1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 25 /* 26 ** Return the name of the i-th column of the pIdx index. 27 */ 28 static const char *explainIndexColumnName(Index *pIdx, int i){ 29 i = pIdx->aiColumn[i]; 30 if( i==XN_EXPR ) return "<expr>"; 31 if( i==XN_ROWID ) return "rowid"; 32 return pIdx->pTable->aCol[i].zName; 33 } 34 35 /* 36 ** This routine is a helper for explainIndexRange() below 37 ** 38 ** pStr holds the text of an expression that we are building up one term 39 ** at a time. This routine adds a new term to the end of the expression. 40 ** Terms are separated by AND so add the "AND" text for second and subsequent 41 ** terms only. 42 */ 43 static void explainAppendTerm( 44 StrAccum *pStr, /* The text expression being built */ 45 Index *pIdx, /* Index to read column names from */ 46 int nTerm, /* Number of terms */ 47 int iTerm, /* Zero-based index of first term. */ 48 int bAnd, /* Non-zero to append " AND " */ 49 const char *zOp /* Name of the operator */ 50 ){ 51 int i; 52 53 assert( nTerm>=1 ); 54 if( bAnd ) sqlite3_str_append(pStr, " AND ", 5); 55 56 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 57 for(i=0; i<nTerm; i++){ 58 if( i ) sqlite3_str_append(pStr, ",", 1); 59 sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i)); 60 } 61 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 62 63 sqlite3_str_append(pStr, zOp, 1); 64 65 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 66 for(i=0; i<nTerm; i++){ 67 if( i ) sqlite3_str_append(pStr, ",", 1); 68 sqlite3_str_append(pStr, "?", 1); 69 } 70 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 71 } 72 73 /* 74 ** Argument pLevel describes a strategy for scanning table pTab. This 75 ** function appends text to pStr that describes the subset of table 76 ** rows scanned by the strategy in the form of an SQL expression. 77 ** 78 ** For example, if the query: 79 ** 80 ** SELECT * FROM t1 WHERE a=1 AND b>2; 81 ** 82 ** is run and there is an index on (a, b), then this function returns a 83 ** string similar to: 84 ** 85 ** "a=? AND b>?" 86 */ 87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 88 Index *pIndex = pLoop->u.btree.pIndex; 89 u16 nEq = pLoop->u.btree.nEq; 90 u16 nSkip = pLoop->nSkip; 91 int i, j; 92 93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 94 sqlite3_str_append(pStr, " (", 2); 95 for(i=0; i<nEq; i++){ 96 const char *z = explainIndexColumnName(pIndex, i); 97 if( i ) sqlite3_str_append(pStr, " AND ", 5); 98 sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); 99 } 100 101 j = i; 102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); 104 i = 1; 105 } 106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); 108 } 109 sqlite3_str_append(pStr, ")", 1); 110 } 111 112 /* 113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 116 ** is added to the output to describe the table scan strategy in pLevel. 117 ** 118 ** If an OP_Explain opcode is added to the VM, its address is returned. 119 ** Otherwise, if no OP_Explain is coded, zero is returned. 120 */ 121 int sqlite3WhereExplainOneScan( 122 Parse *pParse, /* Parse context */ 123 SrcList *pTabList, /* Table list this loop refers to */ 124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 125 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 126 ){ 127 int ret = 0; 128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 129 if( sqlite3ParseToplevel(pParse)->explain==2 ) 130 #endif 131 { 132 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 133 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 134 sqlite3 *db = pParse->db; /* Database handle */ 135 int isSearch; /* True for a SEARCH. False for SCAN. */ 136 WhereLoop *pLoop; /* The controlling WhereLoop object */ 137 u32 flags; /* Flags that describe this loop */ 138 char *zMsg; /* Text to add to EQP output */ 139 StrAccum str; /* EQP output string */ 140 char zBuf[100]; /* Initial space for EQP output string */ 141 142 pLoop = pLevel->pWLoop; 143 flags = pLoop->wsFlags; 144 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; 145 146 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 147 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 148 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 149 150 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 151 sqlite3_str_appendall(&str, isSearch ? "SEARCH" : "SCAN"); 152 if( pItem->pSelect ){ 153 sqlite3_str_appendf(&str, " SUBQUERY %u", pItem->pSelect->selId); 154 }else{ 155 sqlite3_str_appendf(&str, " TABLE %s", pItem->zName); 156 } 157 158 if( pItem->zAlias ){ 159 sqlite3_str_appendf(&str, " AS %s", pItem->zAlias); 160 } 161 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 162 const char *zFmt = 0; 163 Index *pIdx; 164 165 assert( pLoop->u.btree.pIndex!=0 ); 166 pIdx = pLoop->u.btree.pIndex; 167 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 168 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 169 if( isSearch ){ 170 zFmt = "PRIMARY KEY"; 171 } 172 }else if( flags & WHERE_PARTIALIDX ){ 173 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 174 }else if( flags & WHERE_AUTO_INDEX ){ 175 zFmt = "AUTOMATIC COVERING INDEX"; 176 }else if( flags & WHERE_IDX_ONLY ){ 177 zFmt = "COVERING INDEX %s"; 178 }else{ 179 zFmt = "INDEX %s"; 180 } 181 if( zFmt ){ 182 sqlite3_str_append(&str, " USING ", 7); 183 sqlite3_str_appendf(&str, zFmt, pIdx->zName); 184 explainIndexRange(&str, pLoop); 185 } 186 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 187 const char *zRangeOp; 188 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 189 zRangeOp = "="; 190 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 191 zRangeOp = ">? AND rowid<"; 192 }else if( flags&WHERE_BTM_LIMIT ){ 193 zRangeOp = ">"; 194 }else{ 195 assert( flags&WHERE_TOP_LIMIT); 196 zRangeOp = "<"; 197 } 198 sqlite3_str_appendf(&str, 199 " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp); 200 } 201 #ifndef SQLITE_OMIT_VIRTUALTABLE 202 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 203 sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s", 204 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 205 } 206 #endif 207 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 208 if( pLoop->nOut>=10 ){ 209 sqlite3_str_appendf(&str, " (~%llu rows)", 210 sqlite3LogEstToInt(pLoop->nOut)); 211 }else{ 212 sqlite3_str_append(&str, " (~1 row)", 9); 213 } 214 #endif 215 zMsg = sqlite3StrAccumFinish(&str); 216 sqlite3ExplainBreakpoint("",zMsg); 217 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), 218 pParse->addrExplain, 0, zMsg,P4_DYNAMIC); 219 } 220 return ret; 221 } 222 #endif /* SQLITE_OMIT_EXPLAIN */ 223 224 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 225 /* 226 ** Configure the VM passed as the first argument with an 227 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 228 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 229 ** clause that the scan reads data from. 230 ** 231 ** If argument addrExplain is not 0, it must be the address of an 232 ** OP_Explain instruction that describes the same loop. 233 */ 234 void sqlite3WhereAddScanStatus( 235 Vdbe *v, /* Vdbe to add scanstatus entry to */ 236 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 237 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 238 int addrExplain /* Address of OP_Explain (or 0) */ 239 ){ 240 const char *zObj = 0; 241 WhereLoop *pLoop = pLvl->pWLoop; 242 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 243 zObj = pLoop->u.btree.pIndex->zName; 244 }else{ 245 zObj = pSrclist->a[pLvl->iFrom].zName; 246 } 247 sqlite3VdbeScanStatus( 248 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 249 ); 250 } 251 #endif 252 253 254 /* 255 ** Disable a term in the WHERE clause. Except, do not disable the term 256 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 257 ** or USING clause of that join. 258 ** 259 ** Consider the term t2.z='ok' in the following queries: 260 ** 261 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 262 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 263 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 264 ** 265 ** The t2.z='ok' is disabled in the in (2) because it originates 266 ** in the ON clause. The term is disabled in (3) because it is not part 267 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 268 ** 269 ** Disabling a term causes that term to not be tested in the inner loop 270 ** of the join. Disabling is an optimization. When terms are satisfied 271 ** by indices, we disable them to prevent redundant tests in the inner 272 ** loop. We would get the correct results if nothing were ever disabled, 273 ** but joins might run a little slower. The trick is to disable as much 274 ** as we can without disabling too much. If we disabled in (1), we'd get 275 ** the wrong answer. See ticket #813. 276 ** 277 ** If all the children of a term are disabled, then that term is also 278 ** automatically disabled. In this way, terms get disabled if derived 279 ** virtual terms are tested first. For example: 280 ** 281 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 282 ** \___________/ \______/ \_____/ 283 ** parent child1 child2 284 ** 285 ** Only the parent term was in the original WHERE clause. The child1 286 ** and child2 terms were added by the LIKE optimization. If both of 287 ** the virtual child terms are valid, then testing of the parent can be 288 ** skipped. 289 ** 290 ** Usually the parent term is marked as TERM_CODED. But if the parent 291 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 292 ** The TERM_LIKECOND marking indicates that the term should be coded inside 293 ** a conditional such that is only evaluated on the second pass of a 294 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 295 */ 296 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 297 int nLoop = 0; 298 assert( pTerm!=0 ); 299 while( (pTerm->wtFlags & TERM_CODED)==0 300 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 301 && (pLevel->notReady & pTerm->prereqAll)==0 302 ){ 303 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 304 pTerm->wtFlags |= TERM_LIKECOND; 305 }else{ 306 pTerm->wtFlags |= TERM_CODED; 307 } 308 if( pTerm->iParent<0 ) break; 309 pTerm = &pTerm->pWC->a[pTerm->iParent]; 310 assert( pTerm!=0 ); 311 pTerm->nChild--; 312 if( pTerm->nChild!=0 ) break; 313 nLoop++; 314 } 315 } 316 317 /* 318 ** Code an OP_Affinity opcode to apply the column affinity string zAff 319 ** to the n registers starting at base. 320 ** 321 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which 322 ** are no-ops) at the beginning and end of zAff are ignored. If all entries 323 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated. 324 ** 325 ** This routine makes its own copy of zAff so that the caller is free 326 ** to modify zAff after this routine returns. 327 */ 328 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 329 Vdbe *v = pParse->pVdbe; 330 if( zAff==0 ){ 331 assert( pParse->db->mallocFailed ); 332 return; 333 } 334 assert( v!=0 ); 335 336 /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE 337 ** entries at the beginning and end of the affinity string. 338 */ 339 assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB ); 340 while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){ 341 n--; 342 base++; 343 zAff++; 344 } 345 while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){ 346 n--; 347 } 348 349 /* Code the OP_Affinity opcode if there is anything left to do. */ 350 if( n>0 ){ 351 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 352 } 353 } 354 355 /* 356 ** Expression pRight, which is the RHS of a comparison operation, is 357 ** either a vector of n elements or, if n==1, a scalar expression. 358 ** Before the comparison operation, affinity zAff is to be applied 359 ** to the pRight values. This function modifies characters within the 360 ** affinity string to SQLITE_AFF_BLOB if either: 361 ** 362 ** * the comparison will be performed with no affinity, or 363 ** * the affinity change in zAff is guaranteed not to change the value. 364 */ 365 static void updateRangeAffinityStr( 366 Expr *pRight, /* RHS of comparison */ 367 int n, /* Number of vector elements in comparison */ 368 char *zAff /* Affinity string to modify */ 369 ){ 370 int i; 371 for(i=0; i<n; i++){ 372 Expr *p = sqlite3VectorFieldSubexpr(pRight, i); 373 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB 374 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) 375 ){ 376 zAff[i] = SQLITE_AFF_BLOB; 377 } 378 } 379 } 380 381 382 /* 383 ** pX is an expression of the form: (vector) IN (SELECT ...) 384 ** In other words, it is a vector IN operator with a SELECT clause on the 385 ** LHS. But not all terms in the vector are indexable and the terms might 386 ** not be in the correct order for indexing. 387 ** 388 ** This routine makes a copy of the input pX expression and then adjusts 389 ** the vector on the LHS with corresponding changes to the SELECT so that 390 ** the vector contains only index terms and those terms are in the correct 391 ** order. The modified IN expression is returned. The caller is responsible 392 ** for deleting the returned expression. 393 ** 394 ** Example: 395 ** 396 ** CREATE TABLE t1(a,b,c,d,e,f); 397 ** CREATE INDEX t1x1 ON t1(e,c); 398 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2) 399 ** \_______________________________________/ 400 ** The pX expression 401 ** 402 ** Since only columns e and c can be used with the index, in that order, 403 ** the modified IN expression that is returned will be: 404 ** 405 ** (e,c) IN (SELECT z,x FROM t2) 406 ** 407 ** The reduced pX is different from the original (obviously) and thus is 408 ** only used for indexing, to improve performance. The original unaltered 409 ** IN expression must also be run on each output row for correctness. 410 */ 411 static Expr *removeUnindexableInClauseTerms( 412 Parse *pParse, /* The parsing context */ 413 int iEq, /* Look at loop terms starting here */ 414 WhereLoop *pLoop, /* The current loop */ 415 Expr *pX /* The IN expression to be reduced */ 416 ){ 417 sqlite3 *db = pParse->db; 418 Expr *pNew; 419 pNew = sqlite3ExprDup(db, pX, 0); 420 if( db->mallocFailed==0 ){ 421 ExprList *pOrigRhs = pNew->x.pSelect->pEList; /* Original unmodified RHS */ 422 ExprList *pOrigLhs = pNew->pLeft->x.pList; /* Original unmodified LHS */ 423 ExprList *pRhs = 0; /* New RHS after modifications */ 424 ExprList *pLhs = 0; /* New LHS after mods */ 425 int i; /* Loop counter */ 426 Select *pSelect; /* Pointer to the SELECT on the RHS */ 427 428 for(i=iEq; i<pLoop->nLTerm; i++){ 429 if( pLoop->aLTerm[i]->pExpr==pX ){ 430 int iField = pLoop->aLTerm[i]->iField - 1; 431 if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */ 432 pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr); 433 pOrigRhs->a[iField].pExpr = 0; 434 assert( pOrigLhs->a[iField].pExpr!=0 ); 435 pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr); 436 pOrigLhs->a[iField].pExpr = 0; 437 } 438 } 439 sqlite3ExprListDelete(db, pOrigRhs); 440 sqlite3ExprListDelete(db, pOrigLhs); 441 pNew->pLeft->x.pList = pLhs; 442 pNew->x.pSelect->pEList = pRhs; 443 if( pLhs && pLhs->nExpr==1 ){ 444 /* Take care here not to generate a TK_VECTOR containing only a 445 ** single value. Since the parser never creates such a vector, some 446 ** of the subroutines do not handle this case. */ 447 Expr *p = pLhs->a[0].pExpr; 448 pLhs->a[0].pExpr = 0; 449 sqlite3ExprDelete(db, pNew->pLeft); 450 pNew->pLeft = p; 451 } 452 pSelect = pNew->x.pSelect; 453 if( pSelect->pOrderBy ){ 454 /* If the SELECT statement has an ORDER BY clause, zero the 455 ** iOrderByCol variables. These are set to non-zero when an 456 ** ORDER BY term exactly matches one of the terms of the 457 ** result-set. Since the result-set of the SELECT statement may 458 ** have been modified or reordered, these variables are no longer 459 ** set correctly. Since setting them is just an optimization, 460 ** it's easiest just to zero them here. */ 461 ExprList *pOrderBy = pSelect->pOrderBy; 462 for(i=0; i<pOrderBy->nExpr; i++){ 463 pOrderBy->a[i].u.x.iOrderByCol = 0; 464 } 465 } 466 467 #if 0 468 printf("For indexing, change the IN expr:\n"); 469 sqlite3TreeViewExpr(0, pX, 0); 470 printf("Into:\n"); 471 sqlite3TreeViewExpr(0, pNew, 0); 472 #endif 473 } 474 return pNew; 475 } 476 477 478 /* 479 ** Generate code for a single equality term of the WHERE clause. An equality 480 ** term can be either X=expr or X IN (...). pTerm is the term to be 481 ** coded. 482 ** 483 ** The current value for the constraint is left in a register, the index 484 ** of which is returned. An attempt is made store the result in iTarget but 485 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the 486 ** constraint is a TK_EQ or TK_IS, then the current value might be left in 487 ** some other register and it is the caller's responsibility to compensate. 488 ** 489 ** For a constraint of the form X=expr, the expression is evaluated in 490 ** straight-line code. For constraints of the form X IN (...) 491 ** this routine sets up a loop that will iterate over all values of X. 492 */ 493 static int codeEqualityTerm( 494 Parse *pParse, /* The parsing context */ 495 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 496 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 497 int iEq, /* Index of the equality term within this level */ 498 int bRev, /* True for reverse-order IN operations */ 499 int iTarget /* Attempt to leave results in this register */ 500 ){ 501 Expr *pX = pTerm->pExpr; 502 Vdbe *v = pParse->pVdbe; 503 int iReg; /* Register holding results */ 504 505 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); 506 assert( iTarget>0 ); 507 if( pX->op==TK_EQ || pX->op==TK_IS ){ 508 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 509 }else if( pX->op==TK_ISNULL ){ 510 iReg = iTarget; 511 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 512 #ifndef SQLITE_OMIT_SUBQUERY 513 }else{ 514 int eType = IN_INDEX_NOOP; 515 int iTab; 516 struct InLoop *pIn; 517 WhereLoop *pLoop = pLevel->pWLoop; 518 int i; 519 int nEq = 0; 520 int *aiMap = 0; 521 522 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 523 && pLoop->u.btree.pIndex!=0 524 && pLoop->u.btree.pIndex->aSortOrder[iEq] 525 ){ 526 testcase( iEq==0 ); 527 testcase( bRev ); 528 bRev = !bRev; 529 } 530 assert( pX->op==TK_IN ); 531 iReg = iTarget; 532 533 for(i=0; i<iEq; i++){ 534 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ 535 disableTerm(pLevel, pTerm); 536 return iTarget; 537 } 538 } 539 for(i=iEq;i<pLoop->nLTerm; i++){ 540 assert( pLoop->aLTerm[i]!=0 ); 541 if( pLoop->aLTerm[i]->pExpr==pX ) nEq++; 542 } 543 544 iTab = 0; 545 if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){ 546 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab); 547 }else{ 548 sqlite3 *db = pParse->db; 549 pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX); 550 551 if( !db->mallocFailed ){ 552 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq); 553 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab); 554 pTerm->pExpr->iTable = iTab; 555 } 556 sqlite3ExprDelete(db, pX); 557 pX = pTerm->pExpr; 558 } 559 560 if( eType==IN_INDEX_INDEX_DESC ){ 561 testcase( bRev ); 562 bRev = !bRev; 563 } 564 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 565 VdbeCoverageIf(v, bRev); 566 VdbeCoverageIf(v, !bRev); 567 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 568 569 pLoop->wsFlags |= WHERE_IN_ABLE; 570 if( pLevel->u.in.nIn==0 ){ 571 pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 572 } 573 574 i = pLevel->u.in.nIn; 575 pLevel->u.in.nIn += nEq; 576 pLevel->u.in.aInLoop = 577 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 578 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 579 pIn = pLevel->u.in.aInLoop; 580 if( pIn ){ 581 int iMap = 0; /* Index in aiMap[] */ 582 pIn += i; 583 for(i=iEq;i<pLoop->nLTerm; i++){ 584 if( pLoop->aLTerm[i]->pExpr==pX ){ 585 int iOut = iReg + i - iEq; 586 if( eType==IN_INDEX_ROWID ){ 587 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); 588 }else{ 589 int iCol = aiMap ? aiMap[iMap++] : 0; 590 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); 591 } 592 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); 593 if( i==iEq ){ 594 pIn->iCur = iTab; 595 pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next; 596 if( iEq>0 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 597 pIn->iBase = iReg - i; 598 pIn->nPrefix = i; 599 pLoop->wsFlags |= WHERE_IN_EARLYOUT; 600 }else{ 601 pIn->nPrefix = 0; 602 } 603 }else{ 604 pIn->eEndLoopOp = OP_Noop; 605 } 606 pIn++; 607 } 608 } 609 }else{ 610 pLevel->u.in.nIn = 0; 611 } 612 sqlite3DbFree(pParse->db, aiMap); 613 #endif 614 } 615 disableTerm(pLevel, pTerm); 616 return iReg; 617 } 618 619 /* 620 ** Generate code that will evaluate all == and IN constraints for an 621 ** index scan. 622 ** 623 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 624 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 625 ** The index has as many as three equality constraints, but in this 626 ** example, the third "c" value is an inequality. So only two 627 ** constraints are coded. This routine will generate code to evaluate 628 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 629 ** in consecutive registers and the index of the first register is returned. 630 ** 631 ** In the example above nEq==2. But this subroutine works for any value 632 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 633 ** The only thing it does is allocate the pLevel->iMem memory cell and 634 ** compute the affinity string. 635 ** 636 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 637 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 638 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 639 ** occurs after the nEq quality constraints. 640 ** 641 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 642 ** the index of the first memory cell in that range. The code that 643 ** calls this routine will use that memory range to store keys for 644 ** start and termination conditions of the loop. 645 ** key value of the loop. If one or more IN operators appear, then 646 ** this routine allocates an additional nEq memory cells for internal 647 ** use. 648 ** 649 ** Before returning, *pzAff is set to point to a buffer containing a 650 ** copy of the column affinity string of the index allocated using 651 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 652 ** with equality constraints that use BLOB or NONE affinity are set to 653 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 654 ** 655 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 656 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 657 ** 658 ** In the example above, the index on t1(a) has TEXT affinity. But since 659 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 660 ** no conversion should be attempted before using a t2.b value as part of 661 ** a key to search the index. Hence the first byte in the returned affinity 662 ** string in this example would be set to SQLITE_AFF_BLOB. 663 */ 664 static int codeAllEqualityTerms( 665 Parse *pParse, /* Parsing context */ 666 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 667 int bRev, /* Reverse the order of IN operators */ 668 int nExtraReg, /* Number of extra registers to allocate */ 669 char **pzAff /* OUT: Set to point to affinity string */ 670 ){ 671 u16 nEq; /* The number of == or IN constraints to code */ 672 u16 nSkip; /* Number of left-most columns to skip */ 673 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 674 Index *pIdx; /* The index being used for this loop */ 675 WhereTerm *pTerm; /* A single constraint term */ 676 WhereLoop *pLoop; /* The WhereLoop object */ 677 int j; /* Loop counter */ 678 int regBase; /* Base register */ 679 int nReg; /* Number of registers to allocate */ 680 char *zAff; /* Affinity string to return */ 681 682 /* This module is only called on query plans that use an index. */ 683 pLoop = pLevel->pWLoop; 684 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 685 nEq = pLoop->u.btree.nEq; 686 nSkip = pLoop->nSkip; 687 pIdx = pLoop->u.btree.pIndex; 688 assert( pIdx!=0 ); 689 690 /* Figure out how many memory cells we will need then allocate them. 691 */ 692 regBase = pParse->nMem + 1; 693 nReg = pLoop->u.btree.nEq + nExtraReg; 694 pParse->nMem += nReg; 695 696 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 697 assert( zAff!=0 || pParse->db->mallocFailed ); 698 699 if( nSkip ){ 700 int iIdxCur = pLevel->iIdxCur; 701 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 702 VdbeCoverageIf(v, bRev==0); 703 VdbeCoverageIf(v, bRev!=0); 704 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 705 j = sqlite3VdbeAddOp0(v, OP_Goto); 706 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 707 iIdxCur, 0, regBase, nSkip); 708 VdbeCoverageIf(v, bRev==0); 709 VdbeCoverageIf(v, bRev!=0); 710 sqlite3VdbeJumpHere(v, j); 711 for(j=0; j<nSkip; j++){ 712 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 713 testcase( pIdx->aiColumn[j]==XN_EXPR ); 714 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 715 } 716 } 717 718 /* Evaluate the equality constraints 719 */ 720 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 721 for(j=nSkip; j<nEq; j++){ 722 int r1; 723 pTerm = pLoop->aLTerm[j]; 724 assert( pTerm!=0 ); 725 /* The following testcase is true for indices with redundant columns. 726 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 727 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 728 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 729 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 730 if( r1!=regBase+j ){ 731 if( nReg==1 ){ 732 sqlite3ReleaseTempReg(pParse, regBase); 733 regBase = r1; 734 }else{ 735 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 736 } 737 } 738 if( pTerm->eOperator & WO_IN ){ 739 if( pTerm->pExpr->flags & EP_xIsSelect ){ 740 /* No affinity ever needs to be (or should be) applied to a value 741 ** from the RHS of an "? IN (SELECT ...)" expression. The 742 ** sqlite3FindInIndex() routine has already ensured that the 743 ** affinity of the comparison has been applied to the value. */ 744 if( zAff ) zAff[j] = SQLITE_AFF_BLOB; 745 } 746 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ 747 Expr *pRight = pTerm->pExpr->pRight; 748 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 749 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 750 VdbeCoverage(v); 751 } 752 if( zAff ){ 753 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 754 zAff[j] = SQLITE_AFF_BLOB; 755 } 756 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 757 zAff[j] = SQLITE_AFF_BLOB; 758 } 759 } 760 } 761 } 762 *pzAff = zAff; 763 return regBase; 764 } 765 766 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 767 /* 768 ** If the most recently coded instruction is a constant range constraint 769 ** (a string literal) that originated from the LIKE optimization, then 770 ** set P3 and P5 on the OP_String opcode so that the string will be cast 771 ** to a BLOB at appropriate times. 772 ** 773 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 774 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 775 ** scan loop run twice, once for strings and a second time for BLOBs. 776 ** The OP_String opcodes on the second pass convert the upper and lower 777 ** bound string constants to blobs. This routine makes the necessary changes 778 ** to the OP_String opcodes for that to happen. 779 ** 780 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 781 ** only the one pass through the string space is required, so this routine 782 ** becomes a no-op. 783 */ 784 static void whereLikeOptimizationStringFixup( 785 Vdbe *v, /* prepared statement under construction */ 786 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 787 WhereTerm *pTerm /* The upper or lower bound just coded */ 788 ){ 789 if( pTerm->wtFlags & TERM_LIKEOPT ){ 790 VdbeOp *pOp; 791 assert( pLevel->iLikeRepCntr>0 ); 792 pOp = sqlite3VdbeGetOp(v, -1); 793 assert( pOp!=0 ); 794 assert( pOp->opcode==OP_String8 795 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 796 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ 797 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ 798 } 799 } 800 #else 801 # define whereLikeOptimizationStringFixup(A,B,C) 802 #endif 803 804 #ifdef SQLITE_ENABLE_CURSOR_HINTS 805 /* 806 ** Information is passed from codeCursorHint() down to individual nodes of 807 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 808 ** structure. 809 */ 810 struct CCurHint { 811 int iTabCur; /* Cursor for the main table */ 812 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 813 Index *pIdx; /* The index used to access the table */ 814 }; 815 816 /* 817 ** This function is called for every node of an expression that is a candidate 818 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 819 ** the table CCurHint.iTabCur, verify that the same column can be 820 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 821 */ 822 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 823 struct CCurHint *pHint = pWalker->u.pCCurHint; 824 assert( pHint->pIdx!=0 ); 825 if( pExpr->op==TK_COLUMN 826 && pExpr->iTable==pHint->iTabCur 827 && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0 828 ){ 829 pWalker->eCode = 1; 830 } 831 return WRC_Continue; 832 } 833 834 /* 835 ** Test whether or not expression pExpr, which was part of a WHERE clause, 836 ** should be included in the cursor-hint for a table that is on the rhs 837 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the 838 ** expression is not suitable. 839 ** 840 ** An expression is unsuitable if it might evaluate to non NULL even if 841 ** a TK_COLUMN node that does affect the value of the expression is set 842 ** to NULL. For example: 843 ** 844 ** col IS NULL 845 ** col IS NOT NULL 846 ** coalesce(col, 1) 847 ** CASE WHEN col THEN 0 ELSE 1 END 848 */ 849 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ 850 if( pExpr->op==TK_IS 851 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT 852 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE 853 ){ 854 pWalker->eCode = 1; 855 }else if( pExpr->op==TK_FUNCTION ){ 856 int d1; 857 char d2[4]; 858 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ 859 pWalker->eCode = 1; 860 } 861 } 862 863 return WRC_Continue; 864 } 865 866 867 /* 868 ** This function is called on every node of an expression tree used as an 869 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 870 ** that accesses any table other than the one identified by 871 ** CCurHint.iTabCur, then do the following: 872 ** 873 ** 1) allocate a register and code an OP_Column instruction to read 874 ** the specified column into the new register, and 875 ** 876 ** 2) transform the expression node to a TK_REGISTER node that reads 877 ** from the newly populated register. 878 ** 879 ** Also, if the node is a TK_COLUMN that does access the table idenified 880 ** by pCCurHint.iTabCur, and an index is being used (which we will 881 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 882 ** an access of the index rather than the original table. 883 */ 884 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 885 int rc = WRC_Continue; 886 struct CCurHint *pHint = pWalker->u.pCCurHint; 887 if( pExpr->op==TK_COLUMN ){ 888 if( pExpr->iTable!=pHint->iTabCur ){ 889 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 890 sqlite3ExprCode(pWalker->pParse, pExpr, reg); 891 pExpr->op = TK_REGISTER; 892 pExpr->iTable = reg; 893 }else if( pHint->pIdx!=0 ){ 894 pExpr->iTable = pHint->iIdxCur; 895 pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn); 896 assert( pExpr->iColumn>=0 ); 897 } 898 }else if( pExpr->op==TK_AGG_FUNCTION ){ 899 /* An aggregate function in the WHERE clause of a query means this must 900 ** be a correlated sub-query, and expression pExpr is an aggregate from 901 ** the parent context. Do not walk the function arguments in this case. 902 ** 903 ** todo: It should be possible to replace this node with a TK_REGISTER 904 ** expression, as the result of the expression must be stored in a 905 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 906 rc = WRC_Prune; 907 } 908 return rc; 909 } 910 911 /* 912 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 913 */ 914 static void codeCursorHint( 915 struct SrcList_item *pTabItem, /* FROM clause item */ 916 WhereInfo *pWInfo, /* The where clause */ 917 WhereLevel *pLevel, /* Which loop to provide hints for */ 918 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 919 ){ 920 Parse *pParse = pWInfo->pParse; 921 sqlite3 *db = pParse->db; 922 Vdbe *v = pParse->pVdbe; 923 Expr *pExpr = 0; 924 WhereLoop *pLoop = pLevel->pWLoop; 925 int iCur; 926 WhereClause *pWC; 927 WhereTerm *pTerm; 928 int i, j; 929 struct CCurHint sHint; 930 Walker sWalker; 931 932 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 933 iCur = pLevel->iTabCur; 934 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 935 sHint.iTabCur = iCur; 936 sHint.iIdxCur = pLevel->iIdxCur; 937 sHint.pIdx = pLoop->u.btree.pIndex; 938 memset(&sWalker, 0, sizeof(sWalker)); 939 sWalker.pParse = pParse; 940 sWalker.u.pCCurHint = &sHint; 941 pWC = &pWInfo->sWC; 942 for(i=0; i<pWC->nTerm; i++){ 943 pTerm = &pWC->a[i]; 944 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 945 if( pTerm->prereqAll & pLevel->notReady ) continue; 946 947 /* Any terms specified as part of the ON(...) clause for any LEFT 948 ** JOIN for which the current table is not the rhs are omitted 949 ** from the cursor-hint. 950 ** 951 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms 952 ** that were specified as part of the WHERE clause must be excluded. 953 ** This is to address the following: 954 ** 955 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; 956 ** 957 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its 958 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is 959 ** pushed down to the cursor, this row is filtered out, causing 960 ** SQLite to synthesize a row of NULL values. Which does match the 961 ** WHERE clause, and so the query returns a row. Which is incorrect. 962 ** 963 ** For the same reason, WHERE terms such as: 964 ** 965 ** WHERE 1 = (t2.c IS NULL) 966 ** 967 ** are also excluded. See codeCursorHintIsOrFunction() for details. 968 */ 969 if( pTabItem->fg.jointype & JT_LEFT ){ 970 Expr *pExpr = pTerm->pExpr; 971 if( !ExprHasProperty(pExpr, EP_FromJoin) 972 || pExpr->iRightJoinTable!=pTabItem->iCursor 973 ){ 974 sWalker.eCode = 0; 975 sWalker.xExprCallback = codeCursorHintIsOrFunction; 976 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 977 if( sWalker.eCode ) continue; 978 } 979 }else{ 980 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; 981 } 982 983 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 984 ** the cursor. These terms are not needed as hints for a pure range 985 ** scan (that has no == terms) so omit them. */ 986 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 987 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 988 if( j<pLoop->nLTerm ) continue; 989 } 990 991 /* No subqueries or non-deterministic functions allowed */ 992 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 993 994 /* For an index scan, make sure referenced columns are actually in 995 ** the index. */ 996 if( sHint.pIdx!=0 ){ 997 sWalker.eCode = 0; 998 sWalker.xExprCallback = codeCursorHintCheckExpr; 999 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 1000 if( sWalker.eCode ) continue; 1001 } 1002 1003 /* If we survive all prior tests, that means this term is worth hinting */ 1004 pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 1005 } 1006 if( pExpr!=0 ){ 1007 sWalker.xExprCallback = codeCursorHintFixExpr; 1008 sqlite3WalkExpr(&sWalker, pExpr); 1009 sqlite3VdbeAddOp4(v, OP_CursorHint, 1010 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 1011 (const char*)pExpr, P4_EXPR); 1012 } 1013 } 1014 #else 1015 # define codeCursorHint(A,B,C,D) /* No-op */ 1016 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 1017 1018 /* 1019 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains 1020 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This 1021 ** function generates code to do a deferred seek of cursor iCur to the 1022 ** rowid stored in register iRowid. 1023 ** 1024 ** Normally, this is just: 1025 ** 1026 ** OP_DeferredSeek $iCur $iRowid 1027 ** 1028 ** However, if the scan currently being coded is a branch of an OR-loop and 1029 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek 1030 ** is set to iIdxCur and P4 is set to point to an array of integers 1031 ** containing one entry for each column of the table cursor iCur is open 1032 ** on. For each table column, if the column is the i'th column of the 1033 ** index, then the corresponding array entry is set to (i+1). If the column 1034 ** does not appear in the index at all, the array entry is set to 0. 1035 */ 1036 static void codeDeferredSeek( 1037 WhereInfo *pWInfo, /* Where clause context */ 1038 Index *pIdx, /* Index scan is using */ 1039 int iCur, /* Cursor for IPK b-tree */ 1040 int iIdxCur /* Index cursor */ 1041 ){ 1042 Parse *pParse = pWInfo->pParse; /* Parse context */ 1043 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ 1044 1045 assert( iIdxCur>0 ); 1046 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); 1047 1048 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur); 1049 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 1050 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) 1051 ){ 1052 int i; 1053 Table *pTab = pIdx->pTable; 1054 int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1)); 1055 if( ai ){ 1056 ai[0] = pTab->nCol; 1057 for(i=0; i<pIdx->nColumn-1; i++){ 1058 int x1, x2; 1059 assert( pIdx->aiColumn[i]<pTab->nCol ); 1060 x1 = pIdx->aiColumn[i]; 1061 x2 = sqlite3TableColumnToStorage(pTab, x1); 1062 testcase( x1!=x2 ); 1063 if( x1>=0 ) ai[x2+1] = i+1; 1064 } 1065 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); 1066 } 1067 } 1068 } 1069 1070 /* 1071 ** If the expression passed as the second argument is a vector, generate 1072 ** code to write the first nReg elements of the vector into an array 1073 ** of registers starting with iReg. 1074 ** 1075 ** If the expression is not a vector, then nReg must be passed 1. In 1076 ** this case, generate code to evaluate the expression and leave the 1077 ** result in register iReg. 1078 */ 1079 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ 1080 assert( nReg>0 ); 1081 if( p && sqlite3ExprIsVector(p) ){ 1082 #ifndef SQLITE_OMIT_SUBQUERY 1083 if( (p->flags & EP_xIsSelect) ){ 1084 Vdbe *v = pParse->pVdbe; 1085 int iSelect; 1086 assert( p->op==TK_SELECT ); 1087 iSelect = sqlite3CodeSubselect(pParse, p); 1088 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); 1089 }else 1090 #endif 1091 { 1092 int i; 1093 ExprList *pList = p->x.pList; 1094 assert( nReg<=pList->nExpr ); 1095 for(i=0; i<nReg; i++){ 1096 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i); 1097 } 1098 } 1099 }else{ 1100 assert( nReg==1 ); 1101 sqlite3ExprCode(pParse, p, iReg); 1102 } 1103 } 1104 1105 /* An instance of the IdxExprTrans object carries information about a 1106 ** mapping from an expression on table columns into a column in an index 1107 ** down through the Walker. 1108 */ 1109 typedef struct IdxExprTrans { 1110 Expr *pIdxExpr; /* The index expression */ 1111 int iTabCur; /* The cursor of the corresponding table */ 1112 int iIdxCur; /* The cursor for the index */ 1113 int iIdxCol; /* The column for the index */ 1114 int iTabCol; /* The column for the table */ 1115 } IdxExprTrans; 1116 1117 /* The walker node callback used to transform matching expressions into 1118 ** a reference to an index column for an index on an expression. 1119 ** 1120 ** If pExpr matches, then transform it into a reference to the index column 1121 ** that contains the value of pExpr. 1122 */ 1123 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){ 1124 IdxExprTrans *pX = p->u.pIdxTrans; 1125 if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){ 1126 pExpr->affExpr = sqlite3ExprAffinity(pExpr); 1127 pExpr->op = TK_COLUMN; 1128 pExpr->iTable = pX->iIdxCur; 1129 pExpr->iColumn = pX->iIdxCol; 1130 pExpr->y.pTab = 0; 1131 testcase( ExprHasProperty(pExpr, EP_Skip) ); 1132 testcase( ExprHasProperty(pExpr, EP_Unlikely) ); 1133 ExprClearProperty(pExpr, EP_Skip|EP_Unlikely); 1134 return WRC_Prune; 1135 }else{ 1136 return WRC_Continue; 1137 } 1138 } 1139 1140 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1141 /* A walker node callback that translates a column reference to a table 1142 ** into a corresponding column reference of an index. 1143 */ 1144 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){ 1145 if( pExpr->op==TK_COLUMN ){ 1146 IdxExprTrans *pX = p->u.pIdxTrans; 1147 if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){ 1148 assert( pExpr->y.pTab!=0 ); 1149 pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn); 1150 pExpr->iTable = pX->iIdxCur; 1151 pExpr->iColumn = pX->iIdxCol; 1152 pExpr->y.pTab = 0; 1153 } 1154 } 1155 return WRC_Continue; 1156 } 1157 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1158 1159 /* 1160 ** For an indexes on expression X, locate every instance of expression X 1161 ** in pExpr and change that subexpression into a reference to the appropriate 1162 ** column of the index. 1163 ** 1164 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in 1165 ** the table into references to the corresponding (stored) column of the 1166 ** index. 1167 */ 1168 static void whereIndexExprTrans( 1169 Index *pIdx, /* The Index */ 1170 int iTabCur, /* Cursor of the table that is being indexed */ 1171 int iIdxCur, /* Cursor of the index itself */ 1172 WhereInfo *pWInfo /* Transform expressions in this WHERE clause */ 1173 ){ 1174 int iIdxCol; /* Column number of the index */ 1175 ExprList *aColExpr; /* Expressions that are indexed */ 1176 Table *pTab; 1177 Walker w; 1178 IdxExprTrans x; 1179 aColExpr = pIdx->aColExpr; 1180 if( aColExpr==0 && !pIdx->bHasVCol ){ 1181 /* The index does not reference any expressions or virtual columns 1182 ** so no translations are needed. */ 1183 return; 1184 } 1185 pTab = pIdx->pTable; 1186 memset(&w, 0, sizeof(w)); 1187 w.u.pIdxTrans = &x; 1188 x.iTabCur = iTabCur; 1189 x.iIdxCur = iIdxCur; 1190 for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){ 1191 i16 iRef = pIdx->aiColumn[iIdxCol]; 1192 if( iRef==XN_EXPR ){ 1193 assert( aColExpr->a[iIdxCol].pExpr!=0 ); 1194 x.pIdxExpr = aColExpr->a[iIdxCol].pExpr; 1195 if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue; 1196 w.xExprCallback = whereIndexExprTransNode; 1197 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1198 }else if( iRef>=0 1199 && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0 1200 && (pTab->aCol[iRef].zColl==0 1201 || sqlite3StrICmp(pTab->aCol[iRef].zColl, sqlite3StrBINARY)==0) 1202 ){ 1203 /* Check to see if there are direct references to generated columns 1204 ** that are contained in the index. Pulling the generated column 1205 ** out of the index is an optimization only - the main table is always 1206 ** available if the index cannot be used. To avoid unnecessary 1207 ** complication, omit this optimization if the collating sequence for 1208 ** the column is non-standard */ 1209 x.iTabCol = iRef; 1210 w.xExprCallback = whereIndexExprTransColumn; 1211 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 1212 }else{ 1213 continue; 1214 } 1215 x.iIdxCol = iIdxCol; 1216 sqlite3WalkExpr(&w, pWInfo->pWhere); 1217 sqlite3WalkExprList(&w, pWInfo->pOrderBy); 1218 sqlite3WalkExprList(&w, pWInfo->pResultSet); 1219 } 1220 } 1221 1222 /* 1223 ** The pTruth expression is always true because it is the WHERE clause 1224 ** a partial index that is driving a query loop. Look through all of the 1225 ** WHERE clause terms on the query, and if any of those terms must be 1226 ** true because pTruth is true, then mark those WHERE clause terms as 1227 ** coded. 1228 */ 1229 static void whereApplyPartialIndexConstraints( 1230 Expr *pTruth, 1231 int iTabCur, 1232 WhereClause *pWC 1233 ){ 1234 int i; 1235 WhereTerm *pTerm; 1236 while( pTruth->op==TK_AND ){ 1237 whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC); 1238 pTruth = pTruth->pRight; 1239 } 1240 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1241 Expr *pExpr; 1242 if( pTerm->wtFlags & TERM_CODED ) continue; 1243 pExpr = pTerm->pExpr; 1244 if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){ 1245 pTerm->wtFlags |= TERM_CODED; 1246 } 1247 } 1248 } 1249 1250 /* 1251 ** Generate code for the start of the iLevel-th loop in the WHERE clause 1252 ** implementation described by pWInfo. 1253 */ 1254 Bitmask sqlite3WhereCodeOneLoopStart( 1255 Parse *pParse, /* Parsing context */ 1256 Vdbe *v, /* Prepared statement under construction */ 1257 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1258 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1259 WhereLevel *pLevel, /* The current level pointer */ 1260 Bitmask notReady /* Which tables are currently available */ 1261 ){ 1262 int j, k; /* Loop counters */ 1263 int iCur; /* The VDBE cursor for the table */ 1264 int addrNxt; /* Where to jump to continue with the next IN case */ 1265 int bRev; /* True if we need to scan in reverse order */ 1266 WhereLoop *pLoop; /* The WhereLoop object being coded */ 1267 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 1268 WhereTerm *pTerm; /* A WHERE clause term */ 1269 sqlite3 *db; /* Database connection */ 1270 struct SrcList_item *pTabItem; /* FROM clause term being coded */ 1271 int addrBrk; /* Jump here to break out of the loop */ 1272 int addrHalt; /* addrBrk for the outermost loop */ 1273 int addrCont; /* Jump here to continue with next cycle */ 1274 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 1275 int iReleaseReg = 0; /* Temp register to free before returning */ 1276 Index *pIdx = 0; /* Index used by loop (if any) */ 1277 int iLoop; /* Iteration of constraint generator loop */ 1278 1279 pWC = &pWInfo->sWC; 1280 db = pParse->db; 1281 pLoop = pLevel->pWLoop; 1282 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1283 iCur = pTabItem->iCursor; 1284 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 1285 bRev = (pWInfo->revMask>>iLevel)&1; 1286 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 1287 1288 /* Create labels for the "break" and "continue" instructions 1289 ** for the current loop. Jump to addrBrk to break out of a loop. 1290 ** Jump to cont to go immediately to the next iteration of the 1291 ** loop. 1292 ** 1293 ** When there is an IN operator, we also have a "addrNxt" label that 1294 ** means to continue with the next IN value combination. When 1295 ** there are no IN operators in the constraints, the "addrNxt" label 1296 ** is the same as "addrBrk". 1297 */ 1298 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 1299 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse); 1300 1301 /* If this is the right table of a LEFT OUTER JOIN, allocate and 1302 ** initialize a memory cell that records if this table matches any 1303 ** row of the left table of the join. 1304 */ 1305 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) 1306 || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0 1307 ); 1308 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 1309 pLevel->iLeftJoin = ++pParse->nMem; 1310 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 1311 VdbeComment((v, "init LEFT JOIN no-match flag")); 1312 } 1313 1314 /* Compute a safe address to jump to if we discover that the table for 1315 ** this loop is empty and can never contribute content. */ 1316 for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){} 1317 addrHalt = pWInfo->a[j].addrBrk; 1318 1319 /* Special case of a FROM clause subquery implemented as a co-routine */ 1320 if( pTabItem->fg.viaCoroutine ){ 1321 int regYield = pTabItem->regReturn; 1322 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 1323 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 1324 VdbeCoverage(v); 1325 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 1326 pLevel->op = OP_Goto; 1327 }else 1328 1329 #ifndef SQLITE_OMIT_VIRTUALTABLE 1330 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 1331 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 1332 ** to access the data. 1333 */ 1334 int iReg; /* P3 Value for OP_VFilter */ 1335 int addrNotFound; 1336 int nConstraint = pLoop->nLTerm; 1337 int iIn; /* Counter for IN constraints */ 1338 1339 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 1340 addrNotFound = pLevel->addrBrk; 1341 for(j=0; j<nConstraint; j++){ 1342 int iTarget = iReg+j+2; 1343 pTerm = pLoop->aLTerm[j]; 1344 if( NEVER(pTerm==0) ) continue; 1345 if( pTerm->eOperator & WO_IN ){ 1346 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 1347 addrNotFound = pLevel->addrNxt; 1348 }else{ 1349 Expr *pRight = pTerm->pExpr->pRight; 1350 codeExprOrVector(pParse, pRight, iTarget, 1); 1351 } 1352 } 1353 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 1354 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 1355 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 1356 pLoop->u.vtab.idxStr, 1357 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); 1358 VdbeCoverage(v); 1359 pLoop->u.vtab.needFree = 0; 1360 pLevel->p1 = iCur; 1361 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 1362 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1363 iIn = pLevel->u.in.nIn; 1364 for(j=nConstraint-1; j>=0; j--){ 1365 pTerm = pLoop->aLTerm[j]; 1366 if( (pTerm->eOperator & WO_IN)!=0 ) iIn--; 1367 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ 1368 disableTerm(pLevel, pTerm); 1369 }else if( (pTerm->eOperator & WO_IN)!=0 1370 && sqlite3ExprVectorSize(pTerm->pExpr->pLeft)==1 1371 ){ 1372 Expr *pCompare; /* The comparison operator */ 1373 Expr *pRight; /* RHS of the comparison */ 1374 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ 1375 1376 /* Reload the constraint value into reg[iReg+j+2]. The same value 1377 ** was loaded into the same register prior to the OP_VFilter, but 1378 ** the xFilter implementation might have changed the datatype or 1379 ** encoding of the value in the register, so it *must* be reloaded. */ 1380 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed ); 1381 if( !db->mallocFailed ){ 1382 assert( iIn>=0 && iIn<pLevel->u.in.nIn ); 1383 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop); 1384 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid ); 1385 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 ); 1386 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 ); 1387 testcase( pOp->opcode==OP_Rowid ); 1388 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); 1389 } 1390 1391 /* Generate code that will continue to the next row if 1392 ** the IN constraint is not satisfied */ 1393 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); 1394 assert( pCompare!=0 || db->mallocFailed ); 1395 if( pCompare ){ 1396 pCompare->pLeft = pTerm->pExpr->pLeft; 1397 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); 1398 if( pRight ){ 1399 pRight->iTable = iReg+j+2; 1400 sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0); 1401 } 1402 pCompare->pLeft = 0; 1403 sqlite3ExprDelete(db, pCompare); 1404 } 1405 } 1406 } 1407 assert( iIn==0 || db->mallocFailed ); 1408 /* These registers need to be preserved in case there is an IN operator 1409 ** loop. So we could deallocate the registers here (and potentially 1410 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems 1411 ** simpler and safer to simply not reuse the registers. 1412 ** 1413 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 1414 */ 1415 }else 1416 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1417 1418 if( (pLoop->wsFlags & WHERE_IPK)!=0 1419 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 1420 ){ 1421 /* Case 2: We can directly reference a single row using an 1422 ** equality comparison against the ROWID field. Or 1423 ** we reference multiple rows using a "rowid IN (...)" 1424 ** construct. 1425 */ 1426 assert( pLoop->u.btree.nEq==1 ); 1427 pTerm = pLoop->aLTerm[0]; 1428 assert( pTerm!=0 ); 1429 assert( pTerm->pExpr!=0 ); 1430 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1431 iReleaseReg = ++pParse->nMem; 1432 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 1433 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 1434 addrNxt = pLevel->addrNxt; 1435 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); 1436 VdbeCoverage(v); 1437 pLevel->op = OP_Noop; 1438 if( (pTerm->prereqAll & pLevel->notReady)==0 ){ 1439 pTerm->wtFlags |= TERM_CODED; 1440 } 1441 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 1442 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 1443 ){ 1444 /* Case 3: We have an inequality comparison against the ROWID field. 1445 */ 1446 int testOp = OP_Noop; 1447 int start; 1448 int memEndValue = 0; 1449 WhereTerm *pStart, *pEnd; 1450 1451 j = 0; 1452 pStart = pEnd = 0; 1453 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 1454 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 1455 assert( pStart!=0 || pEnd!=0 ); 1456 if( bRev ){ 1457 pTerm = pStart; 1458 pStart = pEnd; 1459 pEnd = pTerm; 1460 } 1461 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); 1462 if( pStart ){ 1463 Expr *pX; /* The expression that defines the start bound */ 1464 int r1, rTemp; /* Registers for holding the start boundary */ 1465 int op; /* Cursor seek operation */ 1466 1467 /* The following constant maps TK_xx codes into corresponding 1468 ** seek opcodes. It depends on a particular ordering of TK_xx 1469 */ 1470 const u8 aMoveOp[] = { 1471 /* TK_GT */ OP_SeekGT, 1472 /* TK_LE */ OP_SeekLE, 1473 /* TK_LT */ OP_SeekLT, 1474 /* TK_GE */ OP_SeekGE 1475 }; 1476 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 1477 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 1478 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 1479 1480 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 1481 testcase( pStart->wtFlags & TERM_VIRTUAL ); 1482 pX = pStart->pExpr; 1483 assert( pX!=0 ); 1484 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 1485 if( sqlite3ExprIsVector(pX->pRight) ){ 1486 r1 = rTemp = sqlite3GetTempReg(pParse); 1487 codeExprOrVector(pParse, pX->pRight, r1, 1); 1488 testcase( pX->op==TK_GT ); 1489 testcase( pX->op==TK_GE ); 1490 testcase( pX->op==TK_LT ); 1491 testcase( pX->op==TK_LE ); 1492 op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1]; 1493 assert( pX->op!=TK_GT || op==OP_SeekGE ); 1494 assert( pX->op!=TK_GE || op==OP_SeekGE ); 1495 assert( pX->op!=TK_LT || op==OP_SeekLE ); 1496 assert( pX->op!=TK_LE || op==OP_SeekLE ); 1497 }else{ 1498 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 1499 disableTerm(pLevel, pStart); 1500 op = aMoveOp[(pX->op - TK_GT)]; 1501 } 1502 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); 1503 VdbeComment((v, "pk")); 1504 VdbeCoverageIf(v, pX->op==TK_GT); 1505 VdbeCoverageIf(v, pX->op==TK_LE); 1506 VdbeCoverageIf(v, pX->op==TK_LT); 1507 VdbeCoverageIf(v, pX->op==TK_GE); 1508 sqlite3ReleaseTempReg(pParse, rTemp); 1509 }else{ 1510 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt); 1511 VdbeCoverageIf(v, bRev==0); 1512 VdbeCoverageIf(v, bRev!=0); 1513 } 1514 if( pEnd ){ 1515 Expr *pX; 1516 pX = pEnd->pExpr; 1517 assert( pX!=0 ); 1518 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 1519 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 1520 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 1521 memEndValue = ++pParse->nMem; 1522 codeExprOrVector(pParse, pX->pRight, memEndValue, 1); 1523 if( 0==sqlite3ExprIsVector(pX->pRight) 1524 && (pX->op==TK_LT || pX->op==TK_GT) 1525 ){ 1526 testOp = bRev ? OP_Le : OP_Ge; 1527 }else{ 1528 testOp = bRev ? OP_Lt : OP_Gt; 1529 } 1530 if( 0==sqlite3ExprIsVector(pX->pRight) ){ 1531 disableTerm(pLevel, pEnd); 1532 } 1533 } 1534 start = sqlite3VdbeCurrentAddr(v); 1535 pLevel->op = bRev ? OP_Prev : OP_Next; 1536 pLevel->p1 = iCur; 1537 pLevel->p2 = start; 1538 assert( pLevel->p5==0 ); 1539 if( testOp!=OP_Noop ){ 1540 iRowidReg = ++pParse->nMem; 1541 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 1542 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 1543 VdbeCoverageIf(v, testOp==OP_Le); 1544 VdbeCoverageIf(v, testOp==OP_Lt); 1545 VdbeCoverageIf(v, testOp==OP_Ge); 1546 VdbeCoverageIf(v, testOp==OP_Gt); 1547 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 1548 } 1549 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 1550 /* Case 4: A scan using an index. 1551 ** 1552 ** The WHERE clause may contain zero or more equality 1553 ** terms ("==" or "IN" operators) that refer to the N 1554 ** left-most columns of the index. It may also contain 1555 ** inequality constraints (>, <, >= or <=) on the indexed 1556 ** column that immediately follows the N equalities. Only 1557 ** the right-most column can be an inequality - the rest must 1558 ** use the "==" and "IN" operators. For example, if the 1559 ** index is on (x,y,z), then the following clauses are all 1560 ** optimized: 1561 ** 1562 ** x=5 1563 ** x=5 AND y=10 1564 ** x=5 AND y<10 1565 ** x=5 AND y>5 AND y<10 1566 ** x=5 AND y=5 AND z<=10 1567 ** 1568 ** The z<10 term of the following cannot be used, only 1569 ** the x=5 term: 1570 ** 1571 ** x=5 AND z<10 1572 ** 1573 ** N may be zero if there are inequality constraints. 1574 ** If there are no inequality constraints, then N is at 1575 ** least one. 1576 ** 1577 ** This case is also used when there are no WHERE clause 1578 ** constraints but an index is selected anyway, in order 1579 ** to force the output order to conform to an ORDER BY. 1580 */ 1581 static const u8 aStartOp[] = { 1582 0, 1583 0, 1584 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1585 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1586 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1587 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1588 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1589 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1590 }; 1591 static const u8 aEndOp[] = { 1592 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1593 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1594 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1595 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1596 }; 1597 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1598 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ 1599 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ 1600 int regBase; /* Base register holding constraint values */ 1601 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1602 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1603 int startEq; /* True if range start uses ==, >= or <= */ 1604 int endEq; /* True if range end uses ==, >= or <= */ 1605 int start_constraints; /* Start of range is constrained */ 1606 int nConstraint; /* Number of constraint terms */ 1607 int iIdxCur; /* The VDBE cursor for the index */ 1608 int nExtraReg = 0; /* Number of extra registers needed */ 1609 int op; /* Instruction opcode */ 1610 char *zStartAff; /* Affinity for start of range constraint */ 1611 char *zEndAff = 0; /* Affinity for end of range constraint */ 1612 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1613 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1614 int omitTable; /* True if we use the index only */ 1615 int regBignull = 0; /* big-null flag register */ 1616 1617 pIdx = pLoop->u.btree.pIndex; 1618 iIdxCur = pLevel->iIdxCur; 1619 assert( nEq>=pLoop->nSkip ); 1620 1621 /* Find any inequality constraint terms for the start and end 1622 ** of the range. 1623 */ 1624 j = nEq; 1625 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1626 pRangeStart = pLoop->aLTerm[j++]; 1627 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); 1628 /* Like optimization range constraints always occur in pairs */ 1629 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1630 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1631 } 1632 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1633 pRangeEnd = pLoop->aLTerm[j++]; 1634 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); 1635 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1636 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1637 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1638 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1639 pLevel->iLikeRepCntr = (u32)++pParse->nMem; 1640 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); 1641 VdbeComment((v, "LIKE loop counter")); 1642 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1643 /* iLikeRepCntr actually stores 2x the counter register number. The 1644 ** bottom bit indicates whether the search order is ASC or DESC. */ 1645 testcase( bRev ); 1646 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1647 assert( (bRev & ~1)==0 ); 1648 pLevel->iLikeRepCntr <<=1; 1649 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); 1650 } 1651 #endif 1652 if( pRangeStart==0 ){ 1653 j = pIdx->aiColumn[nEq]; 1654 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){ 1655 bSeekPastNull = 1; 1656 } 1657 } 1658 } 1659 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1660 1661 /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses 1662 ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS 1663 ** FIRST). In both cases separate ordered scans are made of those 1664 ** index entries for which the column is null and for those for which 1665 ** it is not. For an ASC sort, the non-NULL entries are scanned first. 1666 ** For DESC, NULL entries are scanned first. 1667 */ 1668 if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0 1669 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0 1670 ){ 1671 assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 ); 1672 assert( pRangeEnd==0 && pRangeStart==0 ); 1673 assert( pLoop->nSkip==0 ); 1674 nExtraReg = 1; 1675 bSeekPastNull = 1; 1676 pLevel->regBignull = regBignull = ++pParse->nMem; 1677 pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse); 1678 } 1679 1680 /* If we are doing a reverse order scan on an ascending index, or 1681 ** a forward order scan on a descending index, interchange the 1682 ** start and end terms (pRangeStart and pRangeEnd). 1683 */ 1684 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) 1685 || (bRev && pIdx->nKeyCol==nEq) 1686 ){ 1687 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1688 SWAP(u8, bSeekPastNull, bStopAtNull); 1689 SWAP(u8, nBtm, nTop); 1690 } 1691 1692 /* Generate code to evaluate all constraint terms using == or IN 1693 ** and store the values of those terms in an array of registers 1694 ** starting at regBase. 1695 */ 1696 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); 1697 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1698 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1699 if( zStartAff && nTop ){ 1700 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); 1701 } 1702 addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt); 1703 1704 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1705 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1706 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1707 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1708 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1709 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1710 start_constraints = pRangeStart || nEq>0; 1711 1712 /* Seek the index cursor to the start of the range. */ 1713 nConstraint = nEq; 1714 if( pRangeStart ){ 1715 Expr *pRight = pRangeStart->pExpr->pRight; 1716 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); 1717 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1718 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1719 && sqlite3ExprCanBeNull(pRight) 1720 ){ 1721 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1722 VdbeCoverage(v); 1723 } 1724 if( zStartAff ){ 1725 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); 1726 } 1727 nConstraint += nBtm; 1728 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1729 if( sqlite3ExprIsVector(pRight)==0 ){ 1730 disableTerm(pLevel, pRangeStart); 1731 }else{ 1732 startEq = 1; 1733 } 1734 bSeekPastNull = 0; 1735 }else if( bSeekPastNull ){ 1736 startEq = 0; 1737 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1738 start_constraints = 1; 1739 nConstraint++; 1740 }else if( regBignull ){ 1741 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1742 start_constraints = 1; 1743 nConstraint++; 1744 } 1745 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1746 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ 1747 /* The skip-scan logic inside the call to codeAllEqualityConstraints() 1748 ** above has already left the cursor sitting on the correct row, 1749 ** so no further seeking is needed */ 1750 }else{ 1751 if( pLoop->wsFlags & WHERE_IN_EARLYOUT ){ 1752 sqlite3VdbeAddOp1(v, OP_SeekHit, iIdxCur); 1753 } 1754 if( regBignull ){ 1755 sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull); 1756 VdbeComment((v, "NULL-scan pass ctr")); 1757 } 1758 1759 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 1760 assert( op!=0 ); 1761 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1762 VdbeCoverage(v); 1763 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1764 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1765 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 1766 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1767 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1768 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 1769 1770 assert( bSeekPastNull==0 || bStopAtNull==0 ); 1771 if( regBignull ){ 1772 assert( bSeekPastNull==1 || bStopAtNull==1 ); 1773 assert( bSeekPastNull==!bStopAtNull ); 1774 assert( bStopAtNull==startEq ); 1775 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2); 1776 op = aStartOp[(nConstraint>1)*4 + 2 + bRev]; 1777 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 1778 nConstraint-startEq); 1779 VdbeCoverage(v); 1780 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1781 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1782 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1783 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1784 assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE); 1785 } 1786 } 1787 1788 /* Load the value for the inequality constraint at the end of the 1789 ** range (if any). 1790 */ 1791 nConstraint = nEq; 1792 if( pRangeEnd ){ 1793 Expr *pRight = pRangeEnd->pExpr->pRight; 1794 codeExprOrVector(pParse, pRight, regBase+nEq, nTop); 1795 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 1796 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 1797 && sqlite3ExprCanBeNull(pRight) 1798 ){ 1799 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1800 VdbeCoverage(v); 1801 } 1802 if( zEndAff ){ 1803 updateRangeAffinityStr(pRight, nTop, zEndAff); 1804 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); 1805 }else{ 1806 assert( pParse->db->mallocFailed ); 1807 } 1808 nConstraint += nTop; 1809 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 1810 1811 if( sqlite3ExprIsVector(pRight)==0 ){ 1812 disableTerm(pLevel, pRangeEnd); 1813 }else{ 1814 endEq = 1; 1815 } 1816 }else if( bStopAtNull ){ 1817 if( regBignull==0 ){ 1818 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1819 endEq = 0; 1820 } 1821 nConstraint++; 1822 } 1823 sqlite3DbFree(db, zStartAff); 1824 sqlite3DbFree(db, zEndAff); 1825 1826 /* Top of the loop body */ 1827 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1828 1829 /* Check if the index cursor is past the end of the range. */ 1830 if( nConstraint ){ 1831 if( regBignull ){ 1832 /* Except, skip the end-of-range check while doing the NULL-scan */ 1833 sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3); 1834 VdbeComment((v, "If NULL-scan 2nd pass")); 1835 VdbeCoverage(v); 1836 } 1837 op = aEndOp[bRev*2 + endEq]; 1838 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1839 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1840 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1841 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1842 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1843 } 1844 if( regBignull ){ 1845 /* During a NULL-scan, check to see if we have reached the end of 1846 ** the NULLs */ 1847 assert( bSeekPastNull==!bStopAtNull ); 1848 assert( bSeekPastNull+bStopAtNull==1 ); 1849 assert( nConstraint+bSeekPastNull>0 ); 1850 sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2); 1851 VdbeComment((v, "If NULL-scan 1st pass")); 1852 VdbeCoverage(v); 1853 op = aEndOp[bRev*2 + bSeekPastNull]; 1854 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 1855 nConstraint+bSeekPastNull); 1856 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 1857 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 1858 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 1859 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 1860 } 1861 1862 if( pLoop->wsFlags & WHERE_IN_EARLYOUT ){ 1863 sqlite3VdbeAddOp2(v, OP_SeekHit, iIdxCur, 1); 1864 } 1865 1866 /* Seek the table cursor, if required */ 1867 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 1868 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0; 1869 if( omitTable ){ 1870 /* pIdx is a covering index. No need to access the main table. */ 1871 }else if( HasRowid(pIdx->pTable) ){ 1872 if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE) 1873 || ( (pWInfo->wctrlFlags & WHERE_SEEK_UNIQ_TABLE)!=0 1874 && (pWInfo->eOnePass==ONEPASS_SINGLE || pLoop->nLTerm==0) ) 1875 ){ 1876 iRowidReg = ++pParse->nMem; 1877 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); 1878 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg); 1879 VdbeCoverage(v); 1880 }else{ 1881 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); 1882 } 1883 }else if( iCur!=iIdxCur ){ 1884 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1885 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1886 for(j=0; j<pPk->nKeyCol; j++){ 1887 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]); 1888 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 1889 } 1890 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 1891 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 1892 } 1893 1894 if( pLevel->iLeftJoin==0 ){ 1895 /* If pIdx is an index on one or more expressions, then look through 1896 ** all the expressions in pWInfo and try to transform matching expressions 1897 ** into reference to index columns. Also attempt to translate references 1898 ** to virtual columns in the table into references to (stored) columns 1899 ** of the index. 1900 ** 1901 ** Do not do this for the RHS of a LEFT JOIN. This is because the 1902 ** expression may be evaluated after OP_NullRow has been executed on 1903 ** the cursor. In this case it is important to do the full evaluation, 1904 ** as the result of the expression may not be NULL, even if all table 1905 ** column values are. https://www.sqlite.org/src/info/7fa8049685b50b5a 1906 ** 1907 ** Also, do not do this when processing one index an a multi-index 1908 ** OR clause, since the transformation will become invalid once we 1909 ** move forward to the next index. 1910 ** https://sqlite.org/src/info/4e8e4857d32d401f 1911 */ 1912 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ 1913 whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo); 1914 } 1915 1916 /* If a partial index is driving the loop, try to eliminate WHERE clause 1917 ** terms from the query that must be true due to the WHERE clause of 1918 ** the partial index. 1919 ** 1920 ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work 1921 ** for a LEFT JOIN. 1922 */ 1923 if( pIdx->pPartIdxWhere ){ 1924 whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC); 1925 } 1926 }else{ 1927 testcase( pIdx->pPartIdxWhere ); 1928 /* The following assert() is not a requirement, merely an observation: 1929 ** The OR-optimization doesn't work for the right hand table of 1930 ** a LEFT JOIN: */ 1931 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ); 1932 } 1933 1934 /* Record the instruction used to terminate the loop. */ 1935 if( pLoop->wsFlags & WHERE_ONEROW ){ 1936 pLevel->op = OP_Noop; 1937 }else if( bRev ){ 1938 pLevel->op = OP_Prev; 1939 }else{ 1940 pLevel->op = OP_Next; 1941 } 1942 pLevel->p1 = iIdxCur; 1943 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 1944 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 1945 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 1946 }else{ 1947 assert( pLevel->p5==0 ); 1948 } 1949 if( omitTable ) pIdx = 0; 1950 }else 1951 1952 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 1953 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 1954 /* Case 5: Two or more separately indexed terms connected by OR 1955 ** 1956 ** Example: 1957 ** 1958 ** CREATE TABLE t1(a,b,c,d); 1959 ** CREATE INDEX i1 ON t1(a); 1960 ** CREATE INDEX i2 ON t1(b); 1961 ** CREATE INDEX i3 ON t1(c); 1962 ** 1963 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 1964 ** 1965 ** In the example, there are three indexed terms connected by OR. 1966 ** The top of the loop looks like this: 1967 ** 1968 ** Null 1 # Zero the rowset in reg 1 1969 ** 1970 ** Then, for each indexed term, the following. The arguments to 1971 ** RowSetTest are such that the rowid of the current row is inserted 1972 ** into the RowSet. If it is already present, control skips the 1973 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 1974 ** 1975 ** sqlite3WhereBegin(<term>) 1976 ** RowSetTest # Insert rowid into rowset 1977 ** Gosub 2 A 1978 ** sqlite3WhereEnd() 1979 ** 1980 ** Following the above, code to terminate the loop. Label A, the target 1981 ** of the Gosub above, jumps to the instruction right after the Goto. 1982 ** 1983 ** Null 1 # Zero the rowset in reg 1 1984 ** Goto B # The loop is finished. 1985 ** 1986 ** A: <loop body> # Return data, whatever. 1987 ** 1988 ** Return 2 # Jump back to the Gosub 1989 ** 1990 ** B: <after the loop> 1991 ** 1992 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 1993 ** use an ephemeral index instead of a RowSet to record the primary 1994 ** keys of the rows we have already seen. 1995 ** 1996 */ 1997 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 1998 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 1999 Index *pCov = 0; /* Potential covering index (or NULL) */ 2000 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 2001 2002 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 2003 int regRowset = 0; /* Register for RowSet object */ 2004 int regRowid = 0; /* Register holding rowid */ 2005 int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */ 2006 int iRetInit; /* Address of regReturn init */ 2007 int untestedTerms = 0; /* Some terms not completely tested */ 2008 int ii; /* Loop counter */ 2009 u16 wctrlFlags; /* Flags for sub-WHERE clause */ 2010 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 2011 Table *pTab = pTabItem->pTab; 2012 2013 pTerm = pLoop->aLTerm[0]; 2014 assert( pTerm!=0 ); 2015 assert( pTerm->eOperator & WO_OR ); 2016 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 2017 pOrWc = &pTerm->u.pOrInfo->wc; 2018 pLevel->op = OP_Return; 2019 pLevel->p1 = regReturn; 2020 2021 /* Set up a new SrcList in pOrTab containing the table being scanned 2022 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 2023 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 2024 */ 2025 if( pWInfo->nLevel>1 ){ 2026 int nNotReady; /* The number of notReady tables */ 2027 struct SrcList_item *origSrc; /* Original list of tables */ 2028 nNotReady = pWInfo->nLevel - iLevel - 1; 2029 pOrTab = sqlite3StackAllocRaw(db, 2030 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 2031 if( pOrTab==0 ) return notReady; 2032 pOrTab->nAlloc = (u8)(nNotReady + 1); 2033 pOrTab->nSrc = pOrTab->nAlloc; 2034 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 2035 origSrc = pWInfo->pTabList->a; 2036 for(k=1; k<=nNotReady; k++){ 2037 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 2038 } 2039 }else{ 2040 pOrTab = pWInfo->pTabList; 2041 } 2042 2043 /* Initialize the rowset register to contain NULL. An SQL NULL is 2044 ** equivalent to an empty rowset. Or, create an ephemeral index 2045 ** capable of holding primary keys in the case of a WITHOUT ROWID. 2046 ** 2047 ** Also initialize regReturn to contain the address of the instruction 2048 ** immediately following the OP_Return at the bottom of the loop. This 2049 ** is required in a few obscure LEFT JOIN cases where control jumps 2050 ** over the top of the loop into the body of it. In this case the 2051 ** correct response for the end-of-loop code (the OP_Return) is to 2052 ** fall through to the next instruction, just as an OP_Next does if 2053 ** called on an uninitialized cursor. 2054 */ 2055 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2056 if( HasRowid(pTab) ){ 2057 regRowset = ++pParse->nMem; 2058 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 2059 }else{ 2060 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2061 regRowset = pParse->nTab++; 2062 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 2063 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 2064 } 2065 regRowid = ++pParse->nMem; 2066 } 2067 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 2068 2069 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 2070 ** Then for every term xN, evaluate as the subexpression: xN AND z 2071 ** That way, terms in y that are factored into the disjunction will 2072 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 2073 ** 2074 ** Actually, each subexpression is converted to "xN AND w" where w is 2075 ** the "interesting" terms of z - terms that did not originate in the 2076 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 2077 ** indices. 2078 ** 2079 ** This optimization also only applies if the (x1 OR x2 OR ...) term 2080 ** is not contained in the ON clause of a LEFT JOIN. 2081 ** See ticket http://www.sqlite.org/src/info/f2369304e4 2082 */ 2083 if( pWC->nTerm>1 ){ 2084 int iTerm; 2085 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 2086 Expr *pExpr = pWC->a[iTerm].pExpr; 2087 if( &pWC->a[iTerm] == pTerm ) continue; 2088 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); 2089 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); 2090 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue; 2091 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 2092 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); 2093 pExpr = sqlite3ExprDup(db, pExpr, 0); 2094 pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr); 2095 } 2096 if( pAndExpr ){ 2097 /* The extra 0x10000 bit on the opcode is masked off and does not 2098 ** become part of the new Expr.op. However, it does make the 2099 ** op==TK_AND comparison inside of sqlite3PExpr() false, and this 2100 ** prevents sqlite3PExpr() from implementing AND short-circuit 2101 ** optimization, which we do not want here. */ 2102 pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr); 2103 } 2104 } 2105 2106 /* Run a separate WHERE clause for each term of the OR clause. After 2107 ** eliminating duplicates from other WHERE clauses, the action for each 2108 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 2109 */ 2110 wctrlFlags = WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE); 2111 ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR")); 2112 for(ii=0; ii<pOrWc->nTerm; ii++){ 2113 WhereTerm *pOrTerm = &pOrWc->a[ii]; 2114 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 2115 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 2116 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 2117 int jmp1 = 0; /* Address of jump operation */ 2118 assert( (pTabItem[0].fg.jointype & JT_LEFT)==0 2119 || ExprHasProperty(pOrExpr, EP_FromJoin) 2120 ); 2121 if( pAndExpr ){ 2122 pAndExpr->pLeft = pOrExpr; 2123 pOrExpr = pAndExpr; 2124 } 2125 /* Loop through table entries that match term pOrTerm. */ 2126 ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1)); 2127 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 2128 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 2129 wctrlFlags, iCovCur); 2130 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); 2131 if( pSubWInfo ){ 2132 WhereLoop *pSubLoop; 2133 int addrExplain = sqlite3WhereExplainOneScan( 2134 pParse, pOrTab, &pSubWInfo->a[0], 0 2135 ); 2136 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 2137 2138 /* This is the sub-WHERE clause body. First skip over 2139 ** duplicate rows from prior sub-WHERE clauses, and record the 2140 ** rowid (or PRIMARY KEY) for the current row so that the same 2141 ** row will be skipped in subsequent sub-WHERE clauses. 2142 */ 2143 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2144 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 2145 if( HasRowid(pTab) ){ 2146 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid); 2147 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 2148 regRowid, iSet); 2149 VdbeCoverage(v); 2150 }else{ 2151 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2152 int nPk = pPk->nKeyCol; 2153 int iPk; 2154 int r; 2155 2156 /* Read the PK into an array of temp registers. */ 2157 r = sqlite3GetTempRange(pParse, nPk); 2158 for(iPk=0; iPk<nPk; iPk++){ 2159 int iCol = pPk->aiColumn[iPk]; 2160 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk); 2161 } 2162 2163 /* Check if the temp table already contains this key. If so, 2164 ** the row has already been included in the result set and 2165 ** can be ignored (by jumping past the Gosub below). Otherwise, 2166 ** insert the key into the temp table and proceed with processing 2167 ** the row. 2168 ** 2169 ** Use some of the same optimizations as OP_RowSetTest: If iSet 2170 ** is zero, assume that the key cannot already be present in 2171 ** the temp table. And if iSet is -1, assume that there is no 2172 ** need to insert the key into the temp table, as it will never 2173 ** be tested for. */ 2174 if( iSet ){ 2175 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 2176 VdbeCoverage(v); 2177 } 2178 if( iSet>=0 ){ 2179 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 2180 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid, 2181 r, nPk); 2182 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2183 } 2184 2185 /* Release the array of temp registers */ 2186 sqlite3ReleaseTempRange(pParse, r, nPk); 2187 } 2188 } 2189 2190 /* Invoke the main loop body as a subroutine */ 2191 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 2192 2193 /* Jump here (skipping the main loop body subroutine) if the 2194 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 2195 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 2196 2197 /* The pSubWInfo->untestedTerms flag means that this OR term 2198 ** contained one or more AND term from a notReady table. The 2199 ** terms from the notReady table could not be tested and will 2200 ** need to be tested later. 2201 */ 2202 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 2203 2204 /* If all of the OR-connected terms are optimized using the same 2205 ** index, and the index is opened using the same cursor number 2206 ** by each call to sqlite3WhereBegin() made by this loop, it may 2207 ** be possible to use that index as a covering index. 2208 ** 2209 ** If the call to sqlite3WhereBegin() above resulted in a scan that 2210 ** uses an index, and this is either the first OR-connected term 2211 ** processed or the index is the same as that used by all previous 2212 ** terms, set pCov to the candidate covering index. Otherwise, set 2213 ** pCov to NULL to indicate that no candidate covering index will 2214 ** be available. 2215 */ 2216 pSubLoop = pSubWInfo->a[0].pWLoop; 2217 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2218 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 2219 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 2220 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 2221 ){ 2222 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 2223 pCov = pSubLoop->u.btree.pIndex; 2224 }else{ 2225 pCov = 0; 2226 } 2227 2228 /* Finish the loop through table entries that match term pOrTerm. */ 2229 sqlite3WhereEnd(pSubWInfo); 2230 ExplainQueryPlanPop(pParse); 2231 } 2232 } 2233 } 2234 ExplainQueryPlanPop(pParse); 2235 pLevel->u.pCovidx = pCov; 2236 if( pCov ) pLevel->iIdxCur = iCovCur; 2237 if( pAndExpr ){ 2238 pAndExpr->pLeft = 0; 2239 sqlite3ExprDelete(db, pAndExpr); 2240 } 2241 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 2242 sqlite3VdbeGoto(v, pLevel->addrBrk); 2243 sqlite3VdbeResolveLabel(v, iLoopBody); 2244 2245 if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); } 2246 if( !untestedTerms ) disableTerm(pLevel, pTerm); 2247 }else 2248 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 2249 2250 { 2251 /* Case 6: There is no usable index. We must do a complete 2252 ** scan of the entire table. 2253 */ 2254 static const u8 aStep[] = { OP_Next, OP_Prev }; 2255 static const u8 aStart[] = { OP_Rewind, OP_Last }; 2256 assert( bRev==0 || bRev==1 ); 2257 if( pTabItem->fg.isRecursive ){ 2258 /* Tables marked isRecursive have only a single row that is stored in 2259 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 2260 pLevel->op = OP_Noop; 2261 }else{ 2262 codeCursorHint(pTabItem, pWInfo, pLevel, 0); 2263 pLevel->op = aStep[bRev]; 2264 pLevel->p1 = iCur; 2265 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt); 2266 VdbeCoverageIf(v, bRev==0); 2267 VdbeCoverageIf(v, bRev!=0); 2268 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2269 } 2270 } 2271 2272 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2273 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 2274 #endif 2275 2276 /* Insert code to test every subexpression that can be completely 2277 ** computed using the current set of tables. 2278 ** 2279 ** This loop may run between one and three times, depending on the 2280 ** constraints to be generated. The value of stack variable iLoop 2281 ** determines the constraints coded by each iteration, as follows: 2282 ** 2283 ** iLoop==1: Code only expressions that are entirely covered by pIdx. 2284 ** iLoop==2: Code remaining expressions that do not contain correlated 2285 ** sub-queries. 2286 ** iLoop==3: Code all remaining expressions. 2287 ** 2288 ** An effort is made to skip unnecessary iterations of the loop. 2289 */ 2290 iLoop = (pIdx ? 1 : 2); 2291 do{ 2292 int iNext = 0; /* Next value for iLoop */ 2293 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2294 Expr *pE; 2295 int skipLikeAddr = 0; 2296 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2297 testcase( pTerm->wtFlags & TERM_CODED ); 2298 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2299 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2300 testcase( pWInfo->untestedTerms==0 2301 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); 2302 pWInfo->untestedTerms = 1; 2303 continue; 2304 } 2305 pE = pTerm->pExpr; 2306 assert( pE!=0 ); 2307 if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){ 2308 continue; 2309 } 2310 2311 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){ 2312 iNext = 2; 2313 continue; 2314 } 2315 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){ 2316 if( iNext==0 ) iNext = 3; 2317 continue; 2318 } 2319 2320 if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){ 2321 /* If the TERM_LIKECOND flag is set, that means that the range search 2322 ** is sufficient to guarantee that the LIKE operator is true, so we 2323 ** can skip the call to the like(A,B) function. But this only works 2324 ** for strings. So do not skip the call to the function on the pass 2325 ** that compares BLOBs. */ 2326 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 2327 continue; 2328 #else 2329 u32 x = pLevel->iLikeRepCntr; 2330 if( x>0 ){ 2331 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1)); 2332 VdbeCoverageIf(v, (x&1)==1); 2333 VdbeCoverageIf(v, (x&1)==0); 2334 } 2335 #endif 2336 } 2337 #ifdef WHERETRACE_ENABLED /* 0xffff */ 2338 if( sqlite3WhereTrace ){ 2339 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d", 2340 pWC->nTerm-j, pTerm, iLoop)); 2341 } 2342 #endif 2343 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 2344 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 2345 pTerm->wtFlags |= TERM_CODED; 2346 } 2347 iLoop = iNext; 2348 }while( iLoop>0 ); 2349 2350 /* Insert code to test for implied constraints based on transitivity 2351 ** of the "==" operator. 2352 ** 2353 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 2354 ** and we are coding the t1 loop and the t2 loop has not yet coded, 2355 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 2356 ** the implied "t1.a=123" constraint. 2357 */ 2358 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2359 Expr *pE, sEAlt; 2360 WhereTerm *pAlt; 2361 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2362 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 2363 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 2364 if( pTerm->leftCursor!=iCur ) continue; 2365 if( pLevel->iLeftJoin ) continue; 2366 pE = pTerm->pExpr; 2367 assert( !ExprHasProperty(pE, EP_FromJoin) ); 2368 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 2369 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady, 2370 WO_EQ|WO_IN|WO_IS, 0); 2371 if( pAlt==0 ) continue; 2372 if( pAlt->wtFlags & (TERM_CODED) ) continue; 2373 if( (pAlt->eOperator & WO_IN) 2374 && (pAlt->pExpr->flags & EP_xIsSelect) 2375 && (pAlt->pExpr->x.pSelect->pEList->nExpr>1) 2376 ){ 2377 continue; 2378 } 2379 testcase( pAlt->eOperator & WO_EQ ); 2380 testcase( pAlt->eOperator & WO_IS ); 2381 testcase( pAlt->eOperator & WO_IN ); 2382 VdbeModuleComment((v, "begin transitive constraint")); 2383 sEAlt = *pAlt->pExpr; 2384 sEAlt.pLeft = pE->pLeft; 2385 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); 2386 } 2387 2388 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2389 ** at least one row of the right table has matched the left table. 2390 */ 2391 if( pLevel->iLeftJoin ){ 2392 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2393 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2394 VdbeComment((v, "record LEFT JOIN hit")); 2395 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 2396 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2397 testcase( pTerm->wtFlags & TERM_CODED ); 2398 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2399 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2400 assert( pWInfo->untestedTerms ); 2401 continue; 2402 } 2403 assert( pTerm->pExpr ); 2404 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 2405 pTerm->wtFlags |= TERM_CODED; 2406 } 2407 } 2408 2409 return pLevel->notReady; 2410 } 2411