1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 25 /* 26 ** Return the name of the i-th column of the pIdx index. 27 */ 28 static const char *explainIndexColumnName(Index *pIdx, int i){ 29 i = pIdx->aiColumn[i]; 30 if( i==XN_EXPR ) return "<expr>"; 31 if( i==XN_ROWID ) return "rowid"; 32 return pIdx->pTable->aCol[i].zCnName; 33 } 34 35 /* 36 ** This routine is a helper for explainIndexRange() below 37 ** 38 ** pStr holds the text of an expression that we are building up one term 39 ** at a time. This routine adds a new term to the end of the expression. 40 ** Terms are separated by AND so add the "AND" text for second and subsequent 41 ** terms only. 42 */ 43 static void explainAppendTerm( 44 StrAccum *pStr, /* The text expression being built */ 45 Index *pIdx, /* Index to read column names from */ 46 int nTerm, /* Number of terms */ 47 int iTerm, /* Zero-based index of first term. */ 48 int bAnd, /* Non-zero to append " AND " */ 49 const char *zOp /* Name of the operator */ 50 ){ 51 int i; 52 53 assert( nTerm>=1 ); 54 if( bAnd ) sqlite3_str_append(pStr, " AND ", 5); 55 56 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 57 for(i=0; i<nTerm; i++){ 58 if( i ) sqlite3_str_append(pStr, ",", 1); 59 sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i)); 60 } 61 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 62 63 sqlite3_str_append(pStr, zOp, 1); 64 65 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 66 for(i=0; i<nTerm; i++){ 67 if( i ) sqlite3_str_append(pStr, ",", 1); 68 sqlite3_str_append(pStr, "?", 1); 69 } 70 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 71 } 72 73 /* 74 ** Argument pLevel describes a strategy for scanning table pTab. This 75 ** function appends text to pStr that describes the subset of table 76 ** rows scanned by the strategy in the form of an SQL expression. 77 ** 78 ** For example, if the query: 79 ** 80 ** SELECT * FROM t1 WHERE a=1 AND b>2; 81 ** 82 ** is run and there is an index on (a, b), then this function returns a 83 ** string similar to: 84 ** 85 ** "a=? AND b>?" 86 */ 87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 88 Index *pIndex = pLoop->u.btree.pIndex; 89 u16 nEq = pLoop->u.btree.nEq; 90 u16 nSkip = pLoop->nSkip; 91 int i, j; 92 93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 94 sqlite3_str_append(pStr, " (", 2); 95 for(i=0; i<nEq; i++){ 96 const char *z = explainIndexColumnName(pIndex, i); 97 if( i ) sqlite3_str_append(pStr, " AND ", 5); 98 sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); 99 } 100 101 j = i; 102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); 104 i = 1; 105 } 106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); 108 } 109 sqlite3_str_append(pStr, ")", 1); 110 } 111 112 /* 113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 116 ** is added to the output to describe the table scan strategy in pLevel. 117 ** 118 ** If an OP_Explain opcode is added to the VM, its address is returned. 119 ** Otherwise, if no OP_Explain is coded, zero is returned. 120 */ 121 int sqlite3WhereExplainOneScan( 122 Parse *pParse, /* Parse context */ 123 SrcList *pTabList, /* Table list this loop refers to */ 124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 125 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 126 ){ 127 int ret = 0; 128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 129 if( sqlite3ParseToplevel(pParse)->explain==2 ) 130 #endif 131 { 132 SrcItem *pItem = &pTabList->a[pLevel->iFrom]; 133 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 134 sqlite3 *db = pParse->db; /* Database handle */ 135 int isSearch; /* True for a SEARCH. False for SCAN. */ 136 WhereLoop *pLoop; /* The controlling WhereLoop object */ 137 u32 flags; /* Flags that describe this loop */ 138 char *zMsg; /* Text to add to EQP output */ 139 StrAccum str; /* EQP output string */ 140 char zBuf[100]; /* Initial space for EQP output string */ 141 142 pLoop = pLevel->pWLoop; 143 flags = pLoop->wsFlags; 144 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; 145 146 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 147 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 148 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 149 150 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 151 str.printfFlags = SQLITE_PRINTF_INTERNAL; 152 sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem); 153 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 154 const char *zFmt = 0; 155 Index *pIdx; 156 157 assert( pLoop->u.btree.pIndex!=0 ); 158 pIdx = pLoop->u.btree.pIndex; 159 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 160 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 161 if( isSearch ){ 162 zFmt = "PRIMARY KEY"; 163 } 164 }else if( flags & WHERE_PARTIALIDX ){ 165 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 166 }else if( flags & WHERE_AUTO_INDEX ){ 167 zFmt = "AUTOMATIC COVERING INDEX"; 168 }else if( flags & WHERE_IDX_ONLY ){ 169 zFmt = "COVERING INDEX %s"; 170 }else{ 171 zFmt = "INDEX %s"; 172 } 173 if( zFmt ){ 174 sqlite3_str_append(&str, " USING ", 7); 175 sqlite3_str_appendf(&str, zFmt, pIdx->zName); 176 explainIndexRange(&str, pLoop); 177 } 178 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 179 const char *zRangeOp; 180 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 181 zRangeOp = "="; 182 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 183 zRangeOp = ">? AND rowid<"; 184 }else if( flags&WHERE_BTM_LIMIT ){ 185 zRangeOp = ">"; 186 }else{ 187 assert( flags&WHERE_TOP_LIMIT); 188 zRangeOp = "<"; 189 } 190 sqlite3_str_appendf(&str, 191 " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp); 192 } 193 #ifndef SQLITE_OMIT_VIRTUALTABLE 194 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 195 sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s", 196 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 197 } 198 #endif 199 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 200 if( pLoop->nOut>=10 ){ 201 sqlite3_str_appendf(&str, " (~%llu rows)", 202 sqlite3LogEstToInt(pLoop->nOut)); 203 }else{ 204 sqlite3_str_append(&str, " (~1 row)", 9); 205 } 206 #endif 207 zMsg = sqlite3StrAccumFinish(&str); 208 sqlite3ExplainBreakpoint("",zMsg); 209 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), 210 pParse->addrExplain, 0, zMsg,P4_DYNAMIC); 211 } 212 return ret; 213 } 214 #endif /* SQLITE_OMIT_EXPLAIN */ 215 216 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 217 /* 218 ** Configure the VM passed as the first argument with an 219 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 220 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 221 ** clause that the scan reads data from. 222 ** 223 ** If argument addrExplain is not 0, it must be the address of an 224 ** OP_Explain instruction that describes the same loop. 225 */ 226 void sqlite3WhereAddScanStatus( 227 Vdbe *v, /* Vdbe to add scanstatus entry to */ 228 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 229 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 230 int addrExplain /* Address of OP_Explain (or 0) */ 231 ){ 232 const char *zObj = 0; 233 WhereLoop *pLoop = pLvl->pWLoop; 234 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 235 zObj = pLoop->u.btree.pIndex->zName; 236 }else{ 237 zObj = pSrclist->a[pLvl->iFrom].zName; 238 } 239 sqlite3VdbeScanStatus( 240 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 241 ); 242 } 243 #endif 244 245 246 /* 247 ** Disable a term in the WHERE clause. Except, do not disable the term 248 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 249 ** or USING clause of that join. 250 ** 251 ** Consider the term t2.z='ok' in the following queries: 252 ** 253 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 254 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 255 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 256 ** 257 ** The t2.z='ok' is disabled in the in (2) because it originates 258 ** in the ON clause. The term is disabled in (3) because it is not part 259 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 260 ** 261 ** Disabling a term causes that term to not be tested in the inner loop 262 ** of the join. Disabling is an optimization. When terms are satisfied 263 ** by indices, we disable them to prevent redundant tests in the inner 264 ** loop. We would get the correct results if nothing were ever disabled, 265 ** but joins might run a little slower. The trick is to disable as much 266 ** as we can without disabling too much. If we disabled in (1), we'd get 267 ** the wrong answer. See ticket #813. 268 ** 269 ** If all the children of a term are disabled, then that term is also 270 ** automatically disabled. In this way, terms get disabled if derived 271 ** virtual terms are tested first. For example: 272 ** 273 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 274 ** \___________/ \______/ \_____/ 275 ** parent child1 child2 276 ** 277 ** Only the parent term was in the original WHERE clause. The child1 278 ** and child2 terms were added by the LIKE optimization. If both of 279 ** the virtual child terms are valid, then testing of the parent can be 280 ** skipped. 281 ** 282 ** Usually the parent term is marked as TERM_CODED. But if the parent 283 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 284 ** The TERM_LIKECOND marking indicates that the term should be coded inside 285 ** a conditional such that is only evaluated on the second pass of a 286 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 287 */ 288 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 289 int nLoop = 0; 290 assert( pTerm!=0 ); 291 while( (pTerm->wtFlags & TERM_CODED)==0 292 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 293 && (pLevel->notReady & pTerm->prereqAll)==0 294 ){ 295 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 296 pTerm->wtFlags |= TERM_LIKECOND; 297 }else{ 298 pTerm->wtFlags |= TERM_CODED; 299 } 300 #ifdef WHERETRACE_ENABLED 301 if( sqlite3WhereTrace & 0x20000 ){ 302 sqlite3DebugPrintf("DISABLE-"); 303 sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a))); 304 } 305 #endif 306 if( pTerm->iParent<0 ) break; 307 pTerm = &pTerm->pWC->a[pTerm->iParent]; 308 assert( pTerm!=0 ); 309 pTerm->nChild--; 310 if( pTerm->nChild!=0 ) break; 311 nLoop++; 312 } 313 } 314 315 /* 316 ** Code an OP_Affinity opcode to apply the column affinity string zAff 317 ** to the n registers starting at base. 318 ** 319 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which 320 ** are no-ops) at the beginning and end of zAff are ignored. If all entries 321 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated. 322 ** 323 ** This routine makes its own copy of zAff so that the caller is free 324 ** to modify zAff after this routine returns. 325 */ 326 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 327 Vdbe *v = pParse->pVdbe; 328 if( zAff==0 ){ 329 assert( pParse->db->mallocFailed ); 330 return; 331 } 332 assert( v!=0 ); 333 334 /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE 335 ** entries at the beginning and end of the affinity string. 336 */ 337 assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB ); 338 while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){ 339 n--; 340 base++; 341 zAff++; 342 } 343 while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){ 344 n--; 345 } 346 347 /* Code the OP_Affinity opcode if there is anything left to do. */ 348 if( n>0 ){ 349 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 350 } 351 } 352 353 /* 354 ** Expression pRight, which is the RHS of a comparison operation, is 355 ** either a vector of n elements or, if n==1, a scalar expression. 356 ** Before the comparison operation, affinity zAff is to be applied 357 ** to the pRight values. This function modifies characters within the 358 ** affinity string to SQLITE_AFF_BLOB if either: 359 ** 360 ** * the comparison will be performed with no affinity, or 361 ** * the affinity change in zAff is guaranteed not to change the value. 362 */ 363 static void updateRangeAffinityStr( 364 Expr *pRight, /* RHS of comparison */ 365 int n, /* Number of vector elements in comparison */ 366 char *zAff /* Affinity string to modify */ 367 ){ 368 int i; 369 for(i=0; i<n; i++){ 370 Expr *p = sqlite3VectorFieldSubexpr(pRight, i); 371 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB 372 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) 373 ){ 374 zAff[i] = SQLITE_AFF_BLOB; 375 } 376 } 377 } 378 379 380 /* 381 ** pX is an expression of the form: (vector) IN (SELECT ...) 382 ** In other words, it is a vector IN operator with a SELECT clause on the 383 ** LHS. But not all terms in the vector are indexable and the terms might 384 ** not be in the correct order for indexing. 385 ** 386 ** This routine makes a copy of the input pX expression and then adjusts 387 ** the vector on the LHS with corresponding changes to the SELECT so that 388 ** the vector contains only index terms and those terms are in the correct 389 ** order. The modified IN expression is returned. The caller is responsible 390 ** for deleting the returned expression. 391 ** 392 ** Example: 393 ** 394 ** CREATE TABLE t1(a,b,c,d,e,f); 395 ** CREATE INDEX t1x1 ON t1(e,c); 396 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2) 397 ** \_______________________________________/ 398 ** The pX expression 399 ** 400 ** Since only columns e and c can be used with the index, in that order, 401 ** the modified IN expression that is returned will be: 402 ** 403 ** (e,c) IN (SELECT z,x FROM t2) 404 ** 405 ** The reduced pX is different from the original (obviously) and thus is 406 ** only used for indexing, to improve performance. The original unaltered 407 ** IN expression must also be run on each output row for correctness. 408 */ 409 static Expr *removeUnindexableInClauseTerms( 410 Parse *pParse, /* The parsing context */ 411 int iEq, /* Look at loop terms starting here */ 412 WhereLoop *pLoop, /* The current loop */ 413 Expr *pX /* The IN expression to be reduced */ 414 ){ 415 sqlite3 *db = pParse->db; 416 Expr *pNew; 417 pNew = sqlite3ExprDup(db, pX, 0); 418 if( db->mallocFailed==0 ){ 419 ExprList *pOrigRhs; /* Original unmodified RHS */ 420 ExprList *pOrigLhs; /* Original unmodified LHS */ 421 ExprList *pRhs = 0; /* New RHS after modifications */ 422 ExprList *pLhs = 0; /* New LHS after mods */ 423 int i; /* Loop counter */ 424 Select *pSelect; /* Pointer to the SELECT on the RHS */ 425 426 assert( ExprUseXSelect(pNew) ); 427 pOrigRhs = pNew->x.pSelect->pEList; 428 assert( pNew->pLeft!=0 ); 429 assert( ExprUseXList(pNew->pLeft) ); 430 pOrigLhs = pNew->pLeft->x.pList; 431 for(i=iEq; i<pLoop->nLTerm; i++){ 432 if( pLoop->aLTerm[i]->pExpr==pX ){ 433 int iField = pLoop->aLTerm[i]->u.x.iField - 1; 434 if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */ 435 pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr); 436 pOrigRhs->a[iField].pExpr = 0; 437 assert( pOrigLhs->a[iField].pExpr!=0 ); 438 pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr); 439 pOrigLhs->a[iField].pExpr = 0; 440 } 441 } 442 sqlite3ExprListDelete(db, pOrigRhs); 443 sqlite3ExprListDelete(db, pOrigLhs); 444 pNew->pLeft->x.pList = pLhs; 445 pNew->x.pSelect->pEList = pRhs; 446 if( pLhs && pLhs->nExpr==1 ){ 447 /* Take care here not to generate a TK_VECTOR containing only a 448 ** single value. Since the parser never creates such a vector, some 449 ** of the subroutines do not handle this case. */ 450 Expr *p = pLhs->a[0].pExpr; 451 pLhs->a[0].pExpr = 0; 452 sqlite3ExprDelete(db, pNew->pLeft); 453 pNew->pLeft = p; 454 } 455 pSelect = pNew->x.pSelect; 456 if( pSelect->pOrderBy ){ 457 /* If the SELECT statement has an ORDER BY clause, zero the 458 ** iOrderByCol variables. These are set to non-zero when an 459 ** ORDER BY term exactly matches one of the terms of the 460 ** result-set. Since the result-set of the SELECT statement may 461 ** have been modified or reordered, these variables are no longer 462 ** set correctly. Since setting them is just an optimization, 463 ** it's easiest just to zero them here. */ 464 ExprList *pOrderBy = pSelect->pOrderBy; 465 for(i=0; i<pOrderBy->nExpr; i++){ 466 pOrderBy->a[i].u.x.iOrderByCol = 0; 467 } 468 } 469 470 #if 0 471 printf("For indexing, change the IN expr:\n"); 472 sqlite3TreeViewExpr(0, pX, 0); 473 printf("Into:\n"); 474 sqlite3TreeViewExpr(0, pNew, 0); 475 #endif 476 } 477 return pNew; 478 } 479 480 481 /* 482 ** Generate code for a single equality term of the WHERE clause. An equality 483 ** term can be either X=expr or X IN (...). pTerm is the term to be 484 ** coded. 485 ** 486 ** The current value for the constraint is left in a register, the index 487 ** of which is returned. An attempt is made store the result in iTarget but 488 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the 489 ** constraint is a TK_EQ or TK_IS, then the current value might be left in 490 ** some other register and it is the caller's responsibility to compensate. 491 ** 492 ** For a constraint of the form X=expr, the expression is evaluated in 493 ** straight-line code. For constraints of the form X IN (...) 494 ** this routine sets up a loop that will iterate over all values of X. 495 */ 496 static int codeEqualityTerm( 497 Parse *pParse, /* The parsing context */ 498 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 499 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 500 int iEq, /* Index of the equality term within this level */ 501 int bRev, /* True for reverse-order IN operations */ 502 int iTarget /* Attempt to leave results in this register */ 503 ){ 504 Expr *pX = pTerm->pExpr; 505 Vdbe *v = pParse->pVdbe; 506 int iReg; /* Register holding results */ 507 508 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); 509 assert( iTarget>0 ); 510 if( pX->op==TK_EQ || pX->op==TK_IS ){ 511 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 512 }else if( pX->op==TK_ISNULL ){ 513 iReg = iTarget; 514 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 515 #ifndef SQLITE_OMIT_SUBQUERY 516 }else{ 517 int eType = IN_INDEX_NOOP; 518 int iTab; 519 struct InLoop *pIn; 520 WhereLoop *pLoop = pLevel->pWLoop; 521 int i; 522 int nEq = 0; 523 int *aiMap = 0; 524 525 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 526 && pLoop->u.btree.pIndex!=0 527 && pLoop->u.btree.pIndex->aSortOrder[iEq] 528 ){ 529 testcase( iEq==0 ); 530 testcase( bRev ); 531 bRev = !bRev; 532 } 533 assert( pX->op==TK_IN ); 534 iReg = iTarget; 535 536 for(i=0; i<iEq; i++){ 537 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ 538 disableTerm(pLevel, pTerm); 539 return iTarget; 540 } 541 } 542 for(i=iEq;i<pLoop->nLTerm; i++){ 543 assert( pLoop->aLTerm[i]!=0 ); 544 if( pLoop->aLTerm[i]->pExpr==pX ) nEq++; 545 } 546 547 iTab = 0; 548 if( !ExprUseXSelect(pX) || pX->x.pSelect->pEList->nExpr==1 ){ 549 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab); 550 }else{ 551 sqlite3 *db = pParse->db; 552 pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX); 553 554 if( !db->mallocFailed ){ 555 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq); 556 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab); 557 pTerm->pExpr->iTable = iTab; 558 } 559 sqlite3ExprDelete(db, pX); 560 pX = pTerm->pExpr; 561 } 562 563 if( eType==IN_INDEX_INDEX_DESC ){ 564 testcase( bRev ); 565 bRev = !bRev; 566 } 567 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 568 VdbeCoverageIf(v, bRev); 569 VdbeCoverageIf(v, !bRev); 570 571 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 572 pLoop->wsFlags |= WHERE_IN_ABLE; 573 if( pLevel->u.in.nIn==0 ){ 574 pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 575 } 576 if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){ 577 pLoop->wsFlags |= WHERE_IN_EARLYOUT; 578 } 579 580 i = pLevel->u.in.nIn; 581 pLevel->u.in.nIn += nEq; 582 pLevel->u.in.aInLoop = 583 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 584 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 585 pIn = pLevel->u.in.aInLoop; 586 if( pIn ){ 587 int iMap = 0; /* Index in aiMap[] */ 588 pIn += i; 589 for(i=iEq;i<pLoop->nLTerm; i++){ 590 if( pLoop->aLTerm[i]->pExpr==pX ){ 591 int iOut = iReg + i - iEq; 592 if( eType==IN_INDEX_ROWID ){ 593 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); 594 }else{ 595 int iCol = aiMap ? aiMap[iMap++] : 0; 596 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); 597 } 598 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); 599 if( i==iEq ){ 600 pIn->iCur = iTab; 601 pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next; 602 if( iEq>0 ){ 603 pIn->iBase = iReg - i; 604 pIn->nPrefix = i; 605 }else{ 606 pIn->nPrefix = 0; 607 } 608 }else{ 609 pIn->eEndLoopOp = OP_Noop; 610 } 611 pIn++; 612 } 613 } 614 testcase( iEq>0 615 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 616 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ); 617 if( iEq>0 618 && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0 619 ){ 620 sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq); 621 } 622 }else{ 623 pLevel->u.in.nIn = 0; 624 } 625 sqlite3DbFree(pParse->db, aiMap); 626 #endif 627 } 628 629 /* As an optimization, try to disable the WHERE clause term that is 630 ** driving the index as it will always be true. The correct answer is 631 ** obtained regardless, but we might get the answer with fewer CPU cycles 632 ** by omitting the term. 633 ** 634 ** But do not disable the term unless we are certain that the term is 635 ** not a transitive constraint. For an example of where that does not 636 ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04) 637 */ 638 if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0 639 || (pTerm->eOperator & WO_EQUIV)==0 640 ){ 641 disableTerm(pLevel, pTerm); 642 } 643 644 return iReg; 645 } 646 647 /* 648 ** Generate code that will evaluate all == and IN constraints for an 649 ** index scan. 650 ** 651 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 652 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 653 ** The index has as many as three equality constraints, but in this 654 ** example, the third "c" value is an inequality. So only two 655 ** constraints are coded. This routine will generate code to evaluate 656 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 657 ** in consecutive registers and the index of the first register is returned. 658 ** 659 ** In the example above nEq==2. But this subroutine works for any value 660 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 661 ** The only thing it does is allocate the pLevel->iMem memory cell and 662 ** compute the affinity string. 663 ** 664 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 665 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 666 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 667 ** occurs after the nEq quality constraints. 668 ** 669 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 670 ** the index of the first memory cell in that range. The code that 671 ** calls this routine will use that memory range to store keys for 672 ** start and termination conditions of the loop. 673 ** key value of the loop. If one or more IN operators appear, then 674 ** this routine allocates an additional nEq memory cells for internal 675 ** use. 676 ** 677 ** Before returning, *pzAff is set to point to a buffer containing a 678 ** copy of the column affinity string of the index allocated using 679 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 680 ** with equality constraints that use BLOB or NONE affinity are set to 681 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 682 ** 683 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 684 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 685 ** 686 ** In the example above, the index on t1(a) has TEXT affinity. But since 687 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 688 ** no conversion should be attempted before using a t2.b value as part of 689 ** a key to search the index. Hence the first byte in the returned affinity 690 ** string in this example would be set to SQLITE_AFF_BLOB. 691 */ 692 static int codeAllEqualityTerms( 693 Parse *pParse, /* Parsing context */ 694 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 695 int bRev, /* Reverse the order of IN operators */ 696 int nExtraReg, /* Number of extra registers to allocate */ 697 char **pzAff /* OUT: Set to point to affinity string */ 698 ){ 699 u16 nEq; /* The number of == or IN constraints to code */ 700 u16 nSkip; /* Number of left-most columns to skip */ 701 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 702 Index *pIdx; /* The index being used for this loop */ 703 WhereTerm *pTerm; /* A single constraint term */ 704 WhereLoop *pLoop; /* The WhereLoop object */ 705 int j; /* Loop counter */ 706 int regBase; /* Base register */ 707 int nReg; /* Number of registers to allocate */ 708 char *zAff; /* Affinity string to return */ 709 710 /* This module is only called on query plans that use an index. */ 711 pLoop = pLevel->pWLoop; 712 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 713 nEq = pLoop->u.btree.nEq; 714 nSkip = pLoop->nSkip; 715 pIdx = pLoop->u.btree.pIndex; 716 assert( pIdx!=0 ); 717 718 /* Figure out how many memory cells we will need then allocate them. 719 */ 720 regBase = pParse->nMem + 1; 721 nReg = pLoop->u.btree.nEq + nExtraReg; 722 pParse->nMem += nReg; 723 724 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 725 assert( zAff!=0 || pParse->db->mallocFailed ); 726 727 if( nSkip ){ 728 int iIdxCur = pLevel->iIdxCur; 729 sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1); 730 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 731 VdbeCoverageIf(v, bRev==0); 732 VdbeCoverageIf(v, bRev!=0); 733 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 734 j = sqlite3VdbeAddOp0(v, OP_Goto); 735 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 736 iIdxCur, 0, regBase, nSkip); 737 VdbeCoverageIf(v, bRev==0); 738 VdbeCoverageIf(v, bRev!=0); 739 sqlite3VdbeJumpHere(v, j); 740 for(j=0; j<nSkip; j++){ 741 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 742 testcase( pIdx->aiColumn[j]==XN_EXPR ); 743 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 744 } 745 } 746 747 /* Evaluate the equality constraints 748 */ 749 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 750 for(j=nSkip; j<nEq; j++){ 751 int r1; 752 pTerm = pLoop->aLTerm[j]; 753 assert( pTerm!=0 ); 754 /* The following testcase is true for indices with redundant columns. 755 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 756 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 757 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 758 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 759 if( r1!=regBase+j ){ 760 if( nReg==1 ){ 761 sqlite3ReleaseTempReg(pParse, regBase); 762 regBase = r1; 763 }else{ 764 sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j); 765 } 766 } 767 if( pTerm->eOperator & WO_IN ){ 768 if( pTerm->pExpr->flags & EP_xIsSelect ){ 769 /* No affinity ever needs to be (or should be) applied to a value 770 ** from the RHS of an "? IN (SELECT ...)" expression. The 771 ** sqlite3FindInIndex() routine has already ensured that the 772 ** affinity of the comparison has been applied to the value. */ 773 if( zAff ) zAff[j] = SQLITE_AFF_BLOB; 774 } 775 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ 776 Expr *pRight = pTerm->pExpr->pRight; 777 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 778 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 779 VdbeCoverage(v); 780 } 781 if( pParse->db->mallocFailed==0 && pParse->nErr==0 ){ 782 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 783 zAff[j] = SQLITE_AFF_BLOB; 784 } 785 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 786 zAff[j] = SQLITE_AFF_BLOB; 787 } 788 } 789 } 790 } 791 *pzAff = zAff; 792 return regBase; 793 } 794 795 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 796 /* 797 ** If the most recently coded instruction is a constant range constraint 798 ** (a string literal) that originated from the LIKE optimization, then 799 ** set P3 and P5 on the OP_String opcode so that the string will be cast 800 ** to a BLOB at appropriate times. 801 ** 802 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 803 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 804 ** scan loop run twice, once for strings and a second time for BLOBs. 805 ** The OP_String opcodes on the second pass convert the upper and lower 806 ** bound string constants to blobs. This routine makes the necessary changes 807 ** to the OP_String opcodes for that to happen. 808 ** 809 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 810 ** only the one pass through the string space is required, so this routine 811 ** becomes a no-op. 812 */ 813 static void whereLikeOptimizationStringFixup( 814 Vdbe *v, /* prepared statement under construction */ 815 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 816 WhereTerm *pTerm /* The upper or lower bound just coded */ 817 ){ 818 if( pTerm->wtFlags & TERM_LIKEOPT ){ 819 VdbeOp *pOp; 820 assert( pLevel->iLikeRepCntr>0 ); 821 pOp = sqlite3VdbeGetOp(v, -1); 822 assert( pOp!=0 ); 823 assert( pOp->opcode==OP_String8 824 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 825 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ 826 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ 827 } 828 } 829 #else 830 # define whereLikeOptimizationStringFixup(A,B,C) 831 #endif 832 833 #ifdef SQLITE_ENABLE_CURSOR_HINTS 834 /* 835 ** Information is passed from codeCursorHint() down to individual nodes of 836 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 837 ** structure. 838 */ 839 struct CCurHint { 840 int iTabCur; /* Cursor for the main table */ 841 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 842 Index *pIdx; /* The index used to access the table */ 843 }; 844 845 /* 846 ** This function is called for every node of an expression that is a candidate 847 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 848 ** the table CCurHint.iTabCur, verify that the same column can be 849 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 850 */ 851 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 852 struct CCurHint *pHint = pWalker->u.pCCurHint; 853 assert( pHint->pIdx!=0 ); 854 if( pExpr->op==TK_COLUMN 855 && pExpr->iTable==pHint->iTabCur 856 && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0 857 ){ 858 pWalker->eCode = 1; 859 } 860 return WRC_Continue; 861 } 862 863 /* 864 ** Test whether or not expression pExpr, which was part of a WHERE clause, 865 ** should be included in the cursor-hint for a table that is on the rhs 866 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the 867 ** expression is not suitable. 868 ** 869 ** An expression is unsuitable if it might evaluate to non NULL even if 870 ** a TK_COLUMN node that does affect the value of the expression is set 871 ** to NULL. For example: 872 ** 873 ** col IS NULL 874 ** col IS NOT NULL 875 ** coalesce(col, 1) 876 ** CASE WHEN col THEN 0 ELSE 1 END 877 */ 878 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ 879 if( pExpr->op==TK_IS 880 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT 881 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE 882 ){ 883 pWalker->eCode = 1; 884 }else if( pExpr->op==TK_FUNCTION ){ 885 int d1; 886 char d2[4]; 887 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ 888 pWalker->eCode = 1; 889 } 890 } 891 892 return WRC_Continue; 893 } 894 895 896 /* 897 ** This function is called on every node of an expression tree used as an 898 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 899 ** that accesses any table other than the one identified by 900 ** CCurHint.iTabCur, then do the following: 901 ** 902 ** 1) allocate a register and code an OP_Column instruction to read 903 ** the specified column into the new register, and 904 ** 905 ** 2) transform the expression node to a TK_REGISTER node that reads 906 ** from the newly populated register. 907 ** 908 ** Also, if the node is a TK_COLUMN that does access the table idenified 909 ** by pCCurHint.iTabCur, and an index is being used (which we will 910 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 911 ** an access of the index rather than the original table. 912 */ 913 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 914 int rc = WRC_Continue; 915 struct CCurHint *pHint = pWalker->u.pCCurHint; 916 if( pExpr->op==TK_COLUMN ){ 917 if( pExpr->iTable!=pHint->iTabCur ){ 918 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 919 sqlite3ExprCode(pWalker->pParse, pExpr, reg); 920 pExpr->op = TK_REGISTER; 921 pExpr->iTable = reg; 922 }else if( pHint->pIdx!=0 ){ 923 pExpr->iTable = pHint->iIdxCur; 924 pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn); 925 assert( pExpr->iColumn>=0 ); 926 } 927 }else if( pExpr->op==TK_AGG_FUNCTION ){ 928 /* An aggregate function in the WHERE clause of a query means this must 929 ** be a correlated sub-query, and expression pExpr is an aggregate from 930 ** the parent context. Do not walk the function arguments in this case. 931 ** 932 ** todo: It should be possible to replace this node with a TK_REGISTER 933 ** expression, as the result of the expression must be stored in a 934 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 935 rc = WRC_Prune; 936 } 937 return rc; 938 } 939 940 /* 941 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 942 */ 943 static void codeCursorHint( 944 SrcItem *pTabItem, /* FROM clause item */ 945 WhereInfo *pWInfo, /* The where clause */ 946 WhereLevel *pLevel, /* Which loop to provide hints for */ 947 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 948 ){ 949 Parse *pParse = pWInfo->pParse; 950 sqlite3 *db = pParse->db; 951 Vdbe *v = pParse->pVdbe; 952 Expr *pExpr = 0; 953 WhereLoop *pLoop = pLevel->pWLoop; 954 int iCur; 955 WhereClause *pWC; 956 WhereTerm *pTerm; 957 int i, j; 958 struct CCurHint sHint; 959 Walker sWalker; 960 961 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 962 iCur = pLevel->iTabCur; 963 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 964 sHint.iTabCur = iCur; 965 sHint.iIdxCur = pLevel->iIdxCur; 966 sHint.pIdx = pLoop->u.btree.pIndex; 967 memset(&sWalker, 0, sizeof(sWalker)); 968 sWalker.pParse = pParse; 969 sWalker.u.pCCurHint = &sHint; 970 pWC = &pWInfo->sWC; 971 for(i=0; i<pWC->nTerm; i++){ 972 pTerm = &pWC->a[i]; 973 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 974 if( pTerm->prereqAll & pLevel->notReady ) continue; 975 976 /* Any terms specified as part of the ON(...) clause for any LEFT 977 ** JOIN for which the current table is not the rhs are omitted 978 ** from the cursor-hint. 979 ** 980 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms 981 ** that were specified as part of the WHERE clause must be excluded. 982 ** This is to address the following: 983 ** 984 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; 985 ** 986 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its 987 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is 988 ** pushed down to the cursor, this row is filtered out, causing 989 ** SQLite to synthesize a row of NULL values. Which does match the 990 ** WHERE clause, and so the query returns a row. Which is incorrect. 991 ** 992 ** For the same reason, WHERE terms such as: 993 ** 994 ** WHERE 1 = (t2.c IS NULL) 995 ** 996 ** are also excluded. See codeCursorHintIsOrFunction() for details. 997 */ 998 if( pTabItem->fg.jointype & JT_LEFT ){ 999 Expr *pExpr = pTerm->pExpr; 1000 if( !ExprHasProperty(pExpr, EP_FromJoin) 1001 || pExpr->iRightJoinTable!=pTabItem->iCursor 1002 ){ 1003 sWalker.eCode = 0; 1004 sWalker.xExprCallback = codeCursorHintIsOrFunction; 1005 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 1006 if( sWalker.eCode ) continue; 1007 } 1008 }else{ 1009 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; 1010 } 1011 1012 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 1013 ** the cursor. These terms are not needed as hints for a pure range 1014 ** scan (that has no == terms) so omit them. */ 1015 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 1016 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 1017 if( j<pLoop->nLTerm ) continue; 1018 } 1019 1020 /* No subqueries or non-deterministic functions allowed */ 1021 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 1022 1023 /* For an index scan, make sure referenced columns are actually in 1024 ** the index. */ 1025 if( sHint.pIdx!=0 ){ 1026 sWalker.eCode = 0; 1027 sWalker.xExprCallback = codeCursorHintCheckExpr; 1028 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 1029 if( sWalker.eCode ) continue; 1030 } 1031 1032 /* If we survive all prior tests, that means this term is worth hinting */ 1033 pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 1034 } 1035 if( pExpr!=0 ){ 1036 sWalker.xExprCallback = codeCursorHintFixExpr; 1037 sqlite3WalkExpr(&sWalker, pExpr); 1038 sqlite3VdbeAddOp4(v, OP_CursorHint, 1039 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 1040 (const char*)pExpr, P4_EXPR); 1041 } 1042 } 1043 #else 1044 # define codeCursorHint(A,B,C,D) /* No-op */ 1045 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 1046 1047 /* 1048 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains 1049 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This 1050 ** function generates code to do a deferred seek of cursor iCur to the 1051 ** rowid stored in register iRowid. 1052 ** 1053 ** Normally, this is just: 1054 ** 1055 ** OP_DeferredSeek $iCur $iRowid 1056 ** 1057 ** However, if the scan currently being coded is a branch of an OR-loop and 1058 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek 1059 ** is set to iIdxCur and P4 is set to point to an array of integers 1060 ** containing one entry for each column of the table cursor iCur is open 1061 ** on. For each table column, if the column is the i'th column of the 1062 ** index, then the corresponding array entry is set to (i+1). If the column 1063 ** does not appear in the index at all, the array entry is set to 0. 1064 */ 1065 static void codeDeferredSeek( 1066 WhereInfo *pWInfo, /* Where clause context */ 1067 Index *pIdx, /* Index scan is using */ 1068 int iCur, /* Cursor for IPK b-tree */ 1069 int iIdxCur /* Index cursor */ 1070 ){ 1071 Parse *pParse = pWInfo->pParse; /* Parse context */ 1072 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ 1073 1074 assert( iIdxCur>0 ); 1075 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); 1076 1077 pWInfo->bDeferredSeek = 1; 1078 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur); 1079 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 1080 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) 1081 ){ 1082 int i; 1083 Table *pTab = pIdx->pTable; 1084 u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1)); 1085 if( ai ){ 1086 ai[0] = pTab->nCol; 1087 for(i=0; i<pIdx->nColumn-1; i++){ 1088 int x1, x2; 1089 assert( pIdx->aiColumn[i]<pTab->nCol ); 1090 x1 = pIdx->aiColumn[i]; 1091 x2 = sqlite3TableColumnToStorage(pTab, x1); 1092 testcase( x1!=x2 ); 1093 if( x1>=0 ) ai[x2+1] = i+1; 1094 } 1095 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); 1096 } 1097 } 1098 } 1099 1100 /* 1101 ** If the expression passed as the second argument is a vector, generate 1102 ** code to write the first nReg elements of the vector into an array 1103 ** of registers starting with iReg. 1104 ** 1105 ** If the expression is not a vector, then nReg must be passed 1. In 1106 ** this case, generate code to evaluate the expression and leave the 1107 ** result in register iReg. 1108 */ 1109 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ 1110 assert( nReg>0 ); 1111 if( p && sqlite3ExprIsVector(p) ){ 1112 #ifndef SQLITE_OMIT_SUBQUERY 1113 if( ExprUseXSelect(p) ){ 1114 Vdbe *v = pParse->pVdbe; 1115 int iSelect; 1116 assert( p->op==TK_SELECT ); 1117 iSelect = sqlite3CodeSubselect(pParse, p); 1118 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); 1119 }else 1120 #endif 1121 { 1122 int i; 1123 const ExprList *pList; 1124 assert( ExprUseXList(p) ); 1125 pList = p->x.pList; 1126 assert( nReg<=pList->nExpr ); 1127 for(i=0; i<nReg; i++){ 1128 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i); 1129 } 1130 } 1131 }else{ 1132 assert( nReg==1 || pParse->nErr ); 1133 sqlite3ExprCode(pParse, p, iReg); 1134 } 1135 } 1136 1137 /* An instance of the IdxExprTrans object carries information about a 1138 ** mapping from an expression on table columns into a column in an index 1139 ** down through the Walker. 1140 */ 1141 typedef struct IdxExprTrans { 1142 Expr *pIdxExpr; /* The index expression */ 1143 int iTabCur; /* The cursor of the corresponding table */ 1144 int iIdxCur; /* The cursor for the index */ 1145 int iIdxCol; /* The column for the index */ 1146 int iTabCol; /* The column for the table */ 1147 WhereInfo *pWInfo; /* Complete WHERE clause information */ 1148 sqlite3 *db; /* Database connection (for malloc()) */ 1149 } IdxExprTrans; 1150 1151 /* 1152 ** Preserve pExpr on the WhereETrans list of the WhereInfo. 1153 */ 1154 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){ 1155 WhereExprMod *pNew; 1156 pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew)); 1157 if( pNew==0 ) return; 1158 pNew->pNext = pTrans->pWInfo->pExprMods; 1159 pTrans->pWInfo->pExprMods = pNew; 1160 pNew->pExpr = pExpr; 1161 memcpy(&pNew->orig, pExpr, sizeof(*pExpr)); 1162 } 1163 1164 /* The walker node callback used to transform matching expressions into 1165 ** a reference to an index column for an index on an expression. 1166 ** 1167 ** If pExpr matches, then transform it into a reference to the index column 1168 ** that contains the value of pExpr. 1169 */ 1170 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){ 1171 IdxExprTrans *pX = p->u.pIdxTrans; 1172 if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){ 1173 preserveExpr(pX, pExpr); 1174 pExpr->affExpr = sqlite3ExprAffinity(pExpr); 1175 pExpr->op = TK_COLUMN; 1176 pExpr->iTable = pX->iIdxCur; 1177 pExpr->iColumn = pX->iIdxCol; 1178 testcase( ExprHasProperty(pExpr, EP_Skip) ); 1179 testcase( ExprHasProperty(pExpr, EP_Unlikely) ); 1180 ExprClearProperty(pExpr, EP_Skip|EP_Unlikely|EP_WinFunc|EP_Subrtn); 1181 pExpr->y.pTab = 0; 1182 return WRC_Prune; 1183 }else{ 1184 return WRC_Continue; 1185 } 1186 } 1187 1188 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1189 /* A walker node callback that translates a column reference to a table 1190 ** into a corresponding column reference of an index. 1191 */ 1192 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){ 1193 if( pExpr->op==TK_COLUMN ){ 1194 IdxExprTrans *pX = p->u.pIdxTrans; 1195 if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){ 1196 assert( ExprUseYTab(pExpr) && pExpr->y.pTab!=0 ); 1197 preserveExpr(pX, pExpr); 1198 pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn); 1199 pExpr->iTable = pX->iIdxCur; 1200 pExpr->iColumn = pX->iIdxCol; 1201 pExpr->y.pTab = 0; 1202 } 1203 } 1204 return WRC_Continue; 1205 } 1206 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1207 1208 /* 1209 ** For an indexes on expression X, locate every instance of expression X 1210 ** in pExpr and change that subexpression into a reference to the appropriate 1211 ** column of the index. 1212 ** 1213 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in 1214 ** the table into references to the corresponding (stored) column of the 1215 ** index. 1216 */ 1217 static void whereIndexExprTrans( 1218 Index *pIdx, /* The Index */ 1219 int iTabCur, /* Cursor of the table that is being indexed */ 1220 int iIdxCur, /* Cursor of the index itself */ 1221 WhereInfo *pWInfo /* Transform expressions in this WHERE clause */ 1222 ){ 1223 int iIdxCol; /* Column number of the index */ 1224 ExprList *aColExpr; /* Expressions that are indexed */ 1225 Table *pTab; 1226 Walker w; 1227 IdxExprTrans x; 1228 aColExpr = pIdx->aColExpr; 1229 if( aColExpr==0 && !pIdx->bHasVCol ){ 1230 /* The index does not reference any expressions or virtual columns 1231 ** so no translations are needed. */ 1232 return; 1233 } 1234 pTab = pIdx->pTable; 1235 memset(&w, 0, sizeof(w)); 1236 w.u.pIdxTrans = &x; 1237 x.iTabCur = iTabCur; 1238 x.iIdxCur = iIdxCur; 1239 x.pWInfo = pWInfo; 1240 x.db = pWInfo->pParse->db; 1241 for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){ 1242 i16 iRef = pIdx->aiColumn[iIdxCol]; 1243 if( iRef==XN_EXPR ){ 1244 assert( aColExpr!=0 && aColExpr->a[iIdxCol].pExpr!=0 ); 1245 x.pIdxExpr = aColExpr->a[iIdxCol].pExpr; 1246 if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue; 1247 w.xExprCallback = whereIndexExprTransNode; 1248 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1249 }else if( iRef>=0 1250 && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0 1251 && ((pTab->aCol[iRef].colFlags & COLFLAG_HASCOLL)==0 1252 || sqlite3StrICmp(sqlite3ColumnColl(&pTab->aCol[iRef]), 1253 sqlite3StrBINARY)==0) 1254 ){ 1255 /* Check to see if there are direct references to generated columns 1256 ** that are contained in the index. Pulling the generated column 1257 ** out of the index is an optimization only - the main table is always 1258 ** available if the index cannot be used. To avoid unnecessary 1259 ** complication, omit this optimization if the collating sequence for 1260 ** the column is non-standard */ 1261 x.iTabCol = iRef; 1262 w.xExprCallback = whereIndexExprTransColumn; 1263 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1264 }else{ 1265 continue; 1266 } 1267 x.iIdxCol = iIdxCol; 1268 sqlite3WalkExpr(&w, pWInfo->pWhere); 1269 sqlite3WalkExprList(&w, pWInfo->pOrderBy); 1270 sqlite3WalkExprList(&w, pWInfo->pResultSet); 1271 } 1272 } 1273 1274 /* 1275 ** The pTruth expression is always true because it is the WHERE clause 1276 ** a partial index that is driving a query loop. Look through all of the 1277 ** WHERE clause terms on the query, and if any of those terms must be 1278 ** true because pTruth is true, then mark those WHERE clause terms as 1279 ** coded. 1280 */ 1281 static void whereApplyPartialIndexConstraints( 1282 Expr *pTruth, 1283 int iTabCur, 1284 WhereClause *pWC 1285 ){ 1286 int i; 1287 WhereTerm *pTerm; 1288 while( pTruth->op==TK_AND ){ 1289 whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC); 1290 pTruth = pTruth->pRight; 1291 } 1292 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1293 Expr *pExpr; 1294 if( pTerm->wtFlags & TERM_CODED ) continue; 1295 pExpr = pTerm->pExpr; 1296 if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){ 1297 pTerm->wtFlags |= TERM_CODED; 1298 } 1299 } 1300 } 1301 1302 /* 1303 ** Generate code for the start of the iLevel-th loop in the WHERE clause 1304 ** implementation described by pWInfo. 1305 */ 1306 Bitmask sqlite3WhereCodeOneLoopStart( 1307 Parse *pParse, /* Parsing context */ 1308 Vdbe *v, /* Prepared statement under construction */ 1309 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1310 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1311 WhereLevel *pLevel, /* The current level pointer */ 1312 Bitmask notReady /* Which tables are currently available */ 1313 ){ 1314 int j, k; /* Loop counters */ 1315 int iCur; /* The VDBE cursor for the table */ 1316 int addrNxt; /* Where to jump to continue with the next IN case */ 1317 int bRev; /* True if we need to scan in reverse order */ 1318 WhereLoop *pLoop; /* The WhereLoop object being coded */ 1319 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 1320 WhereTerm *pTerm; /* A WHERE clause term */ 1321 sqlite3 *db; /* Database connection */ 1322 SrcItem *pTabItem; /* FROM clause term being coded */ 1323 int addrBrk; /* Jump here to break out of the loop */ 1324 int addrHalt; /* addrBrk for the outermost loop */ 1325 int addrCont; /* Jump here to continue with next cycle */ 1326 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 1327 int iReleaseReg = 0; /* Temp register to free before returning */ 1328 Index *pIdx = 0; /* Index used by loop (if any) */ 1329 int iLoop; /* Iteration of constraint generator loop */ 1330 1331 pWC = &pWInfo->sWC; 1332 db = pParse->db; 1333 pLoop = pLevel->pWLoop; 1334 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1335 iCur = pTabItem->iCursor; 1336 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 1337 bRev = (pWInfo->revMask>>iLevel)&1; 1338 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 1339 #if WHERETRACE_ENABLED /* 0x20800 */ 1340 if( sqlite3WhereTrace & 0x800 ){ 1341 sqlite3DebugPrintf("Coding level %d of %d: notReady=%llx iFrom=%d\n", 1342 iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom); 1343 sqlite3WhereLoopPrint(pLoop, pWC); 1344 } 1345 if( sqlite3WhereTrace & 0x20000 ){ 1346 if( iLevel==0 ){ 1347 sqlite3DebugPrintf("WHERE clause being coded:\n"); 1348 sqlite3TreeViewExpr(0, pWInfo->pWhere, 0); 1349 } 1350 sqlite3DebugPrintf("All WHERE-clause terms before coding:\n"); 1351 sqlite3WhereClausePrint(pWC); 1352 } 1353 #endif 1354 1355 /* Create labels for the "break" and "continue" instructions 1356 ** for the current loop. Jump to addrBrk to break out of a loop. 1357 ** Jump to cont to go immediately to the next iteration of the 1358 ** loop. 1359 ** 1360 ** When there is an IN operator, we also have a "addrNxt" label that 1361 ** means to continue with the next IN value combination. When 1362 ** there are no IN operators in the constraints, the "addrNxt" label 1363 ** is the same as "addrBrk". 1364 */ 1365 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 1366 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse); 1367 1368 /* If this is the right table of a LEFT OUTER JOIN, allocate and 1369 ** initialize a memory cell that records if this table matches any 1370 ** row of the left table of the join. 1371 */ 1372 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 1373 || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0 1374 ); 1375 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 1376 pLevel->iLeftJoin = ++pParse->nMem; 1377 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 1378 VdbeComment((v, "init LEFT JOIN no-match flag")); 1379 } 1380 1381 /* Compute a safe address to jump to if we discover that the table for 1382 ** this loop is empty and can never contribute content. */ 1383 for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){} 1384 addrHalt = pWInfo->a[j].addrBrk; 1385 1386 /* Special case of a FROM clause subquery implemented as a co-routine */ 1387 if( pTabItem->fg.viaCoroutine ){ 1388 int regYield = pTabItem->regReturn; 1389 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 1390 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 1391 VdbeCoverage(v); 1392 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 1393 pLevel->op = OP_Goto; 1394 }else 1395 1396 #ifndef SQLITE_OMIT_VIRTUALTABLE 1397 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 1398 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 1399 ** to access the data. 1400 */ 1401 int iReg; /* P3 Value for OP_VFilter */ 1402 int addrNotFound; 1403 int nConstraint = pLoop->nLTerm; 1404 int iIn; /* Counter for IN constraints */ 1405 1406 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 1407 addrNotFound = pLevel->addrBrk; 1408 for(j=0; j<nConstraint; j++){ 1409 int iTarget = iReg+j+2; 1410 pTerm = pLoop->aLTerm[j]; 1411 if( NEVER(pTerm==0) ) continue; 1412 if( pTerm->eOperator & WO_IN ){ 1413 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 1414 addrNotFound = pLevel->addrNxt; 1415 }else{ 1416 Expr *pRight = pTerm->pExpr->pRight; 1417 codeExprOrVector(pParse, pRight, iTarget, 1); 1418 } 1419 } 1420 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 1421 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 1422 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 1423 pLoop->u.vtab.idxStr, 1424 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); 1425 VdbeCoverage(v); 1426 pLoop->u.vtab.needFree = 0; 1427 /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed 1428 ** the u.vtab.idxStr. NULL it out to prevent a use-after-free */ 1429 if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0; 1430 pLevel->p1 = iCur; 1431 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 1432 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1433 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 1434 if( pLoop->wsFlags & WHERE_IN_ABLE ){ 1435 iIn = pLevel->u.in.nIn; 1436 }else{ 1437 iIn = 0; 1438 } 1439 for(j=nConstraint-1; j>=0; j--){ 1440 pTerm = pLoop->aLTerm[j]; 1441 if( (pTerm->eOperator & WO_IN)!=0 ) iIn--; 1442 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ 1443 disableTerm(pLevel, pTerm); 1444 }else if( (pTerm->eOperator & WO_IN)!=0 1445 && sqlite3ExprVectorSize(pTerm->pExpr->pLeft)==1 1446 ){ 1447 Expr *pCompare; /* The comparison operator */ 1448 Expr *pRight; /* RHS of the comparison */ 1449 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ 1450 1451 /* Reload the constraint value into reg[iReg+j+2]. The same value 1452 ** was loaded into the same register prior to the OP_VFilter, but 1453 ** the xFilter implementation might have changed the datatype or 1454 ** encoding of the value in the register, so it *must* be reloaded. */ 1455 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed ); 1456 if( !db->mallocFailed ){ 1457 assert( iIn>=0 && iIn<pLevel->u.in.nIn ); 1458 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop); 1459 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid ); 1460 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 ); 1461 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 ); 1462 testcase( pOp->opcode==OP_Rowid ); 1463 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); 1464 } 1465 1466 /* Generate code that will continue to the next row if 1467 ** the IN constraint is not satisfied */ 1468 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); 1469 assert( pCompare!=0 || db->mallocFailed ); 1470 if( pCompare ){ 1471 pCompare->pLeft = pTerm->pExpr->pLeft; 1472 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); 1473 if( pRight ){ 1474 pRight->iTable = iReg+j+2; 1475 sqlite3ExprIfFalse( 1476 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL 1477 ); 1478 } 1479 pCompare->pLeft = 0; 1480 sqlite3ExprDelete(db, pCompare); 1481 } 1482 } 1483 } 1484 assert( iIn==0 || db->mallocFailed ); 1485 /* These registers need to be preserved in case there is an IN operator 1486 ** loop. So we could deallocate the registers here (and potentially 1487 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems 1488 ** simpler and safer to simply not reuse the registers. 1489 ** 1490 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 1491 */ 1492 }else 1493 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1494 1495 if( (pLoop->wsFlags & WHERE_IPK)!=0 1496 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 1497 ){ 1498 /* Case 2: We can directly reference a single row using an 1499 ** equality comparison against the ROWID field. Or 1500 ** we reference multiple rows using a "rowid IN (...)" 1501 ** construct. 1502 */ 1503 assert( pLoop->u.btree.nEq==1 ); 1504 pTerm = pLoop->aLTerm[0]; 1505 assert( pTerm!=0 ); 1506 assert( pTerm->pExpr!=0 ); 1507 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1508 iReleaseReg = ++pParse->nMem; 1509 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 1510 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 1511 addrNxt = pLevel->addrNxt; 1512 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); 1513 VdbeCoverage(v); 1514 pLevel->op = OP_Noop; 1515 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 1516 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 1517 ){ 1518 /* Case 3: We have an inequality comparison against the ROWID field. 1519 */ 1520 int testOp = OP_Noop; 1521 int start; 1522 int memEndValue = 0; 1523 WhereTerm *pStart, *pEnd; 1524 1525 j = 0; 1526 pStart = pEnd = 0; 1527 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 1528 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 1529 assert( pStart!=0 || pEnd!=0 ); 1530 if( bRev ){ 1531 pTerm = pStart; 1532 pStart = pEnd; 1533 pEnd = pTerm; 1534 } 1535 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); 1536 if( pStart ){ 1537 Expr *pX; /* The expression that defines the start bound */ 1538 int r1, rTemp; /* Registers for holding the start boundary */ 1539 int op; /* Cursor seek operation */ 1540 1541 /* The following constant maps TK_xx codes into corresponding 1542 ** seek opcodes. It depends on a particular ordering of TK_xx 1543 */ 1544 const u8 aMoveOp[] = { 1545 /* TK_GT */ OP_SeekGT, 1546 /* TK_LE */ OP_SeekLE, 1547 /* TK_LT */ OP_SeekLT, 1548 /* TK_GE */ OP_SeekGE 1549 }; 1550 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 1551 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 1552 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 1553 1554 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 1555 testcase( pStart->wtFlags & TERM_VIRTUAL ); 1556 pX = pStart->pExpr; 1557 assert( pX!=0 ); 1558 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 1559 if( sqlite3ExprIsVector(pX->pRight) ){ 1560 r1 = rTemp = sqlite3GetTempReg(pParse); 1561 codeExprOrVector(pParse, pX->pRight, r1, 1); 1562 testcase( pX->op==TK_GT ); 1563 testcase( pX->op==TK_GE ); 1564 testcase( pX->op==TK_LT ); 1565 testcase( pX->op==TK_LE ); 1566 op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1]; 1567 assert( pX->op!=TK_GT || op==OP_SeekGE ); 1568 assert( pX->op!=TK_GE || op==OP_SeekGE ); 1569 assert( pX->op!=TK_LT || op==OP_SeekLE ); 1570 assert( pX->op!=TK_LE || op==OP_SeekLE ); 1571 }else{ 1572 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 1573 disableTerm(pLevel, pStart); 1574 op = aMoveOp[(pX->op - TK_GT)]; 1575 } 1576 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); 1577 VdbeComment((v, "pk")); 1578 VdbeCoverageIf(v, pX->op==TK_GT); 1579 VdbeCoverageIf(v, pX->op==TK_LE); 1580 VdbeCoverageIf(v, pX->op==TK_LT); 1581 VdbeCoverageIf(v, pX->op==TK_GE); 1582 sqlite3ReleaseTempReg(pParse, rTemp); 1583 }else{ 1584 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt); 1585 VdbeCoverageIf(v, bRev==0); 1586 VdbeCoverageIf(v, bRev!=0); 1587 } 1588 if( pEnd ){ 1589 Expr *pX; 1590 pX = pEnd->pExpr; 1591 assert( pX!=0 ); 1592 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 1593 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 1594 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 1595 memEndValue = ++pParse->nMem; 1596 codeExprOrVector(pParse, pX->pRight, memEndValue, 1); 1597 if( 0==sqlite3ExprIsVector(pX->pRight) 1598 && (pX->op==TK_LT || pX->op==TK_GT) 1599 ){ 1600 testOp = bRev ? OP_Le : OP_Ge; 1601 }else{ 1602 testOp = bRev ? OP_Lt : OP_Gt; 1603 } 1604 if( 0==sqlite3ExprIsVector(pX->pRight) ){ 1605 disableTerm(pLevel, pEnd); 1606 } 1607 } 1608 start = sqlite3VdbeCurrentAddr(v); 1609 pLevel->op = bRev ? OP_Prev : OP_Next; 1610 pLevel->p1 = iCur; 1611 pLevel->p2 = start; 1612 assert( pLevel->p5==0 ); 1613 if( testOp!=OP_Noop ){ 1614 iRowidReg = ++pParse->nMem; 1615 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 1616 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 1617 VdbeCoverageIf(v, testOp==OP_Le); 1618 VdbeCoverageIf(v, testOp==OP_Lt); 1619 VdbeCoverageIf(v, testOp==OP_Ge); 1620 VdbeCoverageIf(v, testOp==OP_Gt); 1621 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 1622 } 1623 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 1624 /* Case 4: A scan using an index. 1625 ** 1626 ** The WHERE clause may contain zero or more equality 1627 ** terms ("==" or "IN" operators) that refer to the N 1628 ** left-most columns of the index. It may also contain 1629 ** inequality constraints (>, <, >= or <=) on the indexed 1630 ** column that immediately follows the N equalities. Only 1631 ** the right-most column can be an inequality - the rest must 1632 ** use the "==" and "IN" operators. For example, if the 1633 ** index is on (x,y,z), then the following clauses are all 1634 ** optimized: 1635 ** 1636 ** x=5 1637 ** x=5 AND y=10 1638 ** x=5 AND y<10 1639 ** x=5 AND y>5 AND y<10 1640 ** x=5 AND y=5 AND z<=10 1641 ** 1642 ** The z<10 term of the following cannot be used, only 1643 ** the x=5 term: 1644 ** 1645 ** x=5 AND z<10 1646 ** 1647 ** N may be zero if there are inequality constraints. 1648 ** If there are no inequality constraints, then N is at 1649 ** least one. 1650 ** 1651 ** This case is also used when there are no WHERE clause 1652 ** constraints but an index is selected anyway, in order 1653 ** to force the output order to conform to an ORDER BY. 1654 */ 1655 static const u8 aStartOp[] = { 1656 0, 1657 0, 1658 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1659 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1660 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1661 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1662 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1663 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1664 }; 1665 static const u8 aEndOp[] = { 1666 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1667 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1668 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1669 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1670 }; 1671 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1672 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ 1673 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ 1674 int regBase; /* Base register holding constraint values */ 1675 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1676 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1677 int startEq; /* True if range start uses ==, >= or <= */ 1678 int endEq; /* True if range end uses ==, >= or <= */ 1679 int start_constraints; /* Start of range is constrained */ 1680 int nConstraint; /* Number of constraint terms */ 1681 int iIdxCur; /* The VDBE cursor for the index */ 1682 int nExtraReg = 0; /* Number of extra registers needed */ 1683 int op; /* Instruction opcode */ 1684 char *zStartAff; /* Affinity for start of range constraint */ 1685 char *zEndAff = 0; /* Affinity for end of range constraint */ 1686 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1687 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1688 int omitTable; /* True if we use the index only */ 1689 int regBignull = 0; /* big-null flag register */ 1690 int addrSeekScan = 0; /* Opcode of the OP_SeekScan, if any */ 1691 1692 pIdx = pLoop->u.btree.pIndex; 1693 iIdxCur = pLevel->iIdxCur; 1694 assert( nEq>=pLoop->nSkip ); 1695 1696 /* Find any inequality constraint terms for the start and end 1697 ** of the range. 1698 */ 1699 j = nEq; 1700 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1701 pRangeStart = pLoop->aLTerm[j++]; 1702 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); 1703 /* Like optimization range constraints always occur in pairs */ 1704 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1705 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1706 } 1707 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1708 pRangeEnd = pLoop->aLTerm[j++]; 1709 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); 1710 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1711 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1712 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1713 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1714 pLevel->iLikeRepCntr = (u32)++pParse->nMem; 1715 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); 1716 VdbeComment((v, "LIKE loop counter")); 1717 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1718 /* iLikeRepCntr actually stores 2x the counter register number. The 1719 ** bottom bit indicates whether the search order is ASC or DESC. */ 1720 testcase( bRev ); 1721 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1722 assert( (bRev & ~1)==0 ); 1723 pLevel->iLikeRepCntr <<=1; 1724 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); 1725 } 1726 #endif 1727 if( pRangeStart==0 ){ 1728 j = pIdx->aiColumn[nEq]; 1729 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){ 1730 bSeekPastNull = 1; 1731 } 1732 } 1733 } 1734 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1735 1736 /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses 1737 ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS 1738 ** FIRST). In both cases separate ordered scans are made of those 1739 ** index entries for which the column is null and for those for which 1740 ** it is not. For an ASC sort, the non-NULL entries are scanned first. 1741 ** For DESC, NULL entries are scanned first. 1742 */ 1743 if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0 1744 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0 1745 ){ 1746 assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 ); 1747 assert( pRangeEnd==0 && pRangeStart==0 ); 1748 testcase( pLoop->nSkip>0 ); 1749 nExtraReg = 1; 1750 bSeekPastNull = 1; 1751 pLevel->regBignull = regBignull = ++pParse->nMem; 1752 if( pLevel->iLeftJoin ){ 1753 sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull); 1754 } 1755 pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse); 1756 } 1757 1758 /* If we are doing a reverse order scan on an ascending index, or 1759 ** a forward order scan on a descending index, interchange the 1760 ** start and end terms (pRangeStart and pRangeEnd). 1761 */ 1762 if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){ 1763 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1764 SWAP(u8, bSeekPastNull, bStopAtNull); 1765 SWAP(u8, nBtm, nTop); 1766 } 1767 1768 if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){ 1769 /* In case OP_SeekScan is used, ensure that the index cursor does not 1770 ** point to a valid row for the first iteration of this loop. */ 1771 sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur); 1772 } 1773 1774 /* Generate code to evaluate all constraint terms using == or IN 1775 ** and store the values of those terms in an array of registers 1776 ** starting at regBase. 1777 */ 1778 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); 1779 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1780 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1781 if( zStartAff && nTop ){ 1782 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); 1783 } 1784 addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt); 1785 1786 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1787 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1788 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1789 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1790 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1791 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1792 start_constraints = pRangeStart || nEq>0; 1793 1794 /* Seek the index cursor to the start of the range. */ 1795 nConstraint = nEq; 1796 if( pRangeStart ){ 1797 Expr *pRight = pRangeStart->pExpr->pRight; 1798 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); 1799 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1800 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1801 && sqlite3ExprCanBeNull(pRight) 1802 ){ 1803 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1804 VdbeCoverage(v); 1805 } 1806 if( zStartAff ){ 1807 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); 1808 } 1809 nConstraint += nBtm; 1810 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1811 if( sqlite3ExprIsVector(pRight)==0 ){ 1812 disableTerm(pLevel, pRangeStart); 1813 }else{ 1814 startEq = 1; 1815 } 1816 bSeekPastNull = 0; 1817 }else if( bSeekPastNull ){ 1818 startEq = 0; 1819 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1820 start_constraints = 1; 1821 nConstraint++; 1822 }else if( regBignull ){ 1823 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1824 start_constraints = 1; 1825 nConstraint++; 1826 } 1827 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1828 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ 1829 /* The skip-scan logic inside the call to codeAllEqualityConstraints() 1830 ** above has already left the cursor sitting on the correct row, 1831 ** so no further seeking is needed */ 1832 }else{ 1833 if( regBignull ){ 1834 sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull); 1835 VdbeComment((v, "NULL-scan pass ctr")); 1836 } 1837 1838 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 1839 assert( op!=0 ); 1840 if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){ 1841 assert( regBignull==0 ); 1842 /* TUNING: The OP_SeekScan opcode seeks to reduce the number 1843 ** of expensive seek operations by replacing a single seek with 1844 ** 1 or more step operations. The question is, how many steps 1845 ** should we try before giving up and going with a seek. The cost 1846 ** of a seek is proportional to the logarithm of the of the number 1847 ** of entries in the tree, so basing the number of steps to try 1848 ** on the estimated number of rows in the btree seems like a good 1849 ** guess. */ 1850 addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan, 1851 (pIdx->aiRowLogEst[0]+9)/10); 1852 VdbeCoverage(v); 1853 } 1854 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1855 VdbeCoverage(v); 1856 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1857 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1858 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 1859 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1860 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1861 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 1862 1863 assert( bSeekPastNull==0 || bStopAtNull==0 ); 1864 if( regBignull ){ 1865 assert( bSeekPastNull==1 || bStopAtNull==1 ); 1866 assert( bSeekPastNull==!bStopAtNull ); 1867 assert( bStopAtNull==startEq ); 1868 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2); 1869 op = aStartOp[(nConstraint>1)*4 + 2 + bRev]; 1870 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 1871 nConstraint-startEq); 1872 VdbeCoverage(v); 1873 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1874 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1875 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1876 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1877 assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE); 1878 } 1879 } 1880 1881 /* Load the value for the inequality constraint at the end of the 1882 ** range (if any). 1883 */ 1884 nConstraint = nEq; 1885 if( pRangeEnd ){ 1886 Expr *pRight = pRangeEnd->pExpr->pRight; 1887 codeExprOrVector(pParse, pRight, regBase+nEq, nTop); 1888 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 1889 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 1890 && sqlite3ExprCanBeNull(pRight) 1891 ){ 1892 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1893 VdbeCoverage(v); 1894 } 1895 if( zEndAff ){ 1896 updateRangeAffinityStr(pRight, nTop, zEndAff); 1897 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); 1898 }else{ 1899 assert( pParse->db->mallocFailed ); 1900 } 1901 nConstraint += nTop; 1902 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 1903 1904 if( sqlite3ExprIsVector(pRight)==0 ){ 1905 disableTerm(pLevel, pRangeEnd); 1906 }else{ 1907 endEq = 1; 1908 } 1909 }else if( bStopAtNull ){ 1910 if( regBignull==0 ){ 1911 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1912 endEq = 0; 1913 } 1914 nConstraint++; 1915 } 1916 sqlite3DbFree(db, zStartAff); 1917 sqlite3DbFree(db, zEndAff); 1918 1919 /* Top of the loop body */ 1920 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1921 1922 /* Check if the index cursor is past the end of the range. */ 1923 if( nConstraint ){ 1924 if( regBignull ){ 1925 /* Except, skip the end-of-range check while doing the NULL-scan */ 1926 sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3); 1927 VdbeComment((v, "If NULL-scan 2nd pass")); 1928 VdbeCoverage(v); 1929 } 1930 op = aEndOp[bRev*2 + endEq]; 1931 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1932 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1933 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1934 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1935 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1936 if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan); 1937 } 1938 if( regBignull ){ 1939 /* During a NULL-scan, check to see if we have reached the end of 1940 ** the NULLs */ 1941 assert( bSeekPastNull==!bStopAtNull ); 1942 assert( bSeekPastNull+bStopAtNull==1 ); 1943 assert( nConstraint+bSeekPastNull>0 ); 1944 sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2); 1945 VdbeComment((v, "If NULL-scan 1st pass")); 1946 VdbeCoverage(v); 1947 op = aEndOp[bRev*2 + bSeekPastNull]; 1948 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 1949 nConstraint+bSeekPastNull); 1950 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1951 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1952 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1953 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1954 } 1955 1956 if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){ 1957 sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq); 1958 } 1959 1960 /* Seek the table cursor, if required */ 1961 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 1962 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0; 1963 if( omitTable ){ 1964 /* pIdx is a covering index. No need to access the main table. */ 1965 }else if( HasRowid(pIdx->pTable) ){ 1966 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); 1967 }else if( iCur!=iIdxCur ){ 1968 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1969 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1970 for(j=0; j<pPk->nKeyCol; j++){ 1971 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]); 1972 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 1973 } 1974 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 1975 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 1976 } 1977 1978 if( pLevel->iLeftJoin==0 ){ 1979 /* If pIdx is an index on one or more expressions, then look through 1980 ** all the expressions in pWInfo and try to transform matching expressions 1981 ** into reference to index columns. Also attempt to translate references 1982 ** to virtual columns in the table into references to (stored) columns 1983 ** of the index. 1984 ** 1985 ** Do not do this for the RHS of a LEFT JOIN. This is because the 1986 ** expression may be evaluated after OP_NullRow has been executed on 1987 ** the cursor. In this case it is important to do the full evaluation, 1988 ** as the result of the expression may not be NULL, even if all table 1989 ** column values are. https://www.sqlite.org/src/info/7fa8049685b50b5a 1990 ** 1991 ** Also, do not do this when processing one index an a multi-index 1992 ** OR clause, since the transformation will become invalid once we 1993 ** move forward to the next index. 1994 ** https://sqlite.org/src/info/4e8e4857d32d401f 1995 */ 1996 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ 1997 whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo); 1998 } 1999 2000 /* If a partial index is driving the loop, try to eliminate WHERE clause 2001 ** terms from the query that must be true due to the WHERE clause of 2002 ** the partial index. 2003 ** 2004 ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work 2005 ** for a LEFT JOIN. 2006 */ 2007 if( pIdx->pPartIdxWhere ){ 2008 whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC); 2009 } 2010 }else{ 2011 testcase( pIdx->pPartIdxWhere ); 2012 /* The following assert() is not a requirement, merely an observation: 2013 ** The OR-optimization doesn't work for the right hand table of 2014 ** a LEFT JOIN: */ 2015 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ); 2016 } 2017 2018 /* Record the instruction used to terminate the loop. */ 2019 if( pLoop->wsFlags & WHERE_ONEROW ){ 2020 pLevel->op = OP_Noop; 2021 }else if( bRev ){ 2022 pLevel->op = OP_Prev; 2023 }else{ 2024 pLevel->op = OP_Next; 2025 } 2026 pLevel->p1 = iIdxCur; 2027 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 2028 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 2029 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2030 }else{ 2031 assert( pLevel->p5==0 ); 2032 } 2033 if( omitTable ) pIdx = 0; 2034 }else 2035 2036 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 2037 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 2038 /* Case 5: Two or more separately indexed terms connected by OR 2039 ** 2040 ** Example: 2041 ** 2042 ** CREATE TABLE t1(a,b,c,d); 2043 ** CREATE INDEX i1 ON t1(a); 2044 ** CREATE INDEX i2 ON t1(b); 2045 ** CREATE INDEX i3 ON t1(c); 2046 ** 2047 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 2048 ** 2049 ** In the example, there are three indexed terms connected by OR. 2050 ** The top of the loop looks like this: 2051 ** 2052 ** Null 1 # Zero the rowset in reg 1 2053 ** 2054 ** Then, for each indexed term, the following. The arguments to 2055 ** RowSetTest are such that the rowid of the current row is inserted 2056 ** into the RowSet. If it is already present, control skips the 2057 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 2058 ** 2059 ** sqlite3WhereBegin(<term>) 2060 ** RowSetTest # Insert rowid into rowset 2061 ** Gosub 2 A 2062 ** sqlite3WhereEnd() 2063 ** 2064 ** Following the above, code to terminate the loop. Label A, the target 2065 ** of the Gosub above, jumps to the instruction right after the Goto. 2066 ** 2067 ** Null 1 # Zero the rowset in reg 1 2068 ** Goto B # The loop is finished. 2069 ** 2070 ** A: <loop body> # Return data, whatever. 2071 ** 2072 ** Return 2 # Jump back to the Gosub 2073 ** 2074 ** B: <after the loop> 2075 ** 2076 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 2077 ** use an ephemeral index instead of a RowSet to record the primary 2078 ** keys of the rows we have already seen. 2079 ** 2080 */ 2081 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 2082 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 2083 Index *pCov = 0; /* Potential covering index (or NULL) */ 2084 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 2085 2086 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 2087 int regRowset = 0; /* Register for RowSet object */ 2088 int regRowid = 0; /* Register holding rowid */ 2089 int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */ 2090 int iRetInit; /* Address of regReturn init */ 2091 int untestedTerms = 0; /* Some terms not completely tested */ 2092 int ii; /* Loop counter */ 2093 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 2094 Table *pTab = pTabItem->pTab; 2095 2096 pTerm = pLoop->aLTerm[0]; 2097 assert( pTerm!=0 ); 2098 assert( pTerm->eOperator & WO_OR ); 2099 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 2100 pOrWc = &pTerm->u.pOrInfo->wc; 2101 pLevel->op = OP_Return; 2102 pLevel->p1 = regReturn; 2103 2104 /* Set up a new SrcList in pOrTab containing the table being scanned 2105 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 2106 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 2107 */ 2108 if( pWInfo->nLevel>1 ){ 2109 int nNotReady; /* The number of notReady tables */ 2110 SrcItem *origSrc; /* Original list of tables */ 2111 nNotReady = pWInfo->nLevel - iLevel - 1; 2112 pOrTab = sqlite3StackAllocRaw(db, 2113 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 2114 if( pOrTab==0 ) return notReady; 2115 pOrTab->nAlloc = (u8)(nNotReady + 1); 2116 pOrTab->nSrc = pOrTab->nAlloc; 2117 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 2118 origSrc = pWInfo->pTabList->a; 2119 for(k=1; k<=nNotReady; k++){ 2120 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 2121 } 2122 }else{ 2123 pOrTab = pWInfo->pTabList; 2124 } 2125 2126 /* Initialize the rowset register to contain NULL. An SQL NULL is 2127 ** equivalent to an empty rowset. Or, create an ephemeral index 2128 ** capable of holding primary keys in the case of a WITHOUT ROWID. 2129 ** 2130 ** Also initialize regReturn to contain the address of the instruction 2131 ** immediately following the OP_Return at the bottom of the loop. This 2132 ** is required in a few obscure LEFT JOIN cases where control jumps 2133 ** over the top of the loop into the body of it. In this case the 2134 ** correct response for the end-of-loop code (the OP_Return) is to 2135 ** fall through to the next instruction, just as an OP_Next does if 2136 ** called on an uninitialized cursor. 2137 */ 2138 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2139 if( HasRowid(pTab) ){ 2140 regRowset = ++pParse->nMem; 2141 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 2142 }else{ 2143 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2144 regRowset = pParse->nTab++; 2145 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 2146 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 2147 } 2148 regRowid = ++pParse->nMem; 2149 } 2150 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 2151 2152 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 2153 ** Then for every term xN, evaluate as the subexpression: xN AND z 2154 ** That way, terms in y that are factored into the disjunction will 2155 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 2156 ** 2157 ** Actually, each subexpression is converted to "xN AND w" where w is 2158 ** the "interesting" terms of z - terms that did not originate in the 2159 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 2160 ** indices. 2161 ** 2162 ** This optimization also only applies if the (x1 OR x2 OR ...) term 2163 ** is not contained in the ON clause of a LEFT JOIN. 2164 ** See ticket http://www.sqlite.org/src/info/f2369304e4 2165 */ 2166 if( pWC->nTerm>1 ){ 2167 int iTerm; 2168 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 2169 Expr *pExpr = pWC->a[iTerm].pExpr; 2170 if( &pWC->a[iTerm] == pTerm ) continue; 2171 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); 2172 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); 2173 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue; 2174 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 2175 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); 2176 pExpr = sqlite3ExprDup(db, pExpr, 0); 2177 pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr); 2178 } 2179 if( pAndExpr ){ 2180 /* The extra 0x10000 bit on the opcode is masked off and does not 2181 ** become part of the new Expr.op. However, it does make the 2182 ** op==TK_AND comparison inside of sqlite3PExpr() false, and this 2183 ** prevents sqlite3PExpr() from applying the AND short-circuit 2184 ** optimization, which we do not want here. */ 2185 pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr); 2186 } 2187 } 2188 2189 /* Run a separate WHERE clause for each term of the OR clause. After 2190 ** eliminating duplicates from other WHERE clauses, the action for each 2191 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 2192 */ 2193 ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR")); 2194 for(ii=0; ii<pOrWc->nTerm; ii++){ 2195 WhereTerm *pOrTerm = &pOrWc->a[ii]; 2196 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 2197 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 2198 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 2199 Expr *pDelete; /* Local copy of OR clause term */ 2200 int jmp1 = 0; /* Address of jump operation */ 2201 testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0 2202 && !ExprHasProperty(pOrExpr, EP_FromJoin) 2203 ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */ 2204 pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0); 2205 if( db->mallocFailed ){ 2206 sqlite3ExprDelete(db, pDelete); 2207 continue; 2208 } 2209 if( pAndExpr ){ 2210 pAndExpr->pLeft = pOrExpr; 2211 pOrExpr = pAndExpr; 2212 } 2213 /* Loop through table entries that match term pOrTerm. */ 2214 ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1)); 2215 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 2216 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 2217 WHERE_OR_SUBCLAUSE, iCovCur); 2218 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); 2219 if( pSubWInfo ){ 2220 WhereLoop *pSubLoop; 2221 int addrExplain = sqlite3WhereExplainOneScan( 2222 pParse, pOrTab, &pSubWInfo->a[0], 0 2223 ); 2224 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 2225 2226 /* This is the sub-WHERE clause body. First skip over 2227 ** duplicate rows from prior sub-WHERE clauses, and record the 2228 ** rowid (or PRIMARY KEY) for the current row so that the same 2229 ** row will be skipped in subsequent sub-WHERE clauses. 2230 */ 2231 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2232 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 2233 if( HasRowid(pTab) ){ 2234 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid); 2235 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 2236 regRowid, iSet); 2237 VdbeCoverage(v); 2238 }else{ 2239 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2240 int nPk = pPk->nKeyCol; 2241 int iPk; 2242 int r; 2243 2244 /* Read the PK into an array of temp registers. */ 2245 r = sqlite3GetTempRange(pParse, nPk); 2246 for(iPk=0; iPk<nPk; iPk++){ 2247 int iCol = pPk->aiColumn[iPk]; 2248 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk); 2249 } 2250 2251 /* Check if the temp table already contains this key. If so, 2252 ** the row has already been included in the result set and 2253 ** can be ignored (by jumping past the Gosub below). Otherwise, 2254 ** insert the key into the temp table and proceed with processing 2255 ** the row. 2256 ** 2257 ** Use some of the same optimizations as OP_RowSetTest: If iSet 2258 ** is zero, assume that the key cannot already be present in 2259 ** the temp table. And if iSet is -1, assume that there is no 2260 ** need to insert the key into the temp table, as it will never 2261 ** be tested for. */ 2262 if( iSet ){ 2263 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 2264 VdbeCoverage(v); 2265 } 2266 if( iSet>=0 ){ 2267 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 2268 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid, 2269 r, nPk); 2270 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2271 } 2272 2273 /* Release the array of temp registers */ 2274 sqlite3ReleaseTempRange(pParse, r, nPk); 2275 } 2276 } 2277 2278 /* Invoke the main loop body as a subroutine */ 2279 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 2280 2281 /* Jump here (skipping the main loop body subroutine) if the 2282 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 2283 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 2284 2285 /* The pSubWInfo->untestedTerms flag means that this OR term 2286 ** contained one or more AND term from a notReady table. The 2287 ** terms from the notReady table could not be tested and will 2288 ** need to be tested later. 2289 */ 2290 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 2291 2292 /* If all of the OR-connected terms are optimized using the same 2293 ** index, and the index is opened using the same cursor number 2294 ** by each call to sqlite3WhereBegin() made by this loop, it may 2295 ** be possible to use that index as a covering index. 2296 ** 2297 ** If the call to sqlite3WhereBegin() above resulted in a scan that 2298 ** uses an index, and this is either the first OR-connected term 2299 ** processed or the index is the same as that used by all previous 2300 ** terms, set pCov to the candidate covering index. Otherwise, set 2301 ** pCov to NULL to indicate that no candidate covering index will 2302 ** be available. 2303 */ 2304 pSubLoop = pSubWInfo->a[0].pWLoop; 2305 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2306 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 2307 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 2308 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 2309 ){ 2310 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 2311 pCov = pSubLoop->u.btree.pIndex; 2312 }else{ 2313 pCov = 0; 2314 } 2315 if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){ 2316 pWInfo->bDeferredSeek = 1; 2317 } 2318 2319 /* Finish the loop through table entries that match term pOrTerm. */ 2320 sqlite3WhereEnd(pSubWInfo); 2321 ExplainQueryPlanPop(pParse); 2322 } 2323 sqlite3ExprDelete(db, pDelete); 2324 } 2325 } 2326 ExplainQueryPlanPop(pParse); 2327 assert( pLevel->pWLoop==pLoop ); 2328 assert( (pLoop->wsFlags & WHERE_MULTI_OR)!=0 ); 2329 assert( (pLoop->wsFlags & WHERE_IN_ABLE)==0 ); 2330 pLevel->u.pCoveringIdx = pCov; 2331 if( pCov ) pLevel->iIdxCur = iCovCur; 2332 if( pAndExpr ){ 2333 pAndExpr->pLeft = 0; 2334 sqlite3ExprDelete(db, pAndExpr); 2335 } 2336 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 2337 sqlite3VdbeGoto(v, pLevel->addrBrk); 2338 sqlite3VdbeResolveLabel(v, iLoopBody); 2339 2340 if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); } 2341 if( !untestedTerms ) disableTerm(pLevel, pTerm); 2342 }else 2343 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 2344 2345 { 2346 /* Case 6: There is no usable index. We must do a complete 2347 ** scan of the entire table. 2348 */ 2349 static const u8 aStep[] = { OP_Next, OP_Prev }; 2350 static const u8 aStart[] = { OP_Rewind, OP_Last }; 2351 assert( bRev==0 || bRev==1 ); 2352 if( pTabItem->fg.isRecursive ){ 2353 /* Tables marked isRecursive have only a single row that is stored in 2354 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 2355 pLevel->op = OP_Noop; 2356 }else{ 2357 codeCursorHint(pTabItem, pWInfo, pLevel, 0); 2358 pLevel->op = aStep[bRev]; 2359 pLevel->p1 = iCur; 2360 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt); 2361 VdbeCoverageIf(v, bRev==0); 2362 VdbeCoverageIf(v, bRev!=0); 2363 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2364 } 2365 } 2366 2367 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2368 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 2369 #endif 2370 2371 /* Insert code to test every subexpression that can be completely 2372 ** computed using the current set of tables. 2373 ** 2374 ** This loop may run between one and three times, depending on the 2375 ** constraints to be generated. The value of stack variable iLoop 2376 ** determines the constraints coded by each iteration, as follows: 2377 ** 2378 ** iLoop==1: Code only expressions that are entirely covered by pIdx. 2379 ** iLoop==2: Code remaining expressions that do not contain correlated 2380 ** sub-queries. 2381 ** iLoop==3: Code all remaining expressions. 2382 ** 2383 ** An effort is made to skip unnecessary iterations of the loop. 2384 */ 2385 iLoop = (pIdx ? 1 : 2); 2386 do{ 2387 int iNext = 0; /* Next value for iLoop */ 2388 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2389 Expr *pE; 2390 int skipLikeAddr = 0; 2391 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2392 testcase( pTerm->wtFlags & TERM_CODED ); 2393 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2394 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2395 testcase( pWInfo->untestedTerms==0 2396 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); 2397 pWInfo->untestedTerms = 1; 2398 continue; 2399 } 2400 pE = pTerm->pExpr; 2401 assert( pE!=0 ); 2402 if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){ 2403 continue; 2404 } 2405 2406 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){ 2407 iNext = 2; 2408 continue; 2409 } 2410 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){ 2411 if( iNext==0 ) iNext = 3; 2412 continue; 2413 } 2414 2415 if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){ 2416 /* If the TERM_LIKECOND flag is set, that means that the range search 2417 ** is sufficient to guarantee that the LIKE operator is true, so we 2418 ** can skip the call to the like(A,B) function. But this only works 2419 ** for strings. So do not skip the call to the function on the pass 2420 ** that compares BLOBs. */ 2421 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 2422 continue; 2423 #else 2424 u32 x = pLevel->iLikeRepCntr; 2425 if( x>0 ){ 2426 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1)); 2427 VdbeCoverageIf(v, (x&1)==1); 2428 VdbeCoverageIf(v, (x&1)==0); 2429 } 2430 #endif 2431 } 2432 #ifdef WHERETRACE_ENABLED /* 0xffff */ 2433 if( sqlite3WhereTrace ){ 2434 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d", 2435 pWC->nTerm-j, pTerm, iLoop)); 2436 } 2437 if( sqlite3WhereTrace & 0x800 ){ 2438 sqlite3DebugPrintf("Coding auxiliary constraint:\n"); 2439 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2440 } 2441 #endif 2442 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 2443 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 2444 pTerm->wtFlags |= TERM_CODED; 2445 } 2446 iLoop = iNext; 2447 }while( iLoop>0 ); 2448 2449 /* Insert code to test for implied constraints based on transitivity 2450 ** of the "==" operator. 2451 ** 2452 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 2453 ** and we are coding the t1 loop and the t2 loop has not yet coded, 2454 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 2455 ** the implied "t1.a=123" constraint. 2456 */ 2457 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2458 Expr *pE, sEAlt; 2459 WhereTerm *pAlt; 2460 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2461 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 2462 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 2463 if( pTerm->leftCursor!=iCur ) continue; 2464 if( pTabItem->fg.jointype & JT_LEFT ) continue; 2465 pE = pTerm->pExpr; 2466 #ifdef WHERETRACE_ENABLED /* 0x800 */ 2467 if( sqlite3WhereTrace & 0x800 ){ 2468 sqlite3DebugPrintf("Coding transitive constraint:\n"); 2469 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2470 } 2471 #endif 2472 assert( !ExprHasProperty(pE, EP_FromJoin) ); 2473 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 2474 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady, 2475 WO_EQ|WO_IN|WO_IS, 0); 2476 if( pAlt==0 ) continue; 2477 if( pAlt->wtFlags & (TERM_CODED) ) continue; 2478 if( (pAlt->eOperator & WO_IN) 2479 && ExprUseXSelect(pAlt->pExpr) 2480 && (pAlt->pExpr->x.pSelect->pEList->nExpr>1) 2481 ){ 2482 continue; 2483 } 2484 testcase( pAlt->eOperator & WO_EQ ); 2485 testcase( pAlt->eOperator & WO_IS ); 2486 testcase( pAlt->eOperator & WO_IN ); 2487 VdbeModuleComment((v, "begin transitive constraint")); 2488 sEAlt = *pAlt->pExpr; 2489 sEAlt.pLeft = pE->pLeft; 2490 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); 2491 pAlt->wtFlags |= TERM_CODED; 2492 } 2493 2494 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2495 ** at least one row of the right table has matched the left table. 2496 */ 2497 if( pLevel->iLeftJoin ){ 2498 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2499 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2500 VdbeComment((v, "record LEFT JOIN hit")); 2501 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 2502 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2503 testcase( pTerm->wtFlags & TERM_CODED ); 2504 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2505 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2506 assert( pWInfo->untestedTerms ); 2507 continue; 2508 } 2509 assert( pTerm->pExpr ); 2510 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 2511 pTerm->wtFlags |= TERM_CODED; 2512 } 2513 } 2514 2515 #if WHERETRACE_ENABLED /* 0x20800 */ 2516 if( sqlite3WhereTrace & 0x20000 ){ 2517 sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n", 2518 iLevel); 2519 sqlite3WhereClausePrint(pWC); 2520 } 2521 if( sqlite3WhereTrace & 0x800 ){ 2522 sqlite3DebugPrintf("End Coding level %d: notReady=%llx\n", 2523 iLevel, (u64)pLevel->notReady); 2524 } 2525 #endif 2526 return pLevel->notReady; 2527 } 2528