xref: /sqlite-3.40.0/src/whereInt.h (revision cb6acda9)
1 /*
2 ** 2013-11-12
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains structure and macro definitions for the query
14 ** planner logic in "where.c".  These definitions are broken out into
15 ** a separate source file for easier editing.
16 */
17 
18 /*
19 ** Trace output macros
20 */
21 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
22 /***/ int sqlite3WhereTrace;
23 #endif
24 #if defined(SQLITE_DEBUG) \
25     && (defined(SQLITE_TEST) || defined(SQLITE_ENABLE_WHERETRACE))
26 # define WHERETRACE(K,X)  if(sqlite3WhereTrace&(K)) sqlite3DebugPrintf X
27 # define WHERETRACE_ENABLED 1
28 #else
29 # define WHERETRACE(K,X)
30 #endif
31 
32 /* Forward references
33 */
34 typedef struct WhereClause WhereClause;
35 typedef struct WhereMaskSet WhereMaskSet;
36 typedef struct WhereOrInfo WhereOrInfo;
37 typedef struct WhereAndInfo WhereAndInfo;
38 typedef struct WhereLevel WhereLevel;
39 typedef struct WhereLoop WhereLoop;
40 typedef struct WherePath WherePath;
41 typedef struct WhereTerm WhereTerm;
42 typedef struct WhereLoopBuilder WhereLoopBuilder;
43 typedef struct WhereScan WhereScan;
44 typedef struct WhereOrCost WhereOrCost;
45 typedef struct WhereOrSet WhereOrSet;
46 
47 /*
48 ** This object contains information needed to implement a single nested
49 ** loop in WHERE clause.
50 **
51 ** Contrast this object with WhereLoop.  This object describes the
52 ** implementation of the loop.  WhereLoop describes the algorithm.
53 ** This object contains a pointer to the WhereLoop algorithm as one of
54 ** its elements.
55 **
56 ** The WhereInfo object contains a single instance of this object for
57 ** each term in the FROM clause (which is to say, for each of the
58 ** nested loops as implemented).  The order of WhereLevel objects determines
59 ** the loop nested order, with WhereInfo.a[0] being the outer loop and
60 ** WhereInfo.a[WhereInfo.nLevel-1] being the inner loop.
61 */
62 struct WhereLevel {
63   int iLeftJoin;        /* Memory cell used to implement LEFT OUTER JOIN */
64   int iTabCur;          /* The VDBE cursor used to access the table */
65   int iIdxCur;          /* The VDBE cursor used to access pIdx */
66   int addrBrk;          /* Jump here to break out of the loop */
67   int addrNxt;          /* Jump here to start the next IN combination */
68   int addrSkip;         /* Jump here for next iteration of skip-scan */
69   int addrCont;         /* Jump here to continue with the next loop cycle */
70   int addrFirst;        /* First instruction of interior of the loop */
71   int addrBody;         /* Beginning of the body of this loop */
72 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
73   u32 iLikeRepCntr;     /* LIKE range processing counter register (times 2) */
74   int addrLikeRep;      /* LIKE range processing address */
75 #endif
76   u8 iFrom;             /* Which entry in the FROM clause */
77   u8 op, p3, p5;        /* Opcode, P3 & P5 of the opcode that ends the loop */
78   int p1, p2;           /* Operands of the opcode used to ends the loop */
79   union {               /* Information that depends on pWLoop->wsFlags */
80     struct {
81       int nIn;              /* Number of entries in aInLoop[] */
82       struct InLoop {
83         int iCur;              /* The VDBE cursor used by this IN operator */
84         int addrInTop;         /* Top of the IN loop */
85         u8 eEndLoopOp;         /* IN Loop terminator. OP_Next or OP_Prev */
86       } *aInLoop;           /* Information about each nested IN operator */
87     } in;                 /* Used when pWLoop->wsFlags&WHERE_IN_ABLE */
88     Index *pCovidx;       /* Possible covering index for WHERE_MULTI_OR */
89   } u;
90   struct WhereLoop *pWLoop;  /* The selected WhereLoop object */
91   Bitmask notReady;          /* FROM entries not usable at this level */
92 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
93   int addrVisit;        /* Address at which row is visited */
94 #endif
95 };
96 
97 /*
98 ** Each instance of this object represents an algorithm for evaluating one
99 ** term of a join.  Every term of the FROM clause will have at least
100 ** one corresponding WhereLoop object (unless INDEXED BY constraints
101 ** prevent a query solution - which is an error) and many terms of the
102 ** FROM clause will have multiple WhereLoop objects, each describing a
103 ** potential way of implementing that FROM-clause term, together with
104 ** dependencies and cost estimates for using the chosen algorithm.
105 **
106 ** Query planning consists of building up a collection of these WhereLoop
107 ** objects, then computing a particular sequence of WhereLoop objects, with
108 ** one WhereLoop object per FROM clause term, that satisfy all dependencies
109 ** and that minimize the overall cost.
110 */
111 struct WhereLoop {
112   Bitmask prereq;       /* Bitmask of other loops that must run first */
113   Bitmask maskSelf;     /* Bitmask identifying table iTab */
114 #ifdef SQLITE_DEBUG
115   char cId;             /* Symbolic ID of this loop for debugging use */
116 #endif
117   u8 iTab;              /* Position in FROM clause of table for this loop */
118   u8 iSortIdx;          /* Sorting index number.  0==None */
119   LogEst rSetup;        /* One-time setup cost (ex: create transient index) */
120   LogEst rRun;          /* Cost of running each loop */
121   LogEst nOut;          /* Estimated number of output rows */
122   union {
123     struct {               /* Information for internal btree tables */
124       u16 nEq;               /* Number of equality constraints */
125       u16 nBtm;              /* Size of BTM vector */
126       u16 nTop;              /* Size of TOP vector */
127       u16 nIdxCol;           /* Index column used for ORDER BY */
128       Index *pIndex;         /* Index used, or NULL */
129     } btree;
130     struct {               /* Information for virtual tables */
131       int idxNum;            /* Index number */
132       u8 needFree;           /* True if sqlite3_free(idxStr) is needed */
133       i8 isOrdered;          /* True if satisfies ORDER BY */
134       u16 omitMask;          /* Terms that may be omitted */
135       char *idxStr;          /* Index identifier string */
136     } vtab;
137   } u;
138   u32 wsFlags;          /* WHERE_* flags describing the plan */
139   u16 nLTerm;           /* Number of entries in aLTerm[] */
140   u16 nSkip;            /* Number of NULL aLTerm[] entries */
141   /**** whereLoopXfer() copies fields above ***********************/
142 # define WHERE_LOOP_XFER_SZ offsetof(WhereLoop,nLSlot)
143   u16 nLSlot;           /* Number of slots allocated for aLTerm[] */
144   WhereTerm **aLTerm;   /* WhereTerms used */
145   WhereLoop *pNextLoop; /* Next WhereLoop object in the WhereClause */
146   WhereTerm *aLTermSpace[3];  /* Initial aLTerm[] space */
147 };
148 
149 /* This object holds the prerequisites and the cost of running a
150 ** subquery on one operand of an OR operator in the WHERE clause.
151 ** See WhereOrSet for additional information
152 */
153 struct WhereOrCost {
154   Bitmask prereq;     /* Prerequisites */
155   LogEst rRun;        /* Cost of running this subquery */
156   LogEst nOut;        /* Number of outputs for this subquery */
157 };
158 
159 /* The WhereOrSet object holds a set of possible WhereOrCosts that
160 ** correspond to the subquery(s) of OR-clause processing.  Only the
161 ** best N_OR_COST elements are retained.
162 */
163 #define N_OR_COST 3
164 struct WhereOrSet {
165   u16 n;                      /* Number of valid a[] entries */
166   WhereOrCost a[N_OR_COST];   /* Set of best costs */
167 };
168 
169 /*
170 ** Each instance of this object holds a sequence of WhereLoop objects
171 ** that implement some or all of a query plan.
172 **
173 ** Think of each WhereLoop object as a node in a graph with arcs
174 ** showing dependencies and costs for travelling between nodes.  (That is
175 ** not a completely accurate description because WhereLoop costs are a
176 ** vector, not a scalar, and because dependencies are many-to-one, not
177 ** one-to-one as are graph nodes.  But it is a useful visualization aid.)
178 ** Then a WherePath object is a path through the graph that visits some
179 ** or all of the WhereLoop objects once.
180 **
181 ** The "solver" works by creating the N best WherePath objects of length
182 ** 1.  Then using those as a basis to compute the N best WherePath objects
183 ** of length 2.  And so forth until the length of WherePaths equals the
184 ** number of nodes in the FROM clause.  The best (lowest cost) WherePath
185 ** at the end is the chosen query plan.
186 */
187 struct WherePath {
188   Bitmask maskLoop;     /* Bitmask of all WhereLoop objects in this path */
189   Bitmask revLoop;      /* aLoop[]s that should be reversed for ORDER BY */
190   LogEst nRow;          /* Estimated number of rows generated by this path */
191   LogEst rCost;         /* Total cost of this path */
192   LogEst rUnsorted;     /* Total cost of this path ignoring sorting costs */
193   i8 isOrdered;         /* No. of ORDER BY terms satisfied. -1 for unknown */
194   WhereLoop **aLoop;    /* Array of WhereLoop objects implementing this path */
195 };
196 
197 /*
198 ** The query generator uses an array of instances of this structure to
199 ** help it analyze the subexpressions of the WHERE clause.  Each WHERE
200 ** clause subexpression is separated from the others by AND operators,
201 ** usually, or sometimes subexpressions separated by OR.
202 **
203 ** All WhereTerms are collected into a single WhereClause structure.
204 ** The following identity holds:
205 **
206 **        WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
207 **
208 ** When a term is of the form:
209 **
210 **              X <op> <expr>
211 **
212 ** where X is a column name and <op> is one of certain operators,
213 ** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the
214 ** cursor number and column number for X.  WhereTerm.eOperator records
215 ** the <op> using a bitmask encoding defined by WO_xxx below.  The
216 ** use of a bitmask encoding for the operator allows us to search
217 ** quickly for terms that match any of several different operators.
218 **
219 ** A WhereTerm might also be two or more subterms connected by OR:
220 **
221 **         (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
222 **
223 ** In this second case, wtFlag has the TERM_ORINFO bit set and eOperator==WO_OR
224 ** and the WhereTerm.u.pOrInfo field points to auxiliary information that
225 ** is collected about the OR clause.
226 **
227 ** If a term in the WHERE clause does not match either of the two previous
228 ** categories, then eOperator==0.  The WhereTerm.pExpr field is still set
229 ** to the original subexpression content and wtFlags is set up appropriately
230 ** but no other fields in the WhereTerm object are meaningful.
231 **
232 ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
233 ** but they do so indirectly.  A single WhereMaskSet structure translates
234 ** cursor number into bits and the translated bit is stored in the prereq
235 ** fields.  The translation is used in order to maximize the number of
236 ** bits that will fit in a Bitmask.  The VDBE cursor numbers might be
237 ** spread out over the non-negative integers.  For example, the cursor
238 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The WhereMaskSet
239 ** translates these sparse cursor numbers into consecutive integers
240 ** beginning with 0 in order to make the best possible use of the available
241 ** bits in the Bitmask.  So, in the example above, the cursor numbers
242 ** would be mapped into integers 0 through 7.
243 **
244 ** The number of terms in a join is limited by the number of bits
245 ** in prereqRight and prereqAll.  The default is 64 bits, hence SQLite
246 ** is only able to process joins with 64 or fewer tables.
247 */
248 struct WhereTerm {
249   Expr *pExpr;            /* Pointer to the subexpression that is this term */
250   WhereClause *pWC;       /* The clause this term is part of */
251   LogEst truthProb;       /* Probability of truth for this expression */
252   u16 wtFlags;            /* TERM_xxx bit flags.  See below */
253   u16 eOperator;          /* A WO_xx value describing <op> */
254   u8 nChild;              /* Number of children that must disable us */
255   u8 eMatchOp;            /* Op for vtab MATCH/LIKE/GLOB/REGEXP terms */
256   int iParent;            /* Disable pWC->a[iParent] when this term disabled */
257   int leftCursor;         /* Cursor number of X in "X <op> <expr>" */
258   int iField;             /* Field in (?,?,?) IN (SELECT...) vector */
259   union {
260     int leftColumn;         /* Column number of X in "X <op> <expr>" */
261     WhereOrInfo *pOrInfo;   /* Extra information if (eOperator & WO_OR)!=0 */
262     WhereAndInfo *pAndInfo; /* Extra information if (eOperator& WO_AND)!=0 */
263   } u;
264   Bitmask prereqRight;    /* Bitmask of tables used by pExpr->pRight */
265   Bitmask prereqAll;      /* Bitmask of tables referenced by pExpr */
266 };
267 
268 /*
269 ** Allowed values of WhereTerm.wtFlags
270 */
271 #define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(db, pExpr) */
272 #define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
273 #define TERM_CODED      0x04   /* This term is already coded */
274 #define TERM_COPIED     0x08   /* Has a child */
275 #define TERM_ORINFO     0x10   /* Need to free the WhereTerm.u.pOrInfo object */
276 #define TERM_ANDINFO    0x20   /* Need to free the WhereTerm.u.pAndInfo obj */
277 #define TERM_OR_OK      0x40   /* Used during OR-clause processing */
278 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
279 #  define TERM_VNULL    0x80   /* Manufactured x>NULL or x<=NULL term */
280 #else
281 #  define TERM_VNULL    0x00   /* Disabled if not using stat3 */
282 #endif
283 #define TERM_LIKEOPT    0x100  /* Virtual terms from the LIKE optimization */
284 #define TERM_LIKECOND   0x200  /* Conditionally this LIKE operator term */
285 #define TERM_LIKE       0x400  /* The original LIKE operator */
286 #define TERM_IS         0x800  /* Term.pExpr is an IS operator */
287 #define TERM_VARSELECT  0x1000 /* Term.pExpr contains a correlated sub-query */
288 
289 /*
290 ** An instance of the WhereScan object is used as an iterator for locating
291 ** terms in the WHERE clause that are useful to the query planner.
292 */
293 struct WhereScan {
294   WhereClause *pOrigWC;      /* Original, innermost WhereClause */
295   WhereClause *pWC;          /* WhereClause currently being scanned */
296   const char *zCollName;     /* Required collating sequence, if not NULL */
297   Expr *pIdxExpr;            /* Search for this index expression */
298   char idxaff;               /* Must match this affinity, if zCollName!=NULL */
299   unsigned char nEquiv;      /* Number of entries in aEquiv[] */
300   unsigned char iEquiv;      /* Next unused slot in aEquiv[] */
301   u32 opMask;                /* Acceptable operators */
302   int k;                     /* Resume scanning at this->pWC->a[this->k] */
303   int aiCur[11];             /* Cursors in the equivalence class */
304   i16 aiColumn[11];          /* Corresponding column number in the eq-class */
305 };
306 
307 /*
308 ** An instance of the following structure holds all information about a
309 ** WHERE clause.  Mostly this is a container for one or more WhereTerms.
310 **
311 ** Explanation of pOuter:  For a WHERE clause of the form
312 **
313 **           a AND ((b AND c) OR (d AND e)) AND f
314 **
315 ** There are separate WhereClause objects for the whole clause and for
316 ** the subclauses "(b AND c)" and "(d AND e)".  The pOuter field of the
317 ** subclauses points to the WhereClause object for the whole clause.
318 */
319 struct WhereClause {
320   WhereInfo *pWInfo;       /* WHERE clause processing context */
321   WhereClause *pOuter;     /* Outer conjunction */
322   u8 op;                   /* Split operator.  TK_AND or TK_OR */
323   int nTerm;               /* Number of terms */
324   int nSlot;               /* Number of entries in a[] */
325   WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
326 #if defined(SQLITE_SMALL_STACK)
327   WhereTerm aStatic[1];    /* Initial static space for a[] */
328 #else
329   WhereTerm aStatic[8];    /* Initial static space for a[] */
330 #endif
331 };
332 
333 /*
334 ** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to
335 ** a dynamically allocated instance of the following structure.
336 */
337 struct WhereOrInfo {
338   WhereClause wc;          /* Decomposition into subterms */
339   Bitmask indexable;       /* Bitmask of all indexable tables in the clause */
340 };
341 
342 /*
343 ** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to
344 ** a dynamically allocated instance of the following structure.
345 */
346 struct WhereAndInfo {
347   WhereClause wc;          /* The subexpression broken out */
348 };
349 
350 /*
351 ** An instance of the following structure keeps track of a mapping
352 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
353 **
354 ** The VDBE cursor numbers are small integers contained in
355 ** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE
356 ** clause, the cursor numbers might not begin with 0 and they might
357 ** contain gaps in the numbering sequence.  But we want to make maximum
358 ** use of the bits in our bitmasks.  This structure provides a mapping
359 ** from the sparse cursor numbers into consecutive integers beginning
360 ** with 0.
361 **
362 ** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
363 ** corresponds VDBE cursor number B.  The A-th bit of a bitmask is 1<<A.
364 **
365 ** For example, if the WHERE clause expression used these VDBE
366 ** cursors:  4, 5, 8, 29, 57, 73.  Then the  WhereMaskSet structure
367 ** would map those cursor numbers into bits 0 through 5.
368 **
369 ** Note that the mapping is not necessarily ordered.  In the example
370 ** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0,
371 ** 57->5, 73->4.  Or one of 719 other combinations might be used. It
372 ** does not really matter.  What is important is that sparse cursor
373 ** numbers all get mapped into bit numbers that begin with 0 and contain
374 ** no gaps.
375 */
376 struct WhereMaskSet {
377   int bVarSelect;               /* Used by sqlite3WhereExprUsage() */
378   int n;                        /* Number of assigned cursor values */
379   int ix[BMS];                  /* Cursor assigned to each bit */
380 };
381 
382 /*
383 ** Initialize a WhereMaskSet object
384 */
385 #define initMaskSet(P)  (P)->n=0
386 
387 /*
388 ** This object is a convenience wrapper holding all information needed
389 ** to construct WhereLoop objects for a particular query.
390 */
391 struct WhereLoopBuilder {
392   WhereInfo *pWInfo;        /* Information about this WHERE */
393   WhereClause *pWC;         /* WHERE clause terms */
394   ExprList *pOrderBy;       /* ORDER BY clause */
395   WhereLoop *pNew;          /* Template WhereLoop */
396   WhereOrSet *pOrSet;       /* Record best loops here, if not NULL */
397 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
398   UnpackedRecord *pRec;     /* Probe for stat4 (if required) */
399   int nRecValid;            /* Number of valid fields currently in pRec */
400 #endif
401   unsigned int bldFlags;    /* SQLITE_BLDF_* flags */
402 };
403 
404 /* Allowed values for WhereLoopBuider.bldFlags */
405 #define SQLITE_BLDF_INDEXED  0x0001   /* An index is used */
406 #define SQLITE_BLDF_UNIQUE   0x0002   /* All keys of a UNIQUE index used */
407 
408 /*
409 ** The WHERE clause processing routine has two halves.  The
410 ** first part does the start of the WHERE loop and the second
411 ** half does the tail of the WHERE loop.  An instance of
412 ** this structure is returned by the first half and passed
413 ** into the second half to give some continuity.
414 **
415 ** An instance of this object holds the complete state of the query
416 ** planner.
417 */
418 struct WhereInfo {
419   Parse *pParse;            /* Parsing and code generating context */
420   SrcList *pTabList;        /* List of tables in the join */
421   ExprList *pOrderBy;       /* The ORDER BY clause or NULL */
422   ExprList *pResultSet;     /* Result set of the query */
423   Expr *pWhere;             /* The complete WHERE clause */
424   LogEst iLimit;            /* LIMIT if wctrlFlags has WHERE_USE_LIMIT */
425   int aiCurOnePass[2];      /* OP_OpenWrite cursors for the ONEPASS opt */
426   int iContinue;            /* Jump here to continue with next record */
427   int iBreak;               /* Jump here to break out of the loop */
428   int savedNQueryLoop;      /* pParse->nQueryLoop outside the WHERE loop */
429   u16 wctrlFlags;           /* Flags originally passed to sqlite3WhereBegin() */
430   u8 nLevel;                /* Number of nested loop */
431   i8 nOBSat;                /* Number of ORDER BY terms satisfied by indices */
432   u8 sorted;                /* True if really sorted (not just grouped) */
433   u8 eOnePass;              /* ONEPASS_OFF, or _SINGLE, or _MULTI */
434   u8 untestedTerms;         /* Not all WHERE terms resolved by outer loop */
435   u8 eDistinct;             /* One of the WHERE_DISTINCT_* values */
436   u8 bOrderedInnerLoop;     /* True if only the inner-most loop is ordered */
437   int iTop;                 /* The very beginning of the WHERE loop */
438   WhereLoop *pLoops;        /* List of all WhereLoop objects */
439   Bitmask revMask;          /* Mask of ORDER BY terms that need reversing */
440   LogEst nRowOut;           /* Estimated number of output rows */
441   WhereClause sWC;          /* Decomposition of the WHERE clause */
442   WhereMaskSet sMaskSet;    /* Map cursor numbers to bitmasks */
443   WhereLevel a[1];          /* Information about each nest loop in WHERE */
444 };
445 
446 /*
447 ** Private interfaces - callable only by other where.c routines.
448 **
449 ** where.c:
450 */
451 Bitmask sqlite3WhereGetMask(WhereMaskSet*,int);
452 #ifdef WHERETRACE_ENABLED
453 void sqlite3WhereClausePrint(WhereClause *pWC);
454 #endif
455 WhereTerm *sqlite3WhereFindTerm(
456   WhereClause *pWC,     /* The WHERE clause to be searched */
457   int iCur,             /* Cursor number of LHS */
458   int iColumn,          /* Column number of LHS */
459   Bitmask notReady,     /* RHS must not overlap with this mask */
460   u32 op,               /* Mask of WO_xx values describing operator */
461   Index *pIdx           /* Must be compatible with this index, if not NULL */
462 );
463 
464 /* wherecode.c: */
465 #ifndef SQLITE_OMIT_EXPLAIN
466 int sqlite3WhereExplainOneScan(
467   Parse *pParse,                  /* Parse context */
468   SrcList *pTabList,              /* Table list this loop refers to */
469   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
470   int iLevel,                     /* Value for "level" column of output */
471   int iFrom,                      /* Value for "from" column of output */
472   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
473 );
474 #else
475 # define sqlite3WhereExplainOneScan(u,v,w,x,y,z) 0
476 #endif /* SQLITE_OMIT_EXPLAIN */
477 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
478 void sqlite3WhereAddScanStatus(
479   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
480   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
481   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
482   int addrExplain                 /* Address of OP_Explain (or 0) */
483 );
484 #else
485 # define sqlite3WhereAddScanStatus(a, b, c, d) ((void)d)
486 #endif
487 Bitmask sqlite3WhereCodeOneLoopStart(
488   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
489   int iLevel,          /* Which level of pWInfo->a[] should be coded */
490   Bitmask notReady     /* Which tables are currently available */
491 );
492 
493 /* whereexpr.c: */
494 void sqlite3WhereClauseInit(WhereClause*,WhereInfo*);
495 void sqlite3WhereClauseClear(WhereClause*);
496 void sqlite3WhereSplit(WhereClause*,Expr*,u8);
497 Bitmask sqlite3WhereExprUsage(WhereMaskSet*, Expr*);
498 Bitmask sqlite3WhereExprListUsage(WhereMaskSet*, ExprList*);
499 void sqlite3WhereExprAnalyze(SrcList*, WhereClause*);
500 void sqlite3WhereTabFuncArgs(Parse*, struct SrcList_item*, WhereClause*);
501 
502 
503 
504 
505 
506 /*
507 ** Bitmasks for the operators on WhereTerm objects.  These are all
508 ** operators that are of interest to the query planner.  An
509 ** OR-ed combination of these values can be used when searching for
510 ** particular WhereTerms within a WhereClause.
511 **
512 ** Value constraints:
513 **     WO_EQ    == SQLITE_INDEX_CONSTRAINT_EQ
514 **     WO_LT    == SQLITE_INDEX_CONSTRAINT_LT
515 **     WO_LE    == SQLITE_INDEX_CONSTRAINT_LE
516 **     WO_GT    == SQLITE_INDEX_CONSTRAINT_GT
517 **     WO_GE    == SQLITE_INDEX_CONSTRAINT_GE
518 */
519 #define WO_IN     0x0001
520 #define WO_EQ     0x0002
521 #define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
522 #define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
523 #define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
524 #define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
525 #define WO_AUX    0x0040       /* Op useful to virtual tables only */
526 #define WO_IS     0x0080
527 #define WO_ISNULL 0x0100
528 #define WO_OR     0x0200       /* Two or more OR-connected terms */
529 #define WO_AND    0x0400       /* Two or more AND-connected terms */
530 #define WO_EQUIV  0x0800       /* Of the form A==B, both columns */
531 #define WO_NOOP   0x1000       /* This term does not restrict search space */
532 
533 #define WO_ALL    0x1fff       /* Mask of all possible WO_* values */
534 #define WO_SINGLE 0x01ff       /* Mask of all non-compound WO_* values */
535 
536 /*
537 ** These are definitions of bits in the WhereLoop.wsFlags field.
538 ** The particular combination of bits in each WhereLoop help to
539 ** determine the algorithm that WhereLoop represents.
540 */
541 #define WHERE_COLUMN_EQ    0x00000001  /* x=EXPR */
542 #define WHERE_COLUMN_RANGE 0x00000002  /* x<EXPR and/or x>EXPR */
543 #define WHERE_COLUMN_IN    0x00000004  /* x IN (...) */
544 #define WHERE_COLUMN_NULL  0x00000008  /* x IS NULL */
545 #define WHERE_CONSTRAINT   0x0000000f  /* Any of the WHERE_COLUMN_xxx values */
546 #define WHERE_TOP_LIMIT    0x00000010  /* x<EXPR or x<=EXPR constraint */
547 #define WHERE_BTM_LIMIT    0x00000020  /* x>EXPR or x>=EXPR constraint */
548 #define WHERE_BOTH_LIMIT   0x00000030  /* Both x>EXPR and x<EXPR */
549 #define WHERE_IDX_ONLY     0x00000040  /* Use index only - omit table */
550 #define WHERE_IPK          0x00000100  /* x is the INTEGER PRIMARY KEY */
551 #define WHERE_INDEXED      0x00000200  /* WhereLoop.u.btree.pIndex is valid */
552 #define WHERE_VIRTUALTABLE 0x00000400  /* WhereLoop.u.vtab is valid */
553 #define WHERE_IN_ABLE      0x00000800  /* Able to support an IN operator */
554 #define WHERE_ONEROW       0x00001000  /* Selects no more than one row */
555 #define WHERE_MULTI_OR     0x00002000  /* OR using multiple indices */
556 #define WHERE_AUTO_INDEX   0x00004000  /* Uses an ephemeral index */
557 #define WHERE_SKIPSCAN     0x00008000  /* Uses the skip-scan algorithm */
558 #define WHERE_UNQ_WANTED   0x00010000  /* WHERE_ONEROW would have been helpful*/
559 #define WHERE_PARTIALIDX   0x00020000  /* The automatic index is partial */
560