xref: /sqlite-3.40.0/src/wherecode.c (revision 29368eab)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 
25 /*
26 ** Return the name of the i-th column of the pIdx index.
27 */
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29   i = pIdx->aiColumn[i];
30   if( i==XN_EXPR ) return "<expr>";
31   if( i==XN_ROWID ) return "rowid";
32   return pIdx->pTable->aCol[i].zName;
33 }
34 
35 /*
36 ** This routine is a helper for explainIndexRange() below
37 **
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time.  This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
42 */
43 static void explainAppendTerm(
44   StrAccum *pStr,             /* The text expression being built */
45   Index *pIdx,                /* Index to read column names from */
46   int nTerm,                  /* Number of terms */
47   int iTerm,                  /* Zero-based index of first term. */
48   int bAnd,                   /* Non-zero to append " AND " */
49   const char *zOp             /* Name of the operator */
50 ){
51   int i;
52 
53   assert( nTerm>=1 );
54   if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
55 
56   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
57   for(i=0; i<nTerm; i++){
58     if( i ) sqlite3_str_append(pStr, ",", 1);
59     sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
60   }
61   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
62 
63   sqlite3_str_append(pStr, zOp, 1);
64 
65   if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
66   for(i=0; i<nTerm; i++){
67     if( i ) sqlite3_str_append(pStr, ",", 1);
68     sqlite3_str_append(pStr, "?", 1);
69   }
70   if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
71 }
72 
73 /*
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
77 **
78 ** For example, if the query:
79 **
80 **   SELECT * FROM t1 WHERE a=1 AND b>2;
81 **
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
84 **
85 **   "a=? AND b>?"
86 */
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88   Index *pIndex = pLoop->u.btree.pIndex;
89   u16 nEq = pLoop->u.btree.nEq;
90   u16 nSkip = pLoop->nSkip;
91   int i, j;
92 
93   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94   sqlite3_str_append(pStr, " (", 2);
95   for(i=0; i<nEq; i++){
96     const char *z = explainIndexColumnName(pIndex, i);
97     if( i ) sqlite3_str_append(pStr, " AND ", 5);
98     sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
99   }
100 
101   j = i;
102   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104     i = 1;
105   }
106   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
108   }
109   sqlite3_str_append(pStr, ")", 1);
110 }
111 
112 /*
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
117 **
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
120 */
121 int sqlite3WhereExplainOneScan(
122   Parse *pParse,                  /* Parse context */
123   SrcList *pTabList,              /* Table list this loop refers to */
124   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
125   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
126 ){
127   int ret = 0;
128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
129   if( sqlite3ParseToplevel(pParse)->explain==2 )
130 #endif
131   {
132     struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
133     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
134     sqlite3 *db = pParse->db;     /* Database handle */
135     int isSearch;                 /* True for a SEARCH. False for SCAN. */
136     WhereLoop *pLoop;             /* The controlling WhereLoop object */
137     u32 flags;                    /* Flags that describe this loop */
138     char *zMsg;                   /* Text to add to EQP output */
139     StrAccum str;                 /* EQP output string */
140     char zBuf[100];               /* Initial space for EQP output string */
141 
142     pLoop = pLevel->pWLoop;
143     flags = pLoop->wsFlags;
144     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
145 
146     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
147             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
148             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
149 
150     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
151     sqlite3_str_appendall(&str, isSearch ? "SEARCH" : "SCAN");
152     if( pItem->pSelect ){
153       sqlite3_str_appendf(&str, " SUBQUERY %u", pItem->pSelect->selId);
154     }else{
155       sqlite3_str_appendf(&str, " TABLE %s", pItem->zName);
156     }
157 
158     if( pItem->zAlias ){
159       sqlite3_str_appendf(&str, " AS %s", pItem->zAlias);
160     }
161     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
162       const char *zFmt = 0;
163       Index *pIdx;
164 
165       assert( pLoop->u.btree.pIndex!=0 );
166       pIdx = pLoop->u.btree.pIndex;
167       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
168       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
169         if( isSearch ){
170           zFmt = "PRIMARY KEY";
171         }
172       }else if( flags & WHERE_PARTIALIDX ){
173         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
174       }else if( flags & WHERE_AUTO_INDEX ){
175         zFmt = "AUTOMATIC COVERING INDEX";
176       }else if( flags & WHERE_IDX_ONLY ){
177         zFmt = "COVERING INDEX %s";
178       }else{
179         zFmt = "INDEX %s";
180       }
181       if( zFmt ){
182         sqlite3_str_append(&str, " USING ", 7);
183         sqlite3_str_appendf(&str, zFmt, pIdx->zName);
184         explainIndexRange(&str, pLoop);
185       }
186     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
187       const char *zRangeOp;
188       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
189         zRangeOp = "=";
190       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
191         zRangeOp = ">? AND rowid<";
192       }else if( flags&WHERE_BTM_LIMIT ){
193         zRangeOp = ">";
194       }else{
195         assert( flags&WHERE_TOP_LIMIT);
196         zRangeOp = "<";
197       }
198       sqlite3_str_appendf(&str,
199           " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
200     }
201 #ifndef SQLITE_OMIT_VIRTUALTABLE
202     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
203       sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
204                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
205     }
206 #endif
207 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
208     if( pLoop->nOut>=10 ){
209       sqlite3_str_appendf(&str, " (~%llu rows)",
210              sqlite3LogEstToInt(pLoop->nOut));
211     }else{
212       sqlite3_str_append(&str, " (~1 row)", 9);
213     }
214 #endif
215     zMsg = sqlite3StrAccumFinish(&str);
216     sqlite3ExplainBreakpoint("",zMsg);
217     ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
218                             pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
219   }
220   return ret;
221 }
222 #endif /* SQLITE_OMIT_EXPLAIN */
223 
224 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
225 /*
226 ** Configure the VM passed as the first argument with an
227 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
228 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
229 ** clause that the scan reads data from.
230 **
231 ** If argument addrExplain is not 0, it must be the address of an
232 ** OP_Explain instruction that describes the same loop.
233 */
234 void sqlite3WhereAddScanStatus(
235   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
236   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
237   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
238   int addrExplain                 /* Address of OP_Explain (or 0) */
239 ){
240   const char *zObj = 0;
241   WhereLoop *pLoop = pLvl->pWLoop;
242   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
243     zObj = pLoop->u.btree.pIndex->zName;
244   }else{
245     zObj = pSrclist->a[pLvl->iFrom].zName;
246   }
247   sqlite3VdbeScanStatus(
248       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
249   );
250 }
251 #endif
252 
253 
254 /*
255 ** Disable a term in the WHERE clause.  Except, do not disable the term
256 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
257 ** or USING clause of that join.
258 **
259 ** Consider the term t2.z='ok' in the following queries:
260 **
261 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
262 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
263 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
264 **
265 ** The t2.z='ok' is disabled in the in (2) because it originates
266 ** in the ON clause.  The term is disabled in (3) because it is not part
267 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
268 **
269 ** Disabling a term causes that term to not be tested in the inner loop
270 ** of the join.  Disabling is an optimization.  When terms are satisfied
271 ** by indices, we disable them to prevent redundant tests in the inner
272 ** loop.  We would get the correct results if nothing were ever disabled,
273 ** but joins might run a little slower.  The trick is to disable as much
274 ** as we can without disabling too much.  If we disabled in (1), we'd get
275 ** the wrong answer.  See ticket #813.
276 **
277 ** If all the children of a term are disabled, then that term is also
278 ** automatically disabled.  In this way, terms get disabled if derived
279 ** virtual terms are tested first.  For example:
280 **
281 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
282 **      \___________/     \______/     \_____/
283 **         parent          child1       child2
284 **
285 ** Only the parent term was in the original WHERE clause.  The child1
286 ** and child2 terms were added by the LIKE optimization.  If both of
287 ** the virtual child terms are valid, then testing of the parent can be
288 ** skipped.
289 **
290 ** Usually the parent term is marked as TERM_CODED.  But if the parent
291 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
292 ** The TERM_LIKECOND marking indicates that the term should be coded inside
293 ** a conditional such that is only evaluated on the second pass of a
294 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
295 */
296 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
297   int nLoop = 0;
298   assert( pTerm!=0 );
299   while( (pTerm->wtFlags & TERM_CODED)==0
300       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
301       && (pLevel->notReady & pTerm->prereqAll)==0
302   ){
303     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
304       pTerm->wtFlags |= TERM_LIKECOND;
305     }else{
306       pTerm->wtFlags |= TERM_CODED;
307     }
308     if( pTerm->iParent<0 ) break;
309     pTerm = &pTerm->pWC->a[pTerm->iParent];
310     assert( pTerm!=0 );
311     pTerm->nChild--;
312     if( pTerm->nChild!=0 ) break;
313     nLoop++;
314   }
315 }
316 
317 /*
318 ** Code an OP_Affinity opcode to apply the column affinity string zAff
319 ** to the n registers starting at base.
320 **
321 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
322 ** are no-ops) at the beginning and end of zAff are ignored.  If all entries
323 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
324 **
325 ** This routine makes its own copy of zAff so that the caller is free
326 ** to modify zAff after this routine returns.
327 */
328 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
329   Vdbe *v = pParse->pVdbe;
330   if( zAff==0 ){
331     assert( pParse->db->mallocFailed );
332     return;
333   }
334   assert( v!=0 );
335 
336   /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
337   ** entries at the beginning and end of the affinity string.
338   */
339   assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB );
340   while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){
341     n--;
342     base++;
343     zAff++;
344   }
345   while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){
346     n--;
347   }
348 
349   /* Code the OP_Affinity opcode if there is anything left to do. */
350   if( n>0 ){
351     sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
352   }
353 }
354 
355 /*
356 ** Expression pRight, which is the RHS of a comparison operation, is
357 ** either a vector of n elements or, if n==1, a scalar expression.
358 ** Before the comparison operation, affinity zAff is to be applied
359 ** to the pRight values. This function modifies characters within the
360 ** affinity string to SQLITE_AFF_BLOB if either:
361 **
362 **   * the comparison will be performed with no affinity, or
363 **   * the affinity change in zAff is guaranteed not to change the value.
364 */
365 static void updateRangeAffinityStr(
366   Expr *pRight,                   /* RHS of comparison */
367   int n,                          /* Number of vector elements in comparison */
368   char *zAff                      /* Affinity string to modify */
369 ){
370   int i;
371   for(i=0; i<n; i++){
372     Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
373     if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
374      || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
375     ){
376       zAff[i] = SQLITE_AFF_BLOB;
377     }
378   }
379 }
380 
381 
382 /*
383 ** pX is an expression of the form:  (vector) IN (SELECT ...)
384 ** In other words, it is a vector IN operator with a SELECT clause on the
385 ** LHS.  But not all terms in the vector are indexable and the terms might
386 ** not be in the correct order for indexing.
387 **
388 ** This routine makes a copy of the input pX expression and then adjusts
389 ** the vector on the LHS with corresponding changes to the SELECT so that
390 ** the vector contains only index terms and those terms are in the correct
391 ** order.  The modified IN expression is returned.  The caller is responsible
392 ** for deleting the returned expression.
393 **
394 ** Example:
395 **
396 **    CREATE TABLE t1(a,b,c,d,e,f);
397 **    CREATE INDEX t1x1 ON t1(e,c);
398 **    SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
399 **                           \_______________________________________/
400 **                                     The pX expression
401 **
402 ** Since only columns e and c can be used with the index, in that order,
403 ** the modified IN expression that is returned will be:
404 **
405 **        (e,c) IN (SELECT z,x FROM t2)
406 **
407 ** The reduced pX is different from the original (obviously) and thus is
408 ** only used for indexing, to improve performance.  The original unaltered
409 ** IN expression must also be run on each output row for correctness.
410 */
411 static Expr *removeUnindexableInClauseTerms(
412   Parse *pParse,        /* The parsing context */
413   int iEq,              /* Look at loop terms starting here */
414   WhereLoop *pLoop,     /* The current loop */
415   Expr *pX              /* The IN expression to be reduced */
416 ){
417   sqlite3 *db = pParse->db;
418   Expr *pNew;
419   pNew = sqlite3ExprDup(db, pX, 0);
420   if( db->mallocFailed==0 ){
421     ExprList *pOrigRhs = pNew->x.pSelect->pEList;  /* Original unmodified RHS */
422     ExprList *pOrigLhs = pNew->pLeft->x.pList;     /* Original unmodified LHS */
423     ExprList *pRhs = 0;         /* New RHS after modifications */
424     ExprList *pLhs = 0;         /* New LHS after mods */
425     int i;                      /* Loop counter */
426     Select *pSelect;            /* Pointer to the SELECT on the RHS */
427 
428     for(i=iEq; i<pLoop->nLTerm; i++){
429       if( pLoop->aLTerm[i]->pExpr==pX ){
430         int iField = pLoop->aLTerm[i]->iField - 1;
431         if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
432         pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
433         pOrigRhs->a[iField].pExpr = 0;
434         assert( pOrigLhs->a[iField].pExpr!=0 );
435         pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
436         pOrigLhs->a[iField].pExpr = 0;
437       }
438     }
439     sqlite3ExprListDelete(db, pOrigRhs);
440     sqlite3ExprListDelete(db, pOrigLhs);
441     pNew->pLeft->x.pList = pLhs;
442     pNew->x.pSelect->pEList = pRhs;
443     if( pLhs && pLhs->nExpr==1 ){
444       /* Take care here not to generate a TK_VECTOR containing only a
445       ** single value. Since the parser never creates such a vector, some
446       ** of the subroutines do not handle this case.  */
447       Expr *p = pLhs->a[0].pExpr;
448       pLhs->a[0].pExpr = 0;
449       sqlite3ExprDelete(db, pNew->pLeft);
450       pNew->pLeft = p;
451     }
452     pSelect = pNew->x.pSelect;
453     if( pSelect->pOrderBy ){
454       /* If the SELECT statement has an ORDER BY clause, zero the
455       ** iOrderByCol variables. These are set to non-zero when an
456       ** ORDER BY term exactly matches one of the terms of the
457       ** result-set. Since the result-set of the SELECT statement may
458       ** have been modified or reordered, these variables are no longer
459       ** set correctly.  Since setting them is just an optimization,
460       ** it's easiest just to zero them here.  */
461       ExprList *pOrderBy = pSelect->pOrderBy;
462       for(i=0; i<pOrderBy->nExpr; i++){
463         pOrderBy->a[i].u.x.iOrderByCol = 0;
464       }
465     }
466 
467 #if 0
468     printf("For indexing, change the IN expr:\n");
469     sqlite3TreeViewExpr(0, pX, 0);
470     printf("Into:\n");
471     sqlite3TreeViewExpr(0, pNew, 0);
472 #endif
473   }
474   return pNew;
475 }
476 
477 
478 /*
479 ** Generate code for a single equality term of the WHERE clause.  An equality
480 ** term can be either X=expr or X IN (...).   pTerm is the term to be
481 ** coded.
482 **
483 ** The current value for the constraint is left in a register, the index
484 ** of which is returned.  An attempt is made store the result in iTarget but
485 ** this is only guaranteed for TK_ISNULL and TK_IN constraints.  If the
486 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
487 ** some other register and it is the caller's responsibility to compensate.
488 **
489 ** For a constraint of the form X=expr, the expression is evaluated in
490 ** straight-line code.  For constraints of the form X IN (...)
491 ** this routine sets up a loop that will iterate over all values of X.
492 */
493 static int codeEqualityTerm(
494   Parse *pParse,      /* The parsing context */
495   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
496   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
497   int iEq,            /* Index of the equality term within this level */
498   int bRev,           /* True for reverse-order IN operations */
499   int iTarget         /* Attempt to leave results in this register */
500 ){
501   Expr *pX = pTerm->pExpr;
502   Vdbe *v = pParse->pVdbe;
503   int iReg;                  /* Register holding results */
504 
505   assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
506   assert( iTarget>0 );
507   if( pX->op==TK_EQ || pX->op==TK_IS ){
508     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
509   }else if( pX->op==TK_ISNULL ){
510     iReg = iTarget;
511     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
512 #ifndef SQLITE_OMIT_SUBQUERY
513   }else{
514     int eType = IN_INDEX_NOOP;
515     int iTab;
516     struct InLoop *pIn;
517     WhereLoop *pLoop = pLevel->pWLoop;
518     int i;
519     int nEq = 0;
520     int *aiMap = 0;
521 
522     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
523       && pLoop->u.btree.pIndex!=0
524       && pLoop->u.btree.pIndex->aSortOrder[iEq]
525     ){
526       testcase( iEq==0 );
527       testcase( bRev );
528       bRev = !bRev;
529     }
530     assert( pX->op==TK_IN );
531     iReg = iTarget;
532 
533     for(i=0; i<iEq; i++){
534       if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
535         disableTerm(pLevel, pTerm);
536         return iTarget;
537       }
538     }
539     for(i=iEq;i<pLoop->nLTerm; i++){
540       assert( pLoop->aLTerm[i]!=0 );
541       if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
542     }
543 
544     iTab = 0;
545     if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){
546       eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab);
547     }else{
548       sqlite3 *db = pParse->db;
549       pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
550 
551       if( !db->mallocFailed ){
552         aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
553         eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab);
554         pTerm->pExpr->iTable = iTab;
555       }
556       sqlite3ExprDelete(db, pX);
557       pX = pTerm->pExpr;
558     }
559 
560     if( eType==IN_INDEX_INDEX_DESC ){
561       testcase( bRev );
562       bRev = !bRev;
563     }
564     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
565     VdbeCoverageIf(v, bRev);
566     VdbeCoverageIf(v, !bRev);
567     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
568 
569     pLoop->wsFlags |= WHERE_IN_ABLE;
570     if( pLevel->u.in.nIn==0 ){
571       pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
572     }
573 
574     i = pLevel->u.in.nIn;
575     pLevel->u.in.nIn += nEq;
576     pLevel->u.in.aInLoop =
577        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
578                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
579     pIn = pLevel->u.in.aInLoop;
580     if( pIn ){
581       int iMap = 0;               /* Index in aiMap[] */
582       pIn += i;
583       for(i=iEq;i<pLoop->nLTerm; i++){
584         if( pLoop->aLTerm[i]->pExpr==pX ){
585           int iOut = iReg + i - iEq;
586           if( eType==IN_INDEX_ROWID ){
587             pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
588           }else{
589             int iCol = aiMap ? aiMap[iMap++] : 0;
590             pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
591           }
592           sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
593           if( i==iEq ){
594             pIn->iCur = iTab;
595             pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
596             if( iEq>0 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ){
597               pIn->iBase = iReg - i;
598               pIn->nPrefix = i;
599               pLoop->wsFlags |= WHERE_IN_EARLYOUT;
600             }else{
601               pIn->nPrefix = 0;
602             }
603           }else{
604             pIn->eEndLoopOp = OP_Noop;
605           }
606           pIn++;
607         }
608       }
609     }else{
610       pLevel->u.in.nIn = 0;
611     }
612     sqlite3DbFree(pParse->db, aiMap);
613 #endif
614   }
615   disableTerm(pLevel, pTerm);
616   return iReg;
617 }
618 
619 /*
620 ** Generate code that will evaluate all == and IN constraints for an
621 ** index scan.
622 **
623 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
624 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
625 ** The index has as many as three equality constraints, but in this
626 ** example, the third "c" value is an inequality.  So only two
627 ** constraints are coded.  This routine will generate code to evaluate
628 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
629 ** in consecutive registers and the index of the first register is returned.
630 **
631 ** In the example above nEq==2.  But this subroutine works for any value
632 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
633 ** The only thing it does is allocate the pLevel->iMem memory cell and
634 ** compute the affinity string.
635 **
636 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
637 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
638 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
639 ** occurs after the nEq quality constraints.
640 **
641 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
642 ** the index of the first memory cell in that range. The code that
643 ** calls this routine will use that memory range to store keys for
644 ** start and termination conditions of the loop.
645 ** key value of the loop.  If one or more IN operators appear, then
646 ** this routine allocates an additional nEq memory cells for internal
647 ** use.
648 **
649 ** Before returning, *pzAff is set to point to a buffer containing a
650 ** copy of the column affinity string of the index allocated using
651 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
652 ** with equality constraints that use BLOB or NONE affinity are set to
653 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
654 **
655 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
656 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
657 **
658 ** In the example above, the index on t1(a) has TEXT affinity. But since
659 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
660 ** no conversion should be attempted before using a t2.b value as part of
661 ** a key to search the index. Hence the first byte in the returned affinity
662 ** string in this example would be set to SQLITE_AFF_BLOB.
663 */
664 static int codeAllEqualityTerms(
665   Parse *pParse,        /* Parsing context */
666   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
667   int bRev,             /* Reverse the order of IN operators */
668   int nExtraReg,        /* Number of extra registers to allocate */
669   char **pzAff          /* OUT: Set to point to affinity string */
670 ){
671   u16 nEq;                      /* The number of == or IN constraints to code */
672   u16 nSkip;                    /* Number of left-most columns to skip */
673   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
674   Index *pIdx;                  /* The index being used for this loop */
675   WhereTerm *pTerm;             /* A single constraint term */
676   WhereLoop *pLoop;             /* The WhereLoop object */
677   int j;                        /* Loop counter */
678   int regBase;                  /* Base register */
679   int nReg;                     /* Number of registers to allocate */
680   char *zAff;                   /* Affinity string to return */
681 
682   /* This module is only called on query plans that use an index. */
683   pLoop = pLevel->pWLoop;
684   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
685   nEq = pLoop->u.btree.nEq;
686   nSkip = pLoop->nSkip;
687   pIdx = pLoop->u.btree.pIndex;
688   assert( pIdx!=0 );
689 
690   /* Figure out how many memory cells we will need then allocate them.
691   */
692   regBase = pParse->nMem + 1;
693   nReg = pLoop->u.btree.nEq + nExtraReg;
694   pParse->nMem += nReg;
695 
696   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
697   assert( zAff!=0 || pParse->db->mallocFailed );
698 
699   if( nSkip ){
700     int iIdxCur = pLevel->iIdxCur;
701     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
702     VdbeCoverageIf(v, bRev==0);
703     VdbeCoverageIf(v, bRev!=0);
704     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
705     j = sqlite3VdbeAddOp0(v, OP_Goto);
706     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
707                             iIdxCur, 0, regBase, nSkip);
708     VdbeCoverageIf(v, bRev==0);
709     VdbeCoverageIf(v, bRev!=0);
710     sqlite3VdbeJumpHere(v, j);
711     for(j=0; j<nSkip; j++){
712       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
713       testcase( pIdx->aiColumn[j]==XN_EXPR );
714       VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
715     }
716   }
717 
718   /* Evaluate the equality constraints
719   */
720   assert( zAff==0 || (int)strlen(zAff)>=nEq );
721   for(j=nSkip; j<nEq; j++){
722     int r1;
723     pTerm = pLoop->aLTerm[j];
724     assert( pTerm!=0 );
725     /* The following testcase is true for indices with redundant columns.
726     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
727     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
728     testcase( pTerm->wtFlags & TERM_VIRTUAL );
729     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
730     if( r1!=regBase+j ){
731       if( nReg==1 ){
732         sqlite3ReleaseTempReg(pParse, regBase);
733         regBase = r1;
734       }else{
735         sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
736       }
737     }
738     if( pTerm->eOperator & WO_IN ){
739       if( pTerm->pExpr->flags & EP_xIsSelect ){
740         /* No affinity ever needs to be (or should be) applied to a value
741         ** from the RHS of an "? IN (SELECT ...)" expression. The
742         ** sqlite3FindInIndex() routine has already ensured that the
743         ** affinity of the comparison has been applied to the value.  */
744         if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
745       }
746     }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
747       Expr *pRight = pTerm->pExpr->pRight;
748       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
749         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
750         VdbeCoverage(v);
751       }
752       if( zAff ){
753         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
754           zAff[j] = SQLITE_AFF_BLOB;
755         }
756         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
757           zAff[j] = SQLITE_AFF_BLOB;
758         }
759       }
760     }
761   }
762   *pzAff = zAff;
763   return regBase;
764 }
765 
766 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
767 /*
768 ** If the most recently coded instruction is a constant range constraint
769 ** (a string literal) that originated from the LIKE optimization, then
770 ** set P3 and P5 on the OP_String opcode so that the string will be cast
771 ** to a BLOB at appropriate times.
772 **
773 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
774 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
775 ** scan loop run twice, once for strings and a second time for BLOBs.
776 ** The OP_String opcodes on the second pass convert the upper and lower
777 ** bound string constants to blobs.  This routine makes the necessary changes
778 ** to the OP_String opcodes for that to happen.
779 **
780 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
781 ** only the one pass through the string space is required, so this routine
782 ** becomes a no-op.
783 */
784 static void whereLikeOptimizationStringFixup(
785   Vdbe *v,                /* prepared statement under construction */
786   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
787   WhereTerm *pTerm        /* The upper or lower bound just coded */
788 ){
789   if( pTerm->wtFlags & TERM_LIKEOPT ){
790     VdbeOp *pOp;
791     assert( pLevel->iLikeRepCntr>0 );
792     pOp = sqlite3VdbeGetOp(v, -1);
793     assert( pOp!=0 );
794     assert( pOp->opcode==OP_String8
795             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
796     pOp->p3 = (int)(pLevel->iLikeRepCntr>>1);  /* Register holding counter */
797     pOp->p5 = (u8)(pLevel->iLikeRepCntr&1);    /* ASC or DESC */
798   }
799 }
800 #else
801 # define whereLikeOptimizationStringFixup(A,B,C)
802 #endif
803 
804 #ifdef SQLITE_ENABLE_CURSOR_HINTS
805 /*
806 ** Information is passed from codeCursorHint() down to individual nodes of
807 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
808 ** structure.
809 */
810 struct CCurHint {
811   int iTabCur;    /* Cursor for the main table */
812   int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
813   Index *pIdx;    /* The index used to access the table */
814 };
815 
816 /*
817 ** This function is called for every node of an expression that is a candidate
818 ** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
819 ** the table CCurHint.iTabCur, verify that the same column can be
820 ** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
821 */
822 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
823   struct CCurHint *pHint = pWalker->u.pCCurHint;
824   assert( pHint->pIdx!=0 );
825   if( pExpr->op==TK_COLUMN
826    && pExpr->iTable==pHint->iTabCur
827    && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0
828   ){
829     pWalker->eCode = 1;
830   }
831   return WRC_Continue;
832 }
833 
834 /*
835 ** Test whether or not expression pExpr, which was part of a WHERE clause,
836 ** should be included in the cursor-hint for a table that is on the rhs
837 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
838 ** expression is not suitable.
839 **
840 ** An expression is unsuitable if it might evaluate to non NULL even if
841 ** a TK_COLUMN node that does affect the value of the expression is set
842 ** to NULL. For example:
843 **
844 **   col IS NULL
845 **   col IS NOT NULL
846 **   coalesce(col, 1)
847 **   CASE WHEN col THEN 0 ELSE 1 END
848 */
849 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
850   if( pExpr->op==TK_IS
851    || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
852    || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
853   ){
854     pWalker->eCode = 1;
855   }else if( pExpr->op==TK_FUNCTION ){
856     int d1;
857     char d2[4];
858     if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
859       pWalker->eCode = 1;
860     }
861   }
862 
863   return WRC_Continue;
864 }
865 
866 
867 /*
868 ** This function is called on every node of an expression tree used as an
869 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
870 ** that accesses any table other than the one identified by
871 ** CCurHint.iTabCur, then do the following:
872 **
873 **   1) allocate a register and code an OP_Column instruction to read
874 **      the specified column into the new register, and
875 **
876 **   2) transform the expression node to a TK_REGISTER node that reads
877 **      from the newly populated register.
878 **
879 ** Also, if the node is a TK_COLUMN that does access the table idenified
880 ** by pCCurHint.iTabCur, and an index is being used (which we will
881 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
882 ** an access of the index rather than the original table.
883 */
884 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
885   int rc = WRC_Continue;
886   struct CCurHint *pHint = pWalker->u.pCCurHint;
887   if( pExpr->op==TK_COLUMN ){
888     if( pExpr->iTable!=pHint->iTabCur ){
889       int reg = ++pWalker->pParse->nMem;   /* Register for column value */
890       sqlite3ExprCode(pWalker->pParse, pExpr, reg);
891       pExpr->op = TK_REGISTER;
892       pExpr->iTable = reg;
893     }else if( pHint->pIdx!=0 ){
894       pExpr->iTable = pHint->iIdxCur;
895       pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn);
896       assert( pExpr->iColumn>=0 );
897     }
898   }else if( pExpr->op==TK_AGG_FUNCTION ){
899     /* An aggregate function in the WHERE clause of a query means this must
900     ** be a correlated sub-query, and expression pExpr is an aggregate from
901     ** the parent context. Do not walk the function arguments in this case.
902     **
903     ** todo: It should be possible to replace this node with a TK_REGISTER
904     ** expression, as the result of the expression must be stored in a
905     ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
906     rc = WRC_Prune;
907   }
908   return rc;
909 }
910 
911 /*
912 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
913 */
914 static void codeCursorHint(
915   struct SrcList_item *pTabItem,  /* FROM clause item */
916   WhereInfo *pWInfo,    /* The where clause */
917   WhereLevel *pLevel,   /* Which loop to provide hints for */
918   WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
919 ){
920   Parse *pParse = pWInfo->pParse;
921   sqlite3 *db = pParse->db;
922   Vdbe *v = pParse->pVdbe;
923   Expr *pExpr = 0;
924   WhereLoop *pLoop = pLevel->pWLoop;
925   int iCur;
926   WhereClause *pWC;
927   WhereTerm *pTerm;
928   int i, j;
929   struct CCurHint sHint;
930   Walker sWalker;
931 
932   if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
933   iCur = pLevel->iTabCur;
934   assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
935   sHint.iTabCur = iCur;
936   sHint.iIdxCur = pLevel->iIdxCur;
937   sHint.pIdx = pLoop->u.btree.pIndex;
938   memset(&sWalker, 0, sizeof(sWalker));
939   sWalker.pParse = pParse;
940   sWalker.u.pCCurHint = &sHint;
941   pWC = &pWInfo->sWC;
942   for(i=0; i<pWC->nTerm; i++){
943     pTerm = &pWC->a[i];
944     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
945     if( pTerm->prereqAll & pLevel->notReady ) continue;
946 
947     /* Any terms specified as part of the ON(...) clause for any LEFT
948     ** JOIN for which the current table is not the rhs are omitted
949     ** from the cursor-hint.
950     **
951     ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
952     ** that were specified as part of the WHERE clause must be excluded.
953     ** This is to address the following:
954     **
955     **   SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
956     **
957     ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
958     ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
959     ** pushed down to the cursor, this row is filtered out, causing
960     ** SQLite to synthesize a row of NULL values. Which does match the
961     ** WHERE clause, and so the query returns a row. Which is incorrect.
962     **
963     ** For the same reason, WHERE terms such as:
964     **
965     **   WHERE 1 = (t2.c IS NULL)
966     **
967     ** are also excluded. See codeCursorHintIsOrFunction() for details.
968     */
969     if( pTabItem->fg.jointype & JT_LEFT ){
970       Expr *pExpr = pTerm->pExpr;
971       if( !ExprHasProperty(pExpr, EP_FromJoin)
972        || pExpr->iRightJoinTable!=pTabItem->iCursor
973       ){
974         sWalker.eCode = 0;
975         sWalker.xExprCallback = codeCursorHintIsOrFunction;
976         sqlite3WalkExpr(&sWalker, pTerm->pExpr);
977         if( sWalker.eCode ) continue;
978       }
979     }else{
980       if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
981     }
982 
983     /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
984     ** the cursor.  These terms are not needed as hints for a pure range
985     ** scan (that has no == terms) so omit them. */
986     if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
987       for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
988       if( j<pLoop->nLTerm ) continue;
989     }
990 
991     /* No subqueries or non-deterministic functions allowed */
992     if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
993 
994     /* For an index scan, make sure referenced columns are actually in
995     ** the index. */
996     if( sHint.pIdx!=0 ){
997       sWalker.eCode = 0;
998       sWalker.xExprCallback = codeCursorHintCheckExpr;
999       sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1000       if( sWalker.eCode ) continue;
1001     }
1002 
1003     /* If we survive all prior tests, that means this term is worth hinting */
1004     pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
1005   }
1006   if( pExpr!=0 ){
1007     sWalker.xExprCallback = codeCursorHintFixExpr;
1008     sqlite3WalkExpr(&sWalker, pExpr);
1009     sqlite3VdbeAddOp4(v, OP_CursorHint,
1010                       (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
1011                       (const char*)pExpr, P4_EXPR);
1012   }
1013 }
1014 #else
1015 # define codeCursorHint(A,B,C,D)  /* No-op */
1016 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1017 
1018 /*
1019 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1020 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1021 ** function generates code to do a deferred seek of cursor iCur to the
1022 ** rowid stored in register iRowid.
1023 **
1024 ** Normally, this is just:
1025 **
1026 **   OP_DeferredSeek $iCur $iRowid
1027 **
1028 ** However, if the scan currently being coded is a branch of an OR-loop and
1029 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek
1030 ** is set to iIdxCur and P4 is set to point to an array of integers
1031 ** containing one entry for each column of the table cursor iCur is open
1032 ** on. For each table column, if the column is the i'th column of the
1033 ** index, then the corresponding array entry is set to (i+1). If the column
1034 ** does not appear in the index at all, the array entry is set to 0.
1035 */
1036 static void codeDeferredSeek(
1037   WhereInfo *pWInfo,              /* Where clause context */
1038   Index *pIdx,                    /* Index scan is using */
1039   int iCur,                       /* Cursor for IPK b-tree */
1040   int iIdxCur                     /* Index cursor */
1041 ){
1042   Parse *pParse = pWInfo->pParse; /* Parse context */
1043   Vdbe *v = pParse->pVdbe;        /* Vdbe to generate code within */
1044 
1045   assert( iIdxCur>0 );
1046   assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1047 
1048   sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1049   if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1050    && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1051   ){
1052     int i;
1053     Table *pTab = pIdx->pTable;
1054     int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1));
1055     if( ai ){
1056       ai[0] = pTab->nCol;
1057       for(i=0; i<pIdx->nColumn-1; i++){
1058         int x1, x2;
1059         assert( pIdx->aiColumn[i]<pTab->nCol );
1060         x1 = pIdx->aiColumn[i];
1061         x2 = sqlite3TableColumnToStorage(pTab, x1);
1062         testcase( x1!=x2 );
1063         if( x1>=0 ) ai[x2+1] = i+1;
1064       }
1065       sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1066     }
1067   }
1068 }
1069 
1070 /*
1071 ** If the expression passed as the second argument is a vector, generate
1072 ** code to write the first nReg elements of the vector into an array
1073 ** of registers starting with iReg.
1074 **
1075 ** If the expression is not a vector, then nReg must be passed 1. In
1076 ** this case, generate code to evaluate the expression and leave the
1077 ** result in register iReg.
1078 */
1079 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1080   assert( nReg>0 );
1081   if( p && sqlite3ExprIsVector(p) ){
1082 #ifndef SQLITE_OMIT_SUBQUERY
1083     if( (p->flags & EP_xIsSelect) ){
1084       Vdbe *v = pParse->pVdbe;
1085       int iSelect;
1086       assert( p->op==TK_SELECT );
1087       iSelect = sqlite3CodeSubselect(pParse, p);
1088       sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1089     }else
1090 #endif
1091     {
1092       int i;
1093       ExprList *pList = p->x.pList;
1094       assert( nReg<=pList->nExpr );
1095       for(i=0; i<nReg; i++){
1096         sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1097       }
1098     }
1099   }else{
1100     assert( nReg==1 );
1101     sqlite3ExprCode(pParse, p, iReg);
1102   }
1103 }
1104 
1105 /* An instance of the IdxExprTrans object carries information about a
1106 ** mapping from an expression on table columns into a column in an index
1107 ** down through the Walker.
1108 */
1109 typedef struct IdxExprTrans {
1110   Expr *pIdxExpr;    /* The index expression */
1111   int iTabCur;       /* The cursor of the corresponding table */
1112   int iIdxCur;       /* The cursor for the index */
1113   int iIdxCol;       /* The column for the index */
1114   int iTabCol;       /* The column for the table */
1115 } IdxExprTrans;
1116 
1117 /* The walker node callback used to transform matching expressions into
1118 ** a reference to an index column for an index on an expression.
1119 **
1120 ** If pExpr matches, then transform it into a reference to the index column
1121 ** that contains the value of pExpr.
1122 */
1123 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1124   IdxExprTrans *pX = p->u.pIdxTrans;
1125   if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1126     pExpr->affExpr = sqlite3ExprAffinity(pExpr);
1127     pExpr->op = TK_COLUMN;
1128     pExpr->iTable = pX->iIdxCur;
1129     pExpr->iColumn = pX->iIdxCol;
1130     pExpr->y.pTab = 0;
1131     testcase( ExprHasProperty(pExpr, EP_Skip) );
1132     testcase( ExprHasProperty(pExpr, EP_Unlikely) );
1133     ExprClearProperty(pExpr, EP_Skip|EP_Unlikely);
1134     return WRC_Prune;
1135   }else{
1136     return WRC_Continue;
1137   }
1138 }
1139 
1140 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1141 /* A walker node callback that translates a column reference to a table
1142 ** into a corresponding column reference of an index.
1143 */
1144 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){
1145   if( pExpr->op==TK_COLUMN ){
1146     IdxExprTrans *pX = p->u.pIdxTrans;
1147     if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){
1148       assert( pExpr->y.pTab!=0 );
1149       pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn);
1150       pExpr->iTable = pX->iIdxCur;
1151       pExpr->iColumn = pX->iIdxCol;
1152       pExpr->y.pTab = 0;
1153     }
1154   }
1155   return WRC_Continue;
1156 }
1157 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1158 
1159 /*
1160 ** For an indexes on expression X, locate every instance of expression X
1161 ** in pExpr and change that subexpression into a reference to the appropriate
1162 ** column of the index.
1163 **
1164 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in
1165 ** the table into references to the corresponding (stored) column of the
1166 ** index.
1167 */
1168 static void whereIndexExprTrans(
1169   Index *pIdx,      /* The Index */
1170   int iTabCur,      /* Cursor of the table that is being indexed */
1171   int iIdxCur,      /* Cursor of the index itself */
1172   WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1173 ){
1174   int iIdxCol;               /* Column number of the index */
1175   ExprList *aColExpr;        /* Expressions that are indexed */
1176   Table *pTab;
1177   Walker w;
1178   IdxExprTrans x;
1179   aColExpr = pIdx->aColExpr;
1180   if( aColExpr==0 && !pIdx->bHasVCol ){
1181     /* The index does not reference any expressions or virtual columns
1182     ** so no translations are needed. */
1183     return;
1184   }
1185   pTab = pIdx->pTable;
1186   memset(&w, 0, sizeof(w));
1187   w.u.pIdxTrans = &x;
1188   x.iTabCur = iTabCur;
1189   x.iIdxCur = iIdxCur;
1190   for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){
1191     i16 iRef = pIdx->aiColumn[iIdxCol];
1192     if( iRef==XN_EXPR ){
1193       assert( aColExpr->a[iIdxCol].pExpr!=0 );
1194       x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1195       if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue;
1196       w.xExprCallback = whereIndexExprTransNode;
1197 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1198     }else if( iRef>=0
1199        && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0
1200        && (pTab->aCol[iRef].zColl==0
1201            || sqlite3StrICmp(pTab->aCol[iRef].zColl, sqlite3StrBINARY)==0)
1202     ){
1203       /* Check to see if there are direct references to generated columns
1204       ** that are contained in the index.  Pulling the generated column
1205       ** out of the index is an optimization only - the main table is always
1206       ** available if the index cannot be used.  To avoid unnecessary
1207       ** complication, omit this optimization if the collating sequence for
1208       ** the column is non-standard */
1209       x.iTabCol = iRef;
1210       w.xExprCallback = whereIndexExprTransColumn;
1211 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1212     }else{
1213       continue;
1214     }
1215     x.iIdxCol = iIdxCol;
1216     sqlite3WalkExpr(&w, pWInfo->pWhere);
1217     sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1218     sqlite3WalkExprList(&w, pWInfo->pResultSet);
1219   }
1220 }
1221 
1222 /*
1223 ** The pTruth expression is always true because it is the WHERE clause
1224 ** a partial index that is driving a query loop.  Look through all of the
1225 ** WHERE clause terms on the query, and if any of those terms must be
1226 ** true because pTruth is true, then mark those WHERE clause terms as
1227 ** coded.
1228 */
1229 static void whereApplyPartialIndexConstraints(
1230   Expr *pTruth,
1231   int iTabCur,
1232   WhereClause *pWC
1233 ){
1234   int i;
1235   WhereTerm *pTerm;
1236   while( pTruth->op==TK_AND ){
1237     whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC);
1238     pTruth = pTruth->pRight;
1239   }
1240   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1241     Expr *pExpr;
1242     if( pTerm->wtFlags & TERM_CODED ) continue;
1243     pExpr = pTerm->pExpr;
1244     if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){
1245       pTerm->wtFlags |= TERM_CODED;
1246     }
1247   }
1248 }
1249 
1250 /*
1251 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1252 ** implementation described by pWInfo.
1253 */
1254 Bitmask sqlite3WhereCodeOneLoopStart(
1255   Parse *pParse,       /* Parsing context */
1256   Vdbe *v,             /* Prepared statement under construction */
1257   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1258   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1259   WhereLevel *pLevel,  /* The current level pointer */
1260   Bitmask notReady     /* Which tables are currently available */
1261 ){
1262   int j, k;            /* Loop counters */
1263   int iCur;            /* The VDBE cursor for the table */
1264   int addrNxt;         /* Where to jump to continue with the next IN case */
1265   int bRev;            /* True if we need to scan in reverse order */
1266   WhereLoop *pLoop;    /* The WhereLoop object being coded */
1267   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
1268   WhereTerm *pTerm;               /* A WHERE clause term */
1269   sqlite3 *db;                    /* Database connection */
1270   struct SrcList_item *pTabItem;  /* FROM clause term being coded */
1271   int addrBrk;                    /* Jump here to break out of the loop */
1272   int addrHalt;                   /* addrBrk for the outermost loop */
1273   int addrCont;                   /* Jump here to continue with next cycle */
1274   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
1275   int iReleaseReg = 0;      /* Temp register to free before returning */
1276   Index *pIdx = 0;          /* Index used by loop (if any) */
1277   int iLoop;                /* Iteration of constraint generator loop */
1278 
1279   pWC = &pWInfo->sWC;
1280   db = pParse->db;
1281   pLoop = pLevel->pWLoop;
1282   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1283   iCur = pTabItem->iCursor;
1284   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1285   bRev = (pWInfo->revMask>>iLevel)&1;
1286   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1287 
1288   /* Create labels for the "break" and "continue" instructions
1289   ** for the current loop.  Jump to addrBrk to break out of a loop.
1290   ** Jump to cont to go immediately to the next iteration of the
1291   ** loop.
1292   **
1293   ** When there is an IN operator, we also have a "addrNxt" label that
1294   ** means to continue with the next IN value combination.  When
1295   ** there are no IN operators in the constraints, the "addrNxt" label
1296   ** is the same as "addrBrk".
1297   */
1298   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
1299   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse);
1300 
1301   /* If this is the right table of a LEFT OUTER JOIN, allocate and
1302   ** initialize a memory cell that records if this table matches any
1303   ** row of the left table of the join.
1304   */
1305   assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1306        || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
1307   );
1308   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1309     pLevel->iLeftJoin = ++pParse->nMem;
1310     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1311     VdbeComment((v, "init LEFT JOIN no-match flag"));
1312   }
1313 
1314   /* Compute a safe address to jump to if we discover that the table for
1315   ** this loop is empty and can never contribute content. */
1316   for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){}
1317   addrHalt = pWInfo->a[j].addrBrk;
1318 
1319   /* Special case of a FROM clause subquery implemented as a co-routine */
1320   if( pTabItem->fg.viaCoroutine ){
1321     int regYield = pTabItem->regReturn;
1322     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1323     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1324     VdbeCoverage(v);
1325     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
1326     pLevel->op = OP_Goto;
1327   }else
1328 
1329 #ifndef SQLITE_OMIT_VIRTUALTABLE
1330   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1331     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
1332     **          to access the data.
1333     */
1334     int iReg;   /* P3 Value for OP_VFilter */
1335     int addrNotFound;
1336     int nConstraint = pLoop->nLTerm;
1337     int iIn;    /* Counter for IN constraints */
1338 
1339     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1340     addrNotFound = pLevel->addrBrk;
1341     for(j=0; j<nConstraint; j++){
1342       int iTarget = iReg+j+2;
1343       pTerm = pLoop->aLTerm[j];
1344       if( NEVER(pTerm==0) ) continue;
1345       if( pTerm->eOperator & WO_IN ){
1346         codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1347         addrNotFound = pLevel->addrNxt;
1348       }else{
1349         Expr *pRight = pTerm->pExpr->pRight;
1350         codeExprOrVector(pParse, pRight, iTarget, 1);
1351       }
1352     }
1353     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1354     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1355     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1356                       pLoop->u.vtab.idxStr,
1357                       pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1358     VdbeCoverage(v);
1359     pLoop->u.vtab.needFree = 0;
1360     pLevel->p1 = iCur;
1361     pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1362     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1363     iIn = pLevel->u.in.nIn;
1364     for(j=nConstraint-1; j>=0; j--){
1365       pTerm = pLoop->aLTerm[j];
1366       if( (pTerm->eOperator & WO_IN)!=0 ) iIn--;
1367       if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1368         disableTerm(pLevel, pTerm);
1369       }else if( (pTerm->eOperator & WO_IN)!=0
1370         && sqlite3ExprVectorSize(pTerm->pExpr->pLeft)==1
1371       ){
1372         Expr *pCompare;  /* The comparison operator */
1373         Expr *pRight;    /* RHS of the comparison */
1374         VdbeOp *pOp;     /* Opcode to access the value of the IN constraint */
1375 
1376         /* Reload the constraint value into reg[iReg+j+2].  The same value
1377         ** was loaded into the same register prior to the OP_VFilter, but
1378         ** the xFilter implementation might have changed the datatype or
1379         ** encoding of the value in the register, so it *must* be reloaded. */
1380         assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed );
1381         if( !db->mallocFailed ){
1382           assert( iIn>=0 && iIn<pLevel->u.in.nIn );
1383           pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop);
1384           assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid );
1385           assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 );
1386           assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 );
1387           testcase( pOp->opcode==OP_Rowid );
1388           sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1389         }
1390 
1391         /* Generate code that will continue to the next row if
1392         ** the IN constraint is not satisfied */
1393         pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1394         assert( pCompare!=0 || db->mallocFailed );
1395         if( pCompare ){
1396           pCompare->pLeft = pTerm->pExpr->pLeft;
1397           pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1398           if( pRight ){
1399             pRight->iTable = iReg+j+2;
1400             sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0);
1401           }
1402           pCompare->pLeft = 0;
1403           sqlite3ExprDelete(db, pCompare);
1404         }
1405       }
1406     }
1407     assert( iIn==0 || db->mallocFailed );
1408     /* These registers need to be preserved in case there is an IN operator
1409     ** loop.  So we could deallocate the registers here (and potentially
1410     ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0.  But it seems
1411     ** simpler and safer to simply not reuse the registers.
1412     **
1413     **    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1414     */
1415   }else
1416 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1417 
1418   if( (pLoop->wsFlags & WHERE_IPK)!=0
1419    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1420   ){
1421     /* Case 2:  We can directly reference a single row using an
1422     **          equality comparison against the ROWID field.  Or
1423     **          we reference multiple rows using a "rowid IN (...)"
1424     **          construct.
1425     */
1426     assert( pLoop->u.btree.nEq==1 );
1427     pTerm = pLoop->aLTerm[0];
1428     assert( pTerm!=0 );
1429     assert( pTerm->pExpr!=0 );
1430     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1431     iReleaseReg = ++pParse->nMem;
1432     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1433     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1434     addrNxt = pLevel->addrNxt;
1435     sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1436     VdbeCoverage(v);
1437     pLevel->op = OP_Noop;
1438     if( (pTerm->prereqAll & pLevel->notReady)==0 ){
1439       pTerm->wtFlags |= TERM_CODED;
1440     }
1441   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1442          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1443   ){
1444     /* Case 3:  We have an inequality comparison against the ROWID field.
1445     */
1446     int testOp = OP_Noop;
1447     int start;
1448     int memEndValue = 0;
1449     WhereTerm *pStart, *pEnd;
1450 
1451     j = 0;
1452     pStart = pEnd = 0;
1453     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1454     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1455     assert( pStart!=0 || pEnd!=0 );
1456     if( bRev ){
1457       pTerm = pStart;
1458       pStart = pEnd;
1459       pEnd = pTerm;
1460     }
1461     codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1462     if( pStart ){
1463       Expr *pX;             /* The expression that defines the start bound */
1464       int r1, rTemp;        /* Registers for holding the start boundary */
1465       int op;               /* Cursor seek operation */
1466 
1467       /* The following constant maps TK_xx codes into corresponding
1468       ** seek opcodes.  It depends on a particular ordering of TK_xx
1469       */
1470       const u8 aMoveOp[] = {
1471            /* TK_GT */  OP_SeekGT,
1472            /* TK_LE */  OP_SeekLE,
1473            /* TK_LT */  OP_SeekLT,
1474            /* TK_GE */  OP_SeekGE
1475       };
1476       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
1477       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
1478       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
1479 
1480       assert( (pStart->wtFlags & TERM_VNULL)==0 );
1481       testcase( pStart->wtFlags & TERM_VIRTUAL );
1482       pX = pStart->pExpr;
1483       assert( pX!=0 );
1484       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1485       if( sqlite3ExprIsVector(pX->pRight) ){
1486         r1 = rTemp = sqlite3GetTempReg(pParse);
1487         codeExprOrVector(pParse, pX->pRight, r1, 1);
1488         testcase( pX->op==TK_GT );
1489         testcase( pX->op==TK_GE );
1490         testcase( pX->op==TK_LT );
1491         testcase( pX->op==TK_LE );
1492         op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
1493         assert( pX->op!=TK_GT || op==OP_SeekGE );
1494         assert( pX->op!=TK_GE || op==OP_SeekGE );
1495         assert( pX->op!=TK_LT || op==OP_SeekLE );
1496         assert( pX->op!=TK_LE || op==OP_SeekLE );
1497       }else{
1498         r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1499         disableTerm(pLevel, pStart);
1500         op = aMoveOp[(pX->op - TK_GT)];
1501       }
1502       sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1503       VdbeComment((v, "pk"));
1504       VdbeCoverageIf(v, pX->op==TK_GT);
1505       VdbeCoverageIf(v, pX->op==TK_LE);
1506       VdbeCoverageIf(v, pX->op==TK_LT);
1507       VdbeCoverageIf(v, pX->op==TK_GE);
1508       sqlite3ReleaseTempReg(pParse, rTemp);
1509     }else{
1510       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1511       VdbeCoverageIf(v, bRev==0);
1512       VdbeCoverageIf(v, bRev!=0);
1513     }
1514     if( pEnd ){
1515       Expr *pX;
1516       pX = pEnd->pExpr;
1517       assert( pX!=0 );
1518       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1519       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1520       testcase( pEnd->wtFlags & TERM_VIRTUAL );
1521       memEndValue = ++pParse->nMem;
1522       codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1523       if( 0==sqlite3ExprIsVector(pX->pRight)
1524        && (pX->op==TK_LT || pX->op==TK_GT)
1525       ){
1526         testOp = bRev ? OP_Le : OP_Ge;
1527       }else{
1528         testOp = bRev ? OP_Lt : OP_Gt;
1529       }
1530       if( 0==sqlite3ExprIsVector(pX->pRight) ){
1531         disableTerm(pLevel, pEnd);
1532       }
1533     }
1534     start = sqlite3VdbeCurrentAddr(v);
1535     pLevel->op = bRev ? OP_Prev : OP_Next;
1536     pLevel->p1 = iCur;
1537     pLevel->p2 = start;
1538     assert( pLevel->p5==0 );
1539     if( testOp!=OP_Noop ){
1540       iRowidReg = ++pParse->nMem;
1541       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1542       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1543       VdbeCoverageIf(v, testOp==OP_Le);
1544       VdbeCoverageIf(v, testOp==OP_Lt);
1545       VdbeCoverageIf(v, testOp==OP_Ge);
1546       VdbeCoverageIf(v, testOp==OP_Gt);
1547       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1548     }
1549   }else if( pLoop->wsFlags & WHERE_INDEXED ){
1550     /* Case 4: A scan using an index.
1551     **
1552     **         The WHERE clause may contain zero or more equality
1553     **         terms ("==" or "IN" operators) that refer to the N
1554     **         left-most columns of the index. It may also contain
1555     **         inequality constraints (>, <, >= or <=) on the indexed
1556     **         column that immediately follows the N equalities. Only
1557     **         the right-most column can be an inequality - the rest must
1558     **         use the "==" and "IN" operators. For example, if the
1559     **         index is on (x,y,z), then the following clauses are all
1560     **         optimized:
1561     **
1562     **            x=5
1563     **            x=5 AND y=10
1564     **            x=5 AND y<10
1565     **            x=5 AND y>5 AND y<10
1566     **            x=5 AND y=5 AND z<=10
1567     **
1568     **         The z<10 term of the following cannot be used, only
1569     **         the x=5 term:
1570     **
1571     **            x=5 AND z<10
1572     **
1573     **         N may be zero if there are inequality constraints.
1574     **         If there are no inequality constraints, then N is at
1575     **         least one.
1576     **
1577     **         This case is also used when there are no WHERE clause
1578     **         constraints but an index is selected anyway, in order
1579     **         to force the output order to conform to an ORDER BY.
1580     */
1581     static const u8 aStartOp[] = {
1582       0,
1583       0,
1584       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
1585       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
1586       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
1587       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
1588       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
1589       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
1590     };
1591     static const u8 aEndOp[] = {
1592       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
1593       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
1594       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
1595       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
1596     };
1597     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
1598     u16 nBtm = pLoop->u.btree.nBtm;   /* Length of BTM vector */
1599     u16 nTop = pLoop->u.btree.nTop;   /* Length of TOP vector */
1600     int regBase;                 /* Base register holding constraint values */
1601     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
1602     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
1603     int startEq;                 /* True if range start uses ==, >= or <= */
1604     int endEq;                   /* True if range end uses ==, >= or <= */
1605     int start_constraints;       /* Start of range is constrained */
1606     int nConstraint;             /* Number of constraint terms */
1607     int iIdxCur;                 /* The VDBE cursor for the index */
1608     int nExtraReg = 0;           /* Number of extra registers needed */
1609     int op;                      /* Instruction opcode */
1610     char *zStartAff;             /* Affinity for start of range constraint */
1611     char *zEndAff = 0;           /* Affinity for end of range constraint */
1612     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
1613     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
1614     int omitTable;               /* True if we use the index only */
1615     int regBignull = 0;          /* big-null flag register */
1616 
1617     pIdx = pLoop->u.btree.pIndex;
1618     iIdxCur = pLevel->iIdxCur;
1619     assert( nEq>=pLoop->nSkip );
1620 
1621     /* Find any inequality constraint terms for the start and end
1622     ** of the range.
1623     */
1624     j = nEq;
1625     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1626       pRangeStart = pLoop->aLTerm[j++];
1627       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1628       /* Like optimization range constraints always occur in pairs */
1629       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1630               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1631     }
1632     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1633       pRangeEnd = pLoop->aLTerm[j++];
1634       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1635 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1636       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1637         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
1638         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
1639         pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1640         sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1641         VdbeComment((v, "LIKE loop counter"));
1642         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1643         /* iLikeRepCntr actually stores 2x the counter register number.  The
1644         ** bottom bit indicates whether the search order is ASC or DESC. */
1645         testcase( bRev );
1646         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1647         assert( (bRev & ~1)==0 );
1648         pLevel->iLikeRepCntr <<=1;
1649         pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1650       }
1651 #endif
1652       if( pRangeStart==0 ){
1653         j = pIdx->aiColumn[nEq];
1654         if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1655           bSeekPastNull = 1;
1656         }
1657       }
1658     }
1659     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1660 
1661     /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
1662     ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
1663     ** FIRST). In both cases separate ordered scans are made of those
1664     ** index entries for which the column is null and for those for which
1665     ** it is not. For an ASC sort, the non-NULL entries are scanned first.
1666     ** For DESC, NULL entries are scanned first.
1667     */
1668     if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0
1669      && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0
1670     ){
1671       assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 );
1672       assert( pRangeEnd==0 && pRangeStart==0 );
1673       assert( pLoop->nSkip==0 );
1674       nExtraReg = 1;
1675       bSeekPastNull = 1;
1676       pLevel->regBignull = regBignull = ++pParse->nMem;
1677       pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse);
1678     }
1679 
1680     /* If we are doing a reverse order scan on an ascending index, or
1681     ** a forward order scan on a descending index, interchange the
1682     ** start and end terms (pRangeStart and pRangeEnd).
1683     */
1684     if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1685      || (bRev && pIdx->nKeyCol==nEq)
1686     ){
1687       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1688       SWAP(u8, bSeekPastNull, bStopAtNull);
1689       SWAP(u8, nBtm, nTop);
1690     }
1691 
1692     /* Generate code to evaluate all constraint terms using == or IN
1693     ** and store the values of those terms in an array of registers
1694     ** starting at regBase.
1695     */
1696     codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1697     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1698     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1699     if( zStartAff && nTop ){
1700       zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1701     }
1702     addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt);
1703 
1704     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1705     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1706     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1707     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1708     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1709     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1710     start_constraints = pRangeStart || nEq>0;
1711 
1712     /* Seek the index cursor to the start of the range. */
1713     nConstraint = nEq;
1714     if( pRangeStart ){
1715       Expr *pRight = pRangeStart->pExpr->pRight;
1716       codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1717       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1718       if( (pRangeStart->wtFlags & TERM_VNULL)==0
1719        && sqlite3ExprCanBeNull(pRight)
1720       ){
1721         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1722         VdbeCoverage(v);
1723       }
1724       if( zStartAff ){
1725         updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1726       }
1727       nConstraint += nBtm;
1728       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1729       if( sqlite3ExprIsVector(pRight)==0 ){
1730         disableTerm(pLevel, pRangeStart);
1731       }else{
1732         startEq = 1;
1733       }
1734       bSeekPastNull = 0;
1735     }else if( bSeekPastNull ){
1736       startEq = 0;
1737       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1738       start_constraints = 1;
1739       nConstraint++;
1740     }else if( regBignull ){
1741       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1742       start_constraints = 1;
1743       nConstraint++;
1744     }
1745     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1746     if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1747       /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1748       ** above has already left the cursor sitting on the correct row,
1749       ** so no further seeking is needed */
1750     }else{
1751       if( pLoop->wsFlags & WHERE_IN_EARLYOUT ){
1752         sqlite3VdbeAddOp1(v, OP_SeekHit, iIdxCur);
1753       }
1754       if( regBignull ){
1755         sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull);
1756         VdbeComment((v, "NULL-scan pass ctr"));
1757       }
1758 
1759       op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1760       assert( op!=0 );
1761       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1762       VdbeCoverage(v);
1763       VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1764       VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1765       VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
1766       VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1767       VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1768       VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
1769 
1770       assert( bSeekPastNull==0 || bStopAtNull==0 );
1771       if( regBignull ){
1772         assert( bSeekPastNull==1 || bStopAtNull==1 );
1773         assert( bSeekPastNull==!bStopAtNull );
1774         assert( bStopAtNull==startEq );
1775         sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2);
1776         op = aStartOp[(nConstraint>1)*4 + 2 + bRev];
1777         sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1778                              nConstraint-startEq);
1779         VdbeCoverage(v);
1780         VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1781         VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1782         VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1783         VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1784         assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE);
1785       }
1786     }
1787 
1788     /* Load the value for the inequality constraint at the end of the
1789     ** range (if any).
1790     */
1791     nConstraint = nEq;
1792     if( pRangeEnd ){
1793       Expr *pRight = pRangeEnd->pExpr->pRight;
1794       codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
1795       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1796       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1797        && sqlite3ExprCanBeNull(pRight)
1798       ){
1799         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1800         VdbeCoverage(v);
1801       }
1802       if( zEndAff ){
1803         updateRangeAffinityStr(pRight, nTop, zEndAff);
1804         codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1805       }else{
1806         assert( pParse->db->mallocFailed );
1807       }
1808       nConstraint += nTop;
1809       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1810 
1811       if( sqlite3ExprIsVector(pRight)==0 ){
1812         disableTerm(pLevel, pRangeEnd);
1813       }else{
1814         endEq = 1;
1815       }
1816     }else if( bStopAtNull ){
1817       if( regBignull==0 ){
1818         sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1819         endEq = 0;
1820       }
1821       nConstraint++;
1822     }
1823     sqlite3DbFree(db, zStartAff);
1824     sqlite3DbFree(db, zEndAff);
1825 
1826     /* Top of the loop body */
1827     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1828 
1829     /* Check if the index cursor is past the end of the range. */
1830     if( nConstraint ){
1831       if( regBignull ){
1832         /* Except, skip the end-of-range check while doing the NULL-scan */
1833         sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3);
1834         VdbeComment((v, "If NULL-scan 2nd pass"));
1835         VdbeCoverage(v);
1836       }
1837       op = aEndOp[bRev*2 + endEq];
1838       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1839       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1840       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1841       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1842       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1843     }
1844     if( regBignull ){
1845       /* During a NULL-scan, check to see if we have reached the end of
1846       ** the NULLs */
1847       assert( bSeekPastNull==!bStopAtNull );
1848       assert( bSeekPastNull+bStopAtNull==1 );
1849       assert( nConstraint+bSeekPastNull>0 );
1850       sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2);
1851       VdbeComment((v, "If NULL-scan 1st pass"));
1852       VdbeCoverage(v);
1853       op = aEndOp[bRev*2 + bSeekPastNull];
1854       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1855                            nConstraint+bSeekPastNull);
1856       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1857       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1858       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1859       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1860     }
1861 
1862     if( pLoop->wsFlags & WHERE_IN_EARLYOUT ){
1863       sqlite3VdbeAddOp2(v, OP_SeekHit, iIdxCur, 1);
1864     }
1865 
1866     /* Seek the table cursor, if required */
1867     omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
1868            && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
1869     if( omitTable ){
1870       /* pIdx is a covering index.  No need to access the main table. */
1871     }else if( HasRowid(pIdx->pTable) ){
1872       if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE)
1873        || ( (pWInfo->wctrlFlags & WHERE_SEEK_UNIQ_TABLE)!=0
1874            && (pWInfo->eOnePass==ONEPASS_SINGLE || pLoop->nLTerm==0) )
1875       ){
1876         iRowidReg = ++pParse->nMem;
1877         sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
1878         sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
1879         VdbeCoverage(v);
1880       }else{
1881         codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
1882       }
1883     }else if( iCur!=iIdxCur ){
1884       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1885       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1886       for(j=0; j<pPk->nKeyCol; j++){
1887         k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
1888         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1889       }
1890       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1891                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1892     }
1893 
1894     if( pLevel->iLeftJoin==0 ){
1895       /* If pIdx is an index on one or more expressions, then look through
1896       ** all the expressions in pWInfo and try to transform matching expressions
1897       ** into reference to index columns.  Also attempt to translate references
1898       ** to virtual columns in the table into references to (stored) columns
1899       ** of the index.
1900       **
1901       ** Do not do this for the RHS of a LEFT JOIN. This is because the
1902       ** expression may be evaluated after OP_NullRow has been executed on
1903       ** the cursor. In this case it is important to do the full evaluation,
1904       ** as the result of the expression may not be NULL, even if all table
1905       ** column values are.  https://www.sqlite.org/src/info/7fa8049685b50b5a
1906       **
1907       ** Also, do not do this when processing one index an a multi-index
1908       ** OR clause, since the transformation will become invalid once we
1909       ** move forward to the next index.
1910       ** https://sqlite.org/src/info/4e8e4857d32d401f
1911       */
1912       if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
1913         whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
1914       }
1915 
1916       /* If a partial index is driving the loop, try to eliminate WHERE clause
1917       ** terms from the query that must be true due to the WHERE clause of
1918       ** the partial index.
1919       **
1920       ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
1921       ** for a LEFT JOIN.
1922       */
1923       if( pIdx->pPartIdxWhere ){
1924         whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC);
1925       }
1926     }else{
1927       testcase( pIdx->pPartIdxWhere );
1928       /* The following assert() is not a requirement, merely an observation:
1929       ** The OR-optimization doesn't work for the right hand table of
1930       ** a LEFT JOIN: */
1931       assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 );
1932     }
1933 
1934     /* Record the instruction used to terminate the loop. */
1935     if( pLoop->wsFlags & WHERE_ONEROW ){
1936       pLevel->op = OP_Noop;
1937     }else if( bRev ){
1938       pLevel->op = OP_Prev;
1939     }else{
1940       pLevel->op = OP_Next;
1941     }
1942     pLevel->p1 = iIdxCur;
1943     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1944     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1945       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1946     }else{
1947       assert( pLevel->p5==0 );
1948     }
1949     if( omitTable ) pIdx = 0;
1950   }else
1951 
1952 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1953   if( pLoop->wsFlags & WHERE_MULTI_OR ){
1954     /* Case 5:  Two or more separately indexed terms connected by OR
1955     **
1956     ** Example:
1957     **
1958     **   CREATE TABLE t1(a,b,c,d);
1959     **   CREATE INDEX i1 ON t1(a);
1960     **   CREATE INDEX i2 ON t1(b);
1961     **   CREATE INDEX i3 ON t1(c);
1962     **
1963     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
1964     **
1965     ** In the example, there are three indexed terms connected by OR.
1966     ** The top of the loop looks like this:
1967     **
1968     **          Null       1                # Zero the rowset in reg 1
1969     **
1970     ** Then, for each indexed term, the following. The arguments to
1971     ** RowSetTest are such that the rowid of the current row is inserted
1972     ** into the RowSet. If it is already present, control skips the
1973     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
1974     **
1975     **        sqlite3WhereBegin(<term>)
1976     **          RowSetTest                  # Insert rowid into rowset
1977     **          Gosub      2 A
1978     **        sqlite3WhereEnd()
1979     **
1980     ** Following the above, code to terminate the loop. Label A, the target
1981     ** of the Gosub above, jumps to the instruction right after the Goto.
1982     **
1983     **          Null       1                # Zero the rowset in reg 1
1984     **          Goto       B                # The loop is finished.
1985     **
1986     **       A: <loop body>                 # Return data, whatever.
1987     **
1988     **          Return     2                # Jump back to the Gosub
1989     **
1990     **       B: <after the loop>
1991     **
1992     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
1993     ** use an ephemeral index instead of a RowSet to record the primary
1994     ** keys of the rows we have already seen.
1995     **
1996     */
1997     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
1998     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
1999     Index *pCov = 0;             /* Potential covering index (or NULL) */
2000     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
2001 
2002     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
2003     int regRowset = 0;                        /* Register for RowSet object */
2004     int regRowid = 0;                         /* Register holding rowid */
2005     int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */
2006     int iRetInit;                             /* Address of regReturn init */
2007     int untestedTerms = 0;             /* Some terms not completely tested */
2008     int ii;                            /* Loop counter */
2009     u16 wctrlFlags;                    /* Flags for sub-WHERE clause */
2010     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
2011     Table *pTab = pTabItem->pTab;
2012 
2013     pTerm = pLoop->aLTerm[0];
2014     assert( pTerm!=0 );
2015     assert( pTerm->eOperator & WO_OR );
2016     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
2017     pOrWc = &pTerm->u.pOrInfo->wc;
2018     pLevel->op = OP_Return;
2019     pLevel->p1 = regReturn;
2020 
2021     /* Set up a new SrcList in pOrTab containing the table being scanned
2022     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
2023     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
2024     */
2025     if( pWInfo->nLevel>1 ){
2026       int nNotReady;                 /* The number of notReady tables */
2027       struct SrcList_item *origSrc;     /* Original list of tables */
2028       nNotReady = pWInfo->nLevel - iLevel - 1;
2029       pOrTab = sqlite3StackAllocRaw(db,
2030                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
2031       if( pOrTab==0 ) return notReady;
2032       pOrTab->nAlloc = (u8)(nNotReady + 1);
2033       pOrTab->nSrc = pOrTab->nAlloc;
2034       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
2035       origSrc = pWInfo->pTabList->a;
2036       for(k=1; k<=nNotReady; k++){
2037         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
2038       }
2039     }else{
2040       pOrTab = pWInfo->pTabList;
2041     }
2042 
2043     /* Initialize the rowset register to contain NULL. An SQL NULL is
2044     ** equivalent to an empty rowset.  Or, create an ephemeral index
2045     ** capable of holding primary keys in the case of a WITHOUT ROWID.
2046     **
2047     ** Also initialize regReturn to contain the address of the instruction
2048     ** immediately following the OP_Return at the bottom of the loop. This
2049     ** is required in a few obscure LEFT JOIN cases where control jumps
2050     ** over the top of the loop into the body of it. In this case the
2051     ** correct response for the end-of-loop code (the OP_Return) is to
2052     ** fall through to the next instruction, just as an OP_Next does if
2053     ** called on an uninitialized cursor.
2054     */
2055     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2056       if( HasRowid(pTab) ){
2057         regRowset = ++pParse->nMem;
2058         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
2059       }else{
2060         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2061         regRowset = pParse->nTab++;
2062         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
2063         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
2064       }
2065       regRowid = ++pParse->nMem;
2066     }
2067     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
2068 
2069     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
2070     ** Then for every term xN, evaluate as the subexpression: xN AND z
2071     ** That way, terms in y that are factored into the disjunction will
2072     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
2073     **
2074     ** Actually, each subexpression is converted to "xN AND w" where w is
2075     ** the "interesting" terms of z - terms that did not originate in the
2076     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
2077     ** indices.
2078     **
2079     ** This optimization also only applies if the (x1 OR x2 OR ...) term
2080     ** is not contained in the ON clause of a LEFT JOIN.
2081     ** See ticket http://www.sqlite.org/src/info/f2369304e4
2082     */
2083     if( pWC->nTerm>1 ){
2084       int iTerm;
2085       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
2086         Expr *pExpr = pWC->a[iTerm].pExpr;
2087         if( &pWC->a[iTerm] == pTerm ) continue;
2088         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
2089         testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
2090         if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
2091         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
2092         testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
2093         pExpr = sqlite3ExprDup(db, pExpr, 0);
2094         pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr);
2095       }
2096       if( pAndExpr ){
2097         /* The extra 0x10000 bit on the opcode is masked off and does not
2098         ** become part of the new Expr.op.  However, it does make the
2099         ** op==TK_AND comparison inside of sqlite3PExpr() false, and this
2100         ** prevents sqlite3PExpr() from implementing AND short-circuit
2101         ** optimization, which we do not want here. */
2102         pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr);
2103       }
2104     }
2105 
2106     /* Run a separate WHERE clause for each term of the OR clause.  After
2107     ** eliminating duplicates from other WHERE clauses, the action for each
2108     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
2109     */
2110     wctrlFlags =  WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE);
2111     ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
2112     for(ii=0; ii<pOrWc->nTerm; ii++){
2113       WhereTerm *pOrTerm = &pOrWc->a[ii];
2114       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
2115         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
2116         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
2117         int jmp1 = 0;                   /* Address of jump operation */
2118         assert( (pTabItem[0].fg.jointype & JT_LEFT)==0
2119              || ExprHasProperty(pOrExpr, EP_FromJoin)
2120         );
2121         if( pAndExpr ){
2122           pAndExpr->pLeft = pOrExpr;
2123           pOrExpr = pAndExpr;
2124         }
2125         /* Loop through table entries that match term pOrTerm. */
2126         ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1));
2127         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
2128         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
2129                                       wctrlFlags, iCovCur);
2130         assert( pSubWInfo || pParse->nErr || db->mallocFailed );
2131         if( pSubWInfo ){
2132           WhereLoop *pSubLoop;
2133           int addrExplain = sqlite3WhereExplainOneScan(
2134               pParse, pOrTab, &pSubWInfo->a[0], 0
2135           );
2136           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
2137 
2138           /* This is the sub-WHERE clause body.  First skip over
2139           ** duplicate rows from prior sub-WHERE clauses, and record the
2140           ** rowid (or PRIMARY KEY) for the current row so that the same
2141           ** row will be skipped in subsequent sub-WHERE clauses.
2142           */
2143           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2144             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
2145             if( HasRowid(pTab) ){
2146               sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid);
2147               jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
2148                                           regRowid, iSet);
2149               VdbeCoverage(v);
2150             }else{
2151               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2152               int nPk = pPk->nKeyCol;
2153               int iPk;
2154               int r;
2155 
2156               /* Read the PK into an array of temp registers. */
2157               r = sqlite3GetTempRange(pParse, nPk);
2158               for(iPk=0; iPk<nPk; iPk++){
2159                 int iCol = pPk->aiColumn[iPk];
2160                 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2161               }
2162 
2163               /* Check if the temp table already contains this key. If so,
2164               ** the row has already been included in the result set and
2165               ** can be ignored (by jumping past the Gosub below). Otherwise,
2166               ** insert the key into the temp table and proceed with processing
2167               ** the row.
2168               **
2169               ** Use some of the same optimizations as OP_RowSetTest: If iSet
2170               ** is zero, assume that the key cannot already be present in
2171               ** the temp table. And if iSet is -1, assume that there is no
2172               ** need to insert the key into the temp table, as it will never
2173               ** be tested for.  */
2174               if( iSet ){
2175                 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
2176                 VdbeCoverage(v);
2177               }
2178               if( iSet>=0 ){
2179                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
2180                 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
2181                                      r, nPk);
2182                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2183               }
2184 
2185               /* Release the array of temp registers */
2186               sqlite3ReleaseTempRange(pParse, r, nPk);
2187             }
2188           }
2189 
2190           /* Invoke the main loop body as a subroutine */
2191           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2192 
2193           /* Jump here (skipping the main loop body subroutine) if the
2194           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2195           if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
2196 
2197           /* The pSubWInfo->untestedTerms flag means that this OR term
2198           ** contained one or more AND term from a notReady table.  The
2199           ** terms from the notReady table could not be tested and will
2200           ** need to be tested later.
2201           */
2202           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
2203 
2204           /* If all of the OR-connected terms are optimized using the same
2205           ** index, and the index is opened using the same cursor number
2206           ** by each call to sqlite3WhereBegin() made by this loop, it may
2207           ** be possible to use that index as a covering index.
2208           **
2209           ** If the call to sqlite3WhereBegin() above resulted in a scan that
2210           ** uses an index, and this is either the first OR-connected term
2211           ** processed or the index is the same as that used by all previous
2212           ** terms, set pCov to the candidate covering index. Otherwise, set
2213           ** pCov to NULL to indicate that no candidate covering index will
2214           ** be available.
2215           */
2216           pSubLoop = pSubWInfo->a[0].pWLoop;
2217           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2218           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2219            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2220            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2221           ){
2222             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2223             pCov = pSubLoop->u.btree.pIndex;
2224           }else{
2225             pCov = 0;
2226           }
2227 
2228           /* Finish the loop through table entries that match term pOrTerm. */
2229           sqlite3WhereEnd(pSubWInfo);
2230           ExplainQueryPlanPop(pParse);
2231         }
2232       }
2233     }
2234     ExplainQueryPlanPop(pParse);
2235     pLevel->u.pCovidx = pCov;
2236     if( pCov ) pLevel->iIdxCur = iCovCur;
2237     if( pAndExpr ){
2238       pAndExpr->pLeft = 0;
2239       sqlite3ExprDelete(db, pAndExpr);
2240     }
2241     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2242     sqlite3VdbeGoto(v, pLevel->addrBrk);
2243     sqlite3VdbeResolveLabel(v, iLoopBody);
2244 
2245     if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); }
2246     if( !untestedTerms ) disableTerm(pLevel, pTerm);
2247   }else
2248 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2249 
2250   {
2251     /* Case 6:  There is no usable index.  We must do a complete
2252     **          scan of the entire table.
2253     */
2254     static const u8 aStep[] = { OP_Next, OP_Prev };
2255     static const u8 aStart[] = { OP_Rewind, OP_Last };
2256     assert( bRev==0 || bRev==1 );
2257     if( pTabItem->fg.isRecursive ){
2258       /* Tables marked isRecursive have only a single row that is stored in
2259       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
2260       pLevel->op = OP_Noop;
2261     }else{
2262       codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2263       pLevel->op = aStep[bRev];
2264       pLevel->p1 = iCur;
2265       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2266       VdbeCoverageIf(v, bRev==0);
2267       VdbeCoverageIf(v, bRev!=0);
2268       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2269     }
2270   }
2271 
2272 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2273   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2274 #endif
2275 
2276   /* Insert code to test every subexpression that can be completely
2277   ** computed using the current set of tables.
2278   **
2279   ** This loop may run between one and three times, depending on the
2280   ** constraints to be generated. The value of stack variable iLoop
2281   ** determines the constraints coded by each iteration, as follows:
2282   **
2283   ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2284   ** iLoop==2: Code remaining expressions that do not contain correlated
2285   **           sub-queries.
2286   ** iLoop==3: Code all remaining expressions.
2287   **
2288   ** An effort is made to skip unnecessary iterations of the loop.
2289   */
2290   iLoop = (pIdx ? 1 : 2);
2291   do{
2292     int iNext = 0;                /* Next value for iLoop */
2293     for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2294       Expr *pE;
2295       int skipLikeAddr = 0;
2296       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2297       testcase( pTerm->wtFlags & TERM_CODED );
2298       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2299       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2300         testcase( pWInfo->untestedTerms==0
2301             && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2302         pWInfo->untestedTerms = 1;
2303         continue;
2304       }
2305       pE = pTerm->pExpr;
2306       assert( pE!=0 );
2307       if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){
2308         continue;
2309       }
2310 
2311       if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2312         iNext = 2;
2313         continue;
2314       }
2315       if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2316         if( iNext==0 ) iNext = 3;
2317         continue;
2318       }
2319 
2320       if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
2321         /* If the TERM_LIKECOND flag is set, that means that the range search
2322         ** is sufficient to guarantee that the LIKE operator is true, so we
2323         ** can skip the call to the like(A,B) function.  But this only works
2324         ** for strings.  So do not skip the call to the function on the pass
2325         ** that compares BLOBs. */
2326 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2327         continue;
2328 #else
2329         u32 x = pLevel->iLikeRepCntr;
2330         if( x>0 ){
2331           skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
2332           VdbeCoverageIf(v, (x&1)==1);
2333           VdbeCoverageIf(v, (x&1)==0);
2334         }
2335 #endif
2336       }
2337 #ifdef WHERETRACE_ENABLED /* 0xffff */
2338       if( sqlite3WhereTrace ){
2339         VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2340                          pWC->nTerm-j, pTerm, iLoop));
2341       }
2342 #endif
2343       sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2344       if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2345       pTerm->wtFlags |= TERM_CODED;
2346     }
2347     iLoop = iNext;
2348   }while( iLoop>0 );
2349 
2350   /* Insert code to test for implied constraints based on transitivity
2351   ** of the "==" operator.
2352   **
2353   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2354   ** and we are coding the t1 loop and the t2 loop has not yet coded,
2355   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2356   ** the implied "t1.a=123" constraint.
2357   */
2358   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2359     Expr *pE, sEAlt;
2360     WhereTerm *pAlt;
2361     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2362     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2363     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2364     if( pTerm->leftCursor!=iCur ) continue;
2365     if( pLevel->iLeftJoin ) continue;
2366     pE = pTerm->pExpr;
2367     assert( !ExprHasProperty(pE, EP_FromJoin) );
2368     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2369     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
2370                     WO_EQ|WO_IN|WO_IS, 0);
2371     if( pAlt==0 ) continue;
2372     if( pAlt->wtFlags & (TERM_CODED) ) continue;
2373     if( (pAlt->eOperator & WO_IN)
2374      && (pAlt->pExpr->flags & EP_xIsSelect)
2375      && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
2376     ){
2377       continue;
2378     }
2379     testcase( pAlt->eOperator & WO_EQ );
2380     testcase( pAlt->eOperator & WO_IS );
2381     testcase( pAlt->eOperator & WO_IN );
2382     VdbeModuleComment((v, "begin transitive constraint"));
2383     sEAlt = *pAlt->pExpr;
2384     sEAlt.pLeft = pE->pLeft;
2385     sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2386   }
2387 
2388   /* For a LEFT OUTER JOIN, generate code that will record the fact that
2389   ** at least one row of the right table has matched the left table.
2390   */
2391   if( pLevel->iLeftJoin ){
2392     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2393     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2394     VdbeComment((v, "record LEFT JOIN hit"));
2395     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
2396       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2397       testcase( pTerm->wtFlags & TERM_CODED );
2398       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2399       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2400         assert( pWInfo->untestedTerms );
2401         continue;
2402       }
2403       assert( pTerm->pExpr );
2404       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2405       pTerm->wtFlags |= TERM_CODED;
2406     }
2407   }
2408 
2409   return pLevel->notReady;
2410 }
2411