xref: /sqlite-3.40.0/src/wherecode.c (revision 4baf43ff)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 
25 /*
26 ** Return the name of the i-th column of the pIdx index.
27 */
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29   i = pIdx->aiColumn[i];
30   if( i==XN_EXPR ) return "<expr>";
31   if( i==XN_ROWID ) return "rowid";
32   return pIdx->pTable->aCol[i].zCnName;
33 }
34 
35 /*
36 ** This routine is a helper for explainIndexRange() below
37 **
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time.  This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
42 */
43 static void explainAppendTerm(
44   StrAccum *pStr,             /* The text expression being built */
45   Index *pIdx,                /* Index to read column names from */
46   int nTerm,                  /* Number of terms */
47   int iTerm,                  /* Zero-based index of first term. */
48   int bAnd,                   /* Non-zero to append " AND " */
49   const char *zOp             /* Name of the operator */
50 ){
51   int i;
52 
53   assert( nTerm>=1 );
54   if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
55 
56   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
57   for(i=0; i<nTerm; i++){
58     if( i ) sqlite3_str_append(pStr, ",", 1);
59     sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
60   }
61   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
62 
63   sqlite3_str_append(pStr, zOp, 1);
64 
65   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
66   for(i=0; i<nTerm; i++){
67     if( i ) sqlite3_str_append(pStr, ",", 1);
68     sqlite3_str_append(pStr, "?", 1);
69   }
70   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
71 }
72 
73 /*
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
77 **
78 ** For example, if the query:
79 **
80 **   SELECT * FROM t1 WHERE a=1 AND b>2;
81 **
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
84 **
85 **   "a=? AND b>?"
86 */
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88   Index *pIndex = pLoop->u.btree.pIndex;
89   u16 nEq = pLoop->u.btree.nEq;
90   u16 nSkip = pLoop->nSkip;
91   int i, j;
92 
93   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94   sqlite3_str_append(pStr, " (", 2);
95   for(i=0; i<nEq; i++){
96     const char *z = explainIndexColumnName(pIndex, i);
97     if( i ) sqlite3_str_append(pStr, " AND ", 5);
98     sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
99   }
100 
101   j = i;
102   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104     i = 1;
105   }
106   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
108   }
109   sqlite3_str_append(pStr, ")", 1);
110 }
111 
112 /*
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
117 **
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
120 */
121 int sqlite3WhereExplainOneScan(
122   Parse *pParse,                  /* Parse context */
123   SrcList *pTabList,              /* Table list this loop refers to */
124   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
125   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
126 ){
127   int ret = 0;
128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
129   if( sqlite3ParseToplevel(pParse)->explain==2 )
130 #endif
131   {
132     SrcItem *pItem = &pTabList->a[pLevel->iFrom];
133     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
134     sqlite3 *db = pParse->db;     /* Database handle */
135     int isSearch;                 /* True for a SEARCH. False for SCAN. */
136     WhereLoop *pLoop;             /* The controlling WhereLoop object */
137     u32 flags;                    /* Flags that describe this loop */
138     char *zMsg;                   /* Text to add to EQP output */
139     StrAccum str;                 /* EQP output string */
140     char zBuf[100];               /* Initial space for EQP output string */
141 
142     pLoop = pLevel->pWLoop;
143     flags = pLoop->wsFlags;
144     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
145 
146     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
147             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
148             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
149 
150     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
151     str.printfFlags = SQLITE_PRINTF_INTERNAL;
152     sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem);
153     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
154       const char *zFmt = 0;
155       Index *pIdx;
156 
157       assert( pLoop->u.btree.pIndex!=0 );
158       pIdx = pLoop->u.btree.pIndex;
159       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
160       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
161         if( isSearch ){
162           zFmt = "PRIMARY KEY";
163         }
164       }else if( flags & WHERE_PARTIALIDX ){
165         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
166       }else if( flags & WHERE_AUTO_INDEX ){
167         zFmt = "AUTOMATIC COVERING INDEX";
168       }else if( flags & WHERE_IDX_ONLY ){
169         zFmt = "COVERING INDEX %s";
170       }else{
171         zFmt = "INDEX %s";
172       }
173       if( zFmt ){
174         sqlite3_str_append(&str, " USING ", 7);
175         sqlite3_str_appendf(&str, zFmt, pIdx->zName);
176         explainIndexRange(&str, pLoop);
177       }
178     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
179       const char *zRangeOp;
180       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
181         zRangeOp = "=";
182       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
183         zRangeOp = ">? AND rowid<";
184       }else if( flags&WHERE_BTM_LIMIT ){
185         zRangeOp = ">";
186       }else{
187         assert( flags&WHERE_TOP_LIMIT);
188         zRangeOp = "<";
189       }
190       sqlite3_str_appendf(&str,
191           " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
192     }
193 #ifndef SQLITE_OMIT_VIRTUALTABLE
194     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
195       sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
196                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
197     }
198 #endif
199 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
200     if( pLoop->nOut>=10 ){
201       sqlite3_str_appendf(&str, " (~%llu rows)",
202              sqlite3LogEstToInt(pLoop->nOut));
203     }else{
204       sqlite3_str_append(&str, " (~1 row)", 9);
205     }
206 #endif
207     zMsg = sqlite3StrAccumFinish(&str);
208     sqlite3ExplainBreakpoint("",zMsg);
209     ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
210                             pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
211   }
212   return ret;
213 }
214 #endif /* SQLITE_OMIT_EXPLAIN */
215 
216 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
217 /*
218 ** Configure the VM passed as the first argument with an
219 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
220 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
221 ** clause that the scan reads data from.
222 **
223 ** If argument addrExplain is not 0, it must be the address of an
224 ** OP_Explain instruction that describes the same loop.
225 */
226 void sqlite3WhereAddScanStatus(
227   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
228   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
229   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
230   int addrExplain                 /* Address of OP_Explain (or 0) */
231 ){
232   const char *zObj = 0;
233   WhereLoop *pLoop = pLvl->pWLoop;
234   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
235     zObj = pLoop->u.btree.pIndex->zName;
236   }else{
237     zObj = pSrclist->a[pLvl->iFrom].zName;
238   }
239   sqlite3VdbeScanStatus(
240       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
241   );
242 }
243 #endif
244 
245 
246 /*
247 ** Disable a term in the WHERE clause.  Except, do not disable the term
248 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
249 ** or USING clause of that join.
250 **
251 ** Consider the term t2.z='ok' in the following queries:
252 **
253 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
254 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
255 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
256 **
257 ** The t2.z='ok' is disabled in the in (2) because it originates
258 ** in the ON clause.  The term is disabled in (3) because it is not part
259 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
260 **
261 ** Disabling a term causes that term to not be tested in the inner loop
262 ** of the join.  Disabling is an optimization.  When terms are satisfied
263 ** by indices, we disable them to prevent redundant tests in the inner
264 ** loop.  We would get the correct results if nothing were ever disabled,
265 ** but joins might run a little slower.  The trick is to disable as much
266 ** as we can without disabling too much.  If we disabled in (1), we'd get
267 ** the wrong answer.  See ticket #813.
268 **
269 ** If all the children of a term are disabled, then that term is also
270 ** automatically disabled.  In this way, terms get disabled if derived
271 ** virtual terms are tested first.  For example:
272 **
273 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
274 **      \___________/     \______/     \_____/
275 **         parent          child1       child2
276 **
277 ** Only the parent term was in the original WHERE clause.  The child1
278 ** and child2 terms were added by the LIKE optimization.  If both of
279 ** the virtual child terms are valid, then testing of the parent can be
280 ** skipped.
281 **
282 ** Usually the parent term is marked as TERM_CODED.  But if the parent
283 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
284 ** The TERM_LIKECOND marking indicates that the term should be coded inside
285 ** a conditional such that is only evaluated on the second pass of a
286 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
287 */
288 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
289   int nLoop = 0;
290   assert( pTerm!=0 );
291   while( (pTerm->wtFlags & TERM_CODED)==0
292       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
293       && (pLevel->notReady & pTerm->prereqAll)==0
294   ){
295     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
296       pTerm->wtFlags |= TERM_LIKECOND;
297     }else{
298       pTerm->wtFlags |= TERM_CODED;
299     }
300 #ifdef WHERETRACE_ENABLED
301     if( sqlite3WhereTrace & 0x20000 ){
302       sqlite3DebugPrintf("DISABLE-");
303       sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a)));
304     }
305 #endif
306     if( pTerm->iParent<0 ) break;
307     pTerm = &pTerm->pWC->a[pTerm->iParent];
308     assert( pTerm!=0 );
309     pTerm->nChild--;
310     if( pTerm->nChild!=0 ) break;
311     nLoop++;
312   }
313 }
314 
315 /*
316 ** Code an OP_Affinity opcode to apply the column affinity string zAff
317 ** to the n registers starting at base.
318 **
319 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
320 ** are no-ops) at the beginning and end of zAff are ignored.  If all entries
321 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
322 **
323 ** This routine makes its own copy of zAff so that the caller is free
324 ** to modify zAff after this routine returns.
325 */
326 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
327   Vdbe *v = pParse->pVdbe;
328   if( zAff==0 ){
329     assert( pParse->db->mallocFailed );
330     return;
331   }
332   assert( v!=0 );
333 
334   /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
335   ** entries at the beginning and end of the affinity string.
336   */
337   assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB );
338   while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){
339     n--;
340     base++;
341     zAff++;
342   }
343   while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){
344     n--;
345   }
346 
347   /* Code the OP_Affinity opcode if there is anything left to do. */
348   if( n>0 ){
349     sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
350   }
351 }
352 
353 /*
354 ** Expression pRight, which is the RHS of a comparison operation, is
355 ** either a vector of n elements or, if n==1, a scalar expression.
356 ** Before the comparison operation, affinity zAff is to be applied
357 ** to the pRight values. This function modifies characters within the
358 ** affinity string to SQLITE_AFF_BLOB if either:
359 **
360 **   * the comparison will be performed with no affinity, or
361 **   * the affinity change in zAff is guaranteed not to change the value.
362 */
363 static void updateRangeAffinityStr(
364   Expr *pRight,                   /* RHS of comparison */
365   int n,                          /* Number of vector elements in comparison */
366   char *zAff                      /* Affinity string to modify */
367 ){
368   int i;
369   for(i=0; i<n; i++){
370     Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
371     if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
372      || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
373     ){
374       zAff[i] = SQLITE_AFF_BLOB;
375     }
376   }
377 }
378 
379 
380 /*
381 ** pX is an expression of the form:  (vector) IN (SELECT ...)
382 ** In other words, it is a vector IN operator with a SELECT clause on the
383 ** LHS.  But not all terms in the vector are indexable and the terms might
384 ** not be in the correct order for indexing.
385 **
386 ** This routine makes a copy of the input pX expression and then adjusts
387 ** the vector on the LHS with corresponding changes to the SELECT so that
388 ** the vector contains only index terms and those terms are in the correct
389 ** order.  The modified IN expression is returned.  The caller is responsible
390 ** for deleting the returned expression.
391 **
392 ** Example:
393 **
394 **    CREATE TABLE t1(a,b,c,d,e,f);
395 **    CREATE INDEX t1x1 ON t1(e,c);
396 **    SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
397 **                           \_______________________________________/
398 **                                     The pX expression
399 **
400 ** Since only columns e and c can be used with the index, in that order,
401 ** the modified IN expression that is returned will be:
402 **
403 **        (e,c) IN (SELECT z,x FROM t2)
404 **
405 ** The reduced pX is different from the original (obviously) and thus is
406 ** only used for indexing, to improve performance.  The original unaltered
407 ** IN expression must also be run on each output row for correctness.
408 */
409 static Expr *removeUnindexableInClauseTerms(
410   Parse *pParse,        /* The parsing context */
411   int iEq,              /* Look at loop terms starting here */
412   WhereLoop *pLoop,     /* The current loop */
413   Expr *pX              /* The IN expression to be reduced */
414 ){
415   sqlite3 *db = pParse->db;
416   Expr *pNew;
417   pNew = sqlite3ExprDup(db, pX, 0);
418   if( db->mallocFailed==0 ){
419     ExprList *pOrigRhs;         /* Original unmodified RHS */
420     ExprList *pOrigLhs;         /* Original unmodified LHS */
421     ExprList *pRhs = 0;         /* New RHS after modifications */
422     ExprList *pLhs = 0;         /* New LHS after mods */
423     int i;                      /* Loop counter */
424     Select *pSelect;            /* Pointer to the SELECT on the RHS */
425 
426     assert( ExprUseXSelect(pNew) );
427     pOrigRhs = pNew->x.pSelect->pEList;
428     assert( pNew->pLeft!=0 );
429     assert( ExprUseXList(pNew->pLeft) );
430     pOrigLhs = pNew->pLeft->x.pList;
431     for(i=iEq; i<pLoop->nLTerm; i++){
432       if( pLoop->aLTerm[i]->pExpr==pX ){
433         int iField;
434         assert( (pLoop->aLTerm[i]->eOperator & (WO_OR|WO_AND))==0 );
435         iField = pLoop->aLTerm[i]->u.x.iField - 1;
436         if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
437         pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
438         pOrigRhs->a[iField].pExpr = 0;
439         assert( pOrigLhs->a[iField].pExpr!=0 );
440         pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
441         pOrigLhs->a[iField].pExpr = 0;
442       }
443     }
444     sqlite3ExprListDelete(db, pOrigRhs);
445     sqlite3ExprListDelete(db, pOrigLhs);
446     pNew->pLeft->x.pList = pLhs;
447     pNew->x.pSelect->pEList = pRhs;
448     if( pLhs && pLhs->nExpr==1 ){
449       /* Take care here not to generate a TK_VECTOR containing only a
450       ** single value. Since the parser never creates such a vector, some
451       ** of the subroutines do not handle this case.  */
452       Expr *p = pLhs->a[0].pExpr;
453       pLhs->a[0].pExpr = 0;
454       sqlite3ExprDelete(db, pNew->pLeft);
455       pNew->pLeft = p;
456     }
457     pSelect = pNew->x.pSelect;
458     if( pSelect->pOrderBy ){
459       /* If the SELECT statement has an ORDER BY clause, zero the
460       ** iOrderByCol variables. These are set to non-zero when an
461       ** ORDER BY term exactly matches one of the terms of the
462       ** result-set. Since the result-set of the SELECT statement may
463       ** have been modified or reordered, these variables are no longer
464       ** set correctly.  Since setting them is just an optimization,
465       ** it's easiest just to zero them here.  */
466       ExprList *pOrderBy = pSelect->pOrderBy;
467       for(i=0; i<pOrderBy->nExpr; i++){
468         pOrderBy->a[i].u.x.iOrderByCol = 0;
469       }
470     }
471 
472 #if 0
473     printf("For indexing, change the IN expr:\n");
474     sqlite3TreeViewExpr(0, pX, 0);
475     printf("Into:\n");
476     sqlite3TreeViewExpr(0, pNew, 0);
477 #endif
478   }
479   return pNew;
480 }
481 
482 
483 /*
484 ** Generate code for a single equality term of the WHERE clause.  An equality
485 ** term can be either X=expr or X IN (...).   pTerm is the term to be
486 ** coded.
487 **
488 ** The current value for the constraint is left in a register, the index
489 ** of which is returned.  An attempt is made store the result in iTarget but
490 ** this is only guaranteed for TK_ISNULL and TK_IN constraints.  If the
491 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
492 ** some other register and it is the caller's responsibility to compensate.
493 **
494 ** For a constraint of the form X=expr, the expression is evaluated in
495 ** straight-line code.  For constraints of the form X IN (...)
496 ** this routine sets up a loop that will iterate over all values of X.
497 */
498 static int codeEqualityTerm(
499   Parse *pParse,      /* The parsing context */
500   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
501   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
502   int iEq,            /* Index of the equality term within this level */
503   int bRev,           /* True for reverse-order IN operations */
504   int iTarget         /* Attempt to leave results in this register */
505 ){
506   Expr *pX = pTerm->pExpr;
507   Vdbe *v = pParse->pVdbe;
508   int iReg;                  /* Register holding results */
509 
510   assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
511   assert( iTarget>0 );
512   if( pX->op==TK_EQ || pX->op==TK_IS ){
513     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
514   }else if( pX->op==TK_ISNULL ){
515     iReg = iTarget;
516     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
517 #ifndef SQLITE_OMIT_SUBQUERY
518   }else{
519     int eType = IN_INDEX_NOOP;
520     int iTab;
521     struct InLoop *pIn;
522     WhereLoop *pLoop = pLevel->pWLoop;
523     int i;
524     int nEq = 0;
525     int *aiMap = 0;
526 
527     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
528       && pLoop->u.btree.pIndex!=0
529       && pLoop->u.btree.pIndex->aSortOrder[iEq]
530     ){
531       testcase( iEq==0 );
532       testcase( bRev );
533       bRev = !bRev;
534     }
535     assert( pX->op==TK_IN );
536     iReg = iTarget;
537 
538     for(i=0; i<iEq; i++){
539       if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
540         disableTerm(pLevel, pTerm);
541         return iTarget;
542       }
543     }
544     for(i=iEq;i<pLoop->nLTerm; i++){
545       assert( pLoop->aLTerm[i]!=0 );
546       if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
547     }
548 
549     iTab = 0;
550     if( !ExprUseXSelect(pX) || pX->x.pSelect->pEList->nExpr==1 ){
551       eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab);
552     }else{
553       sqlite3 *db = pParse->db;
554       pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
555 
556       if( !db->mallocFailed ){
557         aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
558         eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab);
559         pTerm->pExpr->iTable = iTab;
560       }
561       sqlite3ExprDelete(db, pX);
562       pX = pTerm->pExpr;
563     }
564 
565     if( eType==IN_INDEX_INDEX_DESC ){
566       testcase( bRev );
567       bRev = !bRev;
568     }
569     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
570     VdbeCoverageIf(v, bRev);
571     VdbeCoverageIf(v, !bRev);
572 
573     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
574     pLoop->wsFlags |= WHERE_IN_ABLE;
575     if( pLevel->u.in.nIn==0 ){
576       pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
577     }
578     if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){
579       pLoop->wsFlags |= WHERE_IN_EARLYOUT;
580     }
581 
582     i = pLevel->u.in.nIn;
583     pLevel->u.in.nIn += nEq;
584     pLevel->u.in.aInLoop =
585        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
586                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
587     pIn = pLevel->u.in.aInLoop;
588     if( pIn ){
589       int iMap = 0;               /* Index in aiMap[] */
590       pIn += i;
591       for(i=iEq;i<pLoop->nLTerm; i++){
592         if( pLoop->aLTerm[i]->pExpr==pX ){
593           int iOut = iReg + i - iEq;
594           if( eType==IN_INDEX_ROWID ){
595             pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
596           }else{
597             int iCol = aiMap ? aiMap[iMap++] : 0;
598             pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
599           }
600           sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
601           if( i==iEq ){
602             pIn->iCur = iTab;
603             pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
604             if( iEq>0 ){
605               pIn->iBase = iReg - i;
606               pIn->nPrefix = i;
607             }else{
608               pIn->nPrefix = 0;
609             }
610           }else{
611             pIn->eEndLoopOp = OP_Noop;
612           }
613           pIn++;
614         }
615       }
616       testcase( iEq>0
617                 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
618                 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 );
619       if( iEq>0
620        && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0
621       ){
622         sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq);
623       }
624     }else{
625       pLevel->u.in.nIn = 0;
626     }
627     sqlite3DbFree(pParse->db, aiMap);
628 #endif
629   }
630 
631   /* As an optimization, try to disable the WHERE clause term that is
632   ** driving the index as it will always be true.  The correct answer is
633   ** obtained regardless, but we might get the answer with fewer CPU cycles
634   ** by omitting the term.
635   **
636   ** But do not disable the term unless we are certain that the term is
637   ** not a transitive constraint.  For an example of where that does not
638   ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04)
639   */
640   if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0
641    || (pTerm->eOperator & WO_EQUIV)==0
642   ){
643     disableTerm(pLevel, pTerm);
644   }
645 
646   return iReg;
647 }
648 
649 /*
650 ** Generate code that will evaluate all == and IN constraints for an
651 ** index scan.
652 **
653 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
654 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
655 ** The index has as many as three equality constraints, but in this
656 ** example, the third "c" value is an inequality.  So only two
657 ** constraints are coded.  This routine will generate code to evaluate
658 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
659 ** in consecutive registers and the index of the first register is returned.
660 **
661 ** In the example above nEq==2.  But this subroutine works for any value
662 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
663 ** The only thing it does is allocate the pLevel->iMem memory cell and
664 ** compute the affinity string.
665 **
666 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
667 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
668 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
669 ** occurs after the nEq quality constraints.
670 **
671 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
672 ** the index of the first memory cell in that range. The code that
673 ** calls this routine will use that memory range to store keys for
674 ** start and termination conditions of the loop.
675 ** key value of the loop.  If one or more IN operators appear, then
676 ** this routine allocates an additional nEq memory cells for internal
677 ** use.
678 **
679 ** Before returning, *pzAff is set to point to a buffer containing a
680 ** copy of the column affinity string of the index allocated using
681 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
682 ** with equality constraints that use BLOB or NONE affinity are set to
683 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
684 **
685 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
686 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
687 **
688 ** In the example above, the index on t1(a) has TEXT affinity. But since
689 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
690 ** no conversion should be attempted before using a t2.b value as part of
691 ** a key to search the index. Hence the first byte in the returned affinity
692 ** string in this example would be set to SQLITE_AFF_BLOB.
693 */
694 static int codeAllEqualityTerms(
695   Parse *pParse,        /* Parsing context */
696   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
697   int bRev,             /* Reverse the order of IN operators */
698   int nExtraReg,        /* Number of extra registers to allocate */
699   char **pzAff          /* OUT: Set to point to affinity string */
700 ){
701   u16 nEq;                      /* The number of == or IN constraints to code */
702   u16 nSkip;                    /* Number of left-most columns to skip */
703   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
704   Index *pIdx;                  /* The index being used for this loop */
705   WhereTerm *pTerm;             /* A single constraint term */
706   WhereLoop *pLoop;             /* The WhereLoop object */
707   int j;                        /* Loop counter */
708   int regBase;                  /* Base register */
709   int nReg;                     /* Number of registers to allocate */
710   char *zAff;                   /* Affinity string to return */
711 
712   /* This module is only called on query plans that use an index. */
713   pLoop = pLevel->pWLoop;
714   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
715   nEq = pLoop->u.btree.nEq;
716   nSkip = pLoop->nSkip;
717   pIdx = pLoop->u.btree.pIndex;
718   assert( pIdx!=0 );
719 
720   /* Figure out how many memory cells we will need then allocate them.
721   */
722   regBase = pParse->nMem + 1;
723   nReg = pLoop->u.btree.nEq + nExtraReg;
724   pParse->nMem += nReg;
725 
726   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
727   assert( zAff!=0 || pParse->db->mallocFailed );
728 
729   if( nSkip ){
730     int iIdxCur = pLevel->iIdxCur;
731     sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1);
732     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
733     VdbeCoverageIf(v, bRev==0);
734     VdbeCoverageIf(v, bRev!=0);
735     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
736     j = sqlite3VdbeAddOp0(v, OP_Goto);
737     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
738                             iIdxCur, 0, regBase, nSkip);
739     VdbeCoverageIf(v, bRev==0);
740     VdbeCoverageIf(v, bRev!=0);
741     sqlite3VdbeJumpHere(v, j);
742     for(j=0; j<nSkip; j++){
743       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
744       testcase( pIdx->aiColumn[j]==XN_EXPR );
745       VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
746     }
747   }
748 
749   /* Evaluate the equality constraints
750   */
751   assert( zAff==0 || (int)strlen(zAff)>=nEq );
752   for(j=nSkip; j<nEq; j++){
753     int r1;
754     pTerm = pLoop->aLTerm[j];
755     assert( pTerm!=0 );
756     /* The following testcase is true for indices with redundant columns.
757     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
758     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
759     testcase( pTerm->wtFlags & TERM_VIRTUAL );
760     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
761     if( r1!=regBase+j ){
762       if( nReg==1 ){
763         sqlite3ReleaseTempReg(pParse, regBase);
764         regBase = r1;
765       }else{
766         sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j);
767       }
768     }
769     if( pTerm->eOperator & WO_IN ){
770       if( pTerm->pExpr->flags & EP_xIsSelect ){
771         /* No affinity ever needs to be (or should be) applied to a value
772         ** from the RHS of an "? IN (SELECT ...)" expression. The
773         ** sqlite3FindInIndex() routine has already ensured that the
774         ** affinity of the comparison has been applied to the value.  */
775         if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
776       }
777     }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
778       Expr *pRight = pTerm->pExpr->pRight;
779       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
780         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
781         VdbeCoverage(v);
782       }
783       if( pParse->db->mallocFailed==0 && pParse->nErr==0 ){
784         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
785           zAff[j] = SQLITE_AFF_BLOB;
786         }
787         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
788           zAff[j] = SQLITE_AFF_BLOB;
789         }
790       }
791     }
792   }
793   *pzAff = zAff;
794   return regBase;
795 }
796 
797 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
798 /*
799 ** If the most recently coded instruction is a constant range constraint
800 ** (a string literal) that originated from the LIKE optimization, then
801 ** set P3 and P5 on the OP_String opcode so that the string will be cast
802 ** to a BLOB at appropriate times.
803 **
804 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
805 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
806 ** scan loop run twice, once for strings and a second time for BLOBs.
807 ** The OP_String opcodes on the second pass convert the upper and lower
808 ** bound string constants to blobs.  This routine makes the necessary changes
809 ** to the OP_String opcodes for that to happen.
810 **
811 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
812 ** only the one pass through the string space is required, so this routine
813 ** becomes a no-op.
814 */
815 static void whereLikeOptimizationStringFixup(
816   Vdbe *v,                /* prepared statement under construction */
817   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
818   WhereTerm *pTerm        /* The upper or lower bound just coded */
819 ){
820   if( pTerm->wtFlags & TERM_LIKEOPT ){
821     VdbeOp *pOp;
822     assert( pLevel->iLikeRepCntr>0 );
823     pOp = sqlite3VdbeGetOp(v, -1);
824     assert( pOp!=0 );
825     assert( pOp->opcode==OP_String8
826             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
827     pOp->p3 = (int)(pLevel->iLikeRepCntr>>1);  /* Register holding counter */
828     pOp->p5 = (u8)(pLevel->iLikeRepCntr&1);    /* ASC or DESC */
829   }
830 }
831 #else
832 # define whereLikeOptimizationStringFixup(A,B,C)
833 #endif
834 
835 #ifdef SQLITE_ENABLE_CURSOR_HINTS
836 /*
837 ** Information is passed from codeCursorHint() down to individual nodes of
838 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
839 ** structure.
840 */
841 struct CCurHint {
842   int iTabCur;    /* Cursor for the main table */
843   int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
844   Index *pIdx;    /* The index used to access the table */
845 };
846 
847 /*
848 ** This function is called for every node of an expression that is a candidate
849 ** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
850 ** the table CCurHint.iTabCur, verify that the same column can be
851 ** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
852 */
853 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
854   struct CCurHint *pHint = pWalker->u.pCCurHint;
855   assert( pHint->pIdx!=0 );
856   if( pExpr->op==TK_COLUMN
857    && pExpr->iTable==pHint->iTabCur
858    && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0
859   ){
860     pWalker->eCode = 1;
861   }
862   return WRC_Continue;
863 }
864 
865 /*
866 ** Test whether or not expression pExpr, which was part of a WHERE clause,
867 ** should be included in the cursor-hint for a table that is on the rhs
868 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
869 ** expression is not suitable.
870 **
871 ** An expression is unsuitable if it might evaluate to non NULL even if
872 ** a TK_COLUMN node that does affect the value of the expression is set
873 ** to NULL. For example:
874 **
875 **   col IS NULL
876 **   col IS NOT NULL
877 **   coalesce(col, 1)
878 **   CASE WHEN col THEN 0 ELSE 1 END
879 */
880 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
881   if( pExpr->op==TK_IS
882    || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
883    || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
884   ){
885     pWalker->eCode = 1;
886   }else if( pExpr->op==TK_FUNCTION ){
887     int d1;
888     char d2[4];
889     if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
890       pWalker->eCode = 1;
891     }
892   }
893 
894   return WRC_Continue;
895 }
896 
897 
898 /*
899 ** This function is called on every node of an expression tree used as an
900 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
901 ** that accesses any table other than the one identified by
902 ** CCurHint.iTabCur, then do the following:
903 **
904 **   1) allocate a register and code an OP_Column instruction to read
905 **      the specified column into the new register, and
906 **
907 **   2) transform the expression node to a TK_REGISTER node that reads
908 **      from the newly populated register.
909 **
910 ** Also, if the node is a TK_COLUMN that does access the table idenified
911 ** by pCCurHint.iTabCur, and an index is being used (which we will
912 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
913 ** an access of the index rather than the original table.
914 */
915 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
916   int rc = WRC_Continue;
917   struct CCurHint *pHint = pWalker->u.pCCurHint;
918   if( pExpr->op==TK_COLUMN ){
919     if( pExpr->iTable!=pHint->iTabCur ){
920       int reg = ++pWalker->pParse->nMem;   /* Register for column value */
921       sqlite3ExprCode(pWalker->pParse, pExpr, reg);
922       pExpr->op = TK_REGISTER;
923       pExpr->iTable = reg;
924     }else if( pHint->pIdx!=0 ){
925       pExpr->iTable = pHint->iIdxCur;
926       pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn);
927       assert( pExpr->iColumn>=0 );
928     }
929   }else if( pExpr->op==TK_AGG_FUNCTION ){
930     /* An aggregate function in the WHERE clause of a query means this must
931     ** be a correlated sub-query, and expression pExpr is an aggregate from
932     ** the parent context. Do not walk the function arguments in this case.
933     **
934     ** todo: It should be possible to replace this node with a TK_REGISTER
935     ** expression, as the result of the expression must be stored in a
936     ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
937     rc = WRC_Prune;
938   }
939   return rc;
940 }
941 
942 /*
943 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
944 */
945 static void codeCursorHint(
946   SrcItem *pTabItem,  /* FROM clause item */
947   WhereInfo *pWInfo,    /* The where clause */
948   WhereLevel *pLevel,   /* Which loop to provide hints for */
949   WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
950 ){
951   Parse *pParse = pWInfo->pParse;
952   sqlite3 *db = pParse->db;
953   Vdbe *v = pParse->pVdbe;
954   Expr *pExpr = 0;
955   WhereLoop *pLoop = pLevel->pWLoop;
956   int iCur;
957   WhereClause *pWC;
958   WhereTerm *pTerm;
959   int i, j;
960   struct CCurHint sHint;
961   Walker sWalker;
962 
963   if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
964   iCur = pLevel->iTabCur;
965   assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
966   sHint.iTabCur = iCur;
967   sHint.iIdxCur = pLevel->iIdxCur;
968   sHint.pIdx = pLoop->u.btree.pIndex;
969   memset(&sWalker, 0, sizeof(sWalker));
970   sWalker.pParse = pParse;
971   sWalker.u.pCCurHint = &sHint;
972   pWC = &pWInfo->sWC;
973   for(i=0; i<pWC->nTerm; i++){
974     pTerm = &pWC->a[i];
975     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
976     if( pTerm->prereqAll & pLevel->notReady ) continue;
977 
978     /* Any terms specified as part of the ON(...) clause for any LEFT
979     ** JOIN for which the current table is not the rhs are omitted
980     ** from the cursor-hint.
981     **
982     ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
983     ** that were specified as part of the WHERE clause must be excluded.
984     ** This is to address the following:
985     **
986     **   SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
987     **
988     ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
989     ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
990     ** pushed down to the cursor, this row is filtered out, causing
991     ** SQLite to synthesize a row of NULL values. Which does match the
992     ** WHERE clause, and so the query returns a row. Which is incorrect.
993     **
994     ** For the same reason, WHERE terms such as:
995     **
996     **   WHERE 1 = (t2.c IS NULL)
997     **
998     ** are also excluded. See codeCursorHintIsOrFunction() for details.
999     */
1000     if( pTabItem->fg.jointype & JT_LEFT ){
1001       Expr *pExpr = pTerm->pExpr;
1002       if( !ExprHasProperty(pExpr, EP_FromJoin)
1003        || pExpr->iRightJoinTable!=pTabItem->iCursor
1004       ){
1005         sWalker.eCode = 0;
1006         sWalker.xExprCallback = codeCursorHintIsOrFunction;
1007         sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1008         if( sWalker.eCode ) continue;
1009       }
1010     }else{
1011       if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
1012     }
1013 
1014     /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
1015     ** the cursor.  These terms are not needed as hints for a pure range
1016     ** scan (that has no == terms) so omit them. */
1017     if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
1018       for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
1019       if( j<pLoop->nLTerm ) continue;
1020     }
1021 
1022     /* No subqueries or non-deterministic functions allowed */
1023     if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
1024 
1025     /* For an index scan, make sure referenced columns are actually in
1026     ** the index. */
1027     if( sHint.pIdx!=0 ){
1028       sWalker.eCode = 0;
1029       sWalker.xExprCallback = codeCursorHintCheckExpr;
1030       sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1031       if( sWalker.eCode ) continue;
1032     }
1033 
1034     /* If we survive all prior tests, that means this term is worth hinting */
1035     pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
1036   }
1037   if( pExpr!=0 ){
1038     sWalker.xExprCallback = codeCursorHintFixExpr;
1039     sqlite3WalkExpr(&sWalker, pExpr);
1040     sqlite3VdbeAddOp4(v, OP_CursorHint,
1041                       (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
1042                       (const char*)pExpr, P4_EXPR);
1043   }
1044 }
1045 #else
1046 # define codeCursorHint(A,B,C,D)  /* No-op */
1047 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1048 
1049 /*
1050 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1051 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1052 ** function generates code to do a deferred seek of cursor iCur to the
1053 ** rowid stored in register iRowid.
1054 **
1055 ** Normally, this is just:
1056 **
1057 **   OP_DeferredSeek $iCur $iRowid
1058 **
1059 ** However, if the scan currently being coded is a branch of an OR-loop and
1060 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek
1061 ** is set to iIdxCur and P4 is set to point to an array of integers
1062 ** containing one entry for each column of the table cursor iCur is open
1063 ** on. For each table column, if the column is the i'th column of the
1064 ** index, then the corresponding array entry is set to (i+1). If the column
1065 ** does not appear in the index at all, the array entry is set to 0.
1066 */
1067 static void codeDeferredSeek(
1068   WhereInfo *pWInfo,              /* Where clause context */
1069   Index *pIdx,                    /* Index scan is using */
1070   int iCur,                       /* Cursor for IPK b-tree */
1071   int iIdxCur                     /* Index cursor */
1072 ){
1073   Parse *pParse = pWInfo->pParse; /* Parse context */
1074   Vdbe *v = pParse->pVdbe;        /* Vdbe to generate code within */
1075 
1076   assert( iIdxCur>0 );
1077   assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1078 
1079   pWInfo->bDeferredSeek = 1;
1080   sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1081   if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1082    && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1083   ){
1084     int i;
1085     Table *pTab = pIdx->pTable;
1086     u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1));
1087     if( ai ){
1088       ai[0] = pTab->nCol;
1089       for(i=0; i<pIdx->nColumn-1; i++){
1090         int x1, x2;
1091         assert( pIdx->aiColumn[i]<pTab->nCol );
1092         x1 = pIdx->aiColumn[i];
1093         x2 = sqlite3TableColumnToStorage(pTab, x1);
1094         testcase( x1!=x2 );
1095         if( x1>=0 ) ai[x2+1] = i+1;
1096       }
1097       sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1098     }
1099   }
1100 }
1101 
1102 /*
1103 ** If the expression passed as the second argument is a vector, generate
1104 ** code to write the first nReg elements of the vector into an array
1105 ** of registers starting with iReg.
1106 **
1107 ** If the expression is not a vector, then nReg must be passed 1. In
1108 ** this case, generate code to evaluate the expression and leave the
1109 ** result in register iReg.
1110 */
1111 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1112   assert( nReg>0 );
1113   if( p && sqlite3ExprIsVector(p) ){
1114 #ifndef SQLITE_OMIT_SUBQUERY
1115     if( ExprUseXSelect(p) ){
1116       Vdbe *v = pParse->pVdbe;
1117       int iSelect;
1118       assert( p->op==TK_SELECT );
1119       iSelect = sqlite3CodeSubselect(pParse, p);
1120       sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1121     }else
1122 #endif
1123     {
1124       int i;
1125       const ExprList *pList;
1126       assert( ExprUseXList(p) );
1127       pList = p->x.pList;
1128       assert( nReg<=pList->nExpr );
1129       for(i=0; i<nReg; i++){
1130         sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1131       }
1132     }
1133   }else{
1134     assert( nReg==1 || pParse->nErr );
1135     sqlite3ExprCode(pParse, p, iReg);
1136   }
1137 }
1138 
1139 /* An instance of the IdxExprTrans object carries information about a
1140 ** mapping from an expression on table columns into a column in an index
1141 ** down through the Walker.
1142 */
1143 typedef struct IdxExprTrans {
1144   Expr *pIdxExpr;    /* The index expression */
1145   int iTabCur;       /* The cursor of the corresponding table */
1146   int iIdxCur;       /* The cursor for the index */
1147   int iIdxCol;       /* The column for the index */
1148   int iTabCol;       /* The column for the table */
1149   WhereInfo *pWInfo; /* Complete WHERE clause information */
1150   sqlite3 *db;       /* Database connection (for malloc()) */
1151 } IdxExprTrans;
1152 
1153 /*
1154 ** Preserve pExpr on the WhereETrans list of the WhereInfo.
1155 */
1156 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){
1157   WhereExprMod *pNew;
1158   pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew));
1159   if( pNew==0 ) return;
1160   pNew->pNext = pTrans->pWInfo->pExprMods;
1161   pTrans->pWInfo->pExprMods = pNew;
1162   pNew->pExpr = pExpr;
1163   memcpy(&pNew->orig, pExpr, sizeof(*pExpr));
1164 }
1165 
1166 /* The walker node callback used to transform matching expressions into
1167 ** a reference to an index column for an index on an expression.
1168 **
1169 ** If pExpr matches, then transform it into a reference to the index column
1170 ** that contains the value of pExpr.
1171 */
1172 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1173   IdxExprTrans *pX = p->u.pIdxTrans;
1174   if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1175     preserveExpr(pX, pExpr);
1176     pExpr->affExpr = sqlite3ExprAffinity(pExpr);
1177     pExpr->op = TK_COLUMN;
1178     pExpr->iTable = pX->iIdxCur;
1179     pExpr->iColumn = pX->iIdxCol;
1180     testcase( ExprHasProperty(pExpr, EP_Skip) );
1181     testcase( ExprHasProperty(pExpr, EP_Unlikely) );
1182     ExprClearProperty(pExpr, EP_Skip|EP_Unlikely|EP_WinFunc|EP_Subrtn);
1183     pExpr->y.pTab = 0;
1184     return WRC_Prune;
1185   }else{
1186     return WRC_Continue;
1187   }
1188 }
1189 
1190 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1191 /* A walker node callback that translates a column reference to a table
1192 ** into a corresponding column reference of an index.
1193 */
1194 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){
1195   if( pExpr->op==TK_COLUMN ){
1196     IdxExprTrans *pX = p->u.pIdxTrans;
1197     if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){
1198       assert( ExprUseYTab(pExpr) && pExpr->y.pTab!=0 );
1199       preserveExpr(pX, pExpr);
1200       pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn);
1201       pExpr->iTable = pX->iIdxCur;
1202       pExpr->iColumn = pX->iIdxCol;
1203       pExpr->y.pTab = 0;
1204     }
1205   }
1206   return WRC_Continue;
1207 }
1208 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1209 
1210 /*
1211 ** For an indexes on expression X, locate every instance of expression X
1212 ** in pExpr and change that subexpression into a reference to the appropriate
1213 ** column of the index.
1214 **
1215 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in
1216 ** the table into references to the corresponding (stored) column of the
1217 ** index.
1218 */
1219 static void whereIndexExprTrans(
1220   Index *pIdx,      /* The Index */
1221   int iTabCur,      /* Cursor of the table that is being indexed */
1222   int iIdxCur,      /* Cursor of the index itself */
1223   WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1224 ){
1225   int iIdxCol;               /* Column number of the index */
1226   ExprList *aColExpr;        /* Expressions that are indexed */
1227   Table *pTab;
1228   Walker w;
1229   IdxExprTrans x;
1230   aColExpr = pIdx->aColExpr;
1231   if( aColExpr==0 && !pIdx->bHasVCol ){
1232     /* The index does not reference any expressions or virtual columns
1233     ** so no translations are needed. */
1234     return;
1235   }
1236   pTab = pIdx->pTable;
1237   memset(&w, 0, sizeof(w));
1238   w.u.pIdxTrans = &x;
1239   x.iTabCur = iTabCur;
1240   x.iIdxCur = iIdxCur;
1241   x.pWInfo = pWInfo;
1242   x.db = pWInfo->pParse->db;
1243   for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){
1244     i16 iRef = pIdx->aiColumn[iIdxCol];
1245     if( iRef==XN_EXPR ){
1246       assert( aColExpr!=0 && aColExpr->a[iIdxCol].pExpr!=0 );
1247       x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1248       if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue;
1249       w.xExprCallback = whereIndexExprTransNode;
1250 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1251     }else if( iRef>=0
1252        && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0
1253        && ((pTab->aCol[iRef].colFlags & COLFLAG_HASCOLL)==0
1254            || sqlite3StrICmp(sqlite3ColumnColl(&pTab->aCol[iRef]),
1255                                                sqlite3StrBINARY)==0)
1256     ){
1257       /* Check to see if there are direct references to generated columns
1258       ** that are contained in the index.  Pulling the generated column
1259       ** out of the index is an optimization only - the main table is always
1260       ** available if the index cannot be used.  To avoid unnecessary
1261       ** complication, omit this optimization if the collating sequence for
1262       ** the column is non-standard */
1263       x.iTabCol = iRef;
1264       w.xExprCallback = whereIndexExprTransColumn;
1265 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1266     }else{
1267       continue;
1268     }
1269     x.iIdxCol = iIdxCol;
1270     sqlite3WalkExpr(&w, pWInfo->pWhere);
1271     sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1272     sqlite3WalkExprList(&w, pWInfo->pResultSet);
1273   }
1274 }
1275 
1276 /*
1277 ** The pTruth expression is always true because it is the WHERE clause
1278 ** a partial index that is driving a query loop.  Look through all of the
1279 ** WHERE clause terms on the query, and if any of those terms must be
1280 ** true because pTruth is true, then mark those WHERE clause terms as
1281 ** coded.
1282 */
1283 static void whereApplyPartialIndexConstraints(
1284   Expr *pTruth,
1285   int iTabCur,
1286   WhereClause *pWC
1287 ){
1288   int i;
1289   WhereTerm *pTerm;
1290   while( pTruth->op==TK_AND ){
1291     whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC);
1292     pTruth = pTruth->pRight;
1293   }
1294   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1295     Expr *pExpr;
1296     if( pTerm->wtFlags & TERM_CODED ) continue;
1297     pExpr = pTerm->pExpr;
1298     if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){
1299       pTerm->wtFlags |= TERM_CODED;
1300     }
1301   }
1302 }
1303 
1304 /*
1305 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1306 ** implementation described by pWInfo.
1307 */
1308 Bitmask sqlite3WhereCodeOneLoopStart(
1309   Parse *pParse,       /* Parsing context */
1310   Vdbe *v,             /* Prepared statement under construction */
1311   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1312   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1313   WhereLevel *pLevel,  /* The current level pointer */
1314   Bitmask notReady     /* Which tables are currently available */
1315 ){
1316   int j, k;            /* Loop counters */
1317   int iCur;            /* The VDBE cursor for the table */
1318   int addrNxt;         /* Where to jump to continue with the next IN case */
1319   int bRev;            /* True if we need to scan in reverse order */
1320   WhereLoop *pLoop;    /* The WhereLoop object being coded */
1321   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
1322   WhereTerm *pTerm;               /* A WHERE clause term */
1323   sqlite3 *db;                    /* Database connection */
1324   SrcItem *pTabItem;              /* FROM clause term being coded */
1325   int addrBrk;                    /* Jump here to break out of the loop */
1326   int addrHalt;                   /* addrBrk for the outermost loop */
1327   int addrCont;                   /* Jump here to continue with next cycle */
1328   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
1329   int iReleaseReg = 0;      /* Temp register to free before returning */
1330   Index *pIdx = 0;          /* Index used by loop (if any) */
1331   int iLoop;                /* Iteration of constraint generator loop */
1332 
1333   pWC = &pWInfo->sWC;
1334   db = pParse->db;
1335   pLoop = pLevel->pWLoop;
1336   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1337   iCur = pTabItem->iCursor;
1338   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1339   bRev = (pWInfo->revMask>>iLevel)&1;
1340   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1341 #if WHERETRACE_ENABLED /* 0x20800 */
1342   if( sqlite3WhereTrace & 0x800 ){
1343     sqlite3DebugPrintf("Coding level %d of %d:  notReady=%llx  iFrom=%d\n",
1344        iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom);
1345     sqlite3WhereLoopPrint(pLoop, pWC);
1346   }
1347   if( sqlite3WhereTrace & 0x20000 ){
1348     if( iLevel==0 ){
1349       sqlite3DebugPrintf("WHERE clause being coded:\n");
1350       sqlite3TreeViewExpr(0, pWInfo->pWhere, 0);
1351     }
1352     sqlite3DebugPrintf("All WHERE-clause terms before coding:\n");
1353     sqlite3WhereClausePrint(pWC);
1354   }
1355 #endif
1356 
1357   /* Create labels for the "break" and "continue" instructions
1358   ** for the current loop.  Jump to addrBrk to break out of a loop.
1359   ** Jump to cont to go immediately to the next iteration of the
1360   ** loop.
1361   **
1362   ** When there is an IN operator, we also have a "addrNxt" label that
1363   ** means to continue with the next IN value combination.  When
1364   ** there are no IN operators in the constraints, the "addrNxt" label
1365   ** is the same as "addrBrk".
1366   */
1367   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
1368   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse);
1369 
1370   /* If this is the right table of a LEFT OUTER JOIN, allocate and
1371   ** initialize a memory cell that records if this table matches any
1372   ** row of the left table of the join.
1373   */
1374   assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1375        || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
1376   );
1377   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1378     pLevel->iLeftJoin = ++pParse->nMem;
1379     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1380     VdbeComment((v, "init LEFT JOIN no-match flag"));
1381   }
1382 
1383   /* Compute a safe address to jump to if we discover that the table for
1384   ** this loop is empty and can never contribute content. */
1385   for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){}
1386   addrHalt = pWInfo->a[j].addrBrk;
1387 
1388   /* Special case of a FROM clause subquery implemented as a co-routine */
1389   if( pTabItem->fg.viaCoroutine ){
1390     int regYield = pTabItem->regReturn;
1391     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1392     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1393     VdbeCoverage(v);
1394     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
1395     pLevel->op = OP_Goto;
1396   }else
1397 
1398 #ifndef SQLITE_OMIT_VIRTUALTABLE
1399   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1400     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
1401     **          to access the data.
1402     */
1403     int iReg;   /* P3 Value for OP_VFilter */
1404     int addrNotFound;
1405     int nConstraint = pLoop->nLTerm;
1406     int iIn;    /* Counter for IN constraints */
1407 
1408     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1409     addrNotFound = pLevel->addrBrk;
1410     for(j=0; j<nConstraint; j++){
1411       int iTarget = iReg+j+2;
1412       pTerm = pLoop->aLTerm[j];
1413       if( NEVER(pTerm==0) ) continue;
1414       if( pTerm->eOperator & WO_IN ){
1415         codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1416         addrNotFound = pLevel->addrNxt;
1417       }else{
1418         Expr *pRight = pTerm->pExpr->pRight;
1419         codeExprOrVector(pParse, pRight, iTarget, 1);
1420       }
1421     }
1422     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1423     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1424     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1425                       pLoop->u.vtab.idxStr,
1426                       pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1427     VdbeCoverage(v);
1428     pLoop->u.vtab.needFree = 0;
1429     /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed
1430     ** the u.vtab.idxStr.  NULL it out to prevent a use-after-free */
1431     if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0;
1432     pLevel->p1 = iCur;
1433     pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1434     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1435     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
1436     if( pLoop->wsFlags & WHERE_IN_ABLE ){
1437       iIn = pLevel->u.in.nIn;
1438     }else{
1439       iIn = 0;
1440     }
1441     for(j=nConstraint-1; j>=0; j--){
1442       pTerm = pLoop->aLTerm[j];
1443       if( (pTerm->eOperator & WO_IN)!=0 ) iIn--;
1444       if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1445         disableTerm(pLevel, pTerm);
1446       }else if( (pTerm->eOperator & WO_IN)!=0
1447         && sqlite3ExprVectorSize(pTerm->pExpr->pLeft)==1
1448       ){
1449         Expr *pCompare;  /* The comparison operator */
1450         Expr *pRight;    /* RHS of the comparison */
1451         VdbeOp *pOp;     /* Opcode to access the value of the IN constraint */
1452 
1453         /* Reload the constraint value into reg[iReg+j+2].  The same value
1454         ** was loaded into the same register prior to the OP_VFilter, but
1455         ** the xFilter implementation might have changed the datatype or
1456         ** encoding of the value in the register, so it *must* be reloaded. */
1457         assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed );
1458         if( !db->mallocFailed ){
1459           assert( iIn>=0 && iIn<pLevel->u.in.nIn );
1460           pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop);
1461           assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid );
1462           assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 );
1463           assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 );
1464           testcase( pOp->opcode==OP_Rowid );
1465           sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1466         }
1467 
1468         /* Generate code that will continue to the next row if
1469         ** the IN constraint is not satisfied */
1470         pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1471         assert( pCompare!=0 || db->mallocFailed );
1472         if( pCompare ){
1473           pCompare->pLeft = pTerm->pExpr->pLeft;
1474           pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1475           if( pRight ){
1476             pRight->iTable = iReg+j+2;
1477             sqlite3ExprIfFalse(
1478                 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL
1479             );
1480           }
1481           pCompare->pLeft = 0;
1482           sqlite3ExprDelete(db, pCompare);
1483         }
1484       }
1485     }
1486     assert( iIn==0 || db->mallocFailed );
1487     /* These registers need to be preserved in case there is an IN operator
1488     ** loop.  So we could deallocate the registers here (and potentially
1489     ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0.  But it seems
1490     ** simpler and safer to simply not reuse the registers.
1491     **
1492     **    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1493     */
1494   }else
1495 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1496 
1497   if( (pLoop->wsFlags & WHERE_IPK)!=0
1498    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1499   ){
1500     /* Case 2:  We can directly reference a single row using an
1501     **          equality comparison against the ROWID field.  Or
1502     **          we reference multiple rows using a "rowid IN (...)"
1503     **          construct.
1504     */
1505     assert( pLoop->u.btree.nEq==1 );
1506     pTerm = pLoop->aLTerm[0];
1507     assert( pTerm!=0 );
1508     assert( pTerm->pExpr!=0 );
1509     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1510     iReleaseReg = ++pParse->nMem;
1511     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1512     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1513     addrNxt = pLevel->addrNxt;
1514     sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1515     VdbeCoverage(v);
1516     pLevel->op = OP_Noop;
1517   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1518          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1519   ){
1520     /* Case 3:  We have an inequality comparison against the ROWID field.
1521     */
1522     int testOp = OP_Noop;
1523     int start;
1524     int memEndValue = 0;
1525     WhereTerm *pStart, *pEnd;
1526 
1527     j = 0;
1528     pStart = pEnd = 0;
1529     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1530     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1531     assert( pStart!=0 || pEnd!=0 );
1532     if( bRev ){
1533       pTerm = pStart;
1534       pStart = pEnd;
1535       pEnd = pTerm;
1536     }
1537     codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1538     if( pStart ){
1539       Expr *pX;             /* The expression that defines the start bound */
1540       int r1, rTemp;        /* Registers for holding the start boundary */
1541       int op;               /* Cursor seek operation */
1542 
1543       /* The following constant maps TK_xx codes into corresponding
1544       ** seek opcodes.  It depends on a particular ordering of TK_xx
1545       */
1546       const u8 aMoveOp[] = {
1547            /* TK_GT */  OP_SeekGT,
1548            /* TK_LE */  OP_SeekLE,
1549            /* TK_LT */  OP_SeekLT,
1550            /* TK_GE */  OP_SeekGE
1551       };
1552       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
1553       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
1554       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
1555 
1556       assert( (pStart->wtFlags & TERM_VNULL)==0 );
1557       testcase( pStart->wtFlags & TERM_VIRTUAL );
1558       pX = pStart->pExpr;
1559       assert( pX!=0 );
1560       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1561       if( sqlite3ExprIsVector(pX->pRight) ){
1562         r1 = rTemp = sqlite3GetTempReg(pParse);
1563         codeExprOrVector(pParse, pX->pRight, r1, 1);
1564         testcase( pX->op==TK_GT );
1565         testcase( pX->op==TK_GE );
1566         testcase( pX->op==TK_LT );
1567         testcase( pX->op==TK_LE );
1568         op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
1569         assert( pX->op!=TK_GT || op==OP_SeekGE );
1570         assert( pX->op!=TK_GE || op==OP_SeekGE );
1571         assert( pX->op!=TK_LT || op==OP_SeekLE );
1572         assert( pX->op!=TK_LE || op==OP_SeekLE );
1573       }else{
1574         r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1575         disableTerm(pLevel, pStart);
1576         op = aMoveOp[(pX->op - TK_GT)];
1577       }
1578       sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1579       VdbeComment((v, "pk"));
1580       VdbeCoverageIf(v, pX->op==TK_GT);
1581       VdbeCoverageIf(v, pX->op==TK_LE);
1582       VdbeCoverageIf(v, pX->op==TK_LT);
1583       VdbeCoverageIf(v, pX->op==TK_GE);
1584       sqlite3ReleaseTempReg(pParse, rTemp);
1585     }else{
1586       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1587       VdbeCoverageIf(v, bRev==0);
1588       VdbeCoverageIf(v, bRev!=0);
1589     }
1590     if( pEnd ){
1591       Expr *pX;
1592       pX = pEnd->pExpr;
1593       assert( pX!=0 );
1594       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1595       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1596       testcase( pEnd->wtFlags & TERM_VIRTUAL );
1597       memEndValue = ++pParse->nMem;
1598       codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1599       if( 0==sqlite3ExprIsVector(pX->pRight)
1600        && (pX->op==TK_LT || pX->op==TK_GT)
1601       ){
1602         testOp = bRev ? OP_Le : OP_Ge;
1603       }else{
1604         testOp = bRev ? OP_Lt : OP_Gt;
1605       }
1606       if( 0==sqlite3ExprIsVector(pX->pRight) ){
1607         disableTerm(pLevel, pEnd);
1608       }
1609     }
1610     start = sqlite3VdbeCurrentAddr(v);
1611     pLevel->op = bRev ? OP_Prev : OP_Next;
1612     pLevel->p1 = iCur;
1613     pLevel->p2 = start;
1614     assert( pLevel->p5==0 );
1615     if( testOp!=OP_Noop ){
1616       iRowidReg = ++pParse->nMem;
1617       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1618       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1619       VdbeCoverageIf(v, testOp==OP_Le);
1620       VdbeCoverageIf(v, testOp==OP_Lt);
1621       VdbeCoverageIf(v, testOp==OP_Ge);
1622       VdbeCoverageIf(v, testOp==OP_Gt);
1623       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1624     }
1625   }else if( pLoop->wsFlags & WHERE_INDEXED ){
1626     /* Case 4: A scan using an index.
1627     **
1628     **         The WHERE clause may contain zero or more equality
1629     **         terms ("==" or "IN" operators) that refer to the N
1630     **         left-most columns of the index. It may also contain
1631     **         inequality constraints (>, <, >= or <=) on the indexed
1632     **         column that immediately follows the N equalities. Only
1633     **         the right-most column can be an inequality - the rest must
1634     **         use the "==" and "IN" operators. For example, if the
1635     **         index is on (x,y,z), then the following clauses are all
1636     **         optimized:
1637     **
1638     **            x=5
1639     **            x=5 AND y=10
1640     **            x=5 AND y<10
1641     **            x=5 AND y>5 AND y<10
1642     **            x=5 AND y=5 AND z<=10
1643     **
1644     **         The z<10 term of the following cannot be used, only
1645     **         the x=5 term:
1646     **
1647     **            x=5 AND z<10
1648     **
1649     **         N may be zero if there are inequality constraints.
1650     **         If there are no inequality constraints, then N is at
1651     **         least one.
1652     **
1653     **         This case is also used when there are no WHERE clause
1654     **         constraints but an index is selected anyway, in order
1655     **         to force the output order to conform to an ORDER BY.
1656     */
1657     static const u8 aStartOp[] = {
1658       0,
1659       0,
1660       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
1661       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
1662       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
1663       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
1664       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
1665       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
1666     };
1667     static const u8 aEndOp[] = {
1668       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
1669       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
1670       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
1671       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
1672     };
1673     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
1674     u16 nBtm = pLoop->u.btree.nBtm;   /* Length of BTM vector */
1675     u16 nTop = pLoop->u.btree.nTop;   /* Length of TOP vector */
1676     int regBase;                 /* Base register holding constraint values */
1677     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
1678     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
1679     int startEq;                 /* True if range start uses ==, >= or <= */
1680     int endEq;                   /* True if range end uses ==, >= or <= */
1681     int start_constraints;       /* Start of range is constrained */
1682     int nConstraint;             /* Number of constraint terms */
1683     int iIdxCur;                 /* The VDBE cursor for the index */
1684     int nExtraReg = 0;           /* Number of extra registers needed */
1685     int op;                      /* Instruction opcode */
1686     char *zStartAff;             /* Affinity for start of range constraint */
1687     char *zEndAff = 0;           /* Affinity for end of range constraint */
1688     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
1689     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
1690     int omitTable;               /* True if we use the index only */
1691     int regBignull = 0;          /* big-null flag register */
1692     int addrSeekScan = 0;        /* Opcode of the OP_SeekScan, if any */
1693 
1694     pIdx = pLoop->u.btree.pIndex;
1695     iIdxCur = pLevel->iIdxCur;
1696     assert( nEq>=pLoop->nSkip );
1697 
1698     /* Find any inequality constraint terms for the start and end
1699     ** of the range.
1700     */
1701     j = nEq;
1702     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1703       pRangeStart = pLoop->aLTerm[j++];
1704       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1705       /* Like optimization range constraints always occur in pairs */
1706       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1707               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1708     }
1709     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1710       pRangeEnd = pLoop->aLTerm[j++];
1711       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1712 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1713       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1714         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
1715         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
1716         pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1717         sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1718         VdbeComment((v, "LIKE loop counter"));
1719         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1720         /* iLikeRepCntr actually stores 2x the counter register number.  The
1721         ** bottom bit indicates whether the search order is ASC or DESC. */
1722         testcase( bRev );
1723         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1724         assert( (bRev & ~1)==0 );
1725         pLevel->iLikeRepCntr <<=1;
1726         pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1727       }
1728 #endif
1729       if( pRangeStart==0 ){
1730         j = pIdx->aiColumn[nEq];
1731         if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1732           bSeekPastNull = 1;
1733         }
1734       }
1735     }
1736     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1737 
1738     /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
1739     ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
1740     ** FIRST). In both cases separate ordered scans are made of those
1741     ** index entries for which the column is null and for those for which
1742     ** it is not. For an ASC sort, the non-NULL entries are scanned first.
1743     ** For DESC, NULL entries are scanned first.
1744     */
1745     if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0
1746      && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0
1747     ){
1748       assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 );
1749       assert( pRangeEnd==0 && pRangeStart==0 );
1750       testcase( pLoop->nSkip>0 );
1751       nExtraReg = 1;
1752       bSeekPastNull = 1;
1753       pLevel->regBignull = regBignull = ++pParse->nMem;
1754       if( pLevel->iLeftJoin ){
1755         sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull);
1756       }
1757       pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse);
1758     }
1759 
1760     /* If we are doing a reverse order scan on an ascending index, or
1761     ** a forward order scan on a descending index, interchange the
1762     ** start and end terms (pRangeStart and pRangeEnd).
1763     */
1764     if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){
1765       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1766       SWAP(u8, bSeekPastNull, bStopAtNull);
1767       SWAP(u8, nBtm, nTop);
1768     }
1769 
1770     if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){
1771       /* In case OP_SeekScan is used, ensure that the index cursor does not
1772       ** point to a valid row for the first iteration of this loop. */
1773       sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
1774     }
1775 
1776     /* Generate code to evaluate all constraint terms using == or IN
1777     ** and store the values of those terms in an array of registers
1778     ** starting at regBase.
1779     */
1780     codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1781     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1782     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1783     if( zStartAff && nTop ){
1784       zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1785     }
1786     addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt);
1787 
1788     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1789     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1790     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1791     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1792     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1793     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1794     start_constraints = pRangeStart || nEq>0;
1795 
1796     /* Seek the index cursor to the start of the range. */
1797     nConstraint = nEq;
1798     if( pRangeStart ){
1799       Expr *pRight = pRangeStart->pExpr->pRight;
1800       codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1801       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1802       if( (pRangeStart->wtFlags & TERM_VNULL)==0
1803        && sqlite3ExprCanBeNull(pRight)
1804       ){
1805         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1806         VdbeCoverage(v);
1807       }
1808       if( zStartAff ){
1809         updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1810       }
1811       nConstraint += nBtm;
1812       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1813       if( sqlite3ExprIsVector(pRight)==0 ){
1814         disableTerm(pLevel, pRangeStart);
1815       }else{
1816         startEq = 1;
1817       }
1818       bSeekPastNull = 0;
1819     }else if( bSeekPastNull ){
1820       startEq = 0;
1821       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1822       start_constraints = 1;
1823       nConstraint++;
1824     }else if( regBignull ){
1825       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1826       start_constraints = 1;
1827       nConstraint++;
1828     }
1829     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1830     if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1831       /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1832       ** above has already left the cursor sitting on the correct row,
1833       ** so no further seeking is needed */
1834     }else{
1835       if( regBignull ){
1836         sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull);
1837         VdbeComment((v, "NULL-scan pass ctr"));
1838       }
1839 
1840       op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1841       assert( op!=0 );
1842       if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){
1843         assert( regBignull==0 );
1844         /* TUNING:  The OP_SeekScan opcode seeks to reduce the number
1845         ** of expensive seek operations by replacing a single seek with
1846         ** 1 or more step operations.  The question is, how many steps
1847         ** should we try before giving up and going with a seek.  The cost
1848         ** of a seek is proportional to the logarithm of the of the number
1849         ** of entries in the tree, so basing the number of steps to try
1850         ** on the estimated number of rows in the btree seems like a good
1851         ** guess. */
1852         addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan,
1853                                          (pIdx->aiRowLogEst[0]+9)/10);
1854         VdbeCoverage(v);
1855       }
1856       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1857       VdbeCoverage(v);
1858       VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1859       VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1860       VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
1861       VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1862       VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1863       VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
1864 
1865       assert( bSeekPastNull==0 || bStopAtNull==0 );
1866       if( regBignull ){
1867         assert( bSeekPastNull==1 || bStopAtNull==1 );
1868         assert( bSeekPastNull==!bStopAtNull );
1869         assert( bStopAtNull==startEq );
1870         sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2);
1871         op = aStartOp[(nConstraint>1)*4 + 2 + bRev];
1872         sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1873                              nConstraint-startEq);
1874         VdbeCoverage(v);
1875         VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1876         VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1877         VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1878         VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1879         assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE);
1880       }
1881     }
1882 
1883     /* Load the value for the inequality constraint at the end of the
1884     ** range (if any).
1885     */
1886     nConstraint = nEq;
1887     assert( pLevel->p2==0 );
1888     if( pRangeEnd ){
1889       Expr *pRight = pRangeEnd->pExpr->pRight;
1890       if( addrSeekScan ){
1891         /* For a seek-scan that has a range on the lowest term of the index,
1892         ** we have to make the top of the loop be code that sets the end
1893         ** condition of the range.  Otherwise, the OP_SeekScan might jump
1894         ** over that initialization, leaving the range-end value set to the
1895         ** range-start value, resulting in a wrong answer.
1896         ** See ticket 5981a8c041a3c2f3 (2021-11-02).
1897         */
1898         pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1899       }
1900       codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
1901       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1902       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1903        && sqlite3ExprCanBeNull(pRight)
1904       ){
1905         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1906         VdbeCoverage(v);
1907       }
1908       if( zEndAff ){
1909         updateRangeAffinityStr(pRight, nTop, zEndAff);
1910         codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1911       }else{
1912         assert( pParse->db->mallocFailed );
1913       }
1914       nConstraint += nTop;
1915       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1916 
1917       if( sqlite3ExprIsVector(pRight)==0 ){
1918         disableTerm(pLevel, pRangeEnd);
1919       }else{
1920         endEq = 1;
1921       }
1922     }else if( bStopAtNull ){
1923       if( regBignull==0 ){
1924         sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1925         endEq = 0;
1926       }
1927       nConstraint++;
1928     }
1929     sqlite3DbFree(db, zStartAff);
1930     sqlite3DbFree(db, zEndAff);
1931 
1932     /* Top of the loop body */
1933     if( pLevel->p2==0 ) pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1934 
1935     /* Check if the index cursor is past the end of the range. */
1936     if( nConstraint ){
1937       if( regBignull ){
1938         /* Except, skip the end-of-range check while doing the NULL-scan */
1939         sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3);
1940         VdbeComment((v, "If NULL-scan 2nd pass"));
1941         VdbeCoverage(v);
1942       }
1943       op = aEndOp[bRev*2 + endEq];
1944       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1945       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1946       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1947       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1948       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1949       if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan);
1950     }
1951     if( regBignull ){
1952       /* During a NULL-scan, check to see if we have reached the end of
1953       ** the NULLs */
1954       assert( bSeekPastNull==!bStopAtNull );
1955       assert( bSeekPastNull+bStopAtNull==1 );
1956       assert( nConstraint+bSeekPastNull>0 );
1957       sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2);
1958       VdbeComment((v, "If NULL-scan 1st pass"));
1959       VdbeCoverage(v);
1960       op = aEndOp[bRev*2 + bSeekPastNull];
1961       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1962                            nConstraint+bSeekPastNull);
1963       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1964       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1965       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1966       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1967     }
1968 
1969     if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){
1970       sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq);
1971     }
1972 
1973     /* Seek the table cursor, if required */
1974     omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
1975            && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
1976     if( omitTable ){
1977       /* pIdx is a covering index.  No need to access the main table. */
1978     }else if( HasRowid(pIdx->pTable) ){
1979       codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
1980     }else if( iCur!=iIdxCur ){
1981       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1982       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1983       for(j=0; j<pPk->nKeyCol; j++){
1984         k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
1985         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1986       }
1987       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1988                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1989     }
1990 
1991     if( pLevel->iLeftJoin==0 ){
1992       /* If pIdx is an index on one or more expressions, then look through
1993       ** all the expressions in pWInfo and try to transform matching expressions
1994       ** into reference to index columns.  Also attempt to translate references
1995       ** to virtual columns in the table into references to (stored) columns
1996       ** of the index.
1997       **
1998       ** Do not do this for the RHS of a LEFT JOIN. This is because the
1999       ** expression may be evaluated after OP_NullRow has been executed on
2000       ** the cursor. In this case it is important to do the full evaluation,
2001       ** as the result of the expression may not be NULL, even if all table
2002       ** column values are.  https://www.sqlite.org/src/info/7fa8049685b50b5a
2003       **
2004       ** Also, do not do this when processing one index an a multi-index
2005       ** OR clause, since the transformation will become invalid once we
2006       ** move forward to the next index.
2007       ** https://sqlite.org/src/info/4e8e4857d32d401f
2008       */
2009       if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
2010         whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
2011       }
2012 
2013       /* If a partial index is driving the loop, try to eliminate WHERE clause
2014       ** terms from the query that must be true due to the WHERE clause of
2015       ** the partial index.
2016       **
2017       ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
2018       ** for a LEFT JOIN.
2019       */
2020       if( pIdx->pPartIdxWhere ){
2021         whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC);
2022       }
2023     }else{
2024       testcase( pIdx->pPartIdxWhere );
2025       /* The following assert() is not a requirement, merely an observation:
2026       ** The OR-optimization doesn't work for the right hand table of
2027       ** a LEFT JOIN: */
2028       assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 );
2029     }
2030 
2031     /* Record the instruction used to terminate the loop. */
2032     if( pLoop->wsFlags & WHERE_ONEROW ){
2033       pLevel->op = OP_Noop;
2034     }else if( bRev ){
2035       pLevel->op = OP_Prev;
2036     }else{
2037       pLevel->op = OP_Next;
2038     }
2039     pLevel->p1 = iIdxCur;
2040     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
2041     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
2042       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2043     }else{
2044       assert( pLevel->p5==0 );
2045     }
2046     if( omitTable ) pIdx = 0;
2047   }else
2048 
2049 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
2050   if( pLoop->wsFlags & WHERE_MULTI_OR ){
2051     /* Case 5:  Two or more separately indexed terms connected by OR
2052     **
2053     ** Example:
2054     **
2055     **   CREATE TABLE t1(a,b,c,d);
2056     **   CREATE INDEX i1 ON t1(a);
2057     **   CREATE INDEX i2 ON t1(b);
2058     **   CREATE INDEX i3 ON t1(c);
2059     **
2060     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
2061     **
2062     ** In the example, there are three indexed terms connected by OR.
2063     ** The top of the loop looks like this:
2064     **
2065     **          Null       1                # Zero the rowset in reg 1
2066     **
2067     ** Then, for each indexed term, the following. The arguments to
2068     ** RowSetTest are such that the rowid of the current row is inserted
2069     ** into the RowSet. If it is already present, control skips the
2070     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
2071     **
2072     **        sqlite3WhereBegin(<term>)
2073     **          RowSetTest                  # Insert rowid into rowset
2074     **          Gosub      2 A
2075     **        sqlite3WhereEnd()
2076     **
2077     ** Following the above, code to terminate the loop. Label A, the target
2078     ** of the Gosub above, jumps to the instruction right after the Goto.
2079     **
2080     **          Null       1                # Zero the rowset in reg 1
2081     **          Goto       B                # The loop is finished.
2082     **
2083     **       A: <loop body>                 # Return data, whatever.
2084     **
2085     **          Return     2                # Jump back to the Gosub
2086     **
2087     **       B: <after the loop>
2088     **
2089     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
2090     ** use an ephemeral index instead of a RowSet to record the primary
2091     ** keys of the rows we have already seen.
2092     **
2093     */
2094     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
2095     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
2096     Index *pCov = 0;             /* Potential covering index (or NULL) */
2097     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
2098 
2099     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
2100     int regRowset = 0;                        /* Register for RowSet object */
2101     int regRowid = 0;                         /* Register holding rowid */
2102     int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */
2103     int iRetInit;                             /* Address of regReturn init */
2104     int untestedTerms = 0;             /* Some terms not completely tested */
2105     int ii;                            /* Loop counter */
2106     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
2107     Table *pTab = pTabItem->pTab;
2108 
2109     pTerm = pLoop->aLTerm[0];
2110     assert( pTerm!=0 );
2111     assert( pTerm->eOperator & WO_OR );
2112     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
2113     pOrWc = &pTerm->u.pOrInfo->wc;
2114     pLevel->op = OP_Return;
2115     pLevel->p1 = regReturn;
2116 
2117     /* Set up a new SrcList in pOrTab containing the table being scanned
2118     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
2119     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
2120     */
2121     if( pWInfo->nLevel>1 ){
2122       int nNotReady;                 /* The number of notReady tables */
2123       SrcItem *origSrc;              /* Original list of tables */
2124       nNotReady = pWInfo->nLevel - iLevel - 1;
2125       pOrTab = sqlite3StackAllocRaw(db,
2126                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
2127       if( pOrTab==0 ) return notReady;
2128       pOrTab->nAlloc = (u8)(nNotReady + 1);
2129       pOrTab->nSrc = pOrTab->nAlloc;
2130       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
2131       origSrc = pWInfo->pTabList->a;
2132       for(k=1; k<=nNotReady; k++){
2133         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
2134       }
2135     }else{
2136       pOrTab = pWInfo->pTabList;
2137     }
2138 
2139     /* Initialize the rowset register to contain NULL. An SQL NULL is
2140     ** equivalent to an empty rowset.  Or, create an ephemeral index
2141     ** capable of holding primary keys in the case of a WITHOUT ROWID.
2142     **
2143     ** Also initialize regReturn to contain the address of the instruction
2144     ** immediately following the OP_Return at the bottom of the loop. This
2145     ** is required in a few obscure LEFT JOIN cases where control jumps
2146     ** over the top of the loop into the body of it. In this case the
2147     ** correct response for the end-of-loop code (the OP_Return) is to
2148     ** fall through to the next instruction, just as an OP_Next does if
2149     ** called on an uninitialized cursor.
2150     */
2151     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2152       if( HasRowid(pTab) ){
2153         regRowset = ++pParse->nMem;
2154         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
2155       }else{
2156         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2157         regRowset = pParse->nTab++;
2158         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
2159         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
2160       }
2161       regRowid = ++pParse->nMem;
2162     }
2163     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
2164 
2165     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
2166     ** Then for every term xN, evaluate as the subexpression: xN AND z
2167     ** That way, terms in y that are factored into the disjunction will
2168     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
2169     **
2170     ** Actually, each subexpression is converted to "xN AND w" where w is
2171     ** the "interesting" terms of z - terms that did not originate in the
2172     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
2173     ** indices.
2174     **
2175     ** This optimization also only applies if the (x1 OR x2 OR ...) term
2176     ** is not contained in the ON clause of a LEFT JOIN.
2177     ** See ticket http://www.sqlite.org/src/info/f2369304e4
2178     */
2179     if( pWC->nTerm>1 ){
2180       int iTerm;
2181       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
2182         Expr *pExpr = pWC->a[iTerm].pExpr;
2183         if( &pWC->a[iTerm] == pTerm ) continue;
2184         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
2185         testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
2186         if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
2187         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
2188         testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
2189         pExpr = sqlite3ExprDup(db, pExpr, 0);
2190         pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr);
2191       }
2192       if( pAndExpr ){
2193         /* The extra 0x10000 bit on the opcode is masked off and does not
2194         ** become part of the new Expr.op.  However, it does make the
2195         ** op==TK_AND comparison inside of sqlite3PExpr() false, and this
2196         ** prevents sqlite3PExpr() from applying the AND short-circuit
2197         ** optimization, which we do not want here. */
2198         pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr);
2199       }
2200     }
2201 
2202     /* Run a separate WHERE clause for each term of the OR clause.  After
2203     ** eliminating duplicates from other WHERE clauses, the action for each
2204     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
2205     */
2206     ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
2207     for(ii=0; ii<pOrWc->nTerm; ii++){
2208       WhereTerm *pOrTerm = &pOrWc->a[ii];
2209       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
2210         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
2211         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
2212         Expr *pDelete;                  /* Local copy of OR clause term */
2213         int jmp1 = 0;                   /* Address of jump operation */
2214         testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0
2215                && !ExprHasProperty(pOrExpr, EP_FromJoin)
2216         ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */
2217         pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0);
2218         if( db->mallocFailed ){
2219           sqlite3ExprDelete(db, pDelete);
2220           continue;
2221         }
2222         if( pAndExpr ){
2223           pAndExpr->pLeft = pOrExpr;
2224           pOrExpr = pAndExpr;
2225         }
2226         /* Loop through table entries that match term pOrTerm. */
2227         ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1));
2228         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
2229         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
2230                                       WHERE_OR_SUBCLAUSE, iCovCur);
2231         assert( pSubWInfo || pParse->nErr || db->mallocFailed );
2232         if( pSubWInfo ){
2233           WhereLoop *pSubLoop;
2234           int addrExplain = sqlite3WhereExplainOneScan(
2235               pParse, pOrTab, &pSubWInfo->a[0], 0
2236           );
2237           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
2238 
2239           /* This is the sub-WHERE clause body.  First skip over
2240           ** duplicate rows from prior sub-WHERE clauses, and record the
2241           ** rowid (or PRIMARY KEY) for the current row so that the same
2242           ** row will be skipped in subsequent sub-WHERE clauses.
2243           */
2244           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2245             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
2246             if( HasRowid(pTab) ){
2247               sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid);
2248               jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
2249                                           regRowid, iSet);
2250               VdbeCoverage(v);
2251             }else{
2252               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2253               int nPk = pPk->nKeyCol;
2254               int iPk;
2255               int r;
2256 
2257               /* Read the PK into an array of temp registers. */
2258               r = sqlite3GetTempRange(pParse, nPk);
2259               for(iPk=0; iPk<nPk; iPk++){
2260                 int iCol = pPk->aiColumn[iPk];
2261                 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2262               }
2263 
2264               /* Check if the temp table already contains this key. If so,
2265               ** the row has already been included in the result set and
2266               ** can be ignored (by jumping past the Gosub below). Otherwise,
2267               ** insert the key into the temp table and proceed with processing
2268               ** the row.
2269               **
2270               ** Use some of the same optimizations as OP_RowSetTest: If iSet
2271               ** is zero, assume that the key cannot already be present in
2272               ** the temp table. And if iSet is -1, assume that there is no
2273               ** need to insert the key into the temp table, as it will never
2274               ** be tested for.  */
2275               if( iSet ){
2276                 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
2277                 VdbeCoverage(v);
2278               }
2279               if( iSet>=0 ){
2280                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
2281                 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
2282                                      r, nPk);
2283                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2284               }
2285 
2286               /* Release the array of temp registers */
2287               sqlite3ReleaseTempRange(pParse, r, nPk);
2288             }
2289           }
2290 
2291           /* Invoke the main loop body as a subroutine */
2292           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2293 
2294           /* Jump here (skipping the main loop body subroutine) if the
2295           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2296           if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
2297 
2298           /* The pSubWInfo->untestedTerms flag means that this OR term
2299           ** contained one or more AND term from a notReady table.  The
2300           ** terms from the notReady table could not be tested and will
2301           ** need to be tested later.
2302           */
2303           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
2304 
2305           /* If all of the OR-connected terms are optimized using the same
2306           ** index, and the index is opened using the same cursor number
2307           ** by each call to sqlite3WhereBegin() made by this loop, it may
2308           ** be possible to use that index as a covering index.
2309           **
2310           ** If the call to sqlite3WhereBegin() above resulted in a scan that
2311           ** uses an index, and this is either the first OR-connected term
2312           ** processed or the index is the same as that used by all previous
2313           ** terms, set pCov to the candidate covering index. Otherwise, set
2314           ** pCov to NULL to indicate that no candidate covering index will
2315           ** be available.
2316           */
2317           pSubLoop = pSubWInfo->a[0].pWLoop;
2318           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2319           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2320            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2321            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2322           ){
2323             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2324             pCov = pSubLoop->u.btree.pIndex;
2325           }else{
2326             pCov = 0;
2327           }
2328           if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){
2329             pWInfo->bDeferredSeek = 1;
2330           }
2331 
2332           /* Finish the loop through table entries that match term pOrTerm. */
2333           sqlite3WhereEnd(pSubWInfo);
2334           ExplainQueryPlanPop(pParse);
2335         }
2336         sqlite3ExprDelete(db, pDelete);
2337       }
2338     }
2339     ExplainQueryPlanPop(pParse);
2340     assert( pLevel->pWLoop==pLoop );
2341     assert( (pLoop->wsFlags & WHERE_MULTI_OR)!=0 );
2342     assert( (pLoop->wsFlags & WHERE_IN_ABLE)==0 );
2343     pLevel->u.pCoveringIdx = pCov;
2344     if( pCov ) pLevel->iIdxCur = iCovCur;
2345     if( pAndExpr ){
2346       pAndExpr->pLeft = 0;
2347       sqlite3ExprDelete(db, pAndExpr);
2348     }
2349     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2350     sqlite3VdbeGoto(v, pLevel->addrBrk);
2351     sqlite3VdbeResolveLabel(v, iLoopBody);
2352 
2353     if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); }
2354     if( !untestedTerms ) disableTerm(pLevel, pTerm);
2355   }else
2356 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2357 
2358   {
2359     /* Case 6:  There is no usable index.  We must do a complete
2360     **          scan of the entire table.
2361     */
2362     static const u8 aStep[] = { OP_Next, OP_Prev };
2363     static const u8 aStart[] = { OP_Rewind, OP_Last };
2364     assert( bRev==0 || bRev==1 );
2365     if( pTabItem->fg.isRecursive ){
2366       /* Tables marked isRecursive have only a single row that is stored in
2367       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
2368       pLevel->op = OP_Noop;
2369     }else{
2370       codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2371       pLevel->op = aStep[bRev];
2372       pLevel->p1 = iCur;
2373       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2374       VdbeCoverageIf(v, bRev==0);
2375       VdbeCoverageIf(v, bRev!=0);
2376       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2377     }
2378   }
2379 
2380 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2381   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2382 #endif
2383 
2384   /* Insert code to test every subexpression that can be completely
2385   ** computed using the current set of tables.
2386   **
2387   ** This loop may run between one and three times, depending on the
2388   ** constraints to be generated. The value of stack variable iLoop
2389   ** determines the constraints coded by each iteration, as follows:
2390   **
2391   ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2392   ** iLoop==2: Code remaining expressions that do not contain correlated
2393   **           sub-queries.
2394   ** iLoop==3: Code all remaining expressions.
2395   **
2396   ** An effort is made to skip unnecessary iterations of the loop.
2397   */
2398   iLoop = (pIdx ? 1 : 2);
2399   do{
2400     int iNext = 0;                /* Next value for iLoop */
2401     for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2402       Expr *pE;
2403       int skipLikeAddr = 0;
2404       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2405       testcase( pTerm->wtFlags & TERM_CODED );
2406       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2407       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2408         testcase( pWInfo->untestedTerms==0
2409             && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2410         pWInfo->untestedTerms = 1;
2411         continue;
2412       }
2413       pE = pTerm->pExpr;
2414       assert( pE!=0 );
2415       if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){
2416         continue;
2417       }
2418 
2419       if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2420         iNext = 2;
2421         continue;
2422       }
2423       if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2424         if( iNext==0 ) iNext = 3;
2425         continue;
2426       }
2427 
2428       if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
2429         /* If the TERM_LIKECOND flag is set, that means that the range search
2430         ** is sufficient to guarantee that the LIKE operator is true, so we
2431         ** can skip the call to the like(A,B) function.  But this only works
2432         ** for strings.  So do not skip the call to the function on the pass
2433         ** that compares BLOBs. */
2434 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2435         continue;
2436 #else
2437         u32 x = pLevel->iLikeRepCntr;
2438         if( x>0 ){
2439           skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
2440           VdbeCoverageIf(v, (x&1)==1);
2441           VdbeCoverageIf(v, (x&1)==0);
2442         }
2443 #endif
2444       }
2445 #ifdef WHERETRACE_ENABLED /* 0xffff */
2446       if( sqlite3WhereTrace ){
2447         VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2448                          pWC->nTerm-j, pTerm, iLoop));
2449       }
2450       if( sqlite3WhereTrace & 0x800 ){
2451         sqlite3DebugPrintf("Coding auxiliary constraint:\n");
2452         sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2453       }
2454 #endif
2455       sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2456       if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2457       pTerm->wtFlags |= TERM_CODED;
2458     }
2459     iLoop = iNext;
2460   }while( iLoop>0 );
2461 
2462   /* Insert code to test for implied constraints based on transitivity
2463   ** of the "==" operator.
2464   **
2465   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2466   ** and we are coding the t1 loop and the t2 loop has not yet coded,
2467   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2468   ** the implied "t1.a=123" constraint.
2469   */
2470   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2471     Expr *pE, sEAlt;
2472     WhereTerm *pAlt;
2473     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2474     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2475     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2476     if( pTerm->leftCursor!=iCur ) continue;
2477     if( pTabItem->fg.jointype & JT_LEFT ) continue;
2478     pE = pTerm->pExpr;
2479 #ifdef WHERETRACE_ENABLED /* 0x800 */
2480     if( sqlite3WhereTrace & 0x800 ){
2481       sqlite3DebugPrintf("Coding transitive constraint:\n");
2482       sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2483     }
2484 #endif
2485     assert( !ExprHasProperty(pE, EP_FromJoin) );
2486     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2487     assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
2488     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady,
2489                     WO_EQ|WO_IN|WO_IS, 0);
2490     if( pAlt==0 ) continue;
2491     if( pAlt->wtFlags & (TERM_CODED) ) continue;
2492     if( (pAlt->eOperator & WO_IN)
2493      && ExprUseXSelect(pAlt->pExpr)
2494      && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
2495     ){
2496       continue;
2497     }
2498     testcase( pAlt->eOperator & WO_EQ );
2499     testcase( pAlt->eOperator & WO_IS );
2500     testcase( pAlt->eOperator & WO_IN );
2501     VdbeModuleComment((v, "begin transitive constraint"));
2502     sEAlt = *pAlt->pExpr;
2503     sEAlt.pLeft = pE->pLeft;
2504     sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2505     pAlt->wtFlags |= TERM_CODED;
2506   }
2507 
2508   /* For a LEFT OUTER JOIN, generate code that will record the fact that
2509   ** at least one row of the right table has matched the left table.
2510   */
2511   if( pLevel->iLeftJoin ){
2512     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2513     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2514     VdbeComment((v, "record LEFT JOIN hit"));
2515     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
2516       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2517       testcase( pTerm->wtFlags & TERM_CODED );
2518       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2519       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2520         assert( pWInfo->untestedTerms );
2521         continue;
2522       }
2523       assert( pTerm->pExpr );
2524       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2525       pTerm->wtFlags |= TERM_CODED;
2526     }
2527   }
2528 
2529 #if WHERETRACE_ENABLED /* 0x20800 */
2530   if( sqlite3WhereTrace & 0x20000 ){
2531     sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n",
2532                        iLevel);
2533     sqlite3WhereClausePrint(pWC);
2534   }
2535   if( sqlite3WhereTrace & 0x800 ){
2536     sqlite3DebugPrintf("End Coding level %d:  notReady=%llx\n",
2537        iLevel, (u64)pLevel->notReady);
2538   }
2539 #endif
2540   return pLevel->notReady;
2541 }
2542