xref: /sqlite-3.40.0/src/where.c (revision fcd71b60)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 
21 
22 /*
23 ** Trace output macros
24 */
25 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
26 int sqlite3WhereTrace = 0;
27 #endif
28 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
29 # define WHERETRACE(X)  if(sqlite3WhereTrace) sqlite3DebugPrintf X
30 #else
31 # define WHERETRACE(X)
32 #endif
33 
34 /* Forward reference
35 */
36 typedef struct WhereClause WhereClause;
37 typedef struct WhereMaskSet WhereMaskSet;
38 typedef struct WhereOrInfo WhereOrInfo;
39 typedef struct WhereAndInfo WhereAndInfo;
40 typedef struct WhereCost WhereCost;
41 
42 /*
43 ** The query generator uses an array of instances of this structure to
44 ** help it analyze the subexpressions of the WHERE clause.  Each WHERE
45 ** clause subexpression is separated from the others by AND operators,
46 ** usually, or sometimes subexpressions separated by OR.
47 **
48 ** All WhereTerms are collected into a single WhereClause structure.
49 ** The following identity holds:
50 **
51 **        WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
52 **
53 ** When a term is of the form:
54 **
55 **              X <op> <expr>
56 **
57 ** where X is a column name and <op> is one of certain operators,
58 ** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the
59 ** cursor number and column number for X.  WhereTerm.eOperator records
60 ** the <op> using a bitmask encoding defined by WO_xxx below.  The
61 ** use of a bitmask encoding for the operator allows us to search
62 ** quickly for terms that match any of several different operators.
63 **
64 ** A WhereTerm might also be two or more subterms connected by OR:
65 **
66 **         (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
67 **
68 ** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR
69 ** and the WhereTerm.u.pOrInfo field points to auxiliary information that
70 ** is collected about the
71 **
72 ** If a term in the WHERE clause does not match either of the two previous
73 ** categories, then eOperator==0.  The WhereTerm.pExpr field is still set
74 ** to the original subexpression content and wtFlags is set up appropriately
75 ** but no other fields in the WhereTerm object are meaningful.
76 **
77 ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
78 ** but they do so indirectly.  A single WhereMaskSet structure translates
79 ** cursor number into bits and the translated bit is stored in the prereq
80 ** fields.  The translation is used in order to maximize the number of
81 ** bits that will fit in a Bitmask.  The VDBE cursor numbers might be
82 ** spread out over the non-negative integers.  For example, the cursor
83 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The WhereMaskSet
84 ** translates these sparse cursor numbers into consecutive integers
85 ** beginning with 0 in order to make the best possible use of the available
86 ** bits in the Bitmask.  So, in the example above, the cursor numbers
87 ** would be mapped into integers 0 through 7.
88 **
89 ** The number of terms in a join is limited by the number of bits
90 ** in prereqRight and prereqAll.  The default is 64 bits, hence SQLite
91 ** is only able to process joins with 64 or fewer tables.
92 */
93 typedef struct WhereTerm WhereTerm;
94 struct WhereTerm {
95   Expr *pExpr;            /* Pointer to the subexpression that is this term */
96   int iParent;            /* Disable pWC->a[iParent] when this term disabled */
97   int leftCursor;         /* Cursor number of X in "X <op> <expr>" */
98   union {
99     int leftColumn;         /* Column number of X in "X <op> <expr>" */
100     WhereOrInfo *pOrInfo;   /* Extra information if eOperator==WO_OR */
101     WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */
102   } u;
103   u16 eOperator;          /* A WO_xx value describing <op> */
104   u8 wtFlags;             /* TERM_xxx bit flags.  See below */
105   u8 nChild;              /* Number of children that must disable us */
106   WhereClause *pWC;       /* The clause this term is part of */
107   Bitmask prereqRight;    /* Bitmask of tables used by pExpr->pRight */
108   Bitmask prereqAll;      /* Bitmask of tables referenced by pExpr */
109 };
110 
111 /*
112 ** Allowed values of WhereTerm.wtFlags
113 */
114 #define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(db, pExpr) */
115 #define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
116 #define TERM_CODED      0x04   /* This term is already coded */
117 #define TERM_COPIED     0x08   /* Has a child */
118 #define TERM_ORINFO     0x10   /* Need to free the WhereTerm.u.pOrInfo object */
119 #define TERM_ANDINFO    0x20   /* Need to free the WhereTerm.u.pAndInfo obj */
120 #define TERM_OR_OK      0x40   /* Used during OR-clause processing */
121 #ifdef SQLITE_ENABLE_STAT2
122 #  define TERM_VNULL    0x80   /* Manufactured x>NULL or x<=NULL term */
123 #else
124 #  define TERM_VNULL    0x00   /* Disabled if not using stat2 */
125 #endif
126 
127 /*
128 ** An instance of the following structure holds all information about a
129 ** WHERE clause.  Mostly this is a container for one or more WhereTerms.
130 */
131 struct WhereClause {
132   Parse *pParse;           /* The parser context */
133   WhereMaskSet *pMaskSet;  /* Mapping of table cursor numbers to bitmasks */
134   Bitmask vmask;           /* Bitmask identifying virtual table cursors */
135   u8 op;                   /* Split operator.  TK_AND or TK_OR */
136   int nTerm;               /* Number of terms */
137   int nSlot;               /* Number of entries in a[] */
138   WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
139 #if defined(SQLITE_SMALL_STACK)
140   WhereTerm aStatic[1];    /* Initial static space for a[] */
141 #else
142   WhereTerm aStatic[8];    /* Initial static space for a[] */
143 #endif
144 };
145 
146 /*
147 ** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to
148 ** a dynamically allocated instance of the following structure.
149 */
150 struct WhereOrInfo {
151   WhereClause wc;          /* Decomposition into subterms */
152   Bitmask indexable;       /* Bitmask of all indexable tables in the clause */
153 };
154 
155 /*
156 ** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to
157 ** a dynamically allocated instance of the following structure.
158 */
159 struct WhereAndInfo {
160   WhereClause wc;          /* The subexpression broken out */
161 };
162 
163 /*
164 ** An instance of the following structure keeps track of a mapping
165 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
166 **
167 ** The VDBE cursor numbers are small integers contained in
168 ** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE
169 ** clause, the cursor numbers might not begin with 0 and they might
170 ** contain gaps in the numbering sequence.  But we want to make maximum
171 ** use of the bits in our bitmasks.  This structure provides a mapping
172 ** from the sparse cursor numbers into consecutive integers beginning
173 ** with 0.
174 **
175 ** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
176 ** corresponds VDBE cursor number B.  The A-th bit of a bitmask is 1<<A.
177 **
178 ** For example, if the WHERE clause expression used these VDBE
179 ** cursors:  4, 5, 8, 29, 57, 73.  Then the  WhereMaskSet structure
180 ** would map those cursor numbers into bits 0 through 5.
181 **
182 ** Note that the mapping is not necessarily ordered.  In the example
183 ** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0,
184 ** 57->5, 73->4.  Or one of 719 other combinations might be used. It
185 ** does not really matter.  What is important is that sparse cursor
186 ** numbers all get mapped into bit numbers that begin with 0 and contain
187 ** no gaps.
188 */
189 struct WhereMaskSet {
190   int n;                        /* Number of assigned cursor values */
191   int ix[BMS];                  /* Cursor assigned to each bit */
192 };
193 
194 /*
195 ** A WhereCost object records a lookup strategy and the estimated
196 ** cost of pursuing that strategy.
197 */
198 struct WhereCost {
199   WherePlan plan;    /* The lookup strategy */
200   double rCost;      /* Overall cost of pursuing this search strategy */
201   Bitmask used;      /* Bitmask of cursors used by this plan */
202 };
203 
204 /*
205 ** Bitmasks for the operators that indices are able to exploit.  An
206 ** OR-ed combination of these values can be used when searching for
207 ** terms in the where clause.
208 */
209 #define WO_IN     0x001
210 #define WO_EQ     0x002
211 #define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
212 #define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
213 #define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
214 #define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
215 #define WO_MATCH  0x040
216 #define WO_ISNULL 0x080
217 #define WO_OR     0x100       /* Two or more OR-connected terms */
218 #define WO_AND    0x200       /* Two or more AND-connected terms */
219 #define WO_NOOP   0x800       /* This term does not restrict search space */
220 
221 #define WO_ALL    0xfff       /* Mask of all possible WO_* values */
222 #define WO_SINGLE 0x0ff       /* Mask of all non-compound WO_* values */
223 
224 /*
225 ** Value for wsFlags returned by bestIndex() and stored in
226 ** WhereLevel.wsFlags.  These flags determine which search
227 ** strategies are appropriate.
228 **
229 ** The least significant 12 bits is reserved as a mask for WO_ values above.
230 ** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
231 ** But if the table is the right table of a left join, WhereLevel.wsFlags
232 ** is set to WO_IN|WO_EQ.  The WhereLevel.wsFlags field can then be used as
233 ** the "op" parameter to findTerm when we are resolving equality constraints.
234 ** ISNULL constraints will then not be used on the right table of a left
235 ** join.  Tickets #2177 and #2189.
236 */
237 #define WHERE_ROWID_EQ     0x00001000  /* rowid=EXPR or rowid IN (...) */
238 #define WHERE_ROWID_RANGE  0x00002000  /* rowid<EXPR and/or rowid>EXPR */
239 #define WHERE_COLUMN_EQ    0x00010000  /* x=EXPR or x IN (...) or x IS NULL */
240 #define WHERE_COLUMN_RANGE 0x00020000  /* x<EXPR and/or x>EXPR */
241 #define WHERE_COLUMN_IN    0x00040000  /* x IN (...) */
242 #define WHERE_COLUMN_NULL  0x00080000  /* x IS NULL */
243 #define WHERE_INDEXED      0x000f0000  /* Anything that uses an index */
244 #define WHERE_NOT_FULLSCAN 0x100f3000  /* Does not do a full table scan */
245 #define WHERE_IN_ABLE      0x000f1000  /* Able to support an IN operator */
246 #define WHERE_TOP_LIMIT    0x00100000  /* x<EXPR or x<=EXPR constraint */
247 #define WHERE_BTM_LIMIT    0x00200000  /* x>EXPR or x>=EXPR constraint */
248 #define WHERE_BOTH_LIMIT   0x00300000  /* Both x>EXPR and x<EXPR */
249 #define WHERE_IDX_ONLY     0x00800000  /* Use index only - omit table */
250 #define WHERE_ORDERBY      0x01000000  /* Output will appear in correct order */
251 #define WHERE_REVERSE      0x02000000  /* Scan in reverse order */
252 #define WHERE_UNIQUE       0x04000000  /* Selects no more than one row */
253 #define WHERE_VIRTUALTABLE 0x08000000  /* Use virtual-table processing */
254 #define WHERE_MULTI_OR     0x10000000  /* OR using multiple indices */
255 #define WHERE_TEMP_INDEX   0x20000000  /* Uses an ephemeral index */
256 
257 /*
258 ** Initialize a preallocated WhereClause structure.
259 */
260 static void whereClauseInit(
261   WhereClause *pWC,        /* The WhereClause to be initialized */
262   Parse *pParse,           /* The parsing context */
263   WhereMaskSet *pMaskSet   /* Mapping from table cursor numbers to bitmasks */
264 ){
265   pWC->pParse = pParse;
266   pWC->pMaskSet = pMaskSet;
267   pWC->nTerm = 0;
268   pWC->nSlot = ArraySize(pWC->aStatic);
269   pWC->a = pWC->aStatic;
270   pWC->vmask = 0;
271 }
272 
273 /* Forward reference */
274 static void whereClauseClear(WhereClause*);
275 
276 /*
277 ** Deallocate all memory associated with a WhereOrInfo object.
278 */
279 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
280   whereClauseClear(&p->wc);
281   sqlite3DbFree(db, p);
282 }
283 
284 /*
285 ** Deallocate all memory associated with a WhereAndInfo object.
286 */
287 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
288   whereClauseClear(&p->wc);
289   sqlite3DbFree(db, p);
290 }
291 
292 /*
293 ** Deallocate a WhereClause structure.  The WhereClause structure
294 ** itself is not freed.  This routine is the inverse of whereClauseInit().
295 */
296 static void whereClauseClear(WhereClause *pWC){
297   int i;
298   WhereTerm *a;
299   sqlite3 *db = pWC->pParse->db;
300   for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
301     if( a->wtFlags & TERM_DYNAMIC ){
302       sqlite3ExprDelete(db, a->pExpr);
303     }
304     if( a->wtFlags & TERM_ORINFO ){
305       whereOrInfoDelete(db, a->u.pOrInfo);
306     }else if( a->wtFlags & TERM_ANDINFO ){
307       whereAndInfoDelete(db, a->u.pAndInfo);
308     }
309   }
310   if( pWC->a!=pWC->aStatic ){
311     sqlite3DbFree(db, pWC->a);
312   }
313 }
314 
315 /*
316 ** Add a single new WhereTerm entry to the WhereClause object pWC.
317 ** The new WhereTerm object is constructed from Expr p and with wtFlags.
318 ** The index in pWC->a[] of the new WhereTerm is returned on success.
319 ** 0 is returned if the new WhereTerm could not be added due to a memory
320 ** allocation error.  The memory allocation failure will be recorded in
321 ** the db->mallocFailed flag so that higher-level functions can detect it.
322 **
323 ** This routine will increase the size of the pWC->a[] array as necessary.
324 **
325 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
326 ** for freeing the expression p is assumed by the WhereClause object pWC.
327 ** This is true even if this routine fails to allocate a new WhereTerm.
328 **
329 ** WARNING:  This routine might reallocate the space used to store
330 ** WhereTerms.  All pointers to WhereTerms should be invalidated after
331 ** calling this routine.  Such pointers may be reinitialized by referencing
332 ** the pWC->a[] array.
333 */
334 static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
335   WhereTerm *pTerm;
336   int idx;
337   testcase( wtFlags & TERM_VIRTUAL );  /* EV: R-00211-15100 */
338   if( pWC->nTerm>=pWC->nSlot ){
339     WhereTerm *pOld = pWC->a;
340     sqlite3 *db = pWC->pParse->db;
341     pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
342     if( pWC->a==0 ){
343       if( wtFlags & TERM_DYNAMIC ){
344         sqlite3ExprDelete(db, p);
345       }
346       pWC->a = pOld;
347       return 0;
348     }
349     memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
350     if( pOld!=pWC->aStatic ){
351       sqlite3DbFree(db, pOld);
352     }
353     pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
354   }
355   pTerm = &pWC->a[idx = pWC->nTerm++];
356   pTerm->pExpr = p;
357   pTerm->wtFlags = wtFlags;
358   pTerm->pWC = pWC;
359   pTerm->iParent = -1;
360   return idx;
361 }
362 
363 /*
364 ** This routine identifies subexpressions in the WHERE clause where
365 ** each subexpression is separated by the AND operator or some other
366 ** operator specified in the op parameter.  The WhereClause structure
367 ** is filled with pointers to subexpressions.  For example:
368 **
369 **    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
370 **           \________/     \_______________/     \________________/
371 **            slot[0]            slot[1]               slot[2]
372 **
373 ** The original WHERE clause in pExpr is unaltered.  All this routine
374 ** does is make slot[] entries point to substructure within pExpr.
375 **
376 ** In the previous sentence and in the diagram, "slot[]" refers to
377 ** the WhereClause.a[] array.  The slot[] array grows as needed to contain
378 ** all terms of the WHERE clause.
379 */
380 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
381   pWC->op = (u8)op;
382   if( pExpr==0 ) return;
383   if( pExpr->op!=op ){
384     whereClauseInsert(pWC, pExpr, 0);
385   }else{
386     whereSplit(pWC, pExpr->pLeft, op);
387     whereSplit(pWC, pExpr->pRight, op);
388   }
389 }
390 
391 /*
392 ** Initialize an expression mask set (a WhereMaskSet object)
393 */
394 #define initMaskSet(P)  memset(P, 0, sizeof(*P))
395 
396 /*
397 ** Return the bitmask for the given cursor number.  Return 0 if
398 ** iCursor is not in the set.
399 */
400 static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){
401   int i;
402   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
403   for(i=0; i<pMaskSet->n; i++){
404     if( pMaskSet->ix[i]==iCursor ){
405       return ((Bitmask)1)<<i;
406     }
407   }
408   return 0;
409 }
410 
411 /*
412 ** Create a new mask for cursor iCursor.
413 **
414 ** There is one cursor per table in the FROM clause.  The number of
415 ** tables in the FROM clause is limited by a test early in the
416 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
417 ** array will never overflow.
418 */
419 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
420   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
421   pMaskSet->ix[pMaskSet->n++] = iCursor;
422 }
423 
424 /*
425 ** This routine walks (recursively) an expression tree and generates
426 ** a bitmask indicating which tables are used in that expression
427 ** tree.
428 **
429 ** In order for this routine to work, the calling function must have
430 ** previously invoked sqlite3ResolveExprNames() on the expression.  See
431 ** the header comment on that routine for additional information.
432 ** The sqlite3ResolveExprNames() routines looks for column names and
433 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
434 ** the VDBE cursor number of the table.  This routine just has to
435 ** translate the cursor numbers into bitmask values and OR all
436 ** the bitmasks together.
437 */
438 static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
439 static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
440 static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
441   Bitmask mask = 0;
442   if( p==0 ) return 0;
443   if( p->op==TK_COLUMN ){
444     mask = getMask(pMaskSet, p->iTable);
445     return mask;
446   }
447   mask = exprTableUsage(pMaskSet, p->pRight);
448   mask |= exprTableUsage(pMaskSet, p->pLeft);
449   if( ExprHasProperty(p, EP_xIsSelect) ){
450     mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect);
451   }else{
452     mask |= exprListTableUsage(pMaskSet, p->x.pList);
453   }
454   return mask;
455 }
456 static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){
457   int i;
458   Bitmask mask = 0;
459   if( pList ){
460     for(i=0; i<pList->nExpr; i++){
461       mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
462     }
463   }
464   return mask;
465 }
466 static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){
467   Bitmask mask = 0;
468   while( pS ){
469     mask |= exprListTableUsage(pMaskSet, pS->pEList);
470     mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
471     mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
472     mask |= exprTableUsage(pMaskSet, pS->pWhere);
473     mask |= exprTableUsage(pMaskSet, pS->pHaving);
474     pS = pS->pPrior;
475   }
476   return mask;
477 }
478 
479 /*
480 ** Return TRUE if the given operator is one of the operators that is
481 ** allowed for an indexable WHERE clause term.  The allowed operators are
482 ** "=", "<", ">", "<=", ">=", and "IN".
483 **
484 ** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be
485 ** of one of the following forms: column = expression column > expression
486 ** column >= expression column < expression column <= expression
487 ** expression = column expression > column expression >= column
488 ** expression < column expression <= column column IN
489 ** (expression-list) column IN (subquery) column IS NULL
490 */
491 static int allowedOp(int op){
492   assert( TK_GT>TK_EQ && TK_GT<TK_GE );
493   assert( TK_LT>TK_EQ && TK_LT<TK_GE );
494   assert( TK_LE>TK_EQ && TK_LE<TK_GE );
495   assert( TK_GE==TK_EQ+4 );
496   return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
497 }
498 
499 /*
500 ** Swap two objects of type TYPE.
501 */
502 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
503 
504 /*
505 ** Commute a comparison operator.  Expressions of the form "X op Y"
506 ** are converted into "Y op X".
507 **
508 ** If a collation sequence is associated with either the left or right
509 ** side of the comparison, it remains associated with the same side after
510 ** the commutation. So "Y collate NOCASE op X" becomes
511 ** "X collate NOCASE op Y". This is because any collation sequence on
512 ** the left hand side of a comparison overrides any collation sequence
513 ** attached to the right. For the same reason the EP_ExpCollate flag
514 ** is not commuted.
515 */
516 static void exprCommute(Parse *pParse, Expr *pExpr){
517   u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
518   u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
519   assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
520   pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight);
521   pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
522   SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
523   pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
524   pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
525   SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
526   if( pExpr->op>=TK_GT ){
527     assert( TK_LT==TK_GT+2 );
528     assert( TK_GE==TK_LE+2 );
529     assert( TK_GT>TK_EQ );
530     assert( TK_GT<TK_LE );
531     assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
532     pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
533   }
534 }
535 
536 /*
537 ** Translate from TK_xx operator to WO_xx bitmask.
538 */
539 static u16 operatorMask(int op){
540   u16 c;
541   assert( allowedOp(op) );
542   if( op==TK_IN ){
543     c = WO_IN;
544   }else if( op==TK_ISNULL ){
545     c = WO_ISNULL;
546   }else{
547     assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
548     c = (u16)(WO_EQ<<(op-TK_EQ));
549   }
550   assert( op!=TK_ISNULL || c==WO_ISNULL );
551   assert( op!=TK_IN || c==WO_IN );
552   assert( op!=TK_EQ || c==WO_EQ );
553   assert( op!=TK_LT || c==WO_LT );
554   assert( op!=TK_LE || c==WO_LE );
555   assert( op!=TK_GT || c==WO_GT );
556   assert( op!=TK_GE || c==WO_GE );
557   return c;
558 }
559 
560 /*
561 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
562 ** where X is a reference to the iColumn of table iCur and <op> is one of
563 ** the WO_xx operator codes specified by the op parameter.
564 ** Return a pointer to the term.  Return 0 if not found.
565 */
566 static WhereTerm *findTerm(
567   WhereClause *pWC,     /* The WHERE clause to be searched */
568   int iCur,             /* Cursor number of LHS */
569   int iColumn,          /* Column number of LHS */
570   Bitmask notReady,     /* RHS must not overlap with this mask */
571   u32 op,               /* Mask of WO_xx values describing operator */
572   Index *pIdx           /* Must be compatible with this index, if not NULL */
573 ){
574   WhereTerm *pTerm;
575   int k;
576   assert( iCur>=0 );
577   op &= WO_ALL;
578   for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
579     if( pTerm->leftCursor==iCur
580        && (pTerm->prereqRight & notReady)==0
581        && pTerm->u.leftColumn==iColumn
582        && (pTerm->eOperator & op)!=0
583     ){
584       if( pIdx && pTerm->eOperator!=WO_ISNULL ){
585         Expr *pX = pTerm->pExpr;
586         CollSeq *pColl;
587         char idxaff;
588         int j;
589         Parse *pParse = pWC->pParse;
590 
591         idxaff = pIdx->pTable->aCol[iColumn].affinity;
592         if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
593 
594         /* Figure out the collation sequence required from an index for
595         ** it to be useful for optimising expression pX. Store this
596         ** value in variable pColl.
597         */
598         assert(pX->pLeft);
599         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
600         assert(pColl || pParse->nErr);
601 
602         for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
603           if( NEVER(j>=pIdx->nColumn) ) return 0;
604         }
605         if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
606       }
607       return pTerm;
608     }
609   }
610   return 0;
611 }
612 
613 /* Forward reference */
614 static void exprAnalyze(SrcList*, WhereClause*, int);
615 
616 /*
617 ** Call exprAnalyze on all terms in a WHERE clause.
618 **
619 **
620 */
621 static void exprAnalyzeAll(
622   SrcList *pTabList,       /* the FROM clause */
623   WhereClause *pWC         /* the WHERE clause to be analyzed */
624 ){
625   int i;
626   for(i=pWC->nTerm-1; i>=0; i--){
627     exprAnalyze(pTabList, pWC, i);
628   }
629 }
630 
631 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
632 /*
633 ** Check to see if the given expression is a LIKE or GLOB operator that
634 ** can be optimized using inequality constraints.  Return TRUE if it is
635 ** so and false if not.
636 **
637 ** In order for the operator to be optimizible, the RHS must be a string
638 ** literal that does not begin with a wildcard.
639 */
640 static int isLikeOrGlob(
641   Parse *pParse,    /* Parsing and code generating context */
642   Expr *pExpr,      /* Test this expression */
643   Expr **ppPrefix,  /* Pointer to TK_STRING expression with pattern prefix */
644   int *pisComplete, /* True if the only wildcard is % in the last character */
645   int *pnoCase      /* True if uppercase is equivalent to lowercase */
646 ){
647   const char *z = 0;         /* String on RHS of LIKE operator */
648   Expr *pRight, *pLeft;      /* Right and left size of LIKE operator */
649   ExprList *pList;           /* List of operands to the LIKE operator */
650   int c;                     /* One character in z[] */
651   int cnt;                   /* Number of non-wildcard prefix characters */
652   char wc[3];                /* Wildcard characters */
653   sqlite3 *db = pParse->db;  /* Database connection */
654   sqlite3_value *pVal = 0;
655   int op;                    /* Opcode of pRight */
656 
657   if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
658     return 0;
659   }
660 #ifdef SQLITE_EBCDIC
661   if( *pnoCase ) return 0;
662 #endif
663   pList = pExpr->x.pList;
664   pLeft = pList->a[1].pExpr;
665   if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ){
666     /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must
667     ** be the name of an indexed column with TEXT affinity. */
668     return 0;
669   }
670   assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */
671 
672   pRight = pList->a[0].pExpr;
673   op = pRight->op;
674   if( op==TK_REGISTER ){
675     op = pRight->op2;
676   }
677   if( op==TK_VARIABLE ){
678     Vdbe *pReprepare = pParse->pReprepare;
679     int iCol = pRight->iColumn;
680     pVal = sqlite3VdbeGetValue(pReprepare, iCol, SQLITE_AFF_NONE);
681     if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
682       z = (char *)sqlite3_value_text(pVal);
683     }
684     sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); /* IMP: R-23257-02778 */
685     assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
686   }else if( op==TK_STRING ){
687     z = pRight->u.zToken;
688   }
689   if( z ){
690     cnt = 0;
691     while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
692       cnt++;
693     }
694     if( cnt!=0 && 255!=(u8)z[cnt-1] ){
695       Expr *pPrefix;
696       *pisComplete = c==wc[0] && z[cnt+1]==0;
697       pPrefix = sqlite3Expr(db, TK_STRING, z);
698       if( pPrefix ) pPrefix->u.zToken[cnt] = 0;
699       *ppPrefix = pPrefix;
700       if( op==TK_VARIABLE ){
701         Vdbe *v = pParse->pVdbe;
702         sqlite3VdbeSetVarmask(v, pRight->iColumn); /* IMP: R-23257-02778 */
703         if( *pisComplete && pRight->u.zToken[1] ){
704           /* If the rhs of the LIKE expression is a variable, and the current
705           ** value of the variable means there is no need to invoke the LIKE
706           ** function, then no OP_Variable will be added to the program.
707           ** This causes problems for the sqlite3_bind_parameter_name()
708           ** API. To workaround them, add a dummy OP_Variable here.
709           */
710           int r1 = sqlite3GetTempReg(pParse);
711           sqlite3ExprCodeTarget(pParse, pRight, r1);
712           sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
713           sqlite3ReleaseTempReg(pParse, r1);
714         }
715       }
716     }else{
717       z = 0;
718     }
719   }
720 
721   sqlite3ValueFree(pVal);
722   return (z!=0);
723 }
724 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
725 
726 
727 #ifndef SQLITE_OMIT_VIRTUALTABLE
728 /*
729 ** Check to see if the given expression is of the form
730 **
731 **         column MATCH expr
732 **
733 ** If it is then return TRUE.  If not, return FALSE.
734 */
735 static int isMatchOfColumn(
736   Expr *pExpr      /* Test this expression */
737 ){
738   ExprList *pList;
739 
740   if( pExpr->op!=TK_FUNCTION ){
741     return 0;
742   }
743   if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){
744     return 0;
745   }
746   pList = pExpr->x.pList;
747   if( pList->nExpr!=2 ){
748     return 0;
749   }
750   if( pList->a[1].pExpr->op != TK_COLUMN ){
751     return 0;
752   }
753   return 1;
754 }
755 #endif /* SQLITE_OMIT_VIRTUALTABLE */
756 
757 /*
758 ** If the pBase expression originated in the ON or USING clause of
759 ** a join, then transfer the appropriate markings over to derived.
760 */
761 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
762   pDerived->flags |= pBase->flags & EP_FromJoin;
763   pDerived->iRightJoinTable = pBase->iRightJoinTable;
764 }
765 
766 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
767 /*
768 ** Analyze a term that consists of two or more OR-connected
769 ** subterms.  So in:
770 **
771 **     ... WHERE  (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
772 **                          ^^^^^^^^^^^^^^^^^^^^
773 **
774 ** This routine analyzes terms such as the middle term in the above example.
775 ** A WhereOrTerm object is computed and attached to the term under
776 ** analysis, regardless of the outcome of the analysis.  Hence:
777 **
778 **     WhereTerm.wtFlags   |=  TERM_ORINFO
779 **     WhereTerm.u.pOrInfo  =  a dynamically allocated WhereOrTerm object
780 **
781 ** The term being analyzed must have two or more of OR-connected subterms.
782 ** A single subterm might be a set of AND-connected sub-subterms.
783 ** Examples of terms under analysis:
784 **
785 **     (A)     t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
786 **     (B)     x=expr1 OR expr2=x OR x=expr3
787 **     (C)     t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
788 **     (D)     x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
789 **     (E)     (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
790 **
791 ** CASE 1:
792 **
793 ** If all subterms are of the form T.C=expr for some single column of C
794 ** a single table T (as shown in example B above) then create a new virtual
795 ** term that is an equivalent IN expression.  In other words, if the term
796 ** being analyzed is:
797 **
798 **      x = expr1  OR  expr2 = x  OR  x = expr3
799 **
800 ** then create a new virtual term like this:
801 **
802 **      x IN (expr1,expr2,expr3)
803 **
804 ** CASE 2:
805 **
806 ** If all subterms are indexable by a single table T, then set
807 **
808 **     WhereTerm.eOperator              =  WO_OR
809 **     WhereTerm.u.pOrInfo->indexable  |=  the cursor number for table T
810 **
811 ** A subterm is "indexable" if it is of the form
812 ** "T.C <op> <expr>" where C is any column of table T and
813 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
814 ** A subterm is also indexable if it is an AND of two or more
815 ** subsubterms at least one of which is indexable.  Indexable AND
816 ** subterms have their eOperator set to WO_AND and they have
817 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
818 **
819 ** From another point of view, "indexable" means that the subterm could
820 ** potentially be used with an index if an appropriate index exists.
821 ** This analysis does not consider whether or not the index exists; that
822 ** is something the bestIndex() routine will determine.  This analysis
823 ** only looks at whether subterms appropriate for indexing exist.
824 **
825 ** All examples A through E above all satisfy case 2.  But if a term
826 ** also statisfies case 1 (such as B) we know that the optimizer will
827 ** always prefer case 1, so in that case we pretend that case 2 is not
828 ** satisfied.
829 **
830 ** It might be the case that multiple tables are indexable.  For example,
831 ** (E) above is indexable on tables P, Q, and R.
832 **
833 ** Terms that satisfy case 2 are candidates for lookup by using
834 ** separate indices to find rowids for each subterm and composing
835 ** the union of all rowids using a RowSet object.  This is similar
836 ** to "bitmap indices" in other database engines.
837 **
838 ** OTHERWISE:
839 **
840 ** If neither case 1 nor case 2 apply, then leave the eOperator set to
841 ** zero.  This term is not useful for search.
842 */
843 static void exprAnalyzeOrTerm(
844   SrcList *pSrc,            /* the FROM clause */
845   WhereClause *pWC,         /* the complete WHERE clause */
846   int idxTerm               /* Index of the OR-term to be analyzed */
847 ){
848   Parse *pParse = pWC->pParse;            /* Parser context */
849   sqlite3 *db = pParse->db;               /* Database connection */
850   WhereTerm *pTerm = &pWC->a[idxTerm];    /* The term to be analyzed */
851   Expr *pExpr = pTerm->pExpr;             /* The expression of the term */
852   WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */
853   int i;                                  /* Loop counters */
854   WhereClause *pOrWc;       /* Breakup of pTerm into subterms */
855   WhereTerm *pOrTerm;       /* A Sub-term within the pOrWc */
856   WhereOrInfo *pOrInfo;     /* Additional information associated with pTerm */
857   Bitmask chngToIN;         /* Tables that might satisfy case 1 */
858   Bitmask indexable;        /* Tables that are indexable, satisfying case 2 */
859 
860   /*
861   ** Break the OR clause into its separate subterms.  The subterms are
862   ** stored in a WhereClause structure containing within the WhereOrInfo
863   ** object that is attached to the original OR clause term.
864   */
865   assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
866   assert( pExpr->op==TK_OR );
867   pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
868   if( pOrInfo==0 ) return;
869   pTerm->wtFlags |= TERM_ORINFO;
870   pOrWc = &pOrInfo->wc;
871   whereClauseInit(pOrWc, pWC->pParse, pMaskSet);
872   whereSplit(pOrWc, pExpr, TK_OR);
873   exprAnalyzeAll(pSrc, pOrWc);
874   if( db->mallocFailed ) return;
875   assert( pOrWc->nTerm>=2 );
876 
877   /*
878   ** Compute the set of tables that might satisfy cases 1 or 2.
879   */
880   indexable = ~(Bitmask)0;
881   chngToIN = ~(pWC->vmask);
882   for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
883     if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
884       WhereAndInfo *pAndInfo;
885       assert( pOrTerm->eOperator==0 );
886       assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
887       chngToIN = 0;
888       pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
889       if( pAndInfo ){
890         WhereClause *pAndWC;
891         WhereTerm *pAndTerm;
892         int j;
893         Bitmask b = 0;
894         pOrTerm->u.pAndInfo = pAndInfo;
895         pOrTerm->wtFlags |= TERM_ANDINFO;
896         pOrTerm->eOperator = WO_AND;
897         pAndWC = &pAndInfo->wc;
898         whereClauseInit(pAndWC, pWC->pParse, pMaskSet);
899         whereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
900         exprAnalyzeAll(pSrc, pAndWC);
901         testcase( db->mallocFailed );
902         if( !db->mallocFailed ){
903           for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
904             assert( pAndTerm->pExpr );
905             if( allowedOp(pAndTerm->pExpr->op) ){
906               b |= getMask(pMaskSet, pAndTerm->leftCursor);
907             }
908           }
909         }
910         indexable &= b;
911       }
912     }else if( pOrTerm->wtFlags & TERM_COPIED ){
913       /* Skip this term for now.  We revisit it when we process the
914       ** corresponding TERM_VIRTUAL term */
915     }else{
916       Bitmask b;
917       b = getMask(pMaskSet, pOrTerm->leftCursor);
918       if( pOrTerm->wtFlags & TERM_VIRTUAL ){
919         WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
920         b |= getMask(pMaskSet, pOther->leftCursor);
921       }
922       indexable &= b;
923       if( pOrTerm->eOperator!=WO_EQ ){
924         chngToIN = 0;
925       }else{
926         chngToIN &= b;
927       }
928     }
929   }
930 
931   /*
932   ** Record the set of tables that satisfy case 2.  The set might be
933   ** empty.
934   */
935   pOrInfo->indexable = indexable;
936   pTerm->eOperator = indexable==0 ? 0 : WO_OR;
937 
938   /*
939   ** chngToIN holds a set of tables that *might* satisfy case 1.  But
940   ** we have to do some additional checking to see if case 1 really
941   ** is satisfied.
942   **
943   ** chngToIN will hold either 0, 1, or 2 bits.  The 0-bit case means
944   ** that there is no possibility of transforming the OR clause into an
945   ** IN operator because one or more terms in the OR clause contain
946   ** something other than == on a column in the single table.  The 1-bit
947   ** case means that every term of the OR clause is of the form
948   ** "table.column=expr" for some single table.  The one bit that is set
949   ** will correspond to the common table.  We still need to check to make
950   ** sure the same column is used on all terms.  The 2-bit case is when
951   ** the all terms are of the form "table1.column=table2.column".  It
952   ** might be possible to form an IN operator with either table1.column
953   ** or table2.column as the LHS if either is common to every term of
954   ** the OR clause.
955   **
956   ** Note that terms of the form "table.column1=table.column2" (the
957   ** same table on both sizes of the ==) cannot be optimized.
958   */
959   if( chngToIN ){
960     int okToChngToIN = 0;     /* True if the conversion to IN is valid */
961     int iColumn = -1;         /* Column index on lhs of IN operator */
962     int iCursor = -1;         /* Table cursor common to all terms */
963     int j = 0;                /* Loop counter */
964 
965     /* Search for a table and column that appears on one side or the
966     ** other of the == operator in every subterm.  That table and column
967     ** will be recorded in iCursor and iColumn.  There might not be any
968     ** such table and column.  Set okToChngToIN if an appropriate table
969     ** and column is found but leave okToChngToIN false if not found.
970     */
971     for(j=0; j<2 && !okToChngToIN; j++){
972       pOrTerm = pOrWc->a;
973       for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
974         assert( pOrTerm->eOperator==WO_EQ );
975         pOrTerm->wtFlags &= ~TERM_OR_OK;
976         if( pOrTerm->leftCursor==iCursor ){
977           /* This is the 2-bit case and we are on the second iteration and
978           ** current term is from the first iteration.  So skip this term. */
979           assert( j==1 );
980           continue;
981         }
982         if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){
983           /* This term must be of the form t1.a==t2.b where t2 is in the
984           ** chngToIN set but t1 is not.  This term will be either preceeded
985           ** or follwed by an inverted copy (t2.b==t1.a).  Skip this term
986           ** and use its inversion. */
987           testcase( pOrTerm->wtFlags & TERM_COPIED );
988           testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
989           assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
990           continue;
991         }
992         iColumn = pOrTerm->u.leftColumn;
993         iCursor = pOrTerm->leftCursor;
994         break;
995       }
996       if( i<0 ){
997         /* No candidate table+column was found.  This can only occur
998         ** on the second iteration */
999         assert( j==1 );
1000         assert( (chngToIN&(chngToIN-1))==0 );
1001         assert( chngToIN==getMask(pMaskSet, iCursor) );
1002         break;
1003       }
1004       testcase( j==1 );
1005 
1006       /* We have found a candidate table and column.  Check to see if that
1007       ** table and column is common to every term in the OR clause */
1008       okToChngToIN = 1;
1009       for(; i>=0 && okToChngToIN; i--, pOrTerm++){
1010         assert( pOrTerm->eOperator==WO_EQ );
1011         if( pOrTerm->leftCursor!=iCursor ){
1012           pOrTerm->wtFlags &= ~TERM_OR_OK;
1013         }else if( pOrTerm->u.leftColumn!=iColumn ){
1014           okToChngToIN = 0;
1015         }else{
1016           int affLeft, affRight;
1017           /* If the right-hand side is also a column, then the affinities
1018           ** of both right and left sides must be such that no type
1019           ** conversions are required on the right.  (Ticket #2249)
1020           */
1021           affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
1022           affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
1023           if( affRight!=0 && affRight!=affLeft ){
1024             okToChngToIN = 0;
1025           }else{
1026             pOrTerm->wtFlags |= TERM_OR_OK;
1027           }
1028         }
1029       }
1030     }
1031 
1032     /* At this point, okToChngToIN is true if original pTerm satisfies
1033     ** case 1.  In that case, construct a new virtual term that is
1034     ** pTerm converted into an IN operator.
1035     **
1036     ** EV: R-00211-15100
1037     */
1038     if( okToChngToIN ){
1039       Expr *pDup;            /* A transient duplicate expression */
1040       ExprList *pList = 0;   /* The RHS of the IN operator */
1041       Expr *pLeft = 0;       /* The LHS of the IN operator */
1042       Expr *pNew;            /* The complete IN operator */
1043 
1044       for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
1045         if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
1046         assert( pOrTerm->eOperator==WO_EQ );
1047         assert( pOrTerm->leftCursor==iCursor );
1048         assert( pOrTerm->u.leftColumn==iColumn );
1049         pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
1050         pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup);
1051         pLeft = pOrTerm->pExpr->pLeft;
1052       }
1053       assert( pLeft!=0 );
1054       pDup = sqlite3ExprDup(db, pLeft, 0);
1055       pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
1056       if( pNew ){
1057         int idxNew;
1058         transferJoinMarkings(pNew, pExpr);
1059         assert( !ExprHasProperty(pNew, EP_xIsSelect) );
1060         pNew->x.pList = pList;
1061         idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
1062         testcase( idxNew==0 );
1063         exprAnalyze(pSrc, pWC, idxNew);
1064         pTerm = &pWC->a[idxTerm];
1065         pWC->a[idxNew].iParent = idxTerm;
1066         pTerm->nChild = 1;
1067       }else{
1068         sqlite3ExprListDelete(db, pList);
1069       }
1070       pTerm->eOperator = WO_NOOP;  /* case 1 trumps case 2 */
1071     }
1072   }
1073 }
1074 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
1075 
1076 
1077 /*
1078 ** The input to this routine is an WhereTerm structure with only the
1079 ** "pExpr" field filled in.  The job of this routine is to analyze the
1080 ** subexpression and populate all the other fields of the WhereTerm
1081 ** structure.
1082 **
1083 ** If the expression is of the form "<expr> <op> X" it gets commuted
1084 ** to the standard form of "X <op> <expr>".
1085 **
1086 ** If the expression is of the form "X <op> Y" where both X and Y are
1087 ** columns, then the original expression is unchanged and a new virtual
1088 ** term of the form "Y <op> X" is added to the WHERE clause and
1089 ** analyzed separately.  The original term is marked with TERM_COPIED
1090 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr
1091 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
1092 ** is a commuted copy of a prior term.)  The original term has nChild=1
1093 ** and the copy has idxParent set to the index of the original term.
1094 */
1095 static void exprAnalyze(
1096   SrcList *pSrc,            /* the FROM clause */
1097   WhereClause *pWC,         /* the WHERE clause */
1098   int idxTerm               /* Index of the term to be analyzed */
1099 ){
1100   WhereTerm *pTerm;                /* The term to be analyzed */
1101   WhereMaskSet *pMaskSet;          /* Set of table index masks */
1102   Expr *pExpr;                     /* The expression to be analyzed */
1103   Bitmask prereqLeft;              /* Prerequesites of the pExpr->pLeft */
1104   Bitmask prereqAll;               /* Prerequesites of pExpr */
1105   Bitmask extraRight = 0;          /* Extra dependencies on LEFT JOIN */
1106   Expr *pStr1 = 0;                 /* RHS of LIKE/GLOB operator */
1107   int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */
1108   int noCase = 0;                  /* LIKE/GLOB distinguishes case */
1109   int op;                          /* Top-level operator.  pExpr->op */
1110   Parse *pParse = pWC->pParse;     /* Parsing context */
1111   sqlite3 *db = pParse->db;        /* Database connection */
1112 
1113   if( db->mallocFailed ){
1114     return;
1115   }
1116   pTerm = &pWC->a[idxTerm];
1117   pMaskSet = pWC->pMaskSet;
1118   pExpr = pTerm->pExpr;
1119   prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
1120   op = pExpr->op;
1121   if( op==TK_IN ){
1122     assert( pExpr->pRight==0 );
1123     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1124       pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect);
1125     }else{
1126       pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList);
1127     }
1128   }else if( op==TK_ISNULL ){
1129     pTerm->prereqRight = 0;
1130   }else{
1131     pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
1132   }
1133   prereqAll = exprTableUsage(pMaskSet, pExpr);
1134   if( ExprHasProperty(pExpr, EP_FromJoin) ){
1135     Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
1136     prereqAll |= x;
1137     extraRight = x-1;  /* ON clause terms may not be used with an index
1138                        ** on left table of a LEFT JOIN.  Ticket #3015 */
1139   }
1140   pTerm->prereqAll = prereqAll;
1141   pTerm->leftCursor = -1;
1142   pTerm->iParent = -1;
1143   pTerm->eOperator = 0;
1144   if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
1145     Expr *pLeft = pExpr->pLeft;
1146     Expr *pRight = pExpr->pRight;
1147     if( pLeft->op==TK_COLUMN ){
1148       pTerm->leftCursor = pLeft->iTable;
1149       pTerm->u.leftColumn = pLeft->iColumn;
1150       pTerm->eOperator = operatorMask(op);
1151     }
1152     if( pRight && pRight->op==TK_COLUMN ){
1153       WhereTerm *pNew;
1154       Expr *pDup;
1155       if( pTerm->leftCursor>=0 ){
1156         int idxNew;
1157         pDup = sqlite3ExprDup(db, pExpr, 0);
1158         if( db->mallocFailed ){
1159           sqlite3ExprDelete(db, pDup);
1160           return;
1161         }
1162         idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
1163         if( idxNew==0 ) return;
1164         pNew = &pWC->a[idxNew];
1165         pNew->iParent = idxTerm;
1166         pTerm = &pWC->a[idxTerm];
1167         pTerm->nChild = 1;
1168         pTerm->wtFlags |= TERM_COPIED;
1169       }else{
1170         pDup = pExpr;
1171         pNew = pTerm;
1172       }
1173       exprCommute(pParse, pDup);
1174       pLeft = pDup->pLeft;
1175       pNew->leftCursor = pLeft->iTable;
1176       pNew->u.leftColumn = pLeft->iColumn;
1177       testcase( (prereqLeft | extraRight) != prereqLeft );
1178       pNew->prereqRight = prereqLeft | extraRight;
1179       pNew->prereqAll = prereqAll;
1180       pNew->eOperator = operatorMask(pDup->op);
1181     }
1182   }
1183 
1184 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
1185   /* If a term is the BETWEEN operator, create two new virtual terms
1186   ** that define the range that the BETWEEN implements.  For example:
1187   **
1188   **      a BETWEEN b AND c
1189   **
1190   ** is converted into:
1191   **
1192   **      (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
1193   **
1194   ** The two new terms are added onto the end of the WhereClause object.
1195   ** The new terms are "dynamic" and are children of the original BETWEEN
1196   ** term.  That means that if the BETWEEN term is coded, the children are
1197   ** skipped.  Or, if the children are satisfied by an index, the original
1198   ** BETWEEN term is skipped.
1199   */
1200   else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
1201     ExprList *pList = pExpr->x.pList;
1202     int i;
1203     static const u8 ops[] = {TK_GE, TK_LE};
1204     assert( pList!=0 );
1205     assert( pList->nExpr==2 );
1206     for(i=0; i<2; i++){
1207       Expr *pNewExpr;
1208       int idxNew;
1209       pNewExpr = sqlite3PExpr(pParse, ops[i],
1210                              sqlite3ExprDup(db, pExpr->pLeft, 0),
1211                              sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
1212       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1213       testcase( idxNew==0 );
1214       exprAnalyze(pSrc, pWC, idxNew);
1215       pTerm = &pWC->a[idxTerm];
1216       pWC->a[idxNew].iParent = idxTerm;
1217     }
1218     pTerm->nChild = 2;
1219   }
1220 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
1221 
1222 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
1223   /* Analyze a term that is composed of two or more subterms connected by
1224   ** an OR operator.
1225   */
1226   else if( pExpr->op==TK_OR ){
1227     assert( pWC->op==TK_AND );
1228     exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
1229     pTerm = &pWC->a[idxTerm];
1230   }
1231 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1232 
1233 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
1234   /* Add constraints to reduce the search space on a LIKE or GLOB
1235   ** operator.
1236   **
1237   ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
1238   **
1239   **          x>='abc' AND x<'abd' AND x LIKE 'abc%'
1240   **
1241   ** The last character of the prefix "abc" is incremented to form the
1242   ** termination condition "abd".
1243   */
1244   if( pWC->op==TK_AND
1245    && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
1246   ){
1247     Expr *pLeft;       /* LHS of LIKE/GLOB operator */
1248     Expr *pStr2;       /* Copy of pStr1 - RHS of LIKE/GLOB operator */
1249     Expr *pNewExpr1;
1250     Expr *pNewExpr2;
1251     int idxNew1;
1252     int idxNew2;
1253     CollSeq *pColl;    /* Collating sequence to use */
1254 
1255     pLeft = pExpr->x.pList->a[1].pExpr;
1256     pStr2 = sqlite3ExprDup(db, pStr1, 0);
1257     if( !db->mallocFailed ){
1258       u8 c, *pC;       /* Last character before the first wildcard */
1259       pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
1260       c = *pC;
1261       if( noCase ){
1262         /* The point is to increment the last character before the first
1263         ** wildcard.  But if we increment '@', that will push it into the
1264         ** alphabetic range where case conversions will mess up the
1265         ** inequality.  To avoid this, make sure to also run the full
1266         ** LIKE on all candidate expressions by clearing the isComplete flag
1267         */
1268         if( c=='A'-1 ) isComplete = 0;   /* EV: R-64339-08207 */
1269 
1270 
1271         c = sqlite3UpperToLower[c];
1272       }
1273       *pC = c + 1;
1274     }
1275     pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, noCase ? "NOCASE" : "BINARY",0);
1276     pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
1277                      sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl),
1278                      pStr1, 0);
1279     idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
1280     testcase( idxNew1==0 );
1281     exprAnalyze(pSrc, pWC, idxNew1);
1282     pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
1283                      sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl),
1284                      pStr2, 0);
1285     idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
1286     testcase( idxNew2==0 );
1287     exprAnalyze(pSrc, pWC, idxNew2);
1288     pTerm = &pWC->a[idxTerm];
1289     if( isComplete ){
1290       pWC->a[idxNew1].iParent = idxTerm;
1291       pWC->a[idxNew2].iParent = idxTerm;
1292       pTerm->nChild = 2;
1293     }
1294   }
1295 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
1296 
1297 #ifndef SQLITE_OMIT_VIRTUALTABLE
1298   /* Add a WO_MATCH auxiliary term to the constraint set if the
1299   ** current expression is of the form:  column MATCH expr.
1300   ** This information is used by the xBestIndex methods of
1301   ** virtual tables.  The native query optimizer does not attempt
1302   ** to do anything with MATCH functions.
1303   */
1304   if( isMatchOfColumn(pExpr) ){
1305     int idxNew;
1306     Expr *pRight, *pLeft;
1307     WhereTerm *pNewTerm;
1308     Bitmask prereqColumn, prereqExpr;
1309 
1310     pRight = pExpr->x.pList->a[0].pExpr;
1311     pLeft = pExpr->x.pList->a[1].pExpr;
1312     prereqExpr = exprTableUsage(pMaskSet, pRight);
1313     prereqColumn = exprTableUsage(pMaskSet, pLeft);
1314     if( (prereqExpr & prereqColumn)==0 ){
1315       Expr *pNewExpr;
1316       pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
1317                               0, sqlite3ExprDup(db, pRight, 0), 0);
1318       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1319       testcase( idxNew==0 );
1320       pNewTerm = &pWC->a[idxNew];
1321       pNewTerm->prereqRight = prereqExpr;
1322       pNewTerm->leftCursor = pLeft->iTable;
1323       pNewTerm->u.leftColumn = pLeft->iColumn;
1324       pNewTerm->eOperator = WO_MATCH;
1325       pNewTerm->iParent = idxTerm;
1326       pTerm = &pWC->a[idxTerm];
1327       pTerm->nChild = 1;
1328       pTerm->wtFlags |= TERM_COPIED;
1329       pNewTerm->prereqAll = pTerm->prereqAll;
1330     }
1331   }
1332 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1333 
1334 #ifdef SQLITE_ENABLE_STAT2
1335   /* When sqlite_stat2 histogram data is available an operator of the
1336   ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
1337   ** as "x>NULL" if x is not an INTEGER PRIMARY KEY.  So construct a
1338   ** virtual term of that form.
1339   **
1340   ** Note that the virtual term must be tagged with TERM_VNULL.  This
1341   ** TERM_VNULL tag will suppress the not-null check at the beginning
1342   ** of the loop.  Without the TERM_VNULL flag, the not-null check at
1343   ** the start of the loop will prevent any results from being returned.
1344   */
1345   if( pExpr->op==TK_NOTNULL && pExpr->pLeft->iColumn>=0 ){
1346     Expr *pNewExpr;
1347     Expr *pLeft = pExpr->pLeft;
1348     int idxNew;
1349     WhereTerm *pNewTerm;
1350 
1351     pNewExpr = sqlite3PExpr(pParse, TK_GT,
1352                             sqlite3ExprDup(db, pLeft, 0),
1353                             sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0);
1354 
1355     idxNew = whereClauseInsert(pWC, pNewExpr,
1356                               TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
1357     if( idxNew ){
1358       pNewTerm = &pWC->a[idxNew];
1359       pNewTerm->prereqRight = 0;
1360       pNewTerm->leftCursor = pLeft->iTable;
1361       pNewTerm->u.leftColumn = pLeft->iColumn;
1362       pNewTerm->eOperator = WO_GT;
1363       pNewTerm->iParent = idxTerm;
1364       pTerm = &pWC->a[idxTerm];
1365       pTerm->nChild = 1;
1366       pTerm->wtFlags |= TERM_COPIED;
1367       pNewTerm->prereqAll = pTerm->prereqAll;
1368     }
1369   }
1370 #endif /* SQLITE_ENABLE_STAT2 */
1371 
1372   /* Prevent ON clause terms of a LEFT JOIN from being used to drive
1373   ** an index for tables to the left of the join.
1374   */
1375   pTerm->prereqRight |= extraRight;
1376 }
1377 
1378 /*
1379 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain
1380 ** a reference to any table other than the iBase table.
1381 */
1382 static int referencesOtherTables(
1383   ExprList *pList,          /* Search expressions in ths list */
1384   WhereMaskSet *pMaskSet,   /* Mapping from tables to bitmaps */
1385   int iFirst,               /* Be searching with the iFirst-th expression */
1386   int iBase                 /* Ignore references to this table */
1387 ){
1388   Bitmask allowed = ~getMask(pMaskSet, iBase);
1389   while( iFirst<pList->nExpr ){
1390     if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
1391       return 1;
1392     }
1393   }
1394   return 0;
1395 }
1396 
1397 
1398 /*
1399 ** This routine decides if pIdx can be used to satisfy the ORDER BY
1400 ** clause.  If it can, it returns 1.  If pIdx cannot satisfy the
1401 ** ORDER BY clause, this routine returns 0.
1402 **
1403 ** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
1404 ** left-most table in the FROM clause of that same SELECT statement and
1405 ** the table has a cursor number of "base".  pIdx is an index on pTab.
1406 **
1407 ** nEqCol is the number of columns of pIdx that are used as equality
1408 ** constraints.  Any of these columns may be missing from the ORDER BY
1409 ** clause and the match can still be a success.
1410 **
1411 ** All terms of the ORDER BY that match against the index must be either
1412 ** ASC or DESC.  (Terms of the ORDER BY clause past the end of a UNIQUE
1413 ** index do not need to satisfy this constraint.)  The *pbRev value is
1414 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
1415 ** the ORDER BY clause is all ASC.
1416 */
1417 static int isSortingIndex(
1418   Parse *pParse,          /* Parsing context */
1419   WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */
1420   Index *pIdx,            /* The index we are testing */
1421   int base,               /* Cursor number for the table to be sorted */
1422   ExprList *pOrderBy,     /* The ORDER BY clause */
1423   int nEqCol,             /* Number of index columns with == constraints */
1424   int wsFlags,            /* Index usages flags */
1425   int *pbRev              /* Set to 1 if ORDER BY is DESC */
1426 ){
1427   int i, j;                       /* Loop counters */
1428   int sortOrder = 0;              /* XOR of index and ORDER BY sort direction */
1429   int nTerm;                      /* Number of ORDER BY terms */
1430   struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */
1431   sqlite3 *db = pParse->db;
1432 
1433   assert( pOrderBy!=0 );
1434   nTerm = pOrderBy->nExpr;
1435   assert( nTerm>0 );
1436 
1437   /* Argument pIdx must either point to a 'real' named index structure,
1438   ** or an index structure allocated on the stack by bestBtreeIndex() to
1439   ** represent the rowid index that is part of every table.  */
1440   assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) );
1441 
1442   /* Match terms of the ORDER BY clause against columns of
1443   ** the index.
1444   **
1445   ** Note that indices have pIdx->nColumn regular columns plus
1446   ** one additional column containing the rowid.  The rowid column
1447   ** of the index is also allowed to match against the ORDER BY
1448   ** clause.
1449   */
1450   for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
1451     Expr *pExpr;       /* The expression of the ORDER BY pTerm */
1452     CollSeq *pColl;    /* The collating sequence of pExpr */
1453     int termSortOrder; /* Sort order for this term */
1454     int iColumn;       /* The i-th column of the index.  -1 for rowid */
1455     int iSortOrder;    /* 1 for DESC, 0 for ASC on the i-th index term */
1456     const char *zColl; /* Name of the collating sequence for i-th index term */
1457 
1458     pExpr = pTerm->pExpr;
1459     if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
1460       /* Can not use an index sort on anything that is not a column in the
1461       ** left-most table of the FROM clause */
1462       break;
1463     }
1464     pColl = sqlite3ExprCollSeq(pParse, pExpr);
1465     if( !pColl ){
1466       pColl = db->pDfltColl;
1467     }
1468     if( pIdx->zName && i<pIdx->nColumn ){
1469       iColumn = pIdx->aiColumn[i];
1470       if( iColumn==pIdx->pTable->iPKey ){
1471         iColumn = -1;
1472       }
1473       iSortOrder = pIdx->aSortOrder[i];
1474       zColl = pIdx->azColl[i];
1475     }else{
1476       iColumn = -1;
1477       iSortOrder = 0;
1478       zColl = pColl->zName;
1479     }
1480     if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
1481       /* Term j of the ORDER BY clause does not match column i of the index */
1482       if( i<nEqCol ){
1483         /* If an index column that is constrained by == fails to match an
1484         ** ORDER BY term, that is OK.  Just ignore that column of the index
1485         */
1486         continue;
1487       }else if( i==pIdx->nColumn ){
1488         /* Index column i is the rowid.  All other terms match. */
1489         break;
1490       }else{
1491         /* If an index column fails to match and is not constrained by ==
1492         ** then the index cannot satisfy the ORDER BY constraint.
1493         */
1494         return 0;
1495       }
1496     }
1497     assert( pIdx->aSortOrder!=0 || iColumn==-1 );
1498     assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
1499     assert( iSortOrder==0 || iSortOrder==1 );
1500     termSortOrder = iSortOrder ^ pTerm->sortOrder;
1501     if( i>nEqCol ){
1502       if( termSortOrder!=sortOrder ){
1503         /* Indices can only be used if all ORDER BY terms past the
1504         ** equality constraints are all either DESC or ASC. */
1505         return 0;
1506       }
1507     }else{
1508       sortOrder = termSortOrder;
1509     }
1510     j++;
1511     pTerm++;
1512     if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
1513       /* If the indexed column is the primary key and everything matches
1514       ** so far and none of the ORDER BY terms to the right reference other
1515       ** tables in the join, then we are assured that the index can be used
1516       ** to sort because the primary key is unique and so none of the other
1517       ** columns will make any difference
1518       */
1519       j = nTerm;
1520     }
1521   }
1522 
1523   *pbRev = sortOrder!=0;
1524   if( j>=nTerm ){
1525     /* All terms of the ORDER BY clause are covered by this index so
1526     ** this index can be used for sorting. */
1527     return 1;
1528   }
1529   if( pIdx->onError!=OE_None && i==pIdx->nColumn
1530       && (wsFlags & WHERE_COLUMN_NULL)==0
1531       && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
1532     /* All terms of this index match some prefix of the ORDER BY clause
1533     ** and the index is UNIQUE and no terms on the tail of the ORDER BY
1534     ** clause reference other tables in a join.  If this is all true then
1535     ** the order by clause is superfluous.  Not that if the matching
1536     ** condition is IS NULL then the result is not necessarily unique
1537     ** even on a UNIQUE index, so disallow those cases. */
1538     return 1;
1539   }
1540   return 0;
1541 }
1542 
1543 /*
1544 ** Prepare a crude estimate of the logarithm of the input value.
1545 ** The results need not be exact.  This is only used for estimating
1546 ** the total cost of performing operations with O(logN) or O(NlogN)
1547 ** complexity.  Because N is just a guess, it is no great tragedy if
1548 ** logN is a little off.
1549 */
1550 static double estLog(double N){
1551   double logN = 1;
1552   double x = 10;
1553   while( N>x ){
1554     logN += 1;
1555     x *= 10;
1556   }
1557   return logN;
1558 }
1559 
1560 /*
1561 ** Two routines for printing the content of an sqlite3_index_info
1562 ** structure.  Used for testing and debugging only.  If neither
1563 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
1564 ** are no-ops.
1565 */
1566 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
1567 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
1568   int i;
1569   if( !sqlite3WhereTrace ) return;
1570   for(i=0; i<p->nConstraint; i++){
1571     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
1572        i,
1573        p->aConstraint[i].iColumn,
1574        p->aConstraint[i].iTermOffset,
1575        p->aConstraint[i].op,
1576        p->aConstraint[i].usable);
1577   }
1578   for(i=0; i<p->nOrderBy; i++){
1579     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
1580        i,
1581        p->aOrderBy[i].iColumn,
1582        p->aOrderBy[i].desc);
1583   }
1584 }
1585 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
1586   int i;
1587   if( !sqlite3WhereTrace ) return;
1588   for(i=0; i<p->nConstraint; i++){
1589     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
1590        i,
1591        p->aConstraintUsage[i].argvIndex,
1592        p->aConstraintUsage[i].omit);
1593   }
1594   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
1595   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
1596   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
1597   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
1598 }
1599 #else
1600 #define TRACE_IDX_INPUTS(A)
1601 #define TRACE_IDX_OUTPUTS(A)
1602 #endif
1603 
1604 /*
1605 ** Required because bestIndex() is called by bestOrClauseIndex()
1606 */
1607 static void bestIndex(
1608     Parse*, WhereClause*, struct SrcList_item*,
1609     Bitmask, Bitmask, ExprList*, WhereCost*);
1610 
1611 /*
1612 ** This routine attempts to find an scanning strategy that can be used
1613 ** to optimize an 'OR' expression that is part of a WHERE clause.
1614 **
1615 ** The table associated with FROM clause term pSrc may be either a
1616 ** regular B-Tree table or a virtual table.
1617 */
1618 static void bestOrClauseIndex(
1619   Parse *pParse,              /* The parsing context */
1620   WhereClause *pWC,           /* The WHERE clause */
1621   struct SrcList_item *pSrc,  /* The FROM clause term to search */
1622   Bitmask notReady,           /* Mask of cursors not available for indexing */
1623   Bitmask notValid,           /* Cursors not available for any purpose */
1624   ExprList *pOrderBy,         /* The ORDER BY clause */
1625   WhereCost *pCost            /* Lowest cost query plan */
1626 ){
1627 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1628   const int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
1629   const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur);  /* Bitmask for pSrc */
1630   WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm];        /* End of pWC->a[] */
1631   WhereTerm *pTerm;                 /* A single term of the WHERE clause */
1632 
1633   /* No OR-clause optimization allowed if the INDEXED BY or NOT INDEXED clauses
1634   ** are used */
1635   if( pSrc->notIndexed || pSrc->pIndex!=0 ){
1636     return;
1637   }
1638 
1639   /* Search the WHERE clause terms for a usable WO_OR term. */
1640   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
1641     if( pTerm->eOperator==WO_OR
1642      && ((pTerm->prereqAll & ~maskSrc) & notReady)==0
1643      && (pTerm->u.pOrInfo->indexable & maskSrc)!=0
1644     ){
1645       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
1646       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
1647       WhereTerm *pOrTerm;
1648       int flags = WHERE_MULTI_OR;
1649       double rTotal = 0;
1650       double nRow = 0;
1651       Bitmask used = 0;
1652 
1653       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
1654         WhereCost sTermCost;
1655         WHERETRACE(("... Multi-index OR testing for term %d of %d....\n",
1656           (pOrTerm - pOrWC->a), (pTerm - pWC->a)
1657         ));
1658         if( pOrTerm->eOperator==WO_AND ){
1659           WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc;
1660           bestIndex(pParse, pAndWC, pSrc, notReady, notValid, 0, &sTermCost);
1661         }else if( pOrTerm->leftCursor==iCur ){
1662           WhereClause tempWC;
1663           tempWC.pParse = pWC->pParse;
1664           tempWC.pMaskSet = pWC->pMaskSet;
1665           tempWC.op = TK_AND;
1666           tempWC.a = pOrTerm;
1667           tempWC.nTerm = 1;
1668           bestIndex(pParse, &tempWC, pSrc, notReady, notValid, 0, &sTermCost);
1669         }else{
1670           continue;
1671         }
1672         rTotal += sTermCost.rCost;
1673         nRow += sTermCost.plan.nRow;
1674         used |= sTermCost.used;
1675         if( rTotal>=pCost->rCost ) break;
1676       }
1677 
1678       /* If there is an ORDER BY clause, increase the scan cost to account
1679       ** for the cost of the sort. */
1680       if( pOrderBy!=0 ){
1681         WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n",
1682                     rTotal, rTotal+nRow*estLog(nRow)));
1683         rTotal += nRow*estLog(nRow);
1684       }
1685 
1686       /* If the cost of scanning using this OR term for optimization is
1687       ** less than the current cost stored in pCost, replace the contents
1688       ** of pCost. */
1689       WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow));
1690       if( rTotal<pCost->rCost ){
1691         pCost->rCost = rTotal;
1692         pCost->used = used;
1693         pCost->plan.nRow = nRow;
1694         pCost->plan.wsFlags = flags;
1695         pCost->plan.u.pTerm = pTerm;
1696       }
1697     }
1698   }
1699 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1700 }
1701 
1702 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
1703 /*
1704 ** Return TRUE if the WHERE clause term pTerm is of a form where it
1705 ** could be used with an index to access pSrc, assuming an appropriate
1706 ** index existed.
1707 */
1708 static int termCanDriveIndex(
1709   WhereTerm *pTerm,              /* WHERE clause term to check */
1710   struct SrcList_item *pSrc,     /* Table we are trying to access */
1711   Bitmask notReady               /* Tables in outer loops of the join */
1712 ){
1713   char aff;
1714   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
1715   if( pTerm->eOperator!=WO_EQ ) return 0;
1716   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
1717   aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
1718   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
1719   return 1;
1720 }
1721 #endif
1722 
1723 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
1724 /*
1725 ** If the query plan for pSrc specified in pCost is a full table scan
1726 ** and indexing is allows (if there is no NOT INDEXED clause) and it
1727 ** possible to construct a transient index that would perform better
1728 ** than a full table scan even when the cost of constructing the index
1729 ** is taken into account, then alter the query plan to use the
1730 ** transient index.
1731 */
1732 static void bestAutomaticIndex(
1733   Parse *pParse,              /* The parsing context */
1734   WhereClause *pWC,           /* The WHERE clause */
1735   struct SrcList_item *pSrc,  /* The FROM clause term to search */
1736   Bitmask notReady,           /* Mask of cursors that are not available */
1737   WhereCost *pCost            /* Lowest cost query plan */
1738 ){
1739   double nTableRow;           /* Rows in the input table */
1740   double logN;                /* log(nTableRow) */
1741   double costTempIdx;         /* per-query cost of the transient index */
1742   WhereTerm *pTerm;           /* A single term of the WHERE clause */
1743   WhereTerm *pWCEnd;          /* End of pWC->a[] */
1744   Table *pTable;              /* Table tht might be indexed */
1745 
1746   if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){
1747     /* Automatic indices are disabled at run-time */
1748     return;
1749   }
1750   if( (pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)!=0 ){
1751     /* We already have some kind of index in use for this query. */
1752     return;
1753   }
1754   if( pSrc->notIndexed ){
1755     /* The NOT INDEXED clause appears in the SQL. */
1756     return;
1757   }
1758 
1759   assert( pParse->nQueryLoop >= (double)1 );
1760   pTable = pSrc->pTab;
1761   nTableRow = pTable->nRowEst;
1762   logN = estLog(nTableRow);
1763   costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1);
1764   if( costTempIdx>=pCost->rCost ){
1765     /* The cost of creating the transient table would be greater than
1766     ** doing the full table scan */
1767     return;
1768   }
1769 
1770   /* Search for any equality comparison term */
1771   pWCEnd = &pWC->a[pWC->nTerm];
1772   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
1773     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
1774       WHERETRACE(("auto-index reduces cost from %.1f to %.1f\n",
1775                     pCost->rCost, costTempIdx));
1776       pCost->rCost = costTempIdx;
1777       pCost->plan.nRow = logN + 1;
1778       pCost->plan.wsFlags = WHERE_TEMP_INDEX;
1779       pCost->used = pTerm->prereqRight;
1780       break;
1781     }
1782   }
1783 }
1784 #else
1785 # define bestAutomaticIndex(A,B,C,D,E)  /* no-op */
1786 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
1787 
1788 
1789 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
1790 /*
1791 ** Generate code to construct the Index object for an automatic index
1792 ** and to set up the WhereLevel object pLevel so that the code generator
1793 ** makes use of the automatic index.
1794 */
1795 static void constructAutomaticIndex(
1796   Parse *pParse,              /* The parsing context */
1797   WhereClause *pWC,           /* The WHERE clause */
1798   struct SrcList_item *pSrc,  /* The FROM clause term to get the next index */
1799   Bitmask notReady,           /* Mask of cursors that are not available */
1800   WhereLevel *pLevel          /* Write new index here */
1801 ){
1802   int nColumn;                /* Number of columns in the constructed index */
1803   WhereTerm *pTerm;           /* A single term of the WHERE clause */
1804   WhereTerm *pWCEnd;          /* End of pWC->a[] */
1805   int nByte;                  /* Byte of memory needed for pIdx */
1806   Index *pIdx;                /* Object describing the transient index */
1807   Vdbe *v;                    /* Prepared statement under construction */
1808   int regIsInit;              /* Register set by initialization */
1809   int addrInit;               /* Address of the initialization bypass jump */
1810   Table *pTable;              /* The table being indexed */
1811   KeyInfo *pKeyinfo;          /* Key information for the index */
1812   int addrTop;                /* Top of the index fill loop */
1813   int regRecord;              /* Register holding an index record */
1814   int n;                      /* Column counter */
1815   int i;                      /* Loop counter */
1816   int mxBitCol;               /* Maximum column in pSrc->colUsed */
1817   CollSeq *pColl;             /* Collating sequence to on a column */
1818   Bitmask idxCols;            /* Bitmap of columns used for indexing */
1819   Bitmask extraCols;          /* Bitmap of additional columns */
1820 
1821   /* Generate code to skip over the creation and initialization of the
1822   ** transient index on 2nd and subsequent iterations of the loop. */
1823   v = pParse->pVdbe;
1824   assert( v!=0 );
1825   regIsInit = ++pParse->nMem;
1826   addrInit = sqlite3VdbeAddOp1(v, OP_If, regIsInit);
1827   sqlite3VdbeAddOp2(v, OP_Integer, 1, regIsInit);
1828 
1829   /* Count the number of columns that will be added to the index
1830   ** and used to match WHERE clause constraints */
1831   nColumn = 0;
1832   pTable = pSrc->pTab;
1833   pWCEnd = &pWC->a[pWC->nTerm];
1834   idxCols = 0;
1835   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
1836     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
1837       int iCol = pTerm->u.leftColumn;
1838       Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;
1839       testcase( iCol==BMS );
1840       testcase( iCol==BMS-1 );
1841       if( (idxCols & cMask)==0 ){
1842         nColumn++;
1843         idxCols |= cMask;
1844       }
1845     }
1846   }
1847   assert( nColumn>0 );
1848   pLevel->plan.nEq = nColumn;
1849 
1850   /* Count the number of additional columns needed to create a
1851   ** covering index.  A "covering index" is an index that contains all
1852   ** columns that are needed by the query.  With a covering index, the
1853   ** original table never needs to be accessed.  Automatic indices must
1854   ** be a covering index because the index will not be updated if the
1855   ** original table changes and the index and table cannot both be used
1856   ** if they go out of sync.
1857   */
1858   extraCols = pSrc->colUsed & (~idxCols | (((Bitmask)1)<<(BMS-1)));
1859   mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol;
1860   testcase( pTable->nCol==BMS-1 );
1861   testcase( pTable->nCol==BMS-2 );
1862   for(i=0; i<mxBitCol; i++){
1863     if( extraCols & (((Bitmask)1)<<i) ) nColumn++;
1864   }
1865   if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
1866     nColumn += pTable->nCol - BMS + 1;
1867   }
1868   pLevel->plan.wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WO_EQ;
1869 
1870   /* Construct the Index object to describe this index */
1871   nByte = sizeof(Index);
1872   nByte += nColumn*sizeof(int);     /* Index.aiColumn */
1873   nByte += nColumn*sizeof(char*);   /* Index.azColl */
1874   nByte += nColumn;                 /* Index.aSortOrder */
1875   pIdx = sqlite3DbMallocZero(pParse->db, nByte);
1876   if( pIdx==0 ) return;
1877   pLevel->plan.u.pIdx = pIdx;
1878   pIdx->azColl = (char**)&pIdx[1];
1879   pIdx->aiColumn = (int*)&pIdx->azColl[nColumn];
1880   pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn];
1881   pIdx->zName = "auto-index";
1882   pIdx->nColumn = nColumn;
1883   pIdx->pTable = pTable;
1884   n = 0;
1885   idxCols = 0;
1886   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
1887     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
1888       int iCol = pTerm->u.leftColumn;
1889       Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;
1890       if( (idxCols & cMask)==0 ){
1891         Expr *pX = pTerm->pExpr;
1892         idxCols |= cMask;
1893         pIdx->aiColumn[n] = pTerm->u.leftColumn;
1894         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
1895         pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY";
1896         n++;
1897       }
1898     }
1899   }
1900   assert( (u32)n==pLevel->plan.nEq );
1901 
1902   /* Add additional columns needed to make the automatic index into
1903   ** a covering index */
1904   for(i=0; i<mxBitCol; i++){
1905     if( extraCols & (((Bitmask)1)<<i) ){
1906       pIdx->aiColumn[n] = i;
1907       pIdx->azColl[n] = "BINARY";
1908       n++;
1909     }
1910   }
1911   if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
1912     for(i=BMS-1; i<pTable->nCol; i++){
1913       pIdx->aiColumn[n] = i;
1914       pIdx->azColl[n] = "BINARY";
1915       n++;
1916     }
1917   }
1918   assert( n==nColumn );
1919 
1920   /* Create the automatic index */
1921   pKeyinfo = sqlite3IndexKeyinfo(pParse, pIdx);
1922   assert( pLevel->iIdxCur>=0 );
1923   sqlite3VdbeAddOp4(v, OP_OpenAutoindex, pLevel->iIdxCur, nColumn+1, 0,
1924                     (char*)pKeyinfo, P4_KEYINFO_HANDOFF);
1925   VdbeComment((v, "for %s", pTable->zName));
1926 
1927   /* Fill the automatic index with content */
1928   addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur);
1929   regRecord = sqlite3GetTempReg(pParse);
1930   sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 1);
1931   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
1932   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1933   sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
1934   sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
1935   sqlite3VdbeJumpHere(v, addrTop);
1936   sqlite3ReleaseTempReg(pParse, regRecord);
1937 
1938   /* Jump here when skipping the initialization */
1939   sqlite3VdbeJumpHere(v, addrInit);
1940 }
1941 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
1942 
1943 #ifndef SQLITE_OMIT_VIRTUALTABLE
1944 /*
1945 ** Allocate and populate an sqlite3_index_info structure. It is the
1946 ** responsibility of the caller to eventually release the structure
1947 ** by passing the pointer returned by this function to sqlite3_free().
1948 */
1949 static sqlite3_index_info *allocateIndexInfo(
1950   Parse *pParse,
1951   WhereClause *pWC,
1952   struct SrcList_item *pSrc,
1953   ExprList *pOrderBy
1954 ){
1955   int i, j;
1956   int nTerm;
1957   struct sqlite3_index_constraint *pIdxCons;
1958   struct sqlite3_index_orderby *pIdxOrderBy;
1959   struct sqlite3_index_constraint_usage *pUsage;
1960   WhereTerm *pTerm;
1961   int nOrderBy;
1962   sqlite3_index_info *pIdxInfo;
1963 
1964   WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName));
1965 
1966   /* Count the number of possible WHERE clause constraints referring
1967   ** to this virtual table */
1968   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1969     if( pTerm->leftCursor != pSrc->iCursor ) continue;
1970     assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
1971     testcase( pTerm->eOperator==WO_IN );
1972     testcase( pTerm->eOperator==WO_ISNULL );
1973     if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
1974     nTerm++;
1975   }
1976 
1977   /* If the ORDER BY clause contains only columns in the current
1978   ** virtual table then allocate space for the aOrderBy part of
1979   ** the sqlite3_index_info structure.
1980   */
1981   nOrderBy = 0;
1982   if( pOrderBy ){
1983     for(i=0; i<pOrderBy->nExpr; i++){
1984       Expr *pExpr = pOrderBy->a[i].pExpr;
1985       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
1986     }
1987     if( i==pOrderBy->nExpr ){
1988       nOrderBy = pOrderBy->nExpr;
1989     }
1990   }
1991 
1992   /* Allocate the sqlite3_index_info structure
1993   */
1994   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1995                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1996                            + sizeof(*pIdxOrderBy)*nOrderBy );
1997   if( pIdxInfo==0 ){
1998     sqlite3ErrorMsg(pParse, "out of memory");
1999     /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
2000     return 0;
2001   }
2002 
2003   /* Initialize the structure.  The sqlite3_index_info structure contains
2004   ** many fields that are declared "const" to prevent xBestIndex from
2005   ** changing them.  We have to do some funky casting in order to
2006   ** initialize those fields.
2007   */
2008   pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
2009   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
2010   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
2011   *(int*)&pIdxInfo->nConstraint = nTerm;
2012   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
2013   *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
2014   *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
2015   *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
2016                                                                    pUsage;
2017 
2018   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2019     if( pTerm->leftCursor != pSrc->iCursor ) continue;
2020     assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
2021     testcase( pTerm->eOperator==WO_IN );
2022     testcase( pTerm->eOperator==WO_ISNULL );
2023     if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
2024     pIdxCons[j].iColumn = pTerm->u.leftColumn;
2025     pIdxCons[j].iTermOffset = i;
2026     pIdxCons[j].op = (u8)pTerm->eOperator;
2027     /* The direct assignment in the previous line is possible only because
2028     ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
2029     ** following asserts verify this fact. */
2030     assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
2031     assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
2032     assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
2033     assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
2034     assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
2035     assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
2036     assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
2037     j++;
2038   }
2039   for(i=0; i<nOrderBy; i++){
2040     Expr *pExpr = pOrderBy->a[i].pExpr;
2041     pIdxOrderBy[i].iColumn = pExpr->iColumn;
2042     pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
2043   }
2044 
2045   return pIdxInfo;
2046 }
2047 
2048 /*
2049 ** The table object reference passed as the second argument to this function
2050 ** must represent a virtual table. This function invokes the xBestIndex()
2051 ** method of the virtual table with the sqlite3_index_info pointer passed
2052 ** as the argument.
2053 **
2054 ** If an error occurs, pParse is populated with an error message and a
2055 ** non-zero value is returned. Otherwise, 0 is returned and the output
2056 ** part of the sqlite3_index_info structure is left populated.
2057 **
2058 ** Whether or not an error is returned, it is the responsibility of the
2059 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
2060 ** that this is required.
2061 */
2062 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
2063   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
2064   int i;
2065   int rc;
2066 
2067   WHERETRACE(("xBestIndex for %s\n", pTab->zName));
2068   TRACE_IDX_INPUTS(p);
2069   rc = pVtab->pModule->xBestIndex(pVtab, p);
2070   TRACE_IDX_OUTPUTS(p);
2071 
2072   if( rc!=SQLITE_OK ){
2073     if( rc==SQLITE_NOMEM ){
2074       pParse->db->mallocFailed = 1;
2075     }else if( !pVtab->zErrMsg ){
2076       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
2077     }else{
2078       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
2079     }
2080   }
2081   sqlite3_free(pVtab->zErrMsg);
2082   pVtab->zErrMsg = 0;
2083 
2084   for(i=0; i<p->nConstraint; i++){
2085     if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
2086       sqlite3ErrorMsg(pParse,
2087           "table %s: xBestIndex returned an invalid plan", pTab->zName);
2088     }
2089   }
2090 
2091   return pParse->nErr;
2092 }
2093 
2094 
2095 /*
2096 ** Compute the best index for a virtual table.
2097 **
2098 ** The best index is computed by the xBestIndex method of the virtual
2099 ** table module.  This routine is really just a wrapper that sets up
2100 ** the sqlite3_index_info structure that is used to communicate with
2101 ** xBestIndex.
2102 **
2103 ** In a join, this routine might be called multiple times for the
2104 ** same virtual table.  The sqlite3_index_info structure is created
2105 ** and initialized on the first invocation and reused on all subsequent
2106 ** invocations.  The sqlite3_index_info structure is also used when
2107 ** code is generated to access the virtual table.  The whereInfoDelete()
2108 ** routine takes care of freeing the sqlite3_index_info structure after
2109 ** everybody has finished with it.
2110 */
2111 static void bestVirtualIndex(
2112   Parse *pParse,                  /* The parsing context */
2113   WhereClause *pWC,               /* The WHERE clause */
2114   struct SrcList_item *pSrc,      /* The FROM clause term to search */
2115   Bitmask notReady,               /* Mask of cursors not available for index */
2116   Bitmask notValid,               /* Cursors not valid for any purpose */
2117   ExprList *pOrderBy,             /* The order by clause */
2118   WhereCost *pCost,               /* Lowest cost query plan */
2119   sqlite3_index_info **ppIdxInfo  /* Index information passed to xBestIndex */
2120 ){
2121   Table *pTab = pSrc->pTab;
2122   sqlite3_index_info *pIdxInfo;
2123   struct sqlite3_index_constraint *pIdxCons;
2124   struct sqlite3_index_constraint_usage *pUsage;
2125   WhereTerm *pTerm;
2126   int i, j;
2127   int nOrderBy;
2128   double rCost;
2129 
2130   /* Make sure wsFlags is initialized to some sane value. Otherwise, if the
2131   ** malloc in allocateIndexInfo() fails and this function returns leaving
2132   ** wsFlags in an uninitialized state, the caller may behave unpredictably.
2133   */
2134   memset(pCost, 0, sizeof(*pCost));
2135   pCost->plan.wsFlags = WHERE_VIRTUALTABLE;
2136 
2137   /* If the sqlite3_index_info structure has not been previously
2138   ** allocated and initialized, then allocate and initialize it now.
2139   */
2140   pIdxInfo = *ppIdxInfo;
2141   if( pIdxInfo==0 ){
2142     *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy);
2143   }
2144   if( pIdxInfo==0 ){
2145     return;
2146   }
2147 
2148   /* At this point, the sqlite3_index_info structure that pIdxInfo points
2149   ** to will have been initialized, either during the current invocation or
2150   ** during some prior invocation.  Now we just have to customize the
2151   ** details of pIdxInfo for the current invocation and pass it to
2152   ** xBestIndex.
2153   */
2154 
2155   /* The module name must be defined. Also, by this point there must
2156   ** be a pointer to an sqlite3_vtab structure. Otherwise
2157   ** sqlite3ViewGetColumnNames() would have picked up the error.
2158   */
2159   assert( pTab->azModuleArg && pTab->azModuleArg[0] );
2160   assert( sqlite3GetVTable(pParse->db, pTab) );
2161 
2162   /* Set the aConstraint[].usable fields and initialize all
2163   ** output variables to zero.
2164   **
2165   ** aConstraint[].usable is true for constraints where the right-hand
2166   ** side contains only references to tables to the left of the current
2167   ** table.  In other words, if the constraint is of the form:
2168   **
2169   **           column = expr
2170   **
2171   ** and we are evaluating a join, then the constraint on column is
2172   ** only valid if all tables referenced in expr occur to the left
2173   ** of the table containing column.
2174   **
2175   ** The aConstraints[] array contains entries for all constraints
2176   ** on the current table.  That way we only have to compute it once
2177   ** even though we might try to pick the best index multiple times.
2178   ** For each attempt at picking an index, the order of tables in the
2179   ** join might be different so we have to recompute the usable flag
2180   ** each time.
2181   */
2182   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
2183   pUsage = pIdxInfo->aConstraintUsage;
2184   for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
2185     j = pIdxCons->iTermOffset;
2186     pTerm = &pWC->a[j];
2187     pIdxCons->usable = (pTerm->prereqRight&notReady) ? 0 : 1;
2188   }
2189   memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
2190   if( pIdxInfo->needToFreeIdxStr ){
2191     sqlite3_free(pIdxInfo->idxStr);
2192   }
2193   pIdxInfo->idxStr = 0;
2194   pIdxInfo->idxNum = 0;
2195   pIdxInfo->needToFreeIdxStr = 0;
2196   pIdxInfo->orderByConsumed = 0;
2197   /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
2198   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
2199   nOrderBy = pIdxInfo->nOrderBy;
2200   if( !pOrderBy ){
2201     pIdxInfo->nOrderBy = 0;
2202   }
2203 
2204   if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
2205     return;
2206   }
2207 
2208   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
2209   for(i=0; i<pIdxInfo->nConstraint; i++){
2210     if( pUsage[i].argvIndex>0 ){
2211       pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight;
2212     }
2213   }
2214 
2215   /* If there is an ORDER BY clause, and the selected virtual table index
2216   ** does not satisfy it, increase the cost of the scan accordingly. This
2217   ** matches the processing for non-virtual tables in bestBtreeIndex().
2218   */
2219   rCost = pIdxInfo->estimatedCost;
2220   if( pOrderBy && pIdxInfo->orderByConsumed==0 ){
2221     rCost += estLog(rCost)*rCost;
2222   }
2223 
2224   /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
2225   ** inital value of lowestCost in this loop. If it is, then the
2226   ** (cost<lowestCost) test below will never be true.
2227   **
2228   ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT
2229   ** is defined.
2230   */
2231   if( (SQLITE_BIG_DBL/((double)2))<rCost ){
2232     pCost->rCost = (SQLITE_BIG_DBL/((double)2));
2233   }else{
2234     pCost->rCost = rCost;
2235   }
2236   pCost->plan.u.pVtabIdx = pIdxInfo;
2237   if( pIdxInfo->orderByConsumed ){
2238     pCost->plan.wsFlags |= WHERE_ORDERBY;
2239   }
2240   pCost->plan.nEq = 0;
2241   pIdxInfo->nOrderBy = nOrderBy;
2242 
2243   /* Try to find a more efficient access pattern by using multiple indexes
2244   ** to optimize an OR expression within the WHERE clause.
2245   */
2246   bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost);
2247 }
2248 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2249 
2250 /*
2251 ** Argument pIdx is a pointer to an index structure that has an array of
2252 ** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column
2253 ** stored in Index.aSample. These samples divide the domain of values stored
2254 ** the index into (SQLITE_INDEX_SAMPLES+1) regions.
2255 ** Region 0 contains all values less than the first sample value. Region
2256 ** 1 contains values between the first and second samples.  Region 2 contains
2257 ** values between samples 2 and 3.  And so on.  Region SQLITE_INDEX_SAMPLES
2258 ** contains values larger than the last sample.
2259 **
2260 ** If the index contains many duplicates of a single value, then it is
2261 ** possible that two or more adjacent samples can hold the same value.
2262 ** When that is the case, the smallest possible region code is returned
2263 ** when roundUp is false and the largest possible region code is returned
2264 ** when roundUp is true.
2265 **
2266 ** If successful, this function determines which of the regions value
2267 ** pVal lies in, sets *piRegion to the region index (a value between 0
2268 ** and SQLITE_INDEX_SAMPLES+1, inclusive) and returns SQLITE_OK.
2269 ** Or, if an OOM occurs while converting text values between encodings,
2270 ** SQLITE_NOMEM is returned and *piRegion is undefined.
2271 */
2272 #ifdef SQLITE_ENABLE_STAT2
2273 static int whereRangeRegion(
2274   Parse *pParse,              /* Database connection */
2275   Index *pIdx,                /* Index to consider domain of */
2276   sqlite3_value *pVal,        /* Value to consider */
2277   int roundUp,                /* Return largest valid region if true */
2278   int *piRegion               /* OUT: Region of domain in which value lies */
2279 ){
2280   assert( roundUp==0 || roundUp==1 );
2281   if( ALWAYS(pVal) ){
2282     IndexSample *aSample = pIdx->aSample;
2283     int i = 0;
2284     int eType = sqlite3_value_type(pVal);
2285 
2286     if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
2287       double r = sqlite3_value_double(pVal);
2288       for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
2289         if( aSample[i].eType==SQLITE_NULL ) continue;
2290         if( aSample[i].eType>=SQLITE_TEXT ) break;
2291         if( roundUp ){
2292           if( aSample[i].u.r>r ) break;
2293         }else{
2294           if( aSample[i].u.r>=r ) break;
2295         }
2296       }
2297     }else if( eType==SQLITE_NULL ){
2298       i = 0;
2299       if( roundUp ){
2300         while( i<SQLITE_INDEX_SAMPLES && aSample[i].eType==SQLITE_NULL ) i++;
2301       }
2302     }else{
2303       sqlite3 *db = pParse->db;
2304       CollSeq *pColl;
2305       const u8 *z;
2306       int n;
2307 
2308       /* pVal comes from sqlite3ValueFromExpr() so the type cannot be NULL */
2309       assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
2310 
2311       if( eType==SQLITE_BLOB ){
2312         z = (const u8 *)sqlite3_value_blob(pVal);
2313         pColl = db->pDfltColl;
2314         assert( pColl->enc==SQLITE_UTF8 );
2315       }else{
2316         pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl);
2317         if( pColl==0 ){
2318           sqlite3ErrorMsg(pParse, "no such collation sequence: %s",
2319                           *pIdx->azColl);
2320           return SQLITE_ERROR;
2321         }
2322         z = (const u8 *)sqlite3ValueText(pVal, pColl->enc);
2323         if( !z ){
2324           return SQLITE_NOMEM;
2325         }
2326         assert( z && pColl && pColl->xCmp );
2327       }
2328       n = sqlite3ValueBytes(pVal, pColl->enc);
2329 
2330       for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
2331         int c;
2332         int eSampletype = aSample[i].eType;
2333         if( eSampletype==SQLITE_NULL || eSampletype<eType ) continue;
2334         if( (eSampletype!=eType) ) break;
2335 #ifndef SQLITE_OMIT_UTF16
2336         if( pColl->enc!=SQLITE_UTF8 ){
2337           int nSample;
2338           char *zSample = sqlite3Utf8to16(
2339               db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample
2340           );
2341           if( !zSample ){
2342             assert( db->mallocFailed );
2343             return SQLITE_NOMEM;
2344           }
2345           c = pColl->xCmp(pColl->pUser, nSample, zSample, n, z);
2346           sqlite3DbFree(db, zSample);
2347         }else
2348 #endif
2349         {
2350           c = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z);
2351         }
2352         if( c-roundUp>=0 ) break;
2353       }
2354     }
2355 
2356     assert( i>=0 && i<=SQLITE_INDEX_SAMPLES );
2357     *piRegion = i;
2358   }
2359   return SQLITE_OK;
2360 }
2361 #endif   /* #ifdef SQLITE_ENABLE_STAT2 */
2362 
2363 /*
2364 ** If expression pExpr represents a literal value, set *pp to point to
2365 ** an sqlite3_value structure containing the same value, with affinity
2366 ** aff applied to it, before returning. It is the responsibility of the
2367 ** caller to eventually release this structure by passing it to
2368 ** sqlite3ValueFree().
2369 **
2370 ** If the current parse is a recompile (sqlite3Reprepare()) and pExpr
2371 ** is an SQL variable that currently has a non-NULL value bound to it,
2372 ** create an sqlite3_value structure containing this value, again with
2373 ** affinity aff applied to it, instead.
2374 **
2375 ** If neither of the above apply, set *pp to NULL.
2376 **
2377 ** If an error occurs, return an error code. Otherwise, SQLITE_OK.
2378 */
2379 #ifdef SQLITE_ENABLE_STAT2
2380 static int valueFromExpr(
2381   Parse *pParse,
2382   Expr *pExpr,
2383   u8 aff,
2384   sqlite3_value **pp
2385 ){
2386   if( pExpr->op==TK_VARIABLE
2387    || (pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
2388   ){
2389     int iVar = pExpr->iColumn;
2390     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); /* IMP: R-23257-02778 */
2391     *pp = sqlite3VdbeGetValue(pParse->pReprepare, iVar, aff);
2392     return SQLITE_OK;
2393   }
2394   return sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, aff, pp);
2395 }
2396 #endif
2397 
2398 /*
2399 ** This function is used to estimate the number of rows that will be visited
2400 ** by scanning an index for a range of values. The range may have an upper
2401 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
2402 ** and lower bounds are represented by pLower and pUpper respectively. For
2403 ** example, assuming that index p is on t1(a):
2404 **
2405 **   ... FROM t1 WHERE a > ? AND a < ? ...
2406 **                    |_____|   |_____|
2407 **                       |         |
2408 **                     pLower    pUpper
2409 **
2410 ** If either of the upper or lower bound is not present, then NULL is passed in
2411 ** place of the corresponding WhereTerm.
2412 **
2413 ** The nEq parameter is passed the index of the index column subject to the
2414 ** range constraint. Or, equivalently, the number of equality constraints
2415 ** optimized by the proposed index scan. For example, assuming index p is
2416 ** on t1(a, b), and the SQL query is:
2417 **
2418 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
2419 **
2420 ** then nEq should be passed the value 1 (as the range restricted column,
2421 ** b, is the second left-most column of the index). Or, if the query is:
2422 **
2423 **   ... FROM t1 WHERE a > ? AND a < ? ...
2424 **
2425 ** then nEq should be passed 0.
2426 **
2427 ** The returned value is an integer between 1 and 100, inclusive. A return
2428 ** value of 1 indicates that the proposed range scan is expected to visit
2429 ** approximately 1/100th (1%) of the rows selected by the nEq equality
2430 ** constraints (if any). A return value of 100 indicates that it is expected
2431 ** that the range scan will visit every row (100%) selected by the equality
2432 ** constraints.
2433 **
2434 ** In the absence of sqlite_stat2 ANALYZE data, each range inequality
2435 ** reduces the search space by 3/4ths.  Hence a single constraint (x>?)
2436 ** results in a return of 25 and a range constraint (x>? AND x<?) results
2437 ** in a return of 6.
2438 */
2439 static int whereRangeScanEst(
2440   Parse *pParse,       /* Parsing & code generating context */
2441   Index *p,            /* The index containing the range-compared column; "x" */
2442   int nEq,             /* index into p->aCol[] of the range-compared column */
2443   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
2444   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
2445   int *piEst           /* OUT: Return value */
2446 ){
2447   int rc = SQLITE_OK;
2448 
2449 #ifdef SQLITE_ENABLE_STAT2
2450 
2451   if( nEq==0 && p->aSample ){
2452     sqlite3_value *pLowerVal = 0;
2453     sqlite3_value *pUpperVal = 0;
2454     int iEst;
2455     int iLower = 0;
2456     int iUpper = SQLITE_INDEX_SAMPLES;
2457     int roundUpUpper = 0;
2458     int roundUpLower = 0;
2459     u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;
2460 
2461     if( pLower ){
2462       Expr *pExpr = pLower->pExpr->pRight;
2463       rc = valueFromExpr(pParse, pExpr, aff, &pLowerVal);
2464       assert( pLower->eOperator==WO_GT || pLower->eOperator==WO_GE );
2465       roundUpLower = (pLower->eOperator==WO_GT) ?1:0;
2466     }
2467     if( rc==SQLITE_OK && pUpper ){
2468       Expr *pExpr = pUpper->pExpr->pRight;
2469       rc = valueFromExpr(pParse, pExpr, aff, &pUpperVal);
2470       assert( pUpper->eOperator==WO_LT || pUpper->eOperator==WO_LE );
2471       roundUpUpper = (pUpper->eOperator==WO_LE) ?1:0;
2472     }
2473 
2474     if( rc!=SQLITE_OK || (pLowerVal==0 && pUpperVal==0) ){
2475       sqlite3ValueFree(pLowerVal);
2476       sqlite3ValueFree(pUpperVal);
2477       goto range_est_fallback;
2478     }else if( pLowerVal==0 ){
2479       rc = whereRangeRegion(pParse, p, pUpperVal, roundUpUpper, &iUpper);
2480       if( pLower ) iLower = iUpper/2;
2481     }else if( pUpperVal==0 ){
2482       rc = whereRangeRegion(pParse, p, pLowerVal, roundUpLower, &iLower);
2483       if( pUpper ) iUpper = (iLower + SQLITE_INDEX_SAMPLES + 1)/2;
2484     }else{
2485       rc = whereRangeRegion(pParse, p, pUpperVal, roundUpUpper, &iUpper);
2486       if( rc==SQLITE_OK ){
2487         rc = whereRangeRegion(pParse, p, pLowerVal, roundUpLower, &iLower);
2488       }
2489     }
2490     WHERETRACE(("range scan regions: %d..%d\n", iLower, iUpper));
2491 
2492     iEst = iUpper - iLower;
2493     testcase( iEst==SQLITE_INDEX_SAMPLES );
2494     assert( iEst<=SQLITE_INDEX_SAMPLES );
2495     if( iEst<1 ){
2496       *piEst = 50/SQLITE_INDEX_SAMPLES;
2497     }else{
2498       *piEst = (iEst*100)/SQLITE_INDEX_SAMPLES;
2499     }
2500     sqlite3ValueFree(pLowerVal);
2501     sqlite3ValueFree(pUpperVal);
2502     return rc;
2503   }
2504 range_est_fallback:
2505 #else
2506   UNUSED_PARAMETER(pParse);
2507   UNUSED_PARAMETER(p);
2508   UNUSED_PARAMETER(nEq);
2509 #endif
2510   assert( pLower || pUpper );
2511   *piEst = 100;
2512   if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ) *piEst /= 4;
2513   if( pUpper ) *piEst /= 4;
2514   return rc;
2515 }
2516 
2517 #ifdef SQLITE_ENABLE_STAT2
2518 /*
2519 ** Estimate the number of rows that will be returned based on
2520 ** an equality constraint x=VALUE and where that VALUE occurs in
2521 ** the histogram data.  This only works when x is the left-most
2522 ** column of an index and sqlite_stat2 histogram data is available
2523 ** for that index.  When pExpr==NULL that means the constraint is
2524 ** "x IS NULL" instead of "x=VALUE".
2525 **
2526 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2527 ** If unable to make an estimate, leave *pnRow unchanged and return
2528 ** non-zero.
2529 **
2530 ** This routine can fail if it is unable to load a collating sequence
2531 ** required for string comparison, or if unable to allocate memory
2532 ** for a UTF conversion required for comparison.  The error is stored
2533 ** in the pParse structure.
2534 */
2535 int whereEqualScanEst(
2536   Parse *pParse,       /* Parsing & code generating context */
2537   Index *p,            /* The index whose left-most column is pTerm */
2538   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
2539   double *pnRow        /* Write the revised row estimate here */
2540 ){
2541   sqlite3_value *pRhs = 0;  /* VALUE on right-hand side of pTerm */
2542   int iLower, iUpper;       /* Range of histogram regions containing pRhs */
2543   u8 aff;                   /* Column affinity */
2544   int rc;                   /* Subfunction return code */
2545   double nRowEst;           /* New estimate of the number of rows */
2546 
2547   assert( p->aSample!=0 );
2548   aff = p->pTable->aCol[p->aiColumn[0]].affinity;
2549   if( pExpr ){
2550     rc = valueFromExpr(pParse, pExpr, aff, &pRhs);
2551     if( rc ) goto whereEqualScanEst_cancel;
2552   }else{
2553     pRhs = sqlite3ValueNew(pParse->db);
2554   }
2555   if( pRhs==0 ) return SQLITE_NOTFOUND;
2556   rc = whereRangeRegion(pParse, p, pRhs, 0, &iLower);
2557   if( rc ) goto whereEqualScanEst_cancel;
2558   rc = whereRangeRegion(pParse, p, pRhs, 1, &iUpper);
2559   if( rc ) goto whereEqualScanEst_cancel;
2560   WHERETRACE(("equality scan regions: %d..%d\n", iLower, iUpper));
2561   if( iLower>=iUpper ){
2562     nRowEst = p->aiRowEst[0]/(SQLITE_INDEX_SAMPLES*2);
2563     if( nRowEst<*pnRow ) *pnRow = nRowEst;
2564   }else{
2565     nRowEst = (iUpper-iLower)*p->aiRowEst[0]/SQLITE_INDEX_SAMPLES;
2566     *pnRow = nRowEst;
2567   }
2568 
2569 whereEqualScanEst_cancel:
2570   sqlite3ValueFree(pRhs);
2571   return rc;
2572 }
2573 #endif /* defined(SQLITE_ENABLE_STAT2) */
2574 
2575 #ifdef SQLITE_ENABLE_STAT2
2576 /*
2577 ** Estimate the number of rows that will be returned based on
2578 ** an IN constraint where the right-hand side of the IN operator
2579 ** is a list of values.  Example:
2580 **
2581 **        WHERE x IN (1,2,3,4)
2582 **
2583 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2584 ** If unable to make an estimate, leave *pnRow unchanged and return
2585 ** non-zero.
2586 **
2587 ** This routine can fail if it is unable to load a collating sequence
2588 ** required for string comparison, or if unable to allocate memory
2589 ** for a UTF conversion required for comparison.  The error is stored
2590 ** in the pParse structure.
2591 */
2592 int whereInScanEst(
2593   Parse *pParse,       /* Parsing & code generating context */
2594   Index *p,            /* The index whose left-most column is pTerm */
2595   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
2596   double *pnRow        /* Write the revised row estimate here */
2597 ){
2598   sqlite3_value *pVal = 0;  /* One value from list */
2599   int iLower, iUpper;       /* Range of histogram regions containing pRhs */
2600   u8 aff;                   /* Column affinity */
2601   int rc = SQLITE_OK;       /* Subfunction return code */
2602   double nRowEst;           /* New estimate of the number of rows */
2603   int nSpan = 0;            /* Number of histogram regions spanned */
2604   int nSingle = 0;          /* Histogram regions hit by a single value */
2605   int nNotFound = 0;        /* Count of values that are not constants */
2606   int i;                               /* Loop counter */
2607   u8 aSpan[SQLITE_INDEX_SAMPLES+1];    /* Histogram regions that are spanned */
2608   u8 aSingle[SQLITE_INDEX_SAMPLES+1];  /* Histogram regions hit once */
2609 
2610   assert( p->aSample!=0 );
2611   aff = p->pTable->aCol[p->aiColumn[0]].affinity;
2612   memset(aSpan, 0, sizeof(aSpan));
2613   memset(aSingle, 0, sizeof(aSingle));
2614   for(i=0; i<pList->nExpr; i++){
2615     sqlite3ValueFree(pVal);
2616     rc = valueFromExpr(pParse, pList->a[i].pExpr, aff, &pVal);
2617     if( rc ) break;
2618     if( pVal==0 || sqlite3_value_type(pVal)==SQLITE_NULL ){
2619       nNotFound++;
2620       continue;
2621     }
2622     rc = whereRangeRegion(pParse, p, pVal, 0, &iLower);
2623     if( rc ) break;
2624     rc = whereRangeRegion(pParse, p, pVal, 1, &iUpper);
2625     if( rc ) break;
2626     if( iLower>=iUpper ){
2627       aSingle[iLower] = 1;
2628     }else{
2629       assert( iLower>=0 && iUpper<=SQLITE_INDEX_SAMPLES );
2630       while( iLower<iUpper ) aSpan[iLower++] = 1;
2631     }
2632   }
2633   if( rc==SQLITE_OK ){
2634     for(i=nSpan=0; i<=SQLITE_INDEX_SAMPLES; i++){
2635       if( aSpan[i] ){
2636         nSpan++;
2637       }else if( aSingle[i] ){
2638         nSingle++;
2639       }
2640     }
2641     nRowEst = (nSpan*2+nSingle)*p->aiRowEst[0]/(2*SQLITE_INDEX_SAMPLES)
2642                + nNotFound*p->aiRowEst[1];
2643     if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0];
2644     *pnRow = nRowEst;
2645     WHERETRACE(("IN row estimate: nSpan=%d, nSingle=%d, nNotFound=%d, est=%g\n",
2646                  nSpan, nSingle, nNotFound, nRowEst));
2647   }
2648   sqlite3ValueFree(pVal);
2649   return rc;
2650 }
2651 #endif /* defined(SQLITE_ENABLE_STAT2) */
2652 
2653 
2654 /*
2655 ** Find the best query plan for accessing a particular table.  Write the
2656 ** best query plan and its cost into the WhereCost object supplied as the
2657 ** last parameter.
2658 **
2659 ** The lowest cost plan wins.  The cost is an estimate of the amount of
2660 ** CPU and disk I/O needed to process the requested result.
2661 ** Factors that influence cost include:
2662 **
2663 **    *  The estimated number of rows that will be retrieved.  (The
2664 **       fewer the better.)
2665 **
2666 **    *  Whether or not sorting must occur.
2667 **
2668 **    *  Whether or not there must be separate lookups in the
2669 **       index and in the main table.
2670 **
2671 ** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in
2672 ** the SQL statement, then this function only considers plans using the
2673 ** named index. If no such plan is found, then the returned cost is
2674 ** SQLITE_BIG_DBL. If a plan is found that uses the named index,
2675 ** then the cost is calculated in the usual way.
2676 **
2677 ** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table
2678 ** in the SELECT statement, then no indexes are considered. However, the
2679 ** selected plan may still take advantage of the built-in rowid primary key
2680 ** index.
2681 */
2682 static void bestBtreeIndex(
2683   Parse *pParse,              /* The parsing context */
2684   WhereClause *pWC,           /* The WHERE clause */
2685   struct SrcList_item *pSrc,  /* The FROM clause term to search */
2686   Bitmask notReady,           /* Mask of cursors not available for indexing */
2687   Bitmask notValid,           /* Cursors not available for any purpose */
2688   ExprList *pOrderBy,         /* The ORDER BY clause */
2689   WhereCost *pCost            /* Lowest cost query plan */
2690 ){
2691   int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
2692   Index *pProbe;              /* An index we are evaluating */
2693   Index *pIdx;                /* Copy of pProbe, or zero for IPK index */
2694   int eqTermMask;             /* Current mask of valid equality operators */
2695   int idxEqTermMask;          /* Index mask of valid equality operators */
2696   Index sPk;                  /* A fake index object for the primary key */
2697   unsigned int aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */
2698   int aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
2699   int wsFlagMask;             /* Allowed flags in pCost->plan.wsFlag */
2700 
2701   /* Initialize the cost to a worst-case value */
2702   memset(pCost, 0, sizeof(*pCost));
2703   pCost->rCost = SQLITE_BIG_DBL;
2704 
2705   /* If the pSrc table is the right table of a LEFT JOIN then we may not
2706   ** use an index to satisfy IS NULL constraints on that table.  This is
2707   ** because columns might end up being NULL if the table does not match -
2708   ** a circumstance which the index cannot help us discover.  Ticket #2177.
2709   */
2710   if( pSrc->jointype & JT_LEFT ){
2711     idxEqTermMask = WO_EQ|WO_IN;
2712   }else{
2713     idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL;
2714   }
2715 
2716   if( pSrc->pIndex ){
2717     /* An INDEXED BY clause specifies a particular index to use */
2718     pIdx = pProbe = pSrc->pIndex;
2719     wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
2720     eqTermMask = idxEqTermMask;
2721   }else{
2722     /* There is no INDEXED BY clause.  Create a fake Index object in local
2723     ** variable sPk to represent the rowid primary key index.  Make this
2724     ** fake index the first in a chain of Index objects with all of the real
2725     ** indices to follow */
2726     Index *pFirst;                  /* First of real indices on the table */
2727     memset(&sPk, 0, sizeof(Index));
2728     sPk.nColumn = 1;
2729     sPk.aiColumn = &aiColumnPk;
2730     sPk.aiRowEst = aiRowEstPk;
2731     sPk.onError = OE_Replace;
2732     sPk.pTable = pSrc->pTab;
2733     aiRowEstPk[0] = pSrc->pTab->nRowEst;
2734     aiRowEstPk[1] = 1;
2735     pFirst = pSrc->pTab->pIndex;
2736     if( pSrc->notIndexed==0 ){
2737       /* The real indices of the table are only considered if the
2738       ** NOT INDEXED qualifier is omitted from the FROM clause */
2739       sPk.pNext = pFirst;
2740     }
2741     pProbe = &sPk;
2742     wsFlagMask = ~(
2743         WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE
2744     );
2745     eqTermMask = WO_EQ|WO_IN;
2746     pIdx = 0;
2747   }
2748 
2749   /* Loop over all indices looking for the best one to use
2750   */
2751   for(; pProbe; pIdx=pProbe=pProbe->pNext){
2752     const unsigned int * const aiRowEst = pProbe->aiRowEst;
2753     double cost;                /* Cost of using pProbe */
2754     double nRow;                /* Estimated number of rows in result set */
2755     double log10N;              /* base-10 logarithm of nRow (inexact) */
2756     int rev;                    /* True to scan in reverse order */
2757     int wsFlags = 0;
2758     Bitmask used = 0;
2759 
2760     /* The following variables are populated based on the properties of
2761     ** index being evaluated. They are then used to determine the expected
2762     ** cost and number of rows returned.
2763     **
2764     **  nEq:
2765     **    Number of equality terms that can be implemented using the index.
2766     **    In other words, the number of initial fields in the index that
2767     **    are used in == or IN or NOT NULL constraints of the WHERE clause.
2768     **
2769     **  nInMul:
2770     **    The "in-multiplier". This is an estimate of how many seek operations
2771     **    SQLite must perform on the index in question. For example, if the
2772     **    WHERE clause is:
2773     **
2774     **      WHERE a IN (1, 2, 3) AND b IN (4, 5, 6)
2775     **
2776     **    SQLite must perform 9 lookups on an index on (a, b), so nInMul is
2777     **    set to 9. Given the same schema and either of the following WHERE
2778     **    clauses:
2779     **
2780     **      WHERE a =  1
2781     **      WHERE a >= 2
2782     **
2783     **    nInMul is set to 1.
2784     **
2785     **    If there exists a WHERE term of the form "x IN (SELECT ...)", then
2786     **    the sub-select is assumed to return 25 rows for the purposes of
2787     **    determining nInMul.
2788     **
2789     **  bInEst:
2790     **    Set to true if there was at least one "x IN (SELECT ...)" term used
2791     **    in determining the value of nInMul.  Note that the RHS of the
2792     **    IN operator must be a SELECT, not a value list, for this variable
2793     **    to be true.
2794     **
2795     **  estBound:
2796     **    An estimate on the amount of the table that must be searched.  A
2797     **    value of 100 means the entire table is searched.  Range constraints
2798     **    might reduce this to a value less than 100 to indicate that only
2799     **    a fraction of the table needs searching.  In the absence of
2800     **    sqlite_stat2 ANALYZE data, a single inequality reduces the search
2801     **    space to 1/4rd its original size.  So an x>? constraint reduces
2802     **    estBound to 25.  Two constraints (x>? AND x<?) reduce estBound to 6.
2803     **
2804     **  bSort:
2805     **    Boolean. True if there is an ORDER BY clause that will require an
2806     **    external sort (i.e. scanning the index being evaluated will not
2807     **    correctly order records).
2808     **
2809     **  bLookup:
2810     **    Boolean. True if a table lookup is required for each index entry
2811     **    visited.  In other words, true if this is not a covering index.
2812     **    This is always false for the rowid primary key index of a table.
2813     **    For other indexes, it is true unless all the columns of the table
2814     **    used by the SELECT statement are present in the index (such an
2815     **    index is sometimes described as a covering index).
2816     **    For example, given the index on (a, b), the second of the following
2817     **    two queries requires table b-tree lookups in order to find the value
2818     **    of column c, but the first does not because columns a and b are
2819     **    both available in the index.
2820     **
2821     **             SELECT a, b    FROM tbl WHERE a = 1;
2822     **             SELECT a, b, c FROM tbl WHERE a = 1;
2823     */
2824     int nEq;                      /* Number of == or IN terms matching index */
2825     int bInEst = 0;               /* True if "x IN (SELECT...)" seen */
2826     int nInMul = 1;               /* Number of distinct equalities to lookup */
2827     int estBound = 100;           /* Estimated reduction in search space */
2828     int nBound = 0;               /* Number of range constraints seen */
2829     int bSort = 0;                /* True if external sort required */
2830     int bLookup = 0;              /* True if not a covering index */
2831     WhereTerm *pTerm;             /* A single term of the WHERE clause */
2832 #ifdef SQLITE_ENABLE_STAT2
2833     WhereTerm *pFirstTerm = 0;    /* First term matching the index */
2834 #endif
2835 
2836     /* Determine the values of nEq and nInMul */
2837     for(nEq=0; nEq<pProbe->nColumn; nEq++){
2838       int j = pProbe->aiColumn[nEq];
2839       pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx);
2840       if( pTerm==0 ) break;
2841       wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ);
2842       if( pTerm->eOperator & WO_IN ){
2843         Expr *pExpr = pTerm->pExpr;
2844         wsFlags |= WHERE_COLUMN_IN;
2845         if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2846           /* "x IN (SELECT ...)":  Assume the SELECT returns 25 rows */
2847           nInMul *= 25;
2848           bInEst = 1;
2849         }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2850           /* "x IN (value, value, ...)" */
2851           nInMul *= pExpr->x.pList->nExpr;
2852         }
2853       }else if( pTerm->eOperator & WO_ISNULL ){
2854         wsFlags |= WHERE_COLUMN_NULL;
2855       }
2856 #ifdef SQLITE_ENABLE_STAT2
2857       if( nEq==0 && pProbe->aSample ) pFirstTerm = pTerm;
2858 #endif
2859       used |= pTerm->prereqRight;
2860     }
2861 
2862     /* Determine the value of estBound. */
2863     if( nEq<pProbe->nColumn ){
2864       int j = pProbe->aiColumn[nEq];
2865       if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
2866         WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx);
2867         WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx);
2868         whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &estBound);
2869         if( pTop ){
2870           nBound = 1;
2871           wsFlags |= WHERE_TOP_LIMIT;
2872           used |= pTop->prereqRight;
2873         }
2874         if( pBtm ){
2875           nBound++;
2876           wsFlags |= WHERE_BTM_LIMIT;
2877           used |= pBtm->prereqRight;
2878         }
2879         wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE);
2880       }
2881     }else if( pProbe->onError!=OE_None ){
2882       testcase( wsFlags & WHERE_COLUMN_IN );
2883       testcase( wsFlags & WHERE_COLUMN_NULL );
2884       if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
2885         wsFlags |= WHERE_UNIQUE;
2886       }
2887     }
2888 
2889     /* If there is an ORDER BY clause and the index being considered will
2890     ** naturally scan rows in the required order, set the appropriate flags
2891     ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index
2892     ** will scan rows in a different order, set the bSort variable.  */
2893     if( pOrderBy ){
2894       if( (wsFlags & WHERE_COLUMN_IN)==0
2895         && isSortingIndex(pParse, pWC->pMaskSet, pProbe, iCur, pOrderBy,
2896                           nEq, wsFlags, &rev)
2897       ){
2898         wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY;
2899         wsFlags |= (rev ? WHERE_REVERSE : 0);
2900       }else{
2901         bSort = 1;
2902       }
2903     }
2904 
2905     /* If currently calculating the cost of using an index (not the IPK
2906     ** index), determine if all required column data may be obtained without
2907     ** using the main table (i.e. if the index is a covering
2908     ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
2909     ** wsFlags. Otherwise, set the bLookup variable to true.  */
2910     if( pIdx && wsFlags ){
2911       Bitmask m = pSrc->colUsed;
2912       int j;
2913       for(j=0; j<pIdx->nColumn; j++){
2914         int x = pIdx->aiColumn[j];
2915         if( x<BMS-1 ){
2916           m &= ~(((Bitmask)1)<<x);
2917         }
2918       }
2919       if( m==0 ){
2920         wsFlags |= WHERE_IDX_ONLY;
2921       }else{
2922         bLookup = 1;
2923       }
2924     }
2925 
2926     /*
2927     ** Estimate the number of rows of output.  For an "x IN (SELECT...)"
2928     ** constraint, do not let the estimate exceed half the rows in the table.
2929     */
2930     nRow = (double)(aiRowEst[nEq] * nInMul);
2931     if( bInEst && nRow*2>aiRowEst[0] ){
2932       nRow = aiRowEst[0]/2;
2933       nInMul = (int)(nRow / aiRowEst[nEq]);
2934     }
2935 
2936 #ifdef SQLITE_ENABLE_STAT2
2937     /* If the constraint is of the form x=VALUE and histogram
2938     ** data is available for column x, then it might be possible
2939     ** to get a better estimate on the number of rows based on
2940     ** VALUE and how common that value is according to the histogram.
2941     */
2942     if( nRow>(double)1 && nEq==1 && pFirstTerm!=0 ){
2943       if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){
2944         testcase( pFirstTerm->eOperator==WO_EQ );
2945         testcase( pFirstTerm->eOperator==WO_ISNULL );
2946         whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &nRow);
2947       }else if( pFirstTerm->eOperator==WO_IN && bInEst==0 ){
2948         whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &nRow);
2949       }
2950     }
2951 #endif /* SQLITE_ENABLE_STAT2 */
2952 
2953     /* Adjust the number of output rows and downward to reflect rows
2954     ** that are excluded by range constraints.
2955     */
2956     nRow = (nRow * (double)estBound) / (double)100;
2957     if( nRow<1 ) nRow = 1;
2958 
2959     /* Experiments run on real SQLite databases show that the time needed
2960     ** to do a binary search to locate a row in a table or index is roughly
2961     ** log10(N) times the time to move from one row to the next row within
2962     ** a table or index.  The actual times can vary, with the size of
2963     ** records being an important factor.  Both moves and searches are
2964     ** slower with larger records, presumably because fewer records fit
2965     ** on one page and hence more pages have to be fetched.
2966     **
2967     ** The ANALYZE command and the sqlite_stat1 and sqlite_stat2 tables do
2968     ** not give us data on the relative sizes of table and index records.
2969     ** So this computation assumes table records are about twice as big
2970     ** as index records
2971     */
2972     if( (wsFlags & WHERE_NOT_FULLSCAN)==0 ){
2973       /* The cost of a full table scan is a number of move operations equal
2974       ** to the number of rows in the table.
2975       **
2976       ** We add an additional 4x penalty to full table scans.  This causes
2977       ** the cost function to err on the side of choosing an index over
2978       ** choosing a full scan.  This 4x full-scan penalty is an arguable
2979       ** decision and one which we expect to revisit in the future.  But
2980       ** it seems to be working well enough at the moment.
2981       */
2982       cost = aiRowEst[0]*4;
2983     }else{
2984       log10N = estLog(aiRowEst[0]);
2985       cost = nRow;
2986       if( pIdx ){
2987         if( bLookup ){
2988           /* For an index lookup followed by a table lookup:
2989           **    nInMul index searches to find the start of each index range
2990           **  + nRow steps through the index
2991           **  + nRow table searches to lookup the table entry using the rowid
2992           */
2993           cost += (nInMul + nRow)*log10N;
2994         }else{
2995           /* For a covering index:
2996           **     nInMul index searches to find the initial entry
2997           **   + nRow steps through the index
2998           */
2999           cost += nInMul*log10N;
3000         }
3001       }else{
3002         /* For a rowid primary key lookup:
3003         **    nInMult table searches to find the initial entry for each range
3004         **  + nRow steps through the table
3005         */
3006         cost += nInMul*log10N;
3007       }
3008     }
3009 
3010     /* Add in the estimated cost of sorting the result.  Actual experimental
3011     ** measurements of sorting performance in SQLite show that sorting time
3012     ** adds C*N*log10(N) to the cost, where N is the number of rows to be
3013     ** sorted and C is a factor between 1.95 and 4.3.  We will split the
3014     ** difference and select C of 3.0.
3015     */
3016     if( bSort ){
3017       cost += nRow*estLog(nRow)*3;
3018     }
3019 
3020     /**** Cost of using this index has now been computed ****/
3021 
3022     /* If there are additional constraints on this table that cannot
3023     ** be used with the current index, but which might lower the number
3024     ** of output rows, adjust the nRow value accordingly.  This only
3025     ** matters if the current index is the least costly, so do not bother
3026     ** with this step if we already know this index will not be chosen.
3027     ** Also, never reduce the output row count below 2 using this step.
3028     **
3029     ** It is critical that the notValid mask be used here instead of
3030     ** the notReady mask.  When computing an "optimal" index, the notReady
3031     ** mask will only have one bit set - the bit for the current table.
3032     ** The notValid mask, on the other hand, always has all bits set for
3033     ** tables that are not in outer loops.  If notReady is used here instead
3034     ** of notValid, then a optimal index that depends on inner joins loops
3035     ** might be selected even when there exists an optimal index that has
3036     ** no such dependency.
3037     */
3038     if( nRow>2 && cost<=pCost->rCost ){
3039       int k;                       /* Loop counter */
3040       int nSkipEq = nEq;           /* Number of == constraints to skip */
3041       int nSkipRange = nBound;     /* Number of < constraints to skip */
3042       Bitmask thisTab;             /* Bitmap for pSrc */
3043 
3044       thisTab = getMask(pWC->pMaskSet, iCur);
3045       for(pTerm=pWC->a, k=pWC->nTerm; nRow>2 && k; k--, pTerm++){
3046         if( pTerm->wtFlags & TERM_VIRTUAL ) continue;
3047         if( (pTerm->prereqAll & notValid)!=thisTab ) continue;
3048         if( pTerm->eOperator & (WO_EQ|WO_IN|WO_ISNULL) ){
3049           if( nSkipEq ){
3050             /* Ignore the first nEq equality matches since the index
3051             ** has already accounted for these */
3052             nSkipEq--;
3053           }else{
3054             /* Assume each additional equality match reduces the result
3055             ** set size by a factor of 10 */
3056             nRow /= 10;
3057           }
3058         }else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){
3059           if( nSkipRange ){
3060             /* Ignore the first nSkipRange range constraints since the index
3061             ** has already accounted for these */
3062             nSkipRange--;
3063           }else{
3064             /* Assume each additional range constraint reduces the result
3065             ** set size by a factor of 3.  Indexed range constraints reduce
3066             ** the search space by a larger factor: 4.  We make indexed range
3067             ** more selective intentionally because of the subjective
3068             ** observation that indexed range constraints really are more
3069             ** selective in practice, on average. */
3070             nRow /= 3;
3071           }
3072         }else if( pTerm->eOperator!=WO_NOOP ){
3073           /* Any other expression lowers the output row count by half */
3074           nRow /= 2;
3075         }
3076       }
3077       if( nRow<2 ) nRow = 2;
3078     }
3079 
3080 
3081     WHERETRACE((
3082       "%s(%s): nEq=%d nInMul=%d estBound=%d bSort=%d bLookup=%d wsFlags=0x%x\n"
3083       "         notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f used=0x%llx\n",
3084       pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"),
3085       nEq, nInMul, estBound, bSort, bLookup, wsFlags,
3086       notReady, log10N, nRow, cost, used
3087     ));
3088 
3089     /* If this index is the best we have seen so far, then record this
3090     ** index and its cost in the pCost structure.
3091     */
3092     if( (!pIdx || wsFlags)
3093      && (cost<pCost->rCost || (cost<=pCost->rCost && nRow<pCost->plan.nRow))
3094     ){
3095       pCost->rCost = cost;
3096       pCost->used = used;
3097       pCost->plan.nRow = nRow;
3098       pCost->plan.wsFlags = (wsFlags&wsFlagMask);
3099       pCost->plan.nEq = nEq;
3100       pCost->plan.u.pIdx = pIdx;
3101     }
3102 
3103     /* If there was an INDEXED BY clause, then only that one index is
3104     ** considered. */
3105     if( pSrc->pIndex ) break;
3106 
3107     /* Reset masks for the next index in the loop */
3108     wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
3109     eqTermMask = idxEqTermMask;
3110   }
3111 
3112   /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag
3113   ** is set, then reverse the order that the index will be scanned
3114   ** in. This is used for application testing, to help find cases
3115   ** where application behaviour depends on the (undefined) order that
3116   ** SQLite outputs rows in in the absence of an ORDER BY clause.  */
3117   if( !pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){
3118     pCost->plan.wsFlags |= WHERE_REVERSE;
3119   }
3120 
3121   assert( pOrderBy || (pCost->plan.wsFlags&WHERE_ORDERBY)==0 );
3122   assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 );
3123   assert( pSrc->pIndex==0
3124        || pCost->plan.u.pIdx==0
3125        || pCost->plan.u.pIdx==pSrc->pIndex
3126   );
3127 
3128   WHERETRACE(("best index is: %s\n",
3129     ((pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ? "none" :
3130          pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk")
3131   ));
3132 
3133   bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost);
3134   bestAutomaticIndex(pParse, pWC, pSrc, notReady, pCost);
3135   pCost->plan.wsFlags |= eqTermMask;
3136 }
3137 
3138 /*
3139 ** Find the query plan for accessing table pSrc->pTab. Write the
3140 ** best query plan and its cost into the WhereCost object supplied
3141 ** as the last parameter. This function may calculate the cost of
3142 ** both real and virtual table scans.
3143 */
3144 static void bestIndex(
3145   Parse *pParse,              /* The parsing context */
3146   WhereClause *pWC,           /* The WHERE clause */
3147   struct SrcList_item *pSrc,  /* The FROM clause term to search */
3148   Bitmask notReady,           /* Mask of cursors not available for indexing */
3149   Bitmask notValid,           /* Cursors not available for any purpose */
3150   ExprList *pOrderBy,         /* The ORDER BY clause */
3151   WhereCost *pCost            /* Lowest cost query plan */
3152 ){
3153 #ifndef SQLITE_OMIT_VIRTUALTABLE
3154   if( IsVirtual(pSrc->pTab) ){
3155     sqlite3_index_info *p = 0;
3156     bestVirtualIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost,&p);
3157     if( p->needToFreeIdxStr ){
3158       sqlite3_free(p->idxStr);
3159     }
3160     sqlite3DbFree(pParse->db, p);
3161   }else
3162 #endif
3163   {
3164     bestBtreeIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost);
3165   }
3166 }
3167 
3168 /*
3169 ** Disable a term in the WHERE clause.  Except, do not disable the term
3170 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
3171 ** or USING clause of that join.
3172 **
3173 ** Consider the term t2.z='ok' in the following queries:
3174 **
3175 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
3176 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
3177 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
3178 **
3179 ** The t2.z='ok' is disabled in the in (2) because it originates
3180 ** in the ON clause.  The term is disabled in (3) because it is not part
3181 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
3182 **
3183 ** IMPLEMENTATION-OF: R-24597-58655 No tests are done for terms that are
3184 ** completely satisfied by indices.
3185 **
3186 ** Disabling a term causes that term to not be tested in the inner loop
3187 ** of the join.  Disabling is an optimization.  When terms are satisfied
3188 ** by indices, we disable them to prevent redundant tests in the inner
3189 ** loop.  We would get the correct results if nothing were ever disabled,
3190 ** but joins might run a little slower.  The trick is to disable as much
3191 ** as we can without disabling too much.  If we disabled in (1), we'd get
3192 ** the wrong answer.  See ticket #813.
3193 */
3194 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
3195   if( pTerm
3196       && (pTerm->wtFlags & TERM_CODED)==0
3197       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
3198   ){
3199     pTerm->wtFlags |= TERM_CODED;
3200     if( pTerm->iParent>=0 ){
3201       WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
3202       if( (--pOther->nChild)==0 ){
3203         disableTerm(pLevel, pOther);
3204       }
3205     }
3206   }
3207 }
3208 
3209 /*
3210 ** Code an OP_Affinity opcode to apply the column affinity string zAff
3211 ** to the n registers starting at base.
3212 **
3213 ** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the
3214 ** beginning and end of zAff are ignored.  If all entries in zAff are
3215 ** SQLITE_AFF_NONE, then no code gets generated.
3216 **
3217 ** This routine makes its own copy of zAff so that the caller is free
3218 ** to modify zAff after this routine returns.
3219 */
3220 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
3221   Vdbe *v = pParse->pVdbe;
3222   if( zAff==0 ){
3223     assert( pParse->db->mallocFailed );
3224     return;
3225   }
3226   assert( v!=0 );
3227 
3228   /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning
3229   ** and end of the affinity string.
3230   */
3231   while( n>0 && zAff[0]==SQLITE_AFF_NONE ){
3232     n--;
3233     base++;
3234     zAff++;
3235   }
3236   while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){
3237     n--;
3238   }
3239 
3240   /* Code the OP_Affinity opcode if there is anything left to do. */
3241   if( n>0 ){
3242     sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
3243     sqlite3VdbeChangeP4(v, -1, zAff, n);
3244     sqlite3ExprCacheAffinityChange(pParse, base, n);
3245   }
3246 }
3247 
3248 
3249 /*
3250 ** Generate code for a single equality term of the WHERE clause.  An equality
3251 ** term can be either X=expr or X IN (...).   pTerm is the term to be
3252 ** coded.
3253 **
3254 ** The current value for the constraint is left in register iReg.
3255 **
3256 ** For a constraint of the form X=expr, the expression is evaluated and its
3257 ** result is left on the stack.  For constraints of the form X IN (...)
3258 ** this routine sets up a loop that will iterate over all values of X.
3259 */
3260 static int codeEqualityTerm(
3261   Parse *pParse,      /* The parsing context */
3262   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
3263   WhereLevel *pLevel, /* When level of the FROM clause we are working on */
3264   int iTarget         /* Attempt to leave results in this register */
3265 ){
3266   Expr *pX = pTerm->pExpr;
3267   Vdbe *v = pParse->pVdbe;
3268   int iReg;                  /* Register holding results */
3269 
3270   assert( iTarget>0 );
3271   if( pX->op==TK_EQ ){
3272     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
3273   }else if( pX->op==TK_ISNULL ){
3274     iReg = iTarget;
3275     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
3276 #ifndef SQLITE_OMIT_SUBQUERY
3277   }else{
3278     int eType;
3279     int iTab;
3280     struct InLoop *pIn;
3281 
3282     assert( pX->op==TK_IN );
3283     iReg = iTarget;
3284     eType = sqlite3FindInIndex(pParse, pX, 0);
3285     iTab = pX->iTable;
3286     sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
3287     assert( pLevel->plan.wsFlags & WHERE_IN_ABLE );
3288     if( pLevel->u.in.nIn==0 ){
3289       pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
3290     }
3291     pLevel->u.in.nIn++;
3292     pLevel->u.in.aInLoop =
3293        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
3294                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
3295     pIn = pLevel->u.in.aInLoop;
3296     if( pIn ){
3297       pIn += pLevel->u.in.nIn - 1;
3298       pIn->iCur = iTab;
3299       if( eType==IN_INDEX_ROWID ){
3300         pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
3301       }else{
3302         pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
3303       }
3304       sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
3305     }else{
3306       pLevel->u.in.nIn = 0;
3307     }
3308 #endif
3309   }
3310   disableTerm(pLevel, pTerm);
3311   return iReg;
3312 }
3313 
3314 /*
3315 ** Generate code that will evaluate all == and IN constraints for an
3316 ** index.
3317 **
3318 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
3319 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
3320 ** The index has as many as three equality constraints, but in this
3321 ** example, the third "c" value is an inequality.  So only two
3322 ** constraints are coded.  This routine will generate code to evaluate
3323 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
3324 ** in consecutive registers and the index of the first register is returned.
3325 **
3326 ** In the example above nEq==2.  But this subroutine works for any value
3327 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
3328 ** The only thing it does is allocate the pLevel->iMem memory cell and
3329 ** compute the affinity string.
3330 **
3331 ** This routine always allocates at least one memory cell and returns
3332 ** the index of that memory cell. The code that
3333 ** calls this routine will use that memory cell to store the termination
3334 ** key value of the loop.  If one or more IN operators appear, then
3335 ** this routine allocates an additional nEq memory cells for internal
3336 ** use.
3337 **
3338 ** Before returning, *pzAff is set to point to a buffer containing a
3339 ** copy of the column affinity string of the index allocated using
3340 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
3341 ** with equality constraints that use NONE affinity are set to
3342 ** SQLITE_AFF_NONE. This is to deal with SQL such as the following:
3343 **
3344 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
3345 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
3346 **
3347 ** In the example above, the index on t1(a) has TEXT affinity. But since
3348 ** the right hand side of the equality constraint (t2.b) has NONE affinity,
3349 ** no conversion should be attempted before using a t2.b value as part of
3350 ** a key to search the index. Hence the first byte in the returned affinity
3351 ** string in this example would be set to SQLITE_AFF_NONE.
3352 */
3353 static int codeAllEqualityTerms(
3354   Parse *pParse,        /* Parsing context */
3355   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
3356   WhereClause *pWC,     /* The WHERE clause */
3357   Bitmask notReady,     /* Which parts of FROM have not yet been coded */
3358   int nExtraReg,        /* Number of extra registers to allocate */
3359   char **pzAff          /* OUT: Set to point to affinity string */
3360 ){
3361   int nEq = pLevel->plan.nEq;   /* The number of == or IN constraints to code */
3362   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
3363   Index *pIdx;                  /* The index being used for this loop */
3364   int iCur = pLevel->iTabCur;   /* The cursor of the table */
3365   WhereTerm *pTerm;             /* A single constraint term */
3366   int j;                        /* Loop counter */
3367   int regBase;                  /* Base register */
3368   int nReg;                     /* Number of registers to allocate */
3369   char *zAff;                   /* Affinity string to return */
3370 
3371   /* This module is only called on query plans that use an index. */
3372   assert( pLevel->plan.wsFlags & WHERE_INDEXED );
3373   pIdx = pLevel->plan.u.pIdx;
3374 
3375   /* Figure out how many memory cells we will need then allocate them.
3376   */
3377   regBase = pParse->nMem + 1;
3378   nReg = pLevel->plan.nEq + nExtraReg;
3379   pParse->nMem += nReg;
3380 
3381   zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
3382   if( !zAff ){
3383     pParse->db->mallocFailed = 1;
3384   }
3385 
3386   /* Evaluate the equality constraints
3387   */
3388   assert( pIdx->nColumn>=nEq );
3389   for(j=0; j<nEq; j++){
3390     int r1;
3391     int k = pIdx->aiColumn[j];
3392     pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx);
3393     if( NEVER(pTerm==0) ) break;
3394     /* The following true for indices with redundant columns.
3395     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
3396     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
3397     testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
3398     r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
3399     if( r1!=regBase+j ){
3400       if( nReg==1 ){
3401         sqlite3ReleaseTempReg(pParse, regBase);
3402         regBase = r1;
3403       }else{
3404         sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
3405       }
3406     }
3407     testcase( pTerm->eOperator & WO_ISNULL );
3408     testcase( pTerm->eOperator & WO_IN );
3409     if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
3410       Expr *pRight = pTerm->pExpr->pRight;
3411       sqlite3ExprCodeIsNullJump(v, pRight, regBase+j, pLevel->addrBrk);
3412       if( zAff ){
3413         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){
3414           zAff[j] = SQLITE_AFF_NONE;
3415         }
3416         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
3417           zAff[j] = SQLITE_AFF_NONE;
3418         }
3419       }
3420     }
3421   }
3422   *pzAff = zAff;
3423   return regBase;
3424 }
3425 
3426 #ifndef SQLITE_OMIT_EXPLAIN
3427 /*
3428 ** This routine is a helper for explainIndexRange() below
3429 **
3430 ** pStr holds the text of an expression that we are building up one term
3431 ** at a time.  This routine adds a new term to the end of the expression.
3432 ** Terms are separated by AND so add the "AND" text for second and subsequent
3433 ** terms only.
3434 */
3435 static void explainAppendTerm(
3436   StrAccum *pStr,             /* The text expression being built */
3437   int iTerm,                  /* Index of this term.  First is zero */
3438   const char *zColumn,        /* Name of the column */
3439   const char *zOp             /* Name of the operator */
3440 ){
3441   if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5);
3442   sqlite3StrAccumAppend(pStr, zColumn, -1);
3443   sqlite3StrAccumAppend(pStr, zOp, 1);
3444   sqlite3StrAccumAppend(pStr, "?", 1);
3445 }
3446 
3447 /*
3448 ** Argument pLevel describes a strategy for scanning table pTab. This
3449 ** function returns a pointer to a string buffer containing a description
3450 ** of the subset of table rows scanned by the strategy in the form of an
3451 ** SQL expression. Or, if all rows are scanned, NULL is returned.
3452 **
3453 ** For example, if the query:
3454 **
3455 **   SELECT * FROM t1 WHERE a=1 AND b>2;
3456 **
3457 ** is run and there is an index on (a, b), then this function returns a
3458 ** string similar to:
3459 **
3460 **   "a=? AND b>?"
3461 **
3462 ** The returned pointer points to memory obtained from sqlite3DbMalloc().
3463 ** It is the responsibility of the caller to free the buffer when it is
3464 ** no longer required.
3465 */
3466 static char *explainIndexRange(sqlite3 *db, WhereLevel *pLevel, Table *pTab){
3467   WherePlan *pPlan = &pLevel->plan;
3468   Index *pIndex = pPlan->u.pIdx;
3469   int nEq = pPlan->nEq;
3470   int i, j;
3471   Column *aCol = pTab->aCol;
3472   int *aiColumn = pIndex->aiColumn;
3473   StrAccum txt;
3474 
3475   if( nEq==0 && (pPlan->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ){
3476     return 0;
3477   }
3478   sqlite3StrAccumInit(&txt, 0, 0, SQLITE_MAX_LENGTH);
3479   txt.db = db;
3480   sqlite3StrAccumAppend(&txt, " (", 2);
3481   for(i=0; i<nEq; i++){
3482     explainAppendTerm(&txt, i, aCol[aiColumn[i]].zName, "=");
3483   }
3484 
3485   j = i;
3486   if( pPlan->wsFlags&WHERE_BTM_LIMIT ){
3487     explainAppendTerm(&txt, i++, aCol[aiColumn[j]].zName, ">");
3488   }
3489   if( pPlan->wsFlags&WHERE_TOP_LIMIT ){
3490     explainAppendTerm(&txt, i, aCol[aiColumn[j]].zName, "<");
3491   }
3492   sqlite3StrAccumAppend(&txt, ")", 1);
3493   return sqlite3StrAccumFinish(&txt);
3494 }
3495 
3496 /*
3497 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
3498 ** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single
3499 ** record is added to the output to describe the table scan strategy in
3500 ** pLevel.
3501 */
3502 static void explainOneScan(
3503   Parse *pParse,                  /* Parse context */
3504   SrcList *pTabList,              /* Table list this loop refers to */
3505   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
3506   int iLevel,                     /* Value for "level" column of output */
3507   int iFrom,                      /* Value for "from" column of output */
3508   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
3509 ){
3510   if( pParse->explain==2 ){
3511     u32 flags = pLevel->plan.wsFlags;
3512     struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
3513     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
3514     sqlite3 *db = pParse->db;     /* Database handle */
3515     char *zMsg;                   /* Text to add to EQP output */
3516     sqlite3_int64 nRow;           /* Expected number of rows visited by scan */
3517     int iId = pParse->iSelectId;  /* Select id (left-most output column) */
3518     int isSearch;                 /* True for a SEARCH. False for SCAN. */
3519 
3520     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return;
3521 
3522     isSearch = (pLevel->plan.nEq>0)
3523              || (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
3524              || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
3525 
3526     zMsg = sqlite3MPrintf(db, "%s", isSearch?"SEARCH":"SCAN");
3527     if( pItem->pSelect ){
3528       zMsg = sqlite3MAppendf(db, zMsg, "%s SUBQUERY %d", zMsg,pItem->iSelectId);
3529     }else{
3530       zMsg = sqlite3MAppendf(db, zMsg, "%s TABLE %s", zMsg, pItem->zName);
3531     }
3532 
3533     if( pItem->zAlias ){
3534       zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
3535     }
3536     if( (flags & WHERE_INDEXED)!=0 ){
3537       char *zWhere = explainIndexRange(db, pLevel, pItem->pTab);
3538       zMsg = sqlite3MAppendf(db, zMsg, "%s USING %s%sINDEX%s%s%s", zMsg,
3539           ((flags & WHERE_TEMP_INDEX)?"AUTOMATIC ":""),
3540           ((flags & WHERE_IDX_ONLY)?"COVERING ":""),
3541           ((flags & WHERE_TEMP_INDEX)?"":" "),
3542           ((flags & WHERE_TEMP_INDEX)?"": pLevel->plan.u.pIdx->zName),
3543           zWhere
3544       );
3545       sqlite3DbFree(db, zWhere);
3546     }else if( flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
3547       zMsg = sqlite3MAppendf(db, zMsg, "%s USING INTEGER PRIMARY KEY", zMsg);
3548 
3549       if( flags&WHERE_ROWID_EQ ){
3550         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid=?)", zMsg);
3551       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
3552         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>? AND rowid<?)", zMsg);
3553       }else if( flags&WHERE_BTM_LIMIT ){
3554         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>?)", zMsg);
3555       }else if( flags&WHERE_TOP_LIMIT ){
3556         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid<?)", zMsg);
3557       }
3558     }
3559 #ifndef SQLITE_OMIT_VIRTUALTABLE
3560     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
3561       sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
3562       zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
3563                   pVtabIdx->idxNum, pVtabIdx->idxStr);
3564     }
3565 #endif
3566     if( wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ){
3567       testcase( wctrlFlags & WHERE_ORDERBY_MIN );
3568       nRow = 1;
3569     }else{
3570       nRow = (sqlite3_int64)pLevel->plan.nRow;
3571     }
3572     zMsg = sqlite3MAppendf(db, zMsg, "%s (~%lld rows)", zMsg, nRow);
3573     sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC);
3574   }
3575 }
3576 #else
3577 # define explainOneScan(u,v,w,x,y,z)
3578 #endif /* SQLITE_OMIT_EXPLAIN */
3579 
3580 
3581 /*
3582 ** Generate code for the start of the iLevel-th loop in the WHERE clause
3583 ** implementation described by pWInfo.
3584 */
3585 static Bitmask codeOneLoopStart(
3586   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
3587   int iLevel,          /* Which level of pWInfo->a[] should be coded */
3588   u16 wctrlFlags,      /* One of the WHERE_* flags defined in sqliteInt.h */
3589   Bitmask notReady     /* Which tables are currently available */
3590 ){
3591   int j, k;            /* Loop counters */
3592   int iCur;            /* The VDBE cursor for the table */
3593   int addrNxt;         /* Where to jump to continue with the next IN case */
3594   int omitTable;       /* True if we use the index only */
3595   int bRev;            /* True if we need to scan in reverse order */
3596   WhereLevel *pLevel;  /* The where level to be coded */
3597   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
3598   WhereTerm *pTerm;               /* A WHERE clause term */
3599   Parse *pParse;                  /* Parsing context */
3600   Vdbe *v;                        /* The prepared stmt under constructions */
3601   struct SrcList_item *pTabItem;  /* FROM clause term being coded */
3602   int addrBrk;                    /* Jump here to break out of the loop */
3603   int addrCont;                   /* Jump here to continue with next cycle */
3604   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
3605   int iReleaseReg = 0;      /* Temp register to free before returning */
3606 
3607   pParse = pWInfo->pParse;
3608   v = pParse->pVdbe;
3609   pWC = pWInfo->pWC;
3610   pLevel = &pWInfo->a[iLevel];
3611   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
3612   iCur = pTabItem->iCursor;
3613   bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;
3614   omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0
3615            && (wctrlFlags & WHERE_FORCE_TABLE)==0;
3616 
3617   /* Create labels for the "break" and "continue" instructions
3618   ** for the current loop.  Jump to addrBrk to break out of a loop.
3619   ** Jump to cont to go immediately to the next iteration of the
3620   ** loop.
3621   **
3622   ** When there is an IN operator, we also have a "addrNxt" label that
3623   ** means to continue with the next IN value combination.  When
3624   ** there are no IN operators in the constraints, the "addrNxt" label
3625   ** is the same as "addrBrk".
3626   */
3627   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
3628   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
3629 
3630   /* If this is the right table of a LEFT OUTER JOIN, allocate and
3631   ** initialize a memory cell that records if this table matches any
3632   ** row of the left table of the join.
3633   */
3634   if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
3635     pLevel->iLeftJoin = ++pParse->nMem;
3636     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
3637     VdbeComment((v, "init LEFT JOIN no-match flag"));
3638   }
3639 
3640 #ifndef SQLITE_OMIT_VIRTUALTABLE
3641   if(  (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
3642     /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
3643     **          to access the data.
3644     */
3645     int iReg;   /* P3 Value for OP_VFilter */
3646     sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
3647     int nConstraint = pVtabIdx->nConstraint;
3648     struct sqlite3_index_constraint_usage *aUsage =
3649                                                 pVtabIdx->aConstraintUsage;
3650     const struct sqlite3_index_constraint *aConstraint =
3651                                                 pVtabIdx->aConstraint;
3652 
3653     sqlite3ExprCachePush(pParse);
3654     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
3655     for(j=1; j<=nConstraint; j++){
3656       for(k=0; k<nConstraint; k++){
3657         if( aUsage[k].argvIndex==j ){
3658           int iTerm = aConstraint[k].iTermOffset;
3659           sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1);
3660           break;
3661         }
3662       }
3663       if( k==nConstraint ) break;
3664     }
3665     sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg);
3666     sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
3667     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr,
3668                       pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
3669     pVtabIdx->needToFreeIdxStr = 0;
3670     for(j=0; j<nConstraint; j++){
3671       if( aUsage[j].omit ){
3672         int iTerm = aConstraint[j].iTermOffset;
3673         disableTerm(pLevel, &pWC->a[iTerm]);
3674       }
3675     }
3676     pLevel->op = OP_VNext;
3677     pLevel->p1 = iCur;
3678     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
3679     sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
3680     sqlite3ExprCachePop(pParse, 1);
3681   }else
3682 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3683 
3684   if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){
3685     /* Case 1:  We can directly reference a single row using an
3686     **          equality comparison against the ROWID field.  Or
3687     **          we reference multiple rows using a "rowid IN (...)"
3688     **          construct.
3689     */
3690     iReleaseReg = sqlite3GetTempReg(pParse);
3691     pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
3692     assert( pTerm!=0 );
3693     assert( pTerm->pExpr!=0 );
3694     assert( pTerm->leftCursor==iCur );
3695     assert( omitTable==0 );
3696     testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
3697     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg);
3698     addrNxt = pLevel->addrNxt;
3699     sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
3700     sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
3701     sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
3702     VdbeComment((v, "pk"));
3703     pLevel->op = OP_Noop;
3704   }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){
3705     /* Case 2:  We have an inequality comparison against the ROWID field.
3706     */
3707     int testOp = OP_Noop;
3708     int start;
3709     int memEndValue = 0;
3710     WhereTerm *pStart, *pEnd;
3711 
3712     assert( omitTable==0 );
3713     pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0);
3714     pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0);
3715     if( bRev ){
3716       pTerm = pStart;
3717       pStart = pEnd;
3718       pEnd = pTerm;
3719     }
3720     if( pStart ){
3721       Expr *pX;             /* The expression that defines the start bound */
3722       int r1, rTemp;        /* Registers for holding the start boundary */
3723 
3724       /* The following constant maps TK_xx codes into corresponding
3725       ** seek opcodes.  It depends on a particular ordering of TK_xx
3726       */
3727       const u8 aMoveOp[] = {
3728            /* TK_GT */  OP_SeekGt,
3729            /* TK_LE */  OP_SeekLe,
3730            /* TK_LT */  OP_SeekLt,
3731            /* TK_GE */  OP_SeekGe
3732       };
3733       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
3734       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
3735       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
3736 
3737       testcase( pStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
3738       pX = pStart->pExpr;
3739       assert( pX!=0 );
3740       assert( pStart->leftCursor==iCur );
3741       r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
3742       sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
3743       VdbeComment((v, "pk"));
3744       sqlite3ExprCacheAffinityChange(pParse, r1, 1);
3745       sqlite3ReleaseTempReg(pParse, rTemp);
3746       disableTerm(pLevel, pStart);
3747     }else{
3748       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
3749     }
3750     if( pEnd ){
3751       Expr *pX;
3752       pX = pEnd->pExpr;
3753       assert( pX!=0 );
3754       assert( pEnd->leftCursor==iCur );
3755       testcase( pEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
3756       memEndValue = ++pParse->nMem;
3757       sqlite3ExprCode(pParse, pX->pRight, memEndValue);
3758       if( pX->op==TK_LT || pX->op==TK_GT ){
3759         testOp = bRev ? OP_Le : OP_Ge;
3760       }else{
3761         testOp = bRev ? OP_Lt : OP_Gt;
3762       }
3763       disableTerm(pLevel, pEnd);
3764     }
3765     start = sqlite3VdbeCurrentAddr(v);
3766     pLevel->op = bRev ? OP_Prev : OP_Next;
3767     pLevel->p1 = iCur;
3768     pLevel->p2 = start;
3769     if( pStart==0 && pEnd==0 ){
3770       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
3771     }else{
3772       assert( pLevel->p5==0 );
3773     }
3774     if( testOp!=OP_Noop ){
3775       iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
3776       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
3777       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
3778       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
3779       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
3780     }
3781   }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
3782     /* Case 3: A scan using an index.
3783     **
3784     **         The WHERE clause may contain zero or more equality
3785     **         terms ("==" or "IN" operators) that refer to the N
3786     **         left-most columns of the index. It may also contain
3787     **         inequality constraints (>, <, >= or <=) on the indexed
3788     **         column that immediately follows the N equalities. Only
3789     **         the right-most column can be an inequality - the rest must
3790     **         use the "==" and "IN" operators. For example, if the
3791     **         index is on (x,y,z), then the following clauses are all
3792     **         optimized:
3793     **
3794     **            x=5
3795     **            x=5 AND y=10
3796     **            x=5 AND y<10
3797     **            x=5 AND y>5 AND y<10
3798     **            x=5 AND y=5 AND z<=10
3799     **
3800     **         The z<10 term of the following cannot be used, only
3801     **         the x=5 term:
3802     **
3803     **            x=5 AND z<10
3804     **
3805     **         N may be zero if there are inequality constraints.
3806     **         If there are no inequality constraints, then N is at
3807     **         least one.
3808     **
3809     **         This case is also used when there are no WHERE clause
3810     **         constraints but an index is selected anyway, in order
3811     **         to force the output order to conform to an ORDER BY.
3812     */
3813     static const u8 aStartOp[] = {
3814       0,
3815       0,
3816       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
3817       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
3818       OP_SeekGt,           /* 4: (start_constraints  && !startEq && !bRev) */
3819       OP_SeekLt,           /* 5: (start_constraints  && !startEq &&  bRev) */
3820       OP_SeekGe,           /* 6: (start_constraints  &&  startEq && !bRev) */
3821       OP_SeekLe            /* 7: (start_constraints  &&  startEq &&  bRev) */
3822     };
3823     static const u8 aEndOp[] = {
3824       OP_Noop,             /* 0: (!end_constraints) */
3825       OP_IdxGE,            /* 1: (end_constraints && !bRev) */
3826       OP_IdxLT             /* 2: (end_constraints && bRev) */
3827     };
3828     int nEq = pLevel->plan.nEq;  /* Number of == or IN terms */
3829     int isMinQuery = 0;          /* If this is an optimized SELECT min(x).. */
3830     int regBase;                 /* Base register holding constraint values */
3831     int r1;                      /* Temp register */
3832     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
3833     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
3834     int startEq;                 /* True if range start uses ==, >= or <= */
3835     int endEq;                   /* True if range end uses ==, >= or <= */
3836     int start_constraints;       /* Start of range is constrained */
3837     int nConstraint;             /* Number of constraint terms */
3838     Index *pIdx;                 /* The index we will be using */
3839     int iIdxCur;                 /* The VDBE cursor for the index */
3840     int nExtraReg = 0;           /* Number of extra registers needed */
3841     int op;                      /* Instruction opcode */
3842     char *zStartAff;             /* Affinity for start of range constraint */
3843     char *zEndAff;               /* Affinity for end of range constraint */
3844 
3845     pIdx = pLevel->plan.u.pIdx;
3846     iIdxCur = pLevel->iIdxCur;
3847     k = pIdx->aiColumn[nEq];     /* Column for inequality constraints */
3848 
3849     /* If this loop satisfies a sort order (pOrderBy) request that
3850     ** was passed to this function to implement a "SELECT min(x) ..."
3851     ** query, then the caller will only allow the loop to run for
3852     ** a single iteration. This means that the first row returned
3853     ** should not have a NULL value stored in 'x'. If column 'x' is
3854     ** the first one after the nEq equality constraints in the index,
3855     ** this requires some special handling.
3856     */
3857     if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0
3858      && (pLevel->plan.wsFlags&WHERE_ORDERBY)
3859      && (pIdx->nColumn>nEq)
3860     ){
3861       /* assert( pOrderBy->nExpr==1 ); */
3862       /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */
3863       isMinQuery = 1;
3864       nExtraReg = 1;
3865     }
3866 
3867     /* Find any inequality constraint terms for the start and end
3868     ** of the range.
3869     */
3870     if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){
3871       pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
3872       nExtraReg = 1;
3873     }
3874     if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){
3875       pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
3876       nExtraReg = 1;
3877     }
3878 
3879     /* Generate code to evaluate all constraint terms using == or IN
3880     ** and store the values of those terms in an array of registers
3881     ** starting at regBase.
3882     */
3883     regBase = codeAllEqualityTerms(
3884         pParse, pLevel, pWC, notReady, nExtraReg, &zStartAff
3885     );
3886     zEndAff = sqlite3DbStrDup(pParse->db, zStartAff);
3887     addrNxt = pLevel->addrNxt;
3888 
3889     /* If we are doing a reverse order scan on an ascending index, or
3890     ** a forward order scan on a descending index, interchange the
3891     ** start and end terms (pRangeStart and pRangeEnd).
3892     */
3893     if( nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){
3894       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
3895     }
3896 
3897     testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
3898     testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
3899     testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
3900     testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
3901     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
3902     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
3903     start_constraints = pRangeStart || nEq>0;
3904 
3905     /* Seek the index cursor to the start of the range. */
3906     nConstraint = nEq;
3907     if( pRangeStart ){
3908       Expr *pRight = pRangeStart->pExpr->pRight;
3909       sqlite3ExprCode(pParse, pRight, regBase+nEq);
3910       if( (pRangeStart->wtFlags & TERM_VNULL)==0 ){
3911         sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
3912       }
3913       if( zStartAff ){
3914         if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){
3915           /* Since the comparison is to be performed with no conversions
3916           ** applied to the operands, set the affinity to apply to pRight to
3917           ** SQLITE_AFF_NONE.  */
3918           zStartAff[nEq] = SQLITE_AFF_NONE;
3919         }
3920         if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
3921           zStartAff[nEq] = SQLITE_AFF_NONE;
3922         }
3923       }
3924       nConstraint++;
3925       testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
3926     }else if( isMinQuery ){
3927       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
3928       nConstraint++;
3929       startEq = 0;
3930       start_constraints = 1;
3931     }
3932     codeApplyAffinity(pParse, regBase, nConstraint, zStartAff);
3933     op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
3934     assert( op!=0 );
3935     testcase( op==OP_Rewind );
3936     testcase( op==OP_Last );
3937     testcase( op==OP_SeekGt );
3938     testcase( op==OP_SeekGe );
3939     testcase( op==OP_SeekLe );
3940     testcase( op==OP_SeekLt );
3941     sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
3942 
3943     /* Load the value for the inequality constraint at the end of the
3944     ** range (if any).
3945     */
3946     nConstraint = nEq;
3947     if( pRangeEnd ){
3948       Expr *pRight = pRangeEnd->pExpr->pRight;
3949       sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
3950       sqlite3ExprCode(pParse, pRight, regBase+nEq);
3951       if( (pRangeEnd->wtFlags & TERM_VNULL)==0 ){
3952         sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
3953       }
3954       if( zEndAff ){
3955         if( sqlite3CompareAffinity(pRight, zEndAff[nEq])==SQLITE_AFF_NONE){
3956           /* Since the comparison is to be performed with no conversions
3957           ** applied to the operands, set the affinity to apply to pRight to
3958           ** SQLITE_AFF_NONE.  */
3959           zEndAff[nEq] = SQLITE_AFF_NONE;
3960         }
3961         if( sqlite3ExprNeedsNoAffinityChange(pRight, zEndAff[nEq]) ){
3962           zEndAff[nEq] = SQLITE_AFF_NONE;
3963         }
3964       }
3965       codeApplyAffinity(pParse, regBase, nEq+1, zEndAff);
3966       nConstraint++;
3967       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
3968     }
3969     sqlite3DbFree(pParse->db, zStartAff);
3970     sqlite3DbFree(pParse->db, zEndAff);
3971 
3972     /* Top of the loop body */
3973     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
3974 
3975     /* Check if the index cursor is past the end of the range. */
3976     op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
3977     testcase( op==OP_Noop );
3978     testcase( op==OP_IdxGE );
3979     testcase( op==OP_IdxLT );
3980     if( op!=OP_Noop ){
3981       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
3982       sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0);
3983     }
3984 
3985     /* If there are inequality constraints, check that the value
3986     ** of the table column that the inequality contrains is not NULL.
3987     ** If it is, jump to the next iteration of the loop.
3988     */
3989     r1 = sqlite3GetTempReg(pParse);
3990     testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT );
3991     testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT );
3992     if( (pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 ){
3993       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
3994       sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont);
3995     }
3996     sqlite3ReleaseTempReg(pParse, r1);
3997 
3998     /* Seek the table cursor, if required */
3999     disableTerm(pLevel, pRangeStart);
4000     disableTerm(pLevel, pRangeEnd);
4001     if( !omitTable ){
4002       iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
4003       sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
4004       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
4005       sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg);  /* Deferred seek */
4006     }
4007 
4008     /* Record the instruction used to terminate the loop. Disable
4009     ** WHERE clause terms made redundant by the index range scan.
4010     */
4011     if( pLevel->plan.wsFlags & WHERE_UNIQUE ){
4012       pLevel->op = OP_Noop;
4013     }else if( bRev ){
4014       pLevel->op = OP_Prev;
4015     }else{
4016       pLevel->op = OP_Next;
4017     }
4018     pLevel->p1 = iIdxCur;
4019   }else
4020 
4021 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
4022   if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
4023     /* Case 4:  Two or more separately indexed terms connected by OR
4024     **
4025     ** Example:
4026     **
4027     **   CREATE TABLE t1(a,b,c,d);
4028     **   CREATE INDEX i1 ON t1(a);
4029     **   CREATE INDEX i2 ON t1(b);
4030     **   CREATE INDEX i3 ON t1(c);
4031     **
4032     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
4033     **
4034     ** In the example, there are three indexed terms connected by OR.
4035     ** The top of the loop looks like this:
4036     **
4037     **          Null       1                # Zero the rowset in reg 1
4038     **
4039     ** Then, for each indexed term, the following. The arguments to
4040     ** RowSetTest are such that the rowid of the current row is inserted
4041     ** into the RowSet. If it is already present, control skips the
4042     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
4043     **
4044     **        sqlite3WhereBegin(<term>)
4045     **          RowSetTest                  # Insert rowid into rowset
4046     **          Gosub      2 A
4047     **        sqlite3WhereEnd()
4048     **
4049     ** Following the above, code to terminate the loop. Label A, the target
4050     ** of the Gosub above, jumps to the instruction right after the Goto.
4051     **
4052     **          Null       1                # Zero the rowset in reg 1
4053     **          Goto       B                # The loop is finished.
4054     **
4055     **       A: <loop body>                 # Return data, whatever.
4056     **
4057     **          Return     2                # Jump back to the Gosub
4058     **
4059     **       B: <after the loop>
4060     **
4061     */
4062     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
4063     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
4064 
4065     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
4066     int regRowset = 0;                        /* Register for RowSet object */
4067     int regRowid = 0;                         /* Register holding rowid */
4068     int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
4069     int iRetInit;                             /* Address of regReturn init */
4070     int untestedTerms = 0;             /* Some terms not completely tested */
4071     int ii;
4072 
4073     pTerm = pLevel->plan.u.pTerm;
4074     assert( pTerm!=0 );
4075     assert( pTerm->eOperator==WO_OR );
4076     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
4077     pOrWc = &pTerm->u.pOrInfo->wc;
4078     pLevel->op = OP_Return;
4079     pLevel->p1 = regReturn;
4080 
4081     /* Set up a new SrcList ni pOrTab containing the table being scanned
4082     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
4083     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
4084     */
4085     if( pWInfo->nLevel>1 ){
4086       int nNotReady;                 /* The number of notReady tables */
4087       struct SrcList_item *origSrc;     /* Original list of tables */
4088       nNotReady = pWInfo->nLevel - iLevel - 1;
4089       pOrTab = sqlite3StackAllocRaw(pParse->db,
4090                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
4091       if( pOrTab==0 ) return notReady;
4092       pOrTab->nAlloc = (i16)(nNotReady + 1);
4093       pOrTab->nSrc = pOrTab->nAlloc;
4094       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
4095       origSrc = pWInfo->pTabList->a;
4096       for(k=1; k<=nNotReady; k++){
4097         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
4098       }
4099     }else{
4100       pOrTab = pWInfo->pTabList;
4101     }
4102 
4103     /* Initialize the rowset register to contain NULL. An SQL NULL is
4104     ** equivalent to an empty rowset.
4105     **
4106     ** Also initialize regReturn to contain the address of the instruction
4107     ** immediately following the OP_Return at the bottom of the loop. This
4108     ** is required in a few obscure LEFT JOIN cases where control jumps
4109     ** over the top of the loop into the body of it. In this case the
4110     ** correct response for the end-of-loop code (the OP_Return) is to
4111     ** fall through to the next instruction, just as an OP_Next does if
4112     ** called on an uninitialized cursor.
4113     */
4114     if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
4115       regRowset = ++pParse->nMem;
4116       regRowid = ++pParse->nMem;
4117       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
4118     }
4119     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
4120 
4121     for(ii=0; ii<pOrWc->nTerm; ii++){
4122       WhereTerm *pOrTerm = &pOrWc->a[ii];
4123       if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
4124         WhereInfo *pSubWInfo;          /* Info for single OR-term scan */
4125         /* Loop through table entries that match term pOrTerm. */
4126         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrTerm->pExpr, 0,
4127                         WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE |
4128                         WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY);
4129         if( pSubWInfo ){
4130           explainOneScan(
4131               pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
4132           );
4133           if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
4134             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
4135             int r;
4136             r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur,
4137                                          regRowid);
4138             sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset,
4139                                  sqlite3VdbeCurrentAddr(v)+2, r, iSet);
4140           }
4141           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
4142 
4143           /* The pSubWInfo->untestedTerms flag means that this OR term
4144           ** contained one or more AND term from a notReady table.  The
4145           ** terms from the notReady table could not be tested and will
4146           ** need to be tested later.
4147           */
4148           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
4149 
4150           /* Finish the loop through table entries that match term pOrTerm. */
4151           sqlite3WhereEnd(pSubWInfo);
4152         }
4153       }
4154     }
4155     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
4156     sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
4157     sqlite3VdbeResolveLabel(v, iLoopBody);
4158 
4159     if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab);
4160     if( !untestedTerms ) disableTerm(pLevel, pTerm);
4161   }else
4162 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
4163 
4164   {
4165     /* Case 5:  There is no usable index.  We must do a complete
4166     **          scan of the entire table.
4167     */
4168     static const u8 aStep[] = { OP_Next, OP_Prev };
4169     static const u8 aStart[] = { OP_Rewind, OP_Last };
4170     assert( bRev==0 || bRev==1 );
4171     assert( omitTable==0 );
4172     pLevel->op = aStep[bRev];
4173     pLevel->p1 = iCur;
4174     pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
4175     pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
4176   }
4177   notReady &= ~getMask(pWC->pMaskSet, iCur);
4178 
4179   /* Insert code to test every subexpression that can be completely
4180   ** computed using the current set of tables.
4181   **
4182   ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through
4183   ** the use of indices become tests that are evaluated against each row of
4184   ** the relevant input tables.
4185   */
4186   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
4187     Expr *pE;
4188     testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */
4189     testcase( pTerm->wtFlags & TERM_CODED );
4190     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
4191     if( (pTerm->prereqAll & notReady)!=0 ){
4192       testcase( pWInfo->untestedTerms==0
4193                && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
4194       pWInfo->untestedTerms = 1;
4195       continue;
4196     }
4197     pE = pTerm->pExpr;
4198     assert( pE!=0 );
4199     if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
4200       continue;
4201     }
4202     sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
4203     pTerm->wtFlags |= TERM_CODED;
4204   }
4205 
4206   /* For a LEFT OUTER JOIN, generate code that will record the fact that
4207   ** at least one row of the right table has matched the left table.
4208   */
4209   if( pLevel->iLeftJoin ){
4210     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
4211     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
4212     VdbeComment((v, "record LEFT JOIN hit"));
4213     sqlite3ExprCacheClear(pParse);
4214     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
4215       testcase( pTerm->wtFlags & TERM_VIRTUAL );  /* IMP: R-30575-11662 */
4216       testcase( pTerm->wtFlags & TERM_CODED );
4217       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
4218       if( (pTerm->prereqAll & notReady)!=0 ){
4219         assert( pWInfo->untestedTerms );
4220         continue;
4221       }
4222       assert( pTerm->pExpr );
4223       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
4224       pTerm->wtFlags |= TERM_CODED;
4225     }
4226   }
4227   sqlite3ReleaseTempReg(pParse, iReleaseReg);
4228 
4229   return notReady;
4230 }
4231 
4232 #if defined(SQLITE_TEST)
4233 /*
4234 ** The following variable holds a text description of query plan generated
4235 ** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin
4236 ** overwrites the previous.  This information is used for testing and
4237 ** analysis only.
4238 */
4239 char sqlite3_query_plan[BMS*2*40];  /* Text of the join */
4240 static int nQPlan = 0;              /* Next free slow in _query_plan[] */
4241 
4242 #endif /* SQLITE_TEST */
4243 
4244 
4245 /*
4246 ** Free a WhereInfo structure
4247 */
4248 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
4249   if( ALWAYS(pWInfo) ){
4250     int i;
4251     for(i=0; i<pWInfo->nLevel; i++){
4252       sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
4253       if( pInfo ){
4254         /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */
4255         if( pInfo->needToFreeIdxStr ){
4256           sqlite3_free(pInfo->idxStr);
4257         }
4258         sqlite3DbFree(db, pInfo);
4259       }
4260       if( pWInfo->a[i].plan.wsFlags & WHERE_TEMP_INDEX ){
4261         Index *pIdx = pWInfo->a[i].plan.u.pIdx;
4262         if( pIdx ){
4263           sqlite3DbFree(db, pIdx->zColAff);
4264           sqlite3DbFree(db, pIdx);
4265         }
4266       }
4267     }
4268     whereClauseClear(pWInfo->pWC);
4269     sqlite3DbFree(db, pWInfo);
4270   }
4271 }
4272 
4273 
4274 /*
4275 ** Generate the beginning of the loop used for WHERE clause processing.
4276 ** The return value is a pointer to an opaque structure that contains
4277 ** information needed to terminate the loop.  Later, the calling routine
4278 ** should invoke sqlite3WhereEnd() with the return value of this function
4279 ** in order to complete the WHERE clause processing.
4280 **
4281 ** If an error occurs, this routine returns NULL.
4282 **
4283 ** The basic idea is to do a nested loop, one loop for each table in
4284 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
4285 ** same as a SELECT with only a single table in the FROM clause.)  For
4286 ** example, if the SQL is this:
4287 **
4288 **       SELECT * FROM t1, t2, t3 WHERE ...;
4289 **
4290 ** Then the code generated is conceptually like the following:
4291 **
4292 **      foreach row1 in t1 do       \    Code generated
4293 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
4294 **          foreach row3 in t3 do   /
4295 **            ...
4296 **          end                     \    Code generated
4297 **        end                        |-- by sqlite3WhereEnd()
4298 **      end                         /
4299 **
4300 ** Note that the loops might not be nested in the order in which they
4301 ** appear in the FROM clause if a different order is better able to make
4302 ** use of indices.  Note also that when the IN operator appears in
4303 ** the WHERE clause, it might result in additional nested loops for
4304 ** scanning through all values on the right-hand side of the IN.
4305 **
4306 ** There are Btree cursors associated with each table.  t1 uses cursor
4307 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
4308 ** And so forth.  This routine generates code to open those VDBE cursors
4309 ** and sqlite3WhereEnd() generates the code to close them.
4310 **
4311 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4312 ** in pTabList pointing at their appropriate entries.  The [...] code
4313 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4314 ** data from the various tables of the loop.
4315 **
4316 ** If the WHERE clause is empty, the foreach loops must each scan their
4317 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
4318 ** the tables have indices and there are terms in the WHERE clause that
4319 ** refer to those indices, a complete table scan can be avoided and the
4320 ** code will run much faster.  Most of the work of this routine is checking
4321 ** to see if there are indices that can be used to speed up the loop.
4322 **
4323 ** Terms of the WHERE clause are also used to limit which rows actually
4324 ** make it to the "..." in the middle of the loop.  After each "foreach",
4325 ** terms of the WHERE clause that use only terms in that loop and outer
4326 ** loops are evaluated and if false a jump is made around all subsequent
4327 ** inner loops (or around the "..." if the test occurs within the inner-
4328 ** most loop)
4329 **
4330 ** OUTER JOINS
4331 **
4332 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4333 **
4334 **    foreach row1 in t1 do
4335 **      flag = 0
4336 **      foreach row2 in t2 do
4337 **        start:
4338 **          ...
4339 **          flag = 1
4340 **      end
4341 **      if flag==0 then
4342 **        move the row2 cursor to a null row
4343 **        goto start
4344 **      fi
4345 **    end
4346 **
4347 ** ORDER BY CLAUSE PROCESSING
4348 **
4349 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
4350 ** if there is one.  If there is no ORDER BY clause or if this routine
4351 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
4352 **
4353 ** If an index can be used so that the natural output order of the table
4354 ** scan is correct for the ORDER BY clause, then that index is used and
4355 ** *ppOrderBy is set to NULL.  This is an optimization that prevents an
4356 ** unnecessary sort of the result set if an index appropriate for the
4357 ** ORDER BY clause already exists.
4358 **
4359 ** If the where clause loops cannot be arranged to provide the correct
4360 ** output order, then the *ppOrderBy is unchanged.
4361 */
4362 WhereInfo *sqlite3WhereBegin(
4363   Parse *pParse,        /* The parser context */
4364   SrcList *pTabList,    /* A list of all tables to be scanned */
4365   Expr *pWhere,         /* The WHERE clause */
4366   ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
4367   u16 wctrlFlags        /* One of the WHERE_* flags defined in sqliteInt.h */
4368 ){
4369   int i;                     /* Loop counter */
4370   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
4371   int nTabList;              /* Number of elements in pTabList */
4372   WhereInfo *pWInfo;         /* Will become the return value of this function */
4373   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
4374   Bitmask notReady;          /* Cursors that are not yet positioned */
4375   WhereMaskSet *pMaskSet;    /* The expression mask set */
4376   WhereClause *pWC;               /* Decomposition of the WHERE clause */
4377   struct SrcList_item *pTabItem;  /* A single entry from pTabList */
4378   WhereLevel *pLevel;             /* A single level in the pWInfo list */
4379   int iFrom;                      /* First unused FROM clause element */
4380   int andFlags;              /* AND-ed combination of all pWC->a[].wtFlags */
4381   sqlite3 *db;               /* Database connection */
4382 
4383   /* The number of tables in the FROM clause is limited by the number of
4384   ** bits in a Bitmask
4385   */
4386   testcase( pTabList->nSrc==BMS );
4387   if( pTabList->nSrc>BMS ){
4388     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4389     return 0;
4390   }
4391 
4392   /* This function normally generates a nested loop for all tables in
4393   ** pTabList.  But if the WHERE_ONETABLE_ONLY flag is set, then we should
4394   ** only generate code for the first table in pTabList and assume that
4395   ** any cursors associated with subsequent tables are uninitialized.
4396   */
4397   nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc;
4398 
4399   /* Allocate and initialize the WhereInfo structure that will become the
4400   ** return value. A single allocation is used to store the WhereInfo
4401   ** struct, the contents of WhereInfo.a[], the WhereClause structure
4402   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4403   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4404   ** some architectures. Hence the ROUND8() below.
4405   */
4406   db = pParse->db;
4407   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4408   pWInfo = sqlite3DbMallocZero(db,
4409       nByteWInfo +
4410       sizeof(WhereClause) +
4411       sizeof(WhereMaskSet)
4412   );
4413   if( db->mallocFailed ){
4414     sqlite3DbFree(db, pWInfo);
4415     pWInfo = 0;
4416     goto whereBeginError;
4417   }
4418   pWInfo->nLevel = nTabList;
4419   pWInfo->pParse = pParse;
4420   pWInfo->pTabList = pTabList;
4421   pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
4422   pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo];
4423   pWInfo->wctrlFlags = wctrlFlags;
4424   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4425   pMaskSet = (WhereMaskSet*)&pWC[1];
4426 
4427   /* Split the WHERE clause into separate subexpressions where each
4428   ** subexpression is separated by an AND operator.
4429   */
4430   initMaskSet(pMaskSet);
4431   whereClauseInit(pWC, pParse, pMaskSet);
4432   sqlite3ExprCodeConstants(pParse, pWhere);
4433   whereSplit(pWC, pWhere, TK_AND);   /* IMP: R-15842-53296 */
4434 
4435   /* Special case: a WHERE clause that is constant.  Evaluate the
4436   ** expression and either jump over all of the code or fall thru.
4437   */
4438   if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
4439     sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
4440     pWhere = 0;
4441   }
4442 
4443   /* Assign a bit from the bitmask to every term in the FROM clause.
4444   **
4445   ** When assigning bitmask values to FROM clause cursors, it must be
4446   ** the case that if X is the bitmask for the N-th FROM clause term then
4447   ** the bitmask for all FROM clause terms to the left of the N-th term
4448   ** is (X-1).   An expression from the ON clause of a LEFT JOIN can use
4449   ** its Expr.iRightJoinTable value to find the bitmask of the right table
4450   ** of the join.  Subtracting one from the right table bitmask gives a
4451   ** bitmask for all tables to the left of the join.  Knowing the bitmask
4452   ** for all tables to the left of a left join is important.  Ticket #3015.
4453   **
4454   ** Configure the WhereClause.vmask variable so that bits that correspond
4455   ** to virtual table cursors are set. This is used to selectively disable
4456   ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful
4457   ** with virtual tables.
4458   **
4459   ** Note that bitmasks are created for all pTabList->nSrc tables in
4460   ** pTabList, not just the first nTabList tables.  nTabList is normally
4461   ** equal to pTabList->nSrc but might be shortened to 1 if the
4462   ** WHERE_ONETABLE_ONLY flag is set.
4463   */
4464   assert( pWC->vmask==0 && pMaskSet->n==0 );
4465   for(i=0; i<pTabList->nSrc; i++){
4466     createMask(pMaskSet, pTabList->a[i].iCursor);
4467 #ifndef SQLITE_OMIT_VIRTUALTABLE
4468     if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){
4469       pWC->vmask |= ((Bitmask)1 << i);
4470     }
4471 #endif
4472   }
4473 #ifndef NDEBUG
4474   {
4475     Bitmask toTheLeft = 0;
4476     for(i=0; i<pTabList->nSrc; i++){
4477       Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor);
4478       assert( (m-1)==toTheLeft );
4479       toTheLeft |= m;
4480     }
4481   }
4482 #endif
4483 
4484   /* Analyze all of the subexpressions.  Note that exprAnalyze() might
4485   ** add new virtual terms onto the end of the WHERE clause.  We do not
4486   ** want to analyze these virtual terms, so start analyzing at the end
4487   ** and work forward so that the added virtual terms are never processed.
4488   */
4489   exprAnalyzeAll(pTabList, pWC);
4490   if( db->mallocFailed ){
4491     goto whereBeginError;
4492   }
4493 
4494   /* Chose the best index to use for each table in the FROM clause.
4495   **
4496   ** This loop fills in the following fields:
4497   **
4498   **   pWInfo->a[].pIdx      The index to use for this level of the loop.
4499   **   pWInfo->a[].wsFlags   WHERE_xxx flags associated with pIdx
4500   **   pWInfo->a[].nEq       The number of == and IN constraints
4501   **   pWInfo->a[].iFrom     Which term of the FROM clause is being coded
4502   **   pWInfo->a[].iTabCur   The VDBE cursor for the database table
4503   **   pWInfo->a[].iIdxCur   The VDBE cursor for the index
4504   **   pWInfo->a[].pTerm     When wsFlags==WO_OR, the OR-clause term
4505   **
4506   ** This loop also figures out the nesting order of tables in the FROM
4507   ** clause.
4508   */
4509   notReady = ~(Bitmask)0;
4510   andFlags = ~0;
4511   WHERETRACE(("*** Optimizer Start ***\n"));
4512   for(i=iFrom=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
4513     WhereCost bestPlan;         /* Most efficient plan seen so far */
4514     Index *pIdx;                /* Index for FROM table at pTabItem */
4515     int j;                      /* For looping over FROM tables */
4516     int bestJ = -1;             /* The value of j */
4517     Bitmask m;                  /* Bitmask value for j or bestJ */
4518     int isOptimal;              /* Iterator for optimal/non-optimal search */
4519     int nUnconstrained;         /* Number tables without INDEXED BY */
4520     Bitmask notIndexed;         /* Mask of tables that cannot use an index */
4521 
4522     memset(&bestPlan, 0, sizeof(bestPlan));
4523     bestPlan.rCost = SQLITE_BIG_DBL;
4524     WHERETRACE(("*** Begin search for loop %d ***\n", i));
4525 
4526     /* Loop through the remaining entries in the FROM clause to find the
4527     ** next nested loop. The loop tests all FROM clause entries
4528     ** either once or twice.
4529     **
4530     ** The first test is always performed if there are two or more entries
4531     ** remaining and never performed if there is only one FROM clause entry
4532     ** to choose from.  The first test looks for an "optimal" scan.  In
4533     ** this context an optimal scan is one that uses the same strategy
4534     ** for the given FROM clause entry as would be selected if the entry
4535     ** were used as the innermost nested loop.  In other words, a table
4536     ** is chosen such that the cost of running that table cannot be reduced
4537     ** by waiting for other tables to run first.  This "optimal" test works
4538     ** by first assuming that the FROM clause is on the inner loop and finding
4539     ** its query plan, then checking to see if that query plan uses any
4540     ** other FROM clause terms that are notReady.  If no notReady terms are
4541     ** used then the "optimal" query plan works.
4542     **
4543     ** Note that the WhereCost.nRow parameter for an optimal scan might
4544     ** not be as small as it would be if the table really were the innermost
4545     ** join.  The nRow value can be reduced by WHERE clause constraints
4546     ** that do not use indices.  But this nRow reduction only happens if the
4547     ** table really is the innermost join.
4548     **
4549     ** The second loop iteration is only performed if no optimal scan
4550     ** strategies were found by the first iteration. This second iteration
4551     ** is used to search for the lowest cost scan overall.
4552     **
4553     ** Previous versions of SQLite performed only the second iteration -
4554     ** the next outermost loop was always that with the lowest overall
4555     ** cost. However, this meant that SQLite could select the wrong plan
4556     ** for scripts such as the following:
4557     **
4558     **   CREATE TABLE t1(a, b);
4559     **   CREATE TABLE t2(c, d);
4560     **   SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
4561     **
4562     ** The best strategy is to iterate through table t1 first. However it
4563     ** is not possible to determine this with a simple greedy algorithm.
4564     ** Since the cost of a linear scan through table t2 is the same
4565     ** as the cost of a linear scan through table t1, a simple greedy
4566     ** algorithm may choose to use t2 for the outer loop, which is a much
4567     ** costlier approach.
4568     */
4569     nUnconstrained = 0;
4570     notIndexed = 0;
4571     for(isOptimal=(iFrom<nTabList-1); isOptimal>=0 && bestJ<0; isOptimal--){
4572       Bitmask mask;             /* Mask of tables not yet ready */
4573       for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){
4574         int doNotReorder;    /* True if this table should not be reordered */
4575         WhereCost sCost;     /* Cost information from best[Virtual]Index() */
4576         ExprList *pOrderBy;  /* ORDER BY clause for index to optimize */
4577 
4578         doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
4579         if( j!=iFrom && doNotReorder ) break;
4580         m = getMask(pMaskSet, pTabItem->iCursor);
4581         if( (m & notReady)==0 ){
4582           if( j==iFrom ) iFrom++;
4583           continue;
4584         }
4585         mask = (isOptimal ? m : notReady);
4586         pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0);
4587         if( pTabItem->pIndex==0 ) nUnconstrained++;
4588 
4589         WHERETRACE(("=== trying table %d with isOptimal=%d ===\n",
4590                     j, isOptimal));
4591         assert( pTabItem->pTab );
4592 #ifndef SQLITE_OMIT_VIRTUALTABLE
4593         if( IsVirtual(pTabItem->pTab) ){
4594           sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo;
4595           bestVirtualIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
4596                            &sCost, pp);
4597         }else
4598 #endif
4599         {
4600           bestBtreeIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
4601                          &sCost);
4602         }
4603         assert( isOptimal || (sCost.used&notReady)==0 );
4604 
4605         /* If an INDEXED BY clause is present, then the plan must use that
4606         ** index if it uses any index at all */
4607         assert( pTabItem->pIndex==0
4608                   || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0
4609                   || sCost.plan.u.pIdx==pTabItem->pIndex );
4610 
4611         if( isOptimal && (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){
4612           notIndexed |= m;
4613         }
4614 
4615         /* Conditions under which this table becomes the best so far:
4616         **
4617         **   (1) The table must not depend on other tables that have not
4618         **       yet run.
4619         **
4620         **   (2) A full-table-scan plan cannot supercede indexed plan unless
4621         **       the full-table-scan is an "optimal" plan as defined above.
4622         **
4623         **   (3) All tables have an INDEXED BY clause or this table lacks an
4624         **       INDEXED BY clause or this table uses the specific
4625         **       index specified by its INDEXED BY clause.  This rule ensures
4626         **       that a best-so-far is always selected even if an impossible
4627         **       combination of INDEXED BY clauses are given.  The error
4628         **       will be detected and relayed back to the application later.
4629         **       The NEVER() comes about because rule (2) above prevents
4630         **       An indexable full-table-scan from reaching rule (3).
4631         **
4632         **   (4) The plan cost must be lower than prior plans or else the
4633         **       cost must be the same and the number of rows must be lower.
4634         */
4635         if( (sCost.used&notReady)==0                       /* (1) */
4636             && (bestJ<0 || (notIndexed&m)!=0               /* (2) */
4637                 || (bestPlan.plan.wsFlags & WHERE_NOT_FULLSCAN)==0
4638                 || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0)
4639             && (nUnconstrained==0 || pTabItem->pIndex==0   /* (3) */
4640                 || NEVER((sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0))
4641             && (bestJ<0 || sCost.rCost<bestPlan.rCost      /* (4) */
4642                 || (sCost.rCost<=bestPlan.rCost
4643                  && sCost.plan.nRow<bestPlan.plan.nRow))
4644         ){
4645           WHERETRACE(("=== table %d is best so far"
4646                       " with cost=%g and nRow=%g\n",
4647                       j, sCost.rCost, sCost.plan.nRow));
4648           bestPlan = sCost;
4649           bestJ = j;
4650         }
4651         if( doNotReorder ) break;
4652       }
4653     }
4654     assert( bestJ>=0 );
4655     assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
4656     WHERETRACE(("*** Optimizer selects table %d for loop %d"
4657                 " with cost=%g and nRow=%g\n",
4658                 bestJ, pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow));
4659     if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){
4660       *ppOrderBy = 0;
4661     }
4662     andFlags &= bestPlan.plan.wsFlags;
4663     pLevel->plan = bestPlan.plan;
4664     testcase( bestPlan.plan.wsFlags & WHERE_INDEXED );
4665     testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX );
4666     if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){
4667       pLevel->iIdxCur = pParse->nTab++;
4668     }else{
4669       pLevel->iIdxCur = -1;
4670     }
4671     notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor);
4672     pLevel->iFrom = (u8)bestJ;
4673     if( bestPlan.plan.nRow>=(double)1 ){
4674       pParse->nQueryLoop *= bestPlan.plan.nRow;
4675     }
4676 
4677     /* Check that if the table scanned by this loop iteration had an
4678     ** INDEXED BY clause attached to it, that the named index is being
4679     ** used for the scan. If not, then query compilation has failed.
4680     ** Return an error.
4681     */
4682     pIdx = pTabList->a[bestJ].pIndex;
4683     if( pIdx ){
4684       if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){
4685         sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName);
4686         goto whereBeginError;
4687       }else{
4688         /* If an INDEXED BY clause is used, the bestIndex() function is
4689         ** guaranteed to find the index specified in the INDEXED BY clause
4690         ** if it find an index at all. */
4691         assert( bestPlan.plan.u.pIdx==pIdx );
4692       }
4693     }
4694   }
4695   WHERETRACE(("*** Optimizer Finished ***\n"));
4696   if( pParse->nErr || db->mallocFailed ){
4697     goto whereBeginError;
4698   }
4699 
4700   /* If the total query only selects a single row, then the ORDER BY
4701   ** clause is irrelevant.
4702   */
4703   if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
4704     *ppOrderBy = 0;
4705   }
4706 
4707   /* If the caller is an UPDATE or DELETE statement that is requesting
4708   ** to use a one-pass algorithm, determine if this is appropriate.
4709   ** The one-pass algorithm only works if the WHERE clause constraints
4710   ** the statement to update a single row.
4711   */
4712   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
4713   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){
4714     pWInfo->okOnePass = 1;
4715     pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY;
4716   }
4717 
4718   /* Open all tables in the pTabList and any indices selected for
4719   ** searching those tables.
4720   */
4721   sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
4722   notReady = ~(Bitmask)0;
4723   pWInfo->nRowOut = (double)1;
4724   for(i=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
4725     Table *pTab;     /* Table to open */
4726     int iDb;         /* Index of database containing table/index */
4727 
4728     pTabItem = &pTabList->a[pLevel->iFrom];
4729     pTab = pTabItem->pTab;
4730     pLevel->iTabCur = pTabItem->iCursor;
4731     pWInfo->nRowOut *= pLevel->plan.nRow;
4732     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4733     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
4734       /* Do nothing */
4735     }else
4736 #ifndef SQLITE_OMIT_VIRTUALTABLE
4737     if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
4738       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
4739       int iCur = pTabItem->iCursor;
4740       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
4741     }else
4742 #endif
4743     if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
4744          && (wctrlFlags & WHERE_OMIT_OPEN)==0 ){
4745       int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
4746       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
4747       testcase( pTab->nCol==BMS-1 );
4748       testcase( pTab->nCol==BMS );
4749       if( !pWInfo->okOnePass && pTab->nCol<BMS ){
4750         Bitmask b = pTabItem->colUsed;
4751         int n = 0;
4752         for(; b; b=b>>1, n++){}
4753         sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1,
4754                             SQLITE_INT_TO_PTR(n), P4_INT32);
4755         assert( n<=pTab->nCol );
4756       }
4757     }else{
4758       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4759     }
4760 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
4761     if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){
4762       constructAutomaticIndex(pParse, pWC, pTabItem, notReady, pLevel);
4763     }else
4764 #endif
4765     if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
4766       Index *pIx = pLevel->plan.u.pIdx;
4767       KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
4768       int iIdxCur = pLevel->iIdxCur;
4769       assert( pIx->pSchema==pTab->pSchema );
4770       assert( iIdxCur>=0 );
4771       sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
4772                         (char*)pKey, P4_KEYINFO_HANDOFF);
4773       VdbeComment((v, "%s", pIx->zName));
4774     }
4775     sqlite3CodeVerifySchema(pParse, iDb);
4776     notReady &= ~getMask(pWC->pMaskSet, pTabItem->iCursor);
4777   }
4778   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
4779   if( db->mallocFailed ) goto whereBeginError;
4780 
4781   /* Generate the code to do the search.  Each iteration of the for
4782   ** loop below generates code for a single nested loop of the VM
4783   ** program.
4784   */
4785   notReady = ~(Bitmask)0;
4786   for(i=0; i<nTabList; i++){
4787     pLevel = &pWInfo->a[i];
4788     explainOneScan(pParse, pTabList, pLevel, i, pLevel->iFrom, wctrlFlags);
4789     notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady);
4790     pWInfo->iContinue = pLevel->addrCont;
4791   }
4792 
4793 #ifdef SQLITE_TEST  /* For testing and debugging use only */
4794   /* Record in the query plan information about the current table
4795   ** and the index used to access it (if any).  If the table itself
4796   ** is not used, its name is just '{}'.  If no index is used
4797   ** the index is listed as "{}".  If the primary key is used the
4798   ** index name is '*'.
4799   */
4800   for(i=0; i<nTabList; i++){
4801     char *z;
4802     int n;
4803     pLevel = &pWInfo->a[i];
4804     pTabItem = &pTabList->a[pLevel->iFrom];
4805     z = pTabItem->zAlias;
4806     if( z==0 ) z = pTabItem->pTab->zName;
4807     n = sqlite3Strlen30(z);
4808     if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
4809       if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){
4810         memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
4811         nQPlan += 2;
4812       }else{
4813         memcpy(&sqlite3_query_plan[nQPlan], z, n);
4814         nQPlan += n;
4815       }
4816       sqlite3_query_plan[nQPlan++] = ' ';
4817     }
4818     testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ );
4819     testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE );
4820     if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
4821       memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
4822       nQPlan += 2;
4823     }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
4824       n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName);
4825       if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
4826         memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n);
4827         nQPlan += n;
4828         sqlite3_query_plan[nQPlan++] = ' ';
4829       }
4830     }else{
4831       memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
4832       nQPlan += 3;
4833     }
4834   }
4835   while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
4836     sqlite3_query_plan[--nQPlan] = 0;
4837   }
4838   sqlite3_query_plan[nQPlan] = 0;
4839   nQPlan = 0;
4840 #endif /* SQLITE_TEST // Testing and debugging use only */
4841 
4842   /* Record the continuation address in the WhereInfo structure.  Then
4843   ** clean up and return.
4844   */
4845   return pWInfo;
4846 
4847   /* Jump here if malloc fails */
4848 whereBeginError:
4849   if( pWInfo ){
4850     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4851     whereInfoFree(db, pWInfo);
4852   }
4853   return 0;
4854 }
4855 
4856 /*
4857 ** Generate the end of the WHERE loop.  See comments on
4858 ** sqlite3WhereBegin() for additional information.
4859 */
4860 void sqlite3WhereEnd(WhereInfo *pWInfo){
4861   Parse *pParse = pWInfo->pParse;
4862   Vdbe *v = pParse->pVdbe;
4863   int i;
4864   WhereLevel *pLevel;
4865   SrcList *pTabList = pWInfo->pTabList;
4866   sqlite3 *db = pParse->db;
4867 
4868   /* Generate loop termination code.
4869   */
4870   sqlite3ExprCacheClear(pParse);
4871   for(i=pWInfo->nLevel-1; i>=0; i--){
4872     pLevel = &pWInfo->a[i];
4873     sqlite3VdbeResolveLabel(v, pLevel->addrCont);
4874     if( pLevel->op!=OP_Noop ){
4875       sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
4876       sqlite3VdbeChangeP5(v, pLevel->p5);
4877     }
4878     if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
4879       struct InLoop *pIn;
4880       int j;
4881       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
4882       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
4883         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
4884         sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop);
4885         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
4886       }
4887       sqlite3DbFree(db, pLevel->u.in.aInLoop);
4888     }
4889     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
4890     if( pLevel->iLeftJoin ){
4891       int addr;
4892       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
4893       assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
4894            || (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 );
4895       if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){
4896         sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
4897       }
4898       if( pLevel->iIdxCur>=0 ){
4899         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
4900       }
4901       if( pLevel->op==OP_Return ){
4902         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
4903       }else{
4904         sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst);
4905       }
4906       sqlite3VdbeJumpHere(v, addr);
4907     }
4908   }
4909 
4910   /* The "break" point is here, just past the end of the outer loop.
4911   ** Set it.
4912   */
4913   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
4914 
4915   /* Close all of the cursors that were opened by sqlite3WhereBegin.
4916   */
4917   assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc );
4918   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
4919     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
4920     Table *pTab = pTabItem->pTab;
4921     assert( pTab!=0 );
4922     if( (pTab->tabFlags & TF_Ephemeral)==0
4923      && pTab->pSelect==0
4924      && (pWInfo->wctrlFlags & WHERE_OMIT_CLOSE)==0
4925     ){
4926       int ws = pLevel->plan.wsFlags;
4927       if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){
4928         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
4929       }
4930       if( (ws & WHERE_INDEXED)!=0 && (ws & WHERE_TEMP_INDEX)==0 ){
4931         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
4932       }
4933     }
4934 
4935     /* If this scan uses an index, make code substitutions to read data
4936     ** from the index in preference to the table. Sometimes, this means
4937     ** the table need never be read from. This is a performance boost,
4938     ** as the vdbe level waits until the table is read before actually
4939     ** seeking the table cursor to the record corresponding to the current
4940     ** position in the index.
4941     **
4942     ** Calls to the code generator in between sqlite3WhereBegin and
4943     ** sqlite3WhereEnd will have created code that references the table
4944     ** directly.  This loop scans all that code looking for opcodes
4945     ** that reference the table and converts them into opcodes that
4946     ** reference the index.
4947     */
4948     if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && !db->mallocFailed){
4949       int k, j, last;
4950       VdbeOp *pOp;
4951       Index *pIdx = pLevel->plan.u.pIdx;
4952 
4953       assert( pIdx!=0 );
4954       pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
4955       last = sqlite3VdbeCurrentAddr(v);
4956       for(k=pWInfo->iTop; k<last; k++, pOp++){
4957         if( pOp->p1!=pLevel->iTabCur ) continue;
4958         if( pOp->opcode==OP_Column ){
4959           for(j=0; j<pIdx->nColumn; j++){
4960             if( pOp->p2==pIdx->aiColumn[j] ){
4961               pOp->p2 = j;
4962               pOp->p1 = pLevel->iIdxCur;
4963               break;
4964             }
4965           }
4966           assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
4967                || j<pIdx->nColumn );
4968         }else if( pOp->opcode==OP_Rowid ){
4969           pOp->p1 = pLevel->iIdxCur;
4970           pOp->opcode = OP_IdxRowid;
4971         }
4972       }
4973     }
4974   }
4975 
4976   /* Final cleanup
4977   */
4978   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4979   whereInfoFree(db, pWInfo);
4980   return;
4981 }
4982