xref: /sqlite-3.40.0/src/wherecode.c (revision 3725af73)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 
25 /*
26 ** Return the name of the i-th column of the pIdx index.
27 */
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29   i = pIdx->aiColumn[i];
30   if( i==XN_EXPR ) return "<expr>";
31   if( i==XN_ROWID ) return "rowid";
32   return pIdx->pTable->aCol[i].zCnName;
33 }
34 
35 /*
36 ** This routine is a helper for explainIndexRange() below
37 **
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time.  This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
42 */
43 static void explainAppendTerm(
44   StrAccum *pStr,             /* The text expression being built */
45   Index *pIdx,                /* Index to read column names from */
46   int nTerm,                  /* Number of terms */
47   int iTerm,                  /* Zero-based index of first term. */
48   int bAnd,                   /* Non-zero to append " AND " */
49   const char *zOp             /* Name of the operator */
50 ){
51   int i;
52 
53   assert( nTerm>=1 );
54   if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
55 
56   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
57   for(i=0; i<nTerm; i++){
58     if( i ) sqlite3_str_append(pStr, ",", 1);
59     sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
60   }
61   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
62 
63   sqlite3_str_append(pStr, zOp, 1);
64 
65   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
66   for(i=0; i<nTerm; i++){
67     if( i ) sqlite3_str_append(pStr, ",", 1);
68     sqlite3_str_append(pStr, "?", 1);
69   }
70   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
71 }
72 
73 /*
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
77 **
78 ** For example, if the query:
79 **
80 **   SELECT * FROM t1 WHERE a=1 AND b>2;
81 **
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
84 **
85 **   "a=? AND b>?"
86 */
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88   Index *pIndex = pLoop->u.btree.pIndex;
89   u16 nEq = pLoop->u.btree.nEq;
90   u16 nSkip = pLoop->nSkip;
91   int i, j;
92 
93   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94   sqlite3_str_append(pStr, " (", 2);
95   for(i=0; i<nEq; i++){
96     const char *z = explainIndexColumnName(pIndex, i);
97     if( i ) sqlite3_str_append(pStr, " AND ", 5);
98     sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
99   }
100 
101   j = i;
102   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104     i = 1;
105   }
106   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
108   }
109   sqlite3_str_append(pStr, ")", 1);
110 }
111 
112 /*
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
117 **
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
120 */
121 int sqlite3WhereExplainOneScan(
122   Parse *pParse,                  /* Parse context */
123   SrcList *pTabList,              /* Table list this loop refers to */
124   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
125   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
126 ){
127   int ret = 0;
128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
129   if( sqlite3ParseToplevel(pParse)->explain==2 )
130 #endif
131   {
132     SrcItem *pItem = &pTabList->a[pLevel->iFrom];
133     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
134     sqlite3 *db = pParse->db;     /* Database handle */
135     int isSearch;                 /* True for a SEARCH. False for SCAN. */
136     WhereLoop *pLoop;             /* The controlling WhereLoop object */
137     u32 flags;                    /* Flags that describe this loop */
138     char *zMsg;                   /* Text to add to EQP output */
139     StrAccum str;                 /* EQP output string */
140     char zBuf[100];               /* Initial space for EQP output string */
141 
142     pLoop = pLevel->pWLoop;
143     flags = pLoop->wsFlags;
144     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
145 
146     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
147             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
148             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
149 
150     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
151     str.printfFlags = SQLITE_PRINTF_INTERNAL;
152     sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem);
153     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
154       const char *zFmt = 0;
155       Index *pIdx;
156 
157       assert( pLoop->u.btree.pIndex!=0 );
158       pIdx = pLoop->u.btree.pIndex;
159       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
160       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
161         if( isSearch ){
162           zFmt = "PRIMARY KEY";
163         }
164       }else if( flags & WHERE_PARTIALIDX ){
165         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
166       }else if( flags & WHERE_AUTO_INDEX ){
167         zFmt = "AUTOMATIC COVERING INDEX";
168       }else if( flags & WHERE_IDX_ONLY ){
169         zFmt = "COVERING INDEX %s";
170       }else{
171         zFmt = "INDEX %s";
172       }
173       if( zFmt ){
174         sqlite3_str_append(&str, " USING ", 7);
175         sqlite3_str_appendf(&str, zFmt, pIdx->zName);
176         explainIndexRange(&str, pLoop);
177       }
178     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
179       char cRangeOp;
180 #if 0  /* Better output, but breaks many tests */
181       const Table *pTab = pItem->pTab;
182       const char *zRowid = pTab->iPKey>=0 ? pTab->aCol[pTab->iPKey].zCnName:
183                               "rowid";
184 #else
185       const char *zRowid = "rowid";
186 #endif
187       sqlite3_str_appendf(&str, " USING INTEGER PRIMARY KEY (%s", zRowid);
188       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
189         cRangeOp = '=';
190       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
191         sqlite3_str_appendf(&str, ">? AND %s", zRowid);
192         cRangeOp = '<';
193       }else if( flags&WHERE_BTM_LIMIT ){
194         cRangeOp = '>';
195       }else{
196         assert( flags&WHERE_TOP_LIMIT);
197         cRangeOp = '<';
198       }
199       sqlite3_str_appendf(&str, "%c?)", cRangeOp);
200     }
201 #ifndef SQLITE_OMIT_VIRTUALTABLE
202     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
203       sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
204                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
205     }
206 #endif
207     if( pItem->fg.jointype & JT_LEFT ){
208       sqlite3_str_appendf(&str, " LEFT-JOIN");
209     }
210 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
211     if( pLoop->nOut>=10 ){
212       sqlite3_str_appendf(&str, " (~%llu rows)",
213              sqlite3LogEstToInt(pLoop->nOut));
214     }else{
215       sqlite3_str_append(&str, " (~1 row)", 9);
216     }
217 #endif
218     zMsg = sqlite3StrAccumFinish(&str);
219     sqlite3ExplainBreakpoint("",zMsg);
220     ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
221                             pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
222   }
223   return ret;
224 }
225 
226 /*
227 ** Add a single OP_Explain opcode that describes a Bloom filter.
228 **
229 ** Or if not processing EXPLAIN QUERY PLAN and not in a SQLITE_DEBUG and/or
230 ** SQLITE_ENABLE_STMT_SCANSTATUS build, then OP_Explain opcodes are not
231 ** required and this routine is a no-op.
232 **
233 ** If an OP_Explain opcode is added to the VM, its address is returned.
234 ** Otherwise, if no OP_Explain is coded, zero is returned.
235 */
236 int sqlite3WhereExplainBloomFilter(
237   const Parse *pParse,               /* Parse context */
238   const WhereInfo *pWInfo,           /* WHERE clause */
239   const WhereLevel *pLevel           /* Bloom filter on this level */
240 ){
241   int ret = 0;
242   SrcItem *pItem = &pWInfo->pTabList->a[pLevel->iFrom];
243   Vdbe *v = pParse->pVdbe;      /* VM being constructed */
244   sqlite3 *db = pParse->db;     /* Database handle */
245   char *zMsg;                   /* Text to add to EQP output */
246   int i;                        /* Loop counter */
247   WhereLoop *pLoop;             /* The where loop */
248   StrAccum str;                 /* EQP output string */
249   char zBuf[100];               /* Initial space for EQP output string */
250 
251   sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
252   str.printfFlags = SQLITE_PRINTF_INTERNAL;
253   sqlite3_str_appendf(&str, "BLOOM FILTER ON %S (", pItem);
254   pLoop = pLevel->pWLoop;
255   if( pLoop->wsFlags & WHERE_IPK ){
256     const Table *pTab = pItem->pTab;
257     if( pTab->iPKey>=0 ){
258       sqlite3_str_appendf(&str, "%s=?", pTab->aCol[pTab->iPKey].zCnName);
259     }else{
260       sqlite3_str_appendf(&str, "rowid=?");
261     }
262   }else{
263     for(i=pLoop->nSkip; i<pLoop->u.btree.nEq; i++){
264       const char *z = explainIndexColumnName(pLoop->u.btree.pIndex, i);
265       if( i>pLoop->nSkip ) sqlite3_str_append(&str, " AND ", 5);
266       sqlite3_str_appendf(&str, "%s=?", z);
267     }
268   }
269   sqlite3_str_append(&str, ")", 1);
270   zMsg = sqlite3StrAccumFinish(&str);
271   ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
272                           pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
273   return ret;
274 }
275 #endif /* SQLITE_OMIT_EXPLAIN */
276 
277 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
278 /*
279 ** Configure the VM passed as the first argument with an
280 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
281 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
282 ** clause that the scan reads data from.
283 **
284 ** If argument addrExplain is not 0, it must be the address of an
285 ** OP_Explain instruction that describes the same loop.
286 */
287 void sqlite3WhereAddScanStatus(
288   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
289   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
290   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
291   int addrExplain                 /* Address of OP_Explain (or 0) */
292 ){
293   const char *zObj = 0;
294   WhereLoop *pLoop = pLvl->pWLoop;
295   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
296     zObj = pLoop->u.btree.pIndex->zName;
297   }else{
298     zObj = pSrclist->a[pLvl->iFrom].zName;
299   }
300   sqlite3VdbeScanStatus(
301       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
302   );
303 }
304 #endif
305 
306 
307 /*
308 ** Disable a term in the WHERE clause.  Except, do not disable the term
309 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
310 ** or USING clause of that join.
311 **
312 ** Consider the term t2.z='ok' in the following queries:
313 **
314 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
315 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
316 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
317 **
318 ** The t2.z='ok' is disabled in the in (2) because it originates
319 ** in the ON clause.  The term is disabled in (3) because it is not part
320 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
321 **
322 ** Disabling a term causes that term to not be tested in the inner loop
323 ** of the join.  Disabling is an optimization.  When terms are satisfied
324 ** by indices, we disable them to prevent redundant tests in the inner
325 ** loop.  We would get the correct results if nothing were ever disabled,
326 ** but joins might run a little slower.  The trick is to disable as much
327 ** as we can without disabling too much.  If we disabled in (1), we'd get
328 ** the wrong answer.  See ticket #813.
329 **
330 ** If all the children of a term are disabled, then that term is also
331 ** automatically disabled.  In this way, terms get disabled if derived
332 ** virtual terms are tested first.  For example:
333 **
334 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
335 **      \___________/     \______/     \_____/
336 **         parent          child1       child2
337 **
338 ** Only the parent term was in the original WHERE clause.  The child1
339 ** and child2 terms were added by the LIKE optimization.  If both of
340 ** the virtual child terms are valid, then testing of the parent can be
341 ** skipped.
342 **
343 ** Usually the parent term is marked as TERM_CODED.  But if the parent
344 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
345 ** The TERM_LIKECOND marking indicates that the term should be coded inside
346 ** a conditional such that is only evaluated on the second pass of a
347 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
348 */
349 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
350   int nLoop = 0;
351   assert( pTerm!=0 );
352   while( (pTerm->wtFlags & TERM_CODED)==0
353       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_OuterON))
354       && (pLevel->notReady & pTerm->prereqAll)==0
355   ){
356     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
357       pTerm->wtFlags |= TERM_LIKECOND;
358     }else{
359       pTerm->wtFlags |= TERM_CODED;
360     }
361 #ifdef WHERETRACE_ENABLED
362     if( sqlite3WhereTrace & 0x20000 ){
363       sqlite3DebugPrintf("DISABLE-");
364       sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a)));
365     }
366 #endif
367     if( pTerm->iParent<0 ) break;
368     pTerm = &pTerm->pWC->a[pTerm->iParent];
369     assert( pTerm!=0 );
370     pTerm->nChild--;
371     if( pTerm->nChild!=0 ) break;
372     nLoop++;
373   }
374 }
375 
376 /*
377 ** Code an OP_Affinity opcode to apply the column affinity string zAff
378 ** to the n registers starting at base.
379 **
380 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
381 ** are no-ops) at the beginning and end of zAff are ignored.  If all entries
382 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
383 **
384 ** This routine makes its own copy of zAff so that the caller is free
385 ** to modify zAff after this routine returns.
386 */
387 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
388   Vdbe *v = pParse->pVdbe;
389   if( zAff==0 ){
390     assert( pParse->db->mallocFailed );
391     return;
392   }
393   assert( v!=0 );
394 
395   /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
396   ** entries at the beginning and end of the affinity string.
397   */
398   assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB );
399   while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){
400     n--;
401     base++;
402     zAff++;
403   }
404   while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){
405     n--;
406   }
407 
408   /* Code the OP_Affinity opcode if there is anything left to do. */
409   if( n>0 ){
410     sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
411   }
412 }
413 
414 /*
415 ** Expression pRight, which is the RHS of a comparison operation, is
416 ** either a vector of n elements or, if n==1, a scalar expression.
417 ** Before the comparison operation, affinity zAff is to be applied
418 ** to the pRight values. This function modifies characters within the
419 ** affinity string to SQLITE_AFF_BLOB if either:
420 **
421 **   * the comparison will be performed with no affinity, or
422 **   * the affinity change in zAff is guaranteed not to change the value.
423 */
424 static void updateRangeAffinityStr(
425   Expr *pRight,                   /* RHS of comparison */
426   int n,                          /* Number of vector elements in comparison */
427   char *zAff                      /* Affinity string to modify */
428 ){
429   int i;
430   for(i=0; i<n; i++){
431     Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
432     if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
433      || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
434     ){
435       zAff[i] = SQLITE_AFF_BLOB;
436     }
437   }
438 }
439 
440 
441 /*
442 ** pX is an expression of the form:  (vector) IN (SELECT ...)
443 ** In other words, it is a vector IN operator with a SELECT clause on the
444 ** LHS.  But not all terms in the vector are indexable and the terms might
445 ** not be in the correct order for indexing.
446 **
447 ** This routine makes a copy of the input pX expression and then adjusts
448 ** the vector on the LHS with corresponding changes to the SELECT so that
449 ** the vector contains only index terms and those terms are in the correct
450 ** order.  The modified IN expression is returned.  The caller is responsible
451 ** for deleting the returned expression.
452 **
453 ** Example:
454 **
455 **    CREATE TABLE t1(a,b,c,d,e,f);
456 **    CREATE INDEX t1x1 ON t1(e,c);
457 **    SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
458 **                           \_______________________________________/
459 **                                     The pX expression
460 **
461 ** Since only columns e and c can be used with the index, in that order,
462 ** the modified IN expression that is returned will be:
463 **
464 **        (e,c) IN (SELECT z,x FROM t2)
465 **
466 ** The reduced pX is different from the original (obviously) and thus is
467 ** only used for indexing, to improve performance.  The original unaltered
468 ** IN expression must also be run on each output row for correctness.
469 */
470 static Expr *removeUnindexableInClauseTerms(
471   Parse *pParse,        /* The parsing context */
472   int iEq,              /* Look at loop terms starting here */
473   WhereLoop *pLoop,     /* The current loop */
474   Expr *pX              /* The IN expression to be reduced */
475 ){
476   sqlite3 *db = pParse->db;
477   Expr *pNew;
478   pNew = sqlite3ExprDup(db, pX, 0);
479   if( db->mallocFailed==0 ){
480     ExprList *pOrigRhs;         /* Original unmodified RHS */
481     ExprList *pOrigLhs;         /* Original unmodified LHS */
482     ExprList *pRhs = 0;         /* New RHS after modifications */
483     ExprList *pLhs = 0;         /* New LHS after mods */
484     int i;                      /* Loop counter */
485     Select *pSelect;            /* Pointer to the SELECT on the RHS */
486 
487     assert( ExprUseXSelect(pNew) );
488     pOrigRhs = pNew->x.pSelect->pEList;
489     assert( pNew->pLeft!=0 );
490     assert( ExprUseXList(pNew->pLeft) );
491     pOrigLhs = pNew->pLeft->x.pList;
492     for(i=iEq; i<pLoop->nLTerm; i++){
493       if( pLoop->aLTerm[i]->pExpr==pX ){
494         int iField;
495         assert( (pLoop->aLTerm[i]->eOperator & (WO_OR|WO_AND))==0 );
496         iField = pLoop->aLTerm[i]->u.x.iField - 1;
497         if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
498         pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
499         pOrigRhs->a[iField].pExpr = 0;
500         assert( pOrigLhs->a[iField].pExpr!=0 );
501         pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
502         pOrigLhs->a[iField].pExpr = 0;
503       }
504     }
505     sqlite3ExprListDelete(db, pOrigRhs);
506     sqlite3ExprListDelete(db, pOrigLhs);
507     pNew->pLeft->x.pList = pLhs;
508     pNew->x.pSelect->pEList = pRhs;
509     if( pLhs && pLhs->nExpr==1 ){
510       /* Take care here not to generate a TK_VECTOR containing only a
511       ** single value. Since the parser never creates such a vector, some
512       ** of the subroutines do not handle this case.  */
513       Expr *p = pLhs->a[0].pExpr;
514       pLhs->a[0].pExpr = 0;
515       sqlite3ExprDelete(db, pNew->pLeft);
516       pNew->pLeft = p;
517     }
518     pSelect = pNew->x.pSelect;
519     if( pSelect->pOrderBy ){
520       /* If the SELECT statement has an ORDER BY clause, zero the
521       ** iOrderByCol variables. These are set to non-zero when an
522       ** ORDER BY term exactly matches one of the terms of the
523       ** result-set. Since the result-set of the SELECT statement may
524       ** have been modified or reordered, these variables are no longer
525       ** set correctly.  Since setting them is just an optimization,
526       ** it's easiest just to zero them here.  */
527       ExprList *pOrderBy = pSelect->pOrderBy;
528       for(i=0; i<pOrderBy->nExpr; i++){
529         pOrderBy->a[i].u.x.iOrderByCol = 0;
530       }
531     }
532 
533 #if 0
534     printf("For indexing, change the IN expr:\n");
535     sqlite3TreeViewExpr(0, pX, 0);
536     printf("Into:\n");
537     sqlite3TreeViewExpr(0, pNew, 0);
538 #endif
539   }
540   return pNew;
541 }
542 
543 
544 /*
545 ** Generate code for a single equality term of the WHERE clause.  An equality
546 ** term can be either X=expr or X IN (...).   pTerm is the term to be
547 ** coded.
548 **
549 ** The current value for the constraint is left in a register, the index
550 ** of which is returned.  An attempt is made store the result in iTarget but
551 ** this is only guaranteed for TK_ISNULL and TK_IN constraints.  If the
552 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
553 ** some other register and it is the caller's responsibility to compensate.
554 **
555 ** For a constraint of the form X=expr, the expression is evaluated in
556 ** straight-line code.  For constraints of the form X IN (...)
557 ** this routine sets up a loop that will iterate over all values of X.
558 */
559 static int codeEqualityTerm(
560   Parse *pParse,      /* The parsing context */
561   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
562   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
563   int iEq,            /* Index of the equality term within this level */
564   int bRev,           /* True for reverse-order IN operations */
565   int iTarget         /* Attempt to leave results in this register */
566 ){
567   Expr *pX = pTerm->pExpr;
568   Vdbe *v = pParse->pVdbe;
569   int iReg;                  /* Register holding results */
570 
571   assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
572   assert( iTarget>0 );
573   if( pX->op==TK_EQ || pX->op==TK_IS ){
574     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
575   }else if( pX->op==TK_ISNULL ){
576     iReg = iTarget;
577     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
578 #ifndef SQLITE_OMIT_SUBQUERY
579   }else{
580     int eType = IN_INDEX_NOOP;
581     int iTab;
582     struct InLoop *pIn;
583     WhereLoop *pLoop = pLevel->pWLoop;
584     int i;
585     int nEq = 0;
586     int *aiMap = 0;
587 
588     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
589       && pLoop->u.btree.pIndex!=0
590       && pLoop->u.btree.pIndex->aSortOrder[iEq]
591     ){
592       testcase( iEq==0 );
593       testcase( bRev );
594       bRev = !bRev;
595     }
596     assert( pX->op==TK_IN );
597     iReg = iTarget;
598 
599     for(i=0; i<iEq; i++){
600       if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
601         disableTerm(pLevel, pTerm);
602         return iTarget;
603       }
604     }
605     for(i=iEq;i<pLoop->nLTerm; i++){
606       assert( pLoop->aLTerm[i]!=0 );
607       if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
608     }
609 
610     iTab = 0;
611     if( !ExprUseXSelect(pX) || pX->x.pSelect->pEList->nExpr==1 ){
612       eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab);
613     }else{
614       Expr *pExpr = pTerm->pExpr;
615       if( pExpr->iTable==0 || !ExprHasProperty(pExpr, EP_Subrtn) ){
616         sqlite3 *db = pParse->db;
617         pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
618         if( !db->mallocFailed ){
619           aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
620           eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap,&iTab);
621           pExpr->iTable = iTab;
622         }
623         sqlite3ExprDelete(db, pX);
624       }else{
625         int n = sqlite3ExprVectorSize(pX->pLeft);
626         aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*MAX(nEq,n));
627         eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab);
628       }
629       pX = pExpr;
630     }
631 
632     if( eType==IN_INDEX_INDEX_DESC ){
633       testcase( bRev );
634       bRev = !bRev;
635     }
636     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
637     VdbeCoverageIf(v, bRev);
638     VdbeCoverageIf(v, !bRev);
639 
640     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
641     pLoop->wsFlags |= WHERE_IN_ABLE;
642     if( pLevel->u.in.nIn==0 ){
643       pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
644     }
645     if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){
646       pLoop->wsFlags |= WHERE_IN_EARLYOUT;
647     }
648 
649     i = pLevel->u.in.nIn;
650     pLevel->u.in.nIn += nEq;
651     pLevel->u.in.aInLoop =
652        sqlite3WhereRealloc(pTerm->pWC->pWInfo,
653                            pLevel->u.in.aInLoop,
654                            sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
655     pIn = pLevel->u.in.aInLoop;
656     if( pIn ){
657       int iMap = 0;               /* Index in aiMap[] */
658       pIn += i;
659       for(i=iEq;i<pLoop->nLTerm; i++){
660         if( pLoop->aLTerm[i]->pExpr==pX ){
661           int iOut = iReg + i - iEq;
662           if( eType==IN_INDEX_ROWID ){
663             pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
664           }else{
665             int iCol = aiMap ? aiMap[iMap++] : 0;
666             pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
667           }
668           sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
669           if( i==iEq ){
670             pIn->iCur = iTab;
671             pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
672             if( iEq>0 ){
673               pIn->iBase = iReg - i;
674               pIn->nPrefix = i;
675             }else{
676               pIn->nPrefix = 0;
677             }
678           }else{
679             pIn->eEndLoopOp = OP_Noop;
680           }
681           pIn++;
682         }
683       }
684       testcase( iEq>0
685                 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
686                 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 );
687       if( iEq>0
688        && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0
689       ){
690         sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq);
691       }
692     }else{
693       pLevel->u.in.nIn = 0;
694     }
695     sqlite3DbFree(pParse->db, aiMap);
696 #endif
697   }
698 
699   /* As an optimization, try to disable the WHERE clause term that is
700   ** driving the index as it will always be true.  The correct answer is
701   ** obtained regardless, but we might get the answer with fewer CPU cycles
702   ** by omitting the term.
703   **
704   ** But do not disable the term unless we are certain that the term is
705   ** not a transitive constraint.  For an example of where that does not
706   ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04)
707   */
708   if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0
709    || (pTerm->eOperator & WO_EQUIV)==0
710   ){
711     disableTerm(pLevel, pTerm);
712   }
713 
714   return iReg;
715 }
716 
717 /*
718 ** Generate code that will evaluate all == and IN constraints for an
719 ** index scan.
720 **
721 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
722 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
723 ** The index has as many as three equality constraints, but in this
724 ** example, the third "c" value is an inequality.  So only two
725 ** constraints are coded.  This routine will generate code to evaluate
726 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
727 ** in consecutive registers and the index of the first register is returned.
728 **
729 ** In the example above nEq==2.  But this subroutine works for any value
730 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
731 ** The only thing it does is allocate the pLevel->iMem memory cell and
732 ** compute the affinity string.
733 **
734 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
735 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
736 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
737 ** occurs after the nEq quality constraints.
738 **
739 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
740 ** the index of the first memory cell in that range. The code that
741 ** calls this routine will use that memory range to store keys for
742 ** start and termination conditions of the loop.
743 ** key value of the loop.  If one or more IN operators appear, then
744 ** this routine allocates an additional nEq memory cells for internal
745 ** use.
746 **
747 ** Before returning, *pzAff is set to point to a buffer containing a
748 ** copy of the column affinity string of the index allocated using
749 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
750 ** with equality constraints that use BLOB or NONE affinity are set to
751 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
752 **
753 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
754 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
755 **
756 ** In the example above, the index on t1(a) has TEXT affinity. But since
757 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
758 ** no conversion should be attempted before using a t2.b value as part of
759 ** a key to search the index. Hence the first byte in the returned affinity
760 ** string in this example would be set to SQLITE_AFF_BLOB.
761 */
762 static int codeAllEqualityTerms(
763   Parse *pParse,        /* Parsing context */
764   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
765   int bRev,             /* Reverse the order of IN operators */
766   int nExtraReg,        /* Number of extra registers to allocate */
767   char **pzAff          /* OUT: Set to point to affinity string */
768 ){
769   u16 nEq;                      /* The number of == or IN constraints to code */
770   u16 nSkip;                    /* Number of left-most columns to skip */
771   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
772   Index *pIdx;                  /* The index being used for this loop */
773   WhereTerm *pTerm;             /* A single constraint term */
774   WhereLoop *pLoop;             /* The WhereLoop object */
775   int j;                        /* Loop counter */
776   int regBase;                  /* Base register */
777   int nReg;                     /* Number of registers to allocate */
778   char *zAff;                   /* Affinity string to return */
779 
780   /* This module is only called on query plans that use an index. */
781   pLoop = pLevel->pWLoop;
782   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
783   nEq = pLoop->u.btree.nEq;
784   nSkip = pLoop->nSkip;
785   pIdx = pLoop->u.btree.pIndex;
786   assert( pIdx!=0 );
787 
788   /* Figure out how many memory cells we will need then allocate them.
789   */
790   regBase = pParse->nMem + 1;
791   nReg = pLoop->u.btree.nEq + nExtraReg;
792   pParse->nMem += nReg;
793 
794   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
795   assert( zAff!=0 || pParse->db->mallocFailed );
796 
797   if( nSkip ){
798     int iIdxCur = pLevel->iIdxCur;
799     sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1);
800     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
801     VdbeCoverageIf(v, bRev==0);
802     VdbeCoverageIf(v, bRev!=0);
803     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
804     j = sqlite3VdbeAddOp0(v, OP_Goto);
805     assert( pLevel->addrSkip==0 );
806     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
807                             iIdxCur, 0, regBase, nSkip);
808     VdbeCoverageIf(v, bRev==0);
809     VdbeCoverageIf(v, bRev!=0);
810     sqlite3VdbeJumpHere(v, j);
811     for(j=0; j<nSkip; j++){
812       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
813       testcase( pIdx->aiColumn[j]==XN_EXPR );
814       VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
815     }
816   }
817 
818   /* Evaluate the equality constraints
819   */
820   assert( zAff==0 || (int)strlen(zAff)>=nEq );
821   for(j=nSkip; j<nEq; j++){
822     int r1;
823     pTerm = pLoop->aLTerm[j];
824     assert( pTerm!=0 );
825     /* The following testcase is true for indices with redundant columns.
826     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
827     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
828     testcase( pTerm->wtFlags & TERM_VIRTUAL );
829     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
830     if( r1!=regBase+j ){
831       if( nReg==1 ){
832         sqlite3ReleaseTempReg(pParse, regBase);
833         regBase = r1;
834       }else{
835         sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j);
836       }
837     }
838   }
839   for(j=nSkip; j<nEq; j++){
840     pTerm = pLoop->aLTerm[j];
841     if( pTerm->eOperator & WO_IN ){
842       if( pTerm->pExpr->flags & EP_xIsSelect ){
843         /* No affinity ever needs to be (or should be) applied to a value
844         ** from the RHS of an "? IN (SELECT ...)" expression. The
845         ** sqlite3FindInIndex() routine has already ensured that the
846         ** affinity of the comparison has been applied to the value.  */
847         if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
848       }
849     }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
850       Expr *pRight = pTerm->pExpr->pRight;
851       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
852         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
853         VdbeCoverage(v);
854       }
855       if( pParse->nErr==0 ){
856         assert( pParse->db->mallocFailed==0 );
857         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
858           zAff[j] = SQLITE_AFF_BLOB;
859         }
860         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
861           zAff[j] = SQLITE_AFF_BLOB;
862         }
863       }
864     }
865   }
866   *pzAff = zAff;
867   return regBase;
868 }
869 
870 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
871 /*
872 ** If the most recently coded instruction is a constant range constraint
873 ** (a string literal) that originated from the LIKE optimization, then
874 ** set P3 and P5 on the OP_String opcode so that the string will be cast
875 ** to a BLOB at appropriate times.
876 **
877 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
878 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
879 ** scan loop run twice, once for strings and a second time for BLOBs.
880 ** The OP_String opcodes on the second pass convert the upper and lower
881 ** bound string constants to blobs.  This routine makes the necessary changes
882 ** to the OP_String opcodes for that to happen.
883 **
884 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
885 ** only the one pass through the string space is required, so this routine
886 ** becomes a no-op.
887 */
888 static void whereLikeOptimizationStringFixup(
889   Vdbe *v,                /* prepared statement under construction */
890   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
891   WhereTerm *pTerm        /* The upper or lower bound just coded */
892 ){
893   if( pTerm->wtFlags & TERM_LIKEOPT ){
894     VdbeOp *pOp;
895     assert( pLevel->iLikeRepCntr>0 );
896     pOp = sqlite3VdbeGetLastOp(v);
897     assert( pOp!=0 );
898     assert( pOp->opcode==OP_String8
899             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
900     pOp->p3 = (int)(pLevel->iLikeRepCntr>>1);  /* Register holding counter */
901     pOp->p5 = (u8)(pLevel->iLikeRepCntr&1);    /* ASC or DESC */
902   }
903 }
904 #else
905 # define whereLikeOptimizationStringFixup(A,B,C)
906 #endif
907 
908 #ifdef SQLITE_ENABLE_CURSOR_HINTS
909 /*
910 ** Information is passed from codeCursorHint() down to individual nodes of
911 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
912 ** structure.
913 */
914 struct CCurHint {
915   int iTabCur;    /* Cursor for the main table */
916   int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
917   Index *pIdx;    /* The index used to access the table */
918 };
919 
920 /*
921 ** This function is called for every node of an expression that is a candidate
922 ** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
923 ** the table CCurHint.iTabCur, verify that the same column can be
924 ** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
925 */
926 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
927   struct CCurHint *pHint = pWalker->u.pCCurHint;
928   assert( pHint->pIdx!=0 );
929   if( pExpr->op==TK_COLUMN
930    && pExpr->iTable==pHint->iTabCur
931    && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0
932   ){
933     pWalker->eCode = 1;
934   }
935   return WRC_Continue;
936 }
937 
938 /*
939 ** Test whether or not expression pExpr, which was part of a WHERE clause,
940 ** should be included in the cursor-hint for a table that is on the rhs
941 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
942 ** expression is not suitable.
943 **
944 ** An expression is unsuitable if it might evaluate to non NULL even if
945 ** a TK_COLUMN node that does affect the value of the expression is set
946 ** to NULL. For example:
947 **
948 **   col IS NULL
949 **   col IS NOT NULL
950 **   coalesce(col, 1)
951 **   CASE WHEN col THEN 0 ELSE 1 END
952 */
953 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
954   if( pExpr->op==TK_IS
955    || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
956    || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
957   ){
958     pWalker->eCode = 1;
959   }else if( pExpr->op==TK_FUNCTION ){
960     int d1;
961     char d2[4];
962     if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
963       pWalker->eCode = 1;
964     }
965   }
966 
967   return WRC_Continue;
968 }
969 
970 
971 /*
972 ** This function is called on every node of an expression tree used as an
973 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
974 ** that accesses any table other than the one identified by
975 ** CCurHint.iTabCur, then do the following:
976 **
977 **   1) allocate a register and code an OP_Column instruction to read
978 **      the specified column into the new register, and
979 **
980 **   2) transform the expression node to a TK_REGISTER node that reads
981 **      from the newly populated register.
982 **
983 ** Also, if the node is a TK_COLUMN that does access the table idenified
984 ** by pCCurHint.iTabCur, and an index is being used (which we will
985 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
986 ** an access of the index rather than the original table.
987 */
988 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
989   int rc = WRC_Continue;
990   struct CCurHint *pHint = pWalker->u.pCCurHint;
991   if( pExpr->op==TK_COLUMN ){
992     if( pExpr->iTable!=pHint->iTabCur ){
993       int reg = ++pWalker->pParse->nMem;   /* Register for column value */
994       sqlite3ExprCode(pWalker->pParse, pExpr, reg);
995       pExpr->op = TK_REGISTER;
996       pExpr->iTable = reg;
997     }else if( pHint->pIdx!=0 ){
998       pExpr->iTable = pHint->iIdxCur;
999       pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn);
1000       assert( pExpr->iColumn>=0 );
1001     }
1002   }else if( pExpr->op==TK_AGG_FUNCTION ){
1003     /* An aggregate function in the WHERE clause of a query means this must
1004     ** be a correlated sub-query, and expression pExpr is an aggregate from
1005     ** the parent context. Do not walk the function arguments in this case.
1006     **
1007     ** todo: It should be possible to replace this node with a TK_REGISTER
1008     ** expression, as the result of the expression must be stored in a
1009     ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
1010     rc = WRC_Prune;
1011   }
1012   return rc;
1013 }
1014 
1015 /*
1016 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
1017 */
1018 static void codeCursorHint(
1019   SrcItem *pTabItem,  /* FROM clause item */
1020   WhereInfo *pWInfo,    /* The where clause */
1021   WhereLevel *pLevel,   /* Which loop to provide hints for */
1022   WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
1023 ){
1024   Parse *pParse = pWInfo->pParse;
1025   sqlite3 *db = pParse->db;
1026   Vdbe *v = pParse->pVdbe;
1027   Expr *pExpr = 0;
1028   WhereLoop *pLoop = pLevel->pWLoop;
1029   int iCur;
1030   WhereClause *pWC;
1031   WhereTerm *pTerm;
1032   int i, j;
1033   struct CCurHint sHint;
1034   Walker sWalker;
1035 
1036   if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
1037   iCur = pLevel->iTabCur;
1038   assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
1039   sHint.iTabCur = iCur;
1040   sHint.iIdxCur = pLevel->iIdxCur;
1041   sHint.pIdx = pLoop->u.btree.pIndex;
1042   memset(&sWalker, 0, sizeof(sWalker));
1043   sWalker.pParse = pParse;
1044   sWalker.u.pCCurHint = &sHint;
1045   pWC = &pWInfo->sWC;
1046   for(i=0; i<pWC->nBase; i++){
1047     pTerm = &pWC->a[i];
1048     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1049     if( pTerm->prereqAll & pLevel->notReady ) continue;
1050 
1051     /* Any terms specified as part of the ON(...) clause for any LEFT
1052     ** JOIN for which the current table is not the rhs are omitted
1053     ** from the cursor-hint.
1054     **
1055     ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
1056     ** that were specified as part of the WHERE clause must be excluded.
1057     ** This is to address the following:
1058     **
1059     **   SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
1060     **
1061     ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
1062     ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
1063     ** pushed down to the cursor, this row is filtered out, causing
1064     ** SQLite to synthesize a row of NULL values. Which does match the
1065     ** WHERE clause, and so the query returns a row. Which is incorrect.
1066     **
1067     ** For the same reason, WHERE terms such as:
1068     **
1069     **   WHERE 1 = (t2.c IS NULL)
1070     **
1071     ** are also excluded. See codeCursorHintIsOrFunction() for details.
1072     */
1073     if( pTabItem->fg.jointype & JT_LEFT ){
1074       Expr *pExpr = pTerm->pExpr;
1075       if( !ExprHasProperty(pExpr, EP_OuterON)
1076        || pExpr->w.iJoin!=pTabItem->iCursor
1077       ){
1078         sWalker.eCode = 0;
1079         sWalker.xExprCallback = codeCursorHintIsOrFunction;
1080         sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1081         if( sWalker.eCode ) continue;
1082       }
1083     }else{
1084       if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) continue;
1085     }
1086 
1087     /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
1088     ** the cursor.  These terms are not needed as hints for a pure range
1089     ** scan (that has no == terms) so omit them. */
1090     if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
1091       for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
1092       if( j<pLoop->nLTerm ) continue;
1093     }
1094 
1095     /* No subqueries or non-deterministic functions allowed */
1096     if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
1097 
1098     /* For an index scan, make sure referenced columns are actually in
1099     ** the index. */
1100     if( sHint.pIdx!=0 ){
1101       sWalker.eCode = 0;
1102       sWalker.xExprCallback = codeCursorHintCheckExpr;
1103       sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1104       if( sWalker.eCode ) continue;
1105     }
1106 
1107     /* If we survive all prior tests, that means this term is worth hinting */
1108     pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
1109   }
1110   if( pExpr!=0 ){
1111     sWalker.xExprCallback = codeCursorHintFixExpr;
1112     sqlite3WalkExpr(&sWalker, pExpr);
1113     sqlite3VdbeAddOp4(v, OP_CursorHint,
1114                       (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
1115                       (const char*)pExpr, P4_EXPR);
1116   }
1117 }
1118 #else
1119 # define codeCursorHint(A,B,C,D)  /* No-op */
1120 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1121 
1122 /*
1123 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1124 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1125 ** function generates code to do a deferred seek of cursor iCur to the
1126 ** rowid stored in register iRowid.
1127 **
1128 ** Normally, this is just:
1129 **
1130 **   OP_DeferredSeek $iCur $iRowid
1131 **
1132 ** Which causes a seek on $iCur to the row with rowid $iRowid.
1133 **
1134 ** However, if the scan currently being coded is a branch of an OR-loop and
1135 ** the statement currently being coded is a SELECT, then additional information
1136 ** is added that might allow OP_Column to omit the seek and instead do its
1137 ** lookup on the index, thus avoiding an expensive seek operation.  To
1138 ** enable this optimization, the P3 of OP_DeferredSeek is set to iIdxCur
1139 ** and P4 is set to an array of integers containing one entry for each column
1140 ** in the table.  For each table column, if the column is the i'th
1141 ** column of the index, then the corresponding array entry is set to (i+1).
1142 ** If the column does not appear in the index at all, the array entry is set
1143 ** to 0.  The OP_Column opcode can check this array to see if the column it
1144 ** wants is in the index and if it is, it will substitute the index cursor
1145 ** and column number and continue with those new values, rather than seeking
1146 ** the table cursor.
1147 */
1148 static void codeDeferredSeek(
1149   WhereInfo *pWInfo,              /* Where clause context */
1150   Index *pIdx,                    /* Index scan is using */
1151   int iCur,                       /* Cursor for IPK b-tree */
1152   int iIdxCur                     /* Index cursor */
1153 ){
1154   Parse *pParse = pWInfo->pParse; /* Parse context */
1155   Vdbe *v = pParse->pVdbe;        /* Vdbe to generate code within */
1156 
1157   assert( iIdxCur>0 );
1158   assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1159 
1160   pWInfo->bDeferredSeek = 1;
1161   sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1162   if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))
1163    && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1164   ){
1165     int i;
1166     Table *pTab = pIdx->pTable;
1167     u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1));
1168     if( ai ){
1169       ai[0] = pTab->nCol;
1170       for(i=0; i<pIdx->nColumn-1; i++){
1171         int x1, x2;
1172         assert( pIdx->aiColumn[i]<pTab->nCol );
1173         x1 = pIdx->aiColumn[i];
1174         x2 = sqlite3TableColumnToStorage(pTab, x1);
1175         testcase( x1!=x2 );
1176         if( x1>=0 ) ai[x2+1] = i+1;
1177       }
1178       sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1179     }
1180   }
1181 }
1182 
1183 /*
1184 ** If the expression passed as the second argument is a vector, generate
1185 ** code to write the first nReg elements of the vector into an array
1186 ** of registers starting with iReg.
1187 **
1188 ** If the expression is not a vector, then nReg must be passed 1. In
1189 ** this case, generate code to evaluate the expression and leave the
1190 ** result in register iReg.
1191 */
1192 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1193   assert( nReg>0 );
1194   if( p && sqlite3ExprIsVector(p) ){
1195 #ifndef SQLITE_OMIT_SUBQUERY
1196     if( ExprUseXSelect(p) ){
1197       Vdbe *v = pParse->pVdbe;
1198       int iSelect;
1199       assert( p->op==TK_SELECT );
1200       iSelect = sqlite3CodeSubselect(pParse, p);
1201       sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1202     }else
1203 #endif
1204     {
1205       int i;
1206       const ExprList *pList;
1207       assert( ExprUseXList(p) );
1208       pList = p->x.pList;
1209       assert( nReg<=pList->nExpr );
1210       for(i=0; i<nReg; i++){
1211         sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1212       }
1213     }
1214   }else{
1215     assert( nReg==1 || pParse->nErr );
1216     sqlite3ExprCode(pParse, p, iReg);
1217   }
1218 }
1219 
1220 /*
1221 ** The pTruth expression is always true because it is the WHERE clause
1222 ** a partial index that is driving a query loop.  Look through all of the
1223 ** WHERE clause terms on the query, and if any of those terms must be
1224 ** true because pTruth is true, then mark those WHERE clause terms as
1225 ** coded.
1226 */
1227 static void whereApplyPartialIndexConstraints(
1228   Expr *pTruth,
1229   int iTabCur,
1230   WhereClause *pWC
1231 ){
1232   int i;
1233   WhereTerm *pTerm;
1234   while( pTruth->op==TK_AND ){
1235     whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC);
1236     pTruth = pTruth->pRight;
1237   }
1238   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1239     Expr *pExpr;
1240     if( pTerm->wtFlags & TERM_CODED ) continue;
1241     pExpr = pTerm->pExpr;
1242     if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){
1243       pTerm->wtFlags |= TERM_CODED;
1244     }
1245   }
1246 }
1247 
1248 /*
1249 ** This routine is called right after An OP_Filter has been generated and
1250 ** before the corresponding index search has been performed.  This routine
1251 ** checks to see if there are additional Bloom filters in inner loops that
1252 ** can be checked prior to doing the index lookup.  If there are available
1253 ** inner-loop Bloom filters, then evaluate those filters now, before the
1254 ** index lookup.  The idea is that a Bloom filter check is way faster than
1255 ** an index lookup, and the Bloom filter might return false, meaning that
1256 ** the index lookup can be skipped.
1257 **
1258 ** We know that an inner loop uses a Bloom filter because it has the
1259 ** WhereLevel.regFilter set.  If an inner-loop Bloom filter is checked,
1260 ** then clear the WhereLevel.regFilter value to prevent the Bloom filter
1261 ** from being checked a second time when the inner loop is evaluated.
1262 */
1263 static SQLITE_NOINLINE void filterPullDown(
1264   Parse *pParse,       /* Parsing context */
1265   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1266   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1267   int addrNxt,         /* Jump here to bypass inner loops */
1268   Bitmask notReady     /* Loops that are not ready */
1269 ){
1270   while( ++iLevel < pWInfo->nLevel ){
1271     WhereLevel *pLevel = &pWInfo->a[iLevel];
1272     WhereLoop *pLoop = pLevel->pWLoop;
1273     if( pLevel->regFilter==0 ) continue;
1274     if( pLevel->pWLoop->nSkip ) continue;
1275     /*         ,--- Because sqlite3ConstructBloomFilter() has will not have set
1276     **  vvvvv--'    pLevel->regFilter if this were true. */
1277     if( NEVER(pLoop->prereq & notReady) ) continue;
1278     assert( pLevel->addrBrk==0 );
1279     pLevel->addrBrk = addrNxt;
1280     if( pLoop->wsFlags & WHERE_IPK ){
1281       WhereTerm *pTerm = pLoop->aLTerm[0];
1282       int regRowid;
1283       assert( pTerm!=0 );
1284       assert( pTerm->pExpr!=0 );
1285       testcase( pTerm->wtFlags & TERM_VIRTUAL );
1286       regRowid = sqlite3GetTempReg(pParse);
1287       regRowid = codeEqualityTerm(pParse, pTerm, pLevel, 0, 0, regRowid);
1288       sqlite3VdbeAddOp2(pParse->pVdbe, OP_MustBeInt, regRowid, addrNxt);
1289       VdbeCoverage(pParse->pVdbe);
1290       sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter,
1291                            addrNxt, regRowid, 1);
1292       VdbeCoverage(pParse->pVdbe);
1293     }else{
1294       u16 nEq = pLoop->u.btree.nEq;
1295       int r1;
1296       char *zStartAff;
1297 
1298       assert( pLoop->wsFlags & WHERE_INDEXED );
1299       assert( (pLoop->wsFlags & WHERE_COLUMN_IN)==0 );
1300       r1 = codeAllEqualityTerms(pParse,pLevel,0,0,&zStartAff);
1301       codeApplyAffinity(pParse, r1, nEq, zStartAff);
1302       sqlite3DbFree(pParse->db, zStartAff);
1303       sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter,
1304                            addrNxt, r1, nEq);
1305       VdbeCoverage(pParse->pVdbe);
1306     }
1307     pLevel->regFilter = 0;
1308     pLevel->addrBrk = 0;
1309   }
1310 }
1311 
1312 /*
1313 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1314 ** implementation described by pWInfo.
1315 */
1316 Bitmask sqlite3WhereCodeOneLoopStart(
1317   Parse *pParse,       /* Parsing context */
1318   Vdbe *v,             /* Prepared statement under construction */
1319   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1320   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1321   WhereLevel *pLevel,  /* The current level pointer */
1322   Bitmask notReady     /* Which tables are currently available */
1323 ){
1324   int j, k;            /* Loop counters */
1325   int iCur;            /* The VDBE cursor for the table */
1326   int addrNxt;         /* Where to jump to continue with the next IN case */
1327   int bRev;            /* True if we need to scan in reverse order */
1328   WhereLoop *pLoop;    /* The WhereLoop object being coded */
1329   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
1330   WhereTerm *pTerm;               /* A WHERE clause term */
1331   sqlite3 *db;                    /* Database connection */
1332   SrcItem *pTabItem;              /* FROM clause term being coded */
1333   int addrBrk;                    /* Jump here to break out of the loop */
1334   int addrHalt;                   /* addrBrk for the outermost loop */
1335   int addrCont;                   /* Jump here to continue with next cycle */
1336   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
1337   int iReleaseReg = 0;      /* Temp register to free before returning */
1338   Index *pIdx = 0;          /* Index used by loop (if any) */
1339   int iLoop;                /* Iteration of constraint generator loop */
1340 
1341   pWC = &pWInfo->sWC;
1342   db = pParse->db;
1343   pLoop = pLevel->pWLoop;
1344   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1345   iCur = pTabItem->iCursor;
1346   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1347   bRev = (pWInfo->revMask>>iLevel)&1;
1348   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1349 #if WHERETRACE_ENABLED /* 0x20800 */
1350   if( sqlite3WhereTrace & 0x800 ){
1351     sqlite3DebugPrintf("Coding level %d of %d:  notReady=%llx  iFrom=%d\n",
1352        iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom);
1353     sqlite3WhereLoopPrint(pLoop, pWC);
1354   }
1355   if( sqlite3WhereTrace & 0x20000 ){
1356     if( iLevel==0 ){
1357       sqlite3DebugPrintf("WHERE clause being coded:\n");
1358       sqlite3TreeViewExpr(0, pWInfo->pWhere, 0);
1359     }
1360     sqlite3DebugPrintf("All WHERE-clause terms before coding:\n");
1361     sqlite3WhereClausePrint(pWC);
1362   }
1363 #endif
1364 
1365   /* Create labels for the "break" and "continue" instructions
1366   ** for the current loop.  Jump to addrBrk to break out of a loop.
1367   ** Jump to cont to go immediately to the next iteration of the
1368   ** loop.
1369   **
1370   ** When there is an IN operator, we also have a "addrNxt" label that
1371   ** means to continue with the next IN value combination.  When
1372   ** there are no IN operators in the constraints, the "addrNxt" label
1373   ** is the same as "addrBrk".
1374   */
1375   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
1376   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse);
1377 
1378   /* If this is the right table of a LEFT OUTER JOIN, allocate and
1379   ** initialize a memory cell that records if this table matches any
1380   ** row of the left table of the join.
1381   */
1382   assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))
1383        || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
1384   );
1385   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1386     pLevel->iLeftJoin = ++pParse->nMem;
1387     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1388     VdbeComment((v, "init LEFT JOIN no-match flag"));
1389   }
1390 
1391   /* Compute a safe address to jump to if we discover that the table for
1392   ** this loop is empty and can never contribute content. */
1393   for(j=iLevel; j>0; j--){
1394     if( pWInfo->a[j].iLeftJoin ) break;
1395     if( pWInfo->a[j].pRJ ) break;
1396   }
1397   addrHalt = pWInfo->a[j].addrBrk;
1398 
1399   /* Special case of a FROM clause subquery implemented as a co-routine */
1400   if( pTabItem->fg.viaCoroutine ){
1401     int regYield = pTabItem->regReturn;
1402     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1403     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1404     VdbeCoverage(v);
1405     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
1406     pLevel->op = OP_Goto;
1407   }else
1408 
1409 #ifndef SQLITE_OMIT_VIRTUALTABLE
1410   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1411     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
1412     **          to access the data.
1413     */
1414     int iReg;   /* P3 Value for OP_VFilter */
1415     int addrNotFound;
1416     int nConstraint = pLoop->nLTerm;
1417 
1418     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1419     addrNotFound = pLevel->addrBrk;
1420     for(j=0; j<nConstraint; j++){
1421       int iTarget = iReg+j+2;
1422       pTerm = pLoop->aLTerm[j];
1423       if( NEVER(pTerm==0) ) continue;
1424       if( pTerm->eOperator & WO_IN ){
1425         if( SMASKBIT32(j) & pLoop->u.vtab.mHandleIn ){
1426           int iTab = pParse->nTab++;
1427           int iCache = ++pParse->nMem;
1428           sqlite3CodeRhsOfIN(pParse, pTerm->pExpr, iTab);
1429           sqlite3VdbeAddOp3(v, OP_VInitIn, iTab, iTarget, iCache);
1430         }else{
1431           codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1432           addrNotFound = pLevel->addrNxt;
1433         }
1434       }else{
1435         Expr *pRight = pTerm->pExpr->pRight;
1436         codeExprOrVector(pParse, pRight, iTarget, 1);
1437         if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET
1438          && pLoop->u.vtab.bOmitOffset
1439         ){
1440           assert( pTerm->eOperator==WO_AUX );
1441           assert( pWInfo->pLimit!=0 );
1442           assert( pWInfo->pLimit->iOffset>0 );
1443           sqlite3VdbeAddOp2(v, OP_Integer, 0, pWInfo->pLimit->iOffset);
1444           VdbeComment((v,"Zero OFFSET counter"));
1445         }
1446       }
1447     }
1448     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1449     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1450     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1451                       pLoop->u.vtab.idxStr,
1452                       pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1453     VdbeCoverage(v);
1454     pLoop->u.vtab.needFree = 0;
1455     /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed
1456     ** the u.vtab.idxStr.  NULL it out to prevent a use-after-free */
1457     if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0;
1458     pLevel->p1 = iCur;
1459     pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1460     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1461     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
1462 
1463     for(j=0; j<nConstraint; j++){
1464       pTerm = pLoop->aLTerm[j];
1465       if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1466         disableTerm(pLevel, pTerm);
1467         continue;
1468       }
1469       if( (pTerm->eOperator & WO_IN)!=0
1470        && (SMASKBIT32(j) & pLoop->u.vtab.mHandleIn)==0
1471        && !db->mallocFailed
1472       ){
1473         Expr *pCompare;  /* The comparison operator */
1474         Expr *pRight;    /* RHS of the comparison */
1475         VdbeOp *pOp;     /* Opcode to access the value of the IN constraint */
1476         int iIn;         /* IN loop corresponding to the j-th constraint */
1477 
1478         /* Reload the constraint value into reg[iReg+j+2].  The same value
1479         ** was loaded into the same register prior to the OP_VFilter, but
1480         ** the xFilter implementation might have changed the datatype or
1481         ** encoding of the value in the register, so it *must* be reloaded.
1482         */
1483         for(iIn=0; ALWAYS(iIn<pLevel->u.in.nIn); iIn++){
1484           pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop);
1485           if( (pOp->opcode==OP_Column && pOp->p3==iReg+j+2)
1486            || (pOp->opcode==OP_Rowid && pOp->p2==iReg+j+2)
1487           ){
1488             testcase( pOp->opcode==OP_Rowid );
1489             sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1490             break;
1491           }
1492         }
1493 
1494         /* Generate code that will continue to the next row if
1495         ** the IN constraint is not satisfied
1496         */
1497         pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1498         if( !db->mallocFailed ){
1499           int iFld = pTerm->u.x.iField;
1500           Expr *pLeft = pTerm->pExpr->pLeft;
1501           assert( pLeft!=0 );
1502           if( iFld>0 ){
1503             assert( pLeft->op==TK_VECTOR );
1504             assert( ExprUseXList(pLeft) );
1505             assert( iFld<=pLeft->x.pList->nExpr );
1506             pCompare->pLeft = pLeft->x.pList->a[iFld-1].pExpr;
1507           }else{
1508             pCompare->pLeft = pLeft;
1509           }
1510           pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1511           if( pRight ){
1512             pRight->iTable = iReg+j+2;
1513             sqlite3ExprIfFalse(
1514                 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL
1515             );
1516           }
1517           pCompare->pLeft = 0;
1518         }
1519         sqlite3ExprDelete(db, pCompare);
1520       }
1521     }
1522 
1523     /* These registers need to be preserved in case there is an IN operator
1524     ** loop.  So we could deallocate the registers here (and potentially
1525     ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0.  But it seems
1526     ** simpler and safer to simply not reuse the registers.
1527     **
1528     **    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1529     */
1530   }else
1531 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1532 
1533   if( (pLoop->wsFlags & WHERE_IPK)!=0
1534    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1535   ){
1536     /* Case 2:  We can directly reference a single row using an
1537     **          equality comparison against the ROWID field.  Or
1538     **          we reference multiple rows using a "rowid IN (...)"
1539     **          construct.
1540     */
1541     assert( pLoop->u.btree.nEq==1 );
1542     pTerm = pLoop->aLTerm[0];
1543     assert( pTerm!=0 );
1544     assert( pTerm->pExpr!=0 );
1545     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1546     iReleaseReg = ++pParse->nMem;
1547     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1548     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1549     addrNxt = pLevel->addrNxt;
1550     if( pLevel->regFilter ){
1551       sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
1552       VdbeCoverage(v);
1553       sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt,
1554                            iRowidReg, 1);
1555       VdbeCoverage(v);
1556       filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady);
1557     }
1558     sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1559     VdbeCoverage(v);
1560     pLevel->op = OP_Noop;
1561   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1562          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1563   ){
1564     /* Case 3:  We have an inequality comparison against the ROWID field.
1565     */
1566     int testOp = OP_Noop;
1567     int start;
1568     int memEndValue = 0;
1569     WhereTerm *pStart, *pEnd;
1570 
1571     j = 0;
1572     pStart = pEnd = 0;
1573     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1574     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1575     assert( pStart!=0 || pEnd!=0 );
1576     if( bRev ){
1577       pTerm = pStart;
1578       pStart = pEnd;
1579       pEnd = pTerm;
1580     }
1581     codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1582     if( pStart ){
1583       Expr *pX;             /* The expression that defines the start bound */
1584       int r1, rTemp;        /* Registers for holding the start boundary */
1585       int op;               /* Cursor seek operation */
1586 
1587       /* The following constant maps TK_xx codes into corresponding
1588       ** seek opcodes.  It depends on a particular ordering of TK_xx
1589       */
1590       const u8 aMoveOp[] = {
1591            /* TK_GT */  OP_SeekGT,
1592            /* TK_LE */  OP_SeekLE,
1593            /* TK_LT */  OP_SeekLT,
1594            /* TK_GE */  OP_SeekGE
1595       };
1596       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
1597       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
1598       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
1599 
1600       assert( (pStart->wtFlags & TERM_VNULL)==0 );
1601       testcase( pStart->wtFlags & TERM_VIRTUAL );
1602       pX = pStart->pExpr;
1603       assert( pX!=0 );
1604       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1605       if( sqlite3ExprIsVector(pX->pRight) ){
1606         r1 = rTemp = sqlite3GetTempReg(pParse);
1607         codeExprOrVector(pParse, pX->pRight, r1, 1);
1608         testcase( pX->op==TK_GT );
1609         testcase( pX->op==TK_GE );
1610         testcase( pX->op==TK_LT );
1611         testcase( pX->op==TK_LE );
1612         op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
1613         assert( pX->op!=TK_GT || op==OP_SeekGE );
1614         assert( pX->op!=TK_GE || op==OP_SeekGE );
1615         assert( pX->op!=TK_LT || op==OP_SeekLE );
1616         assert( pX->op!=TK_LE || op==OP_SeekLE );
1617       }else{
1618         r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1619         disableTerm(pLevel, pStart);
1620         op = aMoveOp[(pX->op - TK_GT)];
1621       }
1622       sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1623       VdbeComment((v, "pk"));
1624       VdbeCoverageIf(v, pX->op==TK_GT);
1625       VdbeCoverageIf(v, pX->op==TK_LE);
1626       VdbeCoverageIf(v, pX->op==TK_LT);
1627       VdbeCoverageIf(v, pX->op==TK_GE);
1628       sqlite3ReleaseTempReg(pParse, rTemp);
1629     }else{
1630       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1631       VdbeCoverageIf(v, bRev==0);
1632       VdbeCoverageIf(v, bRev!=0);
1633     }
1634     if( pEnd ){
1635       Expr *pX;
1636       pX = pEnd->pExpr;
1637       assert( pX!=0 );
1638       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1639       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1640       testcase( pEnd->wtFlags & TERM_VIRTUAL );
1641       memEndValue = ++pParse->nMem;
1642       codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1643       if( 0==sqlite3ExprIsVector(pX->pRight)
1644        && (pX->op==TK_LT || pX->op==TK_GT)
1645       ){
1646         testOp = bRev ? OP_Le : OP_Ge;
1647       }else{
1648         testOp = bRev ? OP_Lt : OP_Gt;
1649       }
1650       if( 0==sqlite3ExprIsVector(pX->pRight) ){
1651         disableTerm(pLevel, pEnd);
1652       }
1653     }
1654     start = sqlite3VdbeCurrentAddr(v);
1655     pLevel->op = bRev ? OP_Prev : OP_Next;
1656     pLevel->p1 = iCur;
1657     pLevel->p2 = start;
1658     assert( pLevel->p5==0 );
1659     if( testOp!=OP_Noop ){
1660       iRowidReg = ++pParse->nMem;
1661       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1662       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1663       VdbeCoverageIf(v, testOp==OP_Le);
1664       VdbeCoverageIf(v, testOp==OP_Lt);
1665       VdbeCoverageIf(v, testOp==OP_Ge);
1666       VdbeCoverageIf(v, testOp==OP_Gt);
1667       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1668     }
1669   }else if( pLoop->wsFlags & WHERE_INDEXED ){
1670     /* Case 4: A scan using an index.
1671     **
1672     **         The WHERE clause may contain zero or more equality
1673     **         terms ("==" or "IN" operators) that refer to the N
1674     **         left-most columns of the index. It may also contain
1675     **         inequality constraints (>, <, >= or <=) on the indexed
1676     **         column that immediately follows the N equalities. Only
1677     **         the right-most column can be an inequality - the rest must
1678     **         use the "==" and "IN" operators. For example, if the
1679     **         index is on (x,y,z), then the following clauses are all
1680     **         optimized:
1681     **
1682     **            x=5
1683     **            x=5 AND y=10
1684     **            x=5 AND y<10
1685     **            x=5 AND y>5 AND y<10
1686     **            x=5 AND y=5 AND z<=10
1687     **
1688     **         The z<10 term of the following cannot be used, only
1689     **         the x=5 term:
1690     **
1691     **            x=5 AND z<10
1692     **
1693     **         N may be zero if there are inequality constraints.
1694     **         If there are no inequality constraints, then N is at
1695     **         least one.
1696     **
1697     **         This case is also used when there are no WHERE clause
1698     **         constraints but an index is selected anyway, in order
1699     **         to force the output order to conform to an ORDER BY.
1700     */
1701     static const u8 aStartOp[] = {
1702       0,
1703       0,
1704       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
1705       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
1706       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
1707       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
1708       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
1709       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
1710     };
1711     static const u8 aEndOp[] = {
1712       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
1713       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
1714       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
1715       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
1716     };
1717     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
1718     u16 nBtm = pLoop->u.btree.nBtm;   /* Length of BTM vector */
1719     u16 nTop = pLoop->u.btree.nTop;   /* Length of TOP vector */
1720     int regBase;                 /* Base register holding constraint values */
1721     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
1722     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
1723     int startEq;                 /* True if range start uses ==, >= or <= */
1724     int endEq;                   /* True if range end uses ==, >= or <= */
1725     int start_constraints;       /* Start of range is constrained */
1726     int nConstraint;             /* Number of constraint terms */
1727     int iIdxCur;                 /* The VDBE cursor for the index */
1728     int nExtraReg = 0;           /* Number of extra registers needed */
1729     int op;                      /* Instruction opcode */
1730     char *zStartAff;             /* Affinity for start of range constraint */
1731     char *zEndAff = 0;           /* Affinity for end of range constraint */
1732     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
1733     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
1734     int omitTable;               /* True if we use the index only */
1735     int regBignull = 0;          /* big-null flag register */
1736     int addrSeekScan = 0;        /* Opcode of the OP_SeekScan, if any */
1737 
1738     pIdx = pLoop->u.btree.pIndex;
1739     iIdxCur = pLevel->iIdxCur;
1740     assert( nEq>=pLoop->nSkip );
1741 
1742     /* Find any inequality constraint terms for the start and end
1743     ** of the range.
1744     */
1745     j = nEq;
1746     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1747       pRangeStart = pLoop->aLTerm[j++];
1748       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1749       /* Like optimization range constraints always occur in pairs */
1750       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1751               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1752     }
1753     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1754       pRangeEnd = pLoop->aLTerm[j++];
1755       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1756 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1757       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1758         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
1759         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
1760         pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1761         sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1762         VdbeComment((v, "LIKE loop counter"));
1763         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1764         /* iLikeRepCntr actually stores 2x the counter register number.  The
1765         ** bottom bit indicates whether the search order is ASC or DESC. */
1766         testcase( bRev );
1767         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1768         assert( (bRev & ~1)==0 );
1769         pLevel->iLikeRepCntr <<=1;
1770         pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1771       }
1772 #endif
1773       if( pRangeStart==0 ){
1774         j = pIdx->aiColumn[nEq];
1775         if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1776           bSeekPastNull = 1;
1777         }
1778       }
1779     }
1780     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1781 
1782     /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
1783     ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
1784     ** FIRST). In both cases separate ordered scans are made of those
1785     ** index entries for which the column is null and for those for which
1786     ** it is not. For an ASC sort, the non-NULL entries are scanned first.
1787     ** For DESC, NULL entries are scanned first.
1788     */
1789     if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0
1790      && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0
1791     ){
1792       assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 );
1793       assert( pRangeEnd==0 && pRangeStart==0 );
1794       testcase( pLoop->nSkip>0 );
1795       nExtraReg = 1;
1796       bSeekPastNull = 1;
1797       pLevel->regBignull = regBignull = ++pParse->nMem;
1798       if( pLevel->iLeftJoin ){
1799         sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull);
1800       }
1801       pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse);
1802     }
1803 
1804     /* If we are doing a reverse order scan on an ascending index, or
1805     ** a forward order scan on a descending index, interchange the
1806     ** start and end terms (pRangeStart and pRangeEnd).
1807     */
1808     if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){
1809       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1810       SWAP(u8, bSeekPastNull, bStopAtNull);
1811       SWAP(u8, nBtm, nTop);
1812     }
1813 
1814     if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){
1815       /* In case OP_SeekScan is used, ensure that the index cursor does not
1816       ** point to a valid row for the first iteration of this loop. */
1817       sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
1818     }
1819 
1820     /* Generate code to evaluate all constraint terms using == or IN
1821     ** and store the values of those terms in an array of registers
1822     ** starting at regBase.
1823     */
1824     codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1825     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1826     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1827     if( zStartAff && nTop ){
1828       zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1829     }
1830     addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt);
1831 
1832     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1833     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1834     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1835     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1836     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1837     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1838     start_constraints = pRangeStart || nEq>0;
1839 
1840     /* Seek the index cursor to the start of the range. */
1841     nConstraint = nEq;
1842     if( pRangeStart ){
1843       Expr *pRight = pRangeStart->pExpr->pRight;
1844       codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1845       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1846       if( (pRangeStart->wtFlags & TERM_VNULL)==0
1847        && sqlite3ExprCanBeNull(pRight)
1848       ){
1849         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1850         VdbeCoverage(v);
1851       }
1852       if( zStartAff ){
1853         updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1854       }
1855       nConstraint += nBtm;
1856       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1857       if( sqlite3ExprIsVector(pRight)==0 ){
1858         disableTerm(pLevel, pRangeStart);
1859       }else{
1860         startEq = 1;
1861       }
1862       bSeekPastNull = 0;
1863     }else if( bSeekPastNull ){
1864       startEq = 0;
1865       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1866       start_constraints = 1;
1867       nConstraint++;
1868     }else if( regBignull ){
1869       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1870       start_constraints = 1;
1871       nConstraint++;
1872     }
1873     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1874     if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1875       /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1876       ** above has already left the cursor sitting on the correct row,
1877       ** so no further seeking is needed */
1878     }else{
1879       if( regBignull ){
1880         sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull);
1881         VdbeComment((v, "NULL-scan pass ctr"));
1882       }
1883       if( pLevel->regFilter ){
1884         sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt,
1885                              regBase, nEq);
1886         VdbeCoverage(v);
1887         filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady);
1888       }
1889 
1890       op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1891       assert( op!=0 );
1892       if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){
1893         assert( regBignull==0 );
1894         /* TUNING:  The OP_SeekScan opcode seeks to reduce the number
1895         ** of expensive seek operations by replacing a single seek with
1896         ** 1 or more step operations.  The question is, how many steps
1897         ** should we try before giving up and going with a seek.  The cost
1898         ** of a seek is proportional to the logarithm of the of the number
1899         ** of entries in the tree, so basing the number of steps to try
1900         ** on the estimated number of rows in the btree seems like a good
1901         ** guess. */
1902         addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan,
1903                                          (pIdx->aiRowLogEst[0]+9)/10);
1904         if( pRangeStart ){
1905           sqlite3VdbeChangeP5(v, 1);
1906           sqlite3VdbeChangeP2(v, addrSeekScan, sqlite3VdbeCurrentAddr(v)+1);
1907           addrSeekScan = 0;
1908         }
1909         VdbeCoverage(v);
1910       }
1911       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1912       VdbeCoverage(v);
1913       VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1914       VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1915       VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
1916       VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1917       VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1918       VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
1919 
1920       assert( bSeekPastNull==0 || bStopAtNull==0 );
1921       if( regBignull ){
1922         assert( bSeekPastNull==1 || bStopAtNull==1 );
1923         assert( bSeekPastNull==!bStopAtNull );
1924         assert( bStopAtNull==startEq );
1925         sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2);
1926         op = aStartOp[(nConstraint>1)*4 + 2 + bRev];
1927         sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1928                              nConstraint-startEq);
1929         VdbeCoverage(v);
1930         VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1931         VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1932         VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1933         VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1934         assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE);
1935       }
1936     }
1937 
1938     /* Load the value for the inequality constraint at the end of the
1939     ** range (if any).
1940     */
1941     nConstraint = nEq;
1942     assert( pLevel->p2==0 );
1943     if( pRangeEnd ){
1944       Expr *pRight = pRangeEnd->pExpr->pRight;
1945       if( addrSeekScan ){
1946         /* For a seek-scan that has a range on the lowest term of the index,
1947         ** we have to make the top of the loop be code that sets the end
1948         ** condition of the range.  Otherwise, the OP_SeekScan might jump
1949         ** over that initialization, leaving the range-end value set to the
1950         ** range-start value, resulting in a wrong answer.
1951         ** See ticket 5981a8c041a3c2f3 (2021-11-02).
1952         */
1953         pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1954       }
1955       codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
1956       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1957       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1958        && sqlite3ExprCanBeNull(pRight)
1959       ){
1960         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1961         VdbeCoverage(v);
1962       }
1963       if( zEndAff ){
1964         updateRangeAffinityStr(pRight, nTop, zEndAff);
1965         codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1966       }else{
1967         assert( pParse->db->mallocFailed );
1968       }
1969       nConstraint += nTop;
1970       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1971 
1972       if( sqlite3ExprIsVector(pRight)==0 ){
1973         disableTerm(pLevel, pRangeEnd);
1974       }else{
1975         endEq = 1;
1976       }
1977     }else if( bStopAtNull ){
1978       if( regBignull==0 ){
1979         sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1980         endEq = 0;
1981       }
1982       nConstraint++;
1983     }
1984     if( zStartAff ) sqlite3DbNNFreeNN(db, zStartAff);
1985     if( zEndAff ) sqlite3DbNNFreeNN(db, zEndAff);
1986 
1987     /* Top of the loop body */
1988     if( pLevel->p2==0 ) pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1989 
1990     /* Check if the index cursor is past the end of the range. */
1991     if( nConstraint ){
1992       if( regBignull ){
1993         /* Except, skip the end-of-range check while doing the NULL-scan */
1994         sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3);
1995         VdbeComment((v, "If NULL-scan 2nd pass"));
1996         VdbeCoverage(v);
1997       }
1998       op = aEndOp[bRev*2 + endEq];
1999       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
2000       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
2001       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
2002       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
2003       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
2004       if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan);
2005     }
2006     if( regBignull ){
2007       /* During a NULL-scan, check to see if we have reached the end of
2008       ** the NULLs */
2009       assert( bSeekPastNull==!bStopAtNull );
2010       assert( bSeekPastNull+bStopAtNull==1 );
2011       assert( nConstraint+bSeekPastNull>0 );
2012       sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2);
2013       VdbeComment((v, "If NULL-scan 1st pass"));
2014       VdbeCoverage(v);
2015       op = aEndOp[bRev*2 + bSeekPastNull];
2016       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
2017                            nConstraint+bSeekPastNull);
2018       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
2019       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
2020       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
2021       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
2022     }
2023 
2024     if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){
2025       sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq);
2026     }
2027 
2028     /* Seek the table cursor, if required */
2029     omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
2030            && (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0;
2031     if( omitTable ){
2032       /* pIdx is a covering index.  No need to access the main table. */
2033     }else if( HasRowid(pIdx->pTable) ){
2034       codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
2035     }else if( iCur!=iIdxCur ){
2036       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
2037       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
2038       for(j=0; j<pPk->nKeyCol; j++){
2039         k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
2040         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
2041       }
2042       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
2043                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
2044     }
2045 
2046     if( pLevel->iLeftJoin==0 ){
2047       /* If a partial index is driving the loop, try to eliminate WHERE clause
2048       ** terms from the query that must be true due to the WHERE clause of
2049       ** the partial index.
2050       **
2051       ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
2052       ** for a LEFT JOIN.
2053       */
2054       if( pIdx->pPartIdxWhere ){
2055         whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC);
2056       }
2057     }else{
2058       testcase( pIdx->pPartIdxWhere );
2059       /* The following assert() is not a requirement, merely an observation:
2060       ** The OR-optimization doesn't work for the right hand table of
2061       ** a LEFT JOIN: */
2062       assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 );
2063     }
2064 
2065     /* Record the instruction used to terminate the loop. */
2066     if( pLoop->wsFlags & WHERE_ONEROW ){
2067       pLevel->op = OP_Noop;
2068     }else if( bRev ){
2069       pLevel->op = OP_Prev;
2070     }else{
2071       pLevel->op = OP_Next;
2072     }
2073     pLevel->p1 = iIdxCur;
2074     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
2075     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
2076       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2077     }else{
2078       assert( pLevel->p5==0 );
2079     }
2080     if( omitTable ) pIdx = 0;
2081   }else
2082 
2083 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
2084   if( pLoop->wsFlags & WHERE_MULTI_OR ){
2085     /* Case 5:  Two or more separately indexed terms connected by OR
2086     **
2087     ** Example:
2088     **
2089     **   CREATE TABLE t1(a,b,c,d);
2090     **   CREATE INDEX i1 ON t1(a);
2091     **   CREATE INDEX i2 ON t1(b);
2092     **   CREATE INDEX i3 ON t1(c);
2093     **
2094     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
2095     **
2096     ** In the example, there are three indexed terms connected by OR.
2097     ** The top of the loop looks like this:
2098     **
2099     **          Null       1                # Zero the rowset in reg 1
2100     **
2101     ** Then, for each indexed term, the following. The arguments to
2102     ** RowSetTest are such that the rowid of the current row is inserted
2103     ** into the RowSet. If it is already present, control skips the
2104     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
2105     **
2106     **        sqlite3WhereBegin(<term>)
2107     **          RowSetTest                  # Insert rowid into rowset
2108     **          Gosub      2 A
2109     **        sqlite3WhereEnd()
2110     **
2111     ** Following the above, code to terminate the loop. Label A, the target
2112     ** of the Gosub above, jumps to the instruction right after the Goto.
2113     **
2114     **          Null       1                # Zero the rowset in reg 1
2115     **          Goto       B                # The loop is finished.
2116     **
2117     **       A: <loop body>                 # Return data, whatever.
2118     **
2119     **          Return     2                # Jump back to the Gosub
2120     **
2121     **       B: <after the loop>
2122     **
2123     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
2124     ** use an ephemeral index instead of a RowSet to record the primary
2125     ** keys of the rows we have already seen.
2126     **
2127     */
2128     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
2129     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
2130     Index *pCov = 0;             /* Potential covering index (or NULL) */
2131     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
2132 
2133     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
2134     int regRowset = 0;                        /* Register for RowSet object */
2135     int regRowid = 0;                         /* Register holding rowid */
2136     int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */
2137     int iRetInit;                             /* Address of regReturn init */
2138     int untestedTerms = 0;             /* Some terms not completely tested */
2139     int ii;                            /* Loop counter */
2140     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
2141     Table *pTab = pTabItem->pTab;
2142 
2143     pTerm = pLoop->aLTerm[0];
2144     assert( pTerm!=0 );
2145     assert( pTerm->eOperator & WO_OR );
2146     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
2147     pOrWc = &pTerm->u.pOrInfo->wc;
2148     pLevel->op = OP_Return;
2149     pLevel->p1 = regReturn;
2150 
2151     /* Set up a new SrcList in pOrTab containing the table being scanned
2152     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
2153     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
2154     */
2155     if( pWInfo->nLevel>1 ){
2156       int nNotReady;                 /* The number of notReady tables */
2157       SrcItem *origSrc;              /* Original list of tables */
2158       nNotReady = pWInfo->nLevel - iLevel - 1;
2159       pOrTab = sqlite3DbMallocRawNN(db,
2160                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
2161       if( pOrTab==0 ) return notReady;
2162       pOrTab->nAlloc = (u8)(nNotReady + 1);
2163       pOrTab->nSrc = pOrTab->nAlloc;
2164       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
2165       origSrc = pWInfo->pTabList->a;
2166       for(k=1; k<=nNotReady; k++){
2167         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
2168       }
2169     }else{
2170       pOrTab = pWInfo->pTabList;
2171     }
2172 
2173     /* Initialize the rowset register to contain NULL. An SQL NULL is
2174     ** equivalent to an empty rowset.  Or, create an ephemeral index
2175     ** capable of holding primary keys in the case of a WITHOUT ROWID.
2176     **
2177     ** Also initialize regReturn to contain the address of the instruction
2178     ** immediately following the OP_Return at the bottom of the loop. This
2179     ** is required in a few obscure LEFT JOIN cases where control jumps
2180     ** over the top of the loop into the body of it. In this case the
2181     ** correct response for the end-of-loop code (the OP_Return) is to
2182     ** fall through to the next instruction, just as an OP_Next does if
2183     ** called on an uninitialized cursor.
2184     */
2185     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2186       if( HasRowid(pTab) ){
2187         regRowset = ++pParse->nMem;
2188         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
2189       }else{
2190         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2191         regRowset = pParse->nTab++;
2192         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
2193         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
2194       }
2195       regRowid = ++pParse->nMem;
2196     }
2197     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
2198 
2199     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
2200     ** Then for every term xN, evaluate as the subexpression: xN AND y
2201     ** That way, terms in y that are factored into the disjunction will
2202     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
2203     **
2204     ** Actually, each subexpression is converted to "xN AND w" where w is
2205     ** the "interesting" terms of z - terms that did not originate in the
2206     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
2207     ** indices.
2208     **
2209     ** This optimization also only applies if the (x1 OR x2 OR ...) term
2210     ** is not contained in the ON clause of a LEFT JOIN.
2211     ** See ticket http://www.sqlite.org/src/info/f2369304e4
2212     **
2213     ** 2022-02-04:  Do not push down slices of a row-value comparison.
2214     ** In other words, "w" or "y" may not be a slice of a vector.  Otherwise,
2215     ** the initialization of the right-hand operand of the vector comparison
2216     ** might not occur, or might occur only in an OR branch that is not
2217     ** taken.  dbsqlfuzz 80a9fade844b4fb43564efc972bcb2c68270f5d1.
2218     **
2219     ** 2022-03-03:  Do not push down expressions that involve subqueries.
2220     ** The subquery might get coded as a subroutine.  Any table-references
2221     ** in the subquery might be resolved to index-references for the index on
2222     ** the OR branch in which the subroutine is coded.  But if the subroutine
2223     ** is invoked from a different OR branch that uses a different index, such
2224     ** index-references will not work.  tag-20220303a
2225     ** https://sqlite.org/forum/forumpost/36937b197273d403
2226     */
2227     if( pWC->nTerm>1 ){
2228       int iTerm;
2229       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
2230         Expr *pExpr = pWC->a[iTerm].pExpr;
2231         if( &pWC->a[iTerm] == pTerm ) continue;
2232         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
2233         testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
2234         testcase( pWC->a[iTerm].wtFlags & TERM_SLICE );
2235         if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED|TERM_SLICE))!=0 ){
2236           continue;
2237         }
2238         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
2239         if( ExprHasProperty(pExpr, EP_Subquery) ) continue;  /* tag-20220303a */
2240         pExpr = sqlite3ExprDup(db, pExpr, 0);
2241         pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr);
2242       }
2243       if( pAndExpr ){
2244         /* The extra 0x10000 bit on the opcode is masked off and does not
2245         ** become part of the new Expr.op.  However, it does make the
2246         ** op==TK_AND comparison inside of sqlite3PExpr() false, and this
2247         ** prevents sqlite3PExpr() from applying the AND short-circuit
2248         ** optimization, which we do not want here. */
2249         pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr);
2250       }
2251     }
2252 
2253     /* Run a separate WHERE clause for each term of the OR clause.  After
2254     ** eliminating duplicates from other WHERE clauses, the action for each
2255     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
2256     */
2257     ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
2258     for(ii=0; ii<pOrWc->nTerm; ii++){
2259       WhereTerm *pOrTerm = &pOrWc->a[ii];
2260       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
2261         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
2262         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
2263         Expr *pDelete;                  /* Local copy of OR clause term */
2264         int jmp1 = 0;                   /* Address of jump operation */
2265         testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0
2266                && !ExprHasProperty(pOrExpr, EP_OuterON)
2267         ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */
2268         pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0);
2269         if( db->mallocFailed ){
2270           sqlite3ExprDelete(db, pDelete);
2271           continue;
2272         }
2273         if( pAndExpr ){
2274           pAndExpr->pLeft = pOrExpr;
2275           pOrExpr = pAndExpr;
2276         }
2277         /* Loop through table entries that match term pOrTerm. */
2278         ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1));
2279         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
2280         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 0,
2281                                       WHERE_OR_SUBCLAUSE, iCovCur);
2282         assert( pSubWInfo || pParse->nErr );
2283         if( pSubWInfo ){
2284           WhereLoop *pSubLoop;
2285           int addrExplain = sqlite3WhereExplainOneScan(
2286               pParse, pOrTab, &pSubWInfo->a[0], 0
2287           );
2288           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
2289 
2290           /* This is the sub-WHERE clause body.  First skip over
2291           ** duplicate rows from prior sub-WHERE clauses, and record the
2292           ** rowid (or PRIMARY KEY) for the current row so that the same
2293           ** row will be skipped in subsequent sub-WHERE clauses.
2294           */
2295           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2296             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
2297             if( HasRowid(pTab) ){
2298               sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid);
2299               jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
2300                                           regRowid, iSet);
2301               VdbeCoverage(v);
2302             }else{
2303               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2304               int nPk = pPk->nKeyCol;
2305               int iPk;
2306               int r;
2307 
2308               /* Read the PK into an array of temp registers. */
2309               r = sqlite3GetTempRange(pParse, nPk);
2310               for(iPk=0; iPk<nPk; iPk++){
2311                 int iCol = pPk->aiColumn[iPk];
2312                 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2313               }
2314 
2315               /* Check if the temp table already contains this key. If so,
2316               ** the row has already been included in the result set and
2317               ** can be ignored (by jumping past the Gosub below). Otherwise,
2318               ** insert the key into the temp table and proceed with processing
2319               ** the row.
2320               **
2321               ** Use some of the same optimizations as OP_RowSetTest: If iSet
2322               ** is zero, assume that the key cannot already be present in
2323               ** the temp table. And if iSet is -1, assume that there is no
2324               ** need to insert the key into the temp table, as it will never
2325               ** be tested for.  */
2326               if( iSet ){
2327                 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
2328                 VdbeCoverage(v);
2329               }
2330               if( iSet>=0 ){
2331                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
2332                 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
2333                                      r, nPk);
2334                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2335               }
2336 
2337               /* Release the array of temp registers */
2338               sqlite3ReleaseTempRange(pParse, r, nPk);
2339             }
2340           }
2341 
2342           /* Invoke the main loop body as a subroutine */
2343           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2344 
2345           /* Jump here (skipping the main loop body subroutine) if the
2346           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2347           if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
2348 
2349           /* The pSubWInfo->untestedTerms flag means that this OR term
2350           ** contained one or more AND term from a notReady table.  The
2351           ** terms from the notReady table could not be tested and will
2352           ** need to be tested later.
2353           */
2354           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
2355 
2356           /* If all of the OR-connected terms are optimized using the same
2357           ** index, and the index is opened using the same cursor number
2358           ** by each call to sqlite3WhereBegin() made by this loop, it may
2359           ** be possible to use that index as a covering index.
2360           **
2361           ** If the call to sqlite3WhereBegin() above resulted in a scan that
2362           ** uses an index, and this is either the first OR-connected term
2363           ** processed or the index is the same as that used by all previous
2364           ** terms, set pCov to the candidate covering index. Otherwise, set
2365           ** pCov to NULL to indicate that no candidate covering index will
2366           ** be available.
2367           */
2368           pSubLoop = pSubWInfo->a[0].pWLoop;
2369           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2370           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2371            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2372            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2373           ){
2374             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2375             pCov = pSubLoop->u.btree.pIndex;
2376           }else{
2377             pCov = 0;
2378           }
2379           if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){
2380             pWInfo->bDeferredSeek = 1;
2381           }
2382 
2383           /* Finish the loop through table entries that match term pOrTerm. */
2384           sqlite3WhereEnd(pSubWInfo);
2385           ExplainQueryPlanPop(pParse);
2386         }
2387         sqlite3ExprDelete(db, pDelete);
2388       }
2389     }
2390     ExplainQueryPlanPop(pParse);
2391     assert( pLevel->pWLoop==pLoop );
2392     assert( (pLoop->wsFlags & WHERE_MULTI_OR)!=0 );
2393     assert( (pLoop->wsFlags & WHERE_IN_ABLE)==0 );
2394     pLevel->u.pCoveringIdx = pCov;
2395     if( pCov ) pLevel->iIdxCur = iCovCur;
2396     if( pAndExpr ){
2397       pAndExpr->pLeft = 0;
2398       sqlite3ExprDelete(db, pAndExpr);
2399     }
2400     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2401     sqlite3VdbeGoto(v, pLevel->addrBrk);
2402     sqlite3VdbeResolveLabel(v, iLoopBody);
2403 
2404     /* Set the P2 operand of the OP_Return opcode that will end the current
2405     ** loop to point to this spot, which is the top of the next containing
2406     ** loop.  The byte-code formatter will use that P2 value as a hint to
2407     ** indent everything in between the this point and the final OP_Return.
2408     ** See tag-20220407a in vdbe.c and shell.c */
2409     assert( pLevel->op==OP_Return );
2410     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2411 
2412     if( pWInfo->nLevel>1 ){ sqlite3DbFreeNN(db, pOrTab); }
2413     if( !untestedTerms ) disableTerm(pLevel, pTerm);
2414   }else
2415 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2416 
2417   {
2418     /* Case 6:  There is no usable index.  We must do a complete
2419     **          scan of the entire table.
2420     */
2421     static const u8 aStep[] = { OP_Next, OP_Prev };
2422     static const u8 aStart[] = { OP_Rewind, OP_Last };
2423     assert( bRev==0 || bRev==1 );
2424     if( pTabItem->fg.isRecursive ){
2425       /* Tables marked isRecursive have only a single row that is stored in
2426       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
2427       pLevel->op = OP_Noop;
2428     }else{
2429       codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2430       pLevel->op = aStep[bRev];
2431       pLevel->p1 = iCur;
2432       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2433       VdbeCoverageIf(v, bRev==0);
2434       VdbeCoverageIf(v, bRev!=0);
2435       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2436     }
2437   }
2438 
2439 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2440   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2441 #endif
2442 
2443   /* Insert code to test every subexpression that can be completely
2444   ** computed using the current set of tables.
2445   **
2446   ** This loop may run between one and three times, depending on the
2447   ** constraints to be generated. The value of stack variable iLoop
2448   ** determines the constraints coded by each iteration, as follows:
2449   **
2450   ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2451   ** iLoop==2: Code remaining expressions that do not contain correlated
2452   **           sub-queries.
2453   ** iLoop==3: Code all remaining expressions.
2454   **
2455   ** An effort is made to skip unnecessary iterations of the loop.
2456   */
2457   iLoop = (pIdx ? 1 : 2);
2458   do{
2459     int iNext = 0;                /* Next value for iLoop */
2460     for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2461       Expr *pE;
2462       int skipLikeAddr = 0;
2463       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2464       testcase( pTerm->wtFlags & TERM_CODED );
2465       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2466       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2467         testcase( pWInfo->untestedTerms==0
2468             && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2469         pWInfo->untestedTerms = 1;
2470         continue;
2471       }
2472       pE = pTerm->pExpr;
2473       assert( pE!=0 );
2474       if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ){
2475         if( !ExprHasProperty(pE,EP_OuterON|EP_InnerON) ){
2476           /* Defer processing WHERE clause constraints until after outer
2477           ** join processing.  tag-20220513a */
2478           continue;
2479         }else if( (pTabItem->fg.jointype & JT_LEFT)==JT_LEFT
2480                && !ExprHasProperty(pE,EP_OuterON) ){
2481           continue;
2482         }else{
2483           Bitmask m = sqlite3WhereGetMask(&pWInfo->sMaskSet, pE->w.iJoin);
2484           if( m & pLevel->notReady ){
2485             /* An ON clause that is not ripe */
2486             continue;
2487           }
2488         }
2489       }
2490       if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2491         iNext = 2;
2492         continue;
2493       }
2494       if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2495         if( iNext==0 ) iNext = 3;
2496         continue;
2497       }
2498 
2499       if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
2500         /* If the TERM_LIKECOND flag is set, that means that the range search
2501         ** is sufficient to guarantee that the LIKE operator is true, so we
2502         ** can skip the call to the like(A,B) function.  But this only works
2503         ** for strings.  So do not skip the call to the function on the pass
2504         ** that compares BLOBs. */
2505 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2506         continue;
2507 #else
2508         u32 x = pLevel->iLikeRepCntr;
2509         if( x>0 ){
2510           skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
2511           VdbeCoverageIf(v, (x&1)==1);
2512           VdbeCoverageIf(v, (x&1)==0);
2513         }
2514 #endif
2515       }
2516 #ifdef WHERETRACE_ENABLED /* 0xffff */
2517       if( sqlite3WhereTrace ){
2518         VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2519                          pWC->nTerm-j, pTerm, iLoop));
2520       }
2521       if( sqlite3WhereTrace & 0x800 ){
2522         sqlite3DebugPrintf("Coding auxiliary constraint:\n");
2523         sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2524       }
2525 #endif
2526       sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2527       if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2528       pTerm->wtFlags |= TERM_CODED;
2529     }
2530     iLoop = iNext;
2531   }while( iLoop>0 );
2532 
2533   /* Insert code to test for implied constraints based on transitivity
2534   ** of the "==" operator.
2535   **
2536   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2537   ** and we are coding the t1 loop and the t2 loop has not yet coded,
2538   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2539   ** the implied "t1.a=123" constraint.
2540   */
2541   for(pTerm=pWC->a, j=pWC->nBase; j>0; j--, pTerm++){
2542     Expr *pE, sEAlt;
2543     WhereTerm *pAlt;
2544     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2545     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2546     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2547     if( pTerm->leftCursor!=iCur ) continue;
2548     if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ) continue;
2549     pE = pTerm->pExpr;
2550 #ifdef WHERETRACE_ENABLED /* 0x800 */
2551     if( sqlite3WhereTrace & 0x800 ){
2552       sqlite3DebugPrintf("Coding transitive constraint:\n");
2553       sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2554     }
2555 #endif
2556     assert( !ExprHasProperty(pE, EP_OuterON) );
2557     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2558     assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
2559     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady,
2560                     WO_EQ|WO_IN|WO_IS, 0);
2561     if( pAlt==0 ) continue;
2562     if( pAlt->wtFlags & (TERM_CODED) ) continue;
2563     if( (pAlt->eOperator & WO_IN)
2564      && ExprUseXSelect(pAlt->pExpr)
2565      && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
2566     ){
2567       continue;
2568     }
2569     testcase( pAlt->eOperator & WO_EQ );
2570     testcase( pAlt->eOperator & WO_IS );
2571     testcase( pAlt->eOperator & WO_IN );
2572     VdbeModuleComment((v, "begin transitive constraint"));
2573     sEAlt = *pAlt->pExpr;
2574     sEAlt.pLeft = pE->pLeft;
2575     sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2576     pAlt->wtFlags |= TERM_CODED;
2577   }
2578 
2579   /* For a RIGHT OUTER JOIN, record the fact that the current row has
2580   ** been matched at least once.
2581   */
2582   if( pLevel->pRJ ){
2583     Table *pTab;
2584     int nPk;
2585     int r;
2586     int jmp1 = 0;
2587     WhereRightJoin *pRJ = pLevel->pRJ;
2588 
2589     /* pTab is the right-hand table of the RIGHT JOIN.  Generate code that
2590     ** will record that the current row of that table has been matched at
2591     ** least once.  This is accomplished by storing the PK for the row in
2592     ** both the iMatch index and the regBloom Bloom filter.
2593     */
2594     pTab = pWInfo->pTabList->a[pLevel->iFrom].pTab;
2595     if( HasRowid(pTab) ){
2596       r = sqlite3GetTempRange(pParse, 2);
2597       sqlite3ExprCodeGetColumnOfTable(v, pTab, pLevel->iTabCur, -1, r+1);
2598       nPk = 1;
2599     }else{
2600       int iPk;
2601       Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2602       nPk = pPk->nKeyCol;
2603       r = sqlite3GetTempRange(pParse, nPk+1);
2604       for(iPk=0; iPk<nPk; iPk++){
2605         int iCol = pPk->aiColumn[iPk];
2606         sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+1+iPk);
2607       }
2608     }
2609     jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, 0, r+1, nPk);
2610     VdbeCoverage(v);
2611     VdbeComment((v, "match against %s", pTab->zName));
2612     sqlite3VdbeAddOp3(v, OP_MakeRecord, r+1, nPk, r);
2613     sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pRJ->iMatch, r, r+1, nPk);
2614     sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pRJ->regBloom, 0, r+1, nPk);
2615     sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2616     sqlite3VdbeJumpHere(v, jmp1);
2617     sqlite3ReleaseTempRange(pParse, r, nPk+1);
2618   }
2619 
2620   /* For a LEFT OUTER JOIN, generate code that will record the fact that
2621   ** at least one row of the right table has matched the left table.
2622   */
2623   if( pLevel->iLeftJoin ){
2624     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2625     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2626     VdbeComment((v, "record LEFT JOIN hit"));
2627     if( pLevel->pRJ==0 ){
2628       goto code_outer_join_constraints; /* WHERE clause constraints */
2629     }
2630   }
2631 
2632   if( pLevel->pRJ ){
2633     /* Create a subroutine used to process all interior loops and code
2634     ** of the RIGHT JOIN.  During normal operation, the subroutine will
2635     ** be in-line with the rest of the code.  But at the end, a separate
2636     ** loop will run that invokes this subroutine for unmatched rows
2637     ** of pTab, with all tables to left begin set to NULL.
2638     */
2639     WhereRightJoin *pRJ = pLevel->pRJ;
2640     sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pRJ->regReturn);
2641     pRJ->addrSubrtn = sqlite3VdbeCurrentAddr(v);
2642     assert( pParse->withinRJSubrtn < 255 );
2643     pParse->withinRJSubrtn++;
2644 
2645     /* WHERE clause constraints must be deferred until after outer join
2646     ** row elimination has completed, since WHERE clause constraints apply
2647     ** to the results of the OUTER JOIN.  The following loop generates the
2648     ** appropriate WHERE clause constraint checks.  tag-20220513a.
2649     */
2650   code_outer_join_constraints:
2651     for(pTerm=pWC->a, j=0; j<pWC->nBase; j++, pTerm++){
2652       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2653       testcase( pTerm->wtFlags & TERM_CODED );
2654       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2655       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2656         assert( pWInfo->untestedTerms );
2657         continue;
2658       }
2659       if( pTabItem->fg.jointype & JT_LTORJ ) continue;
2660       assert( pTerm->pExpr );
2661       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2662       pTerm->wtFlags |= TERM_CODED;
2663     }
2664   }
2665 
2666 #if WHERETRACE_ENABLED /* 0x20800 */
2667   if( sqlite3WhereTrace & 0x20000 ){
2668     sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n",
2669                        iLevel);
2670     sqlite3WhereClausePrint(pWC);
2671   }
2672   if( sqlite3WhereTrace & 0x800 ){
2673     sqlite3DebugPrintf("End Coding level %d:  notReady=%llx\n",
2674        iLevel, (u64)pLevel->notReady);
2675   }
2676 #endif
2677   return pLevel->notReady;
2678 }
2679 
2680 /*
2681 ** Generate the code for the loop that finds all non-matched terms
2682 ** for a RIGHT JOIN.
2683 */
2684 SQLITE_NOINLINE void sqlite3WhereRightJoinLoop(
2685   WhereInfo *pWInfo,
2686   int iLevel,
2687   WhereLevel *pLevel
2688 ){
2689   Parse *pParse = pWInfo->pParse;
2690   Vdbe *v = pParse->pVdbe;
2691   WhereRightJoin *pRJ = pLevel->pRJ;
2692   Expr *pSubWhere = 0;
2693   WhereClause *pWC = &pWInfo->sWC;
2694   WhereInfo *pSubWInfo;
2695   WhereLoop *pLoop = pLevel->pWLoop;
2696   SrcItem *pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
2697   SrcList sFrom;
2698   Bitmask mAll = 0;
2699   int k;
2700 
2701   ExplainQueryPlan((pParse, 1, "RIGHT-JOIN %s", pTabItem->pTab->zName));
2702   sqlite3VdbeNoJumpsOutsideSubrtn(v, pRJ->addrSubrtn, pRJ->endSubrtn,
2703                                   pRJ->regReturn);
2704   for(k=0; k<iLevel; k++){
2705     int iIdxCur;
2706     mAll |= pWInfo->a[k].pWLoop->maskSelf;
2707     sqlite3VdbeAddOp1(v, OP_NullRow, pWInfo->a[k].iTabCur);
2708     iIdxCur = pWInfo->a[k].iIdxCur;
2709     if( iIdxCur ){
2710       sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
2711     }
2712   }
2713   if( (pTabItem->fg.jointype & JT_LTORJ)==0 ){
2714     mAll |= pLoop->maskSelf;
2715     for(k=0; k<pWC->nTerm; k++){
2716       WhereTerm *pTerm = &pWC->a[k];
2717       if( (pTerm->wtFlags & (TERM_VIRTUAL|TERM_SLICE))!=0
2718        && pTerm->eOperator!=WO_ROWVAL
2719       ){
2720         break;
2721       }
2722       if( pTerm->prereqAll & ~mAll ) continue;
2723       if( ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) ) continue;
2724       pSubWhere = sqlite3ExprAnd(pParse, pSubWhere,
2725                                  sqlite3ExprDup(pParse->db, pTerm->pExpr, 0));
2726     }
2727   }
2728   sFrom.nSrc = 1;
2729   sFrom.nAlloc = 1;
2730   memcpy(&sFrom.a[0], pTabItem, sizeof(SrcItem));
2731   sFrom.a[0].fg.jointype = 0;
2732   assert( pParse->withinRJSubrtn < 100 );
2733   pParse->withinRJSubrtn++;
2734   pSubWInfo = sqlite3WhereBegin(pParse, &sFrom, pSubWhere, 0, 0, 0,
2735                                 WHERE_RIGHT_JOIN, 0);
2736   if( pSubWInfo ){
2737     int iCur = pLevel->iTabCur;
2738     int r = ++pParse->nMem;
2739     int nPk;
2740     int jmp;
2741     int addrCont = sqlite3WhereContinueLabel(pSubWInfo);
2742     Table *pTab = pTabItem->pTab;
2743     if( HasRowid(pTab) ){
2744       sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, r);
2745       nPk = 1;
2746     }else{
2747       int iPk;
2748       Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2749       nPk = pPk->nKeyCol;
2750       pParse->nMem += nPk - 1;
2751       for(iPk=0; iPk<nPk; iPk++){
2752         int iCol = pPk->aiColumn[iPk];
2753         sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2754       }
2755     }
2756     jmp = sqlite3VdbeAddOp4Int(v, OP_Filter, pRJ->regBloom, 0, r, nPk);
2757     VdbeCoverage(v);
2758     sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, addrCont, r, nPk);
2759     VdbeCoverage(v);
2760     sqlite3VdbeJumpHere(v, jmp);
2761     sqlite3VdbeAddOp2(v, OP_Gosub, pRJ->regReturn, pRJ->addrSubrtn);
2762     sqlite3WhereEnd(pSubWInfo);
2763   }
2764   sqlite3ExprDelete(pParse->db, pSubWhere);
2765   ExplainQueryPlanPop(pParse);
2766   assert( pParse->withinRJSubrtn>0 );
2767   pParse->withinRJSubrtn--;
2768 }
2769