xref: /sqlite-3.40.0/src/wherecode.c (revision 4dfe98a8)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 /*
25 ** This routine is a helper for explainIndexRange() below
26 **
27 ** pStr holds the text of an expression that we are building up one term
28 ** at a time.  This routine adds a new term to the end of the expression.
29 ** Terms are separated by AND so add the "AND" text for second and subsequent
30 ** terms only.
31 */
32 static void explainAppendTerm(
33   StrAccum *pStr,             /* The text expression being built */
34   int iTerm,                  /* Index of this term.  First is zero */
35   const char *zColumn,        /* Name of the column */
36   const char *zOp             /* Name of the operator */
37 ){
38   if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5);
39   sqlite3StrAccumAppendAll(pStr, zColumn);
40   sqlite3StrAccumAppend(pStr, zOp, 1);
41   sqlite3StrAccumAppend(pStr, "?", 1);
42 }
43 
44 /*
45 ** Argument pLevel describes a strategy for scanning table pTab. This
46 ** function appends text to pStr that describes the subset of table
47 ** rows scanned by the strategy in the form of an SQL expression.
48 **
49 ** For example, if the query:
50 **
51 **   SELECT * FROM t1 WHERE a=1 AND b>2;
52 **
53 ** is run and there is an index on (a, b), then this function returns a
54 ** string similar to:
55 **
56 **   "a=? AND b>?"
57 */
58 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop, Table *pTab){
59   Index *pIndex = pLoop->u.btree.pIndex;
60   u16 nEq = pLoop->u.btree.nEq;
61   u16 nSkip = pLoop->nSkip;
62   int i, j;
63   Column *aCol = pTab->aCol;
64   i16 *aiColumn = pIndex->aiColumn;
65 
66   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
67   sqlite3StrAccumAppend(pStr, " (", 2);
68   for(i=0; i<nEq; i++){
69     char *z = aiColumn[i] < 0 ? "rowid" : aCol[aiColumn[i]].zName;
70     if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
71     sqlite3XPrintf(pStr, 0, i>=nSkip ? "%s=?" : "ANY(%s)", z);
72   }
73 
74   j = i;
75   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
76     char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName;
77     explainAppendTerm(pStr, i++, z, ">");
78   }
79   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
80     char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName;
81     explainAppendTerm(pStr, i, z, "<");
82   }
83   sqlite3StrAccumAppend(pStr, ")", 1);
84 }
85 
86 /*
87 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
88 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
89 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
90 ** is added to the output to describe the table scan strategy in pLevel.
91 **
92 ** If an OP_Explain opcode is added to the VM, its address is returned.
93 ** Otherwise, if no OP_Explain is coded, zero is returned.
94 */
95 int sqlite3WhereExplainOneScan(
96   Parse *pParse,                  /* Parse context */
97   SrcList *pTabList,              /* Table list this loop refers to */
98   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
99   int iLevel,                     /* Value for "level" column of output */
100   int iFrom,                      /* Value for "from" column of output */
101   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
102 ){
103   int ret = 0;
104 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
105   if( pParse->explain==2 )
106 #endif
107   {
108     struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
109     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
110     sqlite3 *db = pParse->db;     /* Database handle */
111     int iId = pParse->iSelectId;  /* Select id (left-most output column) */
112     int isSearch;                 /* True for a SEARCH. False for SCAN. */
113     WhereLoop *pLoop;             /* The controlling WhereLoop object */
114     u32 flags;                    /* Flags that describe this loop */
115     char *zMsg;                   /* Text to add to EQP output */
116     StrAccum str;                 /* EQP output string */
117     char zBuf[100];               /* Initial space for EQP output string */
118 
119     pLoop = pLevel->pWLoop;
120     flags = pLoop->wsFlags;
121     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return 0;
122 
123     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
124             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
125             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
126 
127     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
128     sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
129     if( pItem->pSelect ){
130       sqlite3XPrintf(&str, 0, " SUBQUERY %d", pItem->iSelectId);
131     }else{
132       sqlite3XPrintf(&str, 0, " TABLE %s", pItem->zName);
133     }
134 
135     if( pItem->zAlias ){
136       sqlite3XPrintf(&str, 0, " AS %s", pItem->zAlias);
137     }
138     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
139       const char *zFmt = 0;
140       Index *pIdx;
141 
142       assert( pLoop->u.btree.pIndex!=0 );
143       pIdx = pLoop->u.btree.pIndex;
144       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
145       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
146         if( isSearch ){
147           zFmt = "PRIMARY KEY";
148         }
149       }else if( flags & WHERE_PARTIALIDX ){
150         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
151       }else if( flags & WHERE_AUTO_INDEX ){
152         zFmt = "AUTOMATIC COVERING INDEX";
153       }else if( flags & WHERE_IDX_ONLY ){
154         zFmt = "COVERING INDEX %s";
155       }else{
156         zFmt = "INDEX %s";
157       }
158       if( zFmt ){
159         sqlite3StrAccumAppend(&str, " USING ", 7);
160         sqlite3XPrintf(&str, 0, zFmt, pIdx->zName);
161         explainIndexRange(&str, pLoop, pItem->pTab);
162       }
163     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
164       const char *zRangeOp;
165       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
166         zRangeOp = "=";
167       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
168         zRangeOp = ">? AND rowid<";
169       }else if( flags&WHERE_BTM_LIMIT ){
170         zRangeOp = ">";
171       }else{
172         assert( flags&WHERE_TOP_LIMIT);
173         zRangeOp = "<";
174       }
175       sqlite3XPrintf(&str, 0, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
176     }
177 #ifndef SQLITE_OMIT_VIRTUALTABLE
178     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
179       sqlite3XPrintf(&str, 0, " VIRTUAL TABLE INDEX %d:%s",
180                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
181     }
182 #endif
183 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
184     if( pLoop->nOut>=10 ){
185       sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
186     }else{
187       sqlite3StrAccumAppend(&str, " (~1 row)", 9);
188     }
189 #endif
190     zMsg = sqlite3StrAccumFinish(&str);
191     ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC);
192   }
193   return ret;
194 }
195 #endif /* SQLITE_OMIT_EXPLAIN */
196 
197 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
198 /*
199 ** Configure the VM passed as the first argument with an
200 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
201 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
202 ** clause that the scan reads data from.
203 **
204 ** If argument addrExplain is not 0, it must be the address of an
205 ** OP_Explain instruction that describes the same loop.
206 */
207 void sqlite3WhereAddScanStatus(
208   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
209   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
210   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
211   int addrExplain                 /* Address of OP_Explain (or 0) */
212 ){
213   const char *zObj = 0;
214   WhereLoop *pLoop = pLvl->pWLoop;
215   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
216     zObj = pLoop->u.btree.pIndex->zName;
217   }else{
218     zObj = pSrclist->a[pLvl->iFrom].zName;
219   }
220   sqlite3VdbeScanStatus(
221       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
222   );
223 }
224 #endif
225 
226 
227 /*
228 ** Disable a term in the WHERE clause.  Except, do not disable the term
229 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
230 ** or USING clause of that join.
231 **
232 ** Consider the term t2.z='ok' in the following queries:
233 **
234 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
235 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
236 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
237 **
238 ** The t2.z='ok' is disabled in the in (2) because it originates
239 ** in the ON clause.  The term is disabled in (3) because it is not part
240 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
241 **
242 ** Disabling a term causes that term to not be tested in the inner loop
243 ** of the join.  Disabling is an optimization.  When terms are satisfied
244 ** by indices, we disable them to prevent redundant tests in the inner
245 ** loop.  We would get the correct results if nothing were ever disabled,
246 ** but joins might run a little slower.  The trick is to disable as much
247 ** as we can without disabling too much.  If we disabled in (1), we'd get
248 ** the wrong answer.  See ticket #813.
249 **
250 ** If all the children of a term are disabled, then that term is also
251 ** automatically disabled.  In this way, terms get disabled if derived
252 ** virtual terms are tested first.  For example:
253 **
254 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
255 **      \___________/     \______/     \_____/
256 **         parent          child1       child2
257 **
258 ** Only the parent term was in the original WHERE clause.  The child1
259 ** and child2 terms were added by the LIKE optimization.  If both of
260 ** the virtual child terms are valid, then testing of the parent can be
261 ** skipped.
262 **
263 ** Usually the parent term is marked as TERM_CODED.  But if the parent
264 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
265 ** The TERM_LIKECOND marking indicates that the term should be coded inside
266 ** a conditional such that is only evaluated on the second pass of a
267 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
268 */
269 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
270   int nLoop = 0;
271   while( pTerm
272       && (pTerm->wtFlags & TERM_CODED)==0
273       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
274       && (pLevel->notReady & pTerm->prereqAll)==0
275   ){
276     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
277       pTerm->wtFlags |= TERM_LIKECOND;
278     }else{
279       pTerm->wtFlags |= TERM_CODED;
280     }
281     if( pTerm->iParent<0 ) break;
282     pTerm = &pTerm->pWC->a[pTerm->iParent];
283     pTerm->nChild--;
284     if( pTerm->nChild!=0 ) break;
285     nLoop++;
286   }
287 }
288 
289 /*
290 ** Code an OP_Affinity opcode to apply the column affinity string zAff
291 ** to the n registers starting at base.
292 **
293 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the
294 ** beginning and end of zAff are ignored.  If all entries in zAff are
295 ** SQLITE_AFF_BLOB, then no code gets generated.
296 **
297 ** This routine makes its own copy of zAff so that the caller is free
298 ** to modify zAff after this routine returns.
299 */
300 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
301   Vdbe *v = pParse->pVdbe;
302   if( zAff==0 ){
303     assert( pParse->db->mallocFailed );
304     return;
305   }
306   assert( v!=0 );
307 
308   /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning
309   ** and end of the affinity string.
310   */
311   while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){
312     n--;
313     base++;
314     zAff++;
315   }
316   while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){
317     n--;
318   }
319 
320   /* Code the OP_Affinity opcode if there is anything left to do. */
321   if( n>0 ){
322     sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
323     sqlite3VdbeChangeP4(v, -1, zAff, n);
324     sqlite3ExprCacheAffinityChange(pParse, base, n);
325   }
326 }
327 
328 
329 /*
330 ** Generate code for a single equality term of the WHERE clause.  An equality
331 ** term can be either X=expr or X IN (...).   pTerm is the term to be
332 ** coded.
333 **
334 ** The current value for the constraint is left in register iReg.
335 **
336 ** For a constraint of the form X=expr, the expression is evaluated and its
337 ** result is left on the stack.  For constraints of the form X IN (...)
338 ** this routine sets up a loop that will iterate over all values of X.
339 */
340 static int codeEqualityTerm(
341   Parse *pParse,      /* The parsing context */
342   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
343   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
344   int iEq,            /* Index of the equality term within this level */
345   int bRev,           /* True for reverse-order IN operations */
346   int iTarget         /* Attempt to leave results in this register */
347 ){
348   Expr *pX = pTerm->pExpr;
349   Vdbe *v = pParse->pVdbe;
350   int iReg;                  /* Register holding results */
351 
352   assert( iTarget>0 );
353   if( pX->op==TK_EQ || pX->op==TK_IS ){
354     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
355   }else if( pX->op==TK_ISNULL ){
356     iReg = iTarget;
357     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
358 #ifndef SQLITE_OMIT_SUBQUERY
359   }else{
360     int eType;
361     int iTab;
362     struct InLoop *pIn;
363     WhereLoop *pLoop = pLevel->pWLoop;
364 
365     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
366       && pLoop->u.btree.pIndex!=0
367       && pLoop->u.btree.pIndex->aSortOrder[iEq]
368     ){
369       testcase( iEq==0 );
370       testcase( bRev );
371       bRev = !bRev;
372     }
373     assert( pX->op==TK_IN );
374     iReg = iTarget;
375     eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0);
376     if( eType==IN_INDEX_INDEX_DESC ){
377       testcase( bRev );
378       bRev = !bRev;
379     }
380     iTab = pX->iTable;
381     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
382     VdbeCoverageIf(v, bRev);
383     VdbeCoverageIf(v, !bRev);
384     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
385     pLoop->wsFlags |= WHERE_IN_ABLE;
386     if( pLevel->u.in.nIn==0 ){
387       pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
388     }
389     pLevel->u.in.nIn++;
390     pLevel->u.in.aInLoop =
391        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
392                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
393     pIn = pLevel->u.in.aInLoop;
394     if( pIn ){
395       pIn += pLevel->u.in.nIn - 1;
396       pIn->iCur = iTab;
397       if( eType==IN_INDEX_ROWID ){
398         pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
399       }else{
400         pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
401       }
402       pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen;
403       sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v);
404     }else{
405       pLevel->u.in.nIn = 0;
406     }
407 #endif
408   }
409   disableTerm(pLevel, pTerm);
410   return iReg;
411 }
412 
413 /*
414 ** Generate code that will evaluate all == and IN constraints for an
415 ** index scan.
416 **
417 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
418 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
419 ** The index has as many as three equality constraints, but in this
420 ** example, the third "c" value is an inequality.  So only two
421 ** constraints are coded.  This routine will generate code to evaluate
422 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
423 ** in consecutive registers and the index of the first register is returned.
424 **
425 ** In the example above nEq==2.  But this subroutine works for any value
426 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
427 ** The only thing it does is allocate the pLevel->iMem memory cell and
428 ** compute the affinity string.
429 **
430 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
431 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
432 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
433 ** occurs after the nEq quality constraints.
434 **
435 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
436 ** the index of the first memory cell in that range. The code that
437 ** calls this routine will use that memory range to store keys for
438 ** start and termination conditions of the loop.
439 ** key value of the loop.  If one or more IN operators appear, then
440 ** this routine allocates an additional nEq memory cells for internal
441 ** use.
442 **
443 ** Before returning, *pzAff is set to point to a buffer containing a
444 ** copy of the column affinity string of the index allocated using
445 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
446 ** with equality constraints that use BLOB or NONE affinity are set to
447 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
448 **
449 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
450 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
451 **
452 ** In the example above, the index on t1(a) has TEXT affinity. But since
453 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
454 ** no conversion should be attempted before using a t2.b value as part of
455 ** a key to search the index. Hence the first byte in the returned affinity
456 ** string in this example would be set to SQLITE_AFF_BLOB.
457 */
458 static int codeAllEqualityTerms(
459   Parse *pParse,        /* Parsing context */
460   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
461   int bRev,             /* Reverse the order of IN operators */
462   int nExtraReg,        /* Number of extra registers to allocate */
463   char **pzAff          /* OUT: Set to point to affinity string */
464 ){
465   u16 nEq;                      /* The number of == or IN constraints to code */
466   u16 nSkip;                    /* Number of left-most columns to skip */
467   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
468   Index *pIdx;                  /* The index being used for this loop */
469   WhereTerm *pTerm;             /* A single constraint term */
470   WhereLoop *pLoop;             /* The WhereLoop object */
471   int j;                        /* Loop counter */
472   int regBase;                  /* Base register */
473   int nReg;                     /* Number of registers to allocate */
474   char *zAff;                   /* Affinity string to return */
475 
476   /* This module is only called on query plans that use an index. */
477   pLoop = pLevel->pWLoop;
478   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
479   nEq = pLoop->u.btree.nEq;
480   nSkip = pLoop->nSkip;
481   pIdx = pLoop->u.btree.pIndex;
482   assert( pIdx!=0 );
483 
484   /* Figure out how many memory cells we will need then allocate them.
485   */
486   regBase = pParse->nMem + 1;
487   nReg = pLoop->u.btree.nEq + nExtraReg;
488   pParse->nMem += nReg;
489 
490   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
491   if( !zAff ){
492     pParse->db->mallocFailed = 1;
493   }
494 
495   if( nSkip ){
496     int iIdxCur = pLevel->iIdxCur;
497     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
498     VdbeCoverageIf(v, bRev==0);
499     VdbeCoverageIf(v, bRev!=0);
500     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
501     j = sqlite3VdbeAddOp0(v, OP_Goto);
502     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
503                             iIdxCur, 0, regBase, nSkip);
504     VdbeCoverageIf(v, bRev==0);
505     VdbeCoverageIf(v, bRev!=0);
506     sqlite3VdbeJumpHere(v, j);
507     for(j=0; j<nSkip; j++){
508       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
509       assert( pIdx->aiColumn[j]>=0 );
510       VdbeComment((v, "%s", pIdx->pTable->aCol[pIdx->aiColumn[j]].zName));
511     }
512   }
513 
514   /* Evaluate the equality constraints
515   */
516   assert( zAff==0 || (int)strlen(zAff)>=nEq );
517   for(j=nSkip; j<nEq; j++){
518     int r1;
519     pTerm = pLoop->aLTerm[j];
520     assert( pTerm!=0 );
521     /* The following testcase is true for indices with redundant columns.
522     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
523     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
524     testcase( pTerm->wtFlags & TERM_VIRTUAL );
525     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
526     if( r1!=regBase+j ){
527       if( nReg==1 ){
528         sqlite3ReleaseTempReg(pParse, regBase);
529         regBase = r1;
530       }else{
531         sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
532       }
533     }
534     testcase( pTerm->eOperator & WO_ISNULL );
535     testcase( pTerm->eOperator & WO_IN );
536     if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
537       Expr *pRight = pTerm->pExpr->pRight;
538       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
539         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
540         VdbeCoverage(v);
541       }
542       if( zAff ){
543         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
544           zAff[j] = SQLITE_AFF_BLOB;
545         }
546         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
547           zAff[j] = SQLITE_AFF_BLOB;
548         }
549       }
550     }
551   }
552   *pzAff = zAff;
553   return regBase;
554 }
555 
556 /*
557 ** If the most recently coded instruction is a constant range contraint
558 ** that originated from the LIKE optimization, then change the P3 to be
559 ** pLoop->iLikeRepCntr and set P5.
560 **
561 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
562 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
563 ** scan loop run twice, once for strings and a second time for BLOBs.
564 ** The OP_String opcodes on the second pass convert the upper and lower
565 ** bound string contants to blobs.  This routine makes the necessary changes
566 ** to the OP_String opcodes for that to happen.
567 */
568 static void whereLikeOptimizationStringFixup(
569   Vdbe *v,                /* prepared statement under construction */
570   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
571   WhereTerm *pTerm        /* The upper or lower bound just coded */
572 ){
573   if( pTerm->wtFlags & TERM_LIKEOPT ){
574     VdbeOp *pOp;
575     assert( pLevel->iLikeRepCntr>0 );
576     pOp = sqlite3VdbeGetOp(v, -1);
577     assert( pOp!=0 );
578     assert( pOp->opcode==OP_String8
579             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
580     pOp->p3 = pLevel->iLikeRepCntr;
581     pOp->p5 = 1;
582   }
583 }
584 
585 
586 /*
587 ** Generate code for the start of the iLevel-th loop in the WHERE clause
588 ** implementation described by pWInfo.
589 */
590 Bitmask sqlite3WhereCodeOneLoopStart(
591   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
592   int iLevel,          /* Which level of pWInfo->a[] should be coded */
593   Bitmask notReady     /* Which tables are currently available */
594 ){
595   int j, k;            /* Loop counters */
596   int iCur;            /* The VDBE cursor for the table */
597   int addrNxt;         /* Where to jump to continue with the next IN case */
598   int omitTable;       /* True if we use the index only */
599   int bRev;            /* True if we need to scan in reverse order */
600   WhereLevel *pLevel;  /* The where level to be coded */
601   WhereLoop *pLoop;    /* The WhereLoop object being coded */
602   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
603   WhereTerm *pTerm;               /* A WHERE clause term */
604   Parse *pParse;                  /* Parsing context */
605   sqlite3 *db;                    /* Database connection */
606   Vdbe *v;                        /* The prepared stmt under constructions */
607   struct SrcList_item *pTabItem;  /* FROM clause term being coded */
608   int addrBrk;                    /* Jump here to break out of the loop */
609   int addrCont;                   /* Jump here to continue with next cycle */
610   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
611   int iReleaseReg = 0;      /* Temp register to free before returning */
612 
613   pParse = pWInfo->pParse;
614   v = pParse->pVdbe;
615   pWC = &pWInfo->sWC;
616   db = pParse->db;
617   pLevel = &pWInfo->a[iLevel];
618   pLoop = pLevel->pWLoop;
619   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
620   iCur = pTabItem->iCursor;
621   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
622   bRev = (pWInfo->revMask>>iLevel)&1;
623   omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
624            && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0;
625   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
626 
627   /* Create labels for the "break" and "continue" instructions
628   ** for the current loop.  Jump to addrBrk to break out of a loop.
629   ** Jump to cont to go immediately to the next iteration of the
630   ** loop.
631   **
632   ** When there is an IN operator, we also have a "addrNxt" label that
633   ** means to continue with the next IN value combination.  When
634   ** there are no IN operators in the constraints, the "addrNxt" label
635   ** is the same as "addrBrk".
636   */
637   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
638   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
639 
640   /* If this is the right table of a LEFT OUTER JOIN, allocate and
641   ** initialize a memory cell that records if this table matches any
642   ** row of the left table of the join.
643   */
644   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
645     pLevel->iLeftJoin = ++pParse->nMem;
646     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
647     VdbeComment((v, "init LEFT JOIN no-match flag"));
648   }
649 
650   /* Special case of a FROM clause subquery implemented as a co-routine */
651   if( pTabItem->fg.viaCoroutine ){
652     int regYield = pTabItem->regReturn;
653     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
654     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
655     VdbeCoverage(v);
656     VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
657     pLevel->op = OP_Goto;
658   }else
659 
660 #ifndef SQLITE_OMIT_VIRTUALTABLE
661   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
662     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
663     **          to access the data.
664     */
665     int iReg;   /* P3 Value for OP_VFilter */
666     int addrNotFound;
667     int nConstraint = pLoop->nLTerm;
668 
669     sqlite3ExprCachePush(pParse);
670     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
671     addrNotFound = pLevel->addrBrk;
672     for(j=0; j<nConstraint; j++){
673       int iTarget = iReg+j+2;
674       pTerm = pLoop->aLTerm[j];
675       if( pTerm==0 ) continue;
676       if( pTerm->eOperator & WO_IN ){
677         codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
678         addrNotFound = pLevel->addrNxt;
679       }else{
680         sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget);
681       }
682     }
683     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
684     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
685     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
686                       pLoop->u.vtab.idxStr,
687                       pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC);
688     VdbeCoverage(v);
689     pLoop->u.vtab.needFree = 0;
690     for(j=0; j<nConstraint && j<16; j++){
691       if( (pLoop->u.vtab.omitMask>>j)&1 ){
692         disableTerm(pLevel, pLoop->aLTerm[j]);
693       }
694     }
695     pLevel->op = OP_VNext;
696     pLevel->p1 = iCur;
697     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
698     sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
699     sqlite3ExprCachePop(pParse);
700   }else
701 #endif /* SQLITE_OMIT_VIRTUALTABLE */
702 
703   if( (pLoop->wsFlags & WHERE_IPK)!=0
704    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
705   ){
706     /* Case 2:  We can directly reference a single row using an
707     **          equality comparison against the ROWID field.  Or
708     **          we reference multiple rows using a "rowid IN (...)"
709     **          construct.
710     */
711     assert( pLoop->u.btree.nEq==1 );
712     pTerm = pLoop->aLTerm[0];
713     assert( pTerm!=0 );
714     assert( pTerm->pExpr!=0 );
715     assert( omitTable==0 );
716     testcase( pTerm->wtFlags & TERM_VIRTUAL );
717     iReleaseReg = ++pParse->nMem;
718     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
719     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
720     addrNxt = pLevel->addrNxt;
721     sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v);
722     sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
723     VdbeCoverage(v);
724     sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
725     sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
726     VdbeComment((v, "pk"));
727     pLevel->op = OP_Noop;
728   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
729          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
730   ){
731     /* Case 3:  We have an inequality comparison against the ROWID field.
732     */
733     int testOp = OP_Noop;
734     int start;
735     int memEndValue = 0;
736     WhereTerm *pStart, *pEnd;
737 
738     assert( omitTable==0 );
739     j = 0;
740     pStart = pEnd = 0;
741     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
742     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
743     assert( pStart!=0 || pEnd!=0 );
744     if( bRev ){
745       pTerm = pStart;
746       pStart = pEnd;
747       pEnd = pTerm;
748     }
749     if( pStart ){
750       Expr *pX;             /* The expression that defines the start bound */
751       int r1, rTemp;        /* Registers for holding the start boundary */
752 
753       /* The following constant maps TK_xx codes into corresponding
754       ** seek opcodes.  It depends on a particular ordering of TK_xx
755       */
756       const u8 aMoveOp[] = {
757            /* TK_GT */  OP_SeekGT,
758            /* TK_LE */  OP_SeekLE,
759            /* TK_LT */  OP_SeekLT,
760            /* TK_GE */  OP_SeekGE
761       };
762       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
763       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
764       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
765 
766       assert( (pStart->wtFlags & TERM_VNULL)==0 );
767       testcase( pStart->wtFlags & TERM_VIRTUAL );
768       pX = pStart->pExpr;
769       assert( pX!=0 );
770       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
771       r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
772       sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
773       VdbeComment((v, "pk"));
774       VdbeCoverageIf(v, pX->op==TK_GT);
775       VdbeCoverageIf(v, pX->op==TK_LE);
776       VdbeCoverageIf(v, pX->op==TK_LT);
777       VdbeCoverageIf(v, pX->op==TK_GE);
778       sqlite3ExprCacheAffinityChange(pParse, r1, 1);
779       sqlite3ReleaseTempReg(pParse, rTemp);
780       disableTerm(pLevel, pStart);
781     }else{
782       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
783       VdbeCoverageIf(v, bRev==0);
784       VdbeCoverageIf(v, bRev!=0);
785     }
786     if( pEnd ){
787       Expr *pX;
788       pX = pEnd->pExpr;
789       assert( pX!=0 );
790       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
791       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
792       testcase( pEnd->wtFlags & TERM_VIRTUAL );
793       memEndValue = ++pParse->nMem;
794       sqlite3ExprCode(pParse, pX->pRight, memEndValue);
795       if( pX->op==TK_LT || pX->op==TK_GT ){
796         testOp = bRev ? OP_Le : OP_Ge;
797       }else{
798         testOp = bRev ? OP_Lt : OP_Gt;
799       }
800       disableTerm(pLevel, pEnd);
801     }
802     start = sqlite3VdbeCurrentAddr(v);
803     pLevel->op = bRev ? OP_Prev : OP_Next;
804     pLevel->p1 = iCur;
805     pLevel->p2 = start;
806     assert( pLevel->p5==0 );
807     if( testOp!=OP_Noop ){
808       iRowidReg = ++pParse->nMem;
809       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
810       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
811       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
812       VdbeCoverageIf(v, testOp==OP_Le);
813       VdbeCoverageIf(v, testOp==OP_Lt);
814       VdbeCoverageIf(v, testOp==OP_Ge);
815       VdbeCoverageIf(v, testOp==OP_Gt);
816       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
817     }
818   }else if( pLoop->wsFlags & WHERE_INDEXED ){
819     /* Case 4: A scan using an index.
820     **
821     **         The WHERE clause may contain zero or more equality
822     **         terms ("==" or "IN" operators) that refer to the N
823     **         left-most columns of the index. It may also contain
824     **         inequality constraints (>, <, >= or <=) on the indexed
825     **         column that immediately follows the N equalities. Only
826     **         the right-most column can be an inequality - the rest must
827     **         use the "==" and "IN" operators. For example, if the
828     **         index is on (x,y,z), then the following clauses are all
829     **         optimized:
830     **
831     **            x=5
832     **            x=5 AND y=10
833     **            x=5 AND y<10
834     **            x=5 AND y>5 AND y<10
835     **            x=5 AND y=5 AND z<=10
836     **
837     **         The z<10 term of the following cannot be used, only
838     **         the x=5 term:
839     **
840     **            x=5 AND z<10
841     **
842     **         N may be zero if there are inequality constraints.
843     **         If there are no inequality constraints, then N is at
844     **         least one.
845     **
846     **         This case is also used when there are no WHERE clause
847     **         constraints but an index is selected anyway, in order
848     **         to force the output order to conform to an ORDER BY.
849     */
850     static const u8 aStartOp[] = {
851       0,
852       0,
853       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
854       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
855       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
856       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
857       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
858       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
859     };
860     static const u8 aEndOp[] = {
861       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
862       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
863       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
864       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
865     };
866     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
867     int regBase;                 /* Base register holding constraint values */
868     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
869     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
870     int startEq;                 /* True if range start uses ==, >= or <= */
871     int endEq;                   /* True if range end uses ==, >= or <= */
872     int start_constraints;       /* Start of range is constrained */
873     int nConstraint;             /* Number of constraint terms */
874     Index *pIdx;                 /* The index we will be using */
875     int iIdxCur;                 /* The VDBE cursor for the index */
876     int nExtraReg = 0;           /* Number of extra registers needed */
877     int op;                      /* Instruction opcode */
878     char *zStartAff;             /* Affinity for start of range constraint */
879     char cEndAff = 0;            /* Affinity for end of range constraint */
880     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
881     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
882 
883     pIdx = pLoop->u.btree.pIndex;
884     iIdxCur = pLevel->iIdxCur;
885     assert( nEq>=pLoop->nSkip );
886 
887     /* If this loop satisfies a sort order (pOrderBy) request that
888     ** was passed to this function to implement a "SELECT min(x) ..."
889     ** query, then the caller will only allow the loop to run for
890     ** a single iteration. This means that the first row returned
891     ** should not have a NULL value stored in 'x'. If column 'x' is
892     ** the first one after the nEq equality constraints in the index,
893     ** this requires some special handling.
894     */
895     assert( pWInfo->pOrderBy==0
896          || pWInfo->pOrderBy->nExpr==1
897          || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
898     if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
899      && pWInfo->nOBSat>0
900      && (pIdx->nKeyCol>nEq)
901     ){
902       assert( pLoop->nSkip==0 );
903       bSeekPastNull = 1;
904       nExtraReg = 1;
905     }
906 
907     /* Find any inequality constraint terms for the start and end
908     ** of the range.
909     */
910     j = nEq;
911     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
912       pRangeStart = pLoop->aLTerm[j++];
913       nExtraReg = 1;
914       /* Like optimization range constraints always occur in pairs */
915       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
916               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
917     }
918     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
919       pRangeEnd = pLoop->aLTerm[j++];
920       nExtraReg = 1;
921       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
922         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
923         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
924         pLevel->iLikeRepCntr = ++pParse->nMem;
925         testcase( bRev );
926         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
927         sqlite3VdbeAddOp2(v, OP_Integer,
928                           bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC),
929                           pLevel->iLikeRepCntr);
930         VdbeComment((v, "LIKE loop counter"));
931         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
932       }
933       if( pRangeStart==0
934        && (j = pIdx->aiColumn[nEq])>=0
935        && pIdx->pTable->aCol[j].notNull==0
936       ){
937         bSeekPastNull = 1;
938       }
939     }
940     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
941 
942     /* Generate code to evaluate all constraint terms using == or IN
943     ** and store the values of those terms in an array of registers
944     ** starting at regBase.
945     */
946     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
947     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
948     if( zStartAff ) cEndAff = zStartAff[nEq];
949     addrNxt = pLevel->addrNxt;
950 
951     /* If we are doing a reverse order scan on an ascending index, or
952     ** a forward order scan on a descending index, interchange the
953     ** start and end terms (pRangeStart and pRangeEnd).
954     */
955     if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
956      || (bRev && pIdx->nKeyCol==nEq)
957     ){
958       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
959       SWAP(u8, bSeekPastNull, bStopAtNull);
960     }
961 
962     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
963     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
964     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
965     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
966     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
967     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
968     start_constraints = pRangeStart || nEq>0;
969 
970     /* Seek the index cursor to the start of the range. */
971     nConstraint = nEq;
972     if( pRangeStart ){
973       Expr *pRight = pRangeStart->pExpr->pRight;
974       sqlite3ExprCode(pParse, pRight, regBase+nEq);
975       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
976       if( (pRangeStart->wtFlags & TERM_VNULL)==0
977        && sqlite3ExprCanBeNull(pRight)
978       ){
979         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
980         VdbeCoverage(v);
981       }
982       if( zStartAff ){
983         if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_BLOB){
984           /* Since the comparison is to be performed with no conversions
985           ** applied to the operands, set the affinity to apply to pRight to
986           ** SQLITE_AFF_BLOB.  */
987           zStartAff[nEq] = SQLITE_AFF_BLOB;
988         }
989         if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
990           zStartAff[nEq] = SQLITE_AFF_BLOB;
991         }
992       }
993       nConstraint++;
994       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
995     }else if( bSeekPastNull ){
996       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
997       nConstraint++;
998       startEq = 0;
999       start_constraints = 1;
1000     }
1001     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1002     op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1003     assert( op!=0 );
1004     sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1005     VdbeCoverage(v);
1006     VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1007     VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1008     VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
1009     VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1010     VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1011     VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
1012 
1013     /* Load the value for the inequality constraint at the end of the
1014     ** range (if any).
1015     */
1016     nConstraint = nEq;
1017     if( pRangeEnd ){
1018       Expr *pRight = pRangeEnd->pExpr->pRight;
1019       sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
1020       sqlite3ExprCode(pParse, pRight, regBase+nEq);
1021       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1022       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1023        && sqlite3ExprCanBeNull(pRight)
1024       ){
1025         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1026         VdbeCoverage(v);
1027       }
1028       if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_BLOB
1029        && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff)
1030       ){
1031         codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff);
1032       }
1033       nConstraint++;
1034       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1035     }else if( bStopAtNull ){
1036       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1037       endEq = 0;
1038       nConstraint++;
1039     }
1040     sqlite3DbFree(db, zStartAff);
1041 
1042     /* Top of the loop body */
1043     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1044 
1045     /* Check if the index cursor is past the end of the range. */
1046     if( nConstraint ){
1047       op = aEndOp[bRev*2 + endEq];
1048       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1049       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1050       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1051       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1052       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1053     }
1054 
1055     /* Seek the table cursor, if required */
1056     disableTerm(pLevel, pRangeStart);
1057     disableTerm(pLevel, pRangeEnd);
1058     if( omitTable ){
1059       /* pIdx is a covering index.  No need to access the main table. */
1060     }else if( HasRowid(pIdx->pTable) ){
1061       iRowidReg = ++pParse->nMem;
1062       sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
1063       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1064       sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg);  /* Deferred seek */
1065     }else if( iCur!=iIdxCur ){
1066       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1067       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1068       for(j=0; j<pPk->nKeyCol; j++){
1069         k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1070         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1071       }
1072       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1073                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1074     }
1075 
1076     /* Record the instruction used to terminate the loop. Disable
1077     ** WHERE clause terms made redundant by the index range scan.
1078     */
1079     if( pLoop->wsFlags & WHERE_ONEROW ){
1080       pLevel->op = OP_Noop;
1081     }else if( bRev ){
1082       pLevel->op = OP_Prev;
1083     }else{
1084       pLevel->op = OP_Next;
1085     }
1086     pLevel->p1 = iIdxCur;
1087     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1088     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1089       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1090     }else{
1091       assert( pLevel->p5==0 );
1092     }
1093   }else
1094 
1095 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1096   if( pLoop->wsFlags & WHERE_MULTI_OR ){
1097     /* Case 5:  Two or more separately indexed terms connected by OR
1098     **
1099     ** Example:
1100     **
1101     **   CREATE TABLE t1(a,b,c,d);
1102     **   CREATE INDEX i1 ON t1(a);
1103     **   CREATE INDEX i2 ON t1(b);
1104     **   CREATE INDEX i3 ON t1(c);
1105     **
1106     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
1107     **
1108     ** In the example, there are three indexed terms connected by OR.
1109     ** The top of the loop looks like this:
1110     **
1111     **          Null       1                # Zero the rowset in reg 1
1112     **
1113     ** Then, for each indexed term, the following. The arguments to
1114     ** RowSetTest are such that the rowid of the current row is inserted
1115     ** into the RowSet. If it is already present, control skips the
1116     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
1117     **
1118     **        sqlite3WhereBegin(<term>)
1119     **          RowSetTest                  # Insert rowid into rowset
1120     **          Gosub      2 A
1121     **        sqlite3WhereEnd()
1122     **
1123     ** Following the above, code to terminate the loop. Label A, the target
1124     ** of the Gosub above, jumps to the instruction right after the Goto.
1125     **
1126     **          Null       1                # Zero the rowset in reg 1
1127     **          Goto       B                # The loop is finished.
1128     **
1129     **       A: <loop body>                 # Return data, whatever.
1130     **
1131     **          Return     2                # Jump back to the Gosub
1132     **
1133     **       B: <after the loop>
1134     **
1135     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
1136     ** use an ephemeral index instead of a RowSet to record the primary
1137     ** keys of the rows we have already seen.
1138     **
1139     */
1140     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
1141     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
1142     Index *pCov = 0;             /* Potential covering index (or NULL) */
1143     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
1144 
1145     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
1146     int regRowset = 0;                        /* Register for RowSet object */
1147     int regRowid = 0;                         /* Register holding rowid */
1148     int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
1149     int iRetInit;                             /* Address of regReturn init */
1150     int untestedTerms = 0;             /* Some terms not completely tested */
1151     int ii;                            /* Loop counter */
1152     u16 wctrlFlags;                    /* Flags for sub-WHERE clause */
1153     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
1154     Table *pTab = pTabItem->pTab;
1155 
1156     pTerm = pLoop->aLTerm[0];
1157     assert( pTerm!=0 );
1158     assert( pTerm->eOperator & WO_OR );
1159     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
1160     pOrWc = &pTerm->u.pOrInfo->wc;
1161     pLevel->op = OP_Return;
1162     pLevel->p1 = regReturn;
1163 
1164     /* Set up a new SrcList in pOrTab containing the table being scanned
1165     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
1166     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
1167     */
1168     if( pWInfo->nLevel>1 ){
1169       int nNotReady;                 /* The number of notReady tables */
1170       struct SrcList_item *origSrc;     /* Original list of tables */
1171       nNotReady = pWInfo->nLevel - iLevel - 1;
1172       pOrTab = sqlite3StackAllocRaw(db,
1173                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
1174       if( pOrTab==0 ) return notReady;
1175       pOrTab->nAlloc = (u8)(nNotReady + 1);
1176       pOrTab->nSrc = pOrTab->nAlloc;
1177       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
1178       origSrc = pWInfo->pTabList->a;
1179       for(k=1; k<=nNotReady; k++){
1180         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
1181       }
1182     }else{
1183       pOrTab = pWInfo->pTabList;
1184     }
1185 
1186     /* Initialize the rowset register to contain NULL. An SQL NULL is
1187     ** equivalent to an empty rowset.  Or, create an ephemeral index
1188     ** capable of holding primary keys in the case of a WITHOUT ROWID.
1189     **
1190     ** Also initialize regReturn to contain the address of the instruction
1191     ** immediately following the OP_Return at the bottom of the loop. This
1192     ** is required in a few obscure LEFT JOIN cases where control jumps
1193     ** over the top of the loop into the body of it. In this case the
1194     ** correct response for the end-of-loop code (the OP_Return) is to
1195     ** fall through to the next instruction, just as an OP_Next does if
1196     ** called on an uninitialized cursor.
1197     */
1198     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1199       if( HasRowid(pTab) ){
1200         regRowset = ++pParse->nMem;
1201         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
1202       }else{
1203         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1204         regRowset = pParse->nTab++;
1205         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
1206         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
1207       }
1208       regRowid = ++pParse->nMem;
1209     }
1210     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
1211 
1212     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
1213     ** Then for every term xN, evaluate as the subexpression: xN AND z
1214     ** That way, terms in y that are factored into the disjunction will
1215     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
1216     **
1217     ** Actually, each subexpression is converted to "xN AND w" where w is
1218     ** the "interesting" terms of z - terms that did not originate in the
1219     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
1220     ** indices.
1221     **
1222     ** This optimization also only applies if the (x1 OR x2 OR ...) term
1223     ** is not contained in the ON clause of a LEFT JOIN.
1224     ** See ticket http://www.sqlite.org/src/info/f2369304e4
1225     */
1226     if( pWC->nTerm>1 ){
1227       int iTerm;
1228       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
1229         Expr *pExpr = pWC->a[iTerm].pExpr;
1230         if( &pWC->a[iTerm] == pTerm ) continue;
1231         if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
1232         if( (pWC->a[iTerm].wtFlags & TERM_VIRTUAL)!=0 ) continue;
1233         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
1234         testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
1235         pExpr = sqlite3ExprDup(db, pExpr, 0);
1236         pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
1237       }
1238       if( pAndExpr ){
1239         pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0);
1240       }
1241     }
1242 
1243     /* Run a separate WHERE clause for each term of the OR clause.  After
1244     ** eliminating duplicates from other WHERE clauses, the action for each
1245     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
1246     */
1247     wctrlFlags =  WHERE_OMIT_OPEN_CLOSE
1248                 | WHERE_FORCE_TABLE
1249                 | WHERE_ONETABLE_ONLY
1250                 | WHERE_NO_AUTOINDEX;
1251     for(ii=0; ii<pOrWc->nTerm; ii++){
1252       WhereTerm *pOrTerm = &pOrWc->a[ii];
1253       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
1254         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
1255         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
1256         int j1 = 0;                     /* Address of jump operation */
1257         if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
1258           pAndExpr->pLeft = pOrExpr;
1259           pOrExpr = pAndExpr;
1260         }
1261         /* Loop through table entries that match term pOrTerm. */
1262         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
1263         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
1264                                       wctrlFlags, iCovCur);
1265         assert( pSubWInfo || pParse->nErr || db->mallocFailed );
1266         if( pSubWInfo ){
1267           WhereLoop *pSubLoop;
1268           int addrExplain = sqlite3WhereExplainOneScan(
1269               pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
1270           );
1271           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
1272 
1273           /* This is the sub-WHERE clause body.  First skip over
1274           ** duplicate rows from prior sub-WHERE clauses, and record the
1275           ** rowid (or PRIMARY KEY) for the current row so that the same
1276           ** row will be skipped in subsequent sub-WHERE clauses.
1277           */
1278           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1279             int r;
1280             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
1281             if( HasRowid(pTab) ){
1282               r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0);
1283               j1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, r,iSet);
1284               VdbeCoverage(v);
1285             }else{
1286               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1287               int nPk = pPk->nKeyCol;
1288               int iPk;
1289 
1290               /* Read the PK into an array of temp registers. */
1291               r = sqlite3GetTempRange(pParse, nPk);
1292               for(iPk=0; iPk<nPk; iPk++){
1293                 int iCol = pPk->aiColumn[iPk];
1294                 int rx;
1295                 rx = sqlite3ExprCodeGetColumn(pParse, pTab, iCol, iCur,r+iPk,0);
1296                 if( rx!=r+iPk ){
1297                   sqlite3VdbeAddOp2(v, OP_SCopy, rx, r+iPk);
1298                 }
1299               }
1300 
1301               /* Check if the temp table already contains this key. If so,
1302               ** the row has already been included in the result set and
1303               ** can be ignored (by jumping past the Gosub below). Otherwise,
1304               ** insert the key into the temp table and proceed with processing
1305               ** the row.
1306               **
1307               ** Use some of the same optimizations as OP_RowSetTest: If iSet
1308               ** is zero, assume that the key cannot already be present in
1309               ** the temp table. And if iSet is -1, assume that there is no
1310               ** need to insert the key into the temp table, as it will never
1311               ** be tested for.  */
1312               if( iSet ){
1313                 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
1314                 VdbeCoverage(v);
1315               }
1316               if( iSet>=0 ){
1317                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
1318                 sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0);
1319                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1320               }
1321 
1322               /* Release the array of temp registers */
1323               sqlite3ReleaseTempRange(pParse, r, nPk);
1324             }
1325           }
1326 
1327           /* Invoke the main loop body as a subroutine */
1328           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
1329 
1330           /* Jump here (skipping the main loop body subroutine) if the
1331           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
1332           if( j1 ) sqlite3VdbeJumpHere(v, j1);
1333 
1334           /* The pSubWInfo->untestedTerms flag means that this OR term
1335           ** contained one or more AND term from a notReady table.  The
1336           ** terms from the notReady table could not be tested and will
1337           ** need to be tested later.
1338           */
1339           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
1340 
1341           /* If all of the OR-connected terms are optimized using the same
1342           ** index, and the index is opened using the same cursor number
1343           ** by each call to sqlite3WhereBegin() made by this loop, it may
1344           ** be possible to use that index as a covering index.
1345           **
1346           ** If the call to sqlite3WhereBegin() above resulted in a scan that
1347           ** uses an index, and this is either the first OR-connected term
1348           ** processed or the index is the same as that used by all previous
1349           ** terms, set pCov to the candidate covering index. Otherwise, set
1350           ** pCov to NULL to indicate that no candidate covering index will
1351           ** be available.
1352           */
1353           pSubLoop = pSubWInfo->a[0].pWLoop;
1354           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
1355           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
1356            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
1357            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
1358           ){
1359             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
1360             pCov = pSubLoop->u.btree.pIndex;
1361             wctrlFlags |= WHERE_REOPEN_IDX;
1362           }else{
1363             pCov = 0;
1364           }
1365 
1366           /* Finish the loop through table entries that match term pOrTerm. */
1367           sqlite3WhereEnd(pSubWInfo);
1368         }
1369       }
1370     }
1371     pLevel->u.pCovidx = pCov;
1372     if( pCov ) pLevel->iIdxCur = iCovCur;
1373     if( pAndExpr ){
1374       pAndExpr->pLeft = 0;
1375       sqlite3ExprDelete(db, pAndExpr);
1376     }
1377     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
1378     sqlite3VdbeGoto(v, pLevel->addrBrk);
1379     sqlite3VdbeResolveLabel(v, iLoopBody);
1380 
1381     if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
1382     if( !untestedTerms ) disableTerm(pLevel, pTerm);
1383   }else
1384 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1385 
1386   {
1387     /* Case 6:  There is no usable index.  We must do a complete
1388     **          scan of the entire table.
1389     */
1390     static const u8 aStep[] = { OP_Next, OP_Prev };
1391     static const u8 aStart[] = { OP_Rewind, OP_Last };
1392     assert( bRev==0 || bRev==1 );
1393     if( pTabItem->fg.isRecursive ){
1394       /* Tables marked isRecursive have only a single row that is stored in
1395       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
1396       pLevel->op = OP_Noop;
1397     }else{
1398       pLevel->op = aStep[bRev];
1399       pLevel->p1 = iCur;
1400       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
1401       VdbeCoverageIf(v, bRev==0);
1402       VdbeCoverageIf(v, bRev!=0);
1403       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1404     }
1405   }
1406 
1407 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1408   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
1409 #endif
1410 
1411   /* Insert code to test every subexpression that can be completely
1412   ** computed using the current set of tables.
1413   */
1414   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1415     Expr *pE;
1416     int skipLikeAddr = 0;
1417     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1418     testcase( pTerm->wtFlags & TERM_CODED );
1419     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1420     if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
1421       testcase( pWInfo->untestedTerms==0
1422                && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
1423       pWInfo->untestedTerms = 1;
1424       continue;
1425     }
1426     pE = pTerm->pExpr;
1427     assert( pE!=0 );
1428     if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
1429       continue;
1430     }
1431     if( pTerm->wtFlags & TERM_LIKECOND ){
1432       assert( pLevel->iLikeRepCntr>0 );
1433       skipLikeAddr = sqlite3VdbeAddOp1(v, OP_IfNot, pLevel->iLikeRepCntr);
1434       VdbeCoverage(v);
1435     }
1436     sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
1437     if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
1438     pTerm->wtFlags |= TERM_CODED;
1439   }
1440 
1441   /* Insert code to test for implied constraints based on transitivity
1442   ** of the "==" operator.
1443   **
1444   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
1445   ** and we are coding the t1 loop and the t2 loop has not yet coded,
1446   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
1447   ** the implied "t1.a=123" constraint.
1448   */
1449   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1450     Expr *pE, *pEAlt;
1451     WhereTerm *pAlt;
1452     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1453     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
1454     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
1455     if( pTerm->leftCursor!=iCur ) continue;
1456     if( pLevel->iLeftJoin ) continue;
1457     pE = pTerm->pExpr;
1458     assert( !ExprHasProperty(pE, EP_FromJoin) );
1459     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
1460     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
1461                     WO_EQ|WO_IN|WO_IS, 0);
1462     if( pAlt==0 ) continue;
1463     if( pAlt->wtFlags & (TERM_CODED) ) continue;
1464     testcase( pAlt->eOperator & WO_EQ );
1465     testcase( pAlt->eOperator & WO_IS );
1466     testcase( pAlt->eOperator & WO_IN );
1467     VdbeModuleComment((v, "begin transitive constraint"));
1468     pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt));
1469     if( pEAlt ){
1470       *pEAlt = *pAlt->pExpr;
1471       pEAlt->pLeft = pE->pLeft;
1472       sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL);
1473       sqlite3StackFree(db, pEAlt);
1474     }
1475   }
1476 
1477   /* For a LEFT OUTER JOIN, generate code that will record the fact that
1478   ** at least one row of the right table has matched the left table.
1479   */
1480   if( pLevel->iLeftJoin ){
1481     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
1482     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
1483     VdbeComment((v, "record LEFT JOIN hit"));
1484     sqlite3ExprCacheClear(pParse);
1485     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
1486       testcase( pTerm->wtFlags & TERM_VIRTUAL );
1487       testcase( pTerm->wtFlags & TERM_CODED );
1488       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1489       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
1490         assert( pWInfo->untestedTerms );
1491         continue;
1492       }
1493       assert( pTerm->pExpr );
1494       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
1495       pTerm->wtFlags |= TERM_CODED;
1496     }
1497   }
1498 
1499   return pLevel->notReady;
1500 }
1501