrHalt = pWInfo->a[j].addrBrk; 1177 1178 /* Special case of a FROM clause subquery implemented as a co-routine */ 1179 if( pTabItem->fg.viaCoroutine ){ 1180 int regYield = pTabItem->regReturn; 1181 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 1182 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 1183 VdbeCoverage(v); 1184 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); 1185 pLevel->op = OP_Goto; 1186 }else 1187 1188 #ifndef SQLITE_OMIT_VIRTUALTABLE 1189 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 1190 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 1191 ** to access the data. 1192 */ 1193 int iReg; /* P3 Value for OP_VFilter */ 1194 int addrNotFound; 1195 int nConstraint = pLoop->nLTerm; 1196 int iIn; /* Counter for IN constraints */ 1197 1198 sqlite3ExprCachePush(pParse); 1199 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 1200 addrNotFound = pLevel->addrBrk; 1201 for(j=0; j<nConstraint; j++){ 1202 int iTarget = iReg+j+2; 1203 pTerm = pLoop->aLTerm[j]; 1204 if( NEVER(pTerm==0) ) continue; 1205 if( pTerm->eOperator & WO_IN ){ 1206 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 1207 addrNotFound = pLevel->addrNxt; 1208 }else{ 1209 Expr *pRight = pTerm->pExpr->pRight; 1210 codeExprOrVector(pParse, pRight, iTarget, 1); 1211 } 1212 } 1213 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 1214 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 1215 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 1216 pLoop->u.vtab.idxStr, 1217 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); 1218 VdbeCoverage(v); 1219 pLoop->u.vtab.needFree = 0; 1220 pLevel->p1 = iCur; 1221 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 1222 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1223 iIn = pLevel->u.in.nIn; 1224 for(j=nConstraint-1; j>=0; j--){ 1225 pTerm = pLoop->aLTerm[j]; 1226 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ 1227 disableTerm(pLevel, pTerm); 1228 }else if( (pTerm->eOperator & WO_IN)!=0 ){ 1229 Expr *pCompare; /* The comparison operator */ 1230 Expr *pRight; /* RHS of the comparison */ 1231 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ 1232 1233 /* Reload the constraint value into reg[iReg+j+2]. The same value 1234 ** was loaded into the same register prior to the OP_VFilter, but 1235 ** the xFilter implementation might have changed the datatype or 1236 ** encoding of the value in the register, so it *must* be reloaded. */ 1237 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed ); 1238 if( !db->mallocFailed ){ 1239 assert( iIn>0 ); 1240 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[--iIn].addrInTop); 1241 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid ); 1242 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 ); 1243 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 ); 1244 testcase( pOp->opcode==OP_Rowid ); 1245 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); 1246 } 1247 1248 /* Generate code that will continue to the next row if 1249 ** the IN constraint is not satisfied */ 1250 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); 1251 assert( pCompare!=0 || db->mallocFailed ); 1252 if( pCompare ){ 1253 pCompare->pLeft = pTerm->pExpr->pLeft; 1254 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); 1255 if( pRight ){ 1256 pRight->iTable = iReg+j+2; 1257 sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0); 1258 } 1259 pCompare->pLeft = 0; 1260 sqlite3ExprDelete(db, pCompare); 1261 } 1262 } 1263 } 1264 /* These registers need to be preserved in case there is an IN operator 1265 ** loop. So we could deallocate the registers here (and potentially 1266 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems 1267 ** simpler and safer to simply not reuse the registers. 1268 ** 1269 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 1270 */ 1271 sqlite3ExprCachePop(pParse); 1272 }else 1273 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1274 1275 if( (pLoop->wsFlags & WHERE_IPK)!=0 1276 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 1277 ){ 1278 /* Case 2: We can directly reference a single row using an 1279 ** equality comparison against the ROWID field. Or 1280 ** we reference multiple rows using a "rowid IN (...)" 1281 ** construct. 1282 */ 1283 assert( pLoop->u.btree.nEq==1 ); 1284 pTerm = pLoop->aLTerm[0]; 1285 assert( pTerm!=0 ); 1286 assert( pTerm->pExpr!=0 ); 1287 assert( omitTable==0 ); 1288 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1289 iReleaseReg = ++pParse->nMem; 1290 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 1291 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 1292 addrNxt = pLevel->addrNxt; 1293 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); 1294 VdbeCoverage(v); 1295 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); 1296 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 1297 VdbeComment((v, "pk")); 1298 pLevel->op = OP_Noop; 1299 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 1300 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 1301 ){ 1302 /* Case 3: We have an inequality comparison against the ROWID field. 1303 */ 1304 int testOp = OP_Noop; 1305 int start; 1306 int memEndValue = 0; 1307 WhereTerm *pStart, *pEnd; 1308 1309 assert( omitTable==0 ); 1310 j = 0; 1311 pStart = pEnd = 0; 1312 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 1313 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 1314 assert( pStart!=0 || pEnd!=0 ); 1315 if( bRev ){ 1316 pTerm = pStart; 1317 pStart = pEnd; 1318 pEnd = pTerm; 1319 } 1320 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); 1321 if( pStart ){ 1322 Expr *pX; /* The expression that defines the start bound */ 1323 int r1, rTemp; /* Registers for holding the start boundary */ 1324 int op; /* Cursor seek operation */ 1325 1326 /* The following constant maps TK_xx codes into corresponding 1327 ** seek opcodes. It depends on a particular ordering of TK_xx 1328 */ 1329 const u8 aMoveOp[] = { 1330 /* TK_GT */ OP_SeekGT, 1331 /* TK_LE */ OP_SeekLE, 1332 /* TK_LT */ OP_SeekLT, 1333 /* TK_GE */ OP_SeekGE 1334 }; 1335 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 1336 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 1337 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 1338 1339 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 1340 testcase( pStart->wtFlags & TERM_VIRTUAL ); 1341 pX = pStart->pExpr; 1342 assert( pX!=0 ); 1343 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 1344 if( sqlite3ExprIsVector(pX->pRight) ){ 1345 r1 = rTemp = sqlite3GetTempReg(pParse); 1346 codeExprOrVector(pParse, pX->pRight, r1, 1); 1347 op = aMoveOp[(pX->op - TK_GT) | 0x0001]; 1348 }else{ 1349 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 1350 disableTerm(pLevel, pStart); 1351 op = aMoveOp[(pX->op - TK_GT)]; 1352 } 1353 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); 1354 VdbeComment((v, "pk")); 1355 VdbeCoverageIf(v, pX->op==TK_GT); 1356 VdbeCoverageIf(v, pX->op==TK_LE); 1357 VdbeCoverageIf(v, pX->op==TK_LT); 1358 VdbeCoverageIf(v, pX->op==TK_GE); 1359 sqlite3ExprCacheAffinityChange(pParse, r1, 1); 1360 sqlite3ReleaseTempReg(pParse, rTemp); 1361 }else{ 1362 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt); 1363 VdbeCoverageIf(v, bRev==0); 1364 VdbeCoverageIf(v, bRev!=0); 1365 } 1366 if( pEnd ){ 1367 Expr *pX; 1368 pX = pEnd->pExpr; 1369 assert( pX!=0 ); 1370 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 1371 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 1372 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 1373 memEndValue = ++pParse->nMem; 1374 codeExprOrVector(pParse, pX->pRight, memEndValue, 1); 1375 if( 0==sqlite3ExprIsVector(pX->pRight) 1376 && (pX->op==TK_LT || pX->op==TK_GT) 1377 ){ 1378 testOp = bRev ? OP_Le : OP_Ge; 1379 }else{ 1380 testOp = bRev ? OP_Lt : OP_Gt; 1381 } 1382 if( 0==sqlite3ExprIsVector(pX->pRight) ){ 1383 disableTerm(pLevel, pEnd); 1384 } 1385 } 1386 start = sqlite3VdbeCurrentAddr(v); 1387 pLevel->op = bRev ? OP_Prev : OP_Next; 1388 pLevel->p1 = iCur; 1389 pLevel->p2 = start; 1390 assert( pLevel->p5==0 ); 1391 if( testOp!=OP_Noop ){ 1392 iRowidReg = ++pParse->nMem; 1393 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 1394 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 1395 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 1396 VdbeCoverageIf(v, testOp==OP_Le); 1397 VdbeCoverageIf(v, testOp==OP_Lt); 1398 VdbeCoverageIf(v, testOp==OP_Ge); 1399 VdbeCoverageIf(v, testOp==OP_Gt); 1400 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 1401 } 1402 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 1403 /* Case 4: A scan using an index. 1404 ** 1405 ** The WHERE clause may contain zero or more equality 1406 ** terms ("==" or "IN" operators) that refer to the N 1407 ** left-most columns of the index. It may also contain 1408 ** inequality constraints (>, <, >= or <=) on the indexed 1409 ** column that immediately follows the N equalities. Only 1410 ** the right-most column can be an inequality - the rest must 1411 ** use the "==" and "IN" operators. For example, if the 1412 ** index is on (x,y,z), then the following clauses are all 1413 ** optimized: 1414 ** 1415 ** x=5 1416 ** x=5 AND y=10 1417 ** x=5 AND y<10 1418 ** x=5 AND y>5 AND y<10 1419 ** x=5 AND y=5 AND z<=10 1420 ** 1421 ** The z<10 term of the following cannot be used, only 1422 ** the x=5 term: 1423 ** 1424 ** x=5 AND z<10 1425 ** 1426 ** N may be zero if there are inequality constraints. 1427 ** If there are no inequality constraints, then N is at 1428 ** least one. 1429 ** 1430 ** This case is also used when there are no WHERE clause 1431 ** constraints but an index is selected anyway, in order 1432 ** to force the output order to conform to an ORDER BY. 1433 */ 1434 static const u8 aStartOp[] = { 1435 0, 1436 0, 1437 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1438 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1439 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1440 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1441 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1442 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1443 }; 1444 static const u8 aEndOp[] = { 1445 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1446 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1447 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1448 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1449 }; 1450 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1451 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ 1452 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ 1453 int regBase; /* Base register holding constraint values */ 1454 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1455 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1456 int startEq; /* True if range start uses ==, >= or <= */ 1457 int endEq; /* True if range end uses ==, >= or <= */ 1458 int start_constraints; /* Start of range is constrained */ 1459 int nConstraint; /* Number of constraint terms */ 1460 int iIdxCur; /* The VDBE cursor for the index */ 1461 int nExtraReg = 0; /* Number of extra registers needed */ 1462 int op; /* Instruction opcode */ 1463 char *zStartAff; /* Affinity for start of range constraint */ 1464 char *zEndAff = 0; /* Affinity for end of range constraint */ 1465 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1466 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1467 1468 pIdx = pLoop->u.btree.pIndex; 1469 iIdxCur = pLevel->iIdxCur; 1470 assert( nEq>=pLoop->nSkip ); 1471 1472 /* If this loop satisfies a sort order (pOrderBy) request that 1473 ** was passed to this function to implement a "SELECT min(x) ..." 1474 ** query, then the caller will only allow the loop to run for 1475 ** a single iteration. This means that the first row returned 1476 ** should not have a NULL value stored in 'x'. If column 'x' is 1477 ** the first one after the nEq equality constraints in the index, 1478 ** this requires some special handling. 1479 */ 1480 assert( pWInfo->pOrderBy==0 1481 || pWInfo->pOrderBy->nExpr==1 1482 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); 1483 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 1484 && pWInfo->nOBSat>0 1485 && (pIdx->nKeyCol>nEq) 1486 ){ 1487 assert( pLoop->nSkip==0 ); 1488 bSeekPastNull = 1; 1489 nExtraReg = 1; 1490 } 1491 1492 /* Find any inequality constraint terms for the start and end 1493 ** of the range. 1494 */ 1495 j = nEq; 1496 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1497 pRangeStart = pLoop->aLTerm[j++]; 1498 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); 1499 /* Like optimization range constraints always occur in pairs */ 1500 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1501 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1502 } 1503 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1504 pRangeEnd = pLoop->aLTerm[j++]; 1505 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); 1506 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1507 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1508 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1509 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1510 pLevel->iLikeRepCntr = (u32)++pParse->nMem; 1511 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); 1512 VdbeComment((v, "LIKE loop counter")); 1513 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1514 /* iLikeRepCntr actually stores 2x the counter register number. The 1515 ** bottom bit indicates whether the search order is ASC or DESC. */ 1516 testcase( bRev ); 1517 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1518 assert( (bRev & ~1)==0 ); 1519 pLevel->iLikeRepCntr <<=1; 1520 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); 1521 } 1522 #endif 1523 if( pRangeStart==0 ){ 1524 j = pIdx->aiColumn[nEq]; 1525 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){ 1526 bSeekPastNull = 1; 1527 } 1528 } 1529 } 1530 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1531 1532 /* If we are doing a reverse order scan on an ascending index, or 1533 ** a forward order scan on a descending index, interchange the 1534 ** start and end terms (pRangeStart and pRangeEnd). 1535 */ 1536 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) 1537 || (bRev && pIdx->nKeyCol==nEq) 1538 ){ 1539 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1540 SWAP(u8, bSeekPastNull, bStopAtNull); 1541 SWAP(u8, nBtm, nTop); 1542 } 1543 1544 /* Generate code to evaluate all constraint terms using == or IN 1545 ** and store the values of those terms in an array of registers 1546 ** starting at regBase. 1547 */ 1548 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); 1549 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1550 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1551 if( zStartAff && nTop ){ 1552 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); 1553 } 1554 addrNxt = pLevel->addrNxt; 1555 1556 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1557 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1558 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1559 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1560 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1561 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1562 start_constraints = pRangeStart || nEq>0; 1563 1564 /* Seek the index cursor to the start of the range. */ 1565 nConstraint = nEq; 1566 if( pRangeStart ){ 1567 Expr *pRight = pRangeStart->pExpr->pRight; 1568 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); 1569 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1570 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1571 && sqlite3ExprCanBeNull(pRight) 1572 ){ 1573 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1574 VdbeCoverage(v); 1575 } 1576 if( zStartAff ){ 1577 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); 1578 } 1579 nConstraint += nBtm; 1580 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1581 if( sqlite3ExprIsVector(pRight)==0 ){ 1582 disableTerm(pLevel, pRangeStart); 1583 }else{ 1584 startEq = 1; 1585 } 1586 bSeekPastNull = 0; 1587 }else if( bSeekPastNull ){ 1588 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1589 nConstraint++; 1590 startEq = 0; 1591 start_constraints = 1; 1592 } 1593 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1594 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ 1595 /* The skip-scan logic inside the call to codeAllEqualityConstraints() 1596 ** above has already left the cursor sitting on the correct row, 1597 ** so no further seeking is needed */ 1598 }else{ 1599 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 1600 assert( op!=0 ); 1601 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1602 VdbeCoverage(v); 1603 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1604 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1605 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 1606 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1607 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1608 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 1609 } 1610 1611 /* Load the value for the inequality constraint at the end of the 1612 ** range (if any). 1613 */ 1614 nConstraint = nEq; 1615 if( pRangeEnd ){ 1616 Expr *pRight = pRangeEnd->pExpr->pRight; 1617 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); 1618 codeExprOrVector(pParse, pRight, regBase+nEq, nTop); 1619 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 1620 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 1621 && sqlite3ExprCanBeNull(pRight) 1622 ){ 1623 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1624 VdbeCoverage(v); 1625 } 1626 if( zEndAff ){ 1627 updateRangeAffinityStr(pRight, nTop, zEndAff); 1628 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); 1629 }else{ 1630 assert( pParse->db->mallocFailed ); 1631 } 1632 nConstraint += nTop; 1633 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 1634 1635 if( sqlite3ExprIsVector(pRight)==0 ){ 1636 disableTerm(pLevel, pRangeEnd); 1637 }else{ 1638 endEq = 1; 1639 } 1640 }else if( bStopAtNull ){ 1641 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1642 endEq = 0; 1643 nConstraint++; 1644 } 1645 sqlite3DbFree(db, zStartAff); 1646 sqlite3DbFree(db, zEndAff); 1647 1648 /* Top of the loop body */ 1649 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1650 1651 /* Check if the index cursor is past the end of the range. */ 1652 if( nConstraint ){ 1653 op = aEndOp[bRev*2 + endEq]; 1654 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1655 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1656 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1657 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1658 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1659 } 1660 1661 /* Seek the table cursor, if required */ 1662 if( omitTable ){ 1663 /* pIdx is a covering index. No need to access the main table. */ 1664 }else if( HasRowid(pIdx->pTable) ){ 1665 if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE) || ( 1666 (pWInfo->wctrlFlags & WHERE_SEEK_UNIQ_TABLE) 1667 && (pWInfo->eOnePass==ONEPASS_SINGLE) 1668 )){ 1669 iRowidReg = ++pParse->nMem; 1670 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); 1671 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 1672 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg); 1673 VdbeCoverage(v); 1674 }else{ 1675 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); 1676 } 1677 }else if( iCur!=iIdxCur ){ 1678 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1679 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1680 for(j=0; j<pPk->nKeyCol; j++){ 1681 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); 1682 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 1683 } 1684 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 1685 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 1686 } 1687 1688 /* If pIdx is an index on one or more expressions, then look through 1689 ** all the expressions in pWInfo and try to transform matching expressions 1690 ** into reference to index columns. 1691 */ 1692 whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo); 1693 1694 1695 /* Record the instruction used to terminate the loop. */ 1696 if( pLoop->wsFlags & WHERE_ONEROW ){ 1697 pLevel->op = OP_Noop; 1698 }else if( bRev ){ 1699 pLevel->op = OP_Prev; 1700 }else{ 1701 pLevel->op = OP_Next; 1702 } 1703 pLevel->p1 = iIdxCur; 1704 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 1705 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 1706 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 1707 }else{ 1708 assert( pLevel->p5==0 ); 1709 } 1710 if( omitTable ) pIdx = 0; 1711 }else 1712 1713 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 1714 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 1715 /* Case 5: Two or more separately indexed terms connected by OR 1716 ** 1717 ** Example: 1718 ** 1719 ** CREATE TABLE t1(a,b,c,d); 1720 ** CREATE INDEX i1 ON t1(a); 1721 ** CREATE INDEX i2 ON t1(b); 1722 ** CREATE INDEX i3 ON t1(c); 1723 ** 1724 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 1725 ** 1726 ** In the example, there are three indexed terms connected by OR. 1727 ** The top of the loop looks like this: 1728 ** 1729 ** Null 1 # Zero the rowset in reg 1 1730 ** 1731 ** Then, for each indexed term, the following. The arguments to 1732 ** RowSetTest are such that the rowid of the current row is inserted 1733 ** into the RowSet. If it is already present, control skips the 1734 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 1735 ** 1736 ** sqlite3WhereBegin(<term>) 1737 ** RowSetTest # Insert rowid into rowset 1738 ** Gosub 2 A 1739 ** sqlite3WhereEnd() 1740 ** 1741 ** Following the above, code to terminate the loop. Label A, the target 1742 ** of the Gosub above, jumps to the instruction right after the Goto. 1743 ** 1744 ** Null 1 # Zero the rowset in reg 1 1745 ** Goto B # The loop is finished. 1746 ** 1747 ** A: <loop body> # Return data, whatever. 1748 ** 1749 ** Return 2 # Jump back to the Gosub 1750 ** 1751 ** B: <after the loop> 1752 ** 1753 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 1754 ** use an ephemeral index instead of a RowSet to record the primary 1755 ** keys of the rows we have already seen. 1756 ** 1757 */ 1758 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 1759 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 1760 Index *pCov = 0; /* Potential covering index (or NULL) */ 1761 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 1762 1763 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 1764 int regRowset = 0; /* Register for RowSet object */ 1765 int regRowid = 0; /* Register holding rowid */ 1766 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ 1767 int iRetInit; /* Address of regReturn init */ 1768 int untestedTerms = 0; /* Some terms not completely tested */ 1769 int ii; /* Loop counter */ 1770 u16 wctrlFlags; /* Flags for sub-WHERE clause */ 1771 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 1772 Table *pTab = pTabItem->pTab; 1773 1774 pTerm = pLoop->aLTerm[0]; 1775 assert( pTerm!=0 ); 1776 assert( pTerm->eOperator & WO_OR ); 1777 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 1778 pOrWc = &pTerm->u.pOrInfo->wc; 1779 pLevel->op = OP_Return; 1780 pLevel->p1 = regReturn; 1781 1782 /* Set up a new SrcList in pOrTab containing the table being scanned 1783 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 1784 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 1785 */ 1786 if( pWInfo->nLevel>1 ){ 1787 int nNotReady; /* The number of notReady tables */ 1788 struct SrcList_item *origSrc; /* Original list of tables */ 1789 nNotReady = pWInfo->nLevel - iLevel - 1; 1790 pOrTab = sqlite3StackAllocRaw(db, 1791 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 1792 if( pOrTab==0 ) return notReady; 1793 pOrTab->nAlloc = (u8)(nNotReady + 1); 1794 pOrTab->nSrc = pOrTab->nAlloc; 1795 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 1796 origSrc = pWInfo->pTabList->a; 1797 for(k=1; k<=nNotReady; k++){ 1798 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 1799 } 1800 }else{ 1801 pOrTab = pWInfo->pTabList; 1802 } 1803 1804 /* Initialize the rowset register to contain NULL. An SQL NULL is 1805 ** equivalent to an empty rowset. Or, create an ephemeral index 1806 ** capable of holding primary keys in the case of a WITHOUT ROWID. 1807 ** 1808 ** Also initialize regReturn to contain the address of the instruction 1809 ** immediately following the OP_Return at the bottom of the loop. This 1810 ** is required in a few obscure LEFT JOIN cases where control jumps 1811 ** over the top of the loop into the body of it. In this case the 1812 ** correct response for the end-of-loop code (the OP_Return) is to 1813 ** fall through to the next instruction, just as an OP_Next does if 1814 ** called on an uninitialized cursor. 1815 */ 1816 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 1817 if( HasRowid(pTab) ){ 1818 regRowset = ++pParse->nMem; 1819 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 1820 }else{ 1821 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1822 regRowset = pParse->nTab++; 1823 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 1824 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 1825 } 1826 regRowid = ++pParse->nMem; 1827 } 1828 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 1829 1830 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 1831 ** Then for every term xN, evaluate as the subexpression: xN AND z 1832 ** That way, terms in y that are factored into the disjunction will 1833 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 1834 ** 1835 ** Actually, each subexpression is converted to "xN AND w" where w is 1836 ** the "interesting" terms of z - terms that did not originate in the 1837 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 1838 ** indices. 1839 ** 1840 ** This optimization also only applies if the (x1 OR x2 OR ...) term 1841 ** is not contained in the ON clause of a LEFT JOIN. 1842 ** See ticket http://www.sqlite.org/src/info/f2369304e4 1843 */ 1844 if( pWC->nTerm>1 ){ 1845 int iTerm; 1846 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 1847 Expr *pExpr = pWC->a[iTerm].pExpr; 1848 if( &pWC->a[iTerm] == pTerm ) continue; 1849 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; 1850 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); 1851 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); 1852 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue; 1853 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 1854 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); 1855 pExpr = sqlite3ExprDup(db, pExpr, 0); 1856 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); 1857 } 1858 if( pAndExpr ){ 1859 pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr); 1860 } 1861 } 1862 1863 /* Run a separate WHERE clause for each term of the OR clause. After 1864 ** eliminating duplicates from other WHERE clauses, the action for each 1865 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 1866 */ 1867 wctrlFlags = WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE); 1868 for(ii=0; ii<pOrWc->nTerm; ii++){ 1869 WhereTerm *pOrTerm = &pOrWc->a[ii]; 1870 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 1871 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 1872 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 1873 int jmp1 = 0; /* Address of jump operation */ 1874 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){ 1875 pAndExpr->pLeft = pOrExpr; 1876 pOrExpr = pAndExpr; 1877 } 1878 /* Loop through table entries that match term pOrTerm. */ 1879 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 1880 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 1881 wctrlFlags, iCovCur); 1882 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); 1883 if( pSubWInfo ){ 1884 WhereLoop *pSubLoop; 1885 int addrExplain = sqlite3WhereExplainOneScan( 1886 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 1887 ); 1888 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 1889 1890 /* This is the sub-WHERE clause body. First skip over 1891 ** duplicate rows from prior sub-WHERE clauses, and record the 1892 ** rowid (or PRIMARY KEY) for the current row so that the same 1893 ** row will be skipped in subsequent sub-WHERE clauses. 1894 */ 1895 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 1896 int r; 1897 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 1898 if( HasRowid(pTab) ){ 1899 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0); 1900 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 1901 r,iSet); 1902 VdbeCoverage(v); 1903 }else{ 1904 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1905 int nPk = pPk->nKeyCol; 1906 int iPk; 1907 1908 /* Read the PK into an array of temp registers. */ 1909 r = sqlite3GetTempRange(pParse, nPk); 1910 for(iPk=0; iPk<nPk; iPk++){ 1911 int iCol = pPk->aiColumn[iPk]; 1912 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk); 1913 } 1914 1915 /* Check if the temp table already contains this key. If so, 1916 ** the row has already been included in the result set and 1917 ** can be ignored (by jumping past the Gosub below). Otherwise, 1918 ** insert the key into the temp table and proceed with processing 1919 ** the row. 1920 ** 1921 ** Use some of the same optimizations as OP_RowSetTest: If iSet 1922 ** is zero, assume that the key cannot already be present in 1923 ** the temp table. And if iSet is -1, assume that there is no 1924 ** need to insert the key into the temp table, as it will never 1925 ** be tested for. */ 1926 if( iSet ){ 1927 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 1928 VdbeCoverage(v); 1929 } 1930 if( iSet>=0 ){ 1931 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 1932 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid, 1933 r, nPk); 1934 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1935 } 1936 1937 /* Release the array of temp registers */ 1938 sqlite3ReleaseTempRange(pParse, r, nPk); 1939 } 1940 } 1941 1942 /* Invoke the main loop body as a subroutine */ 1943 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 1944 1945 /* Jump here (skipping the main loop body subroutine) if the 1946 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 1947 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 1948 1949 /* The pSubWInfo->untestedTerms flag means that this OR term 1950 ** contained one or more AND term from a notReady table. The 1951 ** terms from the notReady table could not be tested and will 1952 ** need to be tested later. 1953 */ 1954 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 1955 1956 /* If all of the OR-connected terms are optimized using the same 1957 ** index, and the index is opened using the same cursor number 1958 ** by each call to sqlite3WhereBegin() made by this loop, it may 1959 ** be possible to use that index as a covering index. 1960 ** 1961 ** If the call to sqlite3WhereBegin() above resulted in a scan that 1962 ** uses an index, and this is either the first OR-connected term 1963 ** processed or the index is the same as that used by all previous 1964 ** terms, set pCov to the candidate covering index. Otherwise, set 1965 ** pCov to NULL to indicate that no candidate covering index will 1966 ** be available. 1967 */ 1968 pSubLoop = pSubWInfo->a[0].pWLoop; 1969 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 1970 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 1971 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 1972 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 1973 ){ 1974 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 1975 pCov = pSubLoop->u.btree.pIndex; 1976 }else{ 1977 pCov = 0; 1978 } 1979 1980 /* Finish the loop through table entries that match term pOrTerm. */ 1981 sqlite3WhereEnd(pSubWInfo); 1982 } 1983 } 1984 } 1985 pLevel->u.pCovidx = pCov; 1986 if( pCov ) pLevel->iIdxCur = iCovCur; 1987 if( pAndExpr ){ 1988 pAndExpr->pLeft = 0; 1989 sqlite3ExprDelete(db, pAndExpr); 1990 } 1991 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 1992 sqlite3VdbeGoto(v, pLevel->addrBrk); 1993 sqlite3VdbeResolveLabel(v, iLoopBody); 1994 1995 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab); 1996 if( !untestedTerms ) disableTerm(pLevel, pTerm); 1997 }else 1998 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1999 2000 { 2001 /* Case 6: There is no usable index. We must do a complete 2002 ** scan of the entire table. 2003 */ 2004 static const u8 aStep[] = { OP_Next, OP_Prev }; 2005 static const u8 aStart[] = { OP_Rewind, OP_Last }; 2006 assert( bRev==0 || bRev==1 ); 2007 if( pTabItem->fg.isRecursive ){ 2008 /* Tables marked isRecursive have only a single row that is stored in 2009 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 2010 pLevel->op = OP_Noop; 2011 }else{ 2012 codeCursorHint(pTabItem, pWInfo, pLevel, 0); 2013 pLevel->op = aStep[bRev]; 2014 pLevel->p1 = iCur; 2015 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt); 2016 VdbeCoverageIf(v, bRev==0); 2017 VdbeCoverageIf(v, bRev!=0); 2018 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2019 } 2020 } 2021 2022 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2023 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 2024 #endif 2025 2026 /* Insert code to test every subexpression that can be completely 2027 ** computed using the current set of tables. 2028 ** 2029 ** This loop may run between one and three times, depending on the 2030 ** constraints to be generated. The value of stack variable iLoop 2031 ** determines the constraints coded by each iteration, as follows: 2032 ** 2033 ** iLoop==1: Code only expressions that are entirely covered by pIdx. 2034 ** iLoop==2: Code remaining expressions that do not contain correlated 2035 ** sub-queries. 2036 ** iLoop==3: Code all remaining expressions. 2037 ** 2038 ** An effort is made to skip unnecessary iterations of the loop. 2039 */ 2040 iLoop = (pIdx ? 1 : 2); 2041 do{ 2042 int iNext = 0; /* Next value for iLoop */ 2043 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2044 Expr *pE; 2045 int skipLikeAddr = 0; 2046 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2047 testcase( pTerm->wtFlags & TERM_CODED ); 2048 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2049 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2050 testcase( pWInfo->untestedTerms==0 2051 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); 2052 pWInfo->untestedTerms = 1; 2053 continue; 2054 } 2055 pE = pTerm->pExpr; 2056 assert( pE!=0 ); 2057 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 2058 continue; 2059 } 2060 2061 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){ 2062 iNext = 2; 2063 continue; 2064 } 2065 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){ 2066 if( iNext==0 ) iNext = 3; 2067 continue; 2068 } 2069 2070 if( pTerm->wtFlags & TERM_LIKECOND ){ 2071 /* If the TERM_LIKECOND flag is set, that means that the range search 2072 ** is sufficient to guarantee that the LIKE operator is true, so we 2073 ** can skip the call to the like(A,B) function. But this only works 2074 ** for strings. So do not skip the call to the function on the pass 2075 ** that compares BLOBs. */ 2076 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 2077 continue; 2078 #else 2079 u32 x = pLevel->iLikeRepCntr; 2080 assert( x>0 ); 2081 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If, (int)(x>>1)); 2082 VdbeCoverage(v); 2083 #endif 2084 } 2085 #ifdef WHERETRACE_ENABLED /* 0xffff */ 2086 if( sqlite3WhereTrace ){ 2087 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d", 2088 pWC->nTerm-j, pTerm, iLoop)); 2089 } 2090 #endif 2091 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 2092 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 2093 pTerm->wtFlags |= TERM_CODED; 2094 } 2095 iLoop = iNext; 2096 }while( iLoop>0 ); 2097 2098 /* Insert code to test for implied constraints based on transitivity 2099 ** of the "==" operator. 2100 ** 2101 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 2102 ** and we are coding the t1 loop and the t2 loop has not yet coded, 2103 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 2104 ** the implied "t1.a=123" constraint. 2105 */ 2106 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2107 Expr *pE, sEAlt; 2108 WhereTerm *pAlt; 2109 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2110 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 2111 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 2112 if( pTerm->leftCursor!=iCur ) continue; 2113 if( pLevel->iLeftJoin ) continue; 2114 pE = pTerm->pExpr; 2115 assert( !ExprHasProperty(pE, EP_FromJoin) ); 2116 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 2117 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady, 2118 WO_EQ|WO_IN|WO_IS, 0); 2119 if( pAlt==0 ) continue; 2120 if( pAlt->wtFlags & (TERM_CODED) ) continue; 2121 testcase( pAlt->eOperator & WO_EQ ); 2122 testcase( pAlt->eOperator & WO_IS ); 2123 testcase( pAlt->eOperator & WO_IN ); 2124 VdbeModuleComment((v, "begin transitive constraint")); 2125 sEAlt = *pAlt->pExpr; 2126 sEAlt.pLeft = pE->pLeft; 2127 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); 2128 } 2129 2130 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2131 ** at least one row of the right table has matched the left table. 2132 */ 2133 if( pLevel->iLeftJoin ){ 2134 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2135 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2136 VdbeComment((v, "record LEFT JOIN hit")); 2137 sqlite3ExprCacheClear(pParse); 2138 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 2139 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2140 testcase( pTerm->wtFlags & TERM_CODED ); 2141 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2142 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2143 assert( pWInfo->untestedTerms ); 2144 continue; 2145 } 2146 assert( pTerm->pExpr ); 2147 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 2148 pTerm->wtFlags |= TERM_CODED; 2149 } 2150 } 2151 2152 return pLevel->notReady; 2153 } 2154