1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 25 /* 26 ** Return the name of the i-th column of the pIdx index. 27 */ 28 static const char *explainIndexColumnName(Index *pIdx, int i){ 29 i = pIdx->aiColumn[i]; 30 if( i==XN_EXPR ) return "<expr>"; 31 if( i==XN_ROWID ) return "rowid"; 32 return pIdx->pTable->aCol[i].zCnName; 33 } 34 35 /* 36 ** This routine is a helper for explainIndexRange() below 37 ** 38 ** pStr holds the text of an expression that we are building up one term 39 ** at a time. This routine adds a new term to the end of the expression. 40 ** Terms are separated by AND so add the "AND" text for second and subsequent 41 ** terms only. 42 */ 43 static void explainAppendTerm( 44 StrAccum *pStr, /* The text expression being built */ 45 Index *pIdx, /* Index to read column names from */ 46 int nTerm, /* Number of terms */ 47 int iTerm, /* Zero-based index of first term. */ 48 int bAnd, /* Non-zero to append " AND " */ 49 const char *zOp /* Name of the operator */ 50 ){ 51 int i; 52 53 assert( nTerm>=1 ); 54 if( bAnd ) sqlite3_str_append(pStr, " AND ", 5); 55 56 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 57 for(i=0; i<nTerm; i++){ 58 if( i ) sqlite3_str_append(pStr, ",", 1); 59 sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i)); 60 } 61 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 62 63 sqlite3_str_append(pStr, zOp, 1); 64 65 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 66 for(i=0; i<nTerm; i++){ 67 if( i ) sqlite3_str_append(pStr, ",", 1); 68 sqlite3_str_append(pStr, "?", 1); 69 } 70 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 71 } 72 73 /* 74 ** Argument pLevel describes a strategy for scanning table pTab. This 75 ** function appends text to pStr that describes the subset of table 76 ** rows scanned by the strategy in the form of an SQL expression. 77 ** 78 ** For example, if the query: 79 ** 80 ** SELECT * FROM t1 WHERE a=1 AND b>2; 81 ** 82 ** is run and there is an index on (a, b), then this function returns a 83 ** string similar to: 84 ** 85 ** "a=? AND b>?" 86 */ 87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 88 Index *pIndex = pLoop->u.btree.pIndex; 89 u16 nEq = pLoop->u.btree.nEq; 90 u16 nSkip = pLoop->nSkip; 91 int i, j; 92 93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 94 sqlite3_str_append(pStr, " (", 2); 95 for(i=0; i<nEq; i++){ 96 const char *z = explainIndexColumnName(pIndex, i); 97 if( i ) sqlite3_str_append(pStr, " AND ", 5); 98 sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); 99 } 100 101 j = i; 102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); 104 i = 1; 105 } 106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); 108 } 109 sqlite3_str_append(pStr, ")", 1); 110 } 111 112 /* 113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 116 ** is added to the output to describe the table scan strategy in pLevel. 117 ** 118 ** If an OP_Explain opcode is added to the VM, its address is returned. 119 ** Otherwise, if no OP_Explain is coded, zero is returned. 120 */ 121 int sqlite3WhereExplainOneScan( 122 Parse *pParse, /* Parse context */ 123 SrcList *pTabList, /* Table list this loop refers to */ 124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 125 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 126 ){ 127 int ret = 0; 128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 129 if( sqlite3ParseToplevel(pParse)->explain==2 ) 130 #endif 131 { 132 SrcItem *pItem = &pTabList->a[pLevel->iFrom]; 133 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 134 sqlite3 *db = pParse->db; /* Database handle */ 135 int isSearch; /* True for a SEARCH. False for SCAN. */ 136 WhereLoop *pLoop; /* The controlling WhereLoop object */ 137 u32 flags; /* Flags that describe this loop */ 138 char *zMsg; /* Text to add to EQP output */ 139 StrAccum str; /* EQP output string */ 140 char zBuf[100]; /* Initial space for EQP output string */ 141 142 pLoop = pLevel->pWLoop; 143 flags = pLoop->wsFlags; 144 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; 145 146 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 147 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 148 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 149 150 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 151 str.printfFlags = SQLITE_PRINTF_INTERNAL; 152 sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem); 153 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 154 const char *zFmt = 0; 155 Index *pIdx; 156 157 assert( pLoop->u.btree.pIndex!=0 ); 158 pIdx = pLoop->u.btree.pIndex; 159 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 160 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 161 if( isSearch ){ 162 zFmt = "PRIMARY KEY"; 163 } 164 }else if( flags & WHERE_PARTIALIDX ){ 165 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 166 }else if( flags & WHERE_AUTO_INDEX ){ 167 zFmt = "AUTOMATIC COVERING INDEX"; 168 }else if( flags & WHERE_IDX_ONLY ){ 169 zFmt = "COVERING INDEX %s"; 170 }else{ 171 zFmt = "INDEX %s"; 172 } 173 if( zFmt ){ 174 sqlite3_str_append(&str, " USING ", 7); 175 sqlite3_str_appendf(&str, zFmt, pIdx->zName); 176 explainIndexRange(&str, pLoop); 177 } 178 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 179 const char *zRangeOp; 180 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 181 zRangeOp = "="; 182 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 183 zRangeOp = ">? AND rowid<"; 184 }else if( flags&WHERE_BTM_LIMIT ){ 185 zRangeOp = ">"; 186 }else{ 187 assert( flags&WHERE_TOP_LIMIT); 188 zRangeOp = "<"; 189 } 190 sqlite3_str_appendf(&str, 191 " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp); 192 } 193 #ifndef SQLITE_OMIT_VIRTUALTABLE 194 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 195 sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s", 196 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 197 } 198 #endif 199 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 200 if( pLoop->nOut>=10 ){ 201 sqlite3_str_appendf(&str, " (~%llu rows)", 202 sqlite3LogEstToInt(pLoop->nOut)); 203 }else{ 204 sqlite3_str_append(&str, " (~1 row)", 9); 205 } 206 #endif 207 zMsg = sqlite3StrAccumFinish(&str); 208 sqlite3ExplainBreakpoint("",zMsg); 209 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), 210 pParse->addrExplain, 0, zMsg,P4_DYNAMIC); 211 } 212 return ret; 213 } 214 #endif /* SQLITE_OMIT_EXPLAIN */ 215 216 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 217 /* 218 ** Configure the VM passed as the first argument with an 219 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 220 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 221 ** clause that the scan reads data from. 222 ** 223 ** If argument addrExplain is not 0, it must be the address of an 224 ** OP_Explain instruction that describes the same loop. 225 */ 226 void sqlite3WhereAddScanStatus( 227 Vdbe *v, /* Vdbe to add scanstatus entry to */ 228 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 229 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 230 int addrExplain /* Address of OP_Explain (or 0) */ 231 ){ 232 const char *zObj = 0; 233 WhereLoop *pLoop = pLvl->pWLoop; 234 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 235 zObj = pLoop->u.btree.pIndex->zName; 236 }else{ 237 zObj = pSrclist->a[pLvl->iFrom].zName; 238 } 239 sqlite3VdbeScanStatus( 240 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 241 ); 242 } 243 #endif 244 245 246 /* 247 ** Disable a term in the WHERE clause. Except, do not disable the term 248 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 249 ** or USING clause of that join. 250 ** 251 ** Consider the term t2.z='ok' in the following queries: 252 ** 253 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 254 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 255 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 256 ** 257 ** The t2.z='ok' is disabled in the in (2) because it originates 258 ** in the ON clause. The term is disabled in (3) because it is not part 259 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 260 ** 261 ** Disabling a term causes that term to not be tested in the inner loop 262 ** of the join. Disabling is an optimization. When terms are satisfied 263 ** by indices, we disable them to prevent redundant tests in the inner 264 ** loop. We would get the correct results if nothing were ever disabled, 265 ** but joins might run a little slower. The trick is to disable as much 266 ** as we can without disabling too much. If we disabled in (1), we'd get 267 ** the wrong answer. See ticket #813. 268 ** 269 ** If all the children of a term are disabled, then that term is also 270 ** automatically disabled. In this way, terms get disabled if derived 271 ** virtual terms are tested first. For example: 272 ** 273 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 274 ** \___________/ \______/ \_____/ 275 ** parent child1 child2 276 ** 277 ** Only the parent term was in the original WHERE clause. The child1 278 ** and child2 terms were added by the LIKE optimization. If both of 279 ** the virtual child terms are valid, then testing of the parent can be 280 ** skipped. 281 ** 282 ** Usually the parent term is marked as TERM_CODED. But if the parent 283 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 284 ** The TERM_LIKECOND marking indicates that the term should be coded inside 285 ** a conditional such that is only evaluated on the second pass of a 286 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 287 */ 288 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 289 int nLoop = 0; 290 assert( pTerm!=0 ); 291 while( (pTerm->wtFlags & TERM_CODED)==0 292 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 293 && (pLevel->notReady & pTerm->prereqAll)==0 294 ){ 295 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 296 pTerm->wtFlags |= TERM_LIKECOND; 297 }else{ 298 pTerm->wtFlags |= TERM_CODED; 299 } 300 #ifdef WHERETRACE_ENABLED 301 if( sqlite3WhereTrace & 0x20000 ){ 302 sqlite3DebugPrintf("DISABLE-"); 303 sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a))); 304 } 305 #endif 306 if( pTerm->iParent<0 ) break; 307 pTerm = &pTerm->pWC->a[pTerm->iParent]; 308 assert( pTerm!=0 ); 309 pTerm->nChild--; 310 if( pTerm->nChild!=0 ) break; 311 nLoop++; 312 } 313 } 314 315 /* 316 ** Code an OP_Affinity opcode to apply the column affinity string zAff 317 ** to the n registers starting at base. 318 ** 319 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which 320 ** are no-ops) at the beginning and end of zAff are ignored. If all entries 321 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated. 322 ** 323 ** This routine makes its own copy of zAff so that the caller is free 324 ** to modify zAff after this routine returns. 325 */ 326 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 327 Vdbe *v = pParse->pVdbe; 328 if( zAff==0 ){ 329 assert( pParse->db->mallocFailed ); 330 return; 331 } 332 assert( v!=0 ); 333 334 /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE 335 ** entries at the beginning and end of the affinity string. 336 */ 337 assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB ); 338 while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){ 339 n--; 340 base++; 341 zAff++; 342 } 343 while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){ 344 n--; 345 } 346 347 /* Code the OP_Affinity opcode if there is anything left to do. */ 348 if( n>0 ){ 349 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 350 } 351 } 352 353 /* 354 ** Expression pRight, which is the RHS of a comparison operation, is 355 ** either a vector of n elements or, if n==1, a scalar expression. 356 ** Before the comparison operation, affinity zAff is to be applied 357 ** to the pRight values. This function modifies characters within the 358 ** affinity string to SQLITE_AFF_BLOB if either: 359 ** 360 ** * the comparison will be performed with no affinity, or 361 ** * the affinity change in zAff is guaranteed not to change the value. 362 */ 363 static void updateRangeAffinityStr( 364 Expr *pRight, /* RHS of comparison */ 365 int n, /* Number of vector elements in comparison */ 366 char *zAff /* Affinity string to modify */ 367 ){ 368 int i; 369 for(i=0; i<n; i++){ 370 Expr *p = sqlite3VectorFieldSubexpr(pRight, i); 371 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB 372 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) 373 ){ 374 zAff[i] = SQLITE_AFF_BLOB; 375 } 376 } 377 } 378 379 380 /* 381 ** pX is an expression of the form: (vector) IN (SELECT ...) 382 ** In other words, it is a vector IN operator with a SELECT clause on the 383 ** LHS. But not all terms in the vector are indexable and the terms might 384 ** not be in the correct order for indexing. 385 ** 386 ** This routine makes a copy of the input pX expression and then adjusts 387 ** the vector on the LHS with corresponding changes to the SELECT so that 388 ** the vector contains only index terms and those terms are in the correct 389 ** order. The modified IN expression is returned. The caller is responsible 390 ** for deleting the returned expression. 391 ** 392 ** Example: 393 ** 394 ** CREATE TABLE t1(a,b,c,d,e,f); 395 ** CREATE INDEX t1x1 ON t1(e,c); 396 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2) 397 ** \_______________________________________/ 398 ** The pX expression 399 ** 400 ** Since only columns e and c can be used with the index, in that order, 401 ** the modified IN expression that is returned will be: 402 ** 403 ** (e,c) IN (SELECT z,x FROM t2) 404 ** 405 ** The reduced pX is different from the original (obviously) and thus is 406 ** only used for indexing, to improve performance. The original unaltered 407 ** IN expression must also be run on each output row for correctness. 408 */ 409 static Expr *removeUnindexableInClauseTerms( 410 Parse *pParse, /* The parsing context */ 411 int iEq, /* Look at loop terms starting here */ 412 WhereLoop *pLoop, /* The current loop */ 413 Expr *pX /* The IN expression to be reduced */ 414 ){ 415 sqlite3 *db = pParse->db; 416 Expr *pNew; 417 pNew = sqlite3ExprDup(db, pX, 0); 418 if( db->mallocFailed==0 ){ 419 ExprList *pOrigRhs; /* Original unmodified RHS */ 420 ExprList *pOrigLhs; /* Original unmodified LHS */ 421 ExprList *pRhs = 0; /* New RHS after modifications */ 422 ExprList *pLhs = 0; /* New LHS after mods */ 423 int i; /* Loop counter */ 424 Select *pSelect; /* Pointer to the SELECT on the RHS */ 425 426 assert( ExprUseXSelect(pNew) ); 427 pOrigRhs = pNew->x.pSelect->pEList; 428 assert( pNew->pLeft!=0 ); 429 assert( ExprUseXList(pNew->pLeft) ); 430 pOrigLhs = pNew->pLeft->x.pList; 431 for(i=iEq; i<pLoop->nLTerm; i++){ 432 if( pLoop->aLTerm[i]->pExpr==pX ){ 433 int iField; 434 assert( (pLoop->aLTerm[i]->eOperator & (WO_OR|WO_AND))==0 ); 435 iField = pLoop->aLTerm[i]->u.x.iField - 1; 436 if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */ 437 pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr); 438 pOrigRhs->a[iField].pExpr = 0; 439 assert( pOrigLhs->a[iField].pExpr!=0 ); 440 pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr); 441 pOrigLhs->a[iField].pExpr = 0; 442 } 443 } 444 sqlite3ExprListDelete(db, pOrigRhs); 445 sqlite3ExprListDelete(db, pOrigLhs); 446 pNew->pLeft->x.pList = pLhs; 447 pNew->x.pSelect->pEList = pRhs; 448 if( pLhs && pLhs->nExpr==1 ){ 449 /* Take care here not to generate a TK_VECTOR containing only a 450 ** single value. Since the parser never creates such a vector, some 451 ** of the subroutines do not handle this case. */ 452 Expr *p = pLhs->a[0].pExpr; 453 pLhs->a[0].pExpr = 0; 454 sqlite3ExprDelete(db, pNew->pLeft); 455 pNew->pLeft = p; 456 } 457 pSelect = pNew->x.pSelect; 458 if( pSelect->pOrderBy ){ 459 /* If the SELECT statement has an ORDER BY clause, zero the 460 ** iOrderByCol variables. These are set to non-zero when an 461 ** ORDER BY term exactly matches one of the terms of the 462 ** result-set. Since the result-set of the SELECT statement may 463 ** have been modified or reordered, these variables are no longer 464 ** set correctly. Since setting them is just an optimization, 465 ** it's easiest just to zero them here. */ 466 ExprList *pOrderBy = pSelect->pOrderBy; 467 for(i=0; i<pOrderBy->nExpr; i++){ 468 pOrderBy->a[i].u.x.iOrderByCol = 0; 469 } 470 } 471 472 #if 0 473 printf("For indexing, change the IN expr:\n"); 474 sqlite3TreeViewExpr(0, pX, 0); 475 printf("Into:\n"); 476 sqlite3TreeViewExpr(0, pNew, 0); 477 #endif 478 } 479 return pNew; 480 } 481 482 483 /* 484 ** Generate code for a single equality term of the WHERE clause. An equality 485 ** term can be either X=expr or X IN (...). pTerm is the term to be 486 ** coded. 487 ** 488 ** The current value for the constraint is left in a register, the index 489 ** of which is returned. An attempt is made store the result in iTarget but 490 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the 491 ** constraint is a TK_EQ or TK_IS, then the current value might be left in 492 ** some other register and it is the caller's responsibility to compensate. 493 ** 494 ** For a constraint of the form X=expr, the expression is evaluated in 495 ** straight-line code. For constraints of the form X IN (...) 496 ** this routine sets up a loop that will iterate over all values of X. 497 */ 498 static int codeEqualityTerm( 499 Parse *pParse, /* The parsing context */ 500 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 501 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 502 int iEq, /* Index of the equality term within this level */ 503 int bRev, /* True for reverse-order IN operations */ 504 int iTarget /* Attempt to leave results in this register */ 505 ){ 506 Expr *pX = pTerm->pExpr; 507 Vdbe *v = pParse->pVdbe; 508 int iReg; /* Register holding results */ 509 510 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); 511 assert( iTarget>0 ); 512 if( pX->op==TK_EQ || pX->op==TK_IS ){ 513 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 514 }else if( pX->op==TK_ISNULL ){ 515 iReg = iTarget; 516 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 517 #ifndef SQLITE_OMIT_SUBQUERY 518 }else{ 519 int eType = IN_INDEX_NOOP; 520 int iTab; 521 struct InLoop *pIn; 522 WhereLoop *pLoop = pLevel->pWLoop; 523 int i; 524 int nEq = 0; 525 int *aiMap = 0; 526 527 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 528 && pLoop->u.btree.pIndex!=0 529 && pLoop->u.btree.pIndex->aSortOrder[iEq] 530 ){ 531 testcase( iEq==0 ); 532 testcase( bRev ); 533 bRev = !bRev; 534 } 535 assert( pX->op==TK_IN ); 536 iReg = iTarget; 537 538 for(i=0; i<iEq; i++){ 539 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ 540 disableTerm(pLevel, pTerm); 541 return iTarget; 542 } 543 } 544 for(i=iEq;i<pLoop->nLTerm; i++){ 545 assert( pLoop->aLTerm[i]!=0 ); 546 if( pLoop->aLTerm[i]->pExpr==pX ) nEq++; 547 } 548 549 iTab = 0; 550 if( !ExprUseXSelect(pX) || pX->x.pSelect->pEList->nExpr==1 ){ 551 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab); 552 }else{ 553 sqlite3 *db = pParse->db; 554 pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX); 555 556 if( !db->mallocFailed ){ 557 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq); 558 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab); 559 pTerm->pExpr->iTable = iTab; 560 } 561 sqlite3ExprDelete(db, pX); 562 pX = pTerm->pExpr; 563 } 564 565 if( eType==IN_INDEX_INDEX_DESC ){ 566 testcase( bRev ); 567 bRev = !bRev; 568 } 569 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 570 VdbeCoverageIf(v, bRev); 571 VdbeCoverageIf(v, !bRev); 572 573 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 574 pLoop->wsFlags |= WHERE_IN_ABLE; 575 if( pLevel->u.in.nIn==0 ){ 576 pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 577 } 578 if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){ 579 pLoop->wsFlags |= WHERE_IN_EARLYOUT; 580 } 581 582 i = pLevel->u.in.nIn; 583 pLevel->u.in.nIn += nEq; 584 pLevel->u.in.aInLoop = 585 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 586 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 587 pIn = pLevel->u.in.aInLoop; 588 if( pIn ){ 589 int iMap = 0; /* Index in aiMap[] */ 590 pIn += i; 591 for(i=iEq;i<pLoop->nLTerm; i++){ 592 if( pLoop->aLTerm[i]->pExpr==pX ){ 593 int iOut = iReg + i - iEq; 594 if( eType==IN_INDEX_ROWID ){ 595 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); 596 }else{ 597 int iCol = aiMap ? aiMap[iMap++] : 0; 598 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); 599 } 600 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); 601 if( i==iEq ){ 602 pIn->iCur = iTab; 603 pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next; 604 if( iEq>0 ){ 605 pIn->iBase = iReg - i; 606 pIn->nPrefix = i; 607 }else{ 608 pIn->nPrefix = 0; 609 } 610 }else{ 611 pIn->eEndLoopOp = OP_Noop; 612 } 613 pIn++; 614 } 615 } 616 testcase( iEq>0 617 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 618 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ); 619 if( iEq>0 620 && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0 621 ){ 622 sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq); 623 } 624 }else{ 625 pLevel->u.in.nIn = 0; 626 } 627 sqlite3DbFree(pParse->db, aiMap); 628 #endif 629 } 630 631 /* As an optimization, try to disable the WHERE clause term that is 632 ** driving the index as it will always be true. The correct answer is 633 ** obtained regardless, but we might get the answer with fewer CPU cycles 634 ** by omitting the term. 635 ** 636 ** But do not disable the term unless we are certain that the term is 637 ** not a transitive constraint. For an example of where that does not 638 ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04) 639 */ 640 if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0 641 || (pTerm->eOperator & WO_EQUIV)==0 642 ){ 643 disableTerm(pLevel, pTerm); 644 } 645 646 return iReg; 647 } 648 649 /* 650 ** Generate code that will evaluate all == and IN constraints for an 651 ** index scan. 652 ** 653 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 654 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 655 ** The index has as many as three equality constraints, but in this 656 ** example, the third "c" value is an inequality. So only two 657 ** constraints are coded. This routine will generate code to evaluate 658 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 659 ** in consecutive registers and the index of the first register is returned. 660 ** 661 ** In the example above nEq==2. But this subroutine works for any value 662 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 663 ** The only thing it does is allocate the pLevel->iMem memory cell and 664 ** compute the affinity string. 665 ** 666 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 667 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 668 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 669 ** occurs after the nEq quality constraints. 670 ** 671 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 672 ** the index of the first memory cell in that range. The code that 673 ** calls this routine will use that memory range to store keys for 674 ** start and termination conditions of the loop. 675 ** key value of the loop. If one or more IN operators appear, then 676 ** this routine allocates an additional nEq memory cells for internal 677 ** use. 678 ** 679 ** Before returning, *pzAff is set to point to a buffer containing a 680 ** copy of the column affinity string of the index allocated using 681 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 682 ** with equality constraints that use BLOB or NONE affinity are set to 683 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 684 ** 685 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 686 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 687 ** 688 ** In the example above, the index on t1(a) has TEXT affinity. But since 689 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 690 ** no conversion should be attempted before using a t2.b value as part of 691 ** a key to search the index. Hence the first byte in the returned affinity 692 ** string in this example would be set to SQLITE_AFF_BLOB. 693 */ 694 static int codeAllEqualityTerms( 695 Parse *pParse, /* Parsing context */ 696 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 697 int bRev, /* Reverse the order of IN operators */ 698 int nExtraReg, /* Number of extra registers to allocate */ 699 char **pzAff /* OUT: Set to point to affinity string */ 700 ){ 701 u16 nEq; /* The number of == or IN constraints to code */ 702 u16 nSkip; /* Number of left-most columns to skip */ 703 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 704 Index *pIdx; /* The index being used for this loop */ 705 WhereTerm *pTerm; /* A single constraint term */ 706 WhereLoop *pLoop; /* The WhereLoop object */ 707 int j; /* Loop counter */ 708 int regBase; /* Base register */ 709 int nReg; /* Number of registers to allocate */ 710 char *zAff; /* Affinity string to return */ 711 712 /* This module is only called on query plans that use an index. */ 713 pLoop = pLevel->pWLoop; 714 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 715 nEq = pLoop->u.btree.nEq; 716 nSkip = pLoop->nSkip; 717 pIdx = pLoop->u.btree.pIndex; 718 assert( pIdx!=0 ); 719 720 /* Figure out how many memory cells we will need then allocate them. 721 */ 722 regBase = pParse->nMem + 1; 723 nReg = pLoop->u.btree.nEq + nExtraReg; 724 pParse->nMem += nReg; 725 726 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 727 assert( zAff!=0 || pParse->db->mallocFailed ); 728 729 if( nSkip ){ 730 int iIdxCur = pLevel->iIdxCur; 731 sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1); 732 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 733 VdbeCoverageIf(v, bRev==0); 734 VdbeCoverageIf(v, bRev!=0); 735 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 736 j = sqlite3VdbeAddOp0(v, OP_Goto); 737 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 738 iIdxCur, 0, regBase, nSkip); 739 VdbeCoverageIf(v, bRev==0); 740 VdbeCoverageIf(v, bRev!=0); 741 sqlite3VdbeJumpHere(v, j); 742 for(j=0; j<nSkip; j++){ 743 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 744 testcase( pIdx->aiColumn[j]==XN_EXPR ); 745 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 746 } 747 } 748 749 /* Evaluate the equality constraints 750 */ 751 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 752 for(j=nSkip; j<nEq; j++){ 753 int r1; 754 pTerm = pLoop->aLTerm[j]; 755 assert( pTerm!=0 ); 756 /* The following testcase is true for indices with redundant columns. 757 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 758 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 759 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 760 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 761 if( r1!=regBase+j ){ 762 if( nReg==1 ){ 763 sqlite3ReleaseTempReg(pParse, regBase); 764 regBase = r1; 765 }else{ 766 sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j); 767 } 768 } 769 if( pTerm->eOperator & WO_IN ){ 770 if( pTerm->pExpr->flags & EP_xIsSelect ){ 771 /* No affinity ever needs to be (or should be) applied to a value 772 ** from the RHS of an "? IN (SELECT ...)" expression. The 773 ** sqlite3FindInIndex() routine has already ensured that the 774 ** affinity of the comparison has been applied to the value. */ 775 if( zAff ) zAff[j] = SQLITE_AFF_BLOB; 776 } 777 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ 778 Expr *pRight = pTerm->pExpr->pRight; 779 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 780 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 781 VdbeCoverage(v); 782 } 783 if( pParse->db->mallocFailed==0 && pParse->nErr==0 ){ 784 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 785 zAff[j] = SQLITE_AFF_BLOB; 786 } 787 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 788 zAff[j] = SQLITE_AFF_BLOB; 789 } 790 } 791 } 792 } 793 *pzAff = zAff; 794 return regBase; 795 } 796 797 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 798 /* 799 ** If the most recently coded instruction is a constant range constraint 800 ** (a string literal) that originated from the LIKE optimization, then 801 ** set P3 and P5 on the OP_String opcode so that the string will be cast 802 ** to a BLOB at appropriate times. 803 ** 804 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 805 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 806 ** scan loop run twice, once for strings and a second time for BLOBs. 807 ** The OP_String opcodes on the second pass convert the upper and lower 808 ** bound string constants to blobs. This routine makes the necessary changes 809 ** to the OP_String opcodes for that to happen. 810 ** 811 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 812 ** only the one pass through the string space is required, so this routine 813 ** becomes a no-op. 814 */ 815 static void whereLikeOptimizationStringFixup( 816 Vdbe *v, /* prepared statement under construction */ 817 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 818 WhereTerm *pTerm /* The upper or lower bound just coded */ 819 ){ 820 if( pTerm->wtFlags & TERM_LIKEOPT ){ 821 VdbeOp *pOp; 822 assert( pLevel->iLikeRepCntr>0 ); 823 pOp = sqlite3VdbeGetOp(v, -1); 824 assert( pOp!=0 ); 825 assert( pOp->opcode==OP_String8 826 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 827 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ 828 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ 829 } 830 } 831 #else 832 # define whereLikeOptimizationStringFixup(A,B,C) 833 #endif 834 835 #ifdef SQLITE_ENABLE_CURSOR_HINTS 836 /* 837 ** Information is passed from codeCursorHint() down to individual nodes of 838 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 839 ** structure. 840 */ 841 struct CCurHint { 842 int iTabCur; /* Cursor for the main table */ 843 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 844 Index *pIdx; /* The index used to access the table */ 845 }; 846 847 /* 848 ** This function is called for every node of an expression that is a candidate 849 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 850 ** the table CCurHint.iTabCur, verify that the same column can be 851 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 852 */ 853 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 854 struct CCurHint *pHint = pWalker->u.pCCurHint; 855 assert( pHint->pIdx!=0 ); 856 if( pExpr->op==TK_COLUMN 857 && pExpr->iTable==pHint->iTabCur 858 && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0 859 ){ 860 pWalker->eCode = 1; 861 } 862 return WRC_Continue; 863 } 864 865 /* 866 ** Test whether or not expression pExpr, which was part of a WHERE clause, 867 ** should be included in the cursor-hint for a table that is on the rhs 868 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the 869 ** expression is not suitable. 870 ** 871 ** An expression is unsuitable if it might evaluate to non NULL even if 872 ** a TK_COLUMN node that does affect the value of the expression is set 873 ** to NULL. For example: 874 ** 875 ** col IS NULL 876 ** col IS NOT NULL 877 ** coalesce(col, 1) 878 ** CASE WHEN col THEN 0 ELSE 1 END 879 */ 880 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ 881 if( pExpr->op==TK_IS 882 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT 883 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE 884 ){ 885 pWalker->eCode = 1; 886 }else if( pExpr->op==TK_FUNCTION ){ 887 int d1; 888 char d2[4]; 889 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ 890 pWalker->eCode = 1; 891 } 892 } 893 894 return WRC_Continue; 895 } 896 897 898 /* 899 ** This function is called on every node of an expression tree used as an 900 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 901 ** that accesses any table other than the one identified by 902 ** CCurHint.iTabCur, then do the following: 903 ** 904 ** 1) allocate a register and code an OP_Column instruction to read 905 ** the specified column into the new register, and 906 ** 907 ** 2) transform the expression node to a TK_REGISTER node that reads 908 ** from the newly populated register. 909 ** 910 ** Also, if the node is a TK_COLUMN that does access the table idenified 911 ** by pCCurHint.iTabCur, and an index is being used (which we will 912 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 913 ** an access of the index rather than the original table. 914 */ 915 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 916 int rc = WRC_Continue; 917 struct CCurHint *pHint = pWalker->u.pCCurHint; 918 if( pExpr->op==TK_COLUMN ){ 919 if( pExpr->iTable!=pHint->iTabCur ){ 920 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 921 sqlite3ExprCode(pWalker->pParse, pExpr, reg); 922 pExpr->op = TK_REGISTER; 923 pExpr->iTable = reg; 924 }else if( pHint->pIdx!=0 ){ 925 pExpr->iTable = pHint->iIdxCur; 926 pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn); 927 assert( pExpr->iColumn>=0 ); 928 } 929 }else if( pExpr->op==TK_AGG_FUNCTION ){ 930 /* An aggregate function in the WHERE clause of a query means this must 931 ** be a correlated sub-query, and expression pExpr is an aggregate from 932 ** the parent context. Do not walk the function arguments in this case. 933 ** 934 ** todo: It should be possible to replace this node with a TK_REGISTER 935 ** expression, as the result of the expression must be stored in a 936 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 937 rc = WRC_Prune; 938 } 939 return rc; 940 } 941 942 /* 943 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 944 */ 945 static void codeCursorHint( 946 SrcItem *pTabItem, /* FROM clause item */ 947 WhereInfo *pWInfo, /* The where clause */ 948 WhereLevel *pLevel, /* Which loop to provide hints for */ 949 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 950 ){ 951 Parse *pParse = pWInfo->pParse; 952 sqlite3 *db = pParse->db; 953 Vdbe *v = pParse->pVdbe; 954 Expr *pExpr = 0; 955 WhereLoop *pLoop = pLevel->pWLoop; 956 int iCur; 957 WhereClause *pWC; 958 WhereTerm *pTerm; 959 int i, j; 960 struct CCurHint sHint; 961 Walker sWalker; 962 963 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 964 iCur = pLevel->iTabCur; 965 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 966 sHint.iTabCur = iCur; 967 sHint.iIdxCur = pLevel->iIdxCur; 968 sHint.pIdx = pLoop->u.btree.pIndex; 969 memset(&sWalker, 0, sizeof(sWalker)); 970 sWalker.pParse = pParse; 971 sWalker.u.pCCurHint = &sHint; 972 pWC = &pWInfo->sWC; 973 for(i=0; i<pWC->nTerm; i++){ 974 pTerm = &pWC->a[i]; 975 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 976 if( pTerm->prereqAll & pLevel->notReady ) continue; 977 978 /* Any terms specified as part of the ON(...) clause for any LEFT 979 ** JOIN for which the current table is not the rhs are omitted 980 ** from the cursor-hint. 981 ** 982 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms 983 ** that were specified as part of the WHERE clause must be excluded. 984 ** This is to address the following: 985 ** 986 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; 987 ** 988 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its 989 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is 990 ** pushed down to the cursor, this row is filtered out, causing 991 ** SQLite to synthesize a row of NULL values. Which does match the 992 ** WHERE clause, and so the query returns a row. Which is incorrect. 993 ** 994 ** For the same reason, WHERE terms such as: 995 ** 996 ** WHERE 1 = (t2.c IS NULL) 997 ** 998 ** are also excluded. See codeCursorHintIsOrFunction() for details. 999 */ 1000 if( pTabItem->fg.jointype & JT_LEFT ){ 1001 Expr *pExpr = pTerm->pExpr; 1002 if( !ExprHasProperty(pExpr, EP_FromJoin) 1003 || pExpr->iRightJoinTable!=pTabItem->iCursor 1004 ){ 1005 sWalker.eCode = 0; 1006 sWalker.xExprCallback = codeCursorHintIsOrFunction; 1007 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 1008 if( sWalker.eCode ) continue; 1009 } 1010 }else{ 1011 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; 1012 } 1013 1014 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 1015 ** the cursor. These terms are not needed as hints for a pure range 1016 ** scan (that has no == terms) so omit them. */ 1017 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 1018 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 1019 if( j<pLoop->nLTerm ) continue; 1020 } 1021 1022 /* No subqueries or non-deterministic functions allowed */ 1023 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 1024 1025 /* For an index scan, make sure referenced columns are actually in 1026 ** the index. */ 1027 if( sHint.pIdx!=0 ){ 1028 sWalker.eCode = 0; 1029 sWalker.xExprCallback = codeCursorHintCheckExpr; 1030 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 1031 if( sWalker.eCode ) continue; 1032 } 1033 1034 /* If we survive all prior tests, that means this term is worth hinting */ 1035 pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 1036 } 1037 if( pExpr!=0 ){ 1038 sWalker.xExprCallback = codeCursorHintFixExpr; 1039 sqlite3WalkExpr(&sWalker, pExpr); 1040 sqlite3VdbeAddOp4(v, OP_CursorHint, 1041 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 1042 (const char*)pExpr, P4_EXPR); 1043 } 1044 } 1045 #else 1046 # define codeCursorHint(A,B,C,D) /* No-op */ 1047 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 1048 1049 /* 1050 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains 1051 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This 1052 ** function generates code to do a deferred seek of cursor iCur to the 1053 ** rowid stored in register iRowid. 1054 ** 1055 ** Normally, this is just: 1056 ** 1057 ** OP_DeferredSeek $iCur $iRowid 1058 ** 1059 ** However, if the scan currently being coded is a branch of an OR-loop and 1060 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek 1061 ** is set to iIdxCur and P4 is set to point to an array of integers 1062 ** containing one entry for each column of the table cursor iCur is open 1063 ** on. For each table column, if the column is the i'th column of the 1064 ** index, then the corresponding array entry is set to (i+1). If the column 1065 ** does not appear in the index at all, the array entry is set to 0. 1066 */ 1067 static void codeDeferredSeek( 1068 WhereInfo *pWInfo, /* Where clause context */ 1069 Index *pIdx, /* Index scan is using */ 1070 int iCur, /* Cursor for IPK b-tree */ 1071 int iIdxCur /* Index cursor */ 1072 ){ 1073 Parse *pParse = pWInfo->pParse; /* Parse context */ 1074 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ 1075 1076 assert( iIdxCur>0 ); 1077 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); 1078 1079 pWInfo->bDeferredSeek = 1; 1080 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur); 1081 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 1082 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) 1083 ){ 1084 int i; 1085 Table *pTab = pIdx->pTable; 1086 u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1)); 1087 if( ai ){ 1088 ai[0] = pTab->nCol; 1089 for(i=0; i<pIdx->nColumn-1; i++){ 1090 int x1, x2; 1091 assert( pIdx->aiColumn[i]<pTab->nCol ); 1092 x1 = pIdx->aiColumn[i]; 1093 x2 = sqlite3TableColumnToStorage(pTab, x1); 1094 testcase( x1!=x2 ); 1095 if( x1>=0 ) ai[x2+1] = i+1; 1096 } 1097 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); 1098 } 1099 } 1100 } 1101 1102 /* 1103 ** If the expression passed as the second argument is a vector, generate 1104 ** code to write the first nReg elements of the vector into an array 1105 ** of registers starting with iReg. 1106 ** 1107 ** If the expression is not a vector, then nReg must be passed 1. In 1108 ** this case, generate code to evaluate the expression and leave the 1109 ** result in register iReg. 1110 */ 1111 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ 1112 assert( nReg>0 ); 1113 if( p && sqlite3ExprIsVector(p) ){ 1114 #ifndef SQLITE_OMIT_SUBQUERY 1115 if( ExprUseXSelect(p) ){ 1116 Vdbe *v = pParse->pVdbe; 1117 int iSelect; 1118 assert( p->op==TK_SELECT ); 1119 iSelect = sqlite3CodeSubselect(pParse, p); 1120 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); 1121 }else 1122 #endif 1123 { 1124 int i; 1125 const ExprList *pList; 1126 assert( ExprUseXList(p) ); 1127 pList = p->x.pList; 1128 assert( nReg<=pList->nExpr ); 1129 for(i=0; i<nReg; i++){ 1130 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i); 1131 } 1132 } 1133 }else{ 1134 assert( nReg==1 || pParse->nErr ); 1135 sqlite3ExprCode(pParse, p, iReg); 1136 } 1137 } 1138 1139 /* An instance of the IdxExprTrans object carries information about a 1140 ** mapping from an expression on table columns into a column in an index 1141 ** down through the Walker. 1142 */ 1143 typedef struct IdxExprTrans { 1144 Expr *pIdxExpr; /* The index expression */ 1145 int iTabCur; /* The cursor of the corresponding table */ 1146 int iIdxCur; /* The cursor for the index */ 1147 int iIdxCol; /* The column for the index */ 1148 int iTabCol; /* The column for the table */ 1149 WhereInfo *pWInfo; /* Complete WHERE clause information */ 1150 sqlite3 *db; /* Database connection (for malloc()) */ 1151 } IdxExprTrans; 1152 1153 /* 1154 ** Preserve pExpr on the WhereETrans list of the WhereInfo. 1155 */ 1156 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){ 1157 WhereExprMod *pNew; 1158 pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew)); 1159 if( pNew==0 ) return; 1160 pNew->pNext = pTrans->pWInfo->pExprMods; 1161 pTrans->pWInfo->pExprMods = pNew; 1162 pNew->pExpr = pExpr; 1163 memcpy(&pNew->orig, pExpr, sizeof(*pExpr)); 1164 } 1165 1166 /* The walker node callback used to transform matching expressions into 1167 ** a reference to an index column for an index on an expression. 1168 ** 1169 ** If pExpr matches, then transform it into a reference to the index column 1170 ** that contains the value of pExpr. 1171 */ 1172 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){ 1173 IdxExprTrans *pX = p->u.pIdxTrans; 1174 if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){ 1175 preserveExpr(pX, pExpr); 1176 pExpr->affExpr = sqlite3ExprAffinity(pExpr); 1177 pExpr->op = TK_COLUMN; 1178 pExpr->iTable = pX->iIdxCur; 1179 pExpr->iColumn = pX->iIdxCol; 1180 testcase( ExprHasProperty(pExpr, EP_Skip) ); 1181 testcase( ExprHasProperty(pExpr, EP_Unlikely) ); 1182 ExprClearProperty(pExpr, EP_Skip|EP_Unlikely|EP_WinFunc|EP_Subrtn); 1183 pExpr->y.pTab = 0; 1184 return WRC_Prune; 1185 }else{ 1186 return WRC_Continue; 1187 } 1188 } 1189 1190 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1191 /* A walker node callback that translates a column reference to a table 1192 ** into a corresponding column reference of an index. 1193 */ 1194 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){ 1195 if( pExpr->op==TK_COLUMN ){ 1196 IdxExprTrans *pX = p->u.pIdxTrans; 1197 if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){ 1198 assert( ExprUseYTab(pExpr) && pExpr->y.pTab!=0 ); 1199 preserveExpr(pX, pExpr); 1200 pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn); 1201 pExpr->iTable = pX->iIdxCur; 1202 pExpr->iColumn = pX->iIdxCol; 1203 pExpr->y.pTab = 0; 1204 } 1205 } 1206 return WRC_Continue; 1207 } 1208 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1209 1210 /* 1211 ** For an indexes on expression X, locate every instance of expression X 1212 ** in pExpr and change that subexpression into a reference to the appropriate 1213 ** column of the index. 1214 ** 1215 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in 1216 ** the table into references to the corresponding (stored) column of the 1217 ** index. 1218 */ 1219 static void whereIndexExprTrans( 1220 Index *pIdx, /* The Index */ 1221 int iTabCur, /* Cursor of the table that is being indexed */ 1222 int iIdxCur, /* Cursor of the index itself */ 1223 WhereInfo *pWInfo /* Transform expressions in this WHERE clause */ 1224 ){ 1225 int iIdxCol; /* Column number of the index */ 1226 ExprList *aColExpr; /* Expressions that are indexed */ 1227 Table *pTab; 1228 Walker w; 1229 IdxExprTrans x; 1230 aColExpr = pIdx->aColExpr; 1231 if( aColExpr==0 && !pIdx->bHasVCol ){ 1232 /* The index does not reference any expressions or virtual columns 1233 ** so no translations are needed. */ 1234 return; 1235 } 1236 pTab = pIdx->pTable; 1237 memset(&w, 0, sizeof(w)); 1238 w.u.pIdxTrans = &x; 1239 x.iTabCur = iTabCur; 1240 x.iIdxCur = iIdxCur; 1241 x.pWInfo = pWInfo; 1242 x.db = pWInfo->pParse->db; 1243 for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){ 1244 i16 iRef = pIdx->aiColumn[iIdxCol]; 1245 if( iRef==XN_EXPR ){ 1246 assert( aColExpr!=0 && aColExpr->a[iIdxCol].pExpr!=0 ); 1247 x.pIdxExpr = aColExpr->a[iIdxCol].pExpr; 1248 if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue; 1249 w.xExprCallback = whereIndexExprTransNode; 1250 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1251 }else if( iRef>=0 1252 && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0 1253 && ((pTab->aCol[iRef].colFlags & COLFLAG_HASCOLL)==0 1254 || sqlite3StrICmp(sqlite3ColumnColl(&pTab->aCol[iRef]), 1255 sqlite3StrBINARY)==0) 1256 ){ 1257 /* Check to see if there are direct references to generated columns 1258 ** that are contained in the index. Pulling the generated column 1259 ** out of the index is an optimization only - the main table is always 1260 ** available if the index cannot be used. To avoid unnecessary 1261 ** complication, omit this optimization if the collating sequence for 1262 ** the column is non-standard */ 1263 x.iTabCol = iRef; 1264 w.xExprCallback = whereIndexExprTransColumn; 1265 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1266 }else{ 1267 continue; 1268 } 1269 x.iIdxCol = iIdxCol; 1270 sqlite3WalkExpr(&w, pWInfo->pWhere); 1271 sqlite3WalkExprList(&w, pWInfo->pOrderBy); 1272 sqlite3WalkExprList(&w, pWInfo->pResultSet); 1273 } 1274 } 1275 1276 /* 1277 ** The pTruth expression is always true because it is the WHERE clause 1278 ** a partial index that is driving a query loop. Look through all of the 1279 ** WHERE clause terms on the query, and if any of those terms must be 1280 ** true because pTruth is true, then mark those WHERE clause terms as 1281 ** coded. 1282 */ 1283 static void whereApplyPartialIndexConstraints( 1284 Expr *pTruth, 1285 int iTabCur, 1286 WhereClause *pWC 1287 ){ 1288 int i; 1289 WhereTerm *pTerm; 1290 while( pTruth->op==TK_AND ){ 1291 whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC); 1292 pTruth = pTruth->pRight; 1293 } 1294 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1295 Expr *pExpr; 1296 if( pTerm->wtFlags & TERM_CODED ) continue; 1297 pExpr = pTerm->pExpr; 1298 if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){ 1299 pTerm->wtFlags |= TERM_CODED; 1300 } 1301 } 1302 } 1303 1304 /* 1305 ** Generate code for the start of the iLevel-th loop in the WHERE clause 1306 ** implementation described by pWInfo. 1307 */ 1308 Bitmask sqlite3WhereCodeOneLoopStart( 1309 Parse *pParse, /* Parsing context */ 1310 Vdbe *v, /* Prepared statement under construction */ 1311 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1312 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1313 WhereLevel *pLevel, /* The current level pointer */ 1314 Bitmask notReady /* Which tables are currently available */ 1315 ){ 1316 int j, k; /* Loop counters */ 1317 int iCur; /* The VDBE cursor for the table */ 1318 int addrNxt; /* Where to jump to continue with the next IN case */ 1319 int bRev; /* True if we need to scan in reverse order */ 1320 WhereLoop *pLoop; /* The WhereLoop object being coded */ 1321 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 1322 WhereTerm *pTerm; /* A WHERE clause term */ 1323 sqlite3 *db; /* Database connection */ 1324 SrcItem *pTabItem; /* FROM clause term being coded */ 1325 int addrBrk; /* Jump here to break out of the loop */ 1326 int addrHalt; /* addrBrk for the outermost loop */ 1327 int addrCont; /* Jump here to continue with next cycle */ 1328 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 1329 int iReleaseReg = 0; /* Temp register to free before returning */ 1330 Index *pIdx = 0; /* Index used by loop (if any) */ 1331 int iLoop; /* Iteration of constraint generator loop */ 1332 1333 pWC = &pWInfo->sWC; 1334 db = pParse->db; 1335 pLoop = pLevel->pWLoop; 1336 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1337 iCur = pTabItem->iCursor; 1338 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 1339 bRev = (pWInfo->revMask>>iLevel)&1; 1340 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 1341 #if WHERETRACE_ENABLED /* 0x20800 */ 1342 if( sqlite3WhereTrace & 0x800 ){ 1343 sqlite3DebugPrintf("Coding level %d of %d: notReady=%llx iFrom=%d\n", 1344 iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom); 1345 sqlite3WhereLoopPrint(pLoop, pWC); 1346 } 1347 if( sqlite3WhereTrace & 0x20000 ){ 1348 if( iLevel==0 ){ 1349 sqlite3DebugPrintf("WHERE clause being coded:\n"); 1350 sqlite3TreeViewExpr(0, pWInfo->pWhere, 0); 1351 } 1352 sqlite3DebugPrintf("All WHERE-clause terms before coding:\n"); 1353 sqlite3WhereClausePrint(pWC); 1354 } 1355 #endif 1356 1357 /* Create labels for the "break" and "continue" instructions 1358 ** for the current loop. Jump to addrBrk to break out of a loop. 1359 ** Jump to cont to go immediately to the next iteration of the 1360 ** loop. 1361 ** 1362 ** When there is an IN operator, we also have a "addrNxt" label that 1363 ** means to continue with the next IN value combination. When 1364 ** there are no IN operators in the constraints, the "addrNxt" label 1365 ** is the same as "addrBrk". 1366 */ 1367 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 1368 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse); 1369 1370 /* If this is the right table of a LEFT OUTER JOIN, allocate and 1371 ** initialize a memory cell that records if this table matches any 1372 ** row of the left table of the join. 1373 */ 1374 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 1375 || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0 1376 ); 1377 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 1378 pLevel->iLeftJoin = ++pParse->nMem; 1379 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 1380 VdbeComment((v, "init LEFT JOIN no-match flag")); 1381 } 1382 1383 /* Compute a safe address to jump to if we discover that the table for 1384 ** this loop is empty and can never contribute content. */ 1385 for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){} 1386 addrHalt = pWInfo->a[j].addrBrk; 1387 1388 /* Special case of a FROM clause subquery implemented as a co-routine */ 1389 if( pTabItem->fg.viaCoroutine ){ 1390 int regYield = pTabItem->regReturn; 1391 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 1392 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 1393 VdbeCoverage(v); 1394 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 1395 pLevel->op = OP_Goto; 1396 }else 1397 1398 #ifndef SQLITE_OMIT_VIRTUALTABLE 1399 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 1400 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 1401 ** to access the data. 1402 */ 1403 int iReg; /* P3 Value for OP_VFilter */ 1404 int addrNotFound; 1405 int nConstraint = pLoop->nLTerm; 1406 int iIn; /* Counter for IN constraints */ 1407 1408 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 1409 addrNotFound = pLevel->addrBrk; 1410 for(j=0; j<nConstraint; j++){ 1411 int iTarget = iReg+j+2; 1412 pTerm = pLoop->aLTerm[j]; 1413 if( NEVER(pTerm==0) ) continue; 1414 if( pTerm->eOperator & WO_IN ){ 1415 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 1416 addrNotFound = pLevel->addrNxt; 1417 }else{ 1418 Expr *pRight = pTerm->pExpr->pRight; 1419 codeExprOrVector(pParse, pRight, iTarget, 1); 1420 } 1421 } 1422 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 1423 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 1424 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 1425 pLoop->u.vtab.idxStr, 1426 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); 1427 VdbeCoverage(v); 1428 pLoop->u.vtab.needFree = 0; 1429 /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed 1430 ** the u.vtab.idxStr. NULL it out to prevent a use-after-free */ 1431 if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0; 1432 pLevel->p1 = iCur; 1433 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 1434 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1435 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 1436 if( pLoop->wsFlags & WHERE_IN_ABLE ){ 1437 iIn = pLevel->u.in.nIn; 1438 }else{ 1439 iIn = 0; 1440 } 1441 for(j=nConstraint-1; j>=0; j--){ 1442 pTerm = pLoop->aLTerm[j]; 1443 if( (pTerm->eOperator & WO_IN)!=0 ) iIn--; 1444 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ 1445 disableTerm(pLevel, pTerm); 1446 }else if( (pTerm->eOperator & WO_IN)!=0 1447 && sqlite3ExprVectorSize(pTerm->pExpr->pLeft)==1 1448 ){ 1449 Expr *pCompare; /* The comparison operator */ 1450 Expr *pRight; /* RHS of the comparison */ 1451 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ 1452 1453 /* Reload the constraint value into reg[iReg+j+2]. The same value 1454 ** was loaded into the same register prior to the OP_VFilter, but 1455 ** the xFilter implementation might have changed the datatype or 1456 ** encoding of the value in the register, so it *must* be reloaded. */ 1457 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed ); 1458 if( !db->mallocFailed ){ 1459 assert( iIn>=0 && iIn<pLevel->u.in.nIn ); 1460 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop); 1461 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid ); 1462 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 ); 1463 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 ); 1464 testcase( pOp->opcode==OP_Rowid ); 1465 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); 1466 } 1467 1468 /* Generate code that will continue to the next row if 1469 ** the IN constraint is not satisfied */ 1470 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); 1471 assert( pCompare!=0 || db->mallocFailed ); 1472 if( pCompare ){ 1473 pCompare->pLeft = pTerm->pExpr->pLeft; 1474 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); 1475 if( pRight ){ 1476 pRight->iTable = iReg+j+2; 1477 sqlite3ExprIfFalse( 1478 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL 1479 ); 1480 } 1481 pCompare->pLeft = 0; 1482 sqlite3ExprDelete(db, pCompare); 1483 } 1484 } 1485 } 1486 assert( iIn==0 || db->mallocFailed ); 1487 /* These registers need to be preserved in case there is an IN operator 1488 ** loop. So we could deallocate the registers here (and potentially 1489 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems 1490 ** simpler and safer to simply not reuse the registers. 1491 ** 1492 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 1493 */ 1494 }else 1495 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1496 1497 if( (pLoop->wsFlags & WHERE_IPK)!=0 1498 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 1499 ){ 1500 /* Case 2: We can directly reference a single row using an 1501 ** equality comparison against the ROWID field. Or 1502 ** we reference multiple rows using a "rowid IN (...)" 1503 ** construct. 1504 */ 1505 assert( pLoop->u.btree.nEq==1 ); 1506 pTerm = pLoop->aLTerm[0]; 1507 assert( pTerm!=0 ); 1508 assert( pTerm->pExpr!=0 ); 1509 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1510 iReleaseReg = ++pParse->nMem; 1511 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 1512 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 1513 addrNxt = pLevel->addrNxt; 1514 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); 1515 VdbeCoverage(v); 1516 pLevel->op = OP_Noop; 1517 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 1518 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 1519 ){ 1520 /* Case 3: We have an inequality comparison against the ROWID field. 1521 */ 1522 int testOp = OP_Noop; 1523 int start; 1524 int memEndValue = 0; 1525 WhereTerm *pStart, *pEnd; 1526 1527 j = 0; 1528 pStart = pEnd = 0; 1529 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 1530 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 1531 assert( pStart!=0 || pEnd!=0 ); 1532 if( bRev ){ 1533 pTerm = pStart; 1534 pStart = pEnd; 1535 pEnd = pTerm; 1536 } 1537 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); 1538 if( pStart ){ 1539 Expr *pX; /* The expression that defines the start bound */ 1540 int r1, rTemp; /* Registers for holding the start boundary */ 1541 int op; /* Cursor seek operation */ 1542 1543 /* The following constant maps TK_xx codes into corresponding 1544 ** seek opcodes. It depends on a particular ordering of TK_xx 1545 */ 1546 const u8 aMoveOp[] = { 1547 /* TK_GT */ OP_SeekGT, 1548 /* TK_LE */ OP_SeekLE, 1549 /* TK_LT */ OP_SeekLT, 1550 /* TK_GE */ OP_SeekGE 1551 }; 1552 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 1553 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 1554 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 1555 1556 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 1557 testcase( pStart->wtFlags & TERM_VIRTUAL ); 1558 pX = pStart->pExpr; 1559 assert( pX!=0 ); 1560 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 1561 if( sqlite3ExprIsVector(pX->pRight) ){ 1562 r1 = rTemp = sqlite3GetTempReg(pParse); 1563 codeExprOrVector(pParse, pX->pRight, r1, 1); 1564 testcase( pX->op==TK_GT ); 1565 testcase( pX->op==TK_GE ); 1566 testcase( pX->op==TK_LT ); 1567 testcase( pX->op==TK_LE ); 1568 op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1]; 1569 assert( pX->op!=TK_GT || op==OP_SeekGE ); 1570 assert( pX->op!=TK_GE || op==OP_SeekGE ); 1571 assert( pX->op!=TK_LT || op==OP_SeekLE ); 1572 assert( pX->op!=TK_LE || op==OP_SeekLE ); 1573 }else{ 1574 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 1575 disableTerm(pLevel, pStart); 1576 op = aMoveOp[(pX->op - TK_GT)]; 1577 } 1578 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); 1579 VdbeComment((v, "pk")); 1580 VdbeCoverageIf(v, pX->op==TK_GT); 1581 VdbeCoverageIf(v, pX->op==TK_LE); 1582 VdbeCoverageIf(v, pX->op==TK_LT); 1583 VdbeCoverageIf(v, pX->op==TK_GE); 1584 sqlite3ReleaseTempReg(pParse, rTemp); 1585 }else{ 1586 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt); 1587 VdbeCoverageIf(v, bRev==0); 1588 VdbeCoverageIf(v, bRev!=0); 1589 } 1590 if( pEnd ){ 1591 Expr *pX; 1592 pX = pEnd->pExpr; 1593 assert( pX!=0 ); 1594 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 1595 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 1596 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 1597 memEndValue = ++pParse->nMem; 1598 codeExprOrVector(pParse, pX->pRight, memEndValue, 1); 1599 if( 0==sqlite3ExprIsVector(pX->pRight) 1600 && (pX->op==TK_LT || pX->op==TK_GT) 1601 ){ 1602 testOp = bRev ? OP_Le : OP_Ge; 1603 }else{ 1604 testOp = bRev ? OP_Lt : OP_Gt; 1605 } 1606 if( 0==sqlite3ExprIsVector(pX->pRight) ){ 1607 disableTerm(pLevel, pEnd); 1608 } 1609 } 1610 start = sqlite3VdbeCurrentAddr(v); 1611 pLevel->op = bRev ? OP_Prev : OP_Next; 1612 pLevel->p1 = iCur; 1613 pLevel->p2 = start; 1614 assert( pLevel->p5==0 ); 1615 if( testOp!=OP_Noop ){ 1616 iRowidReg = ++pParse->nMem; 1617 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 1618 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 1619 VdbeCoverageIf(v, testOp==OP_Le); 1620 VdbeCoverageIf(v, testOp==OP_Lt); 1621 VdbeCoverageIf(v, testOp==OP_Ge); 1622 VdbeCoverageIf(v, testOp==OP_Gt); 1623 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 1624 } 1625 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 1626 /* Case 4: A scan using an index. 1627 ** 1628 ** The WHERE clause may contain zero or more equality 1629 ** terms ("==" or "IN" operators) that refer to the N 1630 ** left-most columns of the index. It may also contain 1631 ** inequality constraints (>, <, >= or <=) on the indexed 1632 ** column that immediately follows the N equalities. Only 1633 ** the right-most column can be an inequality - the rest must 1634 ** use the "==" and "IN" operators. For example, if the 1635 ** index is on (x,y,z), then the following clauses are all 1636 ** optimized: 1637 ** 1638 ** x=5 1639 ** x=5 AND y=10 1640 ** x=5 AND y<10 1641 ** x=5 AND y>5 AND y<10 1642 ** x=5 AND y=5 AND z<=10 1643 ** 1644 ** The z<10 term of the following cannot be used, only 1645 ** the x=5 term: 1646 ** 1647 ** x=5 AND z<10 1648 ** 1649 ** N may be zero if there are inequality constraints. 1650 ** If there are no inequality constraints, then N is at 1651 ** least one. 1652 ** 1653 ** This case is also used when there are no WHERE clause 1654 ** constraints but an index is selected anyway, in order 1655 ** to force the output order to conform to an ORDER BY. 1656 */ 1657 static const u8 aStartOp[] = { 1658 0, 1659 0, 1660 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1661 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1662 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1663 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1664 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1665 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1666 }; 1667 static const u8 aEndOp[] = { 1668 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1669 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1670 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1671 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1672 }; 1673 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1674 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ 1675 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ 1676 int regBase; /* Base register holding constraint values */ 1677 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1678 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1679 int startEq; /* True if range start uses ==, >= or <= */ 1680 int endEq; /* True if range end uses ==, >= or <= */ 1681 int start_constraints; /* Start of range is constrained */ 1682 int nConstraint; /* Number of constraint terms */ 1683 int iIdxCur; /* The VDBE cursor for the index */ 1684 int nExtraReg = 0; /* Number of extra registers needed */ 1685 int op; /* Instruction opcode */ 1686 char *zStartAff; /* Affinity for start of range constraint */ 1687 char *zEndAff = 0; /* Affinity for end of range constraint */ 1688 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1689 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1690 int omitTable; /* True if we use the index only */ 1691 int regBignull = 0; /* big-null flag register */ 1692 int addrSeekScan = 0; /* Opcode of the OP_SeekScan, if any */ 1693 1694 pIdx = pLoop->u.btree.pIndex; 1695 iIdxCur = pLevel->iIdxCur; 1696 assert( nEq>=pLoop->nSkip ); 1697 1698 /* Find any inequality constraint terms for the start and end 1699 ** of the range. 1700 */ 1701 j = nEq; 1702 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1703 pRangeStart = pLoop->aLTerm[j++]; 1704 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); 1705 /* Like optimization range constraints always occur in pairs */ 1706 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1707 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1708 } 1709 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1710 pRangeEnd = pLoop->aLTerm[j++]; 1711 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); 1712 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1713 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1714 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1715 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1716 pLevel->iLikeRepCntr = (u32)++pParse->nMem; 1717 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); 1718 VdbeComment((v, "LIKE loop counter")); 1719 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1720 /* iLikeRepCntr actually stores 2x the counter register number. The 1721 ** bottom bit indicates whether the search order is ASC or DESC. */ 1722 testcase( bRev ); 1723 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1724 assert( (bRev & ~1)==0 ); 1725 pLevel->iLikeRepCntr <<=1; 1726 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); 1727 } 1728 #endif 1729 if( pRangeStart==0 ){ 1730 j = pIdx->aiColumn[nEq]; 1731 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){ 1732 bSeekPastNull = 1; 1733 } 1734 } 1735 } 1736 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1737 1738 /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses 1739 ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS 1740 ** FIRST). In both cases separate ordered scans are made of those 1741 ** index entries for which the column is null and for those for which 1742 ** it is not. For an ASC sort, the non-NULL entries are scanned first. 1743 ** For DESC, NULL entries are scanned first. 1744 */ 1745 if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0 1746 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0 1747 ){ 1748 assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 ); 1749 assert( pRangeEnd==0 && pRangeStart==0 ); 1750 testcase( pLoop->nSkip>0 ); 1751 nExtraReg = 1; 1752 bSeekPastNull = 1; 1753 pLevel->regBignull = regBignull = ++pParse->nMem; 1754 if( pLevel->iLeftJoin ){ 1755 sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull); 1756 } 1757 pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse); 1758 } 1759 1760 /* If we are doing a reverse order scan on an ascending index, or 1761 ** a forward order scan on a descending index, interchange the 1762 ** start and end terms (pRangeStart and pRangeEnd). 1763 */ 1764 if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){ 1765 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1766 SWAP(u8, bSeekPastNull, bStopAtNull); 1767 SWAP(u8, nBtm, nTop); 1768 } 1769 1770 if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){ 1771 /* In case OP_SeekScan is used, ensure that the index cursor does not 1772 ** point to a valid row for the first iteration of this loop. */ 1773 sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur); 1774 } 1775 1776 /* Generate code to evaluate all constraint terms using == or IN 1777 ** and store the values of those terms in an array of registers 1778 ** starting at regBase. 1779 */ 1780 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); 1781 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1782 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1783 if( zStartAff && nTop ){ 1784 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); 1785 } 1786 addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt); 1787 1788 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1789 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1790 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1791 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1792 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1793 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1794 start_constraints = pRangeStart || nEq>0; 1795 1796 /* Seek the index cursor to the start of the range. */ 1797 nConstraint = nEq; 1798 if( pRangeStart ){ 1799 Expr *pRight = pRangeStart->pExpr->pRight; 1800 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); 1801 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1802 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1803 && sqlite3ExprCanBeNull(pRight) 1804 ){ 1805 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1806 VdbeCoverage(v); 1807 } 1808 if( zStartAff ){ 1809 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); 1810 } 1811 nConstraint += nBtm; 1812 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1813 if( sqlite3ExprIsVector(pRight)==0 ){ 1814 disableTerm(pLevel, pRangeStart); 1815 }else{ 1816 startEq = 1; 1817 } 1818 bSeekPastNull = 0; 1819 }else if( bSeekPastNull ){ 1820 startEq = 0; 1821 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1822 start_constraints = 1; 1823 nConstraint++; 1824 }else if( regBignull ){ 1825 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1826 start_constraints = 1; 1827 nConstraint++; 1828 } 1829 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1830 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ 1831 /* The skip-scan logic inside the call to codeAllEqualityConstraints() 1832 ** above has already left the cursor sitting on the correct row, 1833 ** so no further seeking is needed */ 1834 }else{ 1835 if( regBignull ){ 1836 sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull); 1837 VdbeComment((v, "NULL-scan pass ctr")); 1838 } 1839 1840 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 1841 assert( op!=0 ); 1842 if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){ 1843 assert( regBignull==0 ); 1844 /* TUNING: The OP_SeekScan opcode seeks to reduce the number 1845 ** of expensive seek operations by replacing a single seek with 1846 ** 1 or more step operations. The question is, how many steps 1847 ** should we try before giving up and going with a seek. The cost 1848 ** of a seek is proportional to the logarithm of the of the number 1849 ** of entries in the tree, so basing the number of steps to try 1850 ** on the estimated number of rows in the btree seems like a good 1851 ** guess. */ 1852 addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan, 1853 (pIdx->aiRowLogEst[0]+9)/10); 1854 VdbeCoverage(v); 1855 } 1856 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1857 VdbeCoverage(v); 1858 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1859 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1860 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 1861 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1862 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1863 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 1864 1865 assert( bSeekPastNull==0 || bStopAtNull==0 ); 1866 if( regBignull ){ 1867 assert( bSeekPastNull==1 || bStopAtNull==1 ); 1868 assert( bSeekPastNull==!bStopAtNull ); 1869 assert( bStopAtNull==startEq ); 1870 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2); 1871 op = aStartOp[(nConstraint>1)*4 + 2 + bRev]; 1872 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 1873 nConstraint-startEq); 1874 VdbeCoverage(v); 1875 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1876 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1877 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1878 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1879 assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE); 1880 } 1881 } 1882 1883 /* Load the value for the inequality constraint at the end of the 1884 ** range (if any). 1885 */ 1886 nConstraint = nEq; 1887 assert( pLevel->p2==0 ); 1888 if( pRangeEnd ){ 1889 Expr *pRight = pRangeEnd->pExpr->pRight; 1890 if( addrSeekScan ){ 1891 /* For a seek-scan that has a range on the lowest term of the index, 1892 ** we have to make the top of the loop be code that sets the end 1893 ** condition of the range. Otherwise, the OP_SeekScan might jump 1894 ** over that initialization, leaving the range-end value set to the 1895 ** range-start value, resulting in a wrong answer. 1896 ** See ticket 5981a8c041a3c2f3 (2021-11-02). 1897 */ 1898 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1899 } 1900 codeExprOrVector(pParse, pRight, regBase+nEq, nTop); 1901 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 1902 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 1903 && sqlite3ExprCanBeNull(pRight) 1904 ){ 1905 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1906 VdbeCoverage(v); 1907 } 1908 if( zEndAff ){ 1909 updateRangeAffinityStr(pRight, nTop, zEndAff); 1910 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); 1911 }else{ 1912 assert( pParse->db->mallocFailed ); 1913 } 1914 nConstraint += nTop; 1915 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 1916 1917 if( sqlite3ExprIsVector(pRight)==0 ){ 1918 disableTerm(pLevel, pRangeEnd); 1919 }else{ 1920 endEq = 1; 1921 } 1922 }else if( bStopAtNull ){ 1923 if( regBignull==0 ){ 1924 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1925 endEq = 0; 1926 } 1927 nConstraint++; 1928 } 1929 sqlite3DbFree(db, zStartAff); 1930 sqlite3DbFree(db, zEndAff); 1931 1932 /* Top of the loop body */ 1933 if( pLevel->p2==0 ) pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1934 1935 /* Check if the index cursor is past the end of the range. */ 1936 if( nConstraint ){ 1937 if( regBignull ){ 1938 /* Except, skip the end-of-range check while doing the NULL-scan */ 1939 sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3); 1940 VdbeComment((v, "If NULL-scan 2nd pass")); 1941 VdbeCoverage(v); 1942 } 1943 op = aEndOp[bRev*2 + endEq]; 1944 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1945 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1946 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1947 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1948 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1949 if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan); 1950 } 1951 if( regBignull ){ 1952 /* During a NULL-scan, check to see if we have reached the end of 1953 ** the NULLs */ 1954 assert( bSeekPastNull==!bStopAtNull ); 1955 assert( bSeekPastNull+bStopAtNull==1 ); 1956 assert( nConstraint+bSeekPastNull>0 ); 1957 sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2); 1958 VdbeComment((v, "If NULL-scan 1st pass")); 1959 VdbeCoverage(v); 1960 op = aEndOp[bRev*2 + bSeekPastNull]; 1961 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 1962 nConstraint+bSeekPastNull); 1963 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1964 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1965 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1966 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1967 } 1968 1969 if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){ 1970 sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq); 1971 } 1972 1973 /* Seek the table cursor, if required */ 1974 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 1975 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0; 1976 if( omitTable ){ 1977 /* pIdx is a covering index. No need to access the main table. */ 1978 }else if( HasRowid(pIdx->pTable) ){ 1979 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); 1980 }else if( iCur!=iIdxCur ){ 1981 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1982 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1983 for(j=0; j<pPk->nKeyCol; j++){ 1984 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]); 1985 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 1986 } 1987 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 1988 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 1989 } 1990 1991 if( pLevel->iLeftJoin==0 ){ 1992 /* If pIdx is an index on one or more expressions, then look through 1993 ** all the expressions in pWInfo and try to transform matching expressions 1994 ** into reference to index columns. Also attempt to translate references 1995 ** to virtual columns in the table into references to (stored) columns 1996 ** of the index. 1997 ** 1998 ** Do not do this for the RHS of a LEFT JOIN. This is because the 1999 ** expression may be evaluated after OP_NullRow has been executed on 2000 ** the cursor. In this case it is important to do the full evaluation, 2001 ** as the result of the expression may not be NULL, even if all table 2002 ** column values are. https://www.sqlite.org/src/info/7fa8049685b50b5a 2003 ** 2004 ** Also, do not do this when processing one index an a multi-index 2005 ** OR clause, since the transformation will become invalid once we 2006 ** move forward to the next index. 2007 ** https://sqlite.org/src/info/4e8e4857d32d401f 2008 */ 2009 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ 2010 whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo); 2011 } 2012 2013 /* If a partial index is driving the loop, try to eliminate WHERE clause 2014 ** terms from the query that must be true due to the WHERE clause of 2015 ** the partial index. 2016 ** 2017 ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work 2018 ** for a LEFT JOIN. 2019 */ 2020 if( pIdx->pPartIdxWhere ){ 2021 whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC); 2022 } 2023 }else{ 2024 testcase( pIdx->pPartIdxWhere ); 2025 /* The following assert() is not a requirement, merely an observation: 2026 ** The OR-optimization doesn't work for the right hand table of 2027 ** a LEFT JOIN: */ 2028 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ); 2029 } 2030 2031 /* Record the instruction used to terminate the loop. */ 2032 if( pLoop->wsFlags & WHERE_ONEROW ){ 2033 pLevel->op = OP_Noop; 2034 }else if( bRev ){ 2035 pLevel->op = OP_Prev; 2036 }else{ 2037 pLevel->op = OP_Next; 2038 } 2039 pLevel->p1 = iIdxCur; 2040 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 2041 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 2042 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2043 }else{ 2044 assert( pLevel->p5==0 ); 2045 } 2046 if( omitTable ) pIdx = 0; 2047 }else 2048 2049 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 2050 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 2051 /* Case 5: Two or more separately indexed terms connected by OR 2052 ** 2053 ** Example: 2054 ** 2055 ** CREATE TABLE t1(a,b,c,d); 2056 ** CREATE INDEX i1 ON t1(a); 2057 ** CREATE INDEX i2 ON t1(b); 2058 ** CREATE INDEX i3 ON t1(c); 2059 ** 2060 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 2061 ** 2062 ** In the example, there are three indexed terms connected by OR. 2063 ** The top of the loop looks like this: 2064 ** 2065 ** Null 1 # Zero the rowset in reg 1 2066 ** 2067 ** Then, for each indexed term, the following. The arguments to 2068 ** RowSetTest are such that the rowid of the current row is inserted 2069 ** into the RowSet. If it is already present, control skips the 2070 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 2071 ** 2072 ** sqlite3WhereBegin(<term>) 2073 ** RowSetTest # Insert rowid into rowset 2074 ** Gosub 2 A 2075 ** sqlite3WhereEnd() 2076 ** 2077 ** Following the above, code to terminate the loop. Label A, the target 2078 ** of the Gosub above, jumps to the instruction right after the Goto. 2079 ** 2080 ** Null 1 # Zero the rowset in reg 1 2081 ** Goto B # The loop is finished. 2082 ** 2083 ** A: <loop body> # Return data, whatever. 2084 ** 2085 ** Return 2 # Jump back to the Gosub 2086 ** 2087 ** B: <after the loop> 2088 ** 2089 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 2090 ** use an ephemeral index instead of a RowSet to record the primary 2091 ** keys of the rows we have already seen. 2092 ** 2093 */ 2094 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 2095 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 2096 Index *pCov = 0; /* Potential covering index (or NULL) */ 2097 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 2098 2099 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 2100 int regRowset = 0; /* Register for RowSet object */ 2101 int regRowid = 0; /* Register holding rowid */ 2102 int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */ 2103 int iRetInit; /* Address of regReturn init */ 2104 int untestedTerms = 0; /* Some terms not completely tested */ 2105 int ii; /* Loop counter */ 2106 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 2107 Table *pTab = pTabItem->pTab; 2108 2109 pTerm = pLoop->aLTerm[0]; 2110 assert( pTerm!=0 ); 2111 assert( pTerm->eOperator & WO_OR ); 2112 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 2113 pOrWc = &pTerm->u.pOrInfo->wc; 2114 pLevel->op = OP_Return; 2115 pLevel->p1 = regReturn; 2116 2117 /* Set up a new SrcList in pOrTab containing the table being scanned 2118 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 2119 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 2120 */ 2121 if( pWInfo->nLevel>1 ){ 2122 int nNotReady; /* The number of notReady tables */ 2123 SrcItem *origSrc; /* Original list of tables */ 2124 nNotReady = pWInfo->nLevel - iLevel - 1; 2125 pOrTab = sqlite3StackAllocRaw(db, 2126 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 2127 if( pOrTab==0 ) return notReady; 2128 pOrTab->nAlloc = (u8)(nNotReady + 1); 2129 pOrTab->nSrc = pOrTab->nAlloc; 2130 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 2131 origSrc = pWInfo->pTabList->a; 2132 for(k=1; k<=nNotReady; k++){ 2133 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 2134 } 2135 }else{ 2136 pOrTab = pWInfo->pTabList; 2137 } 2138 2139 /* Initialize the rowset register to contain NULL. An SQL NULL is 2140 ** equivalent to an empty rowset. Or, create an ephemeral index 2141 ** capable of holding primary keys in the case of a WITHOUT ROWID. 2142 ** 2143 ** Also initialize regReturn to contain the address of the instruction 2144 ** immediately following the OP_Return at the bottom of the loop. This 2145 ** is required in a few obscure LEFT JOIN cases where control jumps 2146 ** over the top of the loop into the body of it. In this case the 2147 ** correct response for the end-of-loop code (the OP_Return) is to 2148 ** fall through to the next instruction, just as an OP_Next does if 2149 ** called on an uninitialized cursor. 2150 */ 2151 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2152 if( HasRowid(pTab) ){ 2153 regRowset = ++pParse->nMem; 2154 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 2155 }else{ 2156 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2157 regRowset = pParse->nTab++; 2158 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 2159 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 2160 } 2161 regRowid = ++pParse->nMem; 2162 } 2163 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 2164 2165 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 2166 ** Then for every term xN, evaluate as the subexpression: xN AND z 2167 ** That way, terms in y that are factored into the disjunction will 2168 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 2169 ** 2170 ** Actually, each subexpression is converted to "xN AND w" where w is 2171 ** the "interesting" terms of z - terms that did not originate in the 2172 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 2173 ** indices. 2174 ** 2175 ** This optimization also only applies if the (x1 OR x2 OR ...) term 2176 ** is not contained in the ON clause of a LEFT JOIN. 2177 ** See ticket http://www.sqlite.org/src/info/f2369304e4 2178 */ 2179 if( pWC->nTerm>1 ){ 2180 int iTerm; 2181 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 2182 Expr *pExpr = pWC->a[iTerm].pExpr; 2183 if( &pWC->a[iTerm] == pTerm ) continue; 2184 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); 2185 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); 2186 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue; 2187 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 2188 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); 2189 pExpr = sqlite3ExprDup(db, pExpr, 0); 2190 pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr); 2191 } 2192 if( pAndExpr ){ 2193 /* The extra 0x10000 bit on the opcode is masked off and does not 2194 ** become part of the new Expr.op. However, it does make the 2195 ** op==TK_AND comparison inside of sqlite3PExpr() false, and this 2196 ** prevents sqlite3PExpr() from applying the AND short-circuit 2197 ** optimization, which we do not want here. */ 2198 pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr); 2199 } 2200 } 2201 2202 /* Run a separate WHERE clause for each term of the OR clause. After 2203 ** eliminating duplicates from other WHERE clauses, the action for each 2204 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 2205 */ 2206 ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR")); 2207 for(ii=0; ii<pOrWc->nTerm; ii++){ 2208 WhereTerm *pOrTerm = &pOrWc->a[ii]; 2209 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 2210 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 2211 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 2212 Expr *pDelete; /* Local copy of OR clause term */ 2213 int jmp1 = 0; /* Address of jump operation */ 2214 testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0 2215 && !ExprHasProperty(pOrExpr, EP_FromJoin) 2216 ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */ 2217 pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0); 2218 if( db->mallocFailed ){ 2219 sqlite3ExprDelete(db, pDelete); 2220 continue; 2221 } 2222 if( pAndExpr ){ 2223 pAndExpr->pLeft = pOrExpr; 2224 pOrExpr = pAndExpr; 2225 } 2226 /* Loop through table entries that match term pOrTerm. */ 2227 ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1)); 2228 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 2229 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 2230 WHERE_OR_SUBCLAUSE, iCovCur); 2231 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); 2232 if( pSubWInfo ){ 2233 WhereLoop *pSubLoop; 2234 int addrExplain = sqlite3WhereExplainOneScan( 2235 pParse, pOrTab, &pSubWInfo->a[0], 0 2236 ); 2237 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 2238 2239 /* This is the sub-WHERE clause body. First skip over 2240 ** duplicate rows from prior sub-WHERE clauses, and record the 2241 ** rowid (or PRIMARY KEY) for the current row so that the same 2242 ** row will be skipped in subsequent sub-WHERE clauses. 2243 */ 2244 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2245 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 2246 if( HasRowid(pTab) ){ 2247 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid); 2248 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 2249 regRowid, iSet); 2250 VdbeCoverage(v); 2251 }else{ 2252 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2253 int nPk = pPk->nKeyCol; 2254 int iPk; 2255 int r; 2256 2257 /* Read the PK into an array of temp registers. */ 2258 r = sqlite3GetTempRange(pParse, nPk); 2259 for(iPk=0; iPk<nPk; iPk++){ 2260 int iCol = pPk->aiColumn[iPk]; 2261 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk); 2262 } 2263 2264 /* Check if the temp table already contains this key. If so, 2265 ** the row has already been included in the result set and 2266 ** can be ignored (by jumping past the Gosub below). Otherwise, 2267 ** insert the key into the temp table and proceed with processing 2268 ** the row. 2269 ** 2270 ** Use some of the same optimizations as OP_RowSetTest: If iSet 2271 ** is zero, assume that the key cannot already be present in 2272 ** the temp table. And if iSet is -1, assume that there is no 2273 ** need to insert the key into the temp table, as it will never 2274 ** be tested for. */ 2275 if( iSet ){ 2276 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 2277 VdbeCoverage(v); 2278 } 2279 if( iSet>=0 ){ 2280 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 2281 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid, 2282 r, nPk); 2283 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2284 } 2285 2286 /* Release the array of temp registers */ 2287 sqlite3ReleaseTempRange(pParse, r, nPk); 2288 } 2289 } 2290 2291 /* Invoke the main loop body as a subroutine */ 2292 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 2293 2294 /* Jump here (skipping the main loop body subroutine) if the 2295 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 2296 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 2297 2298 /* The pSubWInfo->untestedTerms flag means that this OR term 2299 ** contained one or more AND term from a notReady table. The 2300 ** terms from the notReady table could not be tested and will 2301 ** need to be tested later. 2302 */ 2303 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 2304 2305 /* If all of the OR-connected terms are optimized using the same 2306 ** index, and the index is opened using the same cursor number 2307 ** by each call to sqlite3WhereBegin() made by this loop, it may 2308 ** be possible to use that index as a covering index. 2309 ** 2310 ** If the call to sqlite3WhereBegin() above resulted in a scan that 2311 ** uses an index, and this is either the first OR-connected term 2312 ** processed or the index is the same as that used by all previous 2313 ** terms, set pCov to the candidate covering index. Otherwise, set 2314 ** pCov to NULL to indicate that no candidate covering index will 2315 ** be available. 2316 */ 2317 pSubLoop = pSubWInfo->a[0].pWLoop; 2318 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2319 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 2320 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 2321 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 2322 ){ 2323 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 2324 pCov = pSubLoop->u.btree.pIndex; 2325 }else{ 2326 pCov = 0; 2327 } 2328 if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){ 2329 pWInfo->bDeferredSeek = 1; 2330 } 2331 2332 /* Finish the loop through table entries that match term pOrTerm. */ 2333 sqlite3WhereEnd(pSubWInfo); 2334 ExplainQueryPlanPop(pParse); 2335 } 2336 sqlite3ExprDelete(db, pDelete); 2337 } 2338 } 2339 ExplainQueryPlanPop(pParse); 2340 assert( pLevel->pWLoop==pLoop ); 2341 assert( (pLoop->wsFlags & WHERE_MULTI_OR)!=0 ); 2342 assert( (pLoop->wsFlags & WHERE_IN_ABLE)==0 ); 2343 pLevel->u.pCoveringIdx = pCov; 2344 if( pCov ) pLevel->iIdxCur = iCovCur; 2345 if( pAndExpr ){ 2346 pAndExpr->pLeft = 0; 2347 sqlite3ExprDelete(db, pAndExpr); 2348 } 2349 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 2350 sqlite3VdbeGoto(v, pLevel->addrBrk); 2351 sqlite3VdbeResolveLabel(v, iLoopBody); 2352 2353 if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); } 2354 if( !untestedTerms ) disableTerm(pLevel, pTerm); 2355 }else 2356 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 2357 2358 { 2359 /* Case 6: There is no usable index. We must do a complete 2360 ** scan of the entire table. 2361 */ 2362 static const u8 aStep[] = { OP_Next, OP_Prev }; 2363 static const u8 aStart[] = { OP_Rewind, OP_Last }; 2364 assert( bRev==0 || bRev==1 ); 2365 if( pTabItem->fg.isRecursive ){ 2366 /* Tables marked isRecursive have only a single row that is stored in 2367 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 2368 pLevel->op = OP_Noop; 2369 }else{ 2370 codeCursorHint(pTabItem, pWInfo, pLevel, 0); 2371 pLevel->op = aStep[bRev]; 2372 pLevel->p1 = iCur; 2373 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt); 2374 VdbeCoverageIf(v, bRev==0); 2375 VdbeCoverageIf(v, bRev!=0); 2376 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2377 } 2378 } 2379 2380 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2381 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 2382 #endif 2383 2384 /* Insert code to test every subexpression that can be completely 2385 ** computed using the current set of tables. 2386 ** 2387 ** This loop may run between one and three times, depending on the 2388 ** constraints to be generated. The value of stack variable iLoop 2389 ** determines the constraints coded by each iteration, as follows: 2390 ** 2391 ** iLoop==1: Code only expressions that are entirely covered by pIdx. 2392 ** iLoop==2: Code remaining expressions that do not contain correlated 2393 ** sub-queries. 2394 ** iLoop==3: Code all remaining expressions. 2395 ** 2396 ** An effort is made to skip unnecessary iterations of the loop. 2397 */ 2398 iLoop = (pIdx ? 1 : 2); 2399 do{ 2400 int iNext = 0; /* Next value for iLoop */ 2401 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2402 Expr *pE; 2403 int skipLikeAddr = 0; 2404 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2405 testcase( pTerm->wtFlags & TERM_CODED ); 2406 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2407 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2408 testcase( pWInfo->untestedTerms==0 2409 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); 2410 pWInfo->untestedTerms = 1; 2411 continue; 2412 } 2413 pE = pTerm->pExpr; 2414 assert( pE!=0 ); 2415 if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){ 2416 continue; 2417 } 2418 2419 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){ 2420 iNext = 2; 2421 continue; 2422 } 2423 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){ 2424 if( iNext==0 ) iNext = 3; 2425 continue; 2426 } 2427 2428 if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){ 2429 /* If the TERM_LIKECOND flag is set, that means that the range search 2430 ** is sufficient to guarantee that the LIKE operator is true, so we 2431 ** can skip the call to the like(A,B) function. But this only works 2432 ** for strings. So do not skip the call to the function on the pass 2433 ** that compares BLOBs. */ 2434 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 2435 continue; 2436 #else 2437 u32 x = pLevel->iLikeRepCntr; 2438 if( x>0 ){ 2439 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1)); 2440 VdbeCoverageIf(v, (x&1)==1); 2441 VdbeCoverageIf(v, (x&1)==0); 2442 } 2443 #endif 2444 } 2445 #ifdef WHERETRACE_ENABLED /* 0xffff */ 2446 if( sqlite3WhereTrace ){ 2447 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d", 2448 pWC->nTerm-j, pTerm, iLoop)); 2449 } 2450 if( sqlite3WhereTrace & 0x800 ){ 2451 sqlite3DebugPrintf("Coding auxiliary constraint:\n"); 2452 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2453 } 2454 #endif 2455 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 2456 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 2457 pTerm->wtFlags |= TERM_CODED; 2458 } 2459 iLoop = iNext; 2460 }while( iLoop>0 ); 2461 2462 /* Insert code to test for implied constraints based on transitivity 2463 ** of the "==" operator. 2464 ** 2465 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 2466 ** and we are coding the t1 loop and the t2 loop has not yet coded, 2467 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 2468 ** the implied "t1.a=123" constraint. 2469 */ 2470 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2471 Expr *pE, sEAlt; 2472 WhereTerm *pAlt; 2473 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2474 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 2475 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 2476 if( pTerm->leftCursor!=iCur ) continue; 2477 if( pTabItem->fg.jointype & JT_LEFT ) continue; 2478 pE = pTerm->pExpr; 2479 #ifdef WHERETRACE_ENABLED /* 0x800 */ 2480 if( sqlite3WhereTrace & 0x800 ){ 2481 sqlite3DebugPrintf("Coding transitive constraint:\n"); 2482 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2483 } 2484 #endif 2485 assert( !ExprHasProperty(pE, EP_FromJoin) ); 2486 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 2487 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 2488 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady, 2489 WO_EQ|WO_IN|WO_IS, 0); 2490 if( pAlt==0 ) continue; 2491 if( pAlt->wtFlags & (TERM_CODED) ) continue; 2492 if( (pAlt->eOperator & WO_IN) 2493 && ExprUseXSelect(pAlt->pExpr) 2494 && (pAlt->pExpr->x.pSelect->pEList->nExpr>1) 2495 ){ 2496 continue; 2497 } 2498 testcase( pAlt->eOperator & WO_EQ ); 2499 testcase( pAlt->eOperator & WO_IS ); 2500 testcase( pAlt->eOperator & WO_IN ); 2501 VdbeModuleComment((v, "begin transitive constraint")); 2502 sEAlt = *pAlt->pExpr; 2503 sEAlt.pLeft = pE->pLeft; 2504 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); 2505 pAlt->wtFlags |= TERM_CODED; 2506 } 2507 2508 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2509 ** at least one row of the right table has matched the left table. 2510 */ 2511 if( pLevel->iLeftJoin ){ 2512 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2513 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2514 VdbeComment((v, "record LEFT JOIN hit")); 2515 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 2516 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2517 testcase( pTerm->wtFlags & TERM_CODED ); 2518 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2519 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2520 assert( pWInfo->untestedTerms ); 2521 continue; 2522 } 2523 assert( pTerm->pExpr ); 2524 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 2525 pTerm->wtFlags |= TERM_CODED; 2526 } 2527 } 2528 2529 #if WHERETRACE_ENABLED /* 0x20800 */ 2530 if( sqlite3WhereTrace & 0x20000 ){ 2531 sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n", 2532 iLevel); 2533 sqlite3WhereClausePrint(pWC); 2534 } 2535 if( sqlite3WhereTrace & 0x800 ){ 2536 sqlite3DebugPrintf("End Coding level %d: notReady=%llx\n", 2537 iLevel, (u64)pLevel->notReady); 2538 } 2539 #endif 2540 return pLevel->notReady; 2541 } 2542