1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 21 22 /* 23 ** Trace output macros 24 */ 25 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 26 int sqlite3WhereTrace = 0; 27 #endif 28 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 29 # define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X 30 #else 31 # define WHERETRACE(X) 32 #endif 33 34 /* Forward reference 35 */ 36 typedef struct WhereClause WhereClause; 37 typedef struct WhereMaskSet WhereMaskSet; 38 typedef struct WhereOrInfo WhereOrInfo; 39 typedef struct WhereAndInfo WhereAndInfo; 40 typedef struct WhereCost WhereCost; 41 42 /* 43 ** The query generator uses an array of instances of this structure to 44 ** help it analyze the subexpressions of the WHERE clause. Each WHERE 45 ** clause subexpression is separated from the others by AND operators, 46 ** usually, or sometimes subexpressions separated by OR. 47 ** 48 ** All WhereTerms are collected into a single WhereClause structure. 49 ** The following identity holds: 50 ** 51 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm 52 ** 53 ** When a term is of the form: 54 ** 55 ** X <op> <expr> 56 ** 57 ** where X is a column name and <op> is one of certain operators, 58 ** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the 59 ** cursor number and column number for X. WhereTerm.eOperator records 60 ** the <op> using a bitmask encoding defined by WO_xxx below. The 61 ** use of a bitmask encoding for the operator allows us to search 62 ** quickly for terms that match any of several different operators. 63 ** 64 ** A WhereTerm might also be two or more subterms connected by OR: 65 ** 66 ** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR .... 67 ** 68 ** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR 69 ** and the WhereTerm.u.pOrInfo field points to auxiliary information that 70 ** is collected about the 71 ** 72 ** If a term in the WHERE clause does not match either of the two previous 73 ** categories, then eOperator==0. The WhereTerm.pExpr field is still set 74 ** to the original subexpression content and wtFlags is set up appropriately 75 ** but no other fields in the WhereTerm object are meaningful. 76 ** 77 ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers, 78 ** but they do so indirectly. A single WhereMaskSet structure translates 79 ** cursor number into bits and the translated bit is stored in the prereq 80 ** fields. The translation is used in order to maximize the number of 81 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be 82 ** spread out over the non-negative integers. For example, the cursor 83 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet 84 ** translates these sparse cursor numbers into consecutive integers 85 ** beginning with 0 in order to make the best possible use of the available 86 ** bits in the Bitmask. So, in the example above, the cursor numbers 87 ** would be mapped into integers 0 through 7. 88 ** 89 ** The number of terms in a join is limited by the number of bits 90 ** in prereqRight and prereqAll. The default is 64 bits, hence SQLite 91 ** is only able to process joins with 64 or fewer tables. 92 */ 93 typedef struct WhereTerm WhereTerm; 94 struct WhereTerm { 95 Expr *pExpr; /* Pointer to the subexpression that is this term */ 96 int iParent; /* Disable pWC->a[iParent] when this term disabled */ 97 int leftCursor; /* Cursor number of X in "X <op> <expr>" */ 98 union { 99 int leftColumn; /* Column number of X in "X <op> <expr>" */ 100 WhereOrInfo *pOrInfo; /* Extra information if eOperator==WO_OR */ 101 WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */ 102 } u; 103 u16 eOperator; /* A WO_xx value describing <op> */ 104 u8 wtFlags; /* TERM_xxx bit flags. See below */ 105 u8 nChild; /* Number of children that must disable us */ 106 WhereClause *pWC; /* The clause this term is part of */ 107 Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */ 108 Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */ 109 }; 110 111 /* 112 ** Allowed values of WhereTerm.wtFlags 113 */ 114 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */ 115 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ 116 #define TERM_CODED 0x04 /* This term is already coded */ 117 #define TERM_COPIED 0x08 /* Has a child */ 118 #define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */ 119 #define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */ 120 #define TERM_OR_OK 0x40 /* Used during OR-clause processing */ 121 #ifdef SQLITE_ENABLE_STAT2 122 # define TERM_VNULL 0x80 /* Manufactured x>NULL or x<=NULL term */ 123 #else 124 # define TERM_VNULL 0x00 /* Disabled if not using stat2 */ 125 #endif 126 127 /* 128 ** An instance of the following structure holds all information about a 129 ** WHERE clause. Mostly this is a container for one or more WhereTerms. 130 */ 131 struct WhereClause { 132 Parse *pParse; /* The parser context */ 133 WhereMaskSet *pMaskSet; /* Mapping of table cursor numbers to bitmasks */ 134 Bitmask vmask; /* Bitmask identifying virtual table cursors */ 135 u8 op; /* Split operator. TK_AND or TK_OR */ 136 int nTerm; /* Number of terms */ 137 int nSlot; /* Number of entries in a[] */ 138 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ 139 #if defined(SQLITE_SMALL_STACK) 140 WhereTerm aStatic[1]; /* Initial static space for a[] */ 141 #else 142 WhereTerm aStatic[8]; /* Initial static space for a[] */ 143 #endif 144 }; 145 146 /* 147 ** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to 148 ** a dynamically allocated instance of the following structure. 149 */ 150 struct WhereOrInfo { 151 WhereClause wc; /* Decomposition into subterms */ 152 Bitmask indexable; /* Bitmask of all indexable tables in the clause */ 153 }; 154 155 /* 156 ** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to 157 ** a dynamically allocated instance of the following structure. 158 */ 159 struct WhereAndInfo { 160 WhereClause wc; /* The subexpression broken out */ 161 }; 162 163 /* 164 ** An instance of the following structure keeps track of a mapping 165 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. 166 ** 167 ** The VDBE cursor numbers are small integers contained in 168 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE 169 ** clause, the cursor numbers might not begin with 0 and they might 170 ** contain gaps in the numbering sequence. But we want to make maximum 171 ** use of the bits in our bitmasks. This structure provides a mapping 172 ** from the sparse cursor numbers into consecutive integers beginning 173 ** with 0. 174 ** 175 ** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask 176 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A. 177 ** 178 ** For example, if the WHERE clause expression used these VDBE 179 ** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure 180 ** would map those cursor numbers into bits 0 through 5. 181 ** 182 ** Note that the mapping is not necessarily ordered. In the example 183 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0, 184 ** 57->5, 73->4. Or one of 719 other combinations might be used. It 185 ** does not really matter. What is important is that sparse cursor 186 ** numbers all get mapped into bit numbers that begin with 0 and contain 187 ** no gaps. 188 */ 189 struct WhereMaskSet { 190 int n; /* Number of assigned cursor values */ 191 int ix[BMS]; /* Cursor assigned to each bit */ 192 }; 193 194 /* 195 ** A WhereCost object records a lookup strategy and the estimated 196 ** cost of pursuing that strategy. 197 */ 198 struct WhereCost { 199 WherePlan plan; /* The lookup strategy */ 200 double rCost; /* Overall cost of pursuing this search strategy */ 201 Bitmask used; /* Bitmask of cursors used by this plan */ 202 }; 203 204 /* 205 ** Bitmasks for the operators that indices are able to exploit. An 206 ** OR-ed combination of these values can be used when searching for 207 ** terms in the where clause. 208 */ 209 #define WO_IN 0x001 210 #define WO_EQ 0x002 211 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) 212 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) 213 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) 214 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) 215 #define WO_MATCH 0x040 216 #define WO_ISNULL 0x080 217 #define WO_OR 0x100 /* Two or more OR-connected terms */ 218 #define WO_AND 0x200 /* Two or more AND-connected terms */ 219 #define WO_NOOP 0x800 /* This term does not restrict search space */ 220 221 #define WO_ALL 0xfff /* Mask of all possible WO_* values */ 222 #define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */ 223 224 /* 225 ** Value for wsFlags returned by bestIndex() and stored in 226 ** WhereLevel.wsFlags. These flags determine which search 227 ** strategies are appropriate. 228 ** 229 ** The least significant 12 bits is reserved as a mask for WO_ values above. 230 ** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL. 231 ** But if the table is the right table of a left join, WhereLevel.wsFlags 232 ** is set to WO_IN|WO_EQ. The WhereLevel.wsFlags field can then be used as 233 ** the "op" parameter to findTerm when we are resolving equality constraints. 234 ** ISNULL constraints will then not be used on the right table of a left 235 ** join. Tickets #2177 and #2189. 236 */ 237 #define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */ 238 #define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */ 239 #define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) or x IS NULL */ 240 #define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */ 241 #define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */ 242 #define WHERE_COLUMN_NULL 0x00080000 /* x IS NULL */ 243 #define WHERE_INDEXED 0x000f0000 /* Anything that uses an index */ 244 #define WHERE_NOT_FULLSCAN 0x100f3000 /* Does not do a full table scan */ 245 #define WHERE_IN_ABLE 0x000f1000 /* Able to support an IN operator */ 246 #define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */ 247 #define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */ 248 #define WHERE_BOTH_LIMIT 0x00300000 /* Both x>EXPR and x<EXPR */ 249 #define WHERE_IDX_ONLY 0x00800000 /* Use index only - omit table */ 250 #define WHERE_ORDERBY 0x01000000 /* Output will appear in correct order */ 251 #define WHERE_REVERSE 0x02000000 /* Scan in reverse order */ 252 #define WHERE_UNIQUE 0x04000000 /* Selects no more than one row */ 253 #define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */ 254 #define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */ 255 #define WHERE_TEMP_INDEX 0x20000000 /* Uses an ephemeral index */ 256 257 /* 258 ** Initialize a preallocated WhereClause structure. 259 */ 260 static void whereClauseInit( 261 WhereClause *pWC, /* The WhereClause to be initialized */ 262 Parse *pParse, /* The parsing context */ 263 WhereMaskSet *pMaskSet /* Mapping from table cursor numbers to bitmasks */ 264 ){ 265 pWC->pParse = pParse; 266 pWC->pMaskSet = pMaskSet; 267 pWC->nTerm = 0; 268 pWC->nSlot = ArraySize(pWC->aStatic); 269 pWC->a = pWC->aStatic; 270 pWC->vmask = 0; 271 } 272 273 /* Forward reference */ 274 static void whereClauseClear(WhereClause*); 275 276 /* 277 ** Deallocate all memory associated with a WhereOrInfo object. 278 */ 279 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ 280 whereClauseClear(&p->wc); 281 sqlite3DbFree(db, p); 282 } 283 284 /* 285 ** Deallocate all memory associated with a WhereAndInfo object. 286 */ 287 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ 288 whereClauseClear(&p->wc); 289 sqlite3DbFree(db, p); 290 } 291 292 /* 293 ** Deallocate a WhereClause structure. The WhereClause structure 294 ** itself is not freed. This routine is the inverse of whereClauseInit(). 295 */ 296 static void whereClauseClear(WhereClause *pWC){ 297 int i; 298 WhereTerm *a; 299 sqlite3 *db = pWC->pParse->db; 300 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 301 if( a->wtFlags & TERM_DYNAMIC ){ 302 sqlite3ExprDelete(db, a->pExpr); 303 } 304 if( a->wtFlags & TERM_ORINFO ){ 305 whereOrInfoDelete(db, a->u.pOrInfo); 306 }else if( a->wtFlags & TERM_ANDINFO ){ 307 whereAndInfoDelete(db, a->u.pAndInfo); 308 } 309 } 310 if( pWC->a!=pWC->aStatic ){ 311 sqlite3DbFree(db, pWC->a); 312 } 313 } 314 315 /* 316 ** Add a single new WhereTerm entry to the WhereClause object pWC. 317 ** The new WhereTerm object is constructed from Expr p and with wtFlags. 318 ** The index in pWC->a[] of the new WhereTerm is returned on success. 319 ** 0 is returned if the new WhereTerm could not be added due to a memory 320 ** allocation error. The memory allocation failure will be recorded in 321 ** the db->mallocFailed flag so that higher-level functions can detect it. 322 ** 323 ** This routine will increase the size of the pWC->a[] array as necessary. 324 ** 325 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility 326 ** for freeing the expression p is assumed by the WhereClause object pWC. 327 ** This is true even if this routine fails to allocate a new WhereTerm. 328 ** 329 ** WARNING: This routine might reallocate the space used to store 330 ** WhereTerms. All pointers to WhereTerms should be invalidated after 331 ** calling this routine. Such pointers may be reinitialized by referencing 332 ** the pWC->a[] array. 333 */ 334 static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){ 335 WhereTerm *pTerm; 336 int idx; 337 testcase( wtFlags & TERM_VIRTUAL ); /* EV: R-00211-15100 */ 338 if( pWC->nTerm>=pWC->nSlot ){ 339 WhereTerm *pOld = pWC->a; 340 sqlite3 *db = pWC->pParse->db; 341 pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); 342 if( pWC->a==0 ){ 343 if( wtFlags & TERM_DYNAMIC ){ 344 sqlite3ExprDelete(db, p); 345 } 346 pWC->a = pOld; 347 return 0; 348 } 349 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 350 if( pOld!=pWC->aStatic ){ 351 sqlite3DbFree(db, pOld); 352 } 353 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); 354 } 355 pTerm = &pWC->a[idx = pWC->nTerm++]; 356 pTerm->pExpr = p; 357 pTerm->wtFlags = wtFlags; 358 pTerm->pWC = pWC; 359 pTerm->iParent = -1; 360 return idx; 361 } 362 363 /* 364 ** This routine identifies subexpressions in the WHERE clause where 365 ** each subexpression is separated by the AND operator or some other 366 ** operator specified in the op parameter. The WhereClause structure 367 ** is filled with pointers to subexpressions. For example: 368 ** 369 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 370 ** \________/ \_______________/ \________________/ 371 ** slot[0] slot[1] slot[2] 372 ** 373 ** The original WHERE clause in pExpr is unaltered. All this routine 374 ** does is make slot[] entries point to substructure within pExpr. 375 ** 376 ** In the previous sentence and in the diagram, "slot[]" refers to 377 ** the WhereClause.a[] array. The slot[] array grows as needed to contain 378 ** all terms of the WHERE clause. 379 */ 380 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ 381 pWC->op = (u8)op; 382 if( pExpr==0 ) return; 383 if( pExpr->op!=op ){ 384 whereClauseInsert(pWC, pExpr, 0); 385 }else{ 386 whereSplit(pWC, pExpr->pLeft, op); 387 whereSplit(pWC, pExpr->pRight, op); 388 } 389 } 390 391 /* 392 ** Initialize an expression mask set (a WhereMaskSet object) 393 */ 394 #define initMaskSet(P) memset(P, 0, sizeof(*P)) 395 396 /* 397 ** Return the bitmask for the given cursor number. Return 0 if 398 ** iCursor is not in the set. 399 */ 400 static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){ 401 int i; 402 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 403 for(i=0; i<pMaskSet->n; i++){ 404 if( pMaskSet->ix[i]==iCursor ){ 405 return ((Bitmask)1)<<i; 406 } 407 } 408 return 0; 409 } 410 411 /* 412 ** Create a new mask for cursor iCursor. 413 ** 414 ** There is one cursor per table in the FROM clause. The number of 415 ** tables in the FROM clause is limited by a test early in the 416 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 417 ** array will never overflow. 418 */ 419 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 420 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 421 pMaskSet->ix[pMaskSet->n++] = iCursor; 422 } 423 424 /* 425 ** This routine walks (recursively) an expression tree and generates 426 ** a bitmask indicating which tables are used in that expression 427 ** tree. 428 ** 429 ** In order for this routine to work, the calling function must have 430 ** previously invoked sqlite3ResolveExprNames() on the expression. See 431 ** the header comment on that routine for additional information. 432 ** The sqlite3ResolveExprNames() routines looks for column names and 433 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to 434 ** the VDBE cursor number of the table. This routine just has to 435 ** translate the cursor numbers into bitmask values and OR all 436 ** the bitmasks together. 437 */ 438 static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*); 439 static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*); 440 static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){ 441 Bitmask mask = 0; 442 if( p==0 ) return 0; 443 if( p->op==TK_COLUMN ){ 444 mask = getMask(pMaskSet, p->iTable); 445 return mask; 446 } 447 mask = exprTableUsage(pMaskSet, p->pRight); 448 mask |= exprTableUsage(pMaskSet, p->pLeft); 449 if( ExprHasProperty(p, EP_xIsSelect) ){ 450 mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect); 451 }else{ 452 mask |= exprListTableUsage(pMaskSet, p->x.pList); 453 } 454 return mask; 455 } 456 static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){ 457 int i; 458 Bitmask mask = 0; 459 if( pList ){ 460 for(i=0; i<pList->nExpr; i++){ 461 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); 462 } 463 } 464 return mask; 465 } 466 static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){ 467 Bitmask mask = 0; 468 while( pS ){ 469 mask |= exprListTableUsage(pMaskSet, pS->pEList); 470 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); 471 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); 472 mask |= exprTableUsage(pMaskSet, pS->pWhere); 473 mask |= exprTableUsage(pMaskSet, pS->pHaving); 474 pS = pS->pPrior; 475 } 476 return mask; 477 } 478 479 /* 480 ** Return TRUE if the given operator is one of the operators that is 481 ** allowed for an indexable WHERE clause term. The allowed operators are 482 ** "=", "<", ">", "<=", ">=", and "IN". 483 ** 484 ** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be 485 ** of one of the following forms: column = expression column > expression 486 ** column >= expression column < expression column <= expression 487 ** expression = column expression > column expression >= column 488 ** expression < column expression <= column column IN 489 ** (expression-list) column IN (subquery) column IS NULL 490 */ 491 static int allowedOp(int op){ 492 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 493 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 494 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 495 assert( TK_GE==TK_EQ+4 ); 496 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; 497 } 498 499 /* 500 ** Swap two objects of type TYPE. 501 */ 502 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 503 504 /* 505 ** Commute a comparison operator. Expressions of the form "X op Y" 506 ** are converted into "Y op X". 507 ** 508 ** If a collation sequence is associated with either the left or right 509 ** side of the comparison, it remains associated with the same side after 510 ** the commutation. So "Y collate NOCASE op X" becomes 511 ** "X collate NOCASE op Y". This is because any collation sequence on 512 ** the left hand side of a comparison overrides any collation sequence 513 ** attached to the right. For the same reason the EP_ExpCollate flag 514 ** is not commuted. 515 */ 516 static void exprCommute(Parse *pParse, Expr *pExpr){ 517 u16 expRight = (pExpr->pRight->flags & EP_ExpCollate); 518 u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate); 519 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 520 pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); 521 pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 522 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); 523 pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft; 524 pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight; 525 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 526 if( pExpr->op>=TK_GT ){ 527 assert( TK_LT==TK_GT+2 ); 528 assert( TK_GE==TK_LE+2 ); 529 assert( TK_GT>TK_EQ ); 530 assert( TK_GT<TK_LE ); 531 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 532 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 533 } 534 } 535 536 /* 537 ** Translate from TK_xx operator to WO_xx bitmask. 538 */ 539 static u16 operatorMask(int op){ 540 u16 c; 541 assert( allowedOp(op) ); 542 if( op==TK_IN ){ 543 c = WO_IN; 544 }else if( op==TK_ISNULL ){ 545 c = WO_ISNULL; 546 }else{ 547 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); 548 c = (u16)(WO_EQ<<(op-TK_EQ)); 549 } 550 assert( op!=TK_ISNULL || c==WO_ISNULL ); 551 assert( op!=TK_IN || c==WO_IN ); 552 assert( op!=TK_EQ || c==WO_EQ ); 553 assert( op!=TK_LT || c==WO_LT ); 554 assert( op!=TK_LE || c==WO_LE ); 555 assert( op!=TK_GT || c==WO_GT ); 556 assert( op!=TK_GE || c==WO_GE ); 557 return c; 558 } 559 560 /* 561 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 562 ** where X is a reference to the iColumn of table iCur and <op> is one of 563 ** the WO_xx operator codes specified by the op parameter. 564 ** Return a pointer to the term. Return 0 if not found. 565 */ 566 static WhereTerm *findTerm( 567 WhereClause *pWC, /* The WHERE clause to be searched */ 568 int iCur, /* Cursor number of LHS */ 569 int iColumn, /* Column number of LHS */ 570 Bitmask notReady, /* RHS must not overlap with this mask */ 571 u32 op, /* Mask of WO_xx values describing operator */ 572 Index *pIdx /* Must be compatible with this index, if not NULL */ 573 ){ 574 WhereTerm *pTerm; 575 int k; 576 assert( iCur>=0 ); 577 op &= WO_ALL; 578 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ 579 if( pTerm->leftCursor==iCur 580 && (pTerm->prereqRight & notReady)==0 581 && pTerm->u.leftColumn==iColumn 582 && (pTerm->eOperator & op)!=0 583 ){ 584 if( pIdx && pTerm->eOperator!=WO_ISNULL ){ 585 Expr *pX = pTerm->pExpr; 586 CollSeq *pColl; 587 char idxaff; 588 int j; 589 Parse *pParse = pWC->pParse; 590 591 idxaff = pIdx->pTable->aCol[iColumn].affinity; 592 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; 593 594 /* Figure out the collation sequence required from an index for 595 ** it to be useful for optimising expression pX. Store this 596 ** value in variable pColl. 597 */ 598 assert(pX->pLeft); 599 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 600 assert(pColl || pParse->nErr); 601 602 for(j=0; pIdx->aiColumn[j]!=iColumn; j++){ 603 if( NEVER(j>=pIdx->nColumn) ) return 0; 604 } 605 if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; 606 } 607 return pTerm; 608 } 609 } 610 return 0; 611 } 612 613 /* Forward reference */ 614 static void exprAnalyze(SrcList*, WhereClause*, int); 615 616 /* 617 ** Call exprAnalyze on all terms in a WHERE clause. 618 ** 619 ** 620 */ 621 static void exprAnalyzeAll( 622 SrcList *pTabList, /* the FROM clause */ 623 WhereClause *pWC /* the WHERE clause to be analyzed */ 624 ){ 625 int i; 626 for(i=pWC->nTerm-1; i>=0; i--){ 627 exprAnalyze(pTabList, pWC, i); 628 } 629 } 630 631 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 632 /* 633 ** Check to see if the given expression is a LIKE or GLOB operator that 634 ** can be optimized using inequality constraints. Return TRUE if it is 635 ** so and false if not. 636 ** 637 ** In order for the operator to be optimizible, the RHS must be a string 638 ** literal that does not begin with a wildcard. 639 */ 640 static int isLikeOrGlob( 641 Parse *pParse, /* Parsing and code generating context */ 642 Expr *pExpr, /* Test this expression */ 643 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ 644 int *pisComplete, /* True if the only wildcard is % in the last character */ 645 int *pnoCase /* True if uppercase is equivalent to lowercase */ 646 ){ 647 const char *z = 0; /* String on RHS of LIKE operator */ 648 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ 649 ExprList *pList; /* List of operands to the LIKE operator */ 650 int c; /* One character in z[] */ 651 int cnt; /* Number of non-wildcard prefix characters */ 652 char wc[3]; /* Wildcard characters */ 653 sqlite3 *db = pParse->db; /* Database connection */ 654 sqlite3_value *pVal = 0; 655 int op; /* Opcode of pRight */ 656 657 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ 658 return 0; 659 } 660 #ifdef SQLITE_EBCDIC 661 if( *pnoCase ) return 0; 662 #endif 663 pList = pExpr->x.pList; 664 pLeft = pList->a[1].pExpr; 665 if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ){ 666 /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must 667 ** be the name of an indexed column with TEXT affinity. */ 668 return 0; 669 } 670 assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ 671 672 pRight = pList->a[0].pExpr; 673 op = pRight->op; 674 if( op==TK_REGISTER ){ 675 op = pRight->op2; 676 } 677 if( op==TK_VARIABLE ){ 678 Vdbe *pReprepare = pParse->pReprepare; 679 int iCol = pRight->iColumn; 680 pVal = sqlite3VdbeGetValue(pReprepare, iCol, SQLITE_AFF_NONE); 681 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ 682 z = (char *)sqlite3_value_text(pVal); 683 } 684 sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); /* IMP: R-23257-02778 */ 685 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); 686 }else if( op==TK_STRING ){ 687 z = pRight->u.zToken; 688 } 689 if( z ){ 690 cnt = 0; 691 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ 692 cnt++; 693 } 694 if( cnt!=0 && 255!=(u8)z[cnt-1] ){ 695 Expr *pPrefix; 696 *pisComplete = c==wc[0] && z[cnt+1]==0; 697 pPrefix = sqlite3Expr(db, TK_STRING, z); 698 if( pPrefix ) pPrefix->u.zToken[cnt] = 0; 699 *ppPrefix = pPrefix; 700 if( op==TK_VARIABLE ){ 701 Vdbe *v = pParse->pVdbe; 702 sqlite3VdbeSetVarmask(v, pRight->iColumn); /* IMP: R-23257-02778 */ 703 if( *pisComplete && pRight->u.zToken[1] ){ 704 /* If the rhs of the LIKE expression is a variable, and the current 705 ** value of the variable means there is no need to invoke the LIKE 706 ** function, then no OP_Variable will be added to the program. 707 ** This causes problems for the sqlite3_bind_parameter_name() 708 ** API. To workaround them, add a dummy OP_Variable here. 709 */ 710 int r1 = sqlite3GetTempReg(pParse); 711 sqlite3ExprCodeTarget(pParse, pRight, r1); 712 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); 713 sqlite3ReleaseTempReg(pParse, r1); 714 } 715 } 716 }else{ 717 z = 0; 718 } 719 } 720 721 sqlite3ValueFree(pVal); 722 return (z!=0); 723 } 724 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 725 726 727 #ifndef SQLITE_OMIT_VIRTUALTABLE 728 /* 729 ** Check to see if the given expression is of the form 730 ** 731 ** column MATCH expr 732 ** 733 ** If it is then return TRUE. If not, return FALSE. 734 */ 735 static int isMatchOfColumn( 736 Expr *pExpr /* Test this expression */ 737 ){ 738 ExprList *pList; 739 740 if( pExpr->op!=TK_FUNCTION ){ 741 return 0; 742 } 743 if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){ 744 return 0; 745 } 746 pList = pExpr->x.pList; 747 if( pList->nExpr!=2 ){ 748 return 0; 749 } 750 if( pList->a[1].pExpr->op != TK_COLUMN ){ 751 return 0; 752 } 753 return 1; 754 } 755 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 756 757 /* 758 ** If the pBase expression originated in the ON or USING clause of 759 ** a join, then transfer the appropriate markings over to derived. 760 */ 761 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 762 pDerived->flags |= pBase->flags & EP_FromJoin; 763 pDerived->iRightJoinTable = pBase->iRightJoinTable; 764 } 765 766 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 767 /* 768 ** Analyze a term that consists of two or more OR-connected 769 ** subterms. So in: 770 ** 771 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) 772 ** ^^^^^^^^^^^^^^^^^^^^ 773 ** 774 ** This routine analyzes terms such as the middle term in the above example. 775 ** A WhereOrTerm object is computed and attached to the term under 776 ** analysis, regardless of the outcome of the analysis. Hence: 777 ** 778 ** WhereTerm.wtFlags |= TERM_ORINFO 779 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object 780 ** 781 ** The term being analyzed must have two or more of OR-connected subterms. 782 ** A single subterm might be a set of AND-connected sub-subterms. 783 ** Examples of terms under analysis: 784 ** 785 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 786 ** (B) x=expr1 OR expr2=x OR x=expr3 787 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) 788 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') 789 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) 790 ** 791 ** CASE 1: 792 ** 793 ** If all subterms are of the form T.C=expr for some single column of C 794 ** a single table T (as shown in example B above) then create a new virtual 795 ** term that is an equivalent IN expression. In other words, if the term 796 ** being analyzed is: 797 ** 798 ** x = expr1 OR expr2 = x OR x = expr3 799 ** 800 ** then create a new virtual term like this: 801 ** 802 ** x IN (expr1,expr2,expr3) 803 ** 804 ** CASE 2: 805 ** 806 ** If all subterms are indexable by a single table T, then set 807 ** 808 ** WhereTerm.eOperator = WO_OR 809 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T 810 ** 811 ** A subterm is "indexable" if it is of the form 812 ** "T.C <op> <expr>" where C is any column of table T and 813 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". 814 ** A subterm is also indexable if it is an AND of two or more 815 ** subsubterms at least one of which is indexable. Indexable AND 816 ** subterms have their eOperator set to WO_AND and they have 817 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. 818 ** 819 ** From another point of view, "indexable" means that the subterm could 820 ** potentially be used with an index if an appropriate index exists. 821 ** This analysis does not consider whether or not the index exists; that 822 ** is something the bestIndex() routine will determine. This analysis 823 ** only looks at whether subterms appropriate for indexing exist. 824 ** 825 ** All examples A through E above all satisfy case 2. But if a term 826 ** also statisfies case 1 (such as B) we know that the optimizer will 827 ** always prefer case 1, so in that case we pretend that case 2 is not 828 ** satisfied. 829 ** 830 ** It might be the case that multiple tables are indexable. For example, 831 ** (E) above is indexable on tables P, Q, and R. 832 ** 833 ** Terms that satisfy case 2 are candidates for lookup by using 834 ** separate indices to find rowids for each subterm and composing 835 ** the union of all rowids using a RowSet object. This is similar 836 ** to "bitmap indices" in other database engines. 837 ** 838 ** OTHERWISE: 839 ** 840 ** If neither case 1 nor case 2 apply, then leave the eOperator set to 841 ** zero. This term is not useful for search. 842 */ 843 static void exprAnalyzeOrTerm( 844 SrcList *pSrc, /* the FROM clause */ 845 WhereClause *pWC, /* the complete WHERE clause */ 846 int idxTerm /* Index of the OR-term to be analyzed */ 847 ){ 848 Parse *pParse = pWC->pParse; /* Parser context */ 849 sqlite3 *db = pParse->db; /* Database connection */ 850 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ 851 Expr *pExpr = pTerm->pExpr; /* The expression of the term */ 852 WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */ 853 int i; /* Loop counters */ 854 WhereClause *pOrWc; /* Breakup of pTerm into subterms */ 855 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ 856 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ 857 Bitmask chngToIN; /* Tables that might satisfy case 1 */ 858 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ 859 860 /* 861 ** Break the OR clause into its separate subterms. The subterms are 862 ** stored in a WhereClause structure containing within the WhereOrInfo 863 ** object that is attached to the original OR clause term. 864 */ 865 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); 866 assert( pExpr->op==TK_OR ); 867 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); 868 if( pOrInfo==0 ) return; 869 pTerm->wtFlags |= TERM_ORINFO; 870 pOrWc = &pOrInfo->wc; 871 whereClauseInit(pOrWc, pWC->pParse, pMaskSet); 872 whereSplit(pOrWc, pExpr, TK_OR); 873 exprAnalyzeAll(pSrc, pOrWc); 874 if( db->mallocFailed ) return; 875 assert( pOrWc->nTerm>=2 ); 876 877 /* 878 ** Compute the set of tables that might satisfy cases 1 or 2. 879 */ 880 indexable = ~(Bitmask)0; 881 chngToIN = ~(pWC->vmask); 882 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ 883 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ 884 WhereAndInfo *pAndInfo; 885 assert( pOrTerm->eOperator==0 ); 886 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); 887 chngToIN = 0; 888 pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo)); 889 if( pAndInfo ){ 890 WhereClause *pAndWC; 891 WhereTerm *pAndTerm; 892 int j; 893 Bitmask b = 0; 894 pOrTerm->u.pAndInfo = pAndInfo; 895 pOrTerm->wtFlags |= TERM_ANDINFO; 896 pOrTerm->eOperator = WO_AND; 897 pAndWC = &pAndInfo->wc; 898 whereClauseInit(pAndWC, pWC->pParse, pMaskSet); 899 whereSplit(pAndWC, pOrTerm->pExpr, TK_AND); 900 exprAnalyzeAll(pSrc, pAndWC); 901 testcase( db->mallocFailed ); 902 if( !db->mallocFailed ){ 903 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ 904 assert( pAndTerm->pExpr ); 905 if( allowedOp(pAndTerm->pExpr->op) ){ 906 b |= getMask(pMaskSet, pAndTerm->leftCursor); 907 } 908 } 909 } 910 indexable &= b; 911 } 912 }else if( pOrTerm->wtFlags & TERM_COPIED ){ 913 /* Skip this term for now. We revisit it when we process the 914 ** corresponding TERM_VIRTUAL term */ 915 }else{ 916 Bitmask b; 917 b = getMask(pMaskSet, pOrTerm->leftCursor); 918 if( pOrTerm->wtFlags & TERM_VIRTUAL ){ 919 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; 920 b |= getMask(pMaskSet, pOther->leftCursor); 921 } 922 indexable &= b; 923 if( pOrTerm->eOperator!=WO_EQ ){ 924 chngToIN = 0; 925 }else{ 926 chngToIN &= b; 927 } 928 } 929 } 930 931 /* 932 ** Record the set of tables that satisfy case 2. The set might be 933 ** empty. 934 */ 935 pOrInfo->indexable = indexable; 936 pTerm->eOperator = indexable==0 ? 0 : WO_OR; 937 938 /* 939 ** chngToIN holds a set of tables that *might* satisfy case 1. But 940 ** we have to do some additional checking to see if case 1 really 941 ** is satisfied. 942 ** 943 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means 944 ** that there is no possibility of transforming the OR clause into an 945 ** IN operator because one or more terms in the OR clause contain 946 ** something other than == on a column in the single table. The 1-bit 947 ** case means that every term of the OR clause is of the form 948 ** "table.column=expr" for some single table. The one bit that is set 949 ** will correspond to the common table. We still need to check to make 950 ** sure the same column is used on all terms. The 2-bit case is when 951 ** the all terms are of the form "table1.column=table2.column". It 952 ** might be possible to form an IN operator with either table1.column 953 ** or table2.column as the LHS if either is common to every term of 954 ** the OR clause. 955 ** 956 ** Note that terms of the form "table.column1=table.column2" (the 957 ** same table on both sizes of the ==) cannot be optimized. 958 */ 959 if( chngToIN ){ 960 int okToChngToIN = 0; /* True if the conversion to IN is valid */ 961 int iColumn = -1; /* Column index on lhs of IN operator */ 962 int iCursor = -1; /* Table cursor common to all terms */ 963 int j = 0; /* Loop counter */ 964 965 /* Search for a table and column that appears on one side or the 966 ** other of the == operator in every subterm. That table and column 967 ** will be recorded in iCursor and iColumn. There might not be any 968 ** such table and column. Set okToChngToIN if an appropriate table 969 ** and column is found but leave okToChngToIN false if not found. 970 */ 971 for(j=0; j<2 && !okToChngToIN; j++){ 972 pOrTerm = pOrWc->a; 973 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ 974 assert( pOrTerm->eOperator==WO_EQ ); 975 pOrTerm->wtFlags &= ~TERM_OR_OK; 976 if( pOrTerm->leftCursor==iCursor ){ 977 /* This is the 2-bit case and we are on the second iteration and 978 ** current term is from the first iteration. So skip this term. */ 979 assert( j==1 ); 980 continue; 981 } 982 if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){ 983 /* This term must be of the form t1.a==t2.b where t2 is in the 984 ** chngToIN set but t1 is not. This term will be either preceeded 985 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term 986 ** and use its inversion. */ 987 testcase( pOrTerm->wtFlags & TERM_COPIED ); 988 testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); 989 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); 990 continue; 991 } 992 iColumn = pOrTerm->u.leftColumn; 993 iCursor = pOrTerm->leftCursor; 994 break; 995 } 996 if( i<0 ){ 997 /* No candidate table+column was found. This can only occur 998 ** on the second iteration */ 999 assert( j==1 ); 1000 assert( (chngToIN&(chngToIN-1))==0 ); 1001 assert( chngToIN==getMask(pMaskSet, iCursor) ); 1002 break; 1003 } 1004 testcase( j==1 ); 1005 1006 /* We have found a candidate table and column. Check to see if that 1007 ** table and column is common to every term in the OR clause */ 1008 okToChngToIN = 1; 1009 for(; i>=0 && okToChngToIN; i--, pOrTerm++){ 1010 assert( pOrTerm->eOperator==WO_EQ ); 1011 if( pOrTerm->leftCursor!=iCursor ){ 1012 pOrTerm->wtFlags &= ~TERM_OR_OK; 1013 }else if( pOrTerm->u.leftColumn!=iColumn ){ 1014 okToChngToIN = 0; 1015 }else{ 1016 int affLeft, affRight; 1017 /* If the right-hand side is also a column, then the affinities 1018 ** of both right and left sides must be such that no type 1019 ** conversions are required on the right. (Ticket #2249) 1020 */ 1021 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 1022 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 1023 if( affRight!=0 && affRight!=affLeft ){ 1024 okToChngToIN = 0; 1025 }else{ 1026 pOrTerm->wtFlags |= TERM_OR_OK; 1027 } 1028 } 1029 } 1030 } 1031 1032 /* At this point, okToChngToIN is true if original pTerm satisfies 1033 ** case 1. In that case, construct a new virtual term that is 1034 ** pTerm converted into an IN operator. 1035 ** 1036 ** EV: R-00211-15100 1037 */ 1038 if( okToChngToIN ){ 1039 Expr *pDup; /* A transient duplicate expression */ 1040 ExprList *pList = 0; /* The RHS of the IN operator */ 1041 Expr *pLeft = 0; /* The LHS of the IN operator */ 1042 Expr *pNew; /* The complete IN operator */ 1043 1044 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ 1045 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; 1046 assert( pOrTerm->eOperator==WO_EQ ); 1047 assert( pOrTerm->leftCursor==iCursor ); 1048 assert( pOrTerm->u.leftColumn==iColumn ); 1049 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); 1050 pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup); 1051 pLeft = pOrTerm->pExpr->pLeft; 1052 } 1053 assert( pLeft!=0 ); 1054 pDup = sqlite3ExprDup(db, pLeft, 0); 1055 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0); 1056 if( pNew ){ 1057 int idxNew; 1058 transferJoinMarkings(pNew, pExpr); 1059 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 1060 pNew->x.pList = pList; 1061 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 1062 testcase( idxNew==0 ); 1063 exprAnalyze(pSrc, pWC, idxNew); 1064 pTerm = &pWC->a[idxTerm]; 1065 pWC->a[idxNew].iParent = idxTerm; 1066 pTerm->nChild = 1; 1067 }else{ 1068 sqlite3ExprListDelete(db, pList); 1069 } 1070 pTerm->eOperator = WO_NOOP; /* case 1 trumps case 2 */ 1071 } 1072 } 1073 } 1074 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 1075 1076 1077 /* 1078 ** The input to this routine is an WhereTerm structure with only the 1079 ** "pExpr" field filled in. The job of this routine is to analyze the 1080 ** subexpression and populate all the other fields of the WhereTerm 1081 ** structure. 1082 ** 1083 ** If the expression is of the form "<expr> <op> X" it gets commuted 1084 ** to the standard form of "X <op> <expr>". 1085 ** 1086 ** If the expression is of the form "X <op> Y" where both X and Y are 1087 ** columns, then the original expression is unchanged and a new virtual 1088 ** term of the form "Y <op> X" is added to the WHERE clause and 1089 ** analyzed separately. The original term is marked with TERM_COPIED 1090 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr 1091 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it 1092 ** is a commuted copy of a prior term.) The original term has nChild=1 1093 ** and the copy has idxParent set to the index of the original term. 1094 */ 1095 static void exprAnalyze( 1096 SrcList *pSrc, /* the FROM clause */ 1097 WhereClause *pWC, /* the WHERE clause */ 1098 int idxTerm /* Index of the term to be analyzed */ 1099 ){ 1100 WhereTerm *pTerm; /* The term to be analyzed */ 1101 WhereMaskSet *pMaskSet; /* Set of table index masks */ 1102 Expr *pExpr; /* The expression to be analyzed */ 1103 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ 1104 Bitmask prereqAll; /* Prerequesites of pExpr */ 1105 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ 1106 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ 1107 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ 1108 int noCase = 0; /* LIKE/GLOB distinguishes case */ 1109 int op; /* Top-level operator. pExpr->op */ 1110 Parse *pParse = pWC->pParse; /* Parsing context */ 1111 sqlite3 *db = pParse->db; /* Database connection */ 1112 1113 if( db->mallocFailed ){ 1114 return; 1115 } 1116 pTerm = &pWC->a[idxTerm]; 1117 pMaskSet = pWC->pMaskSet; 1118 pExpr = pTerm->pExpr; 1119 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); 1120 op = pExpr->op; 1121 if( op==TK_IN ){ 1122 assert( pExpr->pRight==0 ); 1123 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1124 pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect); 1125 }else{ 1126 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList); 1127 } 1128 }else if( op==TK_ISNULL ){ 1129 pTerm->prereqRight = 0; 1130 }else{ 1131 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); 1132 } 1133 prereqAll = exprTableUsage(pMaskSet, pExpr); 1134 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 1135 Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable); 1136 prereqAll |= x; 1137 extraRight = x-1; /* ON clause terms may not be used with an index 1138 ** on left table of a LEFT JOIN. Ticket #3015 */ 1139 } 1140 pTerm->prereqAll = prereqAll; 1141 pTerm->leftCursor = -1; 1142 pTerm->iParent = -1; 1143 pTerm->eOperator = 0; 1144 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ 1145 Expr *pLeft = pExpr->pLeft; 1146 Expr *pRight = pExpr->pRight; 1147 if( pLeft->op==TK_COLUMN ){ 1148 pTerm->leftCursor = pLeft->iTable; 1149 pTerm->u.leftColumn = pLeft->iColumn; 1150 pTerm->eOperator = operatorMask(op); 1151 } 1152 if( pRight && pRight->op==TK_COLUMN ){ 1153 WhereTerm *pNew; 1154 Expr *pDup; 1155 if( pTerm->leftCursor>=0 ){ 1156 int idxNew; 1157 pDup = sqlite3ExprDup(db, pExpr, 0); 1158 if( db->mallocFailed ){ 1159 sqlite3ExprDelete(db, pDup); 1160 return; 1161 } 1162 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 1163 if( idxNew==0 ) return; 1164 pNew = &pWC->a[idxNew]; 1165 pNew->iParent = idxTerm; 1166 pTerm = &pWC->a[idxTerm]; 1167 pTerm->nChild = 1; 1168 pTerm->wtFlags |= TERM_COPIED; 1169 }else{ 1170 pDup = pExpr; 1171 pNew = pTerm; 1172 } 1173 exprCommute(pParse, pDup); 1174 pLeft = pDup->pLeft; 1175 pNew->leftCursor = pLeft->iTable; 1176 pNew->u.leftColumn = pLeft->iColumn; 1177 testcase( (prereqLeft | extraRight) != prereqLeft ); 1178 pNew->prereqRight = prereqLeft | extraRight; 1179 pNew->prereqAll = prereqAll; 1180 pNew->eOperator = operatorMask(pDup->op); 1181 } 1182 } 1183 1184 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 1185 /* If a term is the BETWEEN operator, create two new virtual terms 1186 ** that define the range that the BETWEEN implements. For example: 1187 ** 1188 ** a BETWEEN b AND c 1189 ** 1190 ** is converted into: 1191 ** 1192 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) 1193 ** 1194 ** The two new terms are added onto the end of the WhereClause object. 1195 ** The new terms are "dynamic" and are children of the original BETWEEN 1196 ** term. That means that if the BETWEEN term is coded, the children are 1197 ** skipped. Or, if the children are satisfied by an index, the original 1198 ** BETWEEN term is skipped. 1199 */ 1200 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ 1201 ExprList *pList = pExpr->x.pList; 1202 int i; 1203 static const u8 ops[] = {TK_GE, TK_LE}; 1204 assert( pList!=0 ); 1205 assert( pList->nExpr==2 ); 1206 for(i=0; i<2; i++){ 1207 Expr *pNewExpr; 1208 int idxNew; 1209 pNewExpr = sqlite3PExpr(pParse, ops[i], 1210 sqlite3ExprDup(db, pExpr->pLeft, 0), 1211 sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0); 1212 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1213 testcase( idxNew==0 ); 1214 exprAnalyze(pSrc, pWC, idxNew); 1215 pTerm = &pWC->a[idxTerm]; 1216 pWC->a[idxNew].iParent = idxTerm; 1217 } 1218 pTerm->nChild = 2; 1219 } 1220 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 1221 1222 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 1223 /* Analyze a term that is composed of two or more subterms connected by 1224 ** an OR operator. 1225 */ 1226 else if( pExpr->op==TK_OR ){ 1227 assert( pWC->op==TK_AND ); 1228 exprAnalyzeOrTerm(pSrc, pWC, idxTerm); 1229 pTerm = &pWC->a[idxTerm]; 1230 } 1231 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1232 1233 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 1234 /* Add constraints to reduce the search space on a LIKE or GLOB 1235 ** operator. 1236 ** 1237 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints 1238 ** 1239 ** x>='abc' AND x<'abd' AND x LIKE 'abc%' 1240 ** 1241 ** The last character of the prefix "abc" is incremented to form the 1242 ** termination condition "abd". 1243 */ 1244 if( pWC->op==TK_AND 1245 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) 1246 ){ 1247 Expr *pLeft; /* LHS of LIKE/GLOB operator */ 1248 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ 1249 Expr *pNewExpr1; 1250 Expr *pNewExpr2; 1251 int idxNew1; 1252 int idxNew2; 1253 CollSeq *pColl; /* Collating sequence to use */ 1254 1255 pLeft = pExpr->x.pList->a[1].pExpr; 1256 pStr2 = sqlite3ExprDup(db, pStr1, 0); 1257 if( !db->mallocFailed ){ 1258 u8 c, *pC; /* Last character before the first wildcard */ 1259 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; 1260 c = *pC; 1261 if( noCase ){ 1262 /* The point is to increment the last character before the first 1263 ** wildcard. But if we increment '@', that will push it into the 1264 ** alphabetic range where case conversions will mess up the 1265 ** inequality. To avoid this, make sure to also run the full 1266 ** LIKE on all candidate expressions by clearing the isComplete flag 1267 */ 1268 if( c=='A'-1 ) isComplete = 0; /* EV: R-64339-08207 */ 1269 1270 1271 c = sqlite3UpperToLower[c]; 1272 } 1273 *pC = c + 1; 1274 } 1275 pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, noCase ? "NOCASE" : "BINARY",0); 1276 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, 1277 sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl), 1278 pStr1, 0); 1279 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); 1280 testcase( idxNew1==0 ); 1281 exprAnalyze(pSrc, pWC, idxNew1); 1282 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, 1283 sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl), 1284 pStr2, 0); 1285 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); 1286 testcase( idxNew2==0 ); 1287 exprAnalyze(pSrc, pWC, idxNew2); 1288 pTerm = &pWC->a[idxTerm]; 1289 if( isComplete ){ 1290 pWC->a[idxNew1].iParent = idxTerm; 1291 pWC->a[idxNew2].iParent = idxTerm; 1292 pTerm->nChild = 2; 1293 } 1294 } 1295 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 1296 1297 #ifndef SQLITE_OMIT_VIRTUALTABLE 1298 /* Add a WO_MATCH auxiliary term to the constraint set if the 1299 ** current expression is of the form: column MATCH expr. 1300 ** This information is used by the xBestIndex methods of 1301 ** virtual tables. The native query optimizer does not attempt 1302 ** to do anything with MATCH functions. 1303 */ 1304 if( isMatchOfColumn(pExpr) ){ 1305 int idxNew; 1306 Expr *pRight, *pLeft; 1307 WhereTerm *pNewTerm; 1308 Bitmask prereqColumn, prereqExpr; 1309 1310 pRight = pExpr->x.pList->a[0].pExpr; 1311 pLeft = pExpr->x.pList->a[1].pExpr; 1312 prereqExpr = exprTableUsage(pMaskSet, pRight); 1313 prereqColumn = exprTableUsage(pMaskSet, pLeft); 1314 if( (prereqExpr & prereqColumn)==0 ){ 1315 Expr *pNewExpr; 1316 pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 1317 0, sqlite3ExprDup(db, pRight, 0), 0); 1318 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1319 testcase( idxNew==0 ); 1320 pNewTerm = &pWC->a[idxNew]; 1321 pNewTerm->prereqRight = prereqExpr; 1322 pNewTerm->leftCursor = pLeft->iTable; 1323 pNewTerm->u.leftColumn = pLeft->iColumn; 1324 pNewTerm->eOperator = WO_MATCH; 1325 pNewTerm->iParent = idxTerm; 1326 pTerm = &pWC->a[idxTerm]; 1327 pTerm->nChild = 1; 1328 pTerm->wtFlags |= TERM_COPIED; 1329 pNewTerm->prereqAll = pTerm->prereqAll; 1330 } 1331 } 1332 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1333 1334 #ifdef SQLITE_ENABLE_STAT2 1335 /* When sqlite_stat2 histogram data is available an operator of the 1336 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently 1337 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a 1338 ** virtual term of that form. 1339 ** 1340 ** Note that the virtual term must be tagged with TERM_VNULL. This 1341 ** TERM_VNULL tag will suppress the not-null check at the beginning 1342 ** of the loop. Without the TERM_VNULL flag, the not-null check at 1343 ** the start of the loop will prevent any results from being returned. 1344 */ 1345 if( pExpr->op==TK_NOTNULL && pExpr->pLeft->iColumn>=0 ){ 1346 Expr *pNewExpr; 1347 Expr *pLeft = pExpr->pLeft; 1348 int idxNew; 1349 WhereTerm *pNewTerm; 1350 1351 pNewExpr = sqlite3PExpr(pParse, TK_GT, 1352 sqlite3ExprDup(db, pLeft, 0), 1353 sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0); 1354 1355 idxNew = whereClauseInsert(pWC, pNewExpr, 1356 TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); 1357 if( idxNew ){ 1358 pNewTerm = &pWC->a[idxNew]; 1359 pNewTerm->prereqRight = 0; 1360 pNewTerm->leftCursor = pLeft->iTable; 1361 pNewTerm->u.leftColumn = pLeft->iColumn; 1362 pNewTerm->eOperator = WO_GT; 1363 pNewTerm->iParent = idxTerm; 1364 pTerm = &pWC->a[idxTerm]; 1365 pTerm->nChild = 1; 1366 pTerm->wtFlags |= TERM_COPIED; 1367 pNewTerm->prereqAll = pTerm->prereqAll; 1368 } 1369 } 1370 #endif /* SQLITE_ENABLE_STAT2 */ 1371 1372 /* Prevent ON clause terms of a LEFT JOIN from being used to drive 1373 ** an index for tables to the left of the join. 1374 */ 1375 pTerm->prereqRight |= extraRight; 1376 } 1377 1378 /* 1379 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain 1380 ** a reference to any table other than the iBase table. 1381 */ 1382 static int referencesOtherTables( 1383 ExprList *pList, /* Search expressions in ths list */ 1384 WhereMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ 1385 int iFirst, /* Be searching with the iFirst-th expression */ 1386 int iBase /* Ignore references to this table */ 1387 ){ 1388 Bitmask allowed = ~getMask(pMaskSet, iBase); 1389 while( iFirst<pList->nExpr ){ 1390 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){ 1391 return 1; 1392 } 1393 } 1394 return 0; 1395 } 1396 1397 1398 /* 1399 ** This routine decides if pIdx can be used to satisfy the ORDER BY 1400 ** clause. If it can, it returns 1. If pIdx cannot satisfy the 1401 ** ORDER BY clause, this routine returns 0. 1402 ** 1403 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the 1404 ** left-most table in the FROM clause of that same SELECT statement and 1405 ** the table has a cursor number of "base". pIdx is an index on pTab. 1406 ** 1407 ** nEqCol is the number of columns of pIdx that are used as equality 1408 ** constraints. Any of these columns may be missing from the ORDER BY 1409 ** clause and the match can still be a success. 1410 ** 1411 ** All terms of the ORDER BY that match against the index must be either 1412 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE 1413 ** index do not need to satisfy this constraint.) The *pbRev value is 1414 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if 1415 ** the ORDER BY clause is all ASC. 1416 */ 1417 static int isSortingIndex( 1418 Parse *pParse, /* Parsing context */ 1419 WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */ 1420 Index *pIdx, /* The index we are testing */ 1421 int base, /* Cursor number for the table to be sorted */ 1422 ExprList *pOrderBy, /* The ORDER BY clause */ 1423 int nEqCol, /* Number of index columns with == constraints */ 1424 int wsFlags, /* Index usages flags */ 1425 int *pbRev /* Set to 1 if ORDER BY is DESC */ 1426 ){ 1427 int i, j; /* Loop counters */ 1428 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ 1429 int nTerm; /* Number of ORDER BY terms */ 1430 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ 1431 sqlite3 *db = pParse->db; 1432 1433 assert( pOrderBy!=0 ); 1434 nTerm = pOrderBy->nExpr; 1435 assert( nTerm>0 ); 1436 1437 /* Argument pIdx must either point to a 'real' named index structure, 1438 ** or an index structure allocated on the stack by bestBtreeIndex() to 1439 ** represent the rowid index that is part of every table. */ 1440 assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) ); 1441 1442 /* Match terms of the ORDER BY clause against columns of 1443 ** the index. 1444 ** 1445 ** Note that indices have pIdx->nColumn regular columns plus 1446 ** one additional column containing the rowid. The rowid column 1447 ** of the index is also allowed to match against the ORDER BY 1448 ** clause. 1449 */ 1450 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){ 1451 Expr *pExpr; /* The expression of the ORDER BY pTerm */ 1452 CollSeq *pColl; /* The collating sequence of pExpr */ 1453 int termSortOrder; /* Sort order for this term */ 1454 int iColumn; /* The i-th column of the index. -1 for rowid */ 1455 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ 1456 const char *zColl; /* Name of the collating sequence for i-th index term */ 1457 1458 pExpr = pTerm->pExpr; 1459 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ 1460 /* Can not use an index sort on anything that is not a column in the 1461 ** left-most table of the FROM clause */ 1462 break; 1463 } 1464 pColl = sqlite3ExprCollSeq(pParse, pExpr); 1465 if( !pColl ){ 1466 pColl = db->pDfltColl; 1467 } 1468 if( pIdx->zName && i<pIdx->nColumn ){ 1469 iColumn = pIdx->aiColumn[i]; 1470 if( iColumn==pIdx->pTable->iPKey ){ 1471 iColumn = -1; 1472 } 1473 iSortOrder = pIdx->aSortOrder[i]; 1474 zColl = pIdx->azColl[i]; 1475 }else{ 1476 iColumn = -1; 1477 iSortOrder = 0; 1478 zColl = pColl->zName; 1479 } 1480 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){ 1481 /* Term j of the ORDER BY clause does not match column i of the index */ 1482 if( i<nEqCol ){ 1483 /* If an index column that is constrained by == fails to match an 1484 ** ORDER BY term, that is OK. Just ignore that column of the index 1485 */ 1486 continue; 1487 }else if( i==pIdx->nColumn ){ 1488 /* Index column i is the rowid. All other terms match. */ 1489 break; 1490 }else{ 1491 /* If an index column fails to match and is not constrained by == 1492 ** then the index cannot satisfy the ORDER BY constraint. 1493 */ 1494 return 0; 1495 } 1496 } 1497 assert( pIdx->aSortOrder!=0 || iColumn==-1 ); 1498 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); 1499 assert( iSortOrder==0 || iSortOrder==1 ); 1500 termSortOrder = iSortOrder ^ pTerm->sortOrder; 1501 if( i>nEqCol ){ 1502 if( termSortOrder!=sortOrder ){ 1503 /* Indices can only be used if all ORDER BY terms past the 1504 ** equality constraints are all either DESC or ASC. */ 1505 return 0; 1506 } 1507 }else{ 1508 sortOrder = termSortOrder; 1509 } 1510 j++; 1511 pTerm++; 1512 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 1513 /* If the indexed column is the primary key and everything matches 1514 ** so far and none of the ORDER BY terms to the right reference other 1515 ** tables in the join, then we are assured that the index can be used 1516 ** to sort because the primary key is unique and so none of the other 1517 ** columns will make any difference 1518 */ 1519 j = nTerm; 1520 } 1521 } 1522 1523 *pbRev = sortOrder!=0; 1524 if( j>=nTerm ){ 1525 /* All terms of the ORDER BY clause are covered by this index so 1526 ** this index can be used for sorting. */ 1527 return 1; 1528 } 1529 if( pIdx->onError!=OE_None && i==pIdx->nColumn 1530 && (wsFlags & WHERE_COLUMN_NULL)==0 1531 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 1532 /* All terms of this index match some prefix of the ORDER BY clause 1533 ** and the index is UNIQUE and no terms on the tail of the ORDER BY 1534 ** clause reference other tables in a join. If this is all true then 1535 ** the order by clause is superfluous. Not that if the matching 1536 ** condition is IS NULL then the result is not necessarily unique 1537 ** even on a UNIQUE index, so disallow those cases. */ 1538 return 1; 1539 } 1540 return 0; 1541 } 1542 1543 /* 1544 ** Prepare a crude estimate of the logarithm of the input value. 1545 ** The results need not be exact. This is only used for estimating 1546 ** the total cost of performing operations with O(logN) or O(NlogN) 1547 ** complexity. Because N is just a guess, it is no great tragedy if 1548 ** logN is a little off. 1549 */ 1550 static double estLog(double N){ 1551 double logN = 1; 1552 double x = 10; 1553 while( N>x ){ 1554 logN += 1; 1555 x *= 10; 1556 } 1557 return logN; 1558 } 1559 1560 /* 1561 ** Two routines for printing the content of an sqlite3_index_info 1562 ** structure. Used for testing and debugging only. If neither 1563 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 1564 ** are no-ops. 1565 */ 1566 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG) 1567 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 1568 int i; 1569 if( !sqlite3WhereTrace ) return; 1570 for(i=0; i<p->nConstraint; i++){ 1571 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 1572 i, 1573 p->aConstraint[i].iColumn, 1574 p->aConstraint[i].iTermOffset, 1575 p->aConstraint[i].op, 1576 p->aConstraint[i].usable); 1577 } 1578 for(i=0; i<p->nOrderBy; i++){ 1579 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 1580 i, 1581 p->aOrderBy[i].iColumn, 1582 p->aOrderBy[i].desc); 1583 } 1584 } 1585 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 1586 int i; 1587 if( !sqlite3WhereTrace ) return; 1588 for(i=0; i<p->nConstraint; i++){ 1589 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 1590 i, 1591 p->aConstraintUsage[i].argvIndex, 1592 p->aConstraintUsage[i].omit); 1593 } 1594 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 1595 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 1596 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 1597 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 1598 } 1599 #else 1600 #define TRACE_IDX_INPUTS(A) 1601 #define TRACE_IDX_OUTPUTS(A) 1602 #endif 1603 1604 /* 1605 ** Required because bestIndex() is called by bestOrClauseIndex() 1606 */ 1607 static void bestIndex( 1608 Parse*, WhereClause*, struct SrcList_item*, 1609 Bitmask, Bitmask, ExprList*, WhereCost*); 1610 1611 /* 1612 ** This routine attempts to find an scanning strategy that can be used 1613 ** to optimize an 'OR' expression that is part of a WHERE clause. 1614 ** 1615 ** The table associated with FROM clause term pSrc may be either a 1616 ** regular B-Tree table or a virtual table. 1617 */ 1618 static void bestOrClauseIndex( 1619 Parse *pParse, /* The parsing context */ 1620 WhereClause *pWC, /* The WHERE clause */ 1621 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1622 Bitmask notReady, /* Mask of cursors not available for indexing */ 1623 Bitmask notValid, /* Cursors not available for any purpose */ 1624 ExprList *pOrderBy, /* The ORDER BY clause */ 1625 WhereCost *pCost /* Lowest cost query plan */ 1626 ){ 1627 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 1628 const int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ 1629 const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur); /* Bitmask for pSrc */ 1630 WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm]; /* End of pWC->a[] */ 1631 WhereTerm *pTerm; /* A single term of the WHERE clause */ 1632 1633 /* No OR-clause optimization allowed if the INDEXED BY or NOT INDEXED clauses 1634 ** are used */ 1635 if( pSrc->notIndexed || pSrc->pIndex!=0 ){ 1636 return; 1637 } 1638 1639 /* Search the WHERE clause terms for a usable WO_OR term. */ 1640 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 1641 if( pTerm->eOperator==WO_OR 1642 && ((pTerm->prereqAll & ~maskSrc) & notReady)==0 1643 && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 1644 ){ 1645 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 1646 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 1647 WhereTerm *pOrTerm; 1648 int flags = WHERE_MULTI_OR; 1649 double rTotal = 0; 1650 double nRow = 0; 1651 Bitmask used = 0; 1652 1653 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 1654 WhereCost sTermCost; 1655 WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", 1656 (pOrTerm - pOrWC->a), (pTerm - pWC->a) 1657 )); 1658 if( pOrTerm->eOperator==WO_AND ){ 1659 WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc; 1660 bestIndex(pParse, pAndWC, pSrc, notReady, notValid, 0, &sTermCost); 1661 }else if( pOrTerm->leftCursor==iCur ){ 1662 WhereClause tempWC; 1663 tempWC.pParse = pWC->pParse; 1664 tempWC.pMaskSet = pWC->pMaskSet; 1665 tempWC.op = TK_AND; 1666 tempWC.a = pOrTerm; 1667 tempWC.nTerm = 1; 1668 bestIndex(pParse, &tempWC, pSrc, notReady, notValid, 0, &sTermCost); 1669 }else{ 1670 continue; 1671 } 1672 rTotal += sTermCost.rCost; 1673 nRow += sTermCost.plan.nRow; 1674 used |= sTermCost.used; 1675 if( rTotal>=pCost->rCost ) break; 1676 } 1677 1678 /* If there is an ORDER BY clause, increase the scan cost to account 1679 ** for the cost of the sort. */ 1680 if( pOrderBy!=0 ){ 1681 WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n", 1682 rTotal, rTotal+nRow*estLog(nRow))); 1683 rTotal += nRow*estLog(nRow); 1684 } 1685 1686 /* If the cost of scanning using this OR term for optimization is 1687 ** less than the current cost stored in pCost, replace the contents 1688 ** of pCost. */ 1689 WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow)); 1690 if( rTotal<pCost->rCost ){ 1691 pCost->rCost = rTotal; 1692 pCost->used = used; 1693 pCost->plan.nRow = nRow; 1694 pCost->plan.wsFlags = flags; 1695 pCost->plan.u.pTerm = pTerm; 1696 } 1697 } 1698 } 1699 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1700 } 1701 1702 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 1703 /* 1704 ** Return TRUE if the WHERE clause term pTerm is of a form where it 1705 ** could be used with an index to access pSrc, assuming an appropriate 1706 ** index existed. 1707 */ 1708 static int termCanDriveIndex( 1709 WhereTerm *pTerm, /* WHERE clause term to check */ 1710 struct SrcList_item *pSrc, /* Table we are trying to access */ 1711 Bitmask notReady /* Tables in outer loops of the join */ 1712 ){ 1713 char aff; 1714 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 1715 if( pTerm->eOperator!=WO_EQ ) return 0; 1716 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 1717 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; 1718 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 1719 return 1; 1720 } 1721 #endif 1722 1723 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 1724 /* 1725 ** If the query plan for pSrc specified in pCost is a full table scan 1726 ** and indexing is allows (if there is no NOT INDEXED clause) and it 1727 ** possible to construct a transient index that would perform better 1728 ** than a full table scan even when the cost of constructing the index 1729 ** is taken into account, then alter the query plan to use the 1730 ** transient index. 1731 */ 1732 static void bestAutomaticIndex( 1733 Parse *pParse, /* The parsing context */ 1734 WhereClause *pWC, /* The WHERE clause */ 1735 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1736 Bitmask notReady, /* Mask of cursors that are not available */ 1737 WhereCost *pCost /* Lowest cost query plan */ 1738 ){ 1739 double nTableRow; /* Rows in the input table */ 1740 double logN; /* log(nTableRow) */ 1741 double costTempIdx; /* per-query cost of the transient index */ 1742 WhereTerm *pTerm; /* A single term of the WHERE clause */ 1743 WhereTerm *pWCEnd; /* End of pWC->a[] */ 1744 Table *pTable; /* Table tht might be indexed */ 1745 1746 if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){ 1747 /* Automatic indices are disabled at run-time */ 1748 return; 1749 } 1750 if( (pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)!=0 ){ 1751 /* We already have some kind of index in use for this query. */ 1752 return; 1753 } 1754 if( pSrc->notIndexed ){ 1755 /* The NOT INDEXED clause appears in the SQL. */ 1756 return; 1757 } 1758 1759 assert( pParse->nQueryLoop >= (double)1 ); 1760 pTable = pSrc->pTab; 1761 nTableRow = pTable->nRowEst; 1762 logN = estLog(nTableRow); 1763 costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1); 1764 if( costTempIdx>=pCost->rCost ){ 1765 /* The cost of creating the transient table would be greater than 1766 ** doing the full table scan */ 1767 return; 1768 } 1769 1770 /* Search for any equality comparison term */ 1771 pWCEnd = &pWC->a[pWC->nTerm]; 1772 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 1773 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 1774 WHERETRACE(("auto-index reduces cost from %.1f to %.1f\n", 1775 pCost->rCost, costTempIdx)); 1776 pCost->rCost = costTempIdx; 1777 pCost->plan.nRow = logN + 1; 1778 pCost->plan.wsFlags = WHERE_TEMP_INDEX; 1779 pCost->used = pTerm->prereqRight; 1780 break; 1781 } 1782 } 1783 } 1784 #else 1785 # define bestAutomaticIndex(A,B,C,D,E) /* no-op */ 1786 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 1787 1788 1789 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 1790 /* 1791 ** Generate code to construct the Index object for an automatic index 1792 ** and to set up the WhereLevel object pLevel so that the code generator 1793 ** makes use of the automatic index. 1794 */ 1795 static void constructAutomaticIndex( 1796 Parse *pParse, /* The parsing context */ 1797 WhereClause *pWC, /* The WHERE clause */ 1798 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ 1799 Bitmask notReady, /* Mask of cursors that are not available */ 1800 WhereLevel *pLevel /* Write new index here */ 1801 ){ 1802 int nColumn; /* Number of columns in the constructed index */ 1803 WhereTerm *pTerm; /* A single term of the WHERE clause */ 1804 WhereTerm *pWCEnd; /* End of pWC->a[] */ 1805 int nByte; /* Byte of memory needed for pIdx */ 1806 Index *pIdx; /* Object describing the transient index */ 1807 Vdbe *v; /* Prepared statement under construction */ 1808 int regIsInit; /* Register set by initialization */ 1809 int addrInit; /* Address of the initialization bypass jump */ 1810 Table *pTable; /* The table being indexed */ 1811 KeyInfo *pKeyinfo; /* Key information for the index */ 1812 int addrTop; /* Top of the index fill loop */ 1813 int regRecord; /* Register holding an index record */ 1814 int n; /* Column counter */ 1815 int i; /* Loop counter */ 1816 int mxBitCol; /* Maximum column in pSrc->colUsed */ 1817 CollSeq *pColl; /* Collating sequence to on a column */ 1818 Bitmask idxCols; /* Bitmap of columns used for indexing */ 1819 Bitmask extraCols; /* Bitmap of additional columns */ 1820 1821 /* Generate code to skip over the creation and initialization of the 1822 ** transient index on 2nd and subsequent iterations of the loop. */ 1823 v = pParse->pVdbe; 1824 assert( v!=0 ); 1825 regIsInit = ++pParse->nMem; 1826 addrInit = sqlite3VdbeAddOp1(v, OP_If, regIsInit); 1827 sqlite3VdbeAddOp2(v, OP_Integer, 1, regIsInit); 1828 1829 /* Count the number of columns that will be added to the index 1830 ** and used to match WHERE clause constraints */ 1831 nColumn = 0; 1832 pTable = pSrc->pTab; 1833 pWCEnd = &pWC->a[pWC->nTerm]; 1834 idxCols = 0; 1835 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 1836 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 1837 int iCol = pTerm->u.leftColumn; 1838 Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol; 1839 testcase( iCol==BMS ); 1840 testcase( iCol==BMS-1 ); 1841 if( (idxCols & cMask)==0 ){ 1842 nColumn++; 1843 idxCols |= cMask; 1844 } 1845 } 1846 } 1847 assert( nColumn>0 ); 1848 pLevel->plan.nEq = nColumn; 1849 1850 /* Count the number of additional columns needed to create a 1851 ** covering index. A "covering index" is an index that contains all 1852 ** columns that are needed by the query. With a covering index, the 1853 ** original table never needs to be accessed. Automatic indices must 1854 ** be a covering index because the index will not be updated if the 1855 ** original table changes and the index and table cannot both be used 1856 ** if they go out of sync. 1857 */ 1858 extraCols = pSrc->colUsed & (~idxCols | (((Bitmask)1)<<(BMS-1))); 1859 mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol; 1860 testcase( pTable->nCol==BMS-1 ); 1861 testcase( pTable->nCol==BMS-2 ); 1862 for(i=0; i<mxBitCol; i++){ 1863 if( extraCols & (((Bitmask)1)<<i) ) nColumn++; 1864 } 1865 if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){ 1866 nColumn += pTable->nCol - BMS + 1; 1867 } 1868 pLevel->plan.wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WO_EQ; 1869 1870 /* Construct the Index object to describe this index */ 1871 nByte = sizeof(Index); 1872 nByte += nColumn*sizeof(int); /* Index.aiColumn */ 1873 nByte += nColumn*sizeof(char*); /* Index.azColl */ 1874 nByte += nColumn; /* Index.aSortOrder */ 1875 pIdx = sqlite3DbMallocZero(pParse->db, nByte); 1876 if( pIdx==0 ) return; 1877 pLevel->plan.u.pIdx = pIdx; 1878 pIdx->azColl = (char**)&pIdx[1]; 1879 pIdx->aiColumn = (int*)&pIdx->azColl[nColumn]; 1880 pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn]; 1881 pIdx->zName = "auto-index"; 1882 pIdx->nColumn = nColumn; 1883 pIdx->pTable = pTable; 1884 n = 0; 1885 idxCols = 0; 1886 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 1887 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 1888 int iCol = pTerm->u.leftColumn; 1889 Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol; 1890 if( (idxCols & cMask)==0 ){ 1891 Expr *pX = pTerm->pExpr; 1892 idxCols |= cMask; 1893 pIdx->aiColumn[n] = pTerm->u.leftColumn; 1894 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 1895 pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY"; 1896 n++; 1897 } 1898 } 1899 } 1900 assert( (u32)n==pLevel->plan.nEq ); 1901 1902 /* Add additional columns needed to make the automatic index into 1903 ** a covering index */ 1904 for(i=0; i<mxBitCol; i++){ 1905 if( extraCols & (((Bitmask)1)<<i) ){ 1906 pIdx->aiColumn[n] = i; 1907 pIdx->azColl[n] = "BINARY"; 1908 n++; 1909 } 1910 } 1911 if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){ 1912 for(i=BMS-1; i<pTable->nCol; i++){ 1913 pIdx->aiColumn[n] = i; 1914 pIdx->azColl[n] = "BINARY"; 1915 n++; 1916 } 1917 } 1918 assert( n==nColumn ); 1919 1920 /* Create the automatic index */ 1921 pKeyinfo = sqlite3IndexKeyinfo(pParse, pIdx); 1922 assert( pLevel->iIdxCur>=0 ); 1923 sqlite3VdbeAddOp4(v, OP_OpenAutoindex, pLevel->iIdxCur, nColumn+1, 0, 1924 (char*)pKeyinfo, P4_KEYINFO_HANDOFF); 1925 VdbeComment((v, "for %s", pTable->zName)); 1926 1927 /* Fill the automatic index with content */ 1928 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); 1929 regRecord = sqlite3GetTempReg(pParse); 1930 sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 1); 1931 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 1932 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1933 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); 1934 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 1935 sqlite3VdbeJumpHere(v, addrTop); 1936 sqlite3ReleaseTempReg(pParse, regRecord); 1937 1938 /* Jump here when skipping the initialization */ 1939 sqlite3VdbeJumpHere(v, addrInit); 1940 } 1941 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 1942 1943 #ifndef SQLITE_OMIT_VIRTUALTABLE 1944 /* 1945 ** Allocate and populate an sqlite3_index_info structure. It is the 1946 ** responsibility of the caller to eventually release the structure 1947 ** by passing the pointer returned by this function to sqlite3_free(). 1948 */ 1949 static sqlite3_index_info *allocateIndexInfo( 1950 Parse *pParse, 1951 WhereClause *pWC, 1952 struct SrcList_item *pSrc, 1953 ExprList *pOrderBy 1954 ){ 1955 int i, j; 1956 int nTerm; 1957 struct sqlite3_index_constraint *pIdxCons; 1958 struct sqlite3_index_orderby *pIdxOrderBy; 1959 struct sqlite3_index_constraint_usage *pUsage; 1960 WhereTerm *pTerm; 1961 int nOrderBy; 1962 sqlite3_index_info *pIdxInfo; 1963 1964 WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName)); 1965 1966 /* Count the number of possible WHERE clause constraints referring 1967 ** to this virtual table */ 1968 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1969 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1970 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); 1971 testcase( pTerm->eOperator==WO_IN ); 1972 testcase( pTerm->eOperator==WO_ISNULL ); 1973 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; 1974 nTerm++; 1975 } 1976 1977 /* If the ORDER BY clause contains only columns in the current 1978 ** virtual table then allocate space for the aOrderBy part of 1979 ** the sqlite3_index_info structure. 1980 */ 1981 nOrderBy = 0; 1982 if( pOrderBy ){ 1983 for(i=0; i<pOrderBy->nExpr; i++){ 1984 Expr *pExpr = pOrderBy->a[i].pExpr; 1985 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 1986 } 1987 if( i==pOrderBy->nExpr ){ 1988 nOrderBy = pOrderBy->nExpr; 1989 } 1990 } 1991 1992 /* Allocate the sqlite3_index_info structure 1993 */ 1994 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 1995 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 1996 + sizeof(*pIdxOrderBy)*nOrderBy ); 1997 if( pIdxInfo==0 ){ 1998 sqlite3ErrorMsg(pParse, "out of memory"); 1999 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 2000 return 0; 2001 } 2002 2003 /* Initialize the structure. The sqlite3_index_info structure contains 2004 ** many fields that are declared "const" to prevent xBestIndex from 2005 ** changing them. We have to do some funky casting in order to 2006 ** initialize those fields. 2007 */ 2008 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; 2009 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 2010 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 2011 *(int*)&pIdxInfo->nConstraint = nTerm; 2012 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 2013 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 2014 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 2015 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 2016 pUsage; 2017 2018 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 2019 if( pTerm->leftCursor != pSrc->iCursor ) continue; 2020 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); 2021 testcase( pTerm->eOperator==WO_IN ); 2022 testcase( pTerm->eOperator==WO_ISNULL ); 2023 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; 2024 pIdxCons[j].iColumn = pTerm->u.leftColumn; 2025 pIdxCons[j].iTermOffset = i; 2026 pIdxCons[j].op = (u8)pTerm->eOperator; 2027 /* The direct assignment in the previous line is possible only because 2028 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 2029 ** following asserts verify this fact. */ 2030 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 2031 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 2032 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 2033 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 2034 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 2035 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); 2036 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); 2037 j++; 2038 } 2039 for(i=0; i<nOrderBy; i++){ 2040 Expr *pExpr = pOrderBy->a[i].pExpr; 2041 pIdxOrderBy[i].iColumn = pExpr->iColumn; 2042 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 2043 } 2044 2045 return pIdxInfo; 2046 } 2047 2048 /* 2049 ** The table object reference passed as the second argument to this function 2050 ** must represent a virtual table. This function invokes the xBestIndex() 2051 ** method of the virtual table with the sqlite3_index_info pointer passed 2052 ** as the argument. 2053 ** 2054 ** If an error occurs, pParse is populated with an error message and a 2055 ** non-zero value is returned. Otherwise, 0 is returned and the output 2056 ** part of the sqlite3_index_info structure is left populated. 2057 ** 2058 ** Whether or not an error is returned, it is the responsibility of the 2059 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 2060 ** that this is required. 2061 */ 2062 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 2063 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 2064 int i; 2065 int rc; 2066 2067 WHERETRACE(("xBestIndex for %s\n", pTab->zName)); 2068 TRACE_IDX_INPUTS(p); 2069 rc = pVtab->pModule->xBestIndex(pVtab, p); 2070 TRACE_IDX_OUTPUTS(p); 2071 2072 if( rc!=SQLITE_OK ){ 2073 if( rc==SQLITE_NOMEM ){ 2074 pParse->db->mallocFailed = 1; 2075 }else if( !pVtab->zErrMsg ){ 2076 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 2077 }else{ 2078 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 2079 } 2080 } 2081 sqlite3_free(pVtab->zErrMsg); 2082 pVtab->zErrMsg = 0; 2083 2084 for(i=0; i<p->nConstraint; i++){ 2085 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ 2086 sqlite3ErrorMsg(pParse, 2087 "table %s: xBestIndex returned an invalid plan", pTab->zName); 2088 } 2089 } 2090 2091 return pParse->nErr; 2092 } 2093 2094 2095 /* 2096 ** Compute the best index for a virtual table. 2097 ** 2098 ** The best index is computed by the xBestIndex method of the virtual 2099 ** table module. This routine is really just a wrapper that sets up 2100 ** the sqlite3_index_info structure that is used to communicate with 2101 ** xBestIndex. 2102 ** 2103 ** In a join, this routine might be called multiple times for the 2104 ** same virtual table. The sqlite3_index_info structure is created 2105 ** and initialized on the first invocation and reused on all subsequent 2106 ** invocations. The sqlite3_index_info structure is also used when 2107 ** code is generated to access the virtual table. The whereInfoDelete() 2108 ** routine takes care of freeing the sqlite3_index_info structure after 2109 ** everybody has finished with it. 2110 */ 2111 static void bestVirtualIndex( 2112 Parse *pParse, /* The parsing context */ 2113 WhereClause *pWC, /* The WHERE clause */ 2114 struct SrcList_item *pSrc, /* The FROM clause term to search */ 2115 Bitmask notReady, /* Mask of cursors not available for index */ 2116 Bitmask notValid, /* Cursors not valid for any purpose */ 2117 ExprList *pOrderBy, /* The order by clause */ 2118 WhereCost *pCost, /* Lowest cost query plan */ 2119 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */ 2120 ){ 2121 Table *pTab = pSrc->pTab; 2122 sqlite3_index_info *pIdxInfo; 2123 struct sqlite3_index_constraint *pIdxCons; 2124 struct sqlite3_index_constraint_usage *pUsage; 2125 WhereTerm *pTerm; 2126 int i, j; 2127 int nOrderBy; 2128 double rCost; 2129 2130 /* Make sure wsFlags is initialized to some sane value. Otherwise, if the 2131 ** malloc in allocateIndexInfo() fails and this function returns leaving 2132 ** wsFlags in an uninitialized state, the caller may behave unpredictably. 2133 */ 2134 memset(pCost, 0, sizeof(*pCost)); 2135 pCost->plan.wsFlags = WHERE_VIRTUALTABLE; 2136 2137 /* If the sqlite3_index_info structure has not been previously 2138 ** allocated and initialized, then allocate and initialize it now. 2139 */ 2140 pIdxInfo = *ppIdxInfo; 2141 if( pIdxInfo==0 ){ 2142 *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy); 2143 } 2144 if( pIdxInfo==0 ){ 2145 return; 2146 } 2147 2148 /* At this point, the sqlite3_index_info structure that pIdxInfo points 2149 ** to will have been initialized, either during the current invocation or 2150 ** during some prior invocation. Now we just have to customize the 2151 ** details of pIdxInfo for the current invocation and pass it to 2152 ** xBestIndex. 2153 */ 2154 2155 /* The module name must be defined. Also, by this point there must 2156 ** be a pointer to an sqlite3_vtab structure. Otherwise 2157 ** sqlite3ViewGetColumnNames() would have picked up the error. 2158 */ 2159 assert( pTab->azModuleArg && pTab->azModuleArg[0] ); 2160 assert( sqlite3GetVTable(pParse->db, pTab) ); 2161 2162 /* Set the aConstraint[].usable fields and initialize all 2163 ** output variables to zero. 2164 ** 2165 ** aConstraint[].usable is true for constraints where the right-hand 2166 ** side contains only references to tables to the left of the current 2167 ** table. In other words, if the constraint is of the form: 2168 ** 2169 ** column = expr 2170 ** 2171 ** and we are evaluating a join, then the constraint on column is 2172 ** only valid if all tables referenced in expr occur to the left 2173 ** of the table containing column. 2174 ** 2175 ** The aConstraints[] array contains entries for all constraints 2176 ** on the current table. That way we only have to compute it once 2177 ** even though we might try to pick the best index multiple times. 2178 ** For each attempt at picking an index, the order of tables in the 2179 ** join might be different so we have to recompute the usable flag 2180 ** each time. 2181 */ 2182 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 2183 pUsage = pIdxInfo->aConstraintUsage; 2184 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ 2185 j = pIdxCons->iTermOffset; 2186 pTerm = &pWC->a[j]; 2187 pIdxCons->usable = (pTerm->prereqRight¬Ready) ? 0 : 1; 2188 } 2189 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); 2190 if( pIdxInfo->needToFreeIdxStr ){ 2191 sqlite3_free(pIdxInfo->idxStr); 2192 } 2193 pIdxInfo->idxStr = 0; 2194 pIdxInfo->idxNum = 0; 2195 pIdxInfo->needToFreeIdxStr = 0; 2196 pIdxInfo->orderByConsumed = 0; 2197 /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */ 2198 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2); 2199 nOrderBy = pIdxInfo->nOrderBy; 2200 if( !pOrderBy ){ 2201 pIdxInfo->nOrderBy = 0; 2202 } 2203 2204 if( vtabBestIndex(pParse, pTab, pIdxInfo) ){ 2205 return; 2206 } 2207 2208 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 2209 for(i=0; i<pIdxInfo->nConstraint; i++){ 2210 if( pUsage[i].argvIndex>0 ){ 2211 pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight; 2212 } 2213 } 2214 2215 /* If there is an ORDER BY clause, and the selected virtual table index 2216 ** does not satisfy it, increase the cost of the scan accordingly. This 2217 ** matches the processing for non-virtual tables in bestBtreeIndex(). 2218 */ 2219 rCost = pIdxInfo->estimatedCost; 2220 if( pOrderBy && pIdxInfo->orderByConsumed==0 ){ 2221 rCost += estLog(rCost)*rCost; 2222 } 2223 2224 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the 2225 ** inital value of lowestCost in this loop. If it is, then the 2226 ** (cost<lowestCost) test below will never be true. 2227 ** 2228 ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT 2229 ** is defined. 2230 */ 2231 if( (SQLITE_BIG_DBL/((double)2))<rCost ){ 2232 pCost->rCost = (SQLITE_BIG_DBL/((double)2)); 2233 }else{ 2234 pCost->rCost = rCost; 2235 } 2236 pCost->plan.u.pVtabIdx = pIdxInfo; 2237 if( pIdxInfo->orderByConsumed ){ 2238 pCost->plan.wsFlags |= WHERE_ORDERBY; 2239 } 2240 pCost->plan.nEq = 0; 2241 pIdxInfo->nOrderBy = nOrderBy; 2242 2243 /* Try to find a more efficient access pattern by using multiple indexes 2244 ** to optimize an OR expression within the WHERE clause. 2245 */ 2246 bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost); 2247 } 2248 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 2249 2250 /* 2251 ** Argument pIdx is a pointer to an index structure that has an array of 2252 ** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column 2253 ** stored in Index.aSample. These samples divide the domain of values stored 2254 ** the index into (SQLITE_INDEX_SAMPLES+1) regions. 2255 ** Region 0 contains all values less than the first sample value. Region 2256 ** 1 contains values between the first and second samples. Region 2 contains 2257 ** values between samples 2 and 3. And so on. Region SQLITE_INDEX_SAMPLES 2258 ** contains values larger than the last sample. 2259 ** 2260 ** If the index contains many duplicates of a single value, then it is 2261 ** possible that two or more adjacent samples can hold the same value. 2262 ** When that is the case, the smallest possible region code is returned 2263 ** when roundUp is false and the largest possible region code is returned 2264 ** when roundUp is true. 2265 ** 2266 ** If successful, this function determines which of the regions value 2267 ** pVal lies in, sets *piRegion to the region index (a value between 0 2268 ** and SQLITE_INDEX_SAMPLES+1, inclusive) and returns SQLITE_OK. 2269 ** Or, if an OOM occurs while converting text values between encodings, 2270 ** SQLITE_NOMEM is returned and *piRegion is undefined. 2271 */ 2272 #ifdef SQLITE_ENABLE_STAT2 2273 static int whereRangeRegion( 2274 Parse *pParse, /* Database connection */ 2275 Index *pIdx, /* Index to consider domain of */ 2276 sqlite3_value *pVal, /* Value to consider */ 2277 int roundUp, /* Return largest valid region if true */ 2278 int *piRegion /* OUT: Region of domain in which value lies */ 2279 ){ 2280 assert( roundUp==0 || roundUp==1 ); 2281 if( ALWAYS(pVal) ){ 2282 IndexSample *aSample = pIdx->aSample; 2283 int i = 0; 2284 int eType = sqlite3_value_type(pVal); 2285 2286 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 2287 double r = sqlite3_value_double(pVal); 2288 for(i=0; i<SQLITE_INDEX_SAMPLES; i++){ 2289 if( aSample[i].eType==SQLITE_NULL ) continue; 2290 if( aSample[i].eType>=SQLITE_TEXT ) break; 2291 if( roundUp ){ 2292 if( aSample[i].u.r>r ) break; 2293 }else{ 2294 if( aSample[i].u.r>=r ) break; 2295 } 2296 } 2297 }else if( eType==SQLITE_NULL ){ 2298 i = 0; 2299 if( roundUp ){ 2300 while( i<SQLITE_INDEX_SAMPLES && aSample[i].eType==SQLITE_NULL ) i++; 2301 } 2302 }else{ 2303 sqlite3 *db = pParse->db; 2304 CollSeq *pColl; 2305 const u8 *z; 2306 int n; 2307 2308 /* pVal comes from sqlite3ValueFromExpr() so the type cannot be NULL */ 2309 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); 2310 2311 if( eType==SQLITE_BLOB ){ 2312 z = (const u8 *)sqlite3_value_blob(pVal); 2313 pColl = db->pDfltColl; 2314 assert( pColl->enc==SQLITE_UTF8 ); 2315 }else{ 2316 pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl); 2317 if( pColl==0 ){ 2318 sqlite3ErrorMsg(pParse, "no such collation sequence: %s", 2319 *pIdx->azColl); 2320 return SQLITE_ERROR; 2321 } 2322 z = (const u8 *)sqlite3ValueText(pVal, pColl->enc); 2323 if( !z ){ 2324 return SQLITE_NOMEM; 2325 } 2326 assert( z && pColl && pColl->xCmp ); 2327 } 2328 n = sqlite3ValueBytes(pVal, pColl->enc); 2329 2330 for(i=0; i<SQLITE_INDEX_SAMPLES; i++){ 2331 int c; 2332 int eSampletype = aSample[i].eType; 2333 if( eSampletype==SQLITE_NULL || eSampletype<eType ) continue; 2334 if( (eSampletype!=eType) ) break; 2335 #ifndef SQLITE_OMIT_UTF16 2336 if( pColl->enc!=SQLITE_UTF8 ){ 2337 int nSample; 2338 char *zSample = sqlite3Utf8to16( 2339 db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample 2340 ); 2341 if( !zSample ){ 2342 assert( db->mallocFailed ); 2343 return SQLITE_NOMEM; 2344 } 2345 c = pColl->xCmp(pColl->pUser, nSample, zSample, n, z); 2346 sqlite3DbFree(db, zSample); 2347 }else 2348 #endif 2349 { 2350 c = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z); 2351 } 2352 if( c-roundUp>=0 ) break; 2353 } 2354 } 2355 2356 assert( i>=0 && i<=SQLITE_INDEX_SAMPLES ); 2357 *piRegion = i; 2358 } 2359 return SQLITE_OK; 2360 } 2361 #endif /* #ifdef SQLITE_ENABLE_STAT2 */ 2362 2363 /* 2364 ** If expression pExpr represents a literal value, set *pp to point to 2365 ** an sqlite3_value structure containing the same value, with affinity 2366 ** aff applied to it, before returning. It is the responsibility of the 2367 ** caller to eventually release this structure by passing it to 2368 ** sqlite3ValueFree(). 2369 ** 2370 ** If the current parse is a recompile (sqlite3Reprepare()) and pExpr 2371 ** is an SQL variable that currently has a non-NULL value bound to it, 2372 ** create an sqlite3_value structure containing this value, again with 2373 ** affinity aff applied to it, instead. 2374 ** 2375 ** If neither of the above apply, set *pp to NULL. 2376 ** 2377 ** If an error occurs, return an error code. Otherwise, SQLITE_OK. 2378 */ 2379 #ifdef SQLITE_ENABLE_STAT2 2380 static int valueFromExpr( 2381 Parse *pParse, 2382 Expr *pExpr, 2383 u8 aff, 2384 sqlite3_value **pp 2385 ){ 2386 if( pExpr->op==TK_VARIABLE 2387 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE) 2388 ){ 2389 int iVar = pExpr->iColumn; 2390 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); /* IMP: R-23257-02778 */ 2391 *pp = sqlite3VdbeGetValue(pParse->pReprepare, iVar, aff); 2392 return SQLITE_OK; 2393 } 2394 return sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, aff, pp); 2395 } 2396 #endif 2397 2398 /* 2399 ** This function is used to estimate the number of rows that will be visited 2400 ** by scanning an index for a range of values. The range may have an upper 2401 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 2402 ** and lower bounds are represented by pLower and pUpper respectively. For 2403 ** example, assuming that index p is on t1(a): 2404 ** 2405 ** ... FROM t1 WHERE a > ? AND a < ? ... 2406 ** |_____| |_____| 2407 ** | | 2408 ** pLower pUpper 2409 ** 2410 ** If either of the upper or lower bound is not present, then NULL is passed in 2411 ** place of the corresponding WhereTerm. 2412 ** 2413 ** The nEq parameter is passed the index of the index column subject to the 2414 ** range constraint. Or, equivalently, the number of equality constraints 2415 ** optimized by the proposed index scan. For example, assuming index p is 2416 ** on t1(a, b), and the SQL query is: 2417 ** 2418 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 2419 ** 2420 ** then nEq should be passed the value 1 (as the range restricted column, 2421 ** b, is the second left-most column of the index). Or, if the query is: 2422 ** 2423 ** ... FROM t1 WHERE a > ? AND a < ? ... 2424 ** 2425 ** then nEq should be passed 0. 2426 ** 2427 ** The returned value is an integer between 1 and 100, inclusive. A return 2428 ** value of 1 indicates that the proposed range scan is expected to visit 2429 ** approximately 1/100th (1%) of the rows selected by the nEq equality 2430 ** constraints (if any). A return value of 100 indicates that it is expected 2431 ** that the range scan will visit every row (100%) selected by the equality 2432 ** constraints. 2433 ** 2434 ** In the absence of sqlite_stat2 ANALYZE data, each range inequality 2435 ** reduces the search space by 3/4ths. Hence a single constraint (x>?) 2436 ** results in a return of 25 and a range constraint (x>? AND x<?) results 2437 ** in a return of 6. 2438 */ 2439 static int whereRangeScanEst( 2440 Parse *pParse, /* Parsing & code generating context */ 2441 Index *p, /* The index containing the range-compared column; "x" */ 2442 int nEq, /* index into p->aCol[] of the range-compared column */ 2443 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 2444 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 2445 int *piEst /* OUT: Return value */ 2446 ){ 2447 int rc = SQLITE_OK; 2448 2449 #ifdef SQLITE_ENABLE_STAT2 2450 2451 if( nEq==0 && p->aSample ){ 2452 sqlite3_value *pLowerVal = 0; 2453 sqlite3_value *pUpperVal = 0; 2454 int iEst; 2455 int iLower = 0; 2456 int iUpper = SQLITE_INDEX_SAMPLES; 2457 int roundUpUpper = 0; 2458 int roundUpLower = 0; 2459 u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity; 2460 2461 if( pLower ){ 2462 Expr *pExpr = pLower->pExpr->pRight; 2463 rc = valueFromExpr(pParse, pExpr, aff, &pLowerVal); 2464 assert( pLower->eOperator==WO_GT || pLower->eOperator==WO_GE ); 2465 roundUpLower = (pLower->eOperator==WO_GT) ?1:0; 2466 } 2467 if( rc==SQLITE_OK && pUpper ){ 2468 Expr *pExpr = pUpper->pExpr->pRight; 2469 rc = valueFromExpr(pParse, pExpr, aff, &pUpperVal); 2470 assert( pUpper->eOperator==WO_LT || pUpper->eOperator==WO_LE ); 2471 roundUpUpper = (pUpper->eOperator==WO_LE) ?1:0; 2472 } 2473 2474 if( rc!=SQLITE_OK || (pLowerVal==0 && pUpperVal==0) ){ 2475 sqlite3ValueFree(pLowerVal); 2476 sqlite3ValueFree(pUpperVal); 2477 goto range_est_fallback; 2478 }else if( pLowerVal==0 ){ 2479 rc = whereRangeRegion(pParse, p, pUpperVal, roundUpUpper, &iUpper); 2480 if( pLower ) iLower = iUpper/2; 2481 }else if( pUpperVal==0 ){ 2482 rc = whereRangeRegion(pParse, p, pLowerVal, roundUpLower, &iLower); 2483 if( pUpper ) iUpper = (iLower + SQLITE_INDEX_SAMPLES + 1)/2; 2484 }else{ 2485 rc = whereRangeRegion(pParse, p, pUpperVal, roundUpUpper, &iUpper); 2486 if( rc==SQLITE_OK ){ 2487 rc = whereRangeRegion(pParse, p, pLowerVal, roundUpLower, &iLower); 2488 } 2489 } 2490 WHERETRACE(("range scan regions: %d..%d\n", iLower, iUpper)); 2491 2492 iEst = iUpper - iLower; 2493 testcase( iEst==SQLITE_INDEX_SAMPLES ); 2494 assert( iEst<=SQLITE_INDEX_SAMPLES ); 2495 if( iEst<1 ){ 2496 *piEst = 50/SQLITE_INDEX_SAMPLES; 2497 }else{ 2498 *piEst = (iEst*100)/SQLITE_INDEX_SAMPLES; 2499 } 2500 sqlite3ValueFree(pLowerVal); 2501 sqlite3ValueFree(pUpperVal); 2502 return rc; 2503 } 2504 range_est_fallback: 2505 #else 2506 UNUSED_PARAMETER(pParse); 2507 UNUSED_PARAMETER(p); 2508 UNUSED_PARAMETER(nEq); 2509 #endif 2510 assert( pLower || pUpper ); 2511 *piEst = 100; 2512 if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ) *piEst /= 4; 2513 if( pUpper ) *piEst /= 4; 2514 return rc; 2515 } 2516 2517 #ifdef SQLITE_ENABLE_STAT2 2518 /* 2519 ** Estimate the number of rows that will be returned based on 2520 ** an equality constraint x=VALUE and where that VALUE occurs in 2521 ** the histogram data. This only works when x is the left-most 2522 ** column of an index and sqlite_stat2 histogram data is available 2523 ** for that index. When pExpr==NULL that means the constraint is 2524 ** "x IS NULL" instead of "x=VALUE". 2525 ** 2526 ** Write the estimated row count into *pnRow and return SQLITE_OK. 2527 ** If unable to make an estimate, leave *pnRow unchanged and return 2528 ** non-zero. 2529 ** 2530 ** This routine can fail if it is unable to load a collating sequence 2531 ** required for string comparison, or if unable to allocate memory 2532 ** for a UTF conversion required for comparison. The error is stored 2533 ** in the pParse structure. 2534 */ 2535 int whereEqualScanEst( 2536 Parse *pParse, /* Parsing & code generating context */ 2537 Index *p, /* The index whose left-most column is pTerm */ 2538 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 2539 double *pnRow /* Write the revised row estimate here */ 2540 ){ 2541 sqlite3_value *pRhs = 0; /* VALUE on right-hand side of pTerm */ 2542 int iLower, iUpper; /* Range of histogram regions containing pRhs */ 2543 u8 aff; /* Column affinity */ 2544 int rc; /* Subfunction return code */ 2545 double nRowEst; /* New estimate of the number of rows */ 2546 2547 assert( p->aSample!=0 ); 2548 aff = p->pTable->aCol[p->aiColumn[0]].affinity; 2549 if( pExpr ){ 2550 rc = valueFromExpr(pParse, pExpr, aff, &pRhs); 2551 if( rc ) goto whereEqualScanEst_cancel; 2552 }else{ 2553 pRhs = sqlite3ValueNew(pParse->db); 2554 } 2555 if( pRhs==0 ) return SQLITE_NOTFOUND; 2556 rc = whereRangeRegion(pParse, p, pRhs, 0, &iLower); 2557 if( rc ) goto whereEqualScanEst_cancel; 2558 rc = whereRangeRegion(pParse, p, pRhs, 1, &iUpper); 2559 if( rc ) goto whereEqualScanEst_cancel; 2560 WHERETRACE(("equality scan regions: %d..%d\n", iLower, iUpper)); 2561 if( iLower>=iUpper ){ 2562 nRowEst = p->aiRowEst[0]/(SQLITE_INDEX_SAMPLES*2); 2563 if( nRowEst<*pnRow ) *pnRow = nRowEst; 2564 }else{ 2565 nRowEst = (iUpper-iLower)*p->aiRowEst[0]/SQLITE_INDEX_SAMPLES; 2566 *pnRow = nRowEst; 2567 } 2568 2569 whereEqualScanEst_cancel: 2570 sqlite3ValueFree(pRhs); 2571 return rc; 2572 } 2573 #endif /* defined(SQLITE_ENABLE_STAT2) */ 2574 2575 #ifdef SQLITE_ENABLE_STAT2 2576 /* 2577 ** Estimate the number of rows that will be returned based on 2578 ** an IN constraint where the right-hand side of the IN operator 2579 ** is a list of values. Example: 2580 ** 2581 ** WHERE x IN (1,2,3,4) 2582 ** 2583 ** Write the estimated row count into *pnRow and return SQLITE_OK. 2584 ** If unable to make an estimate, leave *pnRow unchanged and return 2585 ** non-zero. 2586 ** 2587 ** This routine can fail if it is unable to load a collating sequence 2588 ** required for string comparison, or if unable to allocate memory 2589 ** for a UTF conversion required for comparison. The error is stored 2590 ** in the pParse structure. 2591 */ 2592 int whereInScanEst( 2593 Parse *pParse, /* Parsing & code generating context */ 2594 Index *p, /* The index whose left-most column is pTerm */ 2595 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 2596 double *pnRow /* Write the revised row estimate here */ 2597 ){ 2598 sqlite3_value *pVal = 0; /* One value from list */ 2599 int iLower, iUpper; /* Range of histogram regions containing pRhs */ 2600 u8 aff; /* Column affinity */ 2601 int rc = SQLITE_OK; /* Subfunction return code */ 2602 double nRowEst; /* New estimate of the number of rows */ 2603 int nSpan = 0; /* Number of histogram regions spanned */ 2604 int nSingle = 0; /* Histogram regions hit by a single value */ 2605 int nNotFound = 0; /* Count of values that are not constants */ 2606 int i; /* Loop counter */ 2607 u8 aSpan[SQLITE_INDEX_SAMPLES+1]; /* Histogram regions that are spanned */ 2608 u8 aSingle[SQLITE_INDEX_SAMPLES+1]; /* Histogram regions hit once */ 2609 2610 assert( p->aSample!=0 ); 2611 aff = p->pTable->aCol[p->aiColumn[0]].affinity; 2612 memset(aSpan, 0, sizeof(aSpan)); 2613 memset(aSingle, 0, sizeof(aSingle)); 2614 for(i=0; i<pList->nExpr; i++){ 2615 sqlite3ValueFree(pVal); 2616 rc = valueFromExpr(pParse, pList->a[i].pExpr, aff, &pVal); 2617 if( rc ) break; 2618 if( pVal==0 || sqlite3_value_type(pVal)==SQLITE_NULL ){ 2619 nNotFound++; 2620 continue; 2621 } 2622 rc = whereRangeRegion(pParse, p, pVal, 0, &iLower); 2623 if( rc ) break; 2624 rc = whereRangeRegion(pParse, p, pVal, 1, &iUpper); 2625 if( rc ) break; 2626 if( iLower>=iUpper ){ 2627 aSingle[iLower] = 1; 2628 }else{ 2629 assert( iLower>=0 && iUpper<=SQLITE_INDEX_SAMPLES ); 2630 while( iLower<iUpper ) aSpan[iLower++] = 1; 2631 } 2632 } 2633 if( rc==SQLITE_OK ){ 2634 for(i=nSpan=0; i<=SQLITE_INDEX_SAMPLES; i++){ 2635 if( aSpan[i] ){ 2636 nSpan++; 2637 }else if( aSingle[i] ){ 2638 nSingle++; 2639 } 2640 } 2641 nRowEst = (nSpan*2+nSingle)*p->aiRowEst[0]/(2*SQLITE_INDEX_SAMPLES) 2642 + nNotFound*p->aiRowEst[1]; 2643 if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0]; 2644 *pnRow = nRowEst; 2645 WHERETRACE(("IN row estimate: nSpan=%d, nSingle=%d, nNotFound=%d, est=%g\n", 2646 nSpan, nSingle, nNotFound, nRowEst)); 2647 } 2648 sqlite3ValueFree(pVal); 2649 return rc; 2650 } 2651 #endif /* defined(SQLITE_ENABLE_STAT2) */ 2652 2653 2654 /* 2655 ** Find the best query plan for accessing a particular table. Write the 2656 ** best query plan and its cost into the WhereCost object supplied as the 2657 ** last parameter. 2658 ** 2659 ** The lowest cost plan wins. The cost is an estimate of the amount of 2660 ** CPU and disk I/O needed to process the requested result. 2661 ** Factors that influence cost include: 2662 ** 2663 ** * The estimated number of rows that will be retrieved. (The 2664 ** fewer the better.) 2665 ** 2666 ** * Whether or not sorting must occur. 2667 ** 2668 ** * Whether or not there must be separate lookups in the 2669 ** index and in the main table. 2670 ** 2671 ** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in 2672 ** the SQL statement, then this function only considers plans using the 2673 ** named index. If no such plan is found, then the returned cost is 2674 ** SQLITE_BIG_DBL. If a plan is found that uses the named index, 2675 ** then the cost is calculated in the usual way. 2676 ** 2677 ** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table 2678 ** in the SELECT statement, then no indexes are considered. However, the 2679 ** selected plan may still take advantage of the built-in rowid primary key 2680 ** index. 2681 */ 2682 static void bestBtreeIndex( 2683 Parse *pParse, /* The parsing context */ 2684 WhereClause *pWC, /* The WHERE clause */ 2685 struct SrcList_item *pSrc, /* The FROM clause term to search */ 2686 Bitmask notReady, /* Mask of cursors not available for indexing */ 2687 Bitmask notValid, /* Cursors not available for any purpose */ 2688 ExprList *pOrderBy, /* The ORDER BY clause */ 2689 WhereCost *pCost /* Lowest cost query plan */ 2690 ){ 2691 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ 2692 Index *pProbe; /* An index we are evaluating */ 2693 Index *pIdx; /* Copy of pProbe, or zero for IPK index */ 2694 int eqTermMask; /* Current mask of valid equality operators */ 2695 int idxEqTermMask; /* Index mask of valid equality operators */ 2696 Index sPk; /* A fake index object for the primary key */ 2697 unsigned int aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */ 2698 int aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 2699 int wsFlagMask; /* Allowed flags in pCost->plan.wsFlag */ 2700 2701 /* Initialize the cost to a worst-case value */ 2702 memset(pCost, 0, sizeof(*pCost)); 2703 pCost->rCost = SQLITE_BIG_DBL; 2704 2705 /* If the pSrc table is the right table of a LEFT JOIN then we may not 2706 ** use an index to satisfy IS NULL constraints on that table. This is 2707 ** because columns might end up being NULL if the table does not match - 2708 ** a circumstance which the index cannot help us discover. Ticket #2177. 2709 */ 2710 if( pSrc->jointype & JT_LEFT ){ 2711 idxEqTermMask = WO_EQ|WO_IN; 2712 }else{ 2713 idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL; 2714 } 2715 2716 if( pSrc->pIndex ){ 2717 /* An INDEXED BY clause specifies a particular index to use */ 2718 pIdx = pProbe = pSrc->pIndex; 2719 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE); 2720 eqTermMask = idxEqTermMask; 2721 }else{ 2722 /* There is no INDEXED BY clause. Create a fake Index object in local 2723 ** variable sPk to represent the rowid primary key index. Make this 2724 ** fake index the first in a chain of Index objects with all of the real 2725 ** indices to follow */ 2726 Index *pFirst; /* First of real indices on the table */ 2727 memset(&sPk, 0, sizeof(Index)); 2728 sPk.nColumn = 1; 2729 sPk.aiColumn = &aiColumnPk; 2730 sPk.aiRowEst = aiRowEstPk; 2731 sPk.onError = OE_Replace; 2732 sPk.pTable = pSrc->pTab; 2733 aiRowEstPk[0] = pSrc->pTab->nRowEst; 2734 aiRowEstPk[1] = 1; 2735 pFirst = pSrc->pTab->pIndex; 2736 if( pSrc->notIndexed==0 ){ 2737 /* The real indices of the table are only considered if the 2738 ** NOT INDEXED qualifier is omitted from the FROM clause */ 2739 sPk.pNext = pFirst; 2740 } 2741 pProbe = &sPk; 2742 wsFlagMask = ~( 2743 WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE 2744 ); 2745 eqTermMask = WO_EQ|WO_IN; 2746 pIdx = 0; 2747 } 2748 2749 /* Loop over all indices looking for the best one to use 2750 */ 2751 for(; pProbe; pIdx=pProbe=pProbe->pNext){ 2752 const unsigned int * const aiRowEst = pProbe->aiRowEst; 2753 double cost; /* Cost of using pProbe */ 2754 double nRow; /* Estimated number of rows in result set */ 2755 double log10N; /* base-10 logarithm of nRow (inexact) */ 2756 int rev; /* True to scan in reverse order */ 2757 int wsFlags = 0; 2758 Bitmask used = 0; 2759 2760 /* The following variables are populated based on the properties of 2761 ** index being evaluated. They are then used to determine the expected 2762 ** cost and number of rows returned. 2763 ** 2764 ** nEq: 2765 ** Number of equality terms that can be implemented using the index. 2766 ** In other words, the number of initial fields in the index that 2767 ** are used in == or IN or NOT NULL constraints of the WHERE clause. 2768 ** 2769 ** nInMul: 2770 ** The "in-multiplier". This is an estimate of how many seek operations 2771 ** SQLite must perform on the index in question. For example, if the 2772 ** WHERE clause is: 2773 ** 2774 ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6) 2775 ** 2776 ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is 2777 ** set to 9. Given the same schema and either of the following WHERE 2778 ** clauses: 2779 ** 2780 ** WHERE a = 1 2781 ** WHERE a >= 2 2782 ** 2783 ** nInMul is set to 1. 2784 ** 2785 ** If there exists a WHERE term of the form "x IN (SELECT ...)", then 2786 ** the sub-select is assumed to return 25 rows for the purposes of 2787 ** determining nInMul. 2788 ** 2789 ** bInEst: 2790 ** Set to true if there was at least one "x IN (SELECT ...)" term used 2791 ** in determining the value of nInMul. Note that the RHS of the 2792 ** IN operator must be a SELECT, not a value list, for this variable 2793 ** to be true. 2794 ** 2795 ** estBound: 2796 ** An estimate on the amount of the table that must be searched. A 2797 ** value of 100 means the entire table is searched. Range constraints 2798 ** might reduce this to a value less than 100 to indicate that only 2799 ** a fraction of the table needs searching. In the absence of 2800 ** sqlite_stat2 ANALYZE data, a single inequality reduces the search 2801 ** space to 1/4rd its original size. So an x>? constraint reduces 2802 ** estBound to 25. Two constraints (x>? AND x<?) reduce estBound to 6. 2803 ** 2804 ** bSort: 2805 ** Boolean. True if there is an ORDER BY clause that will require an 2806 ** external sort (i.e. scanning the index being evaluated will not 2807 ** correctly order records). 2808 ** 2809 ** bLookup: 2810 ** Boolean. True if a table lookup is required for each index entry 2811 ** visited. In other words, true if this is not a covering index. 2812 ** This is always false for the rowid primary key index of a table. 2813 ** For other indexes, it is true unless all the columns of the table 2814 ** used by the SELECT statement are present in the index (such an 2815 ** index is sometimes described as a covering index). 2816 ** For example, given the index on (a, b), the second of the following 2817 ** two queries requires table b-tree lookups in order to find the value 2818 ** of column c, but the first does not because columns a and b are 2819 ** both available in the index. 2820 ** 2821 ** SELECT a, b FROM tbl WHERE a = 1; 2822 ** SELECT a, b, c FROM tbl WHERE a = 1; 2823 */ 2824 int nEq; /* Number of == or IN terms matching index */ 2825 int bInEst = 0; /* True if "x IN (SELECT...)" seen */ 2826 int nInMul = 1; /* Number of distinct equalities to lookup */ 2827 int estBound = 100; /* Estimated reduction in search space */ 2828 int nBound = 0; /* Number of range constraints seen */ 2829 int bSort = 0; /* True if external sort required */ 2830 int bLookup = 0; /* True if not a covering index */ 2831 WhereTerm *pTerm; /* A single term of the WHERE clause */ 2832 #ifdef SQLITE_ENABLE_STAT2 2833 WhereTerm *pFirstTerm = 0; /* First term matching the index */ 2834 #endif 2835 2836 /* Determine the values of nEq and nInMul */ 2837 for(nEq=0; nEq<pProbe->nColumn; nEq++){ 2838 int j = pProbe->aiColumn[nEq]; 2839 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx); 2840 if( pTerm==0 ) break; 2841 wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ); 2842 if( pTerm->eOperator & WO_IN ){ 2843 Expr *pExpr = pTerm->pExpr; 2844 wsFlags |= WHERE_COLUMN_IN; 2845 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2846 /* "x IN (SELECT ...)": Assume the SELECT returns 25 rows */ 2847 nInMul *= 25; 2848 bInEst = 1; 2849 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2850 /* "x IN (value, value, ...)" */ 2851 nInMul *= pExpr->x.pList->nExpr; 2852 } 2853 }else if( pTerm->eOperator & WO_ISNULL ){ 2854 wsFlags |= WHERE_COLUMN_NULL; 2855 } 2856 #ifdef SQLITE_ENABLE_STAT2 2857 if( nEq==0 && pProbe->aSample ) pFirstTerm = pTerm; 2858 #endif 2859 used |= pTerm->prereqRight; 2860 } 2861 2862 /* Determine the value of estBound. */ 2863 if( nEq<pProbe->nColumn ){ 2864 int j = pProbe->aiColumn[nEq]; 2865 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){ 2866 WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx); 2867 WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx); 2868 whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &estBound); 2869 if( pTop ){ 2870 nBound = 1; 2871 wsFlags |= WHERE_TOP_LIMIT; 2872 used |= pTop->prereqRight; 2873 } 2874 if( pBtm ){ 2875 nBound++; 2876 wsFlags |= WHERE_BTM_LIMIT; 2877 used |= pBtm->prereqRight; 2878 } 2879 wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE); 2880 } 2881 }else if( pProbe->onError!=OE_None ){ 2882 testcase( wsFlags & WHERE_COLUMN_IN ); 2883 testcase( wsFlags & WHERE_COLUMN_NULL ); 2884 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){ 2885 wsFlags |= WHERE_UNIQUE; 2886 } 2887 } 2888 2889 /* If there is an ORDER BY clause and the index being considered will 2890 ** naturally scan rows in the required order, set the appropriate flags 2891 ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index 2892 ** will scan rows in a different order, set the bSort variable. */ 2893 if( pOrderBy ){ 2894 if( (wsFlags & WHERE_COLUMN_IN)==0 2895 && isSortingIndex(pParse, pWC->pMaskSet, pProbe, iCur, pOrderBy, 2896 nEq, wsFlags, &rev) 2897 ){ 2898 wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY; 2899 wsFlags |= (rev ? WHERE_REVERSE : 0); 2900 }else{ 2901 bSort = 1; 2902 } 2903 } 2904 2905 /* If currently calculating the cost of using an index (not the IPK 2906 ** index), determine if all required column data may be obtained without 2907 ** using the main table (i.e. if the index is a covering 2908 ** index for this query). If it is, set the WHERE_IDX_ONLY flag in 2909 ** wsFlags. Otherwise, set the bLookup variable to true. */ 2910 if( pIdx && wsFlags ){ 2911 Bitmask m = pSrc->colUsed; 2912 int j; 2913 for(j=0; j<pIdx->nColumn; j++){ 2914 int x = pIdx->aiColumn[j]; 2915 if( x<BMS-1 ){ 2916 m &= ~(((Bitmask)1)<<x); 2917 } 2918 } 2919 if( m==0 ){ 2920 wsFlags |= WHERE_IDX_ONLY; 2921 }else{ 2922 bLookup = 1; 2923 } 2924 } 2925 2926 /* 2927 ** Estimate the number of rows of output. For an "x IN (SELECT...)" 2928 ** constraint, do not let the estimate exceed half the rows in the table. 2929 */ 2930 nRow = (double)(aiRowEst[nEq] * nInMul); 2931 if( bInEst && nRow*2>aiRowEst[0] ){ 2932 nRow = aiRowEst[0]/2; 2933 nInMul = (int)(nRow / aiRowEst[nEq]); 2934 } 2935 2936 #ifdef SQLITE_ENABLE_STAT2 2937 /* If the constraint is of the form x=VALUE and histogram 2938 ** data is available for column x, then it might be possible 2939 ** to get a better estimate on the number of rows based on 2940 ** VALUE and how common that value is according to the histogram. 2941 */ 2942 if( nRow>(double)1 && nEq==1 && pFirstTerm!=0 ){ 2943 if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){ 2944 testcase( pFirstTerm->eOperator==WO_EQ ); 2945 testcase( pFirstTerm->eOperator==WO_ISNULL ); 2946 whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &nRow); 2947 }else if( pFirstTerm->eOperator==WO_IN && bInEst==0 ){ 2948 whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &nRow); 2949 } 2950 } 2951 #endif /* SQLITE_ENABLE_STAT2 */ 2952 2953 /* Adjust the number of output rows and downward to reflect rows 2954 ** that are excluded by range constraints. 2955 */ 2956 nRow = (nRow * (double)estBound) / (double)100; 2957 if( nRow<1 ) nRow = 1; 2958 2959 /* Experiments run on real SQLite databases show that the time needed 2960 ** to do a binary search to locate a row in a table or index is roughly 2961 ** log10(N) times the time to move from one row to the next row within 2962 ** a table or index. The actual times can vary, with the size of 2963 ** records being an important factor. Both moves and searches are 2964 ** slower with larger records, presumably because fewer records fit 2965 ** on one page and hence more pages have to be fetched. 2966 ** 2967 ** The ANALYZE command and the sqlite_stat1 and sqlite_stat2 tables do 2968 ** not give us data on the relative sizes of table and index records. 2969 ** So this computation assumes table records are about twice as big 2970 ** as index records 2971 */ 2972 if( (wsFlags & WHERE_NOT_FULLSCAN)==0 ){ 2973 /* The cost of a full table scan is a number of move operations equal 2974 ** to the number of rows in the table. 2975 ** 2976 ** We add an additional 4x penalty to full table scans. This causes 2977 ** the cost function to err on the side of choosing an index over 2978 ** choosing a full scan. This 4x full-scan penalty is an arguable 2979 ** decision and one which we expect to revisit in the future. But 2980 ** it seems to be working well enough at the moment. 2981 */ 2982 cost = aiRowEst[0]*4; 2983 }else{ 2984 log10N = estLog(aiRowEst[0]); 2985 cost = nRow; 2986 if( pIdx ){ 2987 if( bLookup ){ 2988 /* For an index lookup followed by a table lookup: 2989 ** nInMul index searches to find the start of each index range 2990 ** + nRow steps through the index 2991 ** + nRow table searches to lookup the table entry using the rowid 2992 */ 2993 cost += (nInMul + nRow)*log10N; 2994 }else{ 2995 /* For a covering index: 2996 ** nInMul index searches to find the initial entry 2997 ** + nRow steps through the index 2998 */ 2999 cost += nInMul*log10N; 3000 } 3001 }else{ 3002 /* For a rowid primary key lookup: 3003 ** nInMult table searches to find the initial entry for each range 3004 ** + nRow steps through the table 3005 */ 3006 cost += nInMul*log10N; 3007 } 3008 } 3009 3010 /* Add in the estimated cost of sorting the result. Actual experimental 3011 ** measurements of sorting performance in SQLite show that sorting time 3012 ** adds C*N*log10(N) to the cost, where N is the number of rows to be 3013 ** sorted and C is a factor between 1.95 and 4.3. We will split the 3014 ** difference and select C of 3.0. 3015 */ 3016 if( bSort ){ 3017 cost += nRow*estLog(nRow)*3; 3018 } 3019 3020 /**** Cost of using this index has now been computed ****/ 3021 3022 /* If there are additional constraints on this table that cannot 3023 ** be used with the current index, but which might lower the number 3024 ** of output rows, adjust the nRow value accordingly. This only 3025 ** matters if the current index is the least costly, so do not bother 3026 ** with this step if we already know this index will not be chosen. 3027 ** Also, never reduce the output row count below 2 using this step. 3028 ** 3029 ** It is critical that the notValid mask be used here instead of 3030 ** the notReady mask. When computing an "optimal" index, the notReady 3031 ** mask will only have one bit set - the bit for the current table. 3032 ** The notValid mask, on the other hand, always has all bits set for 3033 ** tables that are not in outer loops. If notReady is used here instead 3034 ** of notValid, then a optimal index that depends on inner joins loops 3035 ** might be selected even when there exists an optimal index that has 3036 ** no such dependency. 3037 */ 3038 if( nRow>2 && cost<=pCost->rCost ){ 3039 int k; /* Loop counter */ 3040 int nSkipEq = nEq; /* Number of == constraints to skip */ 3041 int nSkipRange = nBound; /* Number of < constraints to skip */ 3042 Bitmask thisTab; /* Bitmap for pSrc */ 3043 3044 thisTab = getMask(pWC->pMaskSet, iCur); 3045 for(pTerm=pWC->a, k=pWC->nTerm; nRow>2 && k; k--, pTerm++){ 3046 if( pTerm->wtFlags & TERM_VIRTUAL ) continue; 3047 if( (pTerm->prereqAll & notValid)!=thisTab ) continue; 3048 if( pTerm->eOperator & (WO_EQ|WO_IN|WO_ISNULL) ){ 3049 if( nSkipEq ){ 3050 /* Ignore the first nEq equality matches since the index 3051 ** has already accounted for these */ 3052 nSkipEq--; 3053 }else{ 3054 /* Assume each additional equality match reduces the result 3055 ** set size by a factor of 10 */ 3056 nRow /= 10; 3057 } 3058 }else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){ 3059 if( nSkipRange ){ 3060 /* Ignore the first nSkipRange range constraints since the index 3061 ** has already accounted for these */ 3062 nSkipRange--; 3063 }else{ 3064 /* Assume each additional range constraint reduces the result 3065 ** set size by a factor of 3. Indexed range constraints reduce 3066 ** the search space by a larger factor: 4. We make indexed range 3067 ** more selective intentionally because of the subjective 3068 ** observation that indexed range constraints really are more 3069 ** selective in practice, on average. */ 3070 nRow /= 3; 3071 } 3072 }else if( pTerm->eOperator!=WO_NOOP ){ 3073 /* Any other expression lowers the output row count by half */ 3074 nRow /= 2; 3075 } 3076 } 3077 if( nRow<2 ) nRow = 2; 3078 } 3079 3080 3081 WHERETRACE(( 3082 "%s(%s): nEq=%d nInMul=%d estBound=%d bSort=%d bLookup=%d wsFlags=0x%x\n" 3083 " notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f used=0x%llx\n", 3084 pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"), 3085 nEq, nInMul, estBound, bSort, bLookup, wsFlags, 3086 notReady, log10N, nRow, cost, used 3087 )); 3088 3089 /* If this index is the best we have seen so far, then record this 3090 ** index and its cost in the pCost structure. 3091 */ 3092 if( (!pIdx || wsFlags) 3093 && (cost<pCost->rCost || (cost<=pCost->rCost && nRow<pCost->plan.nRow)) 3094 ){ 3095 pCost->rCost = cost; 3096 pCost->used = used; 3097 pCost->plan.nRow = nRow; 3098 pCost->plan.wsFlags = (wsFlags&wsFlagMask); 3099 pCost->plan.nEq = nEq; 3100 pCost->plan.u.pIdx = pIdx; 3101 } 3102 3103 /* If there was an INDEXED BY clause, then only that one index is 3104 ** considered. */ 3105 if( pSrc->pIndex ) break; 3106 3107 /* Reset masks for the next index in the loop */ 3108 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE); 3109 eqTermMask = idxEqTermMask; 3110 } 3111 3112 /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag 3113 ** is set, then reverse the order that the index will be scanned 3114 ** in. This is used for application testing, to help find cases 3115 ** where application behaviour depends on the (undefined) order that 3116 ** SQLite outputs rows in in the absence of an ORDER BY clause. */ 3117 if( !pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){ 3118 pCost->plan.wsFlags |= WHERE_REVERSE; 3119 } 3120 3121 assert( pOrderBy || (pCost->plan.wsFlags&WHERE_ORDERBY)==0 ); 3122 assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 ); 3123 assert( pSrc->pIndex==0 3124 || pCost->plan.u.pIdx==0 3125 || pCost->plan.u.pIdx==pSrc->pIndex 3126 ); 3127 3128 WHERETRACE(("best index is: %s\n", 3129 ((pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ? "none" : 3130 pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk") 3131 )); 3132 3133 bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost); 3134 bestAutomaticIndex(pParse, pWC, pSrc, notReady, pCost); 3135 pCost->plan.wsFlags |= eqTermMask; 3136 } 3137 3138 /* 3139 ** Find the query plan for accessing table pSrc->pTab. Write the 3140 ** best query plan and its cost into the WhereCost object supplied 3141 ** as the last parameter. This function may calculate the cost of 3142 ** both real and virtual table scans. 3143 */ 3144 static void bestIndex( 3145 Parse *pParse, /* The parsing context */ 3146 WhereClause *pWC, /* The WHERE clause */ 3147 struct SrcList_item *pSrc, /* The FROM clause term to search */ 3148 Bitmask notReady, /* Mask of cursors not available for indexing */ 3149 Bitmask notValid, /* Cursors not available for any purpose */ 3150 ExprList *pOrderBy, /* The ORDER BY clause */ 3151 WhereCost *pCost /* Lowest cost query plan */ 3152 ){ 3153 #ifndef SQLITE_OMIT_VIRTUALTABLE 3154 if( IsVirtual(pSrc->pTab) ){ 3155 sqlite3_index_info *p = 0; 3156 bestVirtualIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost,&p); 3157 if( p->needToFreeIdxStr ){ 3158 sqlite3_free(p->idxStr); 3159 } 3160 sqlite3DbFree(pParse->db, p); 3161 }else 3162 #endif 3163 { 3164 bestBtreeIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost); 3165 } 3166 } 3167 3168 /* 3169 ** Disable a term in the WHERE clause. Except, do not disable the term 3170 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 3171 ** or USING clause of that join. 3172 ** 3173 ** Consider the term t2.z='ok' in the following queries: 3174 ** 3175 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 3176 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 3177 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 3178 ** 3179 ** The t2.z='ok' is disabled in the in (2) because it originates 3180 ** in the ON clause. The term is disabled in (3) because it is not part 3181 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 3182 ** 3183 ** IMPLEMENTATION-OF: R-24597-58655 No tests are done for terms that are 3184 ** completely satisfied by indices. 3185 ** 3186 ** Disabling a term causes that term to not be tested in the inner loop 3187 ** of the join. Disabling is an optimization. When terms are satisfied 3188 ** by indices, we disable them to prevent redundant tests in the inner 3189 ** loop. We would get the correct results if nothing were ever disabled, 3190 ** but joins might run a little slower. The trick is to disable as much 3191 ** as we can without disabling too much. If we disabled in (1), we'd get 3192 ** the wrong answer. See ticket #813. 3193 */ 3194 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 3195 if( pTerm 3196 && (pTerm->wtFlags & TERM_CODED)==0 3197 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 3198 ){ 3199 pTerm->wtFlags |= TERM_CODED; 3200 if( pTerm->iParent>=0 ){ 3201 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; 3202 if( (--pOther->nChild)==0 ){ 3203 disableTerm(pLevel, pOther); 3204 } 3205 } 3206 } 3207 } 3208 3209 /* 3210 ** Code an OP_Affinity opcode to apply the column affinity string zAff 3211 ** to the n registers starting at base. 3212 ** 3213 ** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the 3214 ** beginning and end of zAff are ignored. If all entries in zAff are 3215 ** SQLITE_AFF_NONE, then no code gets generated. 3216 ** 3217 ** This routine makes its own copy of zAff so that the caller is free 3218 ** to modify zAff after this routine returns. 3219 */ 3220 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 3221 Vdbe *v = pParse->pVdbe; 3222 if( zAff==0 ){ 3223 assert( pParse->db->mallocFailed ); 3224 return; 3225 } 3226 assert( v!=0 ); 3227 3228 /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning 3229 ** and end of the affinity string. 3230 */ 3231 while( n>0 && zAff[0]==SQLITE_AFF_NONE ){ 3232 n--; 3233 base++; 3234 zAff++; 3235 } 3236 while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){ 3237 n--; 3238 } 3239 3240 /* Code the OP_Affinity opcode if there is anything left to do. */ 3241 if( n>0 ){ 3242 sqlite3VdbeAddOp2(v, OP_Affinity, base, n); 3243 sqlite3VdbeChangeP4(v, -1, zAff, n); 3244 sqlite3ExprCacheAffinityChange(pParse, base, n); 3245 } 3246 } 3247 3248 3249 /* 3250 ** Generate code for a single equality term of the WHERE clause. An equality 3251 ** term can be either X=expr or X IN (...). pTerm is the term to be 3252 ** coded. 3253 ** 3254 ** The current value for the constraint is left in register iReg. 3255 ** 3256 ** For a constraint of the form X=expr, the expression is evaluated and its 3257 ** result is left on the stack. For constraints of the form X IN (...) 3258 ** this routine sets up a loop that will iterate over all values of X. 3259 */ 3260 static int codeEqualityTerm( 3261 Parse *pParse, /* The parsing context */ 3262 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 3263 WhereLevel *pLevel, /* When level of the FROM clause we are working on */ 3264 int iTarget /* Attempt to leave results in this register */ 3265 ){ 3266 Expr *pX = pTerm->pExpr; 3267 Vdbe *v = pParse->pVdbe; 3268 int iReg; /* Register holding results */ 3269 3270 assert( iTarget>0 ); 3271 if( pX->op==TK_EQ ){ 3272 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 3273 }else if( pX->op==TK_ISNULL ){ 3274 iReg = iTarget; 3275 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 3276 #ifndef SQLITE_OMIT_SUBQUERY 3277 }else{ 3278 int eType; 3279 int iTab; 3280 struct InLoop *pIn; 3281 3282 assert( pX->op==TK_IN ); 3283 iReg = iTarget; 3284 eType = sqlite3FindInIndex(pParse, pX, 0); 3285 iTab = pX->iTable; 3286 sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); 3287 assert( pLevel->plan.wsFlags & WHERE_IN_ABLE ); 3288 if( pLevel->u.in.nIn==0 ){ 3289 pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 3290 } 3291 pLevel->u.in.nIn++; 3292 pLevel->u.in.aInLoop = 3293 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 3294 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 3295 pIn = pLevel->u.in.aInLoop; 3296 if( pIn ){ 3297 pIn += pLevel->u.in.nIn - 1; 3298 pIn->iCur = iTab; 3299 if( eType==IN_INDEX_ROWID ){ 3300 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); 3301 }else{ 3302 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); 3303 } 3304 sqlite3VdbeAddOp1(v, OP_IsNull, iReg); 3305 }else{ 3306 pLevel->u.in.nIn = 0; 3307 } 3308 #endif 3309 } 3310 disableTerm(pLevel, pTerm); 3311 return iReg; 3312 } 3313 3314 /* 3315 ** Generate code that will evaluate all == and IN constraints for an 3316 ** index. 3317 ** 3318 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 3319 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 3320 ** The index has as many as three equality constraints, but in this 3321 ** example, the third "c" value is an inequality. So only two 3322 ** constraints are coded. This routine will generate code to evaluate 3323 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 3324 ** in consecutive registers and the index of the first register is returned. 3325 ** 3326 ** In the example above nEq==2. But this subroutine works for any value 3327 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 3328 ** The only thing it does is allocate the pLevel->iMem memory cell and 3329 ** compute the affinity string. 3330 ** 3331 ** This routine always allocates at least one memory cell and returns 3332 ** the index of that memory cell. The code that 3333 ** calls this routine will use that memory cell to store the termination 3334 ** key value of the loop. If one or more IN operators appear, then 3335 ** this routine allocates an additional nEq memory cells for internal 3336 ** use. 3337 ** 3338 ** Before returning, *pzAff is set to point to a buffer containing a 3339 ** copy of the column affinity string of the index allocated using 3340 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 3341 ** with equality constraints that use NONE affinity are set to 3342 ** SQLITE_AFF_NONE. This is to deal with SQL such as the following: 3343 ** 3344 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 3345 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 3346 ** 3347 ** In the example above, the index on t1(a) has TEXT affinity. But since 3348 ** the right hand side of the equality constraint (t2.b) has NONE affinity, 3349 ** no conversion should be attempted before using a t2.b value as part of 3350 ** a key to search the index. Hence the first byte in the returned affinity 3351 ** string in this example would be set to SQLITE_AFF_NONE. 3352 */ 3353 static int codeAllEqualityTerms( 3354 Parse *pParse, /* Parsing context */ 3355 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 3356 WhereClause *pWC, /* The WHERE clause */ 3357 Bitmask notReady, /* Which parts of FROM have not yet been coded */ 3358 int nExtraReg, /* Number of extra registers to allocate */ 3359 char **pzAff /* OUT: Set to point to affinity string */ 3360 ){ 3361 int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */ 3362 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 3363 Index *pIdx; /* The index being used for this loop */ 3364 int iCur = pLevel->iTabCur; /* The cursor of the table */ 3365 WhereTerm *pTerm; /* A single constraint term */ 3366 int j; /* Loop counter */ 3367 int regBase; /* Base register */ 3368 int nReg; /* Number of registers to allocate */ 3369 char *zAff; /* Affinity string to return */ 3370 3371 /* This module is only called on query plans that use an index. */ 3372 assert( pLevel->plan.wsFlags & WHERE_INDEXED ); 3373 pIdx = pLevel->plan.u.pIdx; 3374 3375 /* Figure out how many memory cells we will need then allocate them. 3376 */ 3377 regBase = pParse->nMem + 1; 3378 nReg = pLevel->plan.nEq + nExtraReg; 3379 pParse->nMem += nReg; 3380 3381 zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx)); 3382 if( !zAff ){ 3383 pParse->db->mallocFailed = 1; 3384 } 3385 3386 /* Evaluate the equality constraints 3387 */ 3388 assert( pIdx->nColumn>=nEq ); 3389 for(j=0; j<nEq; j++){ 3390 int r1; 3391 int k = pIdx->aiColumn[j]; 3392 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx); 3393 if( NEVER(pTerm==0) ) break; 3394 /* The following true for indices with redundant columns. 3395 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 3396 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 3397 testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ 3398 r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j); 3399 if( r1!=regBase+j ){ 3400 if( nReg==1 ){ 3401 sqlite3ReleaseTempReg(pParse, regBase); 3402 regBase = r1; 3403 }else{ 3404 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 3405 } 3406 } 3407 testcase( pTerm->eOperator & WO_ISNULL ); 3408 testcase( pTerm->eOperator & WO_IN ); 3409 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ 3410 Expr *pRight = pTerm->pExpr->pRight; 3411 sqlite3ExprCodeIsNullJump(v, pRight, regBase+j, pLevel->addrBrk); 3412 if( zAff ){ 3413 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){ 3414 zAff[j] = SQLITE_AFF_NONE; 3415 } 3416 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 3417 zAff[j] = SQLITE_AFF_NONE; 3418 } 3419 } 3420 } 3421 } 3422 *pzAff = zAff; 3423 return regBase; 3424 } 3425 3426 #ifndef SQLITE_OMIT_EXPLAIN 3427 /* 3428 ** This routine is a helper for explainIndexRange() below 3429 ** 3430 ** pStr holds the text of an expression that we are building up one term 3431 ** at a time. This routine adds a new term to the end of the expression. 3432 ** Terms are separated by AND so add the "AND" text for second and subsequent 3433 ** terms only. 3434 */ 3435 static void explainAppendTerm( 3436 StrAccum *pStr, /* The text expression being built */ 3437 int iTerm, /* Index of this term. First is zero */ 3438 const char *zColumn, /* Name of the column */ 3439 const char *zOp /* Name of the operator */ 3440 ){ 3441 if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5); 3442 sqlite3StrAccumAppend(pStr, zColumn, -1); 3443 sqlite3StrAccumAppend(pStr, zOp, 1); 3444 sqlite3StrAccumAppend(pStr, "?", 1); 3445 } 3446 3447 /* 3448 ** Argument pLevel describes a strategy for scanning table pTab. This 3449 ** function returns a pointer to a string buffer containing a description 3450 ** of the subset of table rows scanned by the strategy in the form of an 3451 ** SQL expression. Or, if all rows are scanned, NULL is returned. 3452 ** 3453 ** For example, if the query: 3454 ** 3455 ** SELECT * FROM t1 WHERE a=1 AND b>2; 3456 ** 3457 ** is run and there is an index on (a, b), then this function returns a 3458 ** string similar to: 3459 ** 3460 ** "a=? AND b>?" 3461 ** 3462 ** The returned pointer points to memory obtained from sqlite3DbMalloc(). 3463 ** It is the responsibility of the caller to free the buffer when it is 3464 ** no longer required. 3465 */ 3466 static char *explainIndexRange(sqlite3 *db, WhereLevel *pLevel, Table *pTab){ 3467 WherePlan *pPlan = &pLevel->plan; 3468 Index *pIndex = pPlan->u.pIdx; 3469 int nEq = pPlan->nEq; 3470 int i, j; 3471 Column *aCol = pTab->aCol; 3472 int *aiColumn = pIndex->aiColumn; 3473 StrAccum txt; 3474 3475 if( nEq==0 && (pPlan->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ){ 3476 return 0; 3477 } 3478 sqlite3StrAccumInit(&txt, 0, 0, SQLITE_MAX_LENGTH); 3479 txt.db = db; 3480 sqlite3StrAccumAppend(&txt, " (", 2); 3481 for(i=0; i<nEq; i++){ 3482 explainAppendTerm(&txt, i, aCol[aiColumn[i]].zName, "="); 3483 } 3484 3485 j = i; 3486 if( pPlan->wsFlags&WHERE_BTM_LIMIT ){ 3487 explainAppendTerm(&txt, i++, aCol[aiColumn[j]].zName, ">"); 3488 } 3489 if( pPlan->wsFlags&WHERE_TOP_LIMIT ){ 3490 explainAppendTerm(&txt, i, aCol[aiColumn[j]].zName, "<"); 3491 } 3492 sqlite3StrAccumAppend(&txt, ")", 1); 3493 return sqlite3StrAccumFinish(&txt); 3494 } 3495 3496 /* 3497 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 3498 ** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single 3499 ** record is added to the output to describe the table scan strategy in 3500 ** pLevel. 3501 */ 3502 static void explainOneScan( 3503 Parse *pParse, /* Parse context */ 3504 SrcList *pTabList, /* Table list this loop refers to */ 3505 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 3506 int iLevel, /* Value for "level" column of output */ 3507 int iFrom, /* Value for "from" column of output */ 3508 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 3509 ){ 3510 if( pParse->explain==2 ){ 3511 u32 flags = pLevel->plan.wsFlags; 3512 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 3513 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 3514 sqlite3 *db = pParse->db; /* Database handle */ 3515 char *zMsg; /* Text to add to EQP output */ 3516 sqlite3_int64 nRow; /* Expected number of rows visited by scan */ 3517 int iId = pParse->iSelectId; /* Select id (left-most output column) */ 3518 int isSearch; /* True for a SEARCH. False for SCAN. */ 3519 3520 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return; 3521 3522 isSearch = (pLevel->plan.nEq>0) 3523 || (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 3524 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 3525 3526 zMsg = sqlite3MPrintf(db, "%s", isSearch?"SEARCH":"SCAN"); 3527 if( pItem->pSelect ){ 3528 zMsg = sqlite3MAppendf(db, zMsg, "%s SUBQUERY %d", zMsg,pItem->iSelectId); 3529 }else{ 3530 zMsg = sqlite3MAppendf(db, zMsg, "%s TABLE %s", zMsg, pItem->zName); 3531 } 3532 3533 if( pItem->zAlias ){ 3534 zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias); 3535 } 3536 if( (flags & WHERE_INDEXED)!=0 ){ 3537 char *zWhere = explainIndexRange(db, pLevel, pItem->pTab); 3538 zMsg = sqlite3MAppendf(db, zMsg, "%s USING %s%sINDEX%s%s%s", zMsg, 3539 ((flags & WHERE_TEMP_INDEX)?"AUTOMATIC ":""), 3540 ((flags & WHERE_IDX_ONLY)?"COVERING ":""), 3541 ((flags & WHERE_TEMP_INDEX)?"":" "), 3542 ((flags & WHERE_TEMP_INDEX)?"": pLevel->plan.u.pIdx->zName), 3543 zWhere 3544 ); 3545 sqlite3DbFree(db, zWhere); 3546 }else if( flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 3547 zMsg = sqlite3MAppendf(db, zMsg, "%s USING INTEGER PRIMARY KEY", zMsg); 3548 3549 if( flags&WHERE_ROWID_EQ ){ 3550 zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid=?)", zMsg); 3551 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 3552 zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>? AND rowid<?)", zMsg); 3553 }else if( flags&WHERE_BTM_LIMIT ){ 3554 zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>?)", zMsg); 3555 }else if( flags&WHERE_TOP_LIMIT ){ 3556 zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid<?)", zMsg); 3557 } 3558 } 3559 #ifndef SQLITE_OMIT_VIRTUALTABLE 3560 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 3561 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx; 3562 zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg, 3563 pVtabIdx->idxNum, pVtabIdx->idxStr); 3564 } 3565 #endif 3566 if( wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ){ 3567 testcase( wctrlFlags & WHERE_ORDERBY_MIN ); 3568 nRow = 1; 3569 }else{ 3570 nRow = (sqlite3_int64)pLevel->plan.nRow; 3571 } 3572 zMsg = sqlite3MAppendf(db, zMsg, "%s (~%lld rows)", zMsg, nRow); 3573 sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC); 3574 } 3575 } 3576 #else 3577 # define explainOneScan(u,v,w,x,y,z) 3578 #endif /* SQLITE_OMIT_EXPLAIN */ 3579 3580 3581 /* 3582 ** Generate code for the start of the iLevel-th loop in the WHERE clause 3583 ** implementation described by pWInfo. 3584 */ 3585 static Bitmask codeOneLoopStart( 3586 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 3587 int iLevel, /* Which level of pWInfo->a[] should be coded */ 3588 u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */ 3589 Bitmask notReady /* Which tables are currently available */ 3590 ){ 3591 int j, k; /* Loop counters */ 3592 int iCur; /* The VDBE cursor for the table */ 3593 int addrNxt; /* Where to jump to continue with the next IN case */ 3594 int omitTable; /* True if we use the index only */ 3595 int bRev; /* True if we need to scan in reverse order */ 3596 WhereLevel *pLevel; /* The where level to be coded */ 3597 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 3598 WhereTerm *pTerm; /* A WHERE clause term */ 3599 Parse *pParse; /* Parsing context */ 3600 Vdbe *v; /* The prepared stmt under constructions */ 3601 struct SrcList_item *pTabItem; /* FROM clause term being coded */ 3602 int addrBrk; /* Jump here to break out of the loop */ 3603 int addrCont; /* Jump here to continue with next cycle */ 3604 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 3605 int iReleaseReg = 0; /* Temp register to free before returning */ 3606 3607 pParse = pWInfo->pParse; 3608 v = pParse->pVdbe; 3609 pWC = pWInfo->pWC; 3610 pLevel = &pWInfo->a[iLevel]; 3611 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 3612 iCur = pTabItem->iCursor; 3613 bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0; 3614 omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0 3615 && (wctrlFlags & WHERE_FORCE_TABLE)==0; 3616 3617 /* Create labels for the "break" and "continue" instructions 3618 ** for the current loop. Jump to addrBrk to break out of a loop. 3619 ** Jump to cont to go immediately to the next iteration of the 3620 ** loop. 3621 ** 3622 ** When there is an IN operator, we also have a "addrNxt" label that 3623 ** means to continue with the next IN value combination. When 3624 ** there are no IN operators in the constraints, the "addrNxt" label 3625 ** is the same as "addrBrk". 3626 */ 3627 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 3628 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); 3629 3630 /* If this is the right table of a LEFT OUTER JOIN, allocate and 3631 ** initialize a memory cell that records if this table matches any 3632 ** row of the left table of the join. 3633 */ 3634 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ 3635 pLevel->iLeftJoin = ++pParse->nMem; 3636 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 3637 VdbeComment((v, "init LEFT JOIN no-match flag")); 3638 } 3639 3640 #ifndef SQLITE_OMIT_VIRTUALTABLE 3641 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 3642 /* Case 0: The table is a virtual-table. Use the VFilter and VNext 3643 ** to access the data. 3644 */ 3645 int iReg; /* P3 Value for OP_VFilter */ 3646 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx; 3647 int nConstraint = pVtabIdx->nConstraint; 3648 struct sqlite3_index_constraint_usage *aUsage = 3649 pVtabIdx->aConstraintUsage; 3650 const struct sqlite3_index_constraint *aConstraint = 3651 pVtabIdx->aConstraint; 3652 3653 sqlite3ExprCachePush(pParse); 3654 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 3655 for(j=1; j<=nConstraint; j++){ 3656 for(k=0; k<nConstraint; k++){ 3657 if( aUsage[k].argvIndex==j ){ 3658 int iTerm = aConstraint[k].iTermOffset; 3659 sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1); 3660 break; 3661 } 3662 } 3663 if( k==nConstraint ) break; 3664 } 3665 sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg); 3666 sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1); 3667 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr, 3668 pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC); 3669 pVtabIdx->needToFreeIdxStr = 0; 3670 for(j=0; j<nConstraint; j++){ 3671 if( aUsage[j].omit ){ 3672 int iTerm = aConstraint[j].iTermOffset; 3673 disableTerm(pLevel, &pWC->a[iTerm]); 3674 } 3675 } 3676 pLevel->op = OP_VNext; 3677 pLevel->p1 = iCur; 3678 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 3679 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 3680 sqlite3ExprCachePop(pParse, 1); 3681 }else 3682 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3683 3684 if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){ 3685 /* Case 1: We can directly reference a single row using an 3686 ** equality comparison against the ROWID field. Or 3687 ** we reference multiple rows using a "rowid IN (...)" 3688 ** construct. 3689 */ 3690 iReleaseReg = sqlite3GetTempReg(pParse); 3691 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); 3692 assert( pTerm!=0 ); 3693 assert( pTerm->pExpr!=0 ); 3694 assert( pTerm->leftCursor==iCur ); 3695 assert( omitTable==0 ); 3696 testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ 3697 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg); 3698 addrNxt = pLevel->addrNxt; 3699 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); 3700 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); 3701 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 3702 VdbeComment((v, "pk")); 3703 pLevel->op = OP_Noop; 3704 }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){ 3705 /* Case 2: We have an inequality comparison against the ROWID field. 3706 */ 3707 int testOp = OP_Noop; 3708 int start; 3709 int memEndValue = 0; 3710 WhereTerm *pStart, *pEnd; 3711 3712 assert( omitTable==0 ); 3713 pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0); 3714 pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0); 3715 if( bRev ){ 3716 pTerm = pStart; 3717 pStart = pEnd; 3718 pEnd = pTerm; 3719 } 3720 if( pStart ){ 3721 Expr *pX; /* The expression that defines the start bound */ 3722 int r1, rTemp; /* Registers for holding the start boundary */ 3723 3724 /* The following constant maps TK_xx codes into corresponding 3725 ** seek opcodes. It depends on a particular ordering of TK_xx 3726 */ 3727 const u8 aMoveOp[] = { 3728 /* TK_GT */ OP_SeekGt, 3729 /* TK_LE */ OP_SeekLe, 3730 /* TK_LT */ OP_SeekLt, 3731 /* TK_GE */ OP_SeekGe 3732 }; 3733 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 3734 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 3735 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 3736 3737 testcase( pStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ 3738 pX = pStart->pExpr; 3739 assert( pX!=0 ); 3740 assert( pStart->leftCursor==iCur ); 3741 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 3742 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); 3743 VdbeComment((v, "pk")); 3744 sqlite3ExprCacheAffinityChange(pParse, r1, 1); 3745 sqlite3ReleaseTempReg(pParse, rTemp); 3746 disableTerm(pLevel, pStart); 3747 }else{ 3748 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); 3749 } 3750 if( pEnd ){ 3751 Expr *pX; 3752 pX = pEnd->pExpr; 3753 assert( pX!=0 ); 3754 assert( pEnd->leftCursor==iCur ); 3755 testcase( pEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ 3756 memEndValue = ++pParse->nMem; 3757 sqlite3ExprCode(pParse, pX->pRight, memEndValue); 3758 if( pX->op==TK_LT || pX->op==TK_GT ){ 3759 testOp = bRev ? OP_Le : OP_Ge; 3760 }else{ 3761 testOp = bRev ? OP_Lt : OP_Gt; 3762 } 3763 disableTerm(pLevel, pEnd); 3764 } 3765 start = sqlite3VdbeCurrentAddr(v); 3766 pLevel->op = bRev ? OP_Prev : OP_Next; 3767 pLevel->p1 = iCur; 3768 pLevel->p2 = start; 3769 if( pStart==0 && pEnd==0 ){ 3770 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 3771 }else{ 3772 assert( pLevel->p5==0 ); 3773 } 3774 if( testOp!=OP_Noop ){ 3775 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse); 3776 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 3777 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 3778 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 3779 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 3780 } 3781 }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){ 3782 /* Case 3: A scan using an index. 3783 ** 3784 ** The WHERE clause may contain zero or more equality 3785 ** terms ("==" or "IN" operators) that refer to the N 3786 ** left-most columns of the index. It may also contain 3787 ** inequality constraints (>, <, >= or <=) on the indexed 3788 ** column that immediately follows the N equalities. Only 3789 ** the right-most column can be an inequality - the rest must 3790 ** use the "==" and "IN" operators. For example, if the 3791 ** index is on (x,y,z), then the following clauses are all 3792 ** optimized: 3793 ** 3794 ** x=5 3795 ** x=5 AND y=10 3796 ** x=5 AND y<10 3797 ** x=5 AND y>5 AND y<10 3798 ** x=5 AND y=5 AND z<=10 3799 ** 3800 ** The z<10 term of the following cannot be used, only 3801 ** the x=5 term: 3802 ** 3803 ** x=5 AND z<10 3804 ** 3805 ** N may be zero if there are inequality constraints. 3806 ** If there are no inequality constraints, then N is at 3807 ** least one. 3808 ** 3809 ** This case is also used when there are no WHERE clause 3810 ** constraints but an index is selected anyway, in order 3811 ** to force the output order to conform to an ORDER BY. 3812 */ 3813 static const u8 aStartOp[] = { 3814 0, 3815 0, 3816 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 3817 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 3818 OP_SeekGt, /* 4: (start_constraints && !startEq && !bRev) */ 3819 OP_SeekLt, /* 5: (start_constraints && !startEq && bRev) */ 3820 OP_SeekGe, /* 6: (start_constraints && startEq && !bRev) */ 3821 OP_SeekLe /* 7: (start_constraints && startEq && bRev) */ 3822 }; 3823 static const u8 aEndOp[] = { 3824 OP_Noop, /* 0: (!end_constraints) */ 3825 OP_IdxGE, /* 1: (end_constraints && !bRev) */ 3826 OP_IdxLT /* 2: (end_constraints && bRev) */ 3827 }; 3828 int nEq = pLevel->plan.nEq; /* Number of == or IN terms */ 3829 int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */ 3830 int regBase; /* Base register holding constraint values */ 3831 int r1; /* Temp register */ 3832 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 3833 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 3834 int startEq; /* True if range start uses ==, >= or <= */ 3835 int endEq; /* True if range end uses ==, >= or <= */ 3836 int start_constraints; /* Start of range is constrained */ 3837 int nConstraint; /* Number of constraint terms */ 3838 Index *pIdx; /* The index we will be using */ 3839 int iIdxCur; /* The VDBE cursor for the index */ 3840 int nExtraReg = 0; /* Number of extra registers needed */ 3841 int op; /* Instruction opcode */ 3842 char *zStartAff; /* Affinity for start of range constraint */ 3843 char *zEndAff; /* Affinity for end of range constraint */ 3844 3845 pIdx = pLevel->plan.u.pIdx; 3846 iIdxCur = pLevel->iIdxCur; 3847 k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */ 3848 3849 /* If this loop satisfies a sort order (pOrderBy) request that 3850 ** was passed to this function to implement a "SELECT min(x) ..." 3851 ** query, then the caller will only allow the loop to run for 3852 ** a single iteration. This means that the first row returned 3853 ** should not have a NULL value stored in 'x'. If column 'x' is 3854 ** the first one after the nEq equality constraints in the index, 3855 ** this requires some special handling. 3856 */ 3857 if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0 3858 && (pLevel->plan.wsFlags&WHERE_ORDERBY) 3859 && (pIdx->nColumn>nEq) 3860 ){ 3861 /* assert( pOrderBy->nExpr==1 ); */ 3862 /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */ 3863 isMinQuery = 1; 3864 nExtraReg = 1; 3865 } 3866 3867 /* Find any inequality constraint terms for the start and end 3868 ** of the range. 3869 */ 3870 if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){ 3871 pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx); 3872 nExtraReg = 1; 3873 } 3874 if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){ 3875 pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx); 3876 nExtraReg = 1; 3877 } 3878 3879 /* Generate code to evaluate all constraint terms using == or IN 3880 ** and store the values of those terms in an array of registers 3881 ** starting at regBase. 3882 */ 3883 regBase = codeAllEqualityTerms( 3884 pParse, pLevel, pWC, notReady, nExtraReg, &zStartAff 3885 ); 3886 zEndAff = sqlite3DbStrDup(pParse->db, zStartAff); 3887 addrNxt = pLevel->addrNxt; 3888 3889 /* If we are doing a reverse order scan on an ascending index, or 3890 ** a forward order scan on a descending index, interchange the 3891 ** start and end terms (pRangeStart and pRangeEnd). 3892 */ 3893 if( nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){ 3894 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 3895 } 3896 3897 testcase( pRangeStart && pRangeStart->eOperator & WO_LE ); 3898 testcase( pRangeStart && pRangeStart->eOperator & WO_GE ); 3899 testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE ); 3900 testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE ); 3901 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 3902 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 3903 start_constraints = pRangeStart || nEq>0; 3904 3905 /* Seek the index cursor to the start of the range. */ 3906 nConstraint = nEq; 3907 if( pRangeStart ){ 3908 Expr *pRight = pRangeStart->pExpr->pRight; 3909 sqlite3ExprCode(pParse, pRight, regBase+nEq); 3910 if( (pRangeStart->wtFlags & TERM_VNULL)==0 ){ 3911 sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt); 3912 } 3913 if( zStartAff ){ 3914 if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){ 3915 /* Since the comparison is to be performed with no conversions 3916 ** applied to the operands, set the affinity to apply to pRight to 3917 ** SQLITE_AFF_NONE. */ 3918 zStartAff[nEq] = SQLITE_AFF_NONE; 3919 } 3920 if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ 3921 zStartAff[nEq] = SQLITE_AFF_NONE; 3922 } 3923 } 3924 nConstraint++; 3925 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ 3926 }else if( isMinQuery ){ 3927 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 3928 nConstraint++; 3929 startEq = 0; 3930 start_constraints = 1; 3931 } 3932 codeApplyAffinity(pParse, regBase, nConstraint, zStartAff); 3933 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 3934 assert( op!=0 ); 3935 testcase( op==OP_Rewind ); 3936 testcase( op==OP_Last ); 3937 testcase( op==OP_SeekGt ); 3938 testcase( op==OP_SeekGe ); 3939 testcase( op==OP_SeekLe ); 3940 testcase( op==OP_SeekLt ); 3941 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 3942 3943 /* Load the value for the inequality constraint at the end of the 3944 ** range (if any). 3945 */ 3946 nConstraint = nEq; 3947 if( pRangeEnd ){ 3948 Expr *pRight = pRangeEnd->pExpr->pRight; 3949 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); 3950 sqlite3ExprCode(pParse, pRight, regBase+nEq); 3951 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 ){ 3952 sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt); 3953 } 3954 if( zEndAff ){ 3955 if( sqlite3CompareAffinity(pRight, zEndAff[nEq])==SQLITE_AFF_NONE){ 3956 /* Since the comparison is to be performed with no conversions 3957 ** applied to the operands, set the affinity to apply to pRight to 3958 ** SQLITE_AFF_NONE. */ 3959 zEndAff[nEq] = SQLITE_AFF_NONE; 3960 } 3961 if( sqlite3ExprNeedsNoAffinityChange(pRight, zEndAff[nEq]) ){ 3962 zEndAff[nEq] = SQLITE_AFF_NONE; 3963 } 3964 } 3965 codeApplyAffinity(pParse, regBase, nEq+1, zEndAff); 3966 nConstraint++; 3967 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ 3968 } 3969 sqlite3DbFree(pParse->db, zStartAff); 3970 sqlite3DbFree(pParse->db, zEndAff); 3971 3972 /* Top of the loop body */ 3973 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 3974 3975 /* Check if the index cursor is past the end of the range. */ 3976 op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)]; 3977 testcase( op==OP_Noop ); 3978 testcase( op==OP_IdxGE ); 3979 testcase( op==OP_IdxLT ); 3980 if( op!=OP_Noop ){ 3981 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 3982 sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0); 3983 } 3984 3985 /* If there are inequality constraints, check that the value 3986 ** of the table column that the inequality contrains is not NULL. 3987 ** If it is, jump to the next iteration of the loop. 3988 */ 3989 r1 = sqlite3GetTempReg(pParse); 3990 testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ); 3991 testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ); 3992 if( (pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 ){ 3993 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1); 3994 sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont); 3995 } 3996 sqlite3ReleaseTempReg(pParse, r1); 3997 3998 /* Seek the table cursor, if required */ 3999 disableTerm(pLevel, pRangeStart); 4000 disableTerm(pLevel, pRangeEnd); 4001 if( !omitTable ){ 4002 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse); 4003 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); 4004 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 4005 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ 4006 } 4007 4008 /* Record the instruction used to terminate the loop. Disable 4009 ** WHERE clause terms made redundant by the index range scan. 4010 */ 4011 if( pLevel->plan.wsFlags & WHERE_UNIQUE ){ 4012 pLevel->op = OP_Noop; 4013 }else if( bRev ){ 4014 pLevel->op = OP_Prev; 4015 }else{ 4016 pLevel->op = OP_Next; 4017 } 4018 pLevel->p1 = iIdxCur; 4019 }else 4020 4021 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 4022 if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){ 4023 /* Case 4: Two or more separately indexed terms connected by OR 4024 ** 4025 ** Example: 4026 ** 4027 ** CREATE TABLE t1(a,b,c,d); 4028 ** CREATE INDEX i1 ON t1(a); 4029 ** CREATE INDEX i2 ON t1(b); 4030 ** CREATE INDEX i3 ON t1(c); 4031 ** 4032 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 4033 ** 4034 ** In the example, there are three indexed terms connected by OR. 4035 ** The top of the loop looks like this: 4036 ** 4037 ** Null 1 # Zero the rowset in reg 1 4038 ** 4039 ** Then, for each indexed term, the following. The arguments to 4040 ** RowSetTest are such that the rowid of the current row is inserted 4041 ** into the RowSet. If it is already present, control skips the 4042 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 4043 ** 4044 ** sqlite3WhereBegin(<term>) 4045 ** RowSetTest # Insert rowid into rowset 4046 ** Gosub 2 A 4047 ** sqlite3WhereEnd() 4048 ** 4049 ** Following the above, code to terminate the loop. Label A, the target 4050 ** of the Gosub above, jumps to the instruction right after the Goto. 4051 ** 4052 ** Null 1 # Zero the rowset in reg 1 4053 ** Goto B # The loop is finished. 4054 ** 4055 ** A: <loop body> # Return data, whatever. 4056 ** 4057 ** Return 2 # Jump back to the Gosub 4058 ** 4059 ** B: <after the loop> 4060 ** 4061 */ 4062 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 4063 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 4064 4065 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 4066 int regRowset = 0; /* Register for RowSet object */ 4067 int regRowid = 0; /* Register holding rowid */ 4068 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ 4069 int iRetInit; /* Address of regReturn init */ 4070 int untestedTerms = 0; /* Some terms not completely tested */ 4071 int ii; 4072 4073 pTerm = pLevel->plan.u.pTerm; 4074 assert( pTerm!=0 ); 4075 assert( pTerm->eOperator==WO_OR ); 4076 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 4077 pOrWc = &pTerm->u.pOrInfo->wc; 4078 pLevel->op = OP_Return; 4079 pLevel->p1 = regReturn; 4080 4081 /* Set up a new SrcList ni pOrTab containing the table being scanned 4082 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 4083 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 4084 */ 4085 if( pWInfo->nLevel>1 ){ 4086 int nNotReady; /* The number of notReady tables */ 4087 struct SrcList_item *origSrc; /* Original list of tables */ 4088 nNotReady = pWInfo->nLevel - iLevel - 1; 4089 pOrTab = sqlite3StackAllocRaw(pParse->db, 4090 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 4091 if( pOrTab==0 ) return notReady; 4092 pOrTab->nAlloc = (i16)(nNotReady + 1); 4093 pOrTab->nSrc = pOrTab->nAlloc; 4094 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 4095 origSrc = pWInfo->pTabList->a; 4096 for(k=1; k<=nNotReady; k++){ 4097 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 4098 } 4099 }else{ 4100 pOrTab = pWInfo->pTabList; 4101 } 4102 4103 /* Initialize the rowset register to contain NULL. An SQL NULL is 4104 ** equivalent to an empty rowset. 4105 ** 4106 ** Also initialize regReturn to contain the address of the instruction 4107 ** immediately following the OP_Return at the bottom of the loop. This 4108 ** is required in a few obscure LEFT JOIN cases where control jumps 4109 ** over the top of the loop into the body of it. In this case the 4110 ** correct response for the end-of-loop code (the OP_Return) is to 4111 ** fall through to the next instruction, just as an OP_Next does if 4112 ** called on an uninitialized cursor. 4113 */ 4114 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 4115 regRowset = ++pParse->nMem; 4116 regRowid = ++pParse->nMem; 4117 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 4118 } 4119 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 4120 4121 for(ii=0; ii<pOrWc->nTerm; ii++){ 4122 WhereTerm *pOrTerm = &pOrWc->a[ii]; 4123 if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){ 4124 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 4125 /* Loop through table entries that match term pOrTerm. */ 4126 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrTerm->pExpr, 0, 4127 WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE | 4128 WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY); 4129 if( pSubWInfo ){ 4130 explainOneScan( 4131 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 4132 ); 4133 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 4134 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 4135 int r; 4136 r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, 4137 regRowid); 4138 sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 4139 sqlite3VdbeCurrentAddr(v)+2, r, iSet); 4140 } 4141 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 4142 4143 /* The pSubWInfo->untestedTerms flag means that this OR term 4144 ** contained one or more AND term from a notReady table. The 4145 ** terms from the notReady table could not be tested and will 4146 ** need to be tested later. 4147 */ 4148 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 4149 4150 /* Finish the loop through table entries that match term pOrTerm. */ 4151 sqlite3WhereEnd(pSubWInfo); 4152 } 4153 } 4154 } 4155 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 4156 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk); 4157 sqlite3VdbeResolveLabel(v, iLoopBody); 4158 4159 if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab); 4160 if( !untestedTerms ) disableTerm(pLevel, pTerm); 4161 }else 4162 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 4163 4164 { 4165 /* Case 5: There is no usable index. We must do a complete 4166 ** scan of the entire table. 4167 */ 4168 static const u8 aStep[] = { OP_Next, OP_Prev }; 4169 static const u8 aStart[] = { OP_Rewind, OP_Last }; 4170 assert( bRev==0 || bRev==1 ); 4171 assert( omitTable==0 ); 4172 pLevel->op = aStep[bRev]; 4173 pLevel->p1 = iCur; 4174 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); 4175 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 4176 } 4177 notReady &= ~getMask(pWC->pMaskSet, iCur); 4178 4179 /* Insert code to test every subexpression that can be completely 4180 ** computed using the current set of tables. 4181 ** 4182 ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through 4183 ** the use of indices become tests that are evaluated against each row of 4184 ** the relevant input tables. 4185 */ 4186 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 4187 Expr *pE; 4188 testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */ 4189 testcase( pTerm->wtFlags & TERM_CODED ); 4190 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 4191 if( (pTerm->prereqAll & notReady)!=0 ){ 4192 testcase( pWInfo->untestedTerms==0 4193 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); 4194 pWInfo->untestedTerms = 1; 4195 continue; 4196 } 4197 pE = pTerm->pExpr; 4198 assert( pE!=0 ); 4199 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 4200 continue; 4201 } 4202 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 4203 pTerm->wtFlags |= TERM_CODED; 4204 } 4205 4206 /* For a LEFT OUTER JOIN, generate code that will record the fact that 4207 ** at least one row of the right table has matched the left table. 4208 */ 4209 if( pLevel->iLeftJoin ){ 4210 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 4211 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 4212 VdbeComment((v, "record LEFT JOIN hit")); 4213 sqlite3ExprCacheClear(pParse); 4214 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 4215 testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */ 4216 testcase( pTerm->wtFlags & TERM_CODED ); 4217 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 4218 if( (pTerm->prereqAll & notReady)!=0 ){ 4219 assert( pWInfo->untestedTerms ); 4220 continue; 4221 } 4222 assert( pTerm->pExpr ); 4223 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 4224 pTerm->wtFlags |= TERM_CODED; 4225 } 4226 } 4227 sqlite3ReleaseTempReg(pParse, iReleaseReg); 4228 4229 return notReady; 4230 } 4231 4232 #if defined(SQLITE_TEST) 4233 /* 4234 ** The following variable holds a text description of query plan generated 4235 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin 4236 ** overwrites the previous. This information is used for testing and 4237 ** analysis only. 4238 */ 4239 char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ 4240 static int nQPlan = 0; /* Next free slow in _query_plan[] */ 4241 4242 #endif /* SQLITE_TEST */ 4243 4244 4245 /* 4246 ** Free a WhereInfo structure 4247 */ 4248 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 4249 if( ALWAYS(pWInfo) ){ 4250 int i; 4251 for(i=0; i<pWInfo->nLevel; i++){ 4252 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; 4253 if( pInfo ){ 4254 /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */ 4255 if( pInfo->needToFreeIdxStr ){ 4256 sqlite3_free(pInfo->idxStr); 4257 } 4258 sqlite3DbFree(db, pInfo); 4259 } 4260 if( pWInfo->a[i].plan.wsFlags & WHERE_TEMP_INDEX ){ 4261 Index *pIdx = pWInfo->a[i].plan.u.pIdx; 4262 if( pIdx ){ 4263 sqlite3DbFree(db, pIdx->zColAff); 4264 sqlite3DbFree(db, pIdx); 4265 } 4266 } 4267 } 4268 whereClauseClear(pWInfo->pWC); 4269 sqlite3DbFree(db, pWInfo); 4270 } 4271 } 4272 4273 4274 /* 4275 ** Generate the beginning of the loop used for WHERE clause processing. 4276 ** The return value is a pointer to an opaque structure that contains 4277 ** information needed to terminate the loop. Later, the calling routine 4278 ** should invoke sqlite3WhereEnd() with the return value of this function 4279 ** in order to complete the WHERE clause processing. 4280 ** 4281 ** If an error occurs, this routine returns NULL. 4282 ** 4283 ** The basic idea is to do a nested loop, one loop for each table in 4284 ** the FROM clause of a select. (INSERT and UPDATE statements are the 4285 ** same as a SELECT with only a single table in the FROM clause.) For 4286 ** example, if the SQL is this: 4287 ** 4288 ** SELECT * FROM t1, t2, t3 WHERE ...; 4289 ** 4290 ** Then the code generated is conceptually like the following: 4291 ** 4292 ** foreach row1 in t1 do \ Code generated 4293 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 4294 ** foreach row3 in t3 do / 4295 ** ... 4296 ** end \ Code generated 4297 ** end |-- by sqlite3WhereEnd() 4298 ** end / 4299 ** 4300 ** Note that the loops might not be nested in the order in which they 4301 ** appear in the FROM clause if a different order is better able to make 4302 ** use of indices. Note also that when the IN operator appears in 4303 ** the WHERE clause, it might result in additional nested loops for 4304 ** scanning through all values on the right-hand side of the IN. 4305 ** 4306 ** There are Btree cursors associated with each table. t1 uses cursor 4307 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 4308 ** And so forth. This routine generates code to open those VDBE cursors 4309 ** and sqlite3WhereEnd() generates the code to close them. 4310 ** 4311 ** The code that sqlite3WhereBegin() generates leaves the cursors named 4312 ** in pTabList pointing at their appropriate entries. The [...] code 4313 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 4314 ** data from the various tables of the loop. 4315 ** 4316 ** If the WHERE clause is empty, the foreach loops must each scan their 4317 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 4318 ** the tables have indices and there are terms in the WHERE clause that 4319 ** refer to those indices, a complete table scan can be avoided and the 4320 ** code will run much faster. Most of the work of this routine is checking 4321 ** to see if there are indices that can be used to speed up the loop. 4322 ** 4323 ** Terms of the WHERE clause are also used to limit which rows actually 4324 ** make it to the "..." in the middle of the loop. After each "foreach", 4325 ** terms of the WHERE clause that use only terms in that loop and outer 4326 ** loops are evaluated and if false a jump is made around all subsequent 4327 ** inner loops (or around the "..." if the test occurs within the inner- 4328 ** most loop) 4329 ** 4330 ** OUTER JOINS 4331 ** 4332 ** An outer join of tables t1 and t2 is conceptally coded as follows: 4333 ** 4334 ** foreach row1 in t1 do 4335 ** flag = 0 4336 ** foreach row2 in t2 do 4337 ** start: 4338 ** ... 4339 ** flag = 1 4340 ** end 4341 ** if flag==0 then 4342 ** move the row2 cursor to a null row 4343 ** goto start 4344 ** fi 4345 ** end 4346 ** 4347 ** ORDER BY CLAUSE PROCESSING 4348 ** 4349 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, 4350 ** if there is one. If there is no ORDER BY clause or if this routine 4351 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. 4352 ** 4353 ** If an index can be used so that the natural output order of the table 4354 ** scan is correct for the ORDER BY clause, then that index is used and 4355 ** *ppOrderBy is set to NULL. This is an optimization that prevents an 4356 ** unnecessary sort of the result set if an index appropriate for the 4357 ** ORDER BY clause already exists. 4358 ** 4359 ** If the where clause loops cannot be arranged to provide the correct 4360 ** output order, then the *ppOrderBy is unchanged. 4361 */ 4362 WhereInfo *sqlite3WhereBegin( 4363 Parse *pParse, /* The parser context */ 4364 SrcList *pTabList, /* A list of all tables to be scanned */ 4365 Expr *pWhere, /* The WHERE clause */ 4366 ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */ 4367 u16 wctrlFlags /* One of the WHERE_* flags defined in sqliteInt.h */ 4368 ){ 4369 int i; /* Loop counter */ 4370 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 4371 int nTabList; /* Number of elements in pTabList */ 4372 WhereInfo *pWInfo; /* Will become the return value of this function */ 4373 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 4374 Bitmask notReady; /* Cursors that are not yet positioned */ 4375 WhereMaskSet *pMaskSet; /* The expression mask set */ 4376 WhereClause *pWC; /* Decomposition of the WHERE clause */ 4377 struct SrcList_item *pTabItem; /* A single entry from pTabList */ 4378 WhereLevel *pLevel; /* A single level in the pWInfo list */ 4379 int iFrom; /* First unused FROM clause element */ 4380 int andFlags; /* AND-ed combination of all pWC->a[].wtFlags */ 4381 sqlite3 *db; /* Database connection */ 4382 4383 /* The number of tables in the FROM clause is limited by the number of 4384 ** bits in a Bitmask 4385 */ 4386 testcase( pTabList->nSrc==BMS ); 4387 if( pTabList->nSrc>BMS ){ 4388 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 4389 return 0; 4390 } 4391 4392 /* This function normally generates a nested loop for all tables in 4393 ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should 4394 ** only generate code for the first table in pTabList and assume that 4395 ** any cursors associated with subsequent tables are uninitialized. 4396 */ 4397 nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc; 4398 4399 /* Allocate and initialize the WhereInfo structure that will become the 4400 ** return value. A single allocation is used to store the WhereInfo 4401 ** struct, the contents of WhereInfo.a[], the WhereClause structure 4402 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 4403 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 4404 ** some architectures. Hence the ROUND8() below. 4405 */ 4406 db = pParse->db; 4407 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 4408 pWInfo = sqlite3DbMallocZero(db, 4409 nByteWInfo + 4410 sizeof(WhereClause) + 4411 sizeof(WhereMaskSet) 4412 ); 4413 if( db->mallocFailed ){ 4414 sqlite3DbFree(db, pWInfo); 4415 pWInfo = 0; 4416 goto whereBeginError; 4417 } 4418 pWInfo->nLevel = nTabList; 4419 pWInfo->pParse = pParse; 4420 pWInfo->pTabList = pTabList; 4421 pWInfo->iBreak = sqlite3VdbeMakeLabel(v); 4422 pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo]; 4423 pWInfo->wctrlFlags = wctrlFlags; 4424 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 4425 pMaskSet = (WhereMaskSet*)&pWC[1]; 4426 4427 /* Split the WHERE clause into separate subexpressions where each 4428 ** subexpression is separated by an AND operator. 4429 */ 4430 initMaskSet(pMaskSet); 4431 whereClauseInit(pWC, pParse, pMaskSet); 4432 sqlite3ExprCodeConstants(pParse, pWhere); 4433 whereSplit(pWC, pWhere, TK_AND); /* IMP: R-15842-53296 */ 4434 4435 /* Special case: a WHERE clause that is constant. Evaluate the 4436 ** expression and either jump over all of the code or fall thru. 4437 */ 4438 if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){ 4439 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL); 4440 pWhere = 0; 4441 } 4442 4443 /* Assign a bit from the bitmask to every term in the FROM clause. 4444 ** 4445 ** When assigning bitmask values to FROM clause cursors, it must be 4446 ** the case that if X is the bitmask for the N-th FROM clause term then 4447 ** the bitmask for all FROM clause terms to the left of the N-th term 4448 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use 4449 ** its Expr.iRightJoinTable value to find the bitmask of the right table 4450 ** of the join. Subtracting one from the right table bitmask gives a 4451 ** bitmask for all tables to the left of the join. Knowing the bitmask 4452 ** for all tables to the left of a left join is important. Ticket #3015. 4453 ** 4454 ** Configure the WhereClause.vmask variable so that bits that correspond 4455 ** to virtual table cursors are set. This is used to selectively disable 4456 ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful 4457 ** with virtual tables. 4458 ** 4459 ** Note that bitmasks are created for all pTabList->nSrc tables in 4460 ** pTabList, not just the first nTabList tables. nTabList is normally 4461 ** equal to pTabList->nSrc but might be shortened to 1 if the 4462 ** WHERE_ONETABLE_ONLY flag is set. 4463 */ 4464 assert( pWC->vmask==0 && pMaskSet->n==0 ); 4465 for(i=0; i<pTabList->nSrc; i++){ 4466 createMask(pMaskSet, pTabList->a[i].iCursor); 4467 #ifndef SQLITE_OMIT_VIRTUALTABLE 4468 if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){ 4469 pWC->vmask |= ((Bitmask)1 << i); 4470 } 4471 #endif 4472 } 4473 #ifndef NDEBUG 4474 { 4475 Bitmask toTheLeft = 0; 4476 for(i=0; i<pTabList->nSrc; i++){ 4477 Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor); 4478 assert( (m-1)==toTheLeft ); 4479 toTheLeft |= m; 4480 } 4481 } 4482 #endif 4483 4484 /* Analyze all of the subexpressions. Note that exprAnalyze() might 4485 ** add new virtual terms onto the end of the WHERE clause. We do not 4486 ** want to analyze these virtual terms, so start analyzing at the end 4487 ** and work forward so that the added virtual terms are never processed. 4488 */ 4489 exprAnalyzeAll(pTabList, pWC); 4490 if( db->mallocFailed ){ 4491 goto whereBeginError; 4492 } 4493 4494 /* Chose the best index to use for each table in the FROM clause. 4495 ** 4496 ** This loop fills in the following fields: 4497 ** 4498 ** pWInfo->a[].pIdx The index to use for this level of the loop. 4499 ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx 4500 ** pWInfo->a[].nEq The number of == and IN constraints 4501 ** pWInfo->a[].iFrom Which term of the FROM clause is being coded 4502 ** pWInfo->a[].iTabCur The VDBE cursor for the database table 4503 ** pWInfo->a[].iIdxCur The VDBE cursor for the index 4504 ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term 4505 ** 4506 ** This loop also figures out the nesting order of tables in the FROM 4507 ** clause. 4508 */ 4509 notReady = ~(Bitmask)0; 4510 andFlags = ~0; 4511 WHERETRACE(("*** Optimizer Start ***\n")); 4512 for(i=iFrom=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){ 4513 WhereCost bestPlan; /* Most efficient plan seen so far */ 4514 Index *pIdx; /* Index for FROM table at pTabItem */ 4515 int j; /* For looping over FROM tables */ 4516 int bestJ = -1; /* The value of j */ 4517 Bitmask m; /* Bitmask value for j or bestJ */ 4518 int isOptimal; /* Iterator for optimal/non-optimal search */ 4519 int nUnconstrained; /* Number tables without INDEXED BY */ 4520 Bitmask notIndexed; /* Mask of tables that cannot use an index */ 4521 4522 memset(&bestPlan, 0, sizeof(bestPlan)); 4523 bestPlan.rCost = SQLITE_BIG_DBL; 4524 WHERETRACE(("*** Begin search for loop %d ***\n", i)); 4525 4526 /* Loop through the remaining entries in the FROM clause to find the 4527 ** next nested loop. The loop tests all FROM clause entries 4528 ** either once or twice. 4529 ** 4530 ** The first test is always performed if there are two or more entries 4531 ** remaining and never performed if there is only one FROM clause entry 4532 ** to choose from. The first test looks for an "optimal" scan. In 4533 ** this context an optimal scan is one that uses the same strategy 4534 ** for the given FROM clause entry as would be selected if the entry 4535 ** were used as the innermost nested loop. In other words, a table 4536 ** is chosen such that the cost of running that table cannot be reduced 4537 ** by waiting for other tables to run first. This "optimal" test works 4538 ** by first assuming that the FROM clause is on the inner loop and finding 4539 ** its query plan, then checking to see if that query plan uses any 4540 ** other FROM clause terms that are notReady. If no notReady terms are 4541 ** used then the "optimal" query plan works. 4542 ** 4543 ** Note that the WhereCost.nRow parameter for an optimal scan might 4544 ** not be as small as it would be if the table really were the innermost 4545 ** join. The nRow value can be reduced by WHERE clause constraints 4546 ** that do not use indices. But this nRow reduction only happens if the 4547 ** table really is the innermost join. 4548 ** 4549 ** The second loop iteration is only performed if no optimal scan 4550 ** strategies were found by the first iteration. This second iteration 4551 ** is used to search for the lowest cost scan overall. 4552 ** 4553 ** Previous versions of SQLite performed only the second iteration - 4554 ** the next outermost loop was always that with the lowest overall 4555 ** cost. However, this meant that SQLite could select the wrong plan 4556 ** for scripts such as the following: 4557 ** 4558 ** CREATE TABLE t1(a, b); 4559 ** CREATE TABLE t2(c, d); 4560 ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a; 4561 ** 4562 ** The best strategy is to iterate through table t1 first. However it 4563 ** is not possible to determine this with a simple greedy algorithm. 4564 ** Since the cost of a linear scan through table t2 is the same 4565 ** as the cost of a linear scan through table t1, a simple greedy 4566 ** algorithm may choose to use t2 for the outer loop, which is a much 4567 ** costlier approach. 4568 */ 4569 nUnconstrained = 0; 4570 notIndexed = 0; 4571 for(isOptimal=(iFrom<nTabList-1); isOptimal>=0 && bestJ<0; isOptimal--){ 4572 Bitmask mask; /* Mask of tables not yet ready */ 4573 for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){ 4574 int doNotReorder; /* True if this table should not be reordered */ 4575 WhereCost sCost; /* Cost information from best[Virtual]Index() */ 4576 ExprList *pOrderBy; /* ORDER BY clause for index to optimize */ 4577 4578 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; 4579 if( j!=iFrom && doNotReorder ) break; 4580 m = getMask(pMaskSet, pTabItem->iCursor); 4581 if( (m & notReady)==0 ){ 4582 if( j==iFrom ) iFrom++; 4583 continue; 4584 } 4585 mask = (isOptimal ? m : notReady); 4586 pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0); 4587 if( pTabItem->pIndex==0 ) nUnconstrained++; 4588 4589 WHERETRACE(("=== trying table %d with isOptimal=%d ===\n", 4590 j, isOptimal)); 4591 assert( pTabItem->pTab ); 4592 #ifndef SQLITE_OMIT_VIRTUALTABLE 4593 if( IsVirtual(pTabItem->pTab) ){ 4594 sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo; 4595 bestVirtualIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy, 4596 &sCost, pp); 4597 }else 4598 #endif 4599 { 4600 bestBtreeIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy, 4601 &sCost); 4602 } 4603 assert( isOptimal || (sCost.used¬Ready)==0 ); 4604 4605 /* If an INDEXED BY clause is present, then the plan must use that 4606 ** index if it uses any index at all */ 4607 assert( pTabItem->pIndex==0 4608 || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 4609 || sCost.plan.u.pIdx==pTabItem->pIndex ); 4610 4611 if( isOptimal && (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){ 4612 notIndexed |= m; 4613 } 4614 4615 /* Conditions under which this table becomes the best so far: 4616 ** 4617 ** (1) The table must not depend on other tables that have not 4618 ** yet run. 4619 ** 4620 ** (2) A full-table-scan plan cannot supercede indexed plan unless 4621 ** the full-table-scan is an "optimal" plan as defined above. 4622 ** 4623 ** (3) All tables have an INDEXED BY clause or this table lacks an 4624 ** INDEXED BY clause or this table uses the specific 4625 ** index specified by its INDEXED BY clause. This rule ensures 4626 ** that a best-so-far is always selected even if an impossible 4627 ** combination of INDEXED BY clauses are given. The error 4628 ** will be detected and relayed back to the application later. 4629 ** The NEVER() comes about because rule (2) above prevents 4630 ** An indexable full-table-scan from reaching rule (3). 4631 ** 4632 ** (4) The plan cost must be lower than prior plans or else the 4633 ** cost must be the same and the number of rows must be lower. 4634 */ 4635 if( (sCost.used¬Ready)==0 /* (1) */ 4636 && (bestJ<0 || (notIndexed&m)!=0 /* (2) */ 4637 || (bestPlan.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 4638 || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0) 4639 && (nUnconstrained==0 || pTabItem->pIndex==0 /* (3) */ 4640 || NEVER((sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0)) 4641 && (bestJ<0 || sCost.rCost<bestPlan.rCost /* (4) */ 4642 || (sCost.rCost<=bestPlan.rCost 4643 && sCost.plan.nRow<bestPlan.plan.nRow)) 4644 ){ 4645 WHERETRACE(("=== table %d is best so far" 4646 " with cost=%g and nRow=%g\n", 4647 j, sCost.rCost, sCost.plan.nRow)); 4648 bestPlan = sCost; 4649 bestJ = j; 4650 } 4651 if( doNotReorder ) break; 4652 } 4653 } 4654 assert( bestJ>=0 ); 4655 assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) ); 4656 WHERETRACE(("*** Optimizer selects table %d for loop %d" 4657 " with cost=%g and nRow=%g\n", 4658 bestJ, pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow)); 4659 if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){ 4660 *ppOrderBy = 0; 4661 } 4662 andFlags &= bestPlan.plan.wsFlags; 4663 pLevel->plan = bestPlan.plan; 4664 testcase( bestPlan.plan.wsFlags & WHERE_INDEXED ); 4665 testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX ); 4666 if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){ 4667 pLevel->iIdxCur = pParse->nTab++; 4668 }else{ 4669 pLevel->iIdxCur = -1; 4670 } 4671 notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor); 4672 pLevel->iFrom = (u8)bestJ; 4673 if( bestPlan.plan.nRow>=(double)1 ){ 4674 pParse->nQueryLoop *= bestPlan.plan.nRow; 4675 } 4676 4677 /* Check that if the table scanned by this loop iteration had an 4678 ** INDEXED BY clause attached to it, that the named index is being 4679 ** used for the scan. If not, then query compilation has failed. 4680 ** Return an error. 4681 */ 4682 pIdx = pTabList->a[bestJ].pIndex; 4683 if( pIdx ){ 4684 if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){ 4685 sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName); 4686 goto whereBeginError; 4687 }else{ 4688 /* If an INDEXED BY clause is used, the bestIndex() function is 4689 ** guaranteed to find the index specified in the INDEXED BY clause 4690 ** if it find an index at all. */ 4691 assert( bestPlan.plan.u.pIdx==pIdx ); 4692 } 4693 } 4694 } 4695 WHERETRACE(("*** Optimizer Finished ***\n")); 4696 if( pParse->nErr || db->mallocFailed ){ 4697 goto whereBeginError; 4698 } 4699 4700 /* If the total query only selects a single row, then the ORDER BY 4701 ** clause is irrelevant. 4702 */ 4703 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ 4704 *ppOrderBy = 0; 4705 } 4706 4707 /* If the caller is an UPDATE or DELETE statement that is requesting 4708 ** to use a one-pass algorithm, determine if this is appropriate. 4709 ** The one-pass algorithm only works if the WHERE clause constraints 4710 ** the statement to update a single row. 4711 */ 4712 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 4713 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){ 4714 pWInfo->okOnePass = 1; 4715 pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY; 4716 } 4717 4718 /* Open all tables in the pTabList and any indices selected for 4719 ** searching those tables. 4720 */ 4721 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ 4722 notReady = ~(Bitmask)0; 4723 pWInfo->nRowOut = (double)1; 4724 for(i=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){ 4725 Table *pTab; /* Table to open */ 4726 int iDb; /* Index of database containing table/index */ 4727 4728 pTabItem = &pTabList->a[pLevel->iFrom]; 4729 pTab = pTabItem->pTab; 4730 pLevel->iTabCur = pTabItem->iCursor; 4731 pWInfo->nRowOut *= pLevel->plan.nRow; 4732 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4733 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ 4734 /* Do nothing */ 4735 }else 4736 #ifndef SQLITE_OMIT_VIRTUALTABLE 4737 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 4738 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 4739 int iCur = pTabItem->iCursor; 4740 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 4741 }else 4742 #endif 4743 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 4744 && (wctrlFlags & WHERE_OMIT_OPEN)==0 ){ 4745 int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead; 4746 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 4747 testcase( pTab->nCol==BMS-1 ); 4748 testcase( pTab->nCol==BMS ); 4749 if( !pWInfo->okOnePass && pTab->nCol<BMS ){ 4750 Bitmask b = pTabItem->colUsed; 4751 int n = 0; 4752 for(; b; b=b>>1, n++){} 4753 sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, 4754 SQLITE_INT_TO_PTR(n), P4_INT32); 4755 assert( n<=pTab->nCol ); 4756 } 4757 }else{ 4758 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4759 } 4760 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 4761 if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){ 4762 constructAutomaticIndex(pParse, pWC, pTabItem, notReady, pLevel); 4763 }else 4764 #endif 4765 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ 4766 Index *pIx = pLevel->plan.u.pIdx; 4767 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); 4768 int iIdxCur = pLevel->iIdxCur; 4769 assert( pIx->pSchema==pTab->pSchema ); 4770 assert( iIdxCur>=0 ); 4771 sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb, 4772 (char*)pKey, P4_KEYINFO_HANDOFF); 4773 VdbeComment((v, "%s", pIx->zName)); 4774 } 4775 sqlite3CodeVerifySchema(pParse, iDb); 4776 notReady &= ~getMask(pWC->pMaskSet, pTabItem->iCursor); 4777 } 4778 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 4779 if( db->mallocFailed ) goto whereBeginError; 4780 4781 /* Generate the code to do the search. Each iteration of the for 4782 ** loop below generates code for a single nested loop of the VM 4783 ** program. 4784 */ 4785 notReady = ~(Bitmask)0; 4786 for(i=0; i<nTabList; i++){ 4787 pLevel = &pWInfo->a[i]; 4788 explainOneScan(pParse, pTabList, pLevel, i, pLevel->iFrom, wctrlFlags); 4789 notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady); 4790 pWInfo->iContinue = pLevel->addrCont; 4791 } 4792 4793 #ifdef SQLITE_TEST /* For testing and debugging use only */ 4794 /* Record in the query plan information about the current table 4795 ** and the index used to access it (if any). If the table itself 4796 ** is not used, its name is just '{}'. If no index is used 4797 ** the index is listed as "{}". If the primary key is used the 4798 ** index name is '*'. 4799 */ 4800 for(i=0; i<nTabList; i++){ 4801 char *z; 4802 int n; 4803 pLevel = &pWInfo->a[i]; 4804 pTabItem = &pTabList->a[pLevel->iFrom]; 4805 z = pTabItem->zAlias; 4806 if( z==0 ) z = pTabItem->pTab->zName; 4807 n = sqlite3Strlen30(z); 4808 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ 4809 if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){ 4810 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2); 4811 nQPlan += 2; 4812 }else{ 4813 memcpy(&sqlite3_query_plan[nQPlan], z, n); 4814 nQPlan += n; 4815 } 4816 sqlite3_query_plan[nQPlan++] = ' '; 4817 } 4818 testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ ); 4819 testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ); 4820 if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 4821 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2); 4822 nQPlan += 2; 4823 }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ 4824 n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName); 4825 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ 4826 memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n); 4827 nQPlan += n; 4828 sqlite3_query_plan[nQPlan++] = ' '; 4829 } 4830 }else{ 4831 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3); 4832 nQPlan += 3; 4833 } 4834 } 4835 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ 4836 sqlite3_query_plan[--nQPlan] = 0; 4837 } 4838 sqlite3_query_plan[nQPlan] = 0; 4839 nQPlan = 0; 4840 #endif /* SQLITE_TEST // Testing and debugging use only */ 4841 4842 /* Record the continuation address in the WhereInfo structure. Then 4843 ** clean up and return. 4844 */ 4845 return pWInfo; 4846 4847 /* Jump here if malloc fails */ 4848 whereBeginError: 4849 if( pWInfo ){ 4850 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 4851 whereInfoFree(db, pWInfo); 4852 } 4853 return 0; 4854 } 4855 4856 /* 4857 ** Generate the end of the WHERE loop. See comments on 4858 ** sqlite3WhereBegin() for additional information. 4859 */ 4860 void sqlite3WhereEnd(WhereInfo *pWInfo){ 4861 Parse *pParse = pWInfo->pParse; 4862 Vdbe *v = pParse->pVdbe; 4863 int i; 4864 WhereLevel *pLevel; 4865 SrcList *pTabList = pWInfo->pTabList; 4866 sqlite3 *db = pParse->db; 4867 4868 /* Generate loop termination code. 4869 */ 4870 sqlite3ExprCacheClear(pParse); 4871 for(i=pWInfo->nLevel-1; i>=0; i--){ 4872 pLevel = &pWInfo->a[i]; 4873 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 4874 if( pLevel->op!=OP_Noop ){ 4875 sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2); 4876 sqlite3VdbeChangeP5(v, pLevel->p5); 4877 } 4878 if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ 4879 struct InLoop *pIn; 4880 int j; 4881 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 4882 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 4883 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 4884 sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop); 4885 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 4886 } 4887 sqlite3DbFree(db, pLevel->u.in.aInLoop); 4888 } 4889 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 4890 if( pLevel->iLeftJoin ){ 4891 int addr; 4892 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); 4893 assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 4894 || (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ); 4895 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){ 4896 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); 4897 } 4898 if( pLevel->iIdxCur>=0 ){ 4899 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 4900 } 4901 if( pLevel->op==OP_Return ){ 4902 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 4903 }else{ 4904 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst); 4905 } 4906 sqlite3VdbeJumpHere(v, addr); 4907 } 4908 } 4909 4910 /* The "break" point is here, just past the end of the outer loop. 4911 ** Set it. 4912 */ 4913 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 4914 4915 /* Close all of the cursors that were opened by sqlite3WhereBegin. 4916 */ 4917 assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc ); 4918 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 4919 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 4920 Table *pTab = pTabItem->pTab; 4921 assert( pTab!=0 ); 4922 if( (pTab->tabFlags & TF_Ephemeral)==0 4923 && pTab->pSelect==0 4924 && (pWInfo->wctrlFlags & WHERE_OMIT_CLOSE)==0 4925 ){ 4926 int ws = pLevel->plan.wsFlags; 4927 if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){ 4928 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); 4929 } 4930 if( (ws & WHERE_INDEXED)!=0 && (ws & WHERE_TEMP_INDEX)==0 ){ 4931 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); 4932 } 4933 } 4934 4935 /* If this scan uses an index, make code substitutions to read data 4936 ** from the index in preference to the table. Sometimes, this means 4937 ** the table need never be read from. This is a performance boost, 4938 ** as the vdbe level waits until the table is read before actually 4939 ** seeking the table cursor to the record corresponding to the current 4940 ** position in the index. 4941 ** 4942 ** Calls to the code generator in between sqlite3WhereBegin and 4943 ** sqlite3WhereEnd will have created code that references the table 4944 ** directly. This loop scans all that code looking for opcodes 4945 ** that reference the table and converts them into opcodes that 4946 ** reference the index. 4947 */ 4948 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && !db->mallocFailed){ 4949 int k, j, last; 4950 VdbeOp *pOp; 4951 Index *pIdx = pLevel->plan.u.pIdx; 4952 4953 assert( pIdx!=0 ); 4954 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); 4955 last = sqlite3VdbeCurrentAddr(v); 4956 for(k=pWInfo->iTop; k<last; k++, pOp++){ 4957 if( pOp->p1!=pLevel->iTabCur ) continue; 4958 if( pOp->opcode==OP_Column ){ 4959 for(j=0; j<pIdx->nColumn; j++){ 4960 if( pOp->p2==pIdx->aiColumn[j] ){ 4961 pOp->p2 = j; 4962 pOp->p1 = pLevel->iIdxCur; 4963 break; 4964 } 4965 } 4966 assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 4967 || j<pIdx->nColumn ); 4968 }else if( pOp->opcode==OP_Rowid ){ 4969 pOp->p1 = pLevel->iIdxCur; 4970 pOp->opcode = OP_IdxRowid; 4971 } 4972 } 4973 } 4974 } 4975 4976 /* Final cleanup 4977 */ 4978 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 4979 whereInfoFree(db, pWInfo); 4980 return; 4981 } 4982