1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* 23 ** Extra information appended to the end of sqlite3_index_info but not 24 ** visible to the xBestIndex function, at least not directly. The 25 ** sqlite3_vtab_collation() interface knows how to reach it, however. 26 ** 27 ** This object is not an API and can be changed from one release to the 28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation() 29 ** agree on the structure, all will be well. 30 */ 31 typedef struct HiddenIndexInfo HiddenIndexInfo; 32 struct HiddenIndexInfo { 33 WhereClause *pWC; /* The Where clause being analyzed */ 34 Parse *pParse; /* The parsing context */ 35 int eDistinct; /* Value to return from sqlite3_vtab_distinct() */ 36 u32 mIn; /* Mask of terms that are <col> IN (...) */ 37 u32 mHandleIn; /* Terms that vtab will handle as <col> IN (...) */ 38 sqlite3_value *aRhs[1]; /* RHS values for constraints. MUST BE LAST 39 ** because extra space is allocated to hold up 40 ** to nTerm such values */ 41 }; 42 43 /* Forward declaration of methods */ 44 static int whereLoopResize(sqlite3*, WhereLoop*, int); 45 46 /* 47 ** Return the estimated number of output rows from a WHERE clause 48 */ 49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 50 return pWInfo->nRowOut; 51 } 52 53 /* 54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 55 ** WHERE clause returns outputs for DISTINCT processing. 56 */ 57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 58 return pWInfo->eDistinct; 59 } 60 61 /* 62 ** Return the number of ORDER BY terms that are satisfied by the 63 ** WHERE clause. A return of 0 means that the output must be 64 ** completely sorted. A return equal to the number of ORDER BY 65 ** terms means that no sorting is needed at all. A return that 66 ** is positive but less than the number of ORDER BY terms means that 67 ** block sorting is required. 68 */ 69 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 70 return pWInfo->nOBSat; 71 } 72 73 /* 74 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known 75 ** to emit rows in increasing order, and if the last row emitted by the 76 ** inner-most loop did not fit within the sorter, then we can skip all 77 ** subsequent rows for the current iteration of the inner loop (because they 78 ** will not fit in the sorter either) and continue with the second inner 79 ** loop - the loop immediately outside the inner-most. 80 ** 81 ** When a row does not fit in the sorter (because the sorter already 82 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the 83 ** label returned by this function. 84 ** 85 ** If the ORDER BY LIMIT optimization applies, the jump destination should 86 ** be the continuation for the second-inner-most loop. If the ORDER BY 87 ** LIMIT optimization does not apply, then the jump destination should 88 ** be the continuation for the inner-most loop. 89 ** 90 ** It is always safe for this routine to return the continuation of the 91 ** inner-most loop, in the sense that a correct answer will result. 92 ** Returning the continuation the second inner loop is an optimization 93 ** that might make the code run a little faster, but should not change 94 ** the final answer. 95 */ 96 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){ 97 WhereLevel *pInner; 98 if( !pWInfo->bOrderedInnerLoop ){ 99 /* The ORDER BY LIMIT optimization does not apply. Jump to the 100 ** continuation of the inner-most loop. */ 101 return pWInfo->iContinue; 102 } 103 pInner = &pWInfo->a[pWInfo->nLevel-1]; 104 assert( pInner->addrNxt!=0 ); 105 return pInner->pRJ ? pWInfo->iContinue : pInner->addrNxt; 106 } 107 108 /* 109 ** While generating code for the min/max optimization, after handling 110 ** the aggregate-step call to min() or max(), check to see if any 111 ** additional looping is required. If the output order is such that 112 ** we are certain that the correct answer has already been found, then 113 ** code an OP_Goto to by pass subsequent processing. 114 ** 115 ** Any extra OP_Goto that is coded here is an optimization. The 116 ** correct answer should be obtained regardless. This OP_Goto just 117 ** makes the answer appear faster. 118 */ 119 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){ 120 WhereLevel *pInner; 121 int i; 122 if( !pWInfo->bOrderedInnerLoop ) return; 123 if( pWInfo->nOBSat==0 ) return; 124 for(i=pWInfo->nLevel-1; i>=0; i--){ 125 pInner = &pWInfo->a[i]; 126 if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){ 127 sqlite3VdbeGoto(v, pInner->addrNxt); 128 return; 129 } 130 } 131 sqlite3VdbeGoto(v, pWInfo->iBreak); 132 } 133 134 /* 135 ** Return the VDBE address or label to jump to in order to continue 136 ** immediately with the next row of a WHERE clause. 137 */ 138 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 139 assert( pWInfo->iContinue!=0 ); 140 return pWInfo->iContinue; 141 } 142 143 /* 144 ** Return the VDBE address or label to jump to in order to break 145 ** out of a WHERE loop. 146 */ 147 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 148 return pWInfo->iBreak; 149 } 150 151 /* 152 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to 153 ** operate directly on the rowids returned by a WHERE clause. Return 154 ** ONEPASS_SINGLE (1) if the statement can operation directly because only 155 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass 156 ** optimization can be used on multiple 157 ** 158 ** If the ONEPASS optimization is used (if this routine returns true) 159 ** then also write the indices of open cursors used by ONEPASS 160 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 161 ** table and iaCur[1] gets the cursor used by an auxiliary index. 162 ** Either value may be -1, indicating that cursor is not used. 163 ** Any cursors returned will have been opened for writing. 164 ** 165 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 166 ** unable to use the ONEPASS optimization. 167 */ 168 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 169 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 170 #ifdef WHERETRACE_ENABLED 171 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ 172 sqlite3DebugPrintf("%s cursors: %d %d\n", 173 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", 174 aiCur[0], aiCur[1]); 175 } 176 #endif 177 return pWInfo->eOnePass; 178 } 179 180 /* 181 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move 182 ** the data cursor to the row selected by the index cursor. 183 */ 184 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){ 185 return pWInfo->bDeferredSeek; 186 } 187 188 /* 189 ** Move the content of pSrc into pDest 190 */ 191 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 192 pDest->n = pSrc->n; 193 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 194 } 195 196 /* 197 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 198 ** 199 ** The new entry might overwrite an existing entry, or it might be 200 ** appended, or it might be discarded. Do whatever is the right thing 201 ** so that pSet keeps the N_OR_COST best entries seen so far. 202 */ 203 static int whereOrInsert( 204 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 205 Bitmask prereq, /* Prerequisites of the new entry */ 206 LogEst rRun, /* Run-cost of the new entry */ 207 LogEst nOut /* Number of outputs for the new entry */ 208 ){ 209 u16 i; 210 WhereOrCost *p; 211 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 212 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 213 goto whereOrInsert_done; 214 } 215 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 216 return 0; 217 } 218 } 219 if( pSet->n<N_OR_COST ){ 220 p = &pSet->a[pSet->n++]; 221 p->nOut = nOut; 222 }else{ 223 p = pSet->a; 224 for(i=1; i<pSet->n; i++){ 225 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 226 } 227 if( p->rRun<=rRun ) return 0; 228 } 229 whereOrInsert_done: 230 p->prereq = prereq; 231 p->rRun = rRun; 232 if( p->nOut>nOut ) p->nOut = nOut; 233 return 1; 234 } 235 236 /* 237 ** Return the bitmask for the given cursor number. Return 0 if 238 ** iCursor is not in the set. 239 */ 240 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ 241 int i; 242 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 243 assert( pMaskSet->n>0 || pMaskSet->ix[0]<0 ); 244 assert( iCursor>=-1 ); 245 if( pMaskSet->ix[0]==iCursor ){ 246 return 1; 247 } 248 for(i=1; i<pMaskSet->n; i++){ 249 if( pMaskSet->ix[i]==iCursor ){ 250 return MASKBIT(i); 251 } 252 } 253 return 0; 254 } 255 256 /* Allocate memory that is automatically freed when pWInfo is freed. 257 */ 258 void *sqlite3WhereMalloc(WhereInfo *pWInfo, u64 nByte){ 259 WhereMemBlock *pBlock; 260 pBlock = sqlite3DbMallocRawNN(pWInfo->pParse->db, nByte+sizeof(*pBlock)); 261 if( pBlock ){ 262 pBlock->pNext = pWInfo->pMemToFree; 263 pBlock->sz = nByte; 264 pWInfo->pMemToFree = pBlock; 265 pBlock++; 266 } 267 return (void*)pBlock; 268 } 269 void *sqlite3WhereRealloc(WhereInfo *pWInfo, void *pOld, u64 nByte){ 270 void *pNew = sqlite3WhereMalloc(pWInfo, nByte); 271 if( pNew && pOld ){ 272 WhereMemBlock *pOldBlk = (WhereMemBlock*)pOld; 273 pOldBlk--; 274 assert( pOldBlk->sz<nByte ); 275 memcpy(pNew, pOld, pOldBlk->sz); 276 } 277 return pNew; 278 } 279 280 /* 281 ** Create a new mask for cursor iCursor. 282 ** 283 ** There is one cursor per table in the FROM clause. The number of 284 ** tables in the FROM clause is limited by a test early in the 285 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 286 ** array will never overflow. 287 */ 288 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 289 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 290 pMaskSet->ix[pMaskSet->n++] = iCursor; 291 } 292 293 /* 294 ** If the right-hand branch of the expression is a TK_COLUMN, then return 295 ** a pointer to the right-hand branch. Otherwise, return NULL. 296 */ 297 static Expr *whereRightSubexprIsColumn(Expr *p){ 298 p = sqlite3ExprSkipCollateAndLikely(p->pRight); 299 if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){ 300 return p; 301 } 302 return 0; 303 } 304 305 /* 306 ** Advance to the next WhereTerm that matches according to the criteria 307 ** established when the pScan object was initialized by whereScanInit(). 308 ** Return NULL if there are no more matching WhereTerms. 309 */ 310 static WhereTerm *whereScanNext(WhereScan *pScan){ 311 int iCur; /* The cursor on the LHS of the term */ 312 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ 313 Expr *pX; /* An expression being tested */ 314 WhereClause *pWC; /* Shorthand for pScan->pWC */ 315 WhereTerm *pTerm; /* The term being tested */ 316 int k = pScan->k; /* Where to start scanning */ 317 318 assert( pScan->iEquiv<=pScan->nEquiv ); 319 pWC = pScan->pWC; 320 while(1){ 321 iColumn = pScan->aiColumn[pScan->iEquiv-1]; 322 iCur = pScan->aiCur[pScan->iEquiv-1]; 323 assert( pWC!=0 ); 324 assert( iCur>=0 ); 325 do{ 326 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 327 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 || pTerm->leftCursor<0 ); 328 if( pTerm->leftCursor==iCur 329 && pTerm->u.x.leftColumn==iColumn 330 && (iColumn!=XN_EXPR 331 || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft, 332 pScan->pIdxExpr,iCur)==0) 333 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_OuterON)) 334 ){ 335 if( (pTerm->eOperator & WO_EQUIV)!=0 336 && pScan->nEquiv<ArraySize(pScan->aiCur) 337 && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0 338 ){ 339 int j; 340 for(j=0; j<pScan->nEquiv; j++){ 341 if( pScan->aiCur[j]==pX->iTable 342 && pScan->aiColumn[j]==pX->iColumn ){ 343 break; 344 } 345 } 346 if( j==pScan->nEquiv ){ 347 pScan->aiCur[j] = pX->iTable; 348 pScan->aiColumn[j] = pX->iColumn; 349 pScan->nEquiv++; 350 } 351 } 352 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 353 /* Verify the affinity and collating sequence match */ 354 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 355 CollSeq *pColl; 356 Parse *pParse = pWC->pWInfo->pParse; 357 pX = pTerm->pExpr; 358 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 359 continue; 360 } 361 assert(pX->pLeft); 362 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 363 if( pColl==0 ) pColl = pParse->db->pDfltColl; 364 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ 365 continue; 366 } 367 } 368 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 369 && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0)) 370 && pX->op==TK_COLUMN 371 && pX->iTable==pScan->aiCur[0] 372 && pX->iColumn==pScan->aiColumn[0] 373 ){ 374 testcase( pTerm->eOperator & WO_IS ); 375 continue; 376 } 377 pScan->pWC = pWC; 378 pScan->k = k+1; 379 #ifdef WHERETRACE_ENABLED 380 if( sqlite3WhereTrace & 0x20000 ){ 381 int ii; 382 sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d", 383 pTerm, pScan->nEquiv); 384 for(ii=0; ii<pScan->nEquiv; ii++){ 385 sqlite3DebugPrintf(" {%d:%d}", 386 pScan->aiCur[ii], pScan->aiColumn[ii]); 387 } 388 sqlite3DebugPrintf("\n"); 389 } 390 #endif 391 return pTerm; 392 } 393 } 394 } 395 pWC = pWC->pOuter; 396 k = 0; 397 }while( pWC!=0 ); 398 if( pScan->iEquiv>=pScan->nEquiv ) break; 399 pWC = pScan->pOrigWC; 400 k = 0; 401 pScan->iEquiv++; 402 } 403 return 0; 404 } 405 406 /* 407 ** This is whereScanInit() for the case of an index on an expression. 408 ** It is factored out into a separate tail-recursion subroutine so that 409 ** the normal whereScanInit() routine, which is a high-runner, does not 410 ** need to push registers onto the stack as part of its prologue. 411 */ 412 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){ 413 pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr); 414 return whereScanNext(pScan); 415 } 416 417 /* 418 ** Initialize a WHERE clause scanner object. Return a pointer to the 419 ** first match. Return NULL if there are no matches. 420 ** 421 ** The scanner will be searching the WHERE clause pWC. It will look 422 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 423 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx 424 ** must be one of the indexes of table iCur. 425 ** 426 ** The <op> must be one of the operators described by opMask. 427 ** 428 ** If the search is for X and the WHERE clause contains terms of the 429 ** form X=Y then this routine might also return terms of the form 430 ** "Y <op> <expr>". The number of levels of transitivity is limited, 431 ** but is enough to handle most commonly occurring SQL statements. 432 ** 433 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 434 ** index pIdx. 435 */ 436 static WhereTerm *whereScanInit( 437 WhereScan *pScan, /* The WhereScan object being initialized */ 438 WhereClause *pWC, /* The WHERE clause to be scanned */ 439 int iCur, /* Cursor to scan for */ 440 int iColumn, /* Column to scan for */ 441 u32 opMask, /* Operator(s) to scan for */ 442 Index *pIdx /* Must be compatible with this index */ 443 ){ 444 pScan->pOrigWC = pWC; 445 pScan->pWC = pWC; 446 pScan->pIdxExpr = 0; 447 pScan->idxaff = 0; 448 pScan->zCollName = 0; 449 pScan->opMask = opMask; 450 pScan->k = 0; 451 pScan->aiCur[0] = iCur; 452 pScan->nEquiv = 1; 453 pScan->iEquiv = 1; 454 if( pIdx ){ 455 int j = iColumn; 456 iColumn = pIdx->aiColumn[j]; 457 if( iColumn==pIdx->pTable->iPKey ){ 458 iColumn = XN_ROWID; 459 }else if( iColumn>=0 ){ 460 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 461 pScan->zCollName = pIdx->azColl[j]; 462 }else if( iColumn==XN_EXPR ){ 463 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; 464 pScan->zCollName = pIdx->azColl[j]; 465 pScan->aiColumn[0] = XN_EXPR; 466 return whereScanInitIndexExpr(pScan); 467 } 468 }else if( iColumn==XN_EXPR ){ 469 return 0; 470 } 471 pScan->aiColumn[0] = iColumn; 472 return whereScanNext(pScan); 473 } 474 475 /* 476 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 477 ** where X is a reference to the iColumn of table iCur or of index pIdx 478 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by 479 ** the op parameter. Return a pointer to the term. Return 0 if not found. 480 ** 481 ** If pIdx!=0 then it must be one of the indexes of table iCur. 482 ** Search for terms matching the iColumn-th column of pIdx 483 ** rather than the iColumn-th column of table iCur. 484 ** 485 ** The term returned might by Y=<expr> if there is another constraint in 486 ** the WHERE clause that specifies that X=Y. Any such constraints will be 487 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 488 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 489 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 490 ** other equivalent values. Hence a search for X will return <expr> if X=A1 491 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. 492 ** 493 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 494 ** then try for the one with no dependencies on <expr> - in other words where 495 ** <expr> is a constant expression of some kind. Only return entries of 496 ** the form "X <op> Y" where Y is a column in another table if no terms of 497 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 498 ** exist, try to return a term that does not use WO_EQUIV. 499 */ 500 WhereTerm *sqlite3WhereFindTerm( 501 WhereClause *pWC, /* The WHERE clause to be searched */ 502 int iCur, /* Cursor number of LHS */ 503 int iColumn, /* Column number of LHS */ 504 Bitmask notReady, /* RHS must not overlap with this mask */ 505 u32 op, /* Mask of WO_xx values describing operator */ 506 Index *pIdx /* Must be compatible with this index, if not NULL */ 507 ){ 508 WhereTerm *pResult = 0; 509 WhereTerm *p; 510 WhereScan scan; 511 512 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 513 op &= WO_EQ|WO_IS; 514 while( p ){ 515 if( (p->prereqRight & notReady)==0 ){ 516 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ 517 testcase( p->eOperator & WO_IS ); 518 return p; 519 } 520 if( pResult==0 ) pResult = p; 521 } 522 p = whereScanNext(&scan); 523 } 524 return pResult; 525 } 526 527 /* 528 ** This function searches pList for an entry that matches the iCol-th column 529 ** of index pIdx. 530 ** 531 ** If such an expression is found, its index in pList->a[] is returned. If 532 ** no expression is found, -1 is returned. 533 */ 534 static int findIndexCol( 535 Parse *pParse, /* Parse context */ 536 ExprList *pList, /* Expression list to search */ 537 int iBase, /* Cursor for table associated with pIdx */ 538 Index *pIdx, /* Index to match column of */ 539 int iCol /* Column of index to match */ 540 ){ 541 int i; 542 const char *zColl = pIdx->azColl[iCol]; 543 544 for(i=0; i<pList->nExpr; i++){ 545 Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr); 546 if( ALWAYS(p!=0) 547 && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) 548 && p->iColumn==pIdx->aiColumn[iCol] 549 && p->iTable==iBase 550 ){ 551 CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr); 552 if( 0==sqlite3StrICmp(pColl->zName, zColl) ){ 553 return i; 554 } 555 } 556 } 557 558 return -1; 559 } 560 561 /* 562 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL 563 */ 564 static int indexColumnNotNull(Index *pIdx, int iCol){ 565 int j; 566 assert( pIdx!=0 ); 567 assert( iCol>=0 && iCol<pIdx->nColumn ); 568 j = pIdx->aiColumn[iCol]; 569 if( j>=0 ){ 570 return pIdx->pTable->aCol[j].notNull; 571 }else if( j==(-1) ){ 572 return 1; 573 }else{ 574 assert( j==(-2) ); 575 return 0; /* Assume an indexed expression can always yield a NULL */ 576 577 } 578 } 579 580 /* 581 ** Return true if the DISTINCT expression-list passed as the third argument 582 ** is redundant. 583 ** 584 ** A DISTINCT list is redundant if any subset of the columns in the 585 ** DISTINCT list are collectively unique and individually non-null. 586 */ 587 static int isDistinctRedundant( 588 Parse *pParse, /* Parsing context */ 589 SrcList *pTabList, /* The FROM clause */ 590 WhereClause *pWC, /* The WHERE clause */ 591 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 592 ){ 593 Table *pTab; 594 Index *pIdx; 595 int i; 596 int iBase; 597 598 /* If there is more than one table or sub-select in the FROM clause of 599 ** this query, then it will not be possible to show that the DISTINCT 600 ** clause is redundant. */ 601 if( pTabList->nSrc!=1 ) return 0; 602 iBase = pTabList->a[0].iCursor; 603 pTab = pTabList->a[0].pTab; 604 605 /* If any of the expressions is an IPK column on table iBase, then return 606 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 607 ** current SELECT is a correlated sub-query. 608 */ 609 for(i=0; i<pDistinct->nExpr; i++){ 610 Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr); 611 if( NEVER(p==0) ) continue; 612 if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue; 613 if( p->iTable==iBase && p->iColumn<0 ) return 1; 614 } 615 616 /* Loop through all indices on the table, checking each to see if it makes 617 ** the DISTINCT qualifier redundant. It does so if: 618 ** 619 ** 1. The index is itself UNIQUE, and 620 ** 621 ** 2. All of the columns in the index are either part of the pDistinct 622 ** list, or else the WHERE clause contains a term of the form "col=X", 623 ** where X is a constant value. The collation sequences of the 624 ** comparison and select-list expressions must match those of the index. 625 ** 626 ** 3. All of those index columns for which the WHERE clause does not 627 ** contain a "col=X" term are subject to a NOT NULL constraint. 628 */ 629 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 630 if( !IsUniqueIndex(pIdx) ) continue; 631 if( pIdx->pPartIdxWhere ) continue; 632 for(i=0; i<pIdx->nKeyCol; i++){ 633 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ 634 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; 635 if( indexColumnNotNull(pIdx, i)==0 ) break; 636 } 637 } 638 if( i==pIdx->nKeyCol ){ 639 /* This index implies that the DISTINCT qualifier is redundant. */ 640 return 1; 641 } 642 } 643 644 return 0; 645 } 646 647 648 /* 649 ** Estimate the logarithm of the input value to base 2. 650 */ 651 static LogEst estLog(LogEst N){ 652 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 653 } 654 655 /* 656 ** Convert OP_Column opcodes to OP_Copy in previously generated code. 657 ** 658 ** This routine runs over generated VDBE code and translates OP_Column 659 ** opcodes into OP_Copy when the table is being accessed via co-routine 660 ** instead of via table lookup. 661 ** 662 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on 663 ** cursor iTabCur are transformed into OP_Sequence opcode for the 664 ** iAutoidxCur cursor, in order to generate unique rowids for the 665 ** automatic index being generated. 666 */ 667 static void translateColumnToCopy( 668 Parse *pParse, /* Parsing context */ 669 int iStart, /* Translate from this opcode to the end */ 670 int iTabCur, /* OP_Column/OP_Rowid references to this table */ 671 int iRegister, /* The first column is in this register */ 672 int iAutoidxCur /* If non-zero, cursor of autoindex being generated */ 673 ){ 674 Vdbe *v = pParse->pVdbe; 675 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); 676 int iEnd = sqlite3VdbeCurrentAddr(v); 677 if( pParse->db->mallocFailed ) return; 678 for(; iStart<iEnd; iStart++, pOp++){ 679 if( pOp->p1!=iTabCur ) continue; 680 if( pOp->opcode==OP_Column ){ 681 pOp->opcode = OP_Copy; 682 pOp->p1 = pOp->p2 + iRegister; 683 pOp->p2 = pOp->p3; 684 pOp->p3 = 0; 685 pOp->p5 = 2; /* Cause the MEM_Subtype flag to be cleared */ 686 }else if( pOp->opcode==OP_Rowid ){ 687 pOp->opcode = OP_Sequence; 688 pOp->p1 = iAutoidxCur; 689 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 690 if( iAutoidxCur==0 ){ 691 pOp->opcode = OP_Null; 692 pOp->p3 = 0; 693 } 694 #endif 695 } 696 } 697 } 698 699 /* 700 ** Two routines for printing the content of an sqlite3_index_info 701 ** structure. Used for testing and debugging only. If neither 702 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 703 ** are no-ops. 704 */ 705 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 706 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){ 707 int i; 708 if( !sqlite3WhereTrace ) return; 709 for(i=0; i<p->nConstraint; i++){ 710 sqlite3DebugPrintf( 711 " constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n", 712 i, 713 p->aConstraint[i].iColumn, 714 p->aConstraint[i].iTermOffset, 715 p->aConstraint[i].op, 716 p->aConstraint[i].usable, 717 sqlite3_vtab_collation(p,i)); 718 } 719 for(i=0; i<p->nOrderBy; i++){ 720 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 721 i, 722 p->aOrderBy[i].iColumn, 723 p->aOrderBy[i].desc); 724 } 725 } 726 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){ 727 int i; 728 if( !sqlite3WhereTrace ) return; 729 for(i=0; i<p->nConstraint; i++){ 730 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 731 i, 732 p->aConstraintUsage[i].argvIndex, 733 p->aConstraintUsage[i].omit); 734 } 735 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 736 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 737 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 738 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 739 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 740 } 741 #else 742 #define whereTraceIndexInfoInputs(A) 743 #define whereTraceIndexInfoOutputs(A) 744 #endif 745 746 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 747 /* 748 ** Return TRUE if the WHERE clause term pTerm is of a form where it 749 ** could be used with an index to access pSrc, assuming an appropriate 750 ** index existed. 751 */ 752 static int termCanDriveIndex( 753 const WhereTerm *pTerm, /* WHERE clause term to check */ 754 const SrcItem *pSrc, /* Table we are trying to access */ 755 const Bitmask notReady /* Tables in outer loops of the join */ 756 ){ 757 char aff; 758 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 759 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; 760 assert( (pSrc->fg.jointype & JT_RIGHT)==0 ); 761 if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ){ 762 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT ); 763 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ ); 764 testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) 765 testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) ); 766 if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) 767 || pTerm->pExpr->w.iJoin != pSrc->iCursor 768 ){ 769 return 0; /* See tag-20191211-001 */ 770 } 771 } 772 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 773 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 774 if( pTerm->u.x.leftColumn<0 ) return 0; 775 aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity; 776 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 777 testcase( pTerm->pExpr->op==TK_IS ); 778 return 1; 779 } 780 #endif 781 782 783 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 784 /* 785 ** Generate code to construct the Index object for an automatic index 786 ** and to set up the WhereLevel object pLevel so that the code generator 787 ** makes use of the automatic index. 788 */ 789 static SQLITE_NOINLINE void constructAutomaticIndex( 790 Parse *pParse, /* The parsing context */ 791 const WhereClause *pWC, /* The WHERE clause */ 792 const SrcItem *pSrc, /* The FROM clause term to get the next index */ 793 const Bitmask notReady, /* Mask of cursors that are not available */ 794 WhereLevel *pLevel /* Write new index here */ 795 ){ 796 int nKeyCol; /* Number of columns in the constructed index */ 797 WhereTerm *pTerm; /* A single term of the WHERE clause */ 798 WhereTerm *pWCEnd; /* End of pWC->a[] */ 799 Index *pIdx; /* Object describing the transient index */ 800 Vdbe *v; /* Prepared statement under construction */ 801 int addrInit; /* Address of the initialization bypass jump */ 802 Table *pTable; /* The table being indexed */ 803 int addrTop; /* Top of the index fill loop */ 804 int regRecord; /* Register holding an index record */ 805 int n; /* Column counter */ 806 int i; /* Loop counter */ 807 int mxBitCol; /* Maximum column in pSrc->colUsed */ 808 CollSeq *pColl; /* Collating sequence to on a column */ 809 WhereLoop *pLoop; /* The Loop object */ 810 char *zNotUsed; /* Extra space on the end of pIdx */ 811 Bitmask idxCols; /* Bitmap of columns used for indexing */ 812 Bitmask extraCols; /* Bitmap of additional columns */ 813 u8 sentWarning = 0; /* True if a warnning has been issued */ 814 Expr *pPartial = 0; /* Partial Index Expression */ 815 int iContinue = 0; /* Jump here to skip excluded rows */ 816 SrcItem *pTabItem; /* FROM clause term being indexed */ 817 int addrCounter = 0; /* Address where integer counter is initialized */ 818 int regBase; /* Array of registers where record is assembled */ 819 820 /* Generate code to skip over the creation and initialization of the 821 ** transient index on 2nd and subsequent iterations of the loop. */ 822 v = pParse->pVdbe; 823 assert( v!=0 ); 824 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 825 826 /* Count the number of columns that will be added to the index 827 ** and used to match WHERE clause constraints */ 828 nKeyCol = 0; 829 pTable = pSrc->pTab; 830 pWCEnd = &pWC->a[pWC->nTerm]; 831 pLoop = pLevel->pWLoop; 832 idxCols = 0; 833 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 834 Expr *pExpr = pTerm->pExpr; 835 /* Make the automatic index a partial index if there are terms in the 836 ** WHERE clause (or the ON clause of a LEFT join) that constrain which 837 ** rows of the target table (pSrc) that can be used. */ 838 if( (pTerm->wtFlags & TERM_VIRTUAL)==0 839 && sqlite3ExprIsTableConstraint(pExpr, pSrc) 840 ){ 841 pPartial = sqlite3ExprAnd(pParse, pPartial, 842 sqlite3ExprDup(pParse->db, pExpr, 0)); 843 } 844 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 845 int iCol; 846 Bitmask cMask; 847 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 848 iCol = pTerm->u.x.leftColumn; 849 cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 850 testcase( iCol==BMS ); 851 testcase( iCol==BMS-1 ); 852 if( !sentWarning ){ 853 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 854 "automatic index on %s(%s)", pTable->zName, 855 pTable->aCol[iCol].zCnName); 856 sentWarning = 1; 857 } 858 if( (idxCols & cMask)==0 ){ 859 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 860 goto end_auto_index_create; 861 } 862 pLoop->aLTerm[nKeyCol++] = pTerm; 863 idxCols |= cMask; 864 } 865 } 866 } 867 assert( nKeyCol>0 || pParse->db->mallocFailed ); 868 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 869 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 870 | WHERE_AUTO_INDEX; 871 872 /* Count the number of additional columns needed to create a 873 ** covering index. A "covering index" is an index that contains all 874 ** columns that are needed by the query. With a covering index, the 875 ** original table never needs to be accessed. Automatic indices must 876 ** be a covering index because the index will not be updated if the 877 ** original table changes and the index and table cannot both be used 878 ** if they go out of sync. 879 */ 880 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 881 mxBitCol = MIN(BMS-1,pTable->nCol); 882 testcase( pTable->nCol==BMS-1 ); 883 testcase( pTable->nCol==BMS-2 ); 884 for(i=0; i<mxBitCol; i++){ 885 if( extraCols & MASKBIT(i) ) nKeyCol++; 886 } 887 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 888 nKeyCol += pTable->nCol - BMS + 1; 889 } 890 891 /* Construct the Index object to describe this index */ 892 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 893 if( pIdx==0 ) goto end_auto_index_create; 894 pLoop->u.btree.pIndex = pIdx; 895 pIdx->zName = "auto-index"; 896 pIdx->pTable = pTable; 897 n = 0; 898 idxCols = 0; 899 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 900 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 901 int iCol; 902 Bitmask cMask; 903 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 904 iCol = pTerm->u.x.leftColumn; 905 cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 906 testcase( iCol==BMS-1 ); 907 testcase( iCol==BMS ); 908 if( (idxCols & cMask)==0 ){ 909 Expr *pX = pTerm->pExpr; 910 idxCols |= cMask; 911 pIdx->aiColumn[n] = pTerm->u.x.leftColumn; 912 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 913 assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */ 914 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; 915 n++; 916 } 917 } 918 } 919 assert( (u32)n==pLoop->u.btree.nEq ); 920 921 /* Add additional columns needed to make the automatic index into 922 ** a covering index */ 923 for(i=0; i<mxBitCol; i++){ 924 if( extraCols & MASKBIT(i) ){ 925 pIdx->aiColumn[n] = i; 926 pIdx->azColl[n] = sqlite3StrBINARY; 927 n++; 928 } 929 } 930 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 931 for(i=BMS-1; i<pTable->nCol; i++){ 932 pIdx->aiColumn[n] = i; 933 pIdx->azColl[n] = sqlite3StrBINARY; 934 n++; 935 } 936 } 937 assert( n==nKeyCol ); 938 pIdx->aiColumn[n] = XN_ROWID; 939 pIdx->azColl[n] = sqlite3StrBINARY; 940 941 /* Create the automatic index */ 942 assert( pLevel->iIdxCur>=0 ); 943 pLevel->iIdxCur = pParse->nTab++; 944 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 945 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 946 VdbeComment((v, "for %s", pTable->zName)); 947 if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) ){ 948 pLevel->regFilter = ++pParse->nMem; 949 sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter); 950 } 951 952 /* Fill the automatic index with content */ 953 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; 954 if( pTabItem->fg.viaCoroutine ){ 955 int regYield = pTabItem->regReturn; 956 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); 957 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 958 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); 959 VdbeCoverage(v); 960 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 961 }else{ 962 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 963 } 964 if( pPartial ){ 965 iContinue = sqlite3VdbeMakeLabel(pParse); 966 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 967 pLoop->wsFlags |= WHERE_PARTIALIDX; 968 } 969 regRecord = sqlite3GetTempReg(pParse); 970 regBase = sqlite3GenerateIndexKey( 971 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 972 ); 973 if( pLevel->regFilter ){ 974 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, 975 regBase, pLoop->u.btree.nEq); 976 } 977 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 978 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 979 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 980 if( pTabItem->fg.viaCoroutine ){ 981 sqlite3VdbeChangeP2(v, addrCounter, regBase+n); 982 testcase( pParse->db->mallocFailed ); 983 assert( pLevel->iIdxCur>0 ); 984 translateColumnToCopy(pParse, addrTop, pLevel->iTabCur, 985 pTabItem->regResult, pLevel->iIdxCur); 986 sqlite3VdbeGoto(v, addrTop); 987 pTabItem->fg.viaCoroutine = 0; 988 }else{ 989 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 990 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 991 } 992 sqlite3VdbeJumpHere(v, addrTop); 993 sqlite3ReleaseTempReg(pParse, regRecord); 994 995 /* Jump here when skipping the initialization */ 996 sqlite3VdbeJumpHere(v, addrInit); 997 998 end_auto_index_create: 999 sqlite3ExprDelete(pParse->db, pPartial); 1000 } 1001 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 1002 1003 /* 1004 ** Generate bytecode that will initialize a Bloom filter that is appropriate 1005 ** for pLevel. 1006 ** 1007 ** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER 1008 ** flag set, initialize a Bloomfilter for them as well. Except don't do 1009 ** this recursive initialization if the SQLITE_BloomPulldown optimization has 1010 ** been turned off. 1011 ** 1012 ** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared 1013 ** from the loop, but the regFilter value is set to a register that implements 1014 ** the Bloom filter. When regFilter is positive, the 1015 ** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter 1016 ** and skip the subsequence B-Tree seek if the Bloom filter indicates that 1017 ** no matching rows exist. 1018 ** 1019 ** This routine may only be called if it has previously been determined that 1020 ** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit 1021 ** is set. 1022 */ 1023 static SQLITE_NOINLINE void sqlite3ConstructBloomFilter( 1024 WhereInfo *pWInfo, /* The WHERE clause */ 1025 int iLevel, /* Index in pWInfo->a[] that is pLevel */ 1026 WhereLevel *pLevel, /* Make a Bloom filter for this FROM term */ 1027 Bitmask notReady /* Loops that are not ready */ 1028 ){ 1029 int addrOnce; /* Address of opening OP_Once */ 1030 int addrTop; /* Address of OP_Rewind */ 1031 int addrCont; /* Jump here to skip a row */ 1032 const WhereTerm *pTerm; /* For looping over WHERE clause terms */ 1033 const WhereTerm *pWCEnd; /* Last WHERE clause term */ 1034 Parse *pParse = pWInfo->pParse; /* Parsing context */ 1035 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 1036 WhereLoop *pLoop = pLevel->pWLoop; /* The loop being coded */ 1037 int iCur; /* Cursor for table getting the filter */ 1038 1039 assert( pLoop!=0 ); 1040 assert( v!=0 ); 1041 assert( pLoop->wsFlags & WHERE_BLOOMFILTER ); 1042 1043 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1044 do{ 1045 const SrcItem *pItem; 1046 const Table *pTab; 1047 u64 sz; 1048 sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel); 1049 addrCont = sqlite3VdbeMakeLabel(pParse); 1050 iCur = pLevel->iTabCur; 1051 pLevel->regFilter = ++pParse->nMem; 1052 1053 /* The Bloom filter is a Blob held in a register. Initialize it 1054 ** to zero-filled blob of at least 80K bits, but maybe more if the 1055 ** estimated size of the table is larger. We could actually 1056 ** measure the size of the table at run-time using OP_Count with 1057 ** P3==1 and use that value to initialize the blob. But that makes 1058 ** testing complicated. By basing the blob size on the value in the 1059 ** sqlite_stat1 table, testing is much easier. 1060 */ 1061 pItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1062 assert( pItem!=0 ); 1063 pTab = pItem->pTab; 1064 assert( pTab!=0 ); 1065 sz = sqlite3LogEstToInt(pTab->nRowLogEst); 1066 if( sz<10000 ){ 1067 sz = 10000; 1068 }else if( sz>10000000 ){ 1069 sz = 10000000; 1070 } 1071 sqlite3VdbeAddOp2(v, OP_Blob, (int)sz, pLevel->regFilter); 1072 1073 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 1074 pWCEnd = &pWInfo->sWC.a[pWInfo->sWC.nTerm]; 1075 for(pTerm=pWInfo->sWC.a; pTerm<pWCEnd; pTerm++){ 1076 Expr *pExpr = pTerm->pExpr; 1077 if( (pTerm->wtFlags & TERM_VIRTUAL)==0 1078 && sqlite3ExprIsTableConstraint(pExpr, pItem) 1079 ){ 1080 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 1081 } 1082 } 1083 if( pLoop->wsFlags & WHERE_IPK ){ 1084 int r1 = sqlite3GetTempReg(pParse); 1085 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1); 1086 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, 1); 1087 sqlite3ReleaseTempReg(pParse, r1); 1088 }else{ 1089 Index *pIdx = pLoop->u.btree.pIndex; 1090 int n = pLoop->u.btree.nEq; 1091 int r1 = sqlite3GetTempRange(pParse, n); 1092 int jj; 1093 for(jj=0; jj<n; jj++){ 1094 int iCol = pIdx->aiColumn[jj]; 1095 assert( pIdx->pTable==pItem->pTab ); 1096 sqlite3ExprCodeGetColumnOfTable(v, pIdx->pTable, iCur, iCol,r1+jj); 1097 } 1098 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, n); 1099 sqlite3ReleaseTempRange(pParse, r1, n); 1100 } 1101 sqlite3VdbeResolveLabel(v, addrCont); 1102 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); 1103 VdbeCoverage(v); 1104 sqlite3VdbeJumpHere(v, addrTop); 1105 pLoop->wsFlags &= ~WHERE_BLOOMFILTER; 1106 if( OptimizationDisabled(pParse->db, SQLITE_BloomPulldown) ) break; 1107 while( ++iLevel < pWInfo->nLevel ){ 1108 const SrcItem *pTabItem; 1109 pLevel = &pWInfo->a[iLevel]; 1110 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1111 if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ) ) continue; 1112 pLoop = pLevel->pWLoop; 1113 if( NEVER(pLoop==0) ) continue; 1114 if( pLoop->prereq & notReady ) continue; 1115 if( (pLoop->wsFlags & (WHERE_BLOOMFILTER|WHERE_COLUMN_IN)) 1116 ==WHERE_BLOOMFILTER 1117 ){ 1118 /* This is a candidate for bloom-filter pull-down (early evaluation). 1119 ** The test that WHERE_COLUMN_IN is omitted is important, as we are 1120 ** not able to do early evaluation of bloom filters that make use of 1121 ** the IN operator */ 1122 break; 1123 } 1124 } 1125 }while( iLevel < pWInfo->nLevel ); 1126 sqlite3VdbeJumpHere(v, addrOnce); 1127 } 1128 1129 1130 #ifndef SQLITE_OMIT_VIRTUALTABLE 1131 /* 1132 ** Allocate and populate an sqlite3_index_info structure. It is the 1133 ** responsibility of the caller to eventually release the structure 1134 ** by passing the pointer returned by this function to freeIndexInfo(). 1135 */ 1136 static sqlite3_index_info *allocateIndexInfo( 1137 WhereInfo *pWInfo, /* The WHERE clause */ 1138 WhereClause *pWC, /* The WHERE clause being analyzed */ 1139 Bitmask mUnusable, /* Ignore terms with these prereqs */ 1140 SrcItem *pSrc, /* The FROM clause term that is the vtab */ 1141 u16 *pmNoOmit /* Mask of terms not to omit */ 1142 ){ 1143 int i, j; 1144 int nTerm; 1145 Parse *pParse = pWInfo->pParse; 1146 struct sqlite3_index_constraint *pIdxCons; 1147 struct sqlite3_index_orderby *pIdxOrderBy; 1148 struct sqlite3_index_constraint_usage *pUsage; 1149 struct HiddenIndexInfo *pHidden; 1150 WhereTerm *pTerm; 1151 int nOrderBy; 1152 sqlite3_index_info *pIdxInfo; 1153 u16 mNoOmit = 0; 1154 const Table *pTab; 1155 int eDistinct = 0; 1156 ExprList *pOrderBy = pWInfo->pOrderBy; 1157 1158 assert( pSrc!=0 ); 1159 pTab = pSrc->pTab; 1160 assert( pTab!=0 ); 1161 assert( IsVirtual(pTab) ); 1162 1163 /* Find all WHERE clause constraints referring to this virtual table. 1164 ** Mark each term with the TERM_OK flag. Set nTerm to the number of 1165 ** terms found. 1166 */ 1167 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1168 pTerm->wtFlags &= ~TERM_OK; 1169 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1170 if( pTerm->prereqRight & mUnusable ) continue; 1171 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 1172 testcase( pTerm->eOperator & WO_IN ); 1173 testcase( pTerm->eOperator & WO_ISNULL ); 1174 testcase( pTerm->eOperator & WO_IS ); 1175 testcase( pTerm->eOperator & WO_ALL ); 1176 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 1177 if( pTerm->wtFlags & TERM_VNULL ) continue; 1178 1179 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 1180 assert( pTerm->u.x.leftColumn>=XN_ROWID ); 1181 assert( pTerm->u.x.leftColumn<pTab->nCol ); 1182 1183 /* tag-20191211-002: WHERE-clause constraints are not useful to the 1184 ** right-hand table of a LEFT JOIN nor to the either table of a 1185 ** RIGHT JOIN. See tag-20191211-001 for the 1186 ** equivalent restriction for ordinary tables. */ 1187 if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ){ 1188 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT ); 1189 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_RIGHT ); 1190 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ ); 1191 testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) ); 1192 testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) ); 1193 if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) 1194 || pTerm->pExpr->w.iJoin != pSrc->iCursor 1195 ){ 1196 continue; 1197 } 1198 } 1199 nTerm++; 1200 pTerm->wtFlags |= TERM_OK; 1201 } 1202 1203 /* If the ORDER BY clause contains only columns in the current 1204 ** virtual table then allocate space for the aOrderBy part of 1205 ** the sqlite3_index_info structure. 1206 */ 1207 nOrderBy = 0; 1208 if( pOrderBy ){ 1209 int n = pOrderBy->nExpr; 1210 for(i=0; i<n; i++){ 1211 Expr *pExpr = pOrderBy->a[i].pExpr; 1212 Expr *pE2; 1213 1214 /* Skip over constant terms in the ORDER BY clause */ 1215 if( sqlite3ExprIsConstant(pExpr) ){ 1216 continue; 1217 } 1218 1219 /* Virtual tables are unable to deal with NULLS FIRST */ 1220 if( pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL ) break; 1221 1222 /* First case - a direct column references without a COLLATE operator */ 1223 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSrc->iCursor ){ 1224 assert( pExpr->iColumn>=XN_ROWID && pExpr->iColumn<pTab->nCol ); 1225 continue; 1226 } 1227 1228 /* 2nd case - a column reference with a COLLATE operator. Only match 1229 ** of the COLLATE operator matches the collation of the column. */ 1230 if( pExpr->op==TK_COLLATE 1231 && (pE2 = pExpr->pLeft)->op==TK_COLUMN 1232 && pE2->iTable==pSrc->iCursor 1233 ){ 1234 const char *zColl; /* The collating sequence name */ 1235 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1236 assert( pExpr->u.zToken!=0 ); 1237 assert( pE2->iColumn>=XN_ROWID && pE2->iColumn<pTab->nCol ); 1238 pExpr->iColumn = pE2->iColumn; 1239 if( pE2->iColumn<0 ) continue; /* Collseq does not matter for rowid */ 1240 zColl = sqlite3ColumnColl(&pTab->aCol[pE2->iColumn]); 1241 if( zColl==0 ) zColl = sqlite3StrBINARY; 1242 if( sqlite3_stricmp(pExpr->u.zToken, zColl)==0 ) continue; 1243 } 1244 1245 /* No matches cause a break out of the loop */ 1246 break; 1247 } 1248 if( i==n ){ 1249 nOrderBy = n; 1250 if( (pWInfo->wctrlFlags & WHERE_DISTINCTBY) ){ 1251 eDistinct = 2 + ((pWInfo->wctrlFlags & WHERE_SORTBYGROUP)!=0); 1252 }else if( pWInfo->wctrlFlags & WHERE_GROUPBY ){ 1253 eDistinct = 1; 1254 } 1255 } 1256 } 1257 1258 /* Allocate the sqlite3_index_info structure 1259 */ 1260 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 1261 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 1262 + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) 1263 + sizeof(sqlite3_value*)*nTerm ); 1264 if( pIdxInfo==0 ){ 1265 sqlite3ErrorMsg(pParse, "out of memory"); 1266 return 0; 1267 } 1268 pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1]; 1269 pIdxCons = (struct sqlite3_index_constraint*)&pHidden->aRhs[nTerm]; 1270 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 1271 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 1272 pIdxInfo->aConstraint = pIdxCons; 1273 pIdxInfo->aOrderBy = pIdxOrderBy; 1274 pIdxInfo->aConstraintUsage = pUsage; 1275 pHidden->pWC = pWC; 1276 pHidden->pParse = pParse; 1277 pHidden->eDistinct = eDistinct; 1278 pHidden->mIn = 0; 1279 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1280 u16 op; 1281 if( (pTerm->wtFlags & TERM_OK)==0 ) continue; 1282 pIdxCons[j].iColumn = pTerm->u.x.leftColumn; 1283 pIdxCons[j].iTermOffset = i; 1284 op = pTerm->eOperator & WO_ALL; 1285 if( op==WO_IN ){ 1286 if( (pTerm->wtFlags & TERM_SLICE)==0 ){ 1287 pHidden->mIn |= SMASKBIT32(j); 1288 } 1289 op = WO_EQ; 1290 } 1291 if( op==WO_AUX ){ 1292 pIdxCons[j].op = pTerm->eMatchOp; 1293 }else if( op & (WO_ISNULL|WO_IS) ){ 1294 if( op==WO_ISNULL ){ 1295 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL; 1296 }else{ 1297 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS; 1298 } 1299 }else{ 1300 pIdxCons[j].op = (u8)op; 1301 /* The direct assignment in the previous line is possible only because 1302 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1303 ** following asserts verify this fact. */ 1304 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1305 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1306 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1307 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1308 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1309 assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) ); 1310 1311 if( op & (WO_LT|WO_LE|WO_GT|WO_GE) 1312 && sqlite3ExprIsVector(pTerm->pExpr->pRight) 1313 ){ 1314 testcase( j!=i ); 1315 if( j<16 ) mNoOmit |= (1 << j); 1316 if( op==WO_LT ) pIdxCons[j].op = WO_LE; 1317 if( op==WO_GT ) pIdxCons[j].op = WO_GE; 1318 } 1319 } 1320 1321 j++; 1322 } 1323 assert( j==nTerm ); 1324 pIdxInfo->nConstraint = j; 1325 for(i=j=0; i<nOrderBy; i++){ 1326 Expr *pExpr = pOrderBy->a[i].pExpr; 1327 if( sqlite3ExprIsConstant(pExpr) ) continue; 1328 assert( pExpr->op==TK_COLUMN 1329 || (pExpr->op==TK_COLLATE && pExpr->pLeft->op==TK_COLUMN 1330 && pExpr->iColumn==pExpr->pLeft->iColumn) ); 1331 pIdxOrderBy[j].iColumn = pExpr->iColumn; 1332 pIdxOrderBy[j].desc = pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC; 1333 j++; 1334 } 1335 pIdxInfo->nOrderBy = j; 1336 1337 *pmNoOmit = mNoOmit; 1338 return pIdxInfo; 1339 } 1340 1341 /* 1342 ** Free an sqlite3_index_info structure allocated by allocateIndexInfo() 1343 ** and possibly modified by xBestIndex methods. 1344 */ 1345 static void freeIndexInfo(sqlite3 *db, sqlite3_index_info *pIdxInfo){ 1346 HiddenIndexInfo *pHidden; 1347 int i; 1348 assert( pIdxInfo!=0 ); 1349 pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 1350 assert( pHidden->pParse!=0 ); 1351 assert( pHidden->pParse->db==db ); 1352 for(i=0; i<pIdxInfo->nConstraint; i++){ 1353 sqlite3ValueFree(pHidden->aRhs[i]); /* IMP: R-14553-25174 */ 1354 pHidden->aRhs[i] = 0; 1355 } 1356 sqlite3DbFree(db, pIdxInfo); 1357 } 1358 1359 /* 1360 ** The table object reference passed as the second argument to this function 1361 ** must represent a virtual table. This function invokes the xBestIndex() 1362 ** method of the virtual table with the sqlite3_index_info object that 1363 ** comes in as the 3rd argument to this function. 1364 ** 1365 ** If an error occurs, pParse is populated with an error message and an 1366 ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from 1367 ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that 1368 ** the current configuration of "unusable" flags in sqlite3_index_info can 1369 ** not result in a valid plan. 1370 ** 1371 ** Whether or not an error is returned, it is the responsibility of the 1372 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 1373 ** that this is required. 1374 */ 1375 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 1376 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 1377 int rc; 1378 1379 whereTraceIndexInfoInputs(p); 1380 pParse->db->nSchemaLock++; 1381 rc = pVtab->pModule->xBestIndex(pVtab, p); 1382 pParse->db->nSchemaLock--; 1383 whereTraceIndexInfoOutputs(p); 1384 1385 if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){ 1386 if( rc==SQLITE_NOMEM ){ 1387 sqlite3OomFault(pParse->db); 1388 }else if( !pVtab->zErrMsg ){ 1389 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1390 }else{ 1391 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 1392 } 1393 } 1394 sqlite3_free(pVtab->zErrMsg); 1395 pVtab->zErrMsg = 0; 1396 return rc; 1397 } 1398 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1399 1400 #ifdef SQLITE_ENABLE_STAT4 1401 /* 1402 ** Estimate the location of a particular key among all keys in an 1403 ** index. Store the results in aStat as follows: 1404 ** 1405 ** aStat[0] Est. number of rows less than pRec 1406 ** aStat[1] Est. number of rows equal to pRec 1407 ** 1408 ** Return the index of the sample that is the smallest sample that 1409 ** is greater than or equal to pRec. Note that this index is not an index 1410 ** into the aSample[] array - it is an index into a virtual set of samples 1411 ** based on the contents of aSample[] and the number of fields in record 1412 ** pRec. 1413 */ 1414 static int whereKeyStats( 1415 Parse *pParse, /* Database connection */ 1416 Index *pIdx, /* Index to consider domain of */ 1417 UnpackedRecord *pRec, /* Vector of values to consider */ 1418 int roundUp, /* Round up if true. Round down if false */ 1419 tRowcnt *aStat /* OUT: stats written here */ 1420 ){ 1421 IndexSample *aSample = pIdx->aSample; 1422 int iCol; /* Index of required stats in anEq[] etc. */ 1423 int i; /* Index of first sample >= pRec */ 1424 int iSample; /* Smallest sample larger than or equal to pRec */ 1425 int iMin = 0; /* Smallest sample not yet tested */ 1426 int iTest; /* Next sample to test */ 1427 int res; /* Result of comparison operation */ 1428 int nField; /* Number of fields in pRec */ 1429 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ 1430 1431 #ifndef SQLITE_DEBUG 1432 UNUSED_PARAMETER( pParse ); 1433 #endif 1434 assert( pRec!=0 ); 1435 assert( pIdx->nSample>0 ); 1436 assert( pRec->nField>0 ); 1437 1438 /* Do a binary search to find the first sample greater than or equal 1439 ** to pRec. If pRec contains a single field, the set of samples to search 1440 ** is simply the aSample[] array. If the samples in aSample[] contain more 1441 ** than one fields, all fields following the first are ignored. 1442 ** 1443 ** If pRec contains N fields, where N is more than one, then as well as the 1444 ** samples in aSample[] (truncated to N fields), the search also has to 1445 ** consider prefixes of those samples. For example, if the set of samples 1446 ** in aSample is: 1447 ** 1448 ** aSample[0] = (a, 5) 1449 ** aSample[1] = (a, 10) 1450 ** aSample[2] = (b, 5) 1451 ** aSample[3] = (c, 100) 1452 ** aSample[4] = (c, 105) 1453 ** 1454 ** Then the search space should ideally be the samples above and the 1455 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 1456 ** the code actually searches this set: 1457 ** 1458 ** 0: (a) 1459 ** 1: (a, 5) 1460 ** 2: (a, 10) 1461 ** 3: (a, 10) 1462 ** 4: (b) 1463 ** 5: (b, 5) 1464 ** 6: (c) 1465 ** 7: (c, 100) 1466 ** 8: (c, 105) 1467 ** 9: (c, 105) 1468 ** 1469 ** For each sample in the aSample[] array, N samples are present in the 1470 ** effective sample array. In the above, samples 0 and 1 are based on 1471 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. 1472 ** 1473 ** Often, sample i of each block of N effective samples has (i+1) fields. 1474 ** Except, each sample may be extended to ensure that it is greater than or 1475 ** equal to the previous sample in the array. For example, in the above, 1476 ** sample 2 is the first sample of a block of N samples, so at first it 1477 ** appears that it should be 1 field in size. However, that would make it 1478 ** smaller than sample 1, so the binary search would not work. As a result, 1479 ** it is extended to two fields. The duplicates that this creates do not 1480 ** cause any problems. 1481 */ 1482 nField = MIN(pRec->nField, pIdx->nSample); 1483 iCol = 0; 1484 iSample = pIdx->nSample * nField; 1485 do{ 1486 int iSamp; /* Index in aSample[] of test sample */ 1487 int n; /* Number of fields in test sample */ 1488 1489 iTest = (iMin+iSample)/2; 1490 iSamp = iTest / nField; 1491 if( iSamp>0 ){ 1492 /* The proposed effective sample is a prefix of sample aSample[iSamp]. 1493 ** Specifically, the shortest prefix of at least (1 + iTest%nField) 1494 ** fields that is greater than the previous effective sample. */ 1495 for(n=(iTest % nField) + 1; n<nField; n++){ 1496 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; 1497 } 1498 }else{ 1499 n = iTest + 1; 1500 } 1501 1502 pRec->nField = n; 1503 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); 1504 if( res<0 ){ 1505 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; 1506 iMin = iTest+1; 1507 }else if( res==0 && n<nField ){ 1508 iLower = aSample[iSamp].anLt[n-1]; 1509 iMin = iTest+1; 1510 res = -1; 1511 }else{ 1512 iSample = iTest; 1513 iCol = n-1; 1514 } 1515 }while( res && iMin<iSample ); 1516 i = iSample / nField; 1517 1518 #ifdef SQLITE_DEBUG 1519 /* The following assert statements check that the binary search code 1520 ** above found the right answer. This block serves no purpose other 1521 ** than to invoke the asserts. */ 1522 if( pParse->db->mallocFailed==0 ){ 1523 if( res==0 ){ 1524 /* If (res==0) is true, then pRec must be equal to sample i. */ 1525 assert( i<pIdx->nSample ); 1526 assert( iCol==nField-1 ); 1527 pRec->nField = nField; 1528 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 1529 || pParse->db->mallocFailed 1530 ); 1531 }else{ 1532 /* Unless i==pIdx->nSample, indicating that pRec is larger than 1533 ** all samples in the aSample[] array, pRec must be smaller than the 1534 ** (iCol+1) field prefix of sample i. */ 1535 assert( i<=pIdx->nSample && i>=0 ); 1536 pRec->nField = iCol+1; 1537 assert( i==pIdx->nSample 1538 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 1539 || pParse->db->mallocFailed ); 1540 1541 /* if i==0 and iCol==0, then record pRec is smaller than all samples 1542 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must 1543 ** be greater than or equal to the (iCol) field prefix of sample i. 1544 ** If (i>0), then pRec must also be greater than sample (i-1). */ 1545 if( iCol>0 ){ 1546 pRec->nField = iCol; 1547 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 1548 || pParse->db->mallocFailed ); 1549 } 1550 if( i>0 ){ 1551 pRec->nField = nField; 1552 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 1553 || pParse->db->mallocFailed ); 1554 } 1555 } 1556 } 1557 #endif /* ifdef SQLITE_DEBUG */ 1558 1559 if( res==0 ){ 1560 /* Record pRec is equal to sample i */ 1561 assert( iCol==nField-1 ); 1562 aStat[0] = aSample[i].anLt[iCol]; 1563 aStat[1] = aSample[i].anEq[iCol]; 1564 }else{ 1565 /* At this point, the (iCol+1) field prefix of aSample[i] is the first 1566 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec 1567 ** is larger than all samples in the array. */ 1568 tRowcnt iUpper, iGap; 1569 if( i>=pIdx->nSample ){ 1570 iUpper = pIdx->nRowEst0; 1571 }else{ 1572 iUpper = aSample[i].anLt[iCol]; 1573 } 1574 1575 if( iLower>=iUpper ){ 1576 iGap = 0; 1577 }else{ 1578 iGap = iUpper - iLower; 1579 } 1580 if( roundUp ){ 1581 iGap = (iGap*2)/3; 1582 }else{ 1583 iGap = iGap/3; 1584 } 1585 aStat[0] = iLower + iGap; 1586 aStat[1] = pIdx->aAvgEq[nField-1]; 1587 } 1588 1589 /* Restore the pRec->nField value before returning. */ 1590 pRec->nField = nField; 1591 return i; 1592 } 1593 #endif /* SQLITE_ENABLE_STAT4 */ 1594 1595 /* 1596 ** If it is not NULL, pTerm is a term that provides an upper or lower 1597 ** bound on a range scan. Without considering pTerm, it is estimated 1598 ** that the scan will visit nNew rows. This function returns the number 1599 ** estimated to be visited after taking pTerm into account. 1600 ** 1601 ** If the user explicitly specified a likelihood() value for this term, 1602 ** then the return value is the likelihood multiplied by the number of 1603 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 1604 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 1605 */ 1606 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 1607 LogEst nRet = nNew; 1608 if( pTerm ){ 1609 if( pTerm->truthProb<=0 ){ 1610 nRet += pTerm->truthProb; 1611 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 1612 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 1613 } 1614 } 1615 return nRet; 1616 } 1617 1618 1619 #ifdef SQLITE_ENABLE_STAT4 1620 /* 1621 ** Return the affinity for a single column of an index. 1622 */ 1623 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ 1624 assert( iCol>=0 && iCol<pIdx->nColumn ); 1625 if( !pIdx->zColAff ){ 1626 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; 1627 } 1628 assert( pIdx->zColAff[iCol]!=0 ); 1629 return pIdx->zColAff[iCol]; 1630 } 1631 #endif 1632 1633 1634 #ifdef SQLITE_ENABLE_STAT4 1635 /* 1636 ** This function is called to estimate the number of rows visited by a 1637 ** range-scan on a skip-scan index. For example: 1638 ** 1639 ** CREATE INDEX i1 ON t1(a, b, c); 1640 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 1641 ** 1642 ** Value pLoop->nOut is currently set to the estimated number of rows 1643 ** visited for scanning (a=? AND b=?). This function reduces that estimate 1644 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 1645 ** on the stat4 data for the index. this scan will be peformed multiple 1646 ** times (once for each (a,b) combination that matches a=?) is dealt with 1647 ** by the caller. 1648 ** 1649 ** It does this by scanning through all stat4 samples, comparing values 1650 ** extracted from pLower and pUpper with the corresponding column in each 1651 ** sample. If L and U are the number of samples found to be less than or 1652 ** equal to the values extracted from pLower and pUpper respectively, and 1653 ** N is the total number of samples, the pLoop->nOut value is adjusted 1654 ** as follows: 1655 ** 1656 ** nOut = nOut * ( min(U - L, 1) / N ) 1657 ** 1658 ** If pLower is NULL, or a value cannot be extracted from the term, L is 1659 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 1660 ** U is set to N. 1661 ** 1662 ** Normally, this function sets *pbDone to 1 before returning. However, 1663 ** if no value can be extracted from either pLower or pUpper (and so the 1664 ** estimate of the number of rows delivered remains unchanged), *pbDone 1665 ** is left as is. 1666 ** 1667 ** If an error occurs, an SQLite error code is returned. Otherwise, 1668 ** SQLITE_OK. 1669 */ 1670 static int whereRangeSkipScanEst( 1671 Parse *pParse, /* Parsing & code generating context */ 1672 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1673 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1674 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 1675 int *pbDone /* Set to true if at least one expr. value extracted */ 1676 ){ 1677 Index *p = pLoop->u.btree.pIndex; 1678 int nEq = pLoop->u.btree.nEq; 1679 sqlite3 *db = pParse->db; 1680 int nLower = -1; 1681 int nUpper = p->nSample+1; 1682 int rc = SQLITE_OK; 1683 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); 1684 CollSeq *pColl; 1685 1686 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 1687 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 1688 sqlite3_value *pVal = 0; /* Value extracted from record */ 1689 1690 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 1691 if( pLower ){ 1692 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 1693 nLower = 0; 1694 } 1695 if( pUpper && rc==SQLITE_OK ){ 1696 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 1697 nUpper = p2 ? 0 : p->nSample; 1698 } 1699 1700 if( p1 || p2 ){ 1701 int i; 1702 int nDiff; 1703 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 1704 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 1705 if( rc==SQLITE_OK && p1 ){ 1706 int res = sqlite3MemCompare(p1, pVal, pColl); 1707 if( res>=0 ) nLower++; 1708 } 1709 if( rc==SQLITE_OK && p2 ){ 1710 int res = sqlite3MemCompare(p2, pVal, pColl); 1711 if( res>=0 ) nUpper++; 1712 } 1713 } 1714 nDiff = (nUpper - nLower); 1715 if( nDiff<=0 ) nDiff = 1; 1716 1717 /* If there is both an upper and lower bound specified, and the 1718 ** comparisons indicate that they are close together, use the fallback 1719 ** method (assume that the scan visits 1/64 of the rows) for estimating 1720 ** the number of rows visited. Otherwise, estimate the number of rows 1721 ** using the method described in the header comment for this function. */ 1722 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 1723 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 1724 pLoop->nOut -= nAdjust; 1725 *pbDone = 1; 1726 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 1727 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 1728 } 1729 1730 }else{ 1731 assert( *pbDone==0 ); 1732 } 1733 1734 sqlite3ValueFree(p1); 1735 sqlite3ValueFree(p2); 1736 sqlite3ValueFree(pVal); 1737 1738 return rc; 1739 } 1740 #endif /* SQLITE_ENABLE_STAT4 */ 1741 1742 /* 1743 ** This function is used to estimate the number of rows that will be visited 1744 ** by scanning an index for a range of values. The range may have an upper 1745 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 1746 ** and lower bounds are represented by pLower and pUpper respectively. For 1747 ** example, assuming that index p is on t1(a): 1748 ** 1749 ** ... FROM t1 WHERE a > ? AND a < ? ... 1750 ** |_____| |_____| 1751 ** | | 1752 ** pLower pUpper 1753 ** 1754 ** If either of the upper or lower bound is not present, then NULL is passed in 1755 ** place of the corresponding WhereTerm. 1756 ** 1757 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 1758 ** column subject to the range constraint. Or, equivalently, the number of 1759 ** equality constraints optimized by the proposed index scan. For example, 1760 ** assuming index p is on t1(a, b), and the SQL query is: 1761 ** 1762 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 1763 ** 1764 ** then nEq is set to 1 (as the range restricted column, b, is the second 1765 ** left-most column of the index). Or, if the query is: 1766 ** 1767 ** ... FROM t1 WHERE a > ? AND a < ? ... 1768 ** 1769 ** then nEq is set to 0. 1770 ** 1771 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 1772 ** number of rows that the index scan is expected to visit without 1773 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 1774 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 1775 ** to account for the range constraints pLower and pUpper. 1776 ** 1777 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 1778 ** used, a single range inequality reduces the search space by a factor of 4. 1779 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 1780 ** rows visited by a factor of 64. 1781 */ 1782 static int whereRangeScanEst( 1783 Parse *pParse, /* Parsing & code generating context */ 1784 WhereLoopBuilder *pBuilder, 1785 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1786 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1787 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 1788 ){ 1789 int rc = SQLITE_OK; 1790 int nOut = pLoop->nOut; 1791 LogEst nNew; 1792 1793 #ifdef SQLITE_ENABLE_STAT4 1794 Index *p = pLoop->u.btree.pIndex; 1795 int nEq = pLoop->u.btree.nEq; 1796 1797 if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol) 1798 && OptimizationEnabled(pParse->db, SQLITE_Stat4) 1799 ){ 1800 if( nEq==pBuilder->nRecValid ){ 1801 UnpackedRecord *pRec = pBuilder->pRec; 1802 tRowcnt a[2]; 1803 int nBtm = pLoop->u.btree.nBtm; 1804 int nTop = pLoop->u.btree.nTop; 1805 1806 /* Variable iLower will be set to the estimate of the number of rows in 1807 ** the index that are less than the lower bound of the range query. The 1808 ** lower bound being the concatenation of $P and $L, where $P is the 1809 ** key-prefix formed by the nEq values matched against the nEq left-most 1810 ** columns of the index, and $L is the value in pLower. 1811 ** 1812 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 1813 ** is not a simple variable or literal value), the lower bound of the 1814 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 1815 ** if $L is available, whereKeyStats() is called for both ($P) and 1816 ** ($P:$L) and the larger of the two returned values is used. 1817 ** 1818 ** Similarly, iUpper is to be set to the estimate of the number of rows 1819 ** less than the upper bound of the range query. Where the upper bound 1820 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 1821 ** of iUpper are requested of whereKeyStats() and the smaller used. 1822 ** 1823 ** The number of rows between the two bounds is then just iUpper-iLower. 1824 */ 1825 tRowcnt iLower; /* Rows less than the lower bound */ 1826 tRowcnt iUpper; /* Rows less than the upper bound */ 1827 int iLwrIdx = -2; /* aSample[] for the lower bound */ 1828 int iUprIdx = -1; /* aSample[] for the upper bound */ 1829 1830 if( pRec ){ 1831 testcase( pRec->nField!=pBuilder->nRecValid ); 1832 pRec->nField = pBuilder->nRecValid; 1833 } 1834 /* Determine iLower and iUpper using ($P) only. */ 1835 if( nEq==0 ){ 1836 iLower = 0; 1837 iUpper = p->nRowEst0; 1838 }else{ 1839 /* Note: this call could be optimized away - since the same values must 1840 ** have been requested when testing key $P in whereEqualScanEst(). */ 1841 whereKeyStats(pParse, p, pRec, 0, a); 1842 iLower = a[0]; 1843 iUpper = a[0] + a[1]; 1844 } 1845 1846 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 1847 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 1848 assert( p->aSortOrder!=0 ); 1849 if( p->aSortOrder[nEq] ){ 1850 /* The roles of pLower and pUpper are swapped for a DESC index */ 1851 SWAP(WhereTerm*, pLower, pUpper); 1852 SWAP(int, nBtm, nTop); 1853 } 1854 1855 /* If possible, improve on the iLower estimate using ($P:$L). */ 1856 if( pLower ){ 1857 int n; /* Values extracted from pExpr */ 1858 Expr *pExpr = pLower->pExpr->pRight; 1859 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n); 1860 if( rc==SQLITE_OK && n ){ 1861 tRowcnt iNew; 1862 u16 mask = WO_GT|WO_LE; 1863 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1864 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 1865 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0); 1866 if( iNew>iLower ) iLower = iNew; 1867 nOut--; 1868 pLower = 0; 1869 } 1870 } 1871 1872 /* If possible, improve on the iUpper estimate using ($P:$U). */ 1873 if( pUpper ){ 1874 int n; /* Values extracted from pExpr */ 1875 Expr *pExpr = pUpper->pExpr->pRight; 1876 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n); 1877 if( rc==SQLITE_OK && n ){ 1878 tRowcnt iNew; 1879 u16 mask = WO_GT|WO_LE; 1880 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1881 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 1882 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0); 1883 if( iNew<iUpper ) iUpper = iNew; 1884 nOut--; 1885 pUpper = 0; 1886 } 1887 } 1888 1889 pBuilder->pRec = pRec; 1890 if( rc==SQLITE_OK ){ 1891 if( iUpper>iLower ){ 1892 nNew = sqlite3LogEst(iUpper - iLower); 1893 /* TUNING: If both iUpper and iLower are derived from the same 1894 ** sample, then assume they are 4x more selective. This brings 1895 ** the estimated selectivity more in line with what it would be 1896 ** if estimated without the use of STAT4 tables. */ 1897 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); 1898 }else{ 1899 nNew = 10; assert( 10==sqlite3LogEst(2) ); 1900 } 1901 if( nNew<nOut ){ 1902 nOut = nNew; 1903 } 1904 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", 1905 (u32)iLower, (u32)iUpper, nOut)); 1906 } 1907 }else{ 1908 int bDone = 0; 1909 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 1910 if( bDone ) return rc; 1911 } 1912 } 1913 #else 1914 UNUSED_PARAMETER(pParse); 1915 UNUSED_PARAMETER(pBuilder); 1916 assert( pLower || pUpper ); 1917 #endif 1918 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); 1919 nNew = whereRangeAdjust(pLower, nOut); 1920 nNew = whereRangeAdjust(pUpper, nNew); 1921 1922 /* TUNING: If there is both an upper and lower limit and neither limit 1923 ** has an application-defined likelihood(), assume the range is 1924 ** reduced by an additional 75%. This means that, by default, an open-ended 1925 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 1926 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 1927 ** match 1/64 of the index. */ 1928 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 1929 nNew -= 20; 1930 } 1931 1932 nOut -= (pLower!=0) + (pUpper!=0); 1933 if( nNew<10 ) nNew = 10; 1934 if( nNew<nOut ) nOut = nNew; 1935 #if defined(WHERETRACE_ENABLED) 1936 if( pLoop->nOut>nOut ){ 1937 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", 1938 pLoop->nOut, nOut)); 1939 } 1940 #endif 1941 pLoop->nOut = (LogEst)nOut; 1942 return rc; 1943 } 1944 1945 #ifdef SQLITE_ENABLE_STAT4 1946 /* 1947 ** Estimate the number of rows that will be returned based on 1948 ** an equality constraint x=VALUE and where that VALUE occurs in 1949 ** the histogram data. This only works when x is the left-most 1950 ** column of an index and sqlite_stat4 histogram data is available 1951 ** for that index. When pExpr==NULL that means the constraint is 1952 ** "x IS NULL" instead of "x=VALUE". 1953 ** 1954 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1955 ** If unable to make an estimate, leave *pnRow unchanged and return 1956 ** non-zero. 1957 ** 1958 ** This routine can fail if it is unable to load a collating sequence 1959 ** required for string comparison, or if unable to allocate memory 1960 ** for a UTF conversion required for comparison. The error is stored 1961 ** in the pParse structure. 1962 */ 1963 static int whereEqualScanEst( 1964 Parse *pParse, /* Parsing & code generating context */ 1965 WhereLoopBuilder *pBuilder, 1966 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 1967 tRowcnt *pnRow /* Write the revised row estimate here */ 1968 ){ 1969 Index *p = pBuilder->pNew->u.btree.pIndex; 1970 int nEq = pBuilder->pNew->u.btree.nEq; 1971 UnpackedRecord *pRec = pBuilder->pRec; 1972 int rc; /* Subfunction return code */ 1973 tRowcnt a[2]; /* Statistics */ 1974 int bOk; 1975 1976 assert( nEq>=1 ); 1977 assert( nEq<=p->nColumn ); 1978 assert( p->aSample!=0 ); 1979 assert( p->nSample>0 ); 1980 assert( pBuilder->nRecValid<nEq ); 1981 1982 /* If values are not available for all fields of the index to the left 1983 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 1984 if( pBuilder->nRecValid<(nEq-1) ){ 1985 return SQLITE_NOTFOUND; 1986 } 1987 1988 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 1989 ** below would return the same value. */ 1990 if( nEq>=p->nColumn ){ 1991 *pnRow = 1; 1992 return SQLITE_OK; 1993 } 1994 1995 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk); 1996 pBuilder->pRec = pRec; 1997 if( rc!=SQLITE_OK ) return rc; 1998 if( bOk==0 ) return SQLITE_NOTFOUND; 1999 pBuilder->nRecValid = nEq; 2000 2001 whereKeyStats(pParse, p, pRec, 0, a); 2002 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n", 2003 p->zName, nEq-1, (int)a[1])); 2004 *pnRow = a[1]; 2005 2006 return rc; 2007 } 2008 #endif /* SQLITE_ENABLE_STAT4 */ 2009 2010 #ifdef SQLITE_ENABLE_STAT4 2011 /* 2012 ** Estimate the number of rows that will be returned based on 2013 ** an IN constraint where the right-hand side of the IN operator 2014 ** is a list of values. Example: 2015 ** 2016 ** WHERE x IN (1,2,3,4) 2017 ** 2018 ** Write the estimated row count into *pnRow and return SQLITE_OK. 2019 ** If unable to make an estimate, leave *pnRow unchanged and return 2020 ** non-zero. 2021 ** 2022 ** This routine can fail if it is unable to load a collating sequence 2023 ** required for string comparison, or if unable to allocate memory 2024 ** for a UTF conversion required for comparison. The error is stored 2025 ** in the pParse structure. 2026 */ 2027 static int whereInScanEst( 2028 Parse *pParse, /* Parsing & code generating context */ 2029 WhereLoopBuilder *pBuilder, 2030 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 2031 tRowcnt *pnRow /* Write the revised row estimate here */ 2032 ){ 2033 Index *p = pBuilder->pNew->u.btree.pIndex; 2034 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 2035 int nRecValid = pBuilder->nRecValid; 2036 int rc = SQLITE_OK; /* Subfunction return code */ 2037 tRowcnt nEst; /* Number of rows for a single term */ 2038 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 2039 int i; /* Loop counter */ 2040 2041 assert( p->aSample!=0 ); 2042 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 2043 nEst = nRow0; 2044 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 2045 nRowEst += nEst; 2046 pBuilder->nRecValid = nRecValid; 2047 } 2048 2049 if( rc==SQLITE_OK ){ 2050 if( nRowEst > nRow0 ) nRowEst = nRow0; 2051 *pnRow = nRowEst; 2052 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); 2053 } 2054 assert( pBuilder->nRecValid==nRecValid ); 2055 return rc; 2056 } 2057 #endif /* SQLITE_ENABLE_STAT4 */ 2058 2059 2060 #ifdef WHERETRACE_ENABLED 2061 /* 2062 ** Print the content of a WhereTerm object 2063 */ 2064 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){ 2065 if( pTerm==0 ){ 2066 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 2067 }else{ 2068 char zType[8]; 2069 char zLeft[50]; 2070 memcpy(zType, "....", 5); 2071 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 2072 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 2073 if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) zType[2] = 'L'; 2074 if( pTerm->wtFlags & TERM_CODED ) zType[3] = 'C'; 2075 if( pTerm->eOperator & WO_SINGLE ){ 2076 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 2077 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}", 2078 pTerm->leftCursor, pTerm->u.x.leftColumn); 2079 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){ 2080 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx", 2081 pTerm->u.pOrInfo->indexable); 2082 }else{ 2083 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor); 2084 } 2085 sqlite3DebugPrintf( 2086 "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x", 2087 iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags); 2088 /* The 0x10000 .wheretrace flag causes extra information to be 2089 ** shown about each Term */ 2090 if( sqlite3WhereTrace & 0x10000 ){ 2091 sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx", 2092 pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight); 2093 } 2094 if( (pTerm->eOperator & (WO_OR|WO_AND))==0 && pTerm->u.x.iField ){ 2095 sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField); 2096 } 2097 if( pTerm->iParent>=0 ){ 2098 sqlite3DebugPrintf(" iParent=%d", pTerm->iParent); 2099 } 2100 sqlite3DebugPrintf("\n"); 2101 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 2102 } 2103 } 2104 #endif 2105 2106 #ifdef WHERETRACE_ENABLED 2107 /* 2108 ** Show the complete content of a WhereClause 2109 */ 2110 void sqlite3WhereClausePrint(WhereClause *pWC){ 2111 int i; 2112 for(i=0; i<pWC->nTerm; i++){ 2113 sqlite3WhereTermPrint(&pWC->a[i], i); 2114 } 2115 } 2116 #endif 2117 2118 #ifdef WHERETRACE_ENABLED 2119 /* 2120 ** Print a WhereLoop object for debugging purposes 2121 */ 2122 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){ 2123 WhereInfo *pWInfo = pWC->pWInfo; 2124 int nb = 1+(pWInfo->pTabList->nSrc+3)/4; 2125 SrcItem *pItem = pWInfo->pTabList->a + p->iTab; 2126 Table *pTab = pItem->pTab; 2127 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1; 2128 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 2129 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll); 2130 sqlite3DebugPrintf(" %12s", 2131 pItem->zAlias ? pItem->zAlias : pTab->zName); 2132 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2133 const char *zName; 2134 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 2135 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 2136 int i = sqlite3Strlen30(zName) - 1; 2137 while( zName[i]!='_' ) i--; 2138 zName += i; 2139 } 2140 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 2141 }else{ 2142 sqlite3DebugPrintf("%20s",""); 2143 } 2144 }else{ 2145 char *z; 2146 if( p->u.vtab.idxStr ){ 2147 z = sqlite3_mprintf("(%d,\"%s\",%#x)", 2148 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 2149 }else{ 2150 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 2151 } 2152 sqlite3DebugPrintf(" %-19s", z); 2153 sqlite3_free(z); 2154 } 2155 if( p->wsFlags & WHERE_SKIPSCAN ){ 2156 sqlite3DebugPrintf(" f %06x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 2157 }else{ 2158 sqlite3DebugPrintf(" f %06x N %d", p->wsFlags, p->nLTerm); 2159 } 2160 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 2161 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ 2162 int i; 2163 for(i=0; i<p->nLTerm; i++){ 2164 sqlite3WhereTermPrint(p->aLTerm[i], i); 2165 } 2166 } 2167 } 2168 #endif 2169 2170 /* 2171 ** Convert bulk memory into a valid WhereLoop that can be passed 2172 ** to whereLoopClear harmlessly. 2173 */ 2174 static void whereLoopInit(WhereLoop *p){ 2175 p->aLTerm = p->aLTermSpace; 2176 p->nLTerm = 0; 2177 p->nLSlot = ArraySize(p->aLTermSpace); 2178 p->wsFlags = 0; 2179 } 2180 2181 /* 2182 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 2183 */ 2184 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 2185 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 2186 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 2187 sqlite3_free(p->u.vtab.idxStr); 2188 p->u.vtab.needFree = 0; 2189 p->u.vtab.idxStr = 0; 2190 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 2191 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 2192 sqlite3DbFreeNN(db, p->u.btree.pIndex); 2193 p->u.btree.pIndex = 0; 2194 } 2195 } 2196 } 2197 2198 /* 2199 ** Deallocate internal memory used by a WhereLoop object. Leave the 2200 ** object in an initialized state, as if it had been newly allocated. 2201 */ 2202 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 2203 if( p->aLTerm!=p->aLTermSpace ){ 2204 sqlite3DbFreeNN(db, p->aLTerm); 2205 p->aLTerm = p->aLTermSpace; 2206 p->nLSlot = ArraySize(p->aLTermSpace); 2207 } 2208 whereLoopClearUnion(db, p); 2209 p->nLTerm = 0; 2210 p->wsFlags = 0; 2211 } 2212 2213 /* 2214 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 2215 */ 2216 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 2217 WhereTerm **paNew; 2218 if( p->nLSlot>=n ) return SQLITE_OK; 2219 n = (n+7)&~7; 2220 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); 2221 if( paNew==0 ) return SQLITE_NOMEM_BKPT; 2222 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 2223 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 2224 p->aLTerm = paNew; 2225 p->nLSlot = n; 2226 return SQLITE_OK; 2227 } 2228 2229 /* 2230 ** Transfer content from the second pLoop into the first. 2231 */ 2232 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 2233 whereLoopClearUnion(db, pTo); 2234 if( pFrom->nLTerm > pTo->nLSlot 2235 && whereLoopResize(db, pTo, pFrom->nLTerm) 2236 ){ 2237 memset(pTo, 0, WHERE_LOOP_XFER_SZ); 2238 return SQLITE_NOMEM_BKPT; 2239 } 2240 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 2241 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 2242 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 2243 pFrom->u.vtab.needFree = 0; 2244 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 2245 pFrom->u.btree.pIndex = 0; 2246 } 2247 return SQLITE_OK; 2248 } 2249 2250 /* 2251 ** Delete a WhereLoop object 2252 */ 2253 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 2254 assert( db!=0 ); 2255 whereLoopClear(db, p); 2256 sqlite3DbNNFreeNN(db, p); 2257 } 2258 2259 /* 2260 ** Free a WhereInfo structure 2261 */ 2262 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 2263 assert( pWInfo!=0 ); 2264 assert( db!=0 ); 2265 sqlite3WhereClauseClear(&pWInfo->sWC); 2266 while( pWInfo->pLoops ){ 2267 WhereLoop *p = pWInfo->pLoops; 2268 pWInfo->pLoops = p->pNextLoop; 2269 whereLoopDelete(db, p); 2270 } 2271 assert( pWInfo->pExprMods==0 ); 2272 while( pWInfo->pMemToFree ){ 2273 WhereMemBlock *pNext = pWInfo->pMemToFree->pNext; 2274 sqlite3DbNNFreeNN(db, pWInfo->pMemToFree); 2275 pWInfo->pMemToFree = pNext; 2276 } 2277 sqlite3DbNNFreeNN(db, pWInfo); 2278 } 2279 2280 /* Undo all Expr node modifications 2281 */ 2282 static void whereUndoExprMods(WhereInfo *pWInfo){ 2283 while( pWInfo->pExprMods ){ 2284 WhereExprMod *p = pWInfo->pExprMods; 2285 pWInfo->pExprMods = p->pNext; 2286 memcpy(p->pExpr, &p->orig, sizeof(p->orig)); 2287 sqlite3DbFree(pWInfo->pParse->db, p); 2288 } 2289 } 2290 2291 /* 2292 ** Return TRUE if all of the following are true: 2293 ** 2294 ** (1) X has the same or lower cost, or returns the same or fewer rows, 2295 ** than Y. 2296 ** (2) X uses fewer WHERE clause terms than Y 2297 ** (3) Every WHERE clause term used by X is also used by Y 2298 ** (4) X skips at least as many columns as Y 2299 ** (5) If X is a covering index, than Y is too 2300 ** 2301 ** Conditions (2) and (3) mean that X is a "proper subset" of Y. 2302 ** If X is a proper subset of Y then Y is a better choice and ought 2303 ** to have a lower cost. This routine returns TRUE when that cost 2304 ** relationship is inverted and needs to be adjusted. Constraint (4) 2305 ** was added because if X uses skip-scan less than Y it still might 2306 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5) 2307 ** was added because a covering index probably deserves to have a lower cost 2308 ** than a non-covering index even if it is a proper subset. 2309 */ 2310 static int whereLoopCheaperProperSubset( 2311 const WhereLoop *pX, /* First WhereLoop to compare */ 2312 const WhereLoop *pY /* Compare against this WhereLoop */ 2313 ){ 2314 int i, j; 2315 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 2316 return 0; /* X is not a subset of Y */ 2317 } 2318 if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0; 2319 if( pY->nSkip > pX->nSkip ) return 0; 2320 for(i=pX->nLTerm-1; i>=0; i--){ 2321 if( pX->aLTerm[i]==0 ) continue; 2322 for(j=pY->nLTerm-1; j>=0; j--){ 2323 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 2324 } 2325 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ 2326 } 2327 if( (pX->wsFlags&WHERE_IDX_ONLY)!=0 2328 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){ 2329 return 0; /* Constraint (5) */ 2330 } 2331 return 1; /* All conditions meet */ 2332 } 2333 2334 /* 2335 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate 2336 ** upwards or downwards so that: 2337 ** 2338 ** (1) pTemplate costs less than any other WhereLoops that are a proper 2339 ** subset of pTemplate 2340 ** 2341 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 2342 ** is a proper subset. 2343 ** 2344 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 2345 ** WHERE clause terms than Y and that every WHERE clause term used by X is 2346 ** also used by Y. 2347 */ 2348 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 2349 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 2350 for(; p; p=p->pNextLoop){ 2351 if( p->iTab!=pTemplate->iTab ) continue; 2352 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 2353 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 2354 /* Adjust pTemplate cost downward so that it is cheaper than its 2355 ** subset p. */ 2356 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2357 pTemplate->rRun, pTemplate->nOut, 2358 MIN(p->rRun, pTemplate->rRun), 2359 MIN(p->nOut - 1, pTemplate->nOut))); 2360 pTemplate->rRun = MIN(p->rRun, pTemplate->rRun); 2361 pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut); 2362 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 2363 /* Adjust pTemplate cost upward so that it is costlier than p since 2364 ** pTemplate is a proper subset of p */ 2365 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2366 pTemplate->rRun, pTemplate->nOut, 2367 MAX(p->rRun, pTemplate->rRun), 2368 MAX(p->nOut + 1, pTemplate->nOut))); 2369 pTemplate->rRun = MAX(p->rRun, pTemplate->rRun); 2370 pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut); 2371 } 2372 } 2373 } 2374 2375 /* 2376 ** Search the list of WhereLoops in *ppPrev looking for one that can be 2377 ** replaced by pTemplate. 2378 ** 2379 ** Return NULL if pTemplate does not belong on the WhereLoop list. 2380 ** In other words if pTemplate ought to be dropped from further consideration. 2381 ** 2382 ** If pX is a WhereLoop that pTemplate can replace, then return the 2383 ** link that points to pX. 2384 ** 2385 ** If pTemplate cannot replace any existing element of the list but needs 2386 ** to be added to the list as a new entry, then return a pointer to the 2387 ** tail of the list. 2388 */ 2389 static WhereLoop **whereLoopFindLesser( 2390 WhereLoop **ppPrev, 2391 const WhereLoop *pTemplate 2392 ){ 2393 WhereLoop *p; 2394 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 2395 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 2396 /* If either the iTab or iSortIdx values for two WhereLoop are different 2397 ** then those WhereLoops need to be considered separately. Neither is 2398 ** a candidate to replace the other. */ 2399 continue; 2400 } 2401 /* In the current implementation, the rSetup value is either zero 2402 ** or the cost of building an automatic index (NlogN) and the NlogN 2403 ** is the same for compatible WhereLoops. */ 2404 assert( p->rSetup==0 || pTemplate->rSetup==0 2405 || p->rSetup==pTemplate->rSetup ); 2406 2407 /* whereLoopAddBtree() always generates and inserts the automatic index 2408 ** case first. Hence compatible candidate WhereLoops never have a larger 2409 ** rSetup. Call this SETUP-INVARIANT */ 2410 assert( p->rSetup>=pTemplate->rSetup ); 2411 2412 /* Any loop using an appliation-defined index (or PRIMARY KEY or 2413 ** UNIQUE constraint) with one or more == constraints is better 2414 ** than an automatic index. Unless it is a skip-scan. */ 2415 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 2416 && (pTemplate->nSkip)==0 2417 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 2418 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 2419 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 2420 ){ 2421 break; 2422 } 2423 2424 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 2425 ** discarded. WhereLoop p is better if: 2426 ** (1) p has no more dependencies than pTemplate, and 2427 ** (2) p has an equal or lower cost than pTemplate 2428 */ 2429 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 2430 && p->rSetup<=pTemplate->rSetup /* (2a) */ 2431 && p->rRun<=pTemplate->rRun /* (2b) */ 2432 && p->nOut<=pTemplate->nOut /* (2c) */ 2433 ){ 2434 return 0; /* Discard pTemplate */ 2435 } 2436 2437 /* If pTemplate is always better than p, then cause p to be overwritten 2438 ** with pTemplate. pTemplate is better than p if: 2439 ** (1) pTemplate has no more dependences than p, and 2440 ** (2) pTemplate has an equal or lower cost than p. 2441 */ 2442 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 2443 && p->rRun>=pTemplate->rRun /* (2a) */ 2444 && p->nOut>=pTemplate->nOut /* (2b) */ 2445 ){ 2446 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 2447 break; /* Cause p to be overwritten by pTemplate */ 2448 } 2449 } 2450 return ppPrev; 2451 } 2452 2453 /* 2454 ** Insert or replace a WhereLoop entry using the template supplied. 2455 ** 2456 ** An existing WhereLoop entry might be overwritten if the new template 2457 ** is better and has fewer dependencies. Or the template will be ignored 2458 ** and no insert will occur if an existing WhereLoop is faster and has 2459 ** fewer dependencies than the template. Otherwise a new WhereLoop is 2460 ** added based on the template. 2461 ** 2462 ** If pBuilder->pOrSet is not NULL then we care about only the 2463 ** prerequisites and rRun and nOut costs of the N best loops. That 2464 ** information is gathered in the pBuilder->pOrSet object. This special 2465 ** processing mode is used only for OR clause processing. 2466 ** 2467 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 2468 ** still might overwrite similar loops with the new template if the 2469 ** new template is better. Loops may be overwritten if the following 2470 ** conditions are met: 2471 ** 2472 ** (1) They have the same iTab. 2473 ** (2) They have the same iSortIdx. 2474 ** (3) The template has same or fewer dependencies than the current loop 2475 ** (4) The template has the same or lower cost than the current loop 2476 */ 2477 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 2478 WhereLoop **ppPrev, *p; 2479 WhereInfo *pWInfo = pBuilder->pWInfo; 2480 sqlite3 *db = pWInfo->pParse->db; 2481 int rc; 2482 2483 /* Stop the search once we hit the query planner search limit */ 2484 if( pBuilder->iPlanLimit==0 ){ 2485 WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n")); 2486 if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0; 2487 return SQLITE_DONE; 2488 } 2489 pBuilder->iPlanLimit--; 2490 2491 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 2492 2493 /* If pBuilder->pOrSet is defined, then only keep track of the costs 2494 ** and prereqs. 2495 */ 2496 if( pBuilder->pOrSet!=0 ){ 2497 if( pTemplate->nLTerm ){ 2498 #if WHERETRACE_ENABLED 2499 u16 n = pBuilder->pOrSet->n; 2500 int x = 2501 #endif 2502 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 2503 pTemplate->nOut); 2504 #if WHERETRACE_ENABLED /* 0x8 */ 2505 if( sqlite3WhereTrace & 0x8 ){ 2506 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 2507 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2508 } 2509 #endif 2510 } 2511 return SQLITE_OK; 2512 } 2513 2514 /* Look for an existing WhereLoop to replace with pTemplate 2515 */ 2516 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 2517 2518 if( ppPrev==0 ){ 2519 /* There already exists a WhereLoop on the list that is better 2520 ** than pTemplate, so just ignore pTemplate */ 2521 #if WHERETRACE_ENABLED /* 0x8 */ 2522 if( sqlite3WhereTrace & 0x8 ){ 2523 sqlite3DebugPrintf(" skip: "); 2524 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2525 } 2526 #endif 2527 return SQLITE_OK; 2528 }else{ 2529 p = *ppPrev; 2530 } 2531 2532 /* If we reach this point it means that either p[] should be overwritten 2533 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 2534 ** WhereLoop and insert it. 2535 */ 2536 #if WHERETRACE_ENABLED /* 0x8 */ 2537 if( sqlite3WhereTrace & 0x8 ){ 2538 if( p!=0 ){ 2539 sqlite3DebugPrintf("replace: "); 2540 sqlite3WhereLoopPrint(p, pBuilder->pWC); 2541 sqlite3DebugPrintf(" with: "); 2542 }else{ 2543 sqlite3DebugPrintf(" add: "); 2544 } 2545 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2546 } 2547 #endif 2548 if( p==0 ){ 2549 /* Allocate a new WhereLoop to add to the end of the list */ 2550 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); 2551 if( p==0 ) return SQLITE_NOMEM_BKPT; 2552 whereLoopInit(p); 2553 p->pNextLoop = 0; 2554 }else{ 2555 /* We will be overwriting WhereLoop p[]. But before we do, first 2556 ** go through the rest of the list and delete any other entries besides 2557 ** p[] that are also supplated by pTemplate */ 2558 WhereLoop **ppTail = &p->pNextLoop; 2559 WhereLoop *pToDel; 2560 while( *ppTail ){ 2561 ppTail = whereLoopFindLesser(ppTail, pTemplate); 2562 if( ppTail==0 ) break; 2563 pToDel = *ppTail; 2564 if( pToDel==0 ) break; 2565 *ppTail = pToDel->pNextLoop; 2566 #if WHERETRACE_ENABLED /* 0x8 */ 2567 if( sqlite3WhereTrace & 0x8 ){ 2568 sqlite3DebugPrintf(" delete: "); 2569 sqlite3WhereLoopPrint(pToDel, pBuilder->pWC); 2570 } 2571 #endif 2572 whereLoopDelete(db, pToDel); 2573 } 2574 } 2575 rc = whereLoopXfer(db, p, pTemplate); 2576 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2577 Index *pIndex = p->u.btree.pIndex; 2578 if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){ 2579 p->u.btree.pIndex = 0; 2580 } 2581 } 2582 return rc; 2583 } 2584 2585 /* 2586 ** Adjust the WhereLoop.nOut value downward to account for terms of the 2587 ** WHERE clause that reference the loop but which are not used by an 2588 ** index. 2589 * 2590 ** For every WHERE clause term that is not used by the index 2591 ** and which has a truth probability assigned by one of the likelihood(), 2592 ** likely(), or unlikely() SQL functions, reduce the estimated number 2593 ** of output rows by the probability specified. 2594 ** 2595 ** TUNING: For every WHERE clause term that is not used by the index 2596 ** and which does not have an assigned truth probability, heuristics 2597 ** described below are used to try to estimate the truth probability. 2598 ** TODO --> Perhaps this is something that could be improved by better 2599 ** table statistics. 2600 ** 2601 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 2602 ** value corresponds to -1 in LogEst notation, so this means decrement 2603 ** the WhereLoop.nOut field for every such WHERE clause term. 2604 ** 2605 ** Heuristic 2: If there exists one or more WHERE clause terms of the 2606 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 2607 ** final output row estimate is no greater than 1/4 of the total number 2608 ** of rows in the table. In other words, assume that x==EXPR will filter 2609 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 2610 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 2611 ** on the "x" column and so in that case only cap the output row estimate 2612 ** at 1/2 instead of 1/4. 2613 */ 2614 static void whereLoopOutputAdjust( 2615 WhereClause *pWC, /* The WHERE clause */ 2616 WhereLoop *pLoop, /* The loop to adjust downward */ 2617 LogEst nRow /* Number of rows in the entire table */ 2618 ){ 2619 WhereTerm *pTerm, *pX; 2620 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 2621 int i, j; 2622 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 2623 2624 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2625 for(i=pWC->nBase, pTerm=pWC->a; i>0; i--, pTerm++){ 2626 assert( pTerm!=0 ); 2627 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 2628 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 2629 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) continue; 2630 for(j=pLoop->nLTerm-1; j>=0; j--){ 2631 pX = pLoop->aLTerm[j]; 2632 if( pX==0 ) continue; 2633 if( pX==pTerm ) break; 2634 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 2635 } 2636 if( j<0 ){ 2637 if( pLoop->maskSelf==pTerm->prereqAll ){ 2638 /* If there are extra terms in the WHERE clause not used by an index 2639 ** that depend only on the table being scanned, and that will tend to 2640 ** cause many rows to be omitted, then mark that table as 2641 ** "self-culling". 2642 ** 2643 ** 2022-03-24: Self-culling only applies if either the extra terms 2644 ** are straight comparison operators that are non-true with NULL 2645 ** operand, or if the loop is not an OUTER JOIN. 2646 */ 2647 if( (pTerm->eOperator & 0x3f)!=0 2648 || (pWC->pWInfo->pTabList->a[pLoop->iTab].fg.jointype 2649 & (JT_LEFT|JT_LTORJ))==0 2650 ){ 2651 pLoop->wsFlags |= WHERE_SELFCULL; 2652 } 2653 } 2654 if( pTerm->truthProb<=0 ){ 2655 /* If a truth probability is specified using the likelihood() hints, 2656 ** then use the probability provided by the application. */ 2657 pLoop->nOut += pTerm->truthProb; 2658 }else{ 2659 /* In the absence of explicit truth probabilities, use heuristics to 2660 ** guess a reasonable truth probability. */ 2661 pLoop->nOut--; 2662 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 2663 && (pTerm->wtFlags & TERM_HIGHTRUTH)==0 /* tag-20200224-1 */ 2664 ){ 2665 Expr *pRight = pTerm->pExpr->pRight; 2666 int k = 0; 2667 testcase( pTerm->pExpr->op==TK_IS ); 2668 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 2669 k = 10; 2670 }else{ 2671 k = 20; 2672 } 2673 if( iReduce<k ){ 2674 pTerm->wtFlags |= TERM_HEURTRUTH; 2675 iReduce = k; 2676 } 2677 } 2678 } 2679 } 2680 } 2681 if( pLoop->nOut > nRow-iReduce ){ 2682 pLoop->nOut = nRow - iReduce; 2683 } 2684 } 2685 2686 /* 2687 ** Term pTerm is a vector range comparison operation. The first comparison 2688 ** in the vector can be optimized using column nEq of the index. This 2689 ** function returns the total number of vector elements that can be used 2690 ** as part of the range comparison. 2691 ** 2692 ** For example, if the query is: 2693 ** 2694 ** WHERE a = ? AND (b, c, d) > (?, ?, ?) 2695 ** 2696 ** and the index: 2697 ** 2698 ** CREATE INDEX ... ON (a, b, c, d, e) 2699 ** 2700 ** then this function would be invoked with nEq=1. The value returned in 2701 ** this case is 3. 2702 */ 2703 static int whereRangeVectorLen( 2704 Parse *pParse, /* Parsing context */ 2705 int iCur, /* Cursor open on pIdx */ 2706 Index *pIdx, /* The index to be used for a inequality constraint */ 2707 int nEq, /* Number of prior equality constraints on same index */ 2708 WhereTerm *pTerm /* The vector inequality constraint */ 2709 ){ 2710 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft); 2711 int i; 2712 2713 nCmp = MIN(nCmp, (pIdx->nColumn - nEq)); 2714 for(i=1; i<nCmp; i++){ 2715 /* Test if comparison i of pTerm is compatible with column (i+nEq) 2716 ** of the index. If not, exit the loop. */ 2717 char aff; /* Comparison affinity */ 2718 char idxaff = 0; /* Indexed columns affinity */ 2719 CollSeq *pColl; /* Comparison collation sequence */ 2720 Expr *pLhs, *pRhs; 2721 2722 assert( ExprUseXList(pTerm->pExpr->pLeft) ); 2723 pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr; 2724 pRhs = pTerm->pExpr->pRight; 2725 if( ExprUseXSelect(pRhs) ){ 2726 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr; 2727 }else{ 2728 pRhs = pRhs->x.pList->a[i].pExpr; 2729 } 2730 2731 /* Check that the LHS of the comparison is a column reference to 2732 ** the right column of the right source table. And that the sort 2733 ** order of the index column is the same as the sort order of the 2734 ** leftmost index column. */ 2735 if( pLhs->op!=TK_COLUMN 2736 || pLhs->iTable!=iCur 2737 || pLhs->iColumn!=pIdx->aiColumn[i+nEq] 2738 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq] 2739 ){ 2740 break; 2741 } 2742 2743 testcase( pLhs->iColumn==XN_ROWID ); 2744 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs)); 2745 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn); 2746 if( aff!=idxaff ) break; 2747 2748 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2749 if( pColl==0 ) break; 2750 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; 2751 } 2752 return i; 2753 } 2754 2755 /* 2756 ** Adjust the cost C by the costMult facter T. This only occurs if 2757 ** compiled with -DSQLITE_ENABLE_COSTMULT 2758 */ 2759 #ifdef SQLITE_ENABLE_COSTMULT 2760 # define ApplyCostMultiplier(C,T) C += T 2761 #else 2762 # define ApplyCostMultiplier(C,T) 2763 #endif 2764 2765 /* 2766 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 2767 ** index pIndex. Try to match one more. 2768 ** 2769 ** When this function is called, pBuilder->pNew->nOut contains the 2770 ** number of rows expected to be visited by filtering using the nEq 2771 ** terms only. If it is modified, this value is restored before this 2772 ** function returns. 2773 ** 2774 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is 2775 ** a fake index used for the INTEGER PRIMARY KEY. 2776 */ 2777 static int whereLoopAddBtreeIndex( 2778 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 2779 SrcItem *pSrc, /* FROM clause term being analyzed */ 2780 Index *pProbe, /* An index on pSrc */ 2781 LogEst nInMul /* log(Number of iterations due to IN) */ 2782 ){ 2783 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ 2784 Parse *pParse = pWInfo->pParse; /* Parsing context */ 2785 sqlite3 *db = pParse->db; /* Database connection malloc context */ 2786 WhereLoop *pNew; /* Template WhereLoop under construction */ 2787 WhereTerm *pTerm; /* A WhereTerm under consideration */ 2788 int opMask; /* Valid operators for constraints */ 2789 WhereScan scan; /* Iterator for WHERE terms */ 2790 Bitmask saved_prereq; /* Original value of pNew->prereq */ 2791 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 2792 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 2793 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */ 2794 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */ 2795 u16 saved_nSkip; /* Original value of pNew->nSkip */ 2796 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 2797 LogEst saved_nOut; /* Original value of pNew->nOut */ 2798 int rc = SQLITE_OK; /* Return code */ 2799 LogEst rSize; /* Number of rows in the table */ 2800 LogEst rLogSize; /* Logarithm of table size */ 2801 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 2802 2803 pNew = pBuilder->pNew; 2804 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 2805 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n", 2806 pProbe->pTable->zName,pProbe->zName, 2807 pNew->u.btree.nEq, pNew->nSkip, pNew->rRun)); 2808 2809 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 2810 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 2811 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 2812 opMask = WO_LT|WO_LE; 2813 }else{ 2814 assert( pNew->u.btree.nBtm==0 ); 2815 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; 2816 } 2817 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 2818 2819 assert( pNew->u.btree.nEq<pProbe->nColumn ); 2820 assert( pNew->u.btree.nEq<pProbe->nKeyCol 2821 || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY ); 2822 2823 saved_nEq = pNew->u.btree.nEq; 2824 saved_nBtm = pNew->u.btree.nBtm; 2825 saved_nTop = pNew->u.btree.nTop; 2826 saved_nSkip = pNew->nSkip; 2827 saved_nLTerm = pNew->nLTerm; 2828 saved_wsFlags = pNew->wsFlags; 2829 saved_prereq = pNew->prereq; 2830 saved_nOut = pNew->nOut; 2831 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, 2832 opMask, pProbe); 2833 pNew->rSetup = 0; 2834 rSize = pProbe->aiRowLogEst[0]; 2835 rLogSize = estLog(rSize); 2836 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 2837 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 2838 LogEst rCostIdx; 2839 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 2840 int nIn = 0; 2841 #ifdef SQLITE_ENABLE_STAT4 2842 int nRecValid = pBuilder->nRecValid; 2843 #endif 2844 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 2845 && indexColumnNotNull(pProbe, saved_nEq) 2846 ){ 2847 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 2848 } 2849 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2850 2851 /* Do not allow the upper bound of a LIKE optimization range constraint 2852 ** to mix with a lower range bound from some other source */ 2853 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 2854 2855 /* tag-20191211-001: Do not allow constraints from the WHERE clause to 2856 ** be used by the right table of a LEFT JOIN nor by the left table of a 2857 ** RIGHT JOIN. Only constraints in the ON clause are allowed. 2858 ** See tag-20191211-002 for the vtab equivalent. 2859 ** 2860 ** 2022-06-06: See https://sqlite.org/forum/forumpost/206d99a16dd9212f 2861 ** for an example of a WHERE clause constraints that may not be used on 2862 ** the right table of a RIGHT JOIN because the constraint implies a 2863 ** not-NULL condition on the left table of the RIGHT JOIN. 2864 ** 2865 ** 2022-06-10: The same condition applies to termCanDriveIndex() above. 2866 ** https://sqlite.org/forum/forumpost/51e6959f61 2867 */ 2868 if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ){ 2869 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT ); 2870 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_RIGHT ); 2871 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ ); 2872 testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) 2873 testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) ); 2874 if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) 2875 || pTerm->pExpr->w.iJoin != pSrc->iCursor 2876 ){ 2877 continue; 2878 } 2879 } 2880 2881 if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){ 2882 pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE; 2883 }else{ 2884 pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED; 2885 } 2886 pNew->wsFlags = saved_wsFlags; 2887 pNew->u.btree.nEq = saved_nEq; 2888 pNew->u.btree.nBtm = saved_nBtm; 2889 pNew->u.btree.nTop = saved_nTop; 2890 pNew->nLTerm = saved_nLTerm; 2891 if( pNew->nLTerm>=pNew->nLSlot 2892 && whereLoopResize(db, pNew, pNew->nLTerm+1) 2893 ){ 2894 break; /* OOM while trying to enlarge the pNew->aLTerm array */ 2895 } 2896 pNew->aLTerm[pNew->nLTerm++] = pTerm; 2897 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 2898 2899 assert( nInMul==0 2900 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 2901 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 2902 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 2903 ); 2904 2905 if( eOp & WO_IN ){ 2906 Expr *pExpr = pTerm->pExpr; 2907 if( ExprUseXSelect(pExpr) ){ 2908 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 2909 int i; 2910 nIn = 46; assert( 46==sqlite3LogEst(25) ); 2911 2912 /* The expression may actually be of the form (x, y) IN (SELECT...). 2913 ** In this case there is a separate term for each of (x) and (y). 2914 ** However, the nIn multiplier should only be applied once, not once 2915 ** for each such term. The following loop checks that pTerm is the 2916 ** first such term in use, and sets nIn back to 0 if it is not. */ 2917 for(i=0; i<pNew->nLTerm-1; i++){ 2918 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0; 2919 } 2920 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2921 /* "x IN (value, value, ...)" */ 2922 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 2923 } 2924 if( pProbe->hasStat1 && rLogSize>=10 ){ 2925 LogEst M, logK, x; 2926 /* Let: 2927 ** N = the total number of rows in the table 2928 ** K = the number of entries on the RHS of the IN operator 2929 ** M = the number of rows in the table that match terms to the 2930 ** to the left in the same index. If the IN operator is on 2931 ** the left-most index column, M==N. 2932 ** 2933 ** Given the definitions above, it is better to omit the IN operator 2934 ** from the index lookup and instead do a scan of the M elements, 2935 ** testing each scanned row against the IN operator separately, if: 2936 ** 2937 ** M*log(K) < K*log(N) 2938 ** 2939 ** Our estimates for M, K, and N might be inaccurate, so we build in 2940 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator 2941 ** with the index, as using an index has better worst-case behavior. 2942 ** If we do not have real sqlite_stat1 data, always prefer to use 2943 ** the index. Do not bother with this optimization on very small 2944 ** tables (less than 2 rows) as it is pointless in that case. 2945 */ 2946 M = pProbe->aiRowLogEst[saved_nEq]; 2947 logK = estLog(nIn); 2948 /* TUNING v----- 10 to bias toward indexed IN */ 2949 x = M + logK + 10 - (nIn + rLogSize); 2950 if( x>=0 ){ 2951 WHERETRACE(0x40, 2952 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) " 2953 "prefers indexed lookup\n", 2954 saved_nEq, M, logK, nIn, rLogSize, x)); 2955 }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){ 2956 WHERETRACE(0x40, 2957 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d" 2958 " nInMul=%d) prefers skip-scan\n", 2959 saved_nEq, M, logK, nIn, rLogSize, x, nInMul)); 2960 pNew->wsFlags |= WHERE_IN_SEEKSCAN; 2961 }else{ 2962 WHERETRACE(0x40, 2963 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d" 2964 " nInMul=%d) prefers normal scan\n", 2965 saved_nEq, M, logK, nIn, rLogSize, x, nInMul)); 2966 continue; 2967 } 2968 } 2969 pNew->wsFlags |= WHERE_COLUMN_IN; 2970 }else if( eOp & (WO_EQ|WO_IS) ){ 2971 int iCol = pProbe->aiColumn[saved_nEq]; 2972 pNew->wsFlags |= WHERE_COLUMN_EQ; 2973 assert( saved_nEq==pNew->u.btree.nEq ); 2974 if( iCol==XN_ROWID 2975 || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) 2976 ){ 2977 if( iCol==XN_ROWID || pProbe->uniqNotNull 2978 || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ) 2979 ){ 2980 pNew->wsFlags |= WHERE_ONEROW; 2981 }else{ 2982 pNew->wsFlags |= WHERE_UNQ_WANTED; 2983 } 2984 } 2985 if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS; 2986 }else if( eOp & WO_ISNULL ){ 2987 pNew->wsFlags |= WHERE_COLUMN_NULL; 2988 }else{ 2989 int nVecLen = whereRangeVectorLen( 2990 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2991 ); 2992 if( eOp & (WO_GT|WO_GE) ){ 2993 testcase( eOp & WO_GT ); 2994 testcase( eOp & WO_GE ); 2995 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 2996 pNew->u.btree.nBtm = nVecLen; 2997 pBtm = pTerm; 2998 pTop = 0; 2999 if( pTerm->wtFlags & TERM_LIKEOPT ){ 3000 /* Range constraints that come from the LIKE optimization are 3001 ** always used in pairs. */ 3002 pTop = &pTerm[1]; 3003 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 3004 assert( pTop->wtFlags & TERM_LIKEOPT ); 3005 assert( pTop->eOperator==WO_LT ); 3006 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 3007 pNew->aLTerm[pNew->nLTerm++] = pTop; 3008 pNew->wsFlags |= WHERE_TOP_LIMIT; 3009 pNew->u.btree.nTop = 1; 3010 } 3011 }else{ 3012 assert( eOp & (WO_LT|WO_LE) ); 3013 testcase( eOp & WO_LT ); 3014 testcase( eOp & WO_LE ); 3015 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 3016 pNew->u.btree.nTop = nVecLen; 3017 pTop = pTerm; 3018 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 3019 pNew->aLTerm[pNew->nLTerm-2] : 0; 3020 } 3021 } 3022 3023 /* At this point pNew->nOut is set to the number of rows expected to 3024 ** be visited by the index scan before considering term pTerm, or the 3025 ** values of nIn and nInMul. In other words, assuming that all 3026 ** "x IN(...)" terms are replaced with "x = ?". This block updates 3027 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 3028 assert( pNew->nOut==saved_nOut ); 3029 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 3030 /* Adjust nOut using stat4 data. Or, if there is no stat4 3031 ** data, using some other estimate. */ 3032 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 3033 }else{ 3034 int nEq = ++pNew->u.btree.nEq; 3035 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); 3036 3037 assert( pNew->nOut==saved_nOut ); 3038 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ 3039 assert( (eOp & WO_IN) || nIn==0 ); 3040 testcase( eOp & WO_IN ); 3041 pNew->nOut += pTerm->truthProb; 3042 pNew->nOut -= nIn; 3043 }else{ 3044 #ifdef SQLITE_ENABLE_STAT4 3045 tRowcnt nOut = 0; 3046 if( nInMul==0 3047 && pProbe->nSample 3048 && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol) 3049 && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr)) 3050 && OptimizationEnabled(db, SQLITE_Stat4) 3051 ){ 3052 Expr *pExpr = pTerm->pExpr; 3053 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ 3054 testcase( eOp & WO_EQ ); 3055 testcase( eOp & WO_IS ); 3056 testcase( eOp & WO_ISNULL ); 3057 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 3058 }else{ 3059 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 3060 } 3061 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 3062 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 3063 if( nOut ){ 3064 pNew->nOut = sqlite3LogEst(nOut); 3065 if( nEq==1 3066 /* TUNING: Mark terms as "low selectivity" if they seem likely 3067 ** to be true for half or more of the rows in the table. 3068 ** See tag-202002240-1 */ 3069 && pNew->nOut+10 > pProbe->aiRowLogEst[0] 3070 ){ 3071 #if WHERETRACE_ENABLED /* 0x01 */ 3072 if( sqlite3WhereTrace & 0x01 ){ 3073 sqlite3DebugPrintf( 3074 "STAT4 determines term has low selectivity:\n"); 3075 sqlite3WhereTermPrint(pTerm, 999); 3076 } 3077 #endif 3078 pTerm->wtFlags |= TERM_HIGHTRUTH; 3079 if( pTerm->wtFlags & TERM_HEURTRUTH ){ 3080 /* If the term has previously been used with an assumption of 3081 ** higher selectivity, then set the flag to rerun the 3082 ** loop computations. */ 3083 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS; 3084 } 3085 } 3086 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 3087 pNew->nOut -= nIn; 3088 } 3089 } 3090 if( nOut==0 ) 3091 #endif 3092 { 3093 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 3094 if( eOp & WO_ISNULL ){ 3095 /* TUNING: If there is no likelihood() value, assume that a 3096 ** "col IS NULL" expression matches twice as many rows 3097 ** as (col=?). */ 3098 pNew->nOut += 10; 3099 } 3100 } 3101 } 3102 } 3103 3104 /* Set rCostIdx to the cost of visiting selected rows in index. Add 3105 ** it to pNew->rRun, which is currently set to the cost of the index 3106 ** seek only. Then, if this is a non-covering index, add the cost of 3107 ** visiting the rows in the main table. */ 3108 assert( pSrc->pTab->szTabRow>0 ); 3109 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 3110 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); 3111 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ 3112 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 3113 } 3114 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 3115 3116 nOutUnadjusted = pNew->nOut; 3117 pNew->rRun += nInMul + nIn; 3118 pNew->nOut += nInMul + nIn; 3119 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 3120 rc = whereLoopInsert(pBuilder, pNew); 3121 3122 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 3123 pNew->nOut = saved_nOut; 3124 }else{ 3125 pNew->nOut = nOutUnadjusted; 3126 } 3127 3128 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 3129 && pNew->u.btree.nEq<pProbe->nColumn 3130 && (pNew->u.btree.nEq<pProbe->nKeyCol || 3131 pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY) 3132 ){ 3133 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 3134 } 3135 pNew->nOut = saved_nOut; 3136 #ifdef SQLITE_ENABLE_STAT4 3137 pBuilder->nRecValid = nRecValid; 3138 #endif 3139 } 3140 pNew->prereq = saved_prereq; 3141 pNew->u.btree.nEq = saved_nEq; 3142 pNew->u.btree.nBtm = saved_nBtm; 3143 pNew->u.btree.nTop = saved_nTop; 3144 pNew->nSkip = saved_nSkip; 3145 pNew->wsFlags = saved_wsFlags; 3146 pNew->nOut = saved_nOut; 3147 pNew->nLTerm = saved_nLTerm; 3148 3149 /* Consider using a skip-scan if there are no WHERE clause constraints 3150 ** available for the left-most terms of the index, and if the average 3151 ** number of repeats in the left-most terms is at least 18. 3152 ** 3153 ** The magic number 18 is selected on the basis that scanning 17 rows 3154 ** is almost always quicker than an index seek (even though if the index 3155 ** contains fewer than 2^17 rows we assume otherwise in other parts of 3156 ** the code). And, even if it is not, it should not be too much slower. 3157 ** On the other hand, the extra seeks could end up being significantly 3158 ** more expensive. */ 3159 assert( 42==sqlite3LogEst(18) ); 3160 if( saved_nEq==saved_nSkip 3161 && saved_nEq+1<pProbe->nKeyCol 3162 && saved_nEq==pNew->nLTerm 3163 && pProbe->noSkipScan==0 3164 && pProbe->hasStat1!=0 3165 && OptimizationEnabled(db, SQLITE_SkipScan) 3166 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 3167 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 3168 ){ 3169 LogEst nIter; 3170 pNew->u.btree.nEq++; 3171 pNew->nSkip++; 3172 pNew->aLTerm[pNew->nLTerm++] = 0; 3173 pNew->wsFlags |= WHERE_SKIPSCAN; 3174 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 3175 pNew->nOut -= nIter; 3176 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 3177 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 3178 nIter += 5; 3179 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 3180 pNew->nOut = saved_nOut; 3181 pNew->u.btree.nEq = saved_nEq; 3182 pNew->nSkip = saved_nSkip; 3183 pNew->wsFlags = saved_wsFlags; 3184 } 3185 3186 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n", 3187 pProbe->pTable->zName, pProbe->zName, saved_nEq, rc)); 3188 return rc; 3189 } 3190 3191 /* 3192 ** Return True if it is possible that pIndex might be useful in 3193 ** implementing the ORDER BY clause in pBuilder. 3194 ** 3195 ** Return False if pBuilder does not contain an ORDER BY clause or 3196 ** if there is no way for pIndex to be useful in implementing that 3197 ** ORDER BY clause. 3198 */ 3199 static int indexMightHelpWithOrderBy( 3200 WhereLoopBuilder *pBuilder, 3201 Index *pIndex, 3202 int iCursor 3203 ){ 3204 ExprList *pOB; 3205 ExprList *aColExpr; 3206 int ii, jj; 3207 3208 if( pIndex->bUnordered ) return 0; 3209 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 3210 for(ii=0; ii<pOB->nExpr; ii++){ 3211 Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr); 3212 if( NEVER(pExpr==0) ) continue; 3213 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ 3214 if( pExpr->iColumn<0 ) return 1; 3215 for(jj=0; jj<pIndex->nKeyCol; jj++){ 3216 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 3217 } 3218 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ 3219 for(jj=0; jj<pIndex->nKeyCol; jj++){ 3220 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; 3221 if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ 3222 return 1; 3223 } 3224 } 3225 } 3226 } 3227 return 0; 3228 } 3229 3230 /* Check to see if a partial index with pPartIndexWhere can be used 3231 ** in the current query. Return true if it can be and false if not. 3232 */ 3233 static int whereUsablePartialIndex( 3234 int iTab, /* The table for which we want an index */ 3235 u8 jointype, /* The JT_* flags on the join */ 3236 WhereClause *pWC, /* The WHERE clause of the query */ 3237 Expr *pWhere /* The WHERE clause from the partial index */ 3238 ){ 3239 int i; 3240 WhereTerm *pTerm; 3241 Parse *pParse; 3242 3243 if( jointype & JT_LTORJ ) return 0; 3244 pParse = pWC->pWInfo->pParse; 3245 while( pWhere->op==TK_AND ){ 3246 if( !whereUsablePartialIndex(iTab,jointype,pWC,pWhere->pLeft) ) return 0; 3247 pWhere = pWhere->pRight; 3248 } 3249 if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0; 3250 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 3251 Expr *pExpr; 3252 pExpr = pTerm->pExpr; 3253 if( (!ExprHasProperty(pExpr, EP_OuterON) || pExpr->w.iJoin==iTab) 3254 && ((jointype & JT_OUTER)==0 || ExprHasProperty(pExpr, EP_OuterON)) 3255 && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab) 3256 && (pTerm->wtFlags & TERM_VNULL)==0 3257 ){ 3258 return 1; 3259 } 3260 } 3261 return 0; 3262 } 3263 3264 /* 3265 ** Add all WhereLoop objects for a single table of the join where the table 3266 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be 3267 ** a b-tree table, not a virtual table. 3268 ** 3269 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 3270 ** are calculated as follows: 3271 ** 3272 ** For a full scan, assuming the table (or index) contains nRow rows: 3273 ** 3274 ** cost = nRow * 3.0 // full-table scan 3275 ** cost = nRow * K // scan of covering index 3276 ** cost = nRow * (K+3.0) // scan of non-covering index 3277 ** 3278 ** where K is a value between 1.1 and 3.0 set based on the relative 3279 ** estimated average size of the index and table records. 3280 ** 3281 ** For an index scan, where nVisit is the number of index rows visited 3282 ** by the scan, and nSeek is the number of seek operations required on 3283 ** the index b-tree: 3284 ** 3285 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 3286 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 3287 ** 3288 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 3289 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 3290 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 3291 ** 3292 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 3293 ** of uncertainty. For this reason, scoring is designed to pick plans that 3294 ** "do the least harm" if the estimates are inaccurate. For example, a 3295 ** log(nRow) factor is omitted from a non-covering index scan in order to 3296 ** bias the scoring in favor of using an index, since the worst-case 3297 ** performance of using an index is far better than the worst-case performance 3298 ** of a full table scan. 3299 */ 3300 static int whereLoopAddBtree( 3301 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3302 Bitmask mPrereq /* Extra prerequesites for using this table */ 3303 ){ 3304 WhereInfo *pWInfo; /* WHERE analysis context */ 3305 Index *pProbe; /* An index we are evaluating */ 3306 Index sPk; /* A fake index object for the primary key */ 3307 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 3308 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 3309 SrcList *pTabList; /* The FROM clause */ 3310 SrcItem *pSrc; /* The FROM clause btree term to add */ 3311 WhereLoop *pNew; /* Template WhereLoop object */ 3312 int rc = SQLITE_OK; /* Return code */ 3313 int iSortIdx = 1; /* Index number */ 3314 int b; /* A boolean value */ 3315 LogEst rSize; /* number of rows in the table */ 3316 WhereClause *pWC; /* The parsed WHERE clause */ 3317 Table *pTab; /* Table being queried */ 3318 3319 pNew = pBuilder->pNew; 3320 pWInfo = pBuilder->pWInfo; 3321 pTabList = pWInfo->pTabList; 3322 pSrc = pTabList->a + pNew->iTab; 3323 pTab = pSrc->pTab; 3324 pWC = pBuilder->pWC; 3325 assert( !IsVirtual(pSrc->pTab) ); 3326 3327 if( pSrc->fg.isIndexedBy ){ 3328 assert( pSrc->fg.isCte==0 ); 3329 /* An INDEXED BY clause specifies a particular index to use */ 3330 pProbe = pSrc->u2.pIBIndex; 3331 }else if( !HasRowid(pTab) ){ 3332 pProbe = pTab->pIndex; 3333 }else{ 3334 /* There is no INDEXED BY clause. Create a fake Index object in local 3335 ** variable sPk to represent the rowid primary key index. Make this 3336 ** fake index the first in a chain of Index objects with all of the real 3337 ** indices to follow */ 3338 Index *pFirst; /* First of real indices on the table */ 3339 memset(&sPk, 0, sizeof(Index)); 3340 sPk.nKeyCol = 1; 3341 sPk.nColumn = 1; 3342 sPk.aiColumn = &aiColumnPk; 3343 sPk.aiRowLogEst = aiRowEstPk; 3344 sPk.onError = OE_Replace; 3345 sPk.pTable = pTab; 3346 sPk.szIdxRow = pTab->szTabRow; 3347 sPk.idxType = SQLITE_IDXTYPE_IPK; 3348 aiRowEstPk[0] = pTab->nRowLogEst; 3349 aiRowEstPk[1] = 0; 3350 pFirst = pSrc->pTab->pIndex; 3351 if( pSrc->fg.notIndexed==0 ){ 3352 /* The real indices of the table are only considered if the 3353 ** NOT INDEXED qualifier is omitted from the FROM clause */ 3354 sPk.pNext = pFirst; 3355 } 3356 pProbe = &sPk; 3357 } 3358 rSize = pTab->nRowLogEst; 3359 3360 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 3361 /* Automatic indexes */ 3362 if( !pBuilder->pOrSet /* Not part of an OR optimization */ 3363 && (pWInfo->wctrlFlags & (WHERE_RIGHT_JOIN|WHERE_OR_SUBCLAUSE))==0 3364 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 3365 && !pSrc->fg.isIndexedBy /* Has no INDEXED BY clause */ 3366 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ 3367 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ 3368 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ 3369 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ 3370 && (pSrc->fg.jointype & JT_RIGHT)==0 /* Not the right tab of a RIGHT JOIN */ 3371 ){ 3372 /* Generate auto-index WhereLoops */ 3373 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 3374 WhereTerm *pTerm; 3375 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 3376 rLogSize = estLog(rSize); 3377 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 3378 if( pTerm->prereqRight & pNew->maskSelf ) continue; 3379 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 3380 pNew->u.btree.nEq = 1; 3381 pNew->nSkip = 0; 3382 pNew->u.btree.pIndex = 0; 3383 pNew->nLTerm = 1; 3384 pNew->aLTerm[0] = pTerm; 3385 /* TUNING: One-time cost for computing the automatic index is 3386 ** estimated to be X*N*log2(N) where N is the number of rows in 3387 ** the table being indexed and where X is 7 (LogEst=28) for normal 3388 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value 3389 ** of X is smaller for views and subqueries so that the query planner 3390 ** will be more aggressive about generating automatic indexes for 3391 ** those objects, since there is no opportunity to add schema 3392 ** indexes on subqueries and views. */ 3393 pNew->rSetup = rLogSize + rSize; 3394 if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){ 3395 pNew->rSetup += 28; 3396 }else{ 3397 pNew->rSetup -= 10; 3398 } 3399 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 3400 if( pNew->rSetup<0 ) pNew->rSetup = 0; 3401 /* TUNING: Each index lookup yields 20 rows in the table. This 3402 ** is more than the usual guess of 10 rows, since we have no way 3403 ** of knowing how selective the index will ultimately be. It would 3404 ** not be unreasonable to make this value much larger. */ 3405 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 3406 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 3407 pNew->wsFlags = WHERE_AUTO_INDEX; 3408 pNew->prereq = mPrereq | pTerm->prereqRight; 3409 rc = whereLoopInsert(pBuilder, pNew); 3410 } 3411 } 3412 } 3413 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 3414 3415 /* Loop over all indices. If there was an INDEXED BY clause, then only 3416 ** consider index pProbe. */ 3417 for(; rc==SQLITE_OK && pProbe; 3418 pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++ 3419 ){ 3420 if( pProbe->pPartIdxWhere!=0 3421 && !whereUsablePartialIndex(pSrc->iCursor, pSrc->fg.jointype, pWC, 3422 pProbe->pPartIdxWhere) 3423 ){ 3424 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 3425 continue; /* Partial index inappropriate for this query */ 3426 } 3427 if( pProbe->bNoQuery ) continue; 3428 rSize = pProbe->aiRowLogEst[0]; 3429 pNew->u.btree.nEq = 0; 3430 pNew->u.btree.nBtm = 0; 3431 pNew->u.btree.nTop = 0; 3432 pNew->nSkip = 0; 3433 pNew->nLTerm = 0; 3434 pNew->iSortIdx = 0; 3435 pNew->rSetup = 0; 3436 pNew->prereq = mPrereq; 3437 pNew->nOut = rSize; 3438 pNew->u.btree.pIndex = pProbe; 3439 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 3440 3441 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 3442 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 3443 if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){ 3444 /* Integer primary key index */ 3445 pNew->wsFlags = WHERE_IPK; 3446 3447 /* Full table scan */ 3448 pNew->iSortIdx = b ? iSortIdx : 0; 3449 /* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an 3450 ** extra cost designed to discourage the use of full table scans, 3451 ** since index lookups have better worst-case performance if our 3452 ** stat guesses are wrong. Reduce the 3.0 penalty slightly 3453 ** (to 2.75) if we have valid STAT4 information for the table. 3454 ** At 2.75, a full table scan is preferred over using an index on 3455 ** a column with just two distinct values where each value has about 3456 ** an equal number of appearances. Without STAT4 data, we still want 3457 ** to use an index in that case, since the constraint might be for 3458 ** the scarcer of the two values, and in that case an index lookup is 3459 ** better. 3460 */ 3461 #ifdef SQLITE_ENABLE_STAT4 3462 pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0); 3463 #else 3464 pNew->rRun = rSize + 16; 3465 #endif 3466 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3467 whereLoopOutputAdjust(pWC, pNew, rSize); 3468 rc = whereLoopInsert(pBuilder, pNew); 3469 pNew->nOut = rSize; 3470 if( rc ) break; 3471 }else{ 3472 Bitmask m; 3473 if( pProbe->isCovering ){ 3474 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 3475 m = 0; 3476 }else{ 3477 m = pSrc->colUsed & pProbe->colNotIdxed; 3478 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; 3479 } 3480 3481 /* Full scan via index */ 3482 if( b 3483 || !HasRowid(pTab) 3484 || pProbe->pPartIdxWhere!=0 3485 || pSrc->fg.isIndexedBy 3486 || ( m==0 3487 && pProbe->bUnordered==0 3488 && (pProbe->szIdxRow<pTab->szTabRow) 3489 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 3490 && sqlite3GlobalConfig.bUseCis 3491 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 3492 ) 3493 ){ 3494 pNew->iSortIdx = b ? iSortIdx : 0; 3495 3496 /* The cost of visiting the index rows is N*K, where K is 3497 ** between 1.1 and 3.0, depending on the relative sizes of the 3498 ** index and table rows. */ 3499 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 3500 if( m!=0 ){ 3501 /* If this is a non-covering index scan, add in the cost of 3502 ** doing table lookups. The cost will be 3x the number of 3503 ** lookups. Take into account WHERE clause terms that can be 3504 ** satisfied using just the index, and that do not require a 3505 ** table lookup. */ 3506 LogEst nLookup = rSize + 16; /* Base cost: N*3 */ 3507 int ii; 3508 int iCur = pSrc->iCursor; 3509 WhereClause *pWC2 = &pWInfo->sWC; 3510 for(ii=0; ii<pWC2->nTerm; ii++){ 3511 WhereTerm *pTerm = &pWC2->a[ii]; 3512 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){ 3513 break; 3514 } 3515 /* pTerm can be evaluated using just the index. So reduce 3516 ** the expected number of table lookups accordingly */ 3517 if( pTerm->truthProb<=0 ){ 3518 nLookup += pTerm->truthProb; 3519 }else{ 3520 nLookup--; 3521 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19; 3522 } 3523 } 3524 3525 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup); 3526 } 3527 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3528 whereLoopOutputAdjust(pWC, pNew, rSize); 3529 if( (pSrc->fg.jointype & JT_RIGHT)!=0 && pProbe->aColExpr ){ 3530 /* Do not do an SCAN of a index-on-expression in a RIGHT JOIN 3531 ** because the cursor used to access the index might not be 3532 ** positioned to the correct row during the right-join no-match 3533 ** loop. */ 3534 }else{ 3535 rc = whereLoopInsert(pBuilder, pNew); 3536 } 3537 pNew->nOut = rSize; 3538 if( rc ) break; 3539 } 3540 } 3541 3542 pBuilder->bldFlags1 = 0; 3543 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 3544 if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){ 3545 /* If a non-unique index is used, or if a prefix of the key for 3546 ** unique index is used (making the index functionally non-unique) 3547 ** then the sqlite_stat1 data becomes important for scoring the 3548 ** plan */ 3549 pTab->tabFlags |= TF_StatsUsed; 3550 } 3551 #ifdef SQLITE_ENABLE_STAT4 3552 sqlite3Stat4ProbeFree(pBuilder->pRec); 3553 pBuilder->nRecValid = 0; 3554 pBuilder->pRec = 0; 3555 #endif 3556 } 3557 return rc; 3558 } 3559 3560 #ifndef SQLITE_OMIT_VIRTUALTABLE 3561 3562 /* 3563 ** Return true if pTerm is a virtual table LIMIT or OFFSET term. 3564 */ 3565 static int isLimitTerm(WhereTerm *pTerm){ 3566 assert( pTerm->eOperator==WO_AUX || pTerm->eMatchOp==0 ); 3567 return pTerm->eMatchOp>=SQLITE_INDEX_CONSTRAINT_LIMIT 3568 && pTerm->eMatchOp<=SQLITE_INDEX_CONSTRAINT_OFFSET; 3569 } 3570 3571 /* 3572 ** Argument pIdxInfo is already populated with all constraints that may 3573 ** be used by the virtual table identified by pBuilder->pNew->iTab. This 3574 ** function marks a subset of those constraints usable, invokes the 3575 ** xBestIndex method and adds the returned plan to pBuilder. 3576 ** 3577 ** A constraint is marked usable if: 3578 ** 3579 ** * Argument mUsable indicates that its prerequisites are available, and 3580 ** 3581 ** * It is not one of the operators specified in the mExclude mask passed 3582 ** as the fourth argument (which in practice is either WO_IN or 0). 3583 ** 3584 ** Argument mPrereq is a mask of tables that must be scanned before the 3585 ** virtual table in question. These are added to the plans prerequisites 3586 ** before it is added to pBuilder. 3587 ** 3588 ** Output parameter *pbIn is set to true if the plan added to pBuilder 3589 ** uses one or more WO_IN terms, or false otherwise. 3590 */ 3591 static int whereLoopAddVirtualOne( 3592 WhereLoopBuilder *pBuilder, 3593 Bitmask mPrereq, /* Mask of tables that must be used. */ 3594 Bitmask mUsable, /* Mask of usable tables */ 3595 u16 mExclude, /* Exclude terms using these operators */ 3596 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ 3597 u16 mNoOmit, /* Do not omit these constraints */ 3598 int *pbIn, /* OUT: True if plan uses an IN(...) op */ 3599 int *pbRetryLimit /* OUT: Retry without LIMIT/OFFSET */ 3600 ){ 3601 WhereClause *pWC = pBuilder->pWC; 3602 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3603 struct sqlite3_index_constraint *pIdxCons; 3604 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; 3605 int i; 3606 int mxTerm; 3607 int rc = SQLITE_OK; 3608 WhereLoop *pNew = pBuilder->pNew; 3609 Parse *pParse = pBuilder->pWInfo->pParse; 3610 SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; 3611 int nConstraint = pIdxInfo->nConstraint; 3612 3613 assert( (mUsable & mPrereq)==mPrereq ); 3614 *pbIn = 0; 3615 pNew->prereq = mPrereq; 3616 3617 /* Set the usable flag on the subset of constraints identified by 3618 ** arguments mUsable and mExclude. */ 3619 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3620 for(i=0; i<nConstraint; i++, pIdxCons++){ 3621 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset]; 3622 pIdxCons->usable = 0; 3623 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight 3624 && (pTerm->eOperator & mExclude)==0 3625 && (pbRetryLimit || !isLimitTerm(pTerm)) 3626 ){ 3627 pIdxCons->usable = 1; 3628 } 3629 } 3630 3631 /* Initialize the output fields of the sqlite3_index_info structure */ 3632 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); 3633 assert( pIdxInfo->needToFreeIdxStr==0 ); 3634 pIdxInfo->idxStr = 0; 3635 pIdxInfo->idxNum = 0; 3636 pIdxInfo->orderByConsumed = 0; 3637 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 3638 pIdxInfo->estimatedRows = 25; 3639 pIdxInfo->idxFlags = 0; 3640 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; 3641 pHidden->mHandleIn = 0; 3642 3643 /* Invoke the virtual table xBestIndex() method */ 3644 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); 3645 if( rc ){ 3646 if( rc==SQLITE_CONSTRAINT ){ 3647 /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means 3648 ** that the particular combination of parameters provided is unusable. 3649 ** Make no entries in the loop table. 3650 */ 3651 WHERETRACE(0xffff, (" ^^^^--- non-viable plan rejected!\n")); 3652 return SQLITE_OK; 3653 } 3654 return rc; 3655 } 3656 3657 mxTerm = -1; 3658 assert( pNew->nLSlot>=nConstraint ); 3659 memset(pNew->aLTerm, 0, sizeof(pNew->aLTerm[0])*nConstraint ); 3660 memset(&pNew->u.vtab, 0, sizeof(pNew->u.vtab)); 3661 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3662 for(i=0; i<nConstraint; i++, pIdxCons++){ 3663 int iTerm; 3664 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 3665 WhereTerm *pTerm; 3666 int j = pIdxCons->iTermOffset; 3667 if( iTerm>=nConstraint 3668 || j<0 3669 || j>=pWC->nTerm 3670 || pNew->aLTerm[iTerm]!=0 3671 || pIdxCons->usable==0 3672 ){ 3673 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3674 testcase( pIdxInfo->needToFreeIdxStr ); 3675 return SQLITE_ERROR; 3676 } 3677 testcase( iTerm==nConstraint-1 ); 3678 testcase( j==0 ); 3679 testcase( j==pWC->nTerm-1 ); 3680 pTerm = &pWC->a[j]; 3681 pNew->prereq |= pTerm->prereqRight; 3682 assert( iTerm<pNew->nLSlot ); 3683 pNew->aLTerm[iTerm] = pTerm; 3684 if( iTerm>mxTerm ) mxTerm = iTerm; 3685 testcase( iTerm==15 ); 3686 testcase( iTerm==16 ); 3687 if( pUsage[i].omit ){ 3688 if( i<16 && ((1<<i)&mNoOmit)==0 ){ 3689 testcase( i!=iTerm ); 3690 pNew->u.vtab.omitMask |= 1<<iTerm; 3691 }else{ 3692 testcase( i!=iTerm ); 3693 } 3694 if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET ){ 3695 pNew->u.vtab.bOmitOffset = 1; 3696 } 3697 } 3698 if( SMASKBIT32(i) & pHidden->mHandleIn ){ 3699 pNew->u.vtab.mHandleIn |= MASKBIT32(iTerm); 3700 }else if( (pTerm->eOperator & WO_IN)!=0 ){ 3701 /* A virtual table that is constrained by an IN clause may not 3702 ** consume the ORDER BY clause because (1) the order of IN terms 3703 ** is not necessarily related to the order of output terms and 3704 ** (2) Multiple outputs from a single IN value will not merge 3705 ** together. */ 3706 pIdxInfo->orderByConsumed = 0; 3707 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; 3708 *pbIn = 1; assert( (mExclude & WO_IN)==0 ); 3709 } 3710 3711 assert( pbRetryLimit || !isLimitTerm(pTerm) ); 3712 if( isLimitTerm(pTerm) && *pbIn ){ 3713 /* If there is an IN(...) term handled as an == (separate call to 3714 ** xFilter for each value on the RHS of the IN) and a LIMIT or 3715 ** OFFSET term handled as well, the plan is unusable. Set output 3716 ** variable *pbRetryLimit to true to tell the caller to retry with 3717 ** LIMIT and OFFSET disabled. */ 3718 if( pIdxInfo->needToFreeIdxStr ){ 3719 sqlite3_free(pIdxInfo->idxStr); 3720 pIdxInfo->idxStr = 0; 3721 pIdxInfo->needToFreeIdxStr = 0; 3722 } 3723 *pbRetryLimit = 1; 3724 return SQLITE_OK; 3725 } 3726 } 3727 } 3728 3729 pNew->nLTerm = mxTerm+1; 3730 for(i=0; i<=mxTerm; i++){ 3731 if( pNew->aLTerm[i]==0 ){ 3732 /* The non-zero argvIdx values must be contiguous. Raise an 3733 ** error if they are not */ 3734 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3735 testcase( pIdxInfo->needToFreeIdxStr ); 3736 return SQLITE_ERROR; 3737 } 3738 } 3739 assert( pNew->nLTerm<=pNew->nLSlot ); 3740 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 3741 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 3742 pIdxInfo->needToFreeIdxStr = 0; 3743 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 3744 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 3745 pIdxInfo->nOrderBy : 0); 3746 pNew->rSetup = 0; 3747 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 3748 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 3749 3750 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated 3751 ** that the scan will visit at most one row. Clear it otherwise. */ 3752 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ 3753 pNew->wsFlags |= WHERE_ONEROW; 3754 }else{ 3755 pNew->wsFlags &= ~WHERE_ONEROW; 3756 } 3757 rc = whereLoopInsert(pBuilder, pNew); 3758 if( pNew->u.vtab.needFree ){ 3759 sqlite3_free(pNew->u.vtab.idxStr); 3760 pNew->u.vtab.needFree = 0; 3761 } 3762 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", 3763 *pbIn, (sqlite3_uint64)mPrereq, 3764 (sqlite3_uint64)(pNew->prereq & ~mPrereq))); 3765 3766 return rc; 3767 } 3768 3769 /* 3770 ** Return the collating sequence for a constraint passed into xBestIndex. 3771 ** 3772 ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex. 3773 ** This routine depends on there being a HiddenIndexInfo structure immediately 3774 ** following the sqlite3_index_info structure. 3775 ** 3776 ** Return a pointer to the collation name: 3777 ** 3778 ** 1. If there is an explicit COLLATE operator on the constaint, return it. 3779 ** 3780 ** 2. Else, if the column has an alternative collation, return that. 3781 ** 3782 ** 3. Otherwise, return "BINARY". 3783 */ 3784 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){ 3785 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3786 const char *zRet = 0; 3787 if( iCons>=0 && iCons<pIdxInfo->nConstraint ){ 3788 CollSeq *pC = 0; 3789 int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset; 3790 Expr *pX = pHidden->pWC->a[iTerm].pExpr; 3791 if( pX->pLeft ){ 3792 pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX); 3793 } 3794 zRet = (pC ? pC->zName : sqlite3StrBINARY); 3795 } 3796 return zRet; 3797 } 3798 3799 /* 3800 ** Return true if constraint iCons is really an IN(...) constraint, or 3801 ** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0) 3802 ** or clear (if bHandle==0) the flag to handle it using an iterator. 3803 */ 3804 int sqlite3_vtab_in(sqlite3_index_info *pIdxInfo, int iCons, int bHandle){ 3805 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3806 u32 m = SMASKBIT32(iCons); 3807 if( m & pHidden->mIn ){ 3808 if( bHandle==0 ){ 3809 pHidden->mHandleIn &= ~m; 3810 }else if( bHandle>0 ){ 3811 pHidden->mHandleIn |= m; 3812 } 3813 return 1; 3814 } 3815 return 0; 3816 } 3817 3818 /* 3819 ** This interface is callable from within the xBestIndex callback only. 3820 ** 3821 ** If possible, set (*ppVal) to point to an object containing the value 3822 ** on the right-hand-side of constraint iCons. 3823 */ 3824 int sqlite3_vtab_rhs_value( 3825 sqlite3_index_info *pIdxInfo, /* Copy of first argument to xBestIndex */ 3826 int iCons, /* Constraint for which RHS is wanted */ 3827 sqlite3_value **ppVal /* Write value extracted here */ 3828 ){ 3829 HiddenIndexInfo *pH = (HiddenIndexInfo*)&pIdxInfo[1]; 3830 sqlite3_value *pVal = 0; 3831 int rc = SQLITE_OK; 3832 if( iCons<0 || iCons>=pIdxInfo->nConstraint ){ 3833 rc = SQLITE_MISUSE; /* EV: R-30545-25046 */ 3834 }else{ 3835 if( pH->aRhs[iCons]==0 ){ 3836 WhereTerm *pTerm = &pH->pWC->a[pIdxInfo->aConstraint[iCons].iTermOffset]; 3837 rc = sqlite3ValueFromExpr( 3838 pH->pParse->db, pTerm->pExpr->pRight, ENC(pH->pParse->db), 3839 SQLITE_AFF_BLOB, &pH->aRhs[iCons] 3840 ); 3841 testcase( rc!=SQLITE_OK ); 3842 } 3843 pVal = pH->aRhs[iCons]; 3844 } 3845 *ppVal = pVal; 3846 3847 if( rc==SQLITE_OK && pVal==0 ){ /* IMP: R-19933-32160 */ 3848 rc = SQLITE_NOTFOUND; /* IMP: R-36424-56542 */ 3849 } 3850 3851 return rc; 3852 } 3853 3854 /* 3855 ** Return true if ORDER BY clause may be handled as DISTINCT. 3856 */ 3857 int sqlite3_vtab_distinct(sqlite3_index_info *pIdxInfo){ 3858 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3859 assert( pHidden->eDistinct>=0 && pHidden->eDistinct<=3 ); 3860 return pHidden->eDistinct; 3861 } 3862 3863 #if (defined(SQLITE_ENABLE_DBPAGE_VTAB) || defined(SQLITE_TEST)) \ 3864 && !defined(SQLITE_OMIT_VIRTUALTABLE) 3865 /* 3866 ** Cause the prepared statement that is associated with a call to 3867 ** xBestIndex to potentiall use all schemas. If the statement being 3868 ** prepared is read-only, then just start read transactions on all 3869 ** schemas. But if this is a write operation, start writes on all 3870 ** schemas. 3871 ** 3872 ** This is used by the (built-in) sqlite_dbpage virtual table. 3873 */ 3874 void sqlite3VtabUsesAllSchemas(sqlite3_index_info *pIdxInfo){ 3875 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3876 Parse *pParse = pHidden->pParse; 3877 int nDb = pParse->db->nDb; 3878 int i; 3879 for(i=0; i<nDb; i++){ 3880 sqlite3CodeVerifySchema(pParse, i); 3881 } 3882 if( pParse->writeMask ){ 3883 for(i=0; i<nDb; i++){ 3884 sqlite3BeginWriteOperation(pParse, 0, i); 3885 } 3886 } 3887 } 3888 #endif 3889 3890 /* 3891 ** Add all WhereLoop objects for a table of the join identified by 3892 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 3893 ** 3894 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and 3895 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause 3896 ** entries that occur before the virtual table in the FROM clause and are 3897 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the 3898 ** mUnusable mask contains all FROM clause entries that occur after the 3899 ** virtual table and are separated from it by at least one LEFT or 3900 ** CROSS JOIN. 3901 ** 3902 ** For example, if the query were: 3903 ** 3904 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; 3905 ** 3906 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). 3907 ** 3908 ** All the tables in mPrereq must be scanned before the current virtual 3909 ** table. So any terms for which all prerequisites are satisfied by 3910 ** mPrereq may be specified as "usable" in all calls to xBestIndex. 3911 ** Conversely, all tables in mUnusable must be scanned after the current 3912 ** virtual table, so any terms for which the prerequisites overlap with 3913 ** mUnusable should always be configured as "not-usable" for xBestIndex. 3914 */ 3915 static int whereLoopAddVirtual( 3916 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3917 Bitmask mPrereq, /* Tables that must be scanned before this one */ 3918 Bitmask mUnusable /* Tables that must be scanned after this one */ 3919 ){ 3920 int rc = SQLITE_OK; /* Return code */ 3921 WhereInfo *pWInfo; /* WHERE analysis context */ 3922 Parse *pParse; /* The parsing context */ 3923 WhereClause *pWC; /* The WHERE clause */ 3924 SrcItem *pSrc; /* The FROM clause term to search */ 3925 sqlite3_index_info *p; /* Object to pass to xBestIndex() */ 3926 int nConstraint; /* Number of constraints in p */ 3927 int bIn; /* True if plan uses IN(...) operator */ 3928 WhereLoop *pNew; 3929 Bitmask mBest; /* Tables used by best possible plan */ 3930 u16 mNoOmit; 3931 int bRetry = 0; /* True to retry with LIMIT/OFFSET disabled */ 3932 3933 assert( (mPrereq & mUnusable)==0 ); 3934 pWInfo = pBuilder->pWInfo; 3935 pParse = pWInfo->pParse; 3936 pWC = pBuilder->pWC; 3937 pNew = pBuilder->pNew; 3938 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 3939 assert( IsVirtual(pSrc->pTab) ); 3940 p = allocateIndexInfo(pWInfo, pWC, mUnusable, pSrc, &mNoOmit); 3941 if( p==0 ) return SQLITE_NOMEM_BKPT; 3942 pNew->rSetup = 0; 3943 pNew->wsFlags = WHERE_VIRTUALTABLE; 3944 pNew->nLTerm = 0; 3945 pNew->u.vtab.needFree = 0; 3946 nConstraint = p->nConstraint; 3947 if( whereLoopResize(pParse->db, pNew, nConstraint) ){ 3948 freeIndexInfo(pParse->db, p); 3949 return SQLITE_NOMEM_BKPT; 3950 } 3951 3952 /* First call xBestIndex() with all constraints usable. */ 3953 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName)); 3954 WHERETRACE(0x40, (" VirtualOne: all usable\n")); 3955 rc = whereLoopAddVirtualOne( 3956 pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, &bRetry 3957 ); 3958 if( bRetry ){ 3959 assert( rc==SQLITE_OK ); 3960 rc = whereLoopAddVirtualOne( 3961 pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, 0 3962 ); 3963 } 3964 3965 /* If the call to xBestIndex() with all terms enabled produced a plan 3966 ** that does not require any source tables (IOW: a plan with mBest==0) 3967 ** and does not use an IN(...) operator, then there is no point in making 3968 ** any further calls to xBestIndex() since they will all return the same 3969 ** result (if the xBestIndex() implementation is sane). */ 3970 if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){ 3971 int seenZero = 0; /* True if a plan with no prereqs seen */ 3972 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ 3973 Bitmask mPrev = 0; 3974 Bitmask mBestNoIn = 0; 3975 3976 /* If the plan produced by the earlier call uses an IN(...) term, call 3977 ** xBestIndex again, this time with IN(...) terms disabled. */ 3978 if( bIn ){ 3979 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n")); 3980 rc = whereLoopAddVirtualOne( 3981 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn, 0); 3982 assert( bIn==0 ); 3983 mBestNoIn = pNew->prereq & ~mPrereq; 3984 if( mBestNoIn==0 ){ 3985 seenZero = 1; 3986 seenZeroNoIN = 1; 3987 } 3988 } 3989 3990 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) 3991 ** in the set of terms that apply to the current virtual table. */ 3992 while( rc==SQLITE_OK ){ 3993 int i; 3994 Bitmask mNext = ALLBITS; 3995 assert( mNext>0 ); 3996 for(i=0; i<nConstraint; i++){ 3997 Bitmask mThis = ( 3998 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq 3999 ); 4000 if( mThis>mPrev && mThis<mNext ) mNext = mThis; 4001 } 4002 mPrev = mNext; 4003 if( mNext==ALLBITS ) break; 4004 if( mNext==mBest || mNext==mBestNoIn ) continue; 4005 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n", 4006 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext)); 4007 rc = whereLoopAddVirtualOne( 4008 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn, 0); 4009 if( pNew->prereq==mPrereq ){ 4010 seenZero = 1; 4011 if( bIn==0 ) seenZeroNoIN = 1; 4012 } 4013 } 4014 4015 /* If the calls to xBestIndex() in the above loop did not find a plan 4016 ** that requires no source tables at all (i.e. one guaranteed to be 4017 ** usable), make a call here with all source tables disabled */ 4018 if( rc==SQLITE_OK && seenZero==0 ){ 4019 WHERETRACE(0x40, (" VirtualOne: all disabled\n")); 4020 rc = whereLoopAddVirtualOne( 4021 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn, 0); 4022 if( bIn==0 ) seenZeroNoIN = 1; 4023 } 4024 4025 /* If the calls to xBestIndex() have so far failed to find a plan 4026 ** that requires no source tables at all and does not use an IN(...) 4027 ** operator, make a final call to obtain one here. */ 4028 if( rc==SQLITE_OK && seenZeroNoIN==0 ){ 4029 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n")); 4030 rc = whereLoopAddVirtualOne( 4031 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn, 0); 4032 } 4033 } 4034 4035 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr); 4036 freeIndexInfo(pParse->db, p); 4037 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc)); 4038 return rc; 4039 } 4040 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4041 4042 /* 4043 ** Add WhereLoop entries to handle OR terms. This works for either 4044 ** btrees or virtual tables. 4045 */ 4046 static int whereLoopAddOr( 4047 WhereLoopBuilder *pBuilder, 4048 Bitmask mPrereq, 4049 Bitmask mUnusable 4050 ){ 4051 WhereInfo *pWInfo = pBuilder->pWInfo; 4052 WhereClause *pWC; 4053 WhereLoop *pNew; 4054 WhereTerm *pTerm, *pWCEnd; 4055 int rc = SQLITE_OK; 4056 int iCur; 4057 WhereClause tempWC; 4058 WhereLoopBuilder sSubBuild; 4059 WhereOrSet sSum, sCur; 4060 SrcItem *pItem; 4061 4062 pWC = pBuilder->pWC; 4063 pWCEnd = pWC->a + pWC->nTerm; 4064 pNew = pBuilder->pNew; 4065 memset(&sSum, 0, sizeof(sSum)); 4066 pItem = pWInfo->pTabList->a + pNew->iTab; 4067 iCur = pItem->iCursor; 4068 4069 /* The multi-index OR optimization does not work for RIGHT and FULL JOIN */ 4070 if( pItem->fg.jointype & JT_RIGHT ) return SQLITE_OK; 4071 4072 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 4073 if( (pTerm->eOperator & WO_OR)!=0 4074 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 4075 ){ 4076 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 4077 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 4078 WhereTerm *pOrTerm; 4079 int once = 1; 4080 int i, j; 4081 4082 sSubBuild = *pBuilder; 4083 sSubBuild.pOrSet = &sCur; 4084 4085 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); 4086 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 4087 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 4088 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 4089 }else if( pOrTerm->leftCursor==iCur ){ 4090 tempWC.pWInfo = pWC->pWInfo; 4091 tempWC.pOuter = pWC; 4092 tempWC.op = TK_AND; 4093 tempWC.nTerm = 1; 4094 tempWC.nBase = 1; 4095 tempWC.a = pOrTerm; 4096 sSubBuild.pWC = &tempWC; 4097 }else{ 4098 continue; 4099 } 4100 sCur.n = 0; 4101 #ifdef WHERETRACE_ENABLED 4102 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 4103 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 4104 if( sqlite3WhereTrace & 0x400 ){ 4105 sqlite3WhereClausePrint(sSubBuild.pWC); 4106 } 4107 #endif 4108 #ifndef SQLITE_OMIT_VIRTUALTABLE 4109 if( IsVirtual(pItem->pTab) ){ 4110 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); 4111 }else 4112 #endif 4113 { 4114 rc = whereLoopAddBtree(&sSubBuild, mPrereq); 4115 } 4116 if( rc==SQLITE_OK ){ 4117 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); 4118 } 4119 assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0 4120 || rc==SQLITE_NOMEM ); 4121 testcase( rc==SQLITE_NOMEM && sCur.n>0 ); 4122 testcase( rc==SQLITE_DONE ); 4123 if( sCur.n==0 ){ 4124 sSum.n = 0; 4125 break; 4126 }else if( once ){ 4127 whereOrMove(&sSum, &sCur); 4128 once = 0; 4129 }else{ 4130 WhereOrSet sPrev; 4131 whereOrMove(&sPrev, &sSum); 4132 sSum.n = 0; 4133 for(i=0; i<sPrev.n; i++){ 4134 for(j=0; j<sCur.n; j++){ 4135 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 4136 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 4137 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 4138 } 4139 } 4140 } 4141 } 4142 pNew->nLTerm = 1; 4143 pNew->aLTerm[0] = pTerm; 4144 pNew->wsFlags = WHERE_MULTI_OR; 4145 pNew->rSetup = 0; 4146 pNew->iSortIdx = 0; 4147 memset(&pNew->u, 0, sizeof(pNew->u)); 4148 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 4149 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 4150 ** of all sub-scans required by the OR-scan. However, due to rounding 4151 ** errors, it may be that the cost of the OR-scan is equal to its 4152 ** most expensive sub-scan. Add the smallest possible penalty 4153 ** (equivalent to multiplying the cost by 1.07) to ensure that 4154 ** this does not happen. Otherwise, for WHERE clauses such as the 4155 ** following where there is an index on "y": 4156 ** 4157 ** WHERE likelihood(x=?, 0.99) OR y=? 4158 ** 4159 ** the planner may elect to "OR" together a full-table scan and an 4160 ** index lookup. And other similarly odd results. */ 4161 pNew->rRun = sSum.a[i].rRun + 1; 4162 pNew->nOut = sSum.a[i].nOut; 4163 pNew->prereq = sSum.a[i].prereq; 4164 rc = whereLoopInsert(pBuilder, pNew); 4165 } 4166 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); 4167 } 4168 } 4169 return rc; 4170 } 4171 4172 /* 4173 ** Add all WhereLoop objects for all tables 4174 */ 4175 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 4176 WhereInfo *pWInfo = pBuilder->pWInfo; 4177 Bitmask mPrereq = 0; 4178 Bitmask mPrior = 0; 4179 int iTab; 4180 SrcList *pTabList = pWInfo->pTabList; 4181 SrcItem *pItem; 4182 SrcItem *pEnd = &pTabList->a[pWInfo->nLevel]; 4183 sqlite3 *db = pWInfo->pParse->db; 4184 int rc = SQLITE_OK; 4185 int bFirstPastRJ = 0; 4186 int hasRightJoin = 0; 4187 WhereLoop *pNew; 4188 4189 4190 /* Loop over the tables in the join, from left to right */ 4191 pNew = pBuilder->pNew; 4192 4193 /* Verify that pNew has already been initialized */ 4194 assert( pNew->nLTerm==0 ); 4195 assert( pNew->wsFlags==0 ); 4196 assert( pNew->nLSlot>=ArraySize(pNew->aLTermSpace) ); 4197 assert( pNew->aLTerm!=0 ); 4198 4199 pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT; 4200 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ 4201 Bitmask mUnusable = 0; 4202 pNew->iTab = iTab; 4203 pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR; 4204 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); 4205 if( bFirstPastRJ 4206 || (pItem->fg.jointype & (JT_OUTER|JT_CROSS|JT_LTORJ))!=0 4207 ){ 4208 /* Add prerequisites to prevent reordering of FROM clause terms 4209 ** across CROSS joins and outer joins. The bFirstPastRJ boolean 4210 ** prevents the right operand of a RIGHT JOIN from being swapped with 4211 ** other elements even further to the right. 4212 ** 4213 ** The JT_LTORJ case and the hasRightJoin flag work together to 4214 ** prevent FROM-clause terms from moving from the right side of 4215 ** a LEFT JOIN over to the left side of that join if the LEFT JOIN 4216 ** is itself on the left side of a RIGHT JOIN. 4217 */ 4218 if( pItem->fg.jointype & JT_LTORJ ) hasRightJoin = 1; 4219 mPrereq |= mPrior; 4220 bFirstPastRJ = (pItem->fg.jointype & JT_RIGHT)!=0; 4221 }else if( !hasRightJoin ){ 4222 mPrereq = 0; 4223 } 4224 #ifndef SQLITE_OMIT_VIRTUALTABLE 4225 if( IsVirtual(pItem->pTab) ){ 4226 SrcItem *p; 4227 for(p=&pItem[1]; p<pEnd; p++){ 4228 if( mUnusable || (p->fg.jointype & (JT_OUTER|JT_CROSS)) ){ 4229 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); 4230 } 4231 } 4232 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); 4233 }else 4234 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4235 { 4236 rc = whereLoopAddBtree(pBuilder, mPrereq); 4237 } 4238 if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){ 4239 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); 4240 } 4241 mPrior |= pNew->maskSelf; 4242 if( rc || db->mallocFailed ){ 4243 if( rc==SQLITE_DONE ){ 4244 /* We hit the query planner search limit set by iPlanLimit */ 4245 sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search"); 4246 rc = SQLITE_OK; 4247 }else{ 4248 break; 4249 } 4250 } 4251 } 4252 4253 whereLoopClear(db, pNew); 4254 return rc; 4255 } 4256 4257 /* 4258 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th 4259 ** parameters) to see if it outputs rows in the requested ORDER BY 4260 ** (or GROUP BY) without requiring a separate sort operation. Return N: 4261 ** 4262 ** N>0: N terms of the ORDER BY clause are satisfied 4263 ** N==0: No terms of the ORDER BY clause are satisfied 4264 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 4265 ** 4266 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 4267 ** strict. With GROUP BY and DISTINCT the only requirement is that 4268 ** equivalent rows appear immediately adjacent to one another. GROUP BY 4269 ** and DISTINCT do not require rows to appear in any particular order as long 4270 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 4271 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 4272 ** pOrderBy terms must be matched in strict left-to-right order. 4273 */ 4274 static i8 wherePathSatisfiesOrderBy( 4275 WhereInfo *pWInfo, /* The WHERE clause */ 4276 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 4277 WherePath *pPath, /* The WherePath to check */ 4278 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */ 4279 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 4280 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 4281 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 4282 ){ 4283 u8 revSet; /* True if rev is known */ 4284 u8 rev; /* Composite sort order */ 4285 u8 revIdx; /* Index sort order */ 4286 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 4287 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 4288 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 4289 u16 eqOpMask; /* Allowed equality operators */ 4290 u16 nKeyCol; /* Number of key columns in pIndex */ 4291 u16 nColumn; /* Total number of ordered columns in the index */ 4292 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 4293 int iLoop; /* Index of WhereLoop in pPath being processed */ 4294 int i, j; /* Loop counters */ 4295 int iCur; /* Cursor number for current WhereLoop */ 4296 int iColumn; /* A column number within table iCur */ 4297 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 4298 WhereTerm *pTerm; /* A single term of the WHERE clause */ 4299 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 4300 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 4301 Index *pIndex; /* The index associated with pLoop */ 4302 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 4303 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 4304 Bitmask obDone; /* Mask of all ORDER BY terms */ 4305 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 4306 Bitmask ready; /* Mask of inner loops */ 4307 4308 /* 4309 ** We say the WhereLoop is "one-row" if it generates no more than one 4310 ** row of output. A WhereLoop is one-row if all of the following are true: 4311 ** (a) All index columns match with WHERE_COLUMN_EQ. 4312 ** (b) The index is unique 4313 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 4314 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 4315 ** 4316 ** We say the WhereLoop is "order-distinct" if the set of columns from 4317 ** that WhereLoop that are in the ORDER BY clause are different for every 4318 ** row of the WhereLoop. Every one-row WhereLoop is automatically 4319 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 4320 ** is not order-distinct. To be order-distinct is not quite the same as being 4321 ** UNIQUE since a UNIQUE column or index can have multiple rows that 4322 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 4323 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 4324 ** 4325 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 4326 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 4327 ** automatically order-distinct. 4328 */ 4329 4330 assert( pOrderBy!=0 ); 4331 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 4332 4333 nOrderBy = pOrderBy->nExpr; 4334 testcase( nOrderBy==BMS-1 ); 4335 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 4336 isOrderDistinct = 1; 4337 obDone = MASKBIT(nOrderBy)-1; 4338 orderDistinctMask = 0; 4339 ready = 0; 4340 eqOpMask = WO_EQ | WO_IS | WO_ISNULL; 4341 if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){ 4342 eqOpMask |= WO_IN; 4343 } 4344 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 4345 if( iLoop>0 ) ready |= pLoop->maskSelf; 4346 if( iLoop<nLoop ){ 4347 pLoop = pPath->aLoop[iLoop]; 4348 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue; 4349 }else{ 4350 pLoop = pLast; 4351 } 4352 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 4353 if( pLoop->u.vtab.isOrdered 4354 && ((wctrlFlags&(WHERE_DISTINCTBY|WHERE_SORTBYGROUP))!=WHERE_DISTINCTBY) 4355 ){ 4356 obSat = obDone; 4357 } 4358 break; 4359 }else if( wctrlFlags & WHERE_DISTINCTBY ){ 4360 pLoop->u.btree.nDistinctCol = 0; 4361 } 4362 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 4363 4364 /* Mark off any ORDER BY term X that is a column in the table of 4365 ** the current loop for which there is term in the WHERE 4366 ** clause of the form X IS NULL or X=? that reference only outer 4367 ** loops. 4368 */ 4369 for(i=0; i<nOrderBy; i++){ 4370 if( MASKBIT(i) & obSat ) continue; 4371 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 4372 if( NEVER(pOBExpr==0) ) continue; 4373 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue; 4374 if( pOBExpr->iTable!=iCur ) continue; 4375 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 4376 ~ready, eqOpMask, 0); 4377 if( pTerm==0 ) continue; 4378 if( pTerm->eOperator==WO_IN ){ 4379 /* IN terms are only valid for sorting in the ORDER BY LIMIT 4380 ** optimization, and then only if they are actually used 4381 ** by the query plan */ 4382 assert( wctrlFlags & 4383 (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ); 4384 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){} 4385 if( j>=pLoop->nLTerm ) continue; 4386 } 4387 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ 4388 Parse *pParse = pWInfo->pParse; 4389 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr); 4390 CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr); 4391 assert( pColl1 ); 4392 if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){ 4393 continue; 4394 } 4395 testcase( pTerm->pExpr->op==TK_IS ); 4396 } 4397 obSat |= MASKBIT(i); 4398 } 4399 4400 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 4401 if( pLoop->wsFlags & WHERE_IPK ){ 4402 pIndex = 0; 4403 nKeyCol = 0; 4404 nColumn = 1; 4405 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 4406 return 0; 4407 }else{ 4408 nKeyCol = pIndex->nKeyCol; 4409 nColumn = pIndex->nColumn; 4410 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 4411 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID 4412 || !HasRowid(pIndex->pTable)); 4413 /* All relevant terms of the index must also be non-NULL in order 4414 ** for isOrderDistinct to be true. So the isOrderDistint value 4415 ** computed here might be a false positive. Corrections will be 4416 ** made at tag-20210426-1 below */ 4417 isOrderDistinct = IsUniqueIndex(pIndex) 4418 && (pLoop->wsFlags & WHERE_SKIPSCAN)==0; 4419 } 4420 4421 /* Loop through all columns of the index and deal with the ones 4422 ** that are not constrained by == or IN. 4423 */ 4424 rev = revSet = 0; 4425 distinctColumns = 0; 4426 for(j=0; j<nColumn; j++){ 4427 u8 bOnce = 1; /* True to run the ORDER BY search loop */ 4428 4429 assert( j>=pLoop->u.btree.nEq 4430 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip) 4431 ); 4432 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){ 4433 u16 eOp = pLoop->aLTerm[j]->eOperator; 4434 4435 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when 4436 ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL 4437 ** terms imply that the index is not UNIQUE NOT NULL in which case 4438 ** the loop need to be marked as not order-distinct because it can 4439 ** have repeated NULL rows. 4440 ** 4441 ** If the current term is a column of an ((?,?) IN (SELECT...)) 4442 ** expression for which the SELECT returns more than one column, 4443 ** check that it is the only column used by this loop. Otherwise, 4444 ** if it is one of two or more, none of the columns can be 4445 ** considered to match an ORDER BY term. 4446 */ 4447 if( (eOp & eqOpMask)!=0 ){ 4448 if( eOp & (WO_ISNULL|WO_IS) ){ 4449 testcase( eOp & WO_ISNULL ); 4450 testcase( eOp & WO_IS ); 4451 testcase( isOrderDistinct ); 4452 isOrderDistinct = 0; 4453 } 4454 continue; 4455 }else if( ALWAYS(eOp & WO_IN) ){ 4456 /* ALWAYS() justification: eOp is an equality operator due to the 4457 ** j<pLoop->u.btree.nEq constraint above. Any equality other 4458 ** than WO_IN is captured by the previous "if". So this one 4459 ** always has to be WO_IN. */ 4460 Expr *pX = pLoop->aLTerm[j]->pExpr; 4461 for(i=j+1; i<pLoop->u.btree.nEq; i++){ 4462 if( pLoop->aLTerm[i]->pExpr==pX ){ 4463 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) ); 4464 bOnce = 0; 4465 break; 4466 } 4467 } 4468 } 4469 } 4470 4471 /* Get the column number in the table (iColumn) and sort order 4472 ** (revIdx) for the j-th column of the index. 4473 */ 4474 if( pIndex ){ 4475 iColumn = pIndex->aiColumn[j]; 4476 revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC; 4477 if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID; 4478 }else{ 4479 iColumn = XN_ROWID; 4480 revIdx = 0; 4481 } 4482 4483 /* An unconstrained column that might be NULL means that this 4484 ** WhereLoop is not well-ordered. tag-20210426-1 4485 */ 4486 if( isOrderDistinct ){ 4487 if( iColumn>=0 4488 && j>=pLoop->u.btree.nEq 4489 && pIndex->pTable->aCol[iColumn].notNull==0 4490 ){ 4491 isOrderDistinct = 0; 4492 } 4493 if( iColumn==XN_EXPR ){ 4494 isOrderDistinct = 0; 4495 } 4496 } 4497 4498 /* Find the ORDER BY term that corresponds to the j-th column 4499 ** of the index and mark that ORDER BY term off 4500 */ 4501 isMatch = 0; 4502 for(i=0; bOnce && i<nOrderBy; i++){ 4503 if( MASKBIT(i) & obSat ) continue; 4504 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 4505 testcase( wctrlFlags & WHERE_GROUPBY ); 4506 testcase( wctrlFlags & WHERE_DISTINCTBY ); 4507 if( NEVER(pOBExpr==0) ) continue; 4508 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 4509 if( iColumn>=XN_ROWID ){ 4510 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue; 4511 if( pOBExpr->iTable!=iCur ) continue; 4512 if( pOBExpr->iColumn!=iColumn ) continue; 4513 }else{ 4514 Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr; 4515 if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){ 4516 continue; 4517 } 4518 } 4519 if( iColumn!=XN_ROWID ){ 4520 pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 4521 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 4522 } 4523 if( wctrlFlags & WHERE_DISTINCTBY ){ 4524 pLoop->u.btree.nDistinctCol = j+1; 4525 } 4526 isMatch = 1; 4527 break; 4528 } 4529 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 4530 /* Make sure the sort order is compatible in an ORDER BY clause. 4531 ** Sort order is irrelevant for a GROUP BY clause. */ 4532 if( revSet ){ 4533 if( (rev ^ revIdx) 4534 != (pOrderBy->a[i].fg.sortFlags&KEYINFO_ORDER_DESC) 4535 ){ 4536 isMatch = 0; 4537 } 4538 }else{ 4539 rev = revIdx ^ (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC); 4540 if( rev ) *pRevMask |= MASKBIT(iLoop); 4541 revSet = 1; 4542 } 4543 } 4544 if( isMatch && (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL) ){ 4545 if( j==pLoop->u.btree.nEq ){ 4546 pLoop->wsFlags |= WHERE_BIGNULL_SORT; 4547 }else{ 4548 isMatch = 0; 4549 } 4550 } 4551 if( isMatch ){ 4552 if( iColumn==XN_ROWID ){ 4553 testcase( distinctColumns==0 ); 4554 distinctColumns = 1; 4555 } 4556 obSat |= MASKBIT(i); 4557 }else{ 4558 /* No match found */ 4559 if( j==0 || j<nKeyCol ){ 4560 testcase( isOrderDistinct!=0 ); 4561 isOrderDistinct = 0; 4562 } 4563 break; 4564 } 4565 } /* end Loop over all index columns */ 4566 if( distinctColumns ){ 4567 testcase( isOrderDistinct==0 ); 4568 isOrderDistinct = 1; 4569 } 4570 } /* end-if not one-row */ 4571 4572 /* Mark off any other ORDER BY terms that reference pLoop */ 4573 if( isOrderDistinct ){ 4574 orderDistinctMask |= pLoop->maskSelf; 4575 for(i=0; i<nOrderBy; i++){ 4576 Expr *p; 4577 Bitmask mTerm; 4578 if( MASKBIT(i) & obSat ) continue; 4579 p = pOrderBy->a[i].pExpr; 4580 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); 4581 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; 4582 if( (mTerm&~orderDistinctMask)==0 ){ 4583 obSat |= MASKBIT(i); 4584 } 4585 } 4586 } 4587 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 4588 if( obSat==obDone ) return (i8)nOrderBy; 4589 if( !isOrderDistinct ){ 4590 for(i=nOrderBy-1; i>0; i--){ 4591 Bitmask m = ALWAYS(i<BMS) ? MASKBIT(i) - 1 : 0; 4592 if( (obSat&m)==m ) return i; 4593 } 4594 return 0; 4595 } 4596 return -1; 4597 } 4598 4599 4600 /* 4601 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 4602 ** the planner assumes that the specified pOrderBy list is actually a GROUP 4603 ** BY clause - and so any order that groups rows as required satisfies the 4604 ** request. 4605 ** 4606 ** Normally, in this case it is not possible for the caller to determine 4607 ** whether or not the rows are really being delivered in sorted order, or 4608 ** just in some other order that provides the required grouping. However, 4609 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 4610 ** this function may be called on the returned WhereInfo object. It returns 4611 ** true if the rows really will be sorted in the specified order, or false 4612 ** otherwise. 4613 ** 4614 ** For example, assuming: 4615 ** 4616 ** CREATE INDEX i1 ON t1(x, Y); 4617 ** 4618 ** then 4619 ** 4620 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 4621 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 4622 */ 4623 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 4624 assert( pWInfo->wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY) ); 4625 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 4626 return pWInfo->sorted; 4627 } 4628 4629 #ifdef WHERETRACE_ENABLED 4630 /* For debugging use only: */ 4631 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 4632 static char zName[65]; 4633 int i; 4634 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 4635 if( pLast ) zName[i++] = pLast->cId; 4636 zName[i] = 0; 4637 return zName; 4638 } 4639 #endif 4640 4641 /* 4642 ** Return the cost of sorting nRow rows, assuming that the keys have 4643 ** nOrderby columns and that the first nSorted columns are already in 4644 ** order. 4645 */ 4646 static LogEst whereSortingCost( 4647 WhereInfo *pWInfo, 4648 LogEst nRow, 4649 int nOrderBy, 4650 int nSorted 4651 ){ 4652 /* TUNING: Estimated cost of a full external sort, where N is 4653 ** the number of rows to sort is: 4654 ** 4655 ** cost = (3.0 * N * log(N)). 4656 ** 4657 ** Or, if the order-by clause has X terms but only the last Y 4658 ** terms are out of order, then block-sorting will reduce the 4659 ** sorting cost to: 4660 ** 4661 ** cost = (3.0 * N * log(N)) * (Y/X) 4662 ** 4663 ** The (Y/X) term is implemented using stack variable rScale 4664 ** below. 4665 */ 4666 LogEst rScale, rSortCost; 4667 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); 4668 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 4669 rSortCost = nRow + rScale + 16; 4670 4671 /* Multiple by log(M) where M is the number of output rows. 4672 ** Use the LIMIT for M if it is smaller. Or if this sort is for 4673 ** a DISTINCT operator, M will be the number of distinct output 4674 ** rows, so fudge it downwards a bit. 4675 */ 4676 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){ 4677 nRow = pWInfo->iLimit; 4678 }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){ 4679 /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT 4680 ** reduces the number of output rows by a factor of 2 */ 4681 if( nRow>10 ){ nRow -= 10; assert( 10==sqlite3LogEst(2) ); } 4682 } 4683 rSortCost += estLog(nRow); 4684 return rSortCost; 4685 } 4686 4687 /* 4688 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 4689 ** attempts to find the lowest cost path that visits each WhereLoop 4690 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 4691 ** 4692 ** Assume that the total number of output rows that will need to be sorted 4693 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 4694 ** costs if nRowEst==0. 4695 ** 4696 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 4697 ** error occurs. 4698 */ 4699 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 4700 int mxChoice; /* Maximum number of simultaneous paths tracked */ 4701 int nLoop; /* Number of terms in the join */ 4702 Parse *pParse; /* Parsing context */ 4703 sqlite3 *db; /* The database connection */ 4704 int iLoop; /* Loop counter over the terms of the join */ 4705 int ii, jj; /* Loop counters */ 4706 int mxI = 0; /* Index of next entry to replace */ 4707 int nOrderBy; /* Number of ORDER BY clause terms */ 4708 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 4709 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 4710 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 4711 WherePath *aFrom; /* All nFrom paths at the previous level */ 4712 WherePath *aTo; /* The nTo best paths at the current level */ 4713 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 4714 WherePath *pTo; /* An element of aTo[] that we are working on */ 4715 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 4716 WhereLoop **pX; /* Used to divy up the pSpace memory */ 4717 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 4718 char *pSpace; /* Temporary memory used by this routine */ 4719 int nSpace; /* Bytes of space allocated at pSpace */ 4720 4721 pParse = pWInfo->pParse; 4722 db = pParse->db; 4723 nLoop = pWInfo->nLevel; 4724 /* TUNING: For simple queries, only the best path is tracked. 4725 ** For 2-way joins, the 5 best paths are followed. 4726 ** For joins of 3 or more tables, track the 10 best paths */ 4727 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 4728 assert( nLoop<=pWInfo->pTabList->nSrc ); 4729 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); 4730 4731 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 4732 ** case the purpose of this call is to estimate the number of rows returned 4733 ** by the overall query. Once this estimate has been obtained, the caller 4734 ** will invoke this function a second time, passing the estimate as the 4735 ** nRowEst parameter. */ 4736 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 4737 nOrderBy = 0; 4738 }else{ 4739 nOrderBy = pWInfo->pOrderBy->nExpr; 4740 } 4741 4742 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 4743 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 4744 nSpace += sizeof(LogEst) * nOrderBy; 4745 pSpace = sqlite3DbMallocRawNN(db, nSpace); 4746 if( pSpace==0 ) return SQLITE_NOMEM_BKPT; 4747 aTo = (WherePath*)pSpace; 4748 aFrom = aTo+mxChoice; 4749 memset(aFrom, 0, sizeof(aFrom[0])); 4750 pX = (WhereLoop**)(aFrom+mxChoice); 4751 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 4752 pFrom->aLoop = pX; 4753 } 4754 if( nOrderBy ){ 4755 /* If there is an ORDER BY clause and it is not being ignored, set up 4756 ** space for the aSortCost[] array. Each element of the aSortCost array 4757 ** is either zero - meaning it has not yet been initialized - or the 4758 ** cost of sorting nRowEst rows of data where the first X terms of 4759 ** the ORDER BY clause are already in order, where X is the array 4760 ** index. */ 4761 aSortCost = (LogEst*)pX; 4762 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 4763 } 4764 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 4765 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 4766 4767 /* Seed the search with a single WherePath containing zero WhereLoops. 4768 ** 4769 ** TUNING: Do not let the number of iterations go above 28. If the cost 4770 ** of computing an automatic index is not paid back within the first 28 4771 ** rows, then do not use the automatic index. */ 4772 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); 4773 nFrom = 1; 4774 assert( aFrom[0].isOrdered==0 ); 4775 if( nOrderBy ){ 4776 /* If nLoop is zero, then there are no FROM terms in the query. Since 4777 ** in this case the query may return a maximum of one row, the results 4778 ** are already in the requested order. Set isOrdered to nOrderBy to 4779 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 4780 ** -1, indicating that the result set may or may not be ordered, 4781 ** depending on the loops added to the current plan. */ 4782 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 4783 } 4784 4785 /* Compute successively longer WherePaths using the previous generation 4786 ** of WherePaths as the basis for the next. Keep track of the mxChoice 4787 ** best paths at each generation */ 4788 for(iLoop=0; iLoop<nLoop; iLoop++){ 4789 nTo = 0; 4790 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 4791 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 4792 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 4793 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 4794 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 4795 i8 isOrdered; /* isOrdered for (pFrom+pWLoop) */ 4796 Bitmask maskNew; /* Mask of src visited by (..) */ 4797 Bitmask revMask; /* Mask of rev-order loops for (..) */ 4798 4799 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 4800 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 4801 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){ 4802 /* Do not use an automatic index if the this loop is expected 4803 ** to run less than 1.25 times. It is tempting to also exclude 4804 ** automatic index usage on an outer loop, but sometimes an automatic 4805 ** index is useful in the outer loop of a correlated subquery. */ 4806 assert( 10==sqlite3LogEst(2) ); 4807 continue; 4808 } 4809 4810 /* At this point, pWLoop is a candidate to be the next loop. 4811 ** Compute its cost */ 4812 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 4813 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 4814 nOut = pFrom->nRow + pWLoop->nOut; 4815 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 4816 isOrdered = pFrom->isOrdered; 4817 if( isOrdered<0 ){ 4818 revMask = 0; 4819 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 4820 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 4821 iLoop, pWLoop, &revMask); 4822 }else{ 4823 revMask = pFrom->revLoop; 4824 } 4825 if( isOrdered>=0 && isOrdered<nOrderBy ){ 4826 if( aSortCost[isOrdered]==0 ){ 4827 aSortCost[isOrdered] = whereSortingCost( 4828 pWInfo, nRowEst, nOrderBy, isOrdered 4829 ); 4830 } 4831 /* TUNING: Add a small extra penalty (5) to sorting as an 4832 ** extra encouragment to the query planner to select a plan 4833 ** where the rows emerge in the correct order without any sorting 4834 ** required. */ 4835 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5; 4836 4837 WHERETRACE(0x002, 4838 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 4839 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 4840 rUnsorted, rCost)); 4841 }else{ 4842 rCost = rUnsorted; 4843 rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */ 4844 } 4845 4846 /* Check to see if pWLoop should be added to the set of 4847 ** mxChoice best-so-far paths. 4848 ** 4849 ** First look for an existing path among best-so-far paths 4850 ** that covers the same set of loops and has the same isOrdered 4851 ** setting as the current path candidate. 4852 ** 4853 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 4854 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 4855 ** of legal values for isOrdered, -1..64. 4856 */ 4857 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 4858 if( pTo->maskLoop==maskNew 4859 && ((pTo->isOrdered^isOrdered)&0x80)==0 4860 ){ 4861 testcase( jj==nTo-1 ); 4862 break; 4863 } 4864 } 4865 if( jj>=nTo ){ 4866 /* None of the existing best-so-far paths match the candidate. */ 4867 if( nTo>=mxChoice 4868 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 4869 ){ 4870 /* The current candidate is no better than any of the mxChoice 4871 ** paths currently in the best-so-far buffer. So discard 4872 ** this candidate as not viable. */ 4873 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4874 if( sqlite3WhereTrace&0x4 ){ 4875 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n", 4876 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4877 isOrdered>=0 ? isOrdered+'0' : '?'); 4878 } 4879 #endif 4880 continue; 4881 } 4882 /* If we reach this points it means that the new candidate path 4883 ** needs to be added to the set of best-so-far paths. */ 4884 if( nTo<mxChoice ){ 4885 /* Increase the size of the aTo set by one */ 4886 jj = nTo++; 4887 }else{ 4888 /* New path replaces the prior worst to keep count below mxChoice */ 4889 jj = mxI; 4890 } 4891 pTo = &aTo[jj]; 4892 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4893 if( sqlite3WhereTrace&0x4 ){ 4894 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n", 4895 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4896 isOrdered>=0 ? isOrdered+'0' : '?'); 4897 } 4898 #endif 4899 }else{ 4900 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 4901 ** same set of loops and has the same isOrdered setting as the 4902 ** candidate path. Check to see if the candidate should replace 4903 ** pTo or if the candidate should be skipped. 4904 ** 4905 ** The conditional is an expanded vector comparison equivalent to: 4906 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted) 4907 */ 4908 if( pTo->rCost<rCost 4909 || (pTo->rCost==rCost 4910 && (pTo->nRow<nOut 4911 || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted) 4912 ) 4913 ) 4914 ){ 4915 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4916 if( sqlite3WhereTrace&0x4 ){ 4917 sqlite3DebugPrintf( 4918 "Skip %s cost=%-3d,%3d,%3d order=%c", 4919 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4920 isOrdered>=0 ? isOrdered+'0' : '?'); 4921 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n", 4922 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4923 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4924 } 4925 #endif 4926 /* Discard the candidate path from further consideration */ 4927 testcase( pTo->rCost==rCost ); 4928 continue; 4929 } 4930 testcase( pTo->rCost==rCost+1 ); 4931 /* Control reaches here if the candidate path is better than the 4932 ** pTo path. Replace pTo with the candidate. */ 4933 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4934 if( sqlite3WhereTrace&0x4 ){ 4935 sqlite3DebugPrintf( 4936 "Update %s cost=%-3d,%3d,%3d order=%c", 4937 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4938 isOrdered>=0 ? isOrdered+'0' : '?'); 4939 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n", 4940 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4941 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4942 } 4943 #endif 4944 } 4945 /* pWLoop is a winner. Add it to the set of best so far */ 4946 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 4947 pTo->revLoop = revMask; 4948 pTo->nRow = nOut; 4949 pTo->rCost = rCost; 4950 pTo->rUnsorted = rUnsorted; 4951 pTo->isOrdered = isOrdered; 4952 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 4953 pTo->aLoop[iLoop] = pWLoop; 4954 if( nTo>=mxChoice ){ 4955 mxI = 0; 4956 mxCost = aTo[0].rCost; 4957 mxUnsorted = aTo[0].nRow; 4958 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 4959 if( pTo->rCost>mxCost 4960 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 4961 ){ 4962 mxCost = pTo->rCost; 4963 mxUnsorted = pTo->rUnsorted; 4964 mxI = jj; 4965 } 4966 } 4967 } 4968 } 4969 } 4970 4971 #ifdef WHERETRACE_ENABLED /* >=2 */ 4972 if( sqlite3WhereTrace & 0x02 ){ 4973 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 4974 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 4975 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 4976 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4977 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 4978 if( pTo->isOrdered>0 ){ 4979 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 4980 }else{ 4981 sqlite3DebugPrintf("\n"); 4982 } 4983 } 4984 } 4985 #endif 4986 4987 /* Swap the roles of aFrom and aTo for the next generation */ 4988 pFrom = aTo; 4989 aTo = aFrom; 4990 aFrom = pFrom; 4991 nFrom = nTo; 4992 } 4993 4994 if( nFrom==0 ){ 4995 sqlite3ErrorMsg(pParse, "no query solution"); 4996 sqlite3DbFreeNN(db, pSpace); 4997 return SQLITE_ERROR; 4998 } 4999 5000 /* Find the lowest cost path. pFrom will be left pointing to that path */ 5001 pFrom = aFrom; 5002 for(ii=1; ii<nFrom; ii++){ 5003 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 5004 } 5005 assert( pWInfo->nLevel==nLoop ); 5006 /* Load the lowest cost path into pWInfo */ 5007 for(iLoop=0; iLoop<nLoop; iLoop++){ 5008 WhereLevel *pLevel = pWInfo->a + iLoop; 5009 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 5010 pLevel->iFrom = pWLoop->iTab; 5011 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 5012 } 5013 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 5014 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 5015 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 5016 && nRowEst 5017 ){ 5018 Bitmask notUsed; 5019 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, 5020 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 5021 if( rc==pWInfo->pResultSet->nExpr ){ 5022 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 5023 } 5024 } 5025 pWInfo->bOrderedInnerLoop = 0; 5026 if( pWInfo->pOrderBy ){ 5027 pWInfo->nOBSat = pFrom->isOrdered; 5028 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 5029 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 5030 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 5031 } 5032 }else{ 5033 pWInfo->revMask = pFrom->revLoop; 5034 if( pWInfo->nOBSat<=0 ){ 5035 pWInfo->nOBSat = 0; 5036 if( nLoop>0 ){ 5037 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags; 5038 if( (wsFlags & WHERE_ONEROW)==0 5039 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN) 5040 ){ 5041 Bitmask m = 0; 5042 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 5043 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m); 5044 testcase( wsFlags & WHERE_IPK ); 5045 testcase( wsFlags & WHERE_COLUMN_IN ); 5046 if( rc==pWInfo->pOrderBy->nExpr ){ 5047 pWInfo->bOrderedInnerLoop = 1; 5048 pWInfo->revMask = m; 5049 } 5050 } 5051 } 5052 }else if( nLoop 5053 && pWInfo->nOBSat==1 5054 && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0 5055 ){ 5056 pWInfo->bOrderedInnerLoop = 1; 5057 } 5058 } 5059 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 5060 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 5061 ){ 5062 Bitmask revMask = 0; 5063 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 5064 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 5065 ); 5066 assert( pWInfo->sorted==0 ); 5067 if( nOrder==pWInfo->pOrderBy->nExpr ){ 5068 pWInfo->sorted = 1; 5069 pWInfo->revMask = revMask; 5070 } 5071 } 5072 } 5073 5074 5075 pWInfo->nRowOut = pFrom->nRow; 5076 5077 /* Free temporary memory and return success */ 5078 assert( db!=0 ); 5079 sqlite3DbNNFreeNN(db, pSpace); 5080 return SQLITE_OK; 5081 } 5082 5083 /* 5084 ** Most queries use only a single table (they are not joins) and have 5085 ** simple == constraints against indexed fields. This routine attempts 5086 ** to plan those simple cases using much less ceremony than the 5087 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 5088 ** times for the common case. 5089 ** 5090 ** Return non-zero on success, if this query can be handled by this 5091 ** no-frills query planner. Return zero if this query needs the 5092 ** general-purpose query planner. 5093 */ 5094 static int whereShortCut(WhereLoopBuilder *pBuilder){ 5095 WhereInfo *pWInfo; 5096 SrcItem *pItem; 5097 WhereClause *pWC; 5098 WhereTerm *pTerm; 5099 WhereLoop *pLoop; 5100 int iCur; 5101 int j; 5102 Table *pTab; 5103 Index *pIdx; 5104 WhereScan scan; 5105 5106 pWInfo = pBuilder->pWInfo; 5107 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0; 5108 assert( pWInfo->pTabList->nSrc>=1 ); 5109 pItem = pWInfo->pTabList->a; 5110 pTab = pItem->pTab; 5111 if( IsVirtual(pTab) ) return 0; 5112 if( pItem->fg.isIndexedBy || pItem->fg.notIndexed ){ 5113 testcase( pItem->fg.isIndexedBy ); 5114 testcase( pItem->fg.notIndexed ); 5115 return 0; 5116 } 5117 iCur = pItem->iCursor; 5118 pWC = &pWInfo->sWC; 5119 pLoop = pBuilder->pNew; 5120 pLoop->wsFlags = 0; 5121 pLoop->nSkip = 0; 5122 pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0); 5123 while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan); 5124 if( pTerm ){ 5125 testcase( pTerm->eOperator & WO_IS ); 5126 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 5127 pLoop->aLTerm[0] = pTerm; 5128 pLoop->nLTerm = 1; 5129 pLoop->u.btree.nEq = 1; 5130 /* TUNING: Cost of a rowid lookup is 10 */ 5131 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 5132 }else{ 5133 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5134 int opMask; 5135 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 5136 if( !IsUniqueIndex(pIdx) 5137 || pIdx->pPartIdxWhere!=0 5138 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 5139 ) continue; 5140 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; 5141 for(j=0; j<pIdx->nKeyCol; j++){ 5142 pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx); 5143 while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan); 5144 if( pTerm==0 ) break; 5145 testcase( pTerm->eOperator & WO_IS ); 5146 pLoop->aLTerm[j] = pTerm; 5147 } 5148 if( j!=pIdx->nKeyCol ) continue; 5149 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 5150 if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){ 5151 pLoop->wsFlags |= WHERE_IDX_ONLY; 5152 } 5153 pLoop->nLTerm = j; 5154 pLoop->u.btree.nEq = j; 5155 pLoop->u.btree.pIndex = pIdx; 5156 /* TUNING: Cost of a unique index lookup is 15 */ 5157 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 5158 break; 5159 } 5160 } 5161 if( pLoop->wsFlags ){ 5162 pLoop->nOut = (LogEst)1; 5163 pWInfo->a[0].pWLoop = pLoop; 5164 assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] ); 5165 pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */ 5166 pWInfo->a[0].iTabCur = iCur; 5167 pWInfo->nRowOut = 1; 5168 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 5169 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 5170 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 5171 } 5172 if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS; 5173 #ifdef SQLITE_DEBUG 5174 pLoop->cId = '0'; 5175 #endif 5176 #ifdef WHERETRACE_ENABLED 5177 if( sqlite3WhereTrace ){ 5178 sqlite3DebugPrintf("whereShortCut() used to compute solution\n"); 5179 } 5180 #endif 5181 return 1; 5182 } 5183 return 0; 5184 } 5185 5186 /* 5187 ** Helper function for exprIsDeterministic(). 5188 */ 5189 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){ 5190 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){ 5191 pWalker->eCode = 0; 5192 return WRC_Abort; 5193 } 5194 return WRC_Continue; 5195 } 5196 5197 /* 5198 ** Return true if the expression contains no non-deterministic SQL 5199 ** functions. Do not consider non-deterministic SQL functions that are 5200 ** part of sub-select statements. 5201 */ 5202 static int exprIsDeterministic(Expr *p){ 5203 Walker w; 5204 memset(&w, 0, sizeof(w)); 5205 w.eCode = 1; 5206 w.xExprCallback = exprNodeIsDeterministic; 5207 w.xSelectCallback = sqlite3SelectWalkFail; 5208 sqlite3WalkExpr(&w, p); 5209 return w.eCode; 5210 } 5211 5212 5213 #ifdef WHERETRACE_ENABLED 5214 /* 5215 ** Display all WhereLoops in pWInfo 5216 */ 5217 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){ 5218 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ 5219 WhereLoop *p; 5220 int i; 5221 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 5222 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 5223 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 5224 p->cId = zLabel[i%(sizeof(zLabel)-1)]; 5225 sqlite3WhereLoopPrint(p, pWC); 5226 } 5227 } 5228 } 5229 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C) 5230 #else 5231 # define WHERETRACE_ALL_LOOPS(W,C) 5232 #endif 5233 5234 /* Attempt to omit tables from a join that do not affect the result. 5235 ** For a table to not affect the result, the following must be true: 5236 ** 5237 ** 1) The query must not be an aggregate. 5238 ** 2) The table must be the RHS of a LEFT JOIN. 5239 ** 3) Either the query must be DISTINCT, or else the ON or USING clause 5240 ** must contain a constraint that limits the scan of the table to 5241 ** at most a single row. 5242 ** 4) The table must not be referenced by any part of the query apart 5243 ** from its own USING or ON clause. 5244 ** 5245 ** For example, given: 5246 ** 5247 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1); 5248 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2); 5249 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3); 5250 ** 5251 ** then table t2 can be omitted from the following: 5252 ** 5253 ** SELECT v1, v3 FROM t1 5254 ** LEFT JOIN t2 ON (t1.ipk=t2.ipk) 5255 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) 5256 ** 5257 ** or from: 5258 ** 5259 ** SELECT DISTINCT v1, v3 FROM t1 5260 ** LEFT JOIN t2 5261 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) 5262 */ 5263 static SQLITE_NOINLINE Bitmask whereOmitNoopJoin( 5264 WhereInfo *pWInfo, 5265 Bitmask notReady 5266 ){ 5267 int i; 5268 Bitmask tabUsed; 5269 5270 /* Preconditions checked by the caller */ 5271 assert( pWInfo->nLevel>=2 ); 5272 assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) ); 5273 5274 /* These two preconditions checked by the caller combine to guarantee 5275 ** condition (1) of the header comment */ 5276 assert( pWInfo->pResultSet!=0 ); 5277 assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) ); 5278 5279 tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet); 5280 if( pWInfo->pOrderBy ){ 5281 tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy); 5282 } 5283 for(i=pWInfo->nLevel-1; i>=1; i--){ 5284 WhereTerm *pTerm, *pEnd; 5285 SrcItem *pItem; 5286 WhereLoop *pLoop; 5287 pLoop = pWInfo->a[i].pWLoop; 5288 pItem = &pWInfo->pTabList->a[pLoop->iTab]; 5289 if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ) continue; 5290 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)==0 5291 && (pLoop->wsFlags & WHERE_ONEROW)==0 5292 ){ 5293 continue; 5294 } 5295 if( (tabUsed & pLoop->maskSelf)!=0 ) continue; 5296 pEnd = pWInfo->sWC.a + pWInfo->sWC.nTerm; 5297 for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){ 5298 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 5299 if( !ExprHasProperty(pTerm->pExpr, EP_OuterON) 5300 || pTerm->pExpr->w.iJoin!=pItem->iCursor 5301 ){ 5302 break; 5303 } 5304 } 5305 } 5306 if( pTerm<pEnd ) continue; 5307 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); 5308 notReady &= ~pLoop->maskSelf; 5309 for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){ 5310 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 5311 pTerm->wtFlags |= TERM_CODED; 5312 } 5313 } 5314 if( i!=pWInfo->nLevel-1 ){ 5315 int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel); 5316 memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte); 5317 } 5318 pWInfo->nLevel--; 5319 assert( pWInfo->nLevel>0 ); 5320 } 5321 return notReady; 5322 } 5323 5324 /* 5325 ** Check to see if there are any SEARCH loops that might benefit from 5326 ** using a Bloom filter. Consider a Bloom filter if: 5327 ** 5328 ** (1) The SEARCH happens more than N times where N is the number 5329 ** of rows in the table that is being considered for the Bloom 5330 ** filter. 5331 ** (2) Some searches are expected to find zero rows. (This is determined 5332 ** by the WHERE_SELFCULL flag on the term.) 5333 ** (3) Bloom-filter processing is not disabled. (Checked by the 5334 ** caller.) 5335 ** (4) The size of the table being searched is known by ANALYZE. 5336 ** 5337 ** This block of code merely checks to see if a Bloom filter would be 5338 ** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the 5339 ** WhereLoop. The implementation of the Bloom filter comes further 5340 ** down where the code for each WhereLoop is generated. 5341 */ 5342 static SQLITE_NOINLINE void whereCheckIfBloomFilterIsUseful( 5343 const WhereInfo *pWInfo 5344 ){ 5345 int i; 5346 LogEst nSearch; 5347 5348 assert( pWInfo->nLevel>=2 ); 5349 assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) ); 5350 nSearch = pWInfo->a[0].pWLoop->nOut; 5351 for(i=1; i<pWInfo->nLevel; i++){ 5352 WhereLoop *pLoop = pWInfo->a[i].pWLoop; 5353 const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ); 5354 if( (pLoop->wsFlags & reqFlags)==reqFlags 5355 /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */ 5356 && ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0) 5357 ){ 5358 SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab]; 5359 Table *pTab = pItem->pTab; 5360 pTab->tabFlags |= TF_StatsUsed; 5361 if( nSearch > pTab->nRowLogEst 5362 && (pTab->tabFlags & TF_HasStat1)!=0 5363 ){ 5364 testcase( pItem->fg.jointype & JT_LEFT ); 5365 pLoop->wsFlags |= WHERE_BLOOMFILTER; 5366 pLoop->wsFlags &= ~WHERE_IDX_ONLY; 5367 WHERETRACE(0xffff, ( 5368 "-> use Bloom-filter on loop %c because there are ~%.1e " 5369 "lookups into %s which has only ~%.1e rows\n", 5370 pLoop->cId, (double)sqlite3LogEstToInt(nSearch), pTab->zName, 5371 (double)sqlite3LogEstToInt(pTab->nRowLogEst))); 5372 } 5373 } 5374 nSearch += pLoop->nOut; 5375 } 5376 } 5377 5378 /* 5379 ** Generate the beginning of the loop used for WHERE clause processing. 5380 ** The return value is a pointer to an opaque structure that contains 5381 ** information needed to terminate the loop. Later, the calling routine 5382 ** should invoke sqlite3WhereEnd() with the return value of this function 5383 ** in order to complete the WHERE clause processing. 5384 ** 5385 ** If an error occurs, this routine returns NULL. 5386 ** 5387 ** The basic idea is to do a nested loop, one loop for each table in 5388 ** the FROM clause of a select. (INSERT and UPDATE statements are the 5389 ** same as a SELECT with only a single table in the FROM clause.) For 5390 ** example, if the SQL is this: 5391 ** 5392 ** SELECT * FROM t1, t2, t3 WHERE ...; 5393 ** 5394 ** Then the code generated is conceptually like the following: 5395 ** 5396 ** foreach row1 in t1 do \ Code generated 5397 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 5398 ** foreach row3 in t3 do / 5399 ** ... 5400 ** end \ Code generated 5401 ** end |-- by sqlite3WhereEnd() 5402 ** end / 5403 ** 5404 ** Note that the loops might not be nested in the order in which they 5405 ** appear in the FROM clause if a different order is better able to make 5406 ** use of indices. Note also that when the IN operator appears in 5407 ** the WHERE clause, it might result in additional nested loops for 5408 ** scanning through all values on the right-hand side of the IN. 5409 ** 5410 ** There are Btree cursors associated with each table. t1 uses cursor 5411 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 5412 ** And so forth. This routine generates code to open those VDBE cursors 5413 ** and sqlite3WhereEnd() generates the code to close them. 5414 ** 5415 ** The code that sqlite3WhereBegin() generates leaves the cursors named 5416 ** in pTabList pointing at their appropriate entries. The [...] code 5417 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 5418 ** data from the various tables of the loop. 5419 ** 5420 ** If the WHERE clause is empty, the foreach loops must each scan their 5421 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 5422 ** the tables have indices and there are terms in the WHERE clause that 5423 ** refer to those indices, a complete table scan can be avoided and the 5424 ** code will run much faster. Most of the work of this routine is checking 5425 ** to see if there are indices that can be used to speed up the loop. 5426 ** 5427 ** Terms of the WHERE clause are also used to limit which rows actually 5428 ** make it to the "..." in the middle of the loop. After each "foreach", 5429 ** terms of the WHERE clause that use only terms in that loop and outer 5430 ** loops are evaluated and if false a jump is made around all subsequent 5431 ** inner loops (or around the "..." if the test occurs within the inner- 5432 ** most loop) 5433 ** 5434 ** OUTER JOINS 5435 ** 5436 ** An outer join of tables t1 and t2 is conceptally coded as follows: 5437 ** 5438 ** foreach row1 in t1 do 5439 ** flag = 0 5440 ** foreach row2 in t2 do 5441 ** start: 5442 ** ... 5443 ** flag = 1 5444 ** end 5445 ** if flag==0 then 5446 ** move the row2 cursor to a null row 5447 ** goto start 5448 ** fi 5449 ** end 5450 ** 5451 ** ORDER BY CLAUSE PROCESSING 5452 ** 5453 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 5454 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 5455 ** if there is one. If there is no ORDER BY clause or if this routine 5456 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 5457 ** 5458 ** The iIdxCur parameter is the cursor number of an index. If 5459 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index 5460 ** to use for OR clause processing. The WHERE clause should use this 5461 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 5462 ** the first cursor in an array of cursors for all indices. iIdxCur should 5463 ** be used to compute the appropriate cursor depending on which index is 5464 ** used. 5465 */ 5466 WhereInfo *sqlite3WhereBegin( 5467 Parse *pParse, /* The parser context */ 5468 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 5469 Expr *pWhere, /* The WHERE clause */ 5470 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 5471 ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */ 5472 Select *pLimit, /* Use this LIMIT/OFFSET clause, if any */ 5473 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */ 5474 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number 5475 ** If WHERE_USE_LIMIT, then the limit amount */ 5476 ){ 5477 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 5478 int nTabList; /* Number of elements in pTabList */ 5479 WhereInfo *pWInfo; /* Will become the return value of this function */ 5480 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 5481 Bitmask notReady; /* Cursors that are not yet positioned */ 5482 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 5483 WhereMaskSet *pMaskSet; /* The expression mask set */ 5484 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 5485 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 5486 int ii; /* Loop counter */ 5487 sqlite3 *db; /* Database connection */ 5488 int rc; /* Return code */ 5489 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ 5490 5491 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( 5492 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 5493 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 5494 )); 5495 5496 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */ 5497 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 5498 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); 5499 5500 /* Variable initialization */ 5501 db = pParse->db; 5502 memset(&sWLB, 0, sizeof(sWLB)); 5503 5504 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 5505 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 5506 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; 5507 5508 /* The number of tables in the FROM clause is limited by the number of 5509 ** bits in a Bitmask 5510 */ 5511 testcase( pTabList->nSrc==BMS ); 5512 if( pTabList->nSrc>BMS ){ 5513 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 5514 return 0; 5515 } 5516 5517 /* This function normally generates a nested loop for all tables in 5518 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should 5519 ** only generate code for the first table in pTabList and assume that 5520 ** any cursors associated with subsequent tables are uninitialized. 5521 */ 5522 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc; 5523 5524 /* Allocate and initialize the WhereInfo structure that will become the 5525 ** return value. A single allocation is used to store the WhereInfo 5526 ** struct, the contents of WhereInfo.a[], the WhereClause structure 5527 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 5528 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 5529 ** some architectures. Hence the ROUND8() below. 5530 */ 5531 nByteWInfo = ROUND8P(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 5532 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop)); 5533 if( db->mallocFailed ){ 5534 sqlite3DbFree(db, pWInfo); 5535 pWInfo = 0; 5536 goto whereBeginError; 5537 } 5538 pWInfo->pParse = pParse; 5539 pWInfo->pTabList = pTabList; 5540 pWInfo->pOrderBy = pOrderBy; 5541 pWInfo->pWhere = pWhere; 5542 pWInfo->pResultSet = pResultSet; 5543 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 5544 pWInfo->nLevel = nTabList; 5545 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse); 5546 pWInfo->wctrlFlags = wctrlFlags; 5547 pWInfo->iLimit = iAuxArg; 5548 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 5549 #ifndef SQLITE_OMIT_VIRTUALTABLE 5550 pWInfo->pLimit = pLimit; 5551 #endif 5552 memset(&pWInfo->nOBSat, 0, 5553 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat)); 5554 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel)); 5555 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ 5556 pMaskSet = &pWInfo->sMaskSet; 5557 pMaskSet->n = 0; 5558 pMaskSet->ix[0] = -99; /* Initialize ix[0] to a value that can never be 5559 ** a valid cursor number, to avoid an initial 5560 ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */ 5561 sWLB.pWInfo = pWInfo; 5562 sWLB.pWC = &pWInfo->sWC; 5563 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 5564 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 5565 whereLoopInit(sWLB.pNew); 5566 #ifdef SQLITE_DEBUG 5567 sWLB.pNew->cId = '*'; 5568 #endif 5569 5570 /* Split the WHERE clause into separate subexpressions where each 5571 ** subexpression is separated by an AND operator. 5572 */ 5573 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); 5574 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); 5575 5576 /* Special case: No FROM clause 5577 */ 5578 if( nTabList==0 ){ 5579 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 5580 if( (wctrlFlags & WHERE_WANT_DISTINCT)!=0 5581 && OptimizationEnabled(db, SQLITE_DistinctOpt) 5582 ){ 5583 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 5584 } 5585 ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW")); 5586 }else{ 5587 /* Assign a bit from the bitmask to every term in the FROM clause. 5588 ** 5589 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. 5590 ** 5591 ** The rule of the previous sentence ensures thta if X is the bitmask for 5592 ** a table T, then X-1 is the bitmask for all other tables to the left of T. 5593 ** Knowing the bitmask for all tables to the left of a left join is 5594 ** important. Ticket #3015. 5595 ** 5596 ** Note that bitmasks are created for all pTabList->nSrc tables in 5597 ** pTabList, not just the first nTabList tables. nTabList is normally 5598 ** equal to pTabList->nSrc but might be shortened to 1 if the 5599 ** WHERE_OR_SUBCLAUSE flag is set. 5600 */ 5601 ii = 0; 5602 do{ 5603 createMask(pMaskSet, pTabList->a[ii].iCursor); 5604 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); 5605 }while( (++ii)<pTabList->nSrc ); 5606 #ifdef SQLITE_DEBUG 5607 { 5608 Bitmask mx = 0; 5609 for(ii=0; ii<pTabList->nSrc; ii++){ 5610 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); 5611 assert( m>=mx ); 5612 mx = m; 5613 } 5614 } 5615 #endif 5616 } 5617 5618 /* Analyze all of the subexpressions. */ 5619 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); 5620 sqlite3WhereAddLimit(&pWInfo->sWC, pLimit); 5621 if( pParse->nErr ) goto whereBeginError; 5622 5623 /* Special case: WHERE terms that do not refer to any tables in the join 5624 ** (constant expressions). Evaluate each such term, and jump over all the 5625 ** generated code if the result is not true. 5626 ** 5627 ** Do not do this if the expression contains non-deterministic functions 5628 ** that are not within a sub-select. This is not strictly required, but 5629 ** preserves SQLite's legacy behaviour in the following two cases: 5630 ** 5631 ** FROM ... WHERE random()>0; -- eval random() once per row 5632 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall 5633 */ 5634 for(ii=0; ii<sWLB.pWC->nBase; ii++){ 5635 WhereTerm *pT = &sWLB.pWC->a[ii]; 5636 if( pT->wtFlags & TERM_VIRTUAL ) continue; 5637 if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){ 5638 sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL); 5639 pT->wtFlags |= TERM_CODED; 5640 } 5641 } 5642 5643 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 5644 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 5645 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 5646 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 5647 wctrlFlags &= ~WHERE_WANT_DISTINCT; 5648 pWInfo->wctrlFlags &= ~WHERE_WANT_DISTINCT; 5649 }else if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ 5650 /* The DISTINCT marking is pointless. Ignore it. */ 5651 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 5652 }else if( pOrderBy==0 ){ 5653 /* Try to ORDER BY the result set to make distinct processing easier */ 5654 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 5655 pWInfo->pOrderBy = pResultSet; 5656 } 5657 } 5658 5659 /* Construct the WhereLoop objects */ 5660 #if defined(WHERETRACE_ENABLED) 5661 if( sqlite3WhereTrace & 0xffff ){ 5662 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); 5663 if( wctrlFlags & WHERE_USE_LIMIT ){ 5664 sqlite3DebugPrintf(", limit: %d", iAuxArg); 5665 } 5666 sqlite3DebugPrintf(")\n"); 5667 if( sqlite3WhereTrace & 0x100 ){ 5668 Select sSelect; 5669 memset(&sSelect, 0, sizeof(sSelect)); 5670 sSelect.selFlags = SF_WhereBegin; 5671 sSelect.pSrc = pTabList; 5672 sSelect.pWhere = pWhere; 5673 sSelect.pOrderBy = pOrderBy; 5674 sSelect.pEList = pResultSet; 5675 sqlite3TreeViewSelect(0, &sSelect, 0); 5676 } 5677 } 5678 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 5679 sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n"); 5680 sqlite3WhereClausePrint(sWLB.pWC); 5681 } 5682 #endif 5683 5684 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 5685 rc = whereLoopAddAll(&sWLB); 5686 if( rc ) goto whereBeginError; 5687 5688 #ifdef SQLITE_ENABLE_STAT4 5689 /* If one or more WhereTerm.truthProb values were used in estimating 5690 ** loop parameters, but then those truthProb values were subsequently 5691 ** changed based on STAT4 information while computing subsequent loops, 5692 ** then we need to rerun the whole loop building process so that all 5693 ** loops will be built using the revised truthProb values. */ 5694 if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){ 5695 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); 5696 WHERETRACE(0xffff, 5697 ("**** Redo all loop computations due to" 5698 " TERM_HIGHTRUTH changes ****\n")); 5699 while( pWInfo->pLoops ){ 5700 WhereLoop *p = pWInfo->pLoops; 5701 pWInfo->pLoops = p->pNextLoop; 5702 whereLoopDelete(db, p); 5703 } 5704 rc = whereLoopAddAll(&sWLB); 5705 if( rc ) goto whereBeginError; 5706 } 5707 #endif 5708 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); 5709 5710 wherePathSolver(pWInfo, 0); 5711 if( db->mallocFailed ) goto whereBeginError; 5712 if( pWInfo->pOrderBy ){ 5713 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 5714 if( db->mallocFailed ) goto whereBeginError; 5715 } 5716 } 5717 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 5718 pWInfo->revMask = ALLBITS; 5719 } 5720 if( pParse->nErr ){ 5721 goto whereBeginError; 5722 } 5723 assert( db->mallocFailed==0 ); 5724 #ifdef WHERETRACE_ENABLED 5725 if( sqlite3WhereTrace ){ 5726 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 5727 if( pWInfo->nOBSat>0 ){ 5728 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 5729 } 5730 switch( pWInfo->eDistinct ){ 5731 case WHERE_DISTINCT_UNIQUE: { 5732 sqlite3DebugPrintf(" DISTINCT=unique"); 5733 break; 5734 } 5735 case WHERE_DISTINCT_ORDERED: { 5736 sqlite3DebugPrintf(" DISTINCT=ordered"); 5737 break; 5738 } 5739 case WHERE_DISTINCT_UNORDERED: { 5740 sqlite3DebugPrintf(" DISTINCT=unordered"); 5741 break; 5742 } 5743 } 5744 sqlite3DebugPrintf("\n"); 5745 for(ii=0; ii<pWInfo->nLevel; ii++){ 5746 sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 5747 } 5748 } 5749 #endif 5750 5751 /* Attempt to omit tables from a join that do not affect the result. 5752 ** See the comment on whereOmitNoopJoin() for further information. 5753 ** 5754 ** This query optimization is factored out into a separate "no-inline" 5755 ** procedure to keep the sqlite3WhereBegin() procedure from becoming 5756 ** too large. If sqlite3WhereBegin() becomes too large, that prevents 5757 ** some C-compiler optimizers from in-lining the 5758 ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to 5759 ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons. 5760 */ 5761 notReady = ~(Bitmask)0; 5762 if( pWInfo->nLevel>=2 5763 && pResultSet!=0 /* these two combine to guarantee */ 5764 && 0==(wctrlFlags & WHERE_AGG_DISTINCT) /* condition (1) above */ 5765 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) 5766 ){ 5767 notReady = whereOmitNoopJoin(pWInfo, notReady); 5768 nTabList = pWInfo->nLevel; 5769 assert( nTabList>0 ); 5770 } 5771 5772 /* Check to see if there are any SEARCH loops that might benefit from 5773 ** using a Bloom filter. 5774 */ 5775 if( pWInfo->nLevel>=2 5776 && OptimizationEnabled(db, SQLITE_BloomFilter) 5777 ){ 5778 whereCheckIfBloomFilterIsUseful(pWInfo); 5779 } 5780 5781 #if defined(WHERETRACE_ENABLED) 5782 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 5783 sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n"); 5784 sqlite3WhereClausePrint(sWLB.pWC); 5785 } 5786 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); 5787 #endif 5788 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 5789 5790 /* If the caller is an UPDATE or DELETE statement that is requesting 5791 ** to use a one-pass algorithm, determine if this is appropriate. 5792 ** 5793 ** A one-pass approach can be used if the caller has requested one 5794 ** and either (a) the scan visits at most one row or (b) each 5795 ** of the following are true: 5796 ** 5797 ** * the caller has indicated that a one-pass approach can be used 5798 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and 5799 ** * the table is not a virtual table, and 5800 ** * either the scan does not use the OR optimization or the caller 5801 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified 5802 ** for DELETE). 5803 ** 5804 ** The last qualification is because an UPDATE statement uses 5805 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can 5806 ** use a one-pass approach, and this is not set accurately for scans 5807 ** that use the OR optimization. 5808 */ 5809 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 5810 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ 5811 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; 5812 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; 5813 assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) ); 5814 if( bOnerow || ( 5815 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW) 5816 && !IsVirtual(pTabList->a[0].pTab) 5817 && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK)) 5818 )){ 5819 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; 5820 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ 5821 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ 5822 bFordelete = OPFLAG_FORDELETE; 5823 } 5824 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); 5825 } 5826 } 5827 } 5828 5829 /* Open all tables in the pTabList and any indices selected for 5830 ** searching those tables. 5831 */ 5832 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 5833 Table *pTab; /* Table to open */ 5834 int iDb; /* Index of database containing table/index */ 5835 SrcItem *pTabItem; 5836 5837 pTabItem = &pTabList->a[pLevel->iFrom]; 5838 pTab = pTabItem->pTab; 5839 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5840 pLoop = pLevel->pWLoop; 5841 if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){ 5842 /* Do nothing */ 5843 }else 5844 #ifndef SQLITE_OMIT_VIRTUALTABLE 5845 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 5846 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 5847 int iCur = pTabItem->iCursor; 5848 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 5849 }else if( IsVirtual(pTab) ){ 5850 /* noop */ 5851 }else 5852 #endif 5853 if( ((pLoop->wsFlags & WHERE_IDX_ONLY)==0 5854 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0) 5855 || (pTabItem->fg.jointype & (JT_LTORJ|JT_RIGHT))!=0 5856 ){ 5857 int op = OP_OpenRead; 5858 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5859 op = OP_OpenWrite; 5860 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 5861 }; 5862 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 5863 assert( pTabItem->iCursor==pLevel->iTabCur ); 5864 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); 5865 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); 5866 if( pWInfo->eOnePass==ONEPASS_OFF 5867 && pTab->nCol<BMS 5868 && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0 5869 && (pLoop->wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))==0 5870 ){ 5871 /* If we know that only a prefix of the record will be used, 5872 ** it is advantageous to reduce the "column count" field in 5873 ** the P4 operand of the OP_OpenRead/Write opcode. */ 5874 Bitmask b = pTabItem->colUsed; 5875 int n = 0; 5876 for(; b; b=b>>1, n++){} 5877 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); 5878 assert( n<=pTab->nCol ); 5879 } 5880 #ifdef SQLITE_ENABLE_CURSOR_HINTS 5881 if( pLoop->u.btree.pIndex!=0 ){ 5882 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); 5883 }else 5884 #endif 5885 { 5886 sqlite3VdbeChangeP5(v, bFordelete); 5887 } 5888 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5889 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, 5890 (const u8*)&pTabItem->colUsed, P4_INT64); 5891 #endif 5892 }else{ 5893 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5894 } 5895 if( pLoop->wsFlags & WHERE_INDEXED ){ 5896 Index *pIx = pLoop->u.btree.pIndex; 5897 int iIndexCur; 5898 int op = OP_OpenRead; 5899 /* iAuxArg is always set to a positive value if ONEPASS is possible */ 5900 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 5901 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 5902 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 5903 ){ 5904 /* This is one term of an OR-optimization using the PRIMARY KEY of a 5905 ** WITHOUT ROWID table. No need for a separate index */ 5906 iIndexCur = pLevel->iTabCur; 5907 op = 0; 5908 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5909 Index *pJ = pTabItem->pTab->pIndex; 5910 iIndexCur = iAuxArg; 5911 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 5912 while( ALWAYS(pJ) && pJ!=pIx ){ 5913 iIndexCur++; 5914 pJ = pJ->pNext; 5915 } 5916 op = OP_OpenWrite; 5917 pWInfo->aiCurOnePass[1] = iIndexCur; 5918 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ 5919 iIndexCur = iAuxArg; 5920 op = OP_ReopenIdx; 5921 }else{ 5922 iIndexCur = pParse->nTab++; 5923 } 5924 pLevel->iIdxCur = iIndexCur; 5925 assert( pIx!=0 ); 5926 assert( pIx->pSchema==pTab->pSchema ); 5927 assert( iIndexCur>=0 ); 5928 if( op ){ 5929 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 5930 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 5931 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 5932 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 5933 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0 5934 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 5935 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 5936 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED 5937 ){ 5938 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); 5939 } 5940 VdbeComment((v, "%s", pIx->zName)); 5941 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5942 { 5943 u64 colUsed = 0; 5944 int ii, jj; 5945 for(ii=0; ii<pIx->nColumn; ii++){ 5946 jj = pIx->aiColumn[ii]; 5947 if( jj<0 ) continue; 5948 if( jj>63 ) jj = 63; 5949 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; 5950 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); 5951 } 5952 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, 5953 (u8*)&colUsed, P4_INT64); 5954 } 5955 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ 5956 } 5957 } 5958 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 5959 if( (pTabItem->fg.jointype & JT_RIGHT)!=0 5960 && (pLevel->pRJ = sqlite3WhereMalloc(pWInfo, sizeof(WhereRightJoin)))!=0 5961 ){ 5962 WhereRightJoin *pRJ = pLevel->pRJ; 5963 pRJ->iMatch = pParse->nTab++; 5964 pRJ->regBloom = ++pParse->nMem; 5965 sqlite3VdbeAddOp2(v, OP_Blob, 65536, pRJ->regBloom); 5966 pRJ->regReturn = ++pParse->nMem; 5967 sqlite3VdbeAddOp2(v, OP_Null, 0, pRJ->regReturn); 5968 assert( pTab==pTabItem->pTab ); 5969 if( HasRowid(pTab) ){ 5970 KeyInfo *pInfo; 5971 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, 1); 5972 pInfo = sqlite3KeyInfoAlloc(pParse->db, 1, 0); 5973 if( pInfo ){ 5974 pInfo->aColl[0] = 0; 5975 pInfo->aSortFlags[0] = 0; 5976 sqlite3VdbeAppendP4(v, pInfo, P4_KEYINFO); 5977 } 5978 }else{ 5979 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 5980 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, pPk->nKeyCol); 5981 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 5982 } 5983 pLoop->wsFlags &= ~WHERE_IDX_ONLY; 5984 /* The nature of RIGHT JOIN processing is such that it messes up 5985 ** the output order. So omit any ORDER BY/GROUP BY elimination 5986 ** optimizations. We need to do an actual sort for RIGHT JOIN. */ 5987 pWInfo->nOBSat = 0; 5988 pWInfo->eDistinct = WHERE_DISTINCT_UNORDERED; 5989 } 5990 } 5991 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 5992 if( db->mallocFailed ) goto whereBeginError; 5993 5994 /* Generate the code to do the search. Each iteration of the for 5995 ** loop below generates code for a single nested loop of the VM 5996 ** program. 5997 */ 5998 for(ii=0; ii<nTabList; ii++){ 5999 int addrExplain; 6000 int wsFlags; 6001 SrcItem *pSrc; 6002 if( pParse->nErr ) goto whereBeginError; 6003 pLevel = &pWInfo->a[ii]; 6004 wsFlags = pLevel->pWLoop->wsFlags; 6005 pSrc = &pTabList->a[pLevel->iFrom]; 6006 if( pSrc->fg.isMaterialized ){ 6007 if( pSrc->fg.isCorrelated ){ 6008 sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub); 6009 }else{ 6010 int iOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6011 sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub); 6012 sqlite3VdbeJumpHere(v, iOnce); 6013 } 6014 } 6015 if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){ 6016 if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){ 6017 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 6018 constructAutomaticIndex(pParse, &pWInfo->sWC, 6019 &pTabList->a[pLevel->iFrom], notReady, pLevel); 6020 #endif 6021 }else{ 6022 sqlite3ConstructBloomFilter(pWInfo, ii, pLevel, notReady); 6023 } 6024 if( db->mallocFailed ) goto whereBeginError; 6025 } 6026 addrExplain = sqlite3WhereExplainOneScan( 6027 pParse, pTabList, pLevel, wctrlFlags 6028 ); 6029 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 6030 notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady); 6031 pWInfo->iContinue = pLevel->addrCont; 6032 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){ 6033 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); 6034 } 6035 } 6036 6037 /* Done. */ 6038 VdbeModuleComment((v, "Begin WHERE-core")); 6039 pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v); 6040 return pWInfo; 6041 6042 /* Jump here if malloc fails */ 6043 whereBeginError: 6044 if( pWInfo ){ 6045 testcase( pWInfo->pExprMods!=0 ); 6046 whereUndoExprMods(pWInfo); 6047 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 6048 whereInfoFree(db, pWInfo); 6049 } 6050 return 0; 6051 } 6052 6053 /* 6054 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the 6055 ** index rather than the main table. In SQLITE_DEBUG mode, we want 6056 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine 6057 ** does that. 6058 */ 6059 #ifndef SQLITE_DEBUG 6060 # define OpcodeRewriteTrace(D,K,P) /* no-op */ 6061 #else 6062 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P) 6063 static void sqlite3WhereOpcodeRewriteTrace( 6064 sqlite3 *db, 6065 int pc, 6066 VdbeOp *pOp 6067 ){ 6068 if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return; 6069 sqlite3VdbePrintOp(0, pc, pOp); 6070 } 6071 #endif 6072 6073 #ifdef SQLITE_DEBUG 6074 /* 6075 ** Return true if cursor iCur is opened by instruction k of the 6076 ** bytecode. Used inside of assert() only. 6077 */ 6078 static int cursorIsOpen(Vdbe *v, int iCur, int k){ 6079 while( k>=0 ){ 6080 VdbeOp *pOp = sqlite3VdbeGetOp(v,k--); 6081 if( pOp->p1!=iCur ) continue; 6082 if( pOp->opcode==OP_Close ) return 0; 6083 if( pOp->opcode==OP_OpenRead ) return 1; 6084 if( pOp->opcode==OP_OpenWrite ) return 1; 6085 if( pOp->opcode==OP_OpenDup ) return 1; 6086 if( pOp->opcode==OP_OpenAutoindex ) return 1; 6087 if( pOp->opcode==OP_OpenEphemeral ) return 1; 6088 } 6089 return 0; 6090 } 6091 #endif /* SQLITE_DEBUG */ 6092 6093 /* 6094 ** Generate the end of the WHERE loop. See comments on 6095 ** sqlite3WhereBegin() for additional information. 6096 */ 6097 void sqlite3WhereEnd(WhereInfo *pWInfo){ 6098 Parse *pParse = pWInfo->pParse; 6099 Vdbe *v = pParse->pVdbe; 6100 int i; 6101 WhereLevel *pLevel; 6102 WhereLoop *pLoop; 6103 SrcList *pTabList = pWInfo->pTabList; 6104 sqlite3 *db = pParse->db; 6105 int iEnd = sqlite3VdbeCurrentAddr(v); 6106 int nRJ = 0; 6107 6108 /* Generate loop termination code. 6109 */ 6110 VdbeModuleComment((v, "End WHERE-core")); 6111 for(i=pWInfo->nLevel-1; i>=0; i--){ 6112 int addr; 6113 pLevel = &pWInfo->a[i]; 6114 if( pLevel->pRJ ){ 6115 /* Terminate the subroutine that forms the interior of the loop of 6116 ** the RIGHT JOIN table */ 6117 WhereRightJoin *pRJ = pLevel->pRJ; 6118 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 6119 pLevel->addrCont = 0; 6120 pRJ->endSubrtn = sqlite3VdbeCurrentAddr(v); 6121 sqlite3VdbeAddOp3(v, OP_Return, pRJ->regReturn, pRJ->addrSubrtn, 1); 6122 VdbeCoverage(v); 6123 nRJ++; 6124 } 6125 pLoop = pLevel->pWLoop; 6126 if( pLevel->op!=OP_Noop ){ 6127 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 6128 int addrSeek = 0; 6129 Index *pIdx; 6130 int n; 6131 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED 6132 && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */ 6133 && (pLoop->wsFlags & WHERE_INDEXED)!=0 6134 && (pIdx = pLoop->u.btree.pIndex)->hasStat1 6135 && (n = pLoop->u.btree.nDistinctCol)>0 6136 && pIdx->aiRowLogEst[n]>=36 6137 ){ 6138 int r1 = pParse->nMem+1; 6139 int j, op; 6140 for(j=0; j<n; j++){ 6141 sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j); 6142 } 6143 pParse->nMem += n+1; 6144 op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT; 6145 addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n); 6146 VdbeCoverageIf(v, op==OP_SeekLT); 6147 VdbeCoverageIf(v, op==OP_SeekGT); 6148 sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2); 6149 } 6150 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */ 6151 /* The common case: Advance to the next row */ 6152 if( pLevel->addrCont ) sqlite3VdbeResolveLabel(v, pLevel->addrCont); 6153 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 6154 sqlite3VdbeChangeP5(v, pLevel->p5); 6155 VdbeCoverage(v); 6156 VdbeCoverageIf(v, pLevel->op==OP_Next); 6157 VdbeCoverageIf(v, pLevel->op==OP_Prev); 6158 VdbeCoverageIf(v, pLevel->op==OP_VNext); 6159 if( pLevel->regBignull ){ 6160 sqlite3VdbeResolveLabel(v, pLevel->addrBignull); 6161 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1); 6162 VdbeCoverage(v); 6163 } 6164 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 6165 if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek); 6166 #endif 6167 }else if( pLevel->addrCont ){ 6168 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 6169 } 6170 if( (pLoop->wsFlags & WHERE_IN_ABLE)!=0 && pLevel->u.in.nIn>0 ){ 6171 struct InLoop *pIn; 6172 int j; 6173 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 6174 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 6175 assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull 6176 || pParse->db->mallocFailed ); 6177 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 6178 if( pIn->eEndLoopOp!=OP_Noop ){ 6179 if( pIn->nPrefix ){ 6180 int bEarlyOut = 6181 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 6182 && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0; 6183 if( pLevel->iLeftJoin ){ 6184 /* For LEFT JOIN queries, cursor pIn->iCur may not have been 6185 ** opened yet. This occurs for WHERE clauses such as 6186 ** "a = ? AND b IN (...)", where the index is on (a, b). If 6187 ** the RHS of the (a=?) is NULL, then the "b IN (...)" may 6188 ** never have been coded, but the body of the loop run to 6189 ** return the null-row. So, if the cursor is not open yet, 6190 ** jump over the OP_Next or OP_Prev instruction about to 6191 ** be coded. */ 6192 sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur, 6193 sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut); 6194 VdbeCoverage(v); 6195 } 6196 if( bEarlyOut ){ 6197 sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur, 6198 sqlite3VdbeCurrentAddr(v)+2, 6199 pIn->iBase, pIn->nPrefix); 6200 VdbeCoverage(v); 6201 /* Retarget the OP_IsNull against the left operand of IN so 6202 ** it jumps past the OP_IfNoHope. This is because the 6203 ** OP_IsNull also bypasses the OP_Affinity opcode that is 6204 ** required by OP_IfNoHope. */ 6205 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 6206 } 6207 } 6208 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 6209 VdbeCoverage(v); 6210 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev); 6211 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next); 6212 } 6213 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 6214 } 6215 } 6216 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 6217 if( pLevel->pRJ ){ 6218 sqlite3VdbeAddOp3(v, OP_Return, pLevel->pRJ->regReturn, 0, 1); 6219 VdbeCoverage(v); 6220 } 6221 if( pLevel->addrSkip ){ 6222 sqlite3VdbeGoto(v, pLevel->addrSkip); 6223 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 6224 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 6225 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 6226 } 6227 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 6228 if( pLevel->addrLikeRep ){ 6229 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1), 6230 pLevel->addrLikeRep); 6231 VdbeCoverage(v); 6232 } 6233 #endif 6234 if( pLevel->iLeftJoin ){ 6235 int ws = pLoop->wsFlags; 6236 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 6237 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); 6238 if( (ws & WHERE_IDX_ONLY)==0 ){ 6239 assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor ); 6240 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur); 6241 } 6242 if( (ws & WHERE_INDEXED) 6243 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCoveringIdx) 6244 ){ 6245 if( ws & WHERE_MULTI_OR ){ 6246 Index *pIx = pLevel->u.pCoveringIdx; 6247 int iDb = sqlite3SchemaToIndex(db, pIx->pSchema); 6248 sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb); 6249 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 6250 } 6251 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 6252 } 6253 if( pLevel->op==OP_Return ){ 6254 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 6255 }else{ 6256 sqlite3VdbeGoto(v, pLevel->addrFirst); 6257 } 6258 sqlite3VdbeJumpHere(v, addr); 6259 } 6260 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 6261 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 6262 } 6263 6264 assert( pWInfo->nLevel<=pTabList->nSrc ); 6265 if( pWInfo->pExprMods ) whereUndoExprMods(pWInfo); 6266 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 6267 int k, last; 6268 VdbeOp *pOp, *pLastOp; 6269 Index *pIdx = 0; 6270 SrcItem *pTabItem = &pTabList->a[pLevel->iFrom]; 6271 Table *pTab = pTabItem->pTab; 6272 assert( pTab!=0 ); 6273 pLoop = pLevel->pWLoop; 6274 6275 /* Do RIGHT JOIN processing. Generate code that will output the 6276 ** unmatched rows of the right operand of the RIGHT JOIN with 6277 ** all of the columns of the left operand set to NULL. 6278 */ 6279 if( pLevel->pRJ ){ 6280 sqlite3WhereRightJoinLoop(pWInfo, i, pLevel); 6281 continue; 6282 } 6283 6284 /* For a co-routine, change all OP_Column references to the table of 6285 ** the co-routine into OP_Copy of result contained in a register. 6286 ** OP_Rowid becomes OP_Null. 6287 */ 6288 if( pTabItem->fg.viaCoroutine ){ 6289 testcase( pParse->db->mallocFailed ); 6290 translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur, 6291 pTabItem->regResult, 0); 6292 continue; 6293 } 6294 6295 /* If this scan uses an index, make VDBE code substitutions to read data 6296 ** from the index instead of from the table where possible. In some cases 6297 ** this optimization prevents the table from ever being read, which can 6298 ** yield a significant performance boost. 6299 ** 6300 ** Calls to the code generator in between sqlite3WhereBegin and 6301 ** sqlite3WhereEnd will have created code that references the table 6302 ** directly. This loop scans all that code looking for opcodes 6303 ** that reference the table and converts them into opcodes that 6304 ** reference the index. 6305 */ 6306 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 6307 pIdx = pLoop->u.btree.pIndex; 6308 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 6309 pIdx = pLevel->u.pCoveringIdx; 6310 } 6311 if( pIdx 6312 && !db->mallocFailed 6313 ){ 6314 if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){ 6315 last = iEnd; 6316 }else{ 6317 last = pWInfo->iEndWhere; 6318 } 6319 k = pLevel->addrBody + 1; 6320 #ifdef SQLITE_DEBUG 6321 if( db->flags & SQLITE_VdbeAddopTrace ){ 6322 printf("TRANSLATE opcodes in range %d..%d\n", k, last-1); 6323 } 6324 /* Proof that the "+1" on the k value above is safe */ 6325 pOp = sqlite3VdbeGetOp(v, k - 1); 6326 assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur ); 6327 assert( pOp->opcode!=OP_Rowid || pOp->p1!=pLevel->iTabCur ); 6328 assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur ); 6329 #endif 6330 pOp = sqlite3VdbeGetOp(v, k); 6331 pLastOp = pOp + (last - k); 6332 assert( pOp<=pLastOp ); 6333 do{ 6334 if( pOp->p1!=pLevel->iTabCur ){ 6335 /* no-op */ 6336 }else if( pOp->opcode==OP_Column 6337 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 6338 || pOp->opcode==OP_Offset 6339 #endif 6340 ){ 6341 int x = pOp->p2; 6342 assert( pIdx->pTable==pTab ); 6343 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 6344 if( pOp->opcode==OP_Offset ){ 6345 /* Do not need to translate the column number */ 6346 }else 6347 #endif 6348 if( !HasRowid(pTab) ){ 6349 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 6350 x = pPk->aiColumn[x]; 6351 assert( x>=0 ); 6352 }else{ 6353 testcase( x!=sqlite3StorageColumnToTable(pTab,x) ); 6354 x = sqlite3StorageColumnToTable(pTab,x); 6355 } 6356 x = sqlite3TableColumnToIndex(pIdx, x); 6357 if( x>=0 ){ 6358 pOp->p2 = x; 6359 pOp->p1 = pLevel->iIdxCur; 6360 OpcodeRewriteTrace(db, k, pOp); 6361 }else{ 6362 /* Unable to translate the table reference into an index 6363 ** reference. Verify that this is harmless - that the 6364 ** table being referenced really is open. 6365 */ 6366 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 6367 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 6368 || cursorIsOpen(v,pOp->p1,k) 6369 || pOp->opcode==OP_Offset 6370 ); 6371 #else 6372 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 6373 || cursorIsOpen(v,pOp->p1,k) 6374 ); 6375 #endif 6376 } 6377 }else if( pOp->opcode==OP_Rowid ){ 6378 pOp->p1 = pLevel->iIdxCur; 6379 pOp->opcode = OP_IdxRowid; 6380 OpcodeRewriteTrace(db, k, pOp); 6381 }else if( pOp->opcode==OP_IfNullRow ){ 6382 pOp->p1 = pLevel->iIdxCur; 6383 OpcodeRewriteTrace(db, k, pOp); 6384 } 6385 #ifdef SQLITE_DEBUG 6386 k++; 6387 #endif 6388 }while( (++pOp)<pLastOp ); 6389 #ifdef SQLITE_DEBUG 6390 if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n"); 6391 #endif 6392 } 6393 } 6394 6395 /* The "break" point is here, just past the end of the outer loop. 6396 ** Set it. 6397 */ 6398 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 6399 6400 /* Final cleanup 6401 */ 6402 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 6403 whereInfoFree(db, pWInfo); 6404 pParse->withinRJSubrtn -= nRJ; 6405 return; 6406 } 6407