1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* 23 ** Extra information appended to the end of sqlite3_index_info but not 24 ** visible to the xBestIndex function, at least not directly. The 25 ** sqlite3_vtab_collation() interface knows how to reach it, however. 26 ** 27 ** This object is not an API and can be changed from one release to the 28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation() 29 ** agree on the structure, all will be well. 30 */ 31 typedef struct HiddenIndexInfo HiddenIndexInfo; 32 struct HiddenIndexInfo { 33 WhereClause *pWC; /* The Where clause being analyzed */ 34 Parse *pParse; /* The parsing context */ 35 }; 36 37 /* Forward declaration of methods */ 38 static int whereLoopResize(sqlite3*, WhereLoop*, int); 39 40 /* 41 ** Return the estimated number of output rows from a WHERE clause 42 */ 43 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 44 return pWInfo->nRowOut; 45 } 46 47 /* 48 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 49 ** WHERE clause returns outputs for DISTINCT processing. 50 */ 51 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 52 return pWInfo->eDistinct; 53 } 54 55 /* 56 ** Return the number of ORDER BY terms that are satisfied by the 57 ** WHERE clause. A return of 0 means that the output must be 58 ** completely sorted. A return equal to the number of ORDER BY 59 ** terms means that no sorting is needed at all. A return that 60 ** is positive but less than the number of ORDER BY terms means that 61 ** block sorting is required. 62 */ 63 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 64 return pWInfo->nOBSat; 65 } 66 67 /* 68 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known 69 ** to emit rows in increasing order, and if the last row emitted by the 70 ** inner-most loop did not fit within the sorter, then we can skip all 71 ** subsequent rows for the current iteration of the inner loop (because they 72 ** will not fit in the sorter either) and continue with the second inner 73 ** loop - the loop immediately outside the inner-most. 74 ** 75 ** When a row does not fit in the sorter (because the sorter already 76 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the 77 ** label returned by this function. 78 ** 79 ** If the ORDER BY LIMIT optimization applies, the jump destination should 80 ** be the continuation for the second-inner-most loop. If the ORDER BY 81 ** LIMIT optimization does not apply, then the jump destination should 82 ** be the continuation for the inner-most loop. 83 ** 84 ** It is always safe for this routine to return the continuation of the 85 ** inner-most loop, in the sense that a correct answer will result. 86 ** Returning the continuation the second inner loop is an optimization 87 ** that might make the code run a little faster, but should not change 88 ** the final answer. 89 */ 90 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){ 91 WhereLevel *pInner; 92 if( !pWInfo->bOrderedInnerLoop ){ 93 /* The ORDER BY LIMIT optimization does not apply. Jump to the 94 ** continuation of the inner-most loop. */ 95 return pWInfo->iContinue; 96 } 97 pInner = &pWInfo->a[pWInfo->nLevel-1]; 98 assert( pInner->addrNxt!=0 ); 99 return pInner->addrNxt; 100 } 101 102 /* 103 ** While generating code for the min/max optimization, after handling 104 ** the aggregate-step call to min() or max(), check to see if any 105 ** additional looping is required. If the output order is such that 106 ** we are certain that the correct answer has already been found, then 107 ** code an OP_Goto to by pass subsequent processing. 108 ** 109 ** Any extra OP_Goto that is coded here is an optimization. The 110 ** correct answer should be obtained regardless. This OP_Goto just 111 ** makes the answer appear faster. 112 */ 113 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){ 114 WhereLevel *pInner; 115 int i; 116 if( !pWInfo->bOrderedInnerLoop ) return; 117 if( pWInfo->nOBSat==0 ) return; 118 for(i=pWInfo->nLevel-1; i>=0; i--){ 119 pInner = &pWInfo->a[i]; 120 if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){ 121 sqlite3VdbeGoto(v, pInner->addrNxt); 122 return; 123 } 124 } 125 sqlite3VdbeGoto(v, pWInfo->iBreak); 126 } 127 128 /* 129 ** Return the VDBE address or label to jump to in order to continue 130 ** immediately with the next row of a WHERE clause. 131 */ 132 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 133 assert( pWInfo->iContinue!=0 ); 134 return pWInfo->iContinue; 135 } 136 137 /* 138 ** Return the VDBE address or label to jump to in order to break 139 ** out of a WHERE loop. 140 */ 141 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 142 return pWInfo->iBreak; 143 } 144 145 /* 146 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to 147 ** operate directly on the rowids returned by a WHERE clause. Return 148 ** ONEPASS_SINGLE (1) if the statement can operation directly because only 149 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass 150 ** optimization can be used on multiple 151 ** 152 ** If the ONEPASS optimization is used (if this routine returns true) 153 ** then also write the indices of open cursors used by ONEPASS 154 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 155 ** table and iaCur[1] gets the cursor used by an auxiliary index. 156 ** Either value may be -1, indicating that cursor is not used. 157 ** Any cursors returned will have been opened for writing. 158 ** 159 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 160 ** unable to use the ONEPASS optimization. 161 */ 162 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 163 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 164 #ifdef WHERETRACE_ENABLED 165 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ 166 sqlite3DebugPrintf("%s cursors: %d %d\n", 167 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", 168 aiCur[0], aiCur[1]); 169 } 170 #endif 171 return pWInfo->eOnePass; 172 } 173 174 /* 175 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move 176 ** the data cursor to the row selected by the index cursor. 177 */ 178 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){ 179 return pWInfo->bDeferredSeek; 180 } 181 182 /* 183 ** Move the content of pSrc into pDest 184 */ 185 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 186 pDest->n = pSrc->n; 187 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 188 } 189 190 /* 191 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 192 ** 193 ** The new entry might overwrite an existing entry, or it might be 194 ** appended, or it might be discarded. Do whatever is the right thing 195 ** so that pSet keeps the N_OR_COST best entries seen so far. 196 */ 197 static int whereOrInsert( 198 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 199 Bitmask prereq, /* Prerequisites of the new entry */ 200 LogEst rRun, /* Run-cost of the new entry */ 201 LogEst nOut /* Number of outputs for the new entry */ 202 ){ 203 u16 i; 204 WhereOrCost *p; 205 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 206 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 207 goto whereOrInsert_done; 208 } 209 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 210 return 0; 211 } 212 } 213 if( pSet->n<N_OR_COST ){ 214 p = &pSet->a[pSet->n++]; 215 p->nOut = nOut; 216 }else{ 217 p = pSet->a; 218 for(i=1; i<pSet->n; i++){ 219 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 220 } 221 if( p->rRun<=rRun ) return 0; 222 } 223 whereOrInsert_done: 224 p->prereq = prereq; 225 p->rRun = rRun; 226 if( p->nOut>nOut ) p->nOut = nOut; 227 return 1; 228 } 229 230 /* 231 ** Return the bitmask for the given cursor number. Return 0 if 232 ** iCursor is not in the set. 233 */ 234 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ 235 int i; 236 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 237 for(i=0; i<pMaskSet->n; i++){ 238 if( pMaskSet->ix[i]==iCursor ){ 239 return MASKBIT(i); 240 } 241 } 242 return 0; 243 } 244 245 /* 246 ** Create a new mask for cursor iCursor. 247 ** 248 ** There is one cursor per table in the FROM clause. The number of 249 ** tables in the FROM clause is limited by a test early in the 250 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 251 ** array will never overflow. 252 */ 253 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 254 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 255 pMaskSet->ix[pMaskSet->n++] = iCursor; 256 } 257 258 /* 259 ** If the right-hand branch of the expression is a TK_COLUMN, then return 260 ** a pointer to the right-hand branch. Otherwise, return NULL. 261 */ 262 static Expr *whereRightSubexprIsColumn(Expr *p){ 263 p = sqlite3ExprSkipCollateAndLikely(p->pRight); 264 if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){ 265 return p; 266 } 267 return 0; 268 } 269 270 /* 271 ** Advance to the next WhereTerm that matches according to the criteria 272 ** established when the pScan object was initialized by whereScanInit(). 273 ** Return NULL if there are no more matching WhereTerms. 274 */ 275 static WhereTerm *whereScanNext(WhereScan *pScan){ 276 int iCur; /* The cursor on the LHS of the term */ 277 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ 278 Expr *pX; /* An expression being tested */ 279 WhereClause *pWC; /* Shorthand for pScan->pWC */ 280 WhereTerm *pTerm; /* The term being tested */ 281 int k = pScan->k; /* Where to start scanning */ 282 283 assert( pScan->iEquiv<=pScan->nEquiv ); 284 pWC = pScan->pWC; 285 while(1){ 286 iColumn = pScan->aiColumn[pScan->iEquiv-1]; 287 iCur = pScan->aiCur[pScan->iEquiv-1]; 288 assert( pWC!=0 ); 289 do{ 290 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 291 if( pTerm->leftCursor==iCur 292 && pTerm->u.x.leftColumn==iColumn 293 && (iColumn!=XN_EXPR 294 || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft, 295 pScan->pIdxExpr,iCur)==0) 296 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 297 ){ 298 if( (pTerm->eOperator & WO_EQUIV)!=0 299 && pScan->nEquiv<ArraySize(pScan->aiCur) 300 && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0 301 ){ 302 int j; 303 for(j=0; j<pScan->nEquiv; j++){ 304 if( pScan->aiCur[j]==pX->iTable 305 && pScan->aiColumn[j]==pX->iColumn ){ 306 break; 307 } 308 } 309 if( j==pScan->nEquiv ){ 310 pScan->aiCur[j] = pX->iTable; 311 pScan->aiColumn[j] = pX->iColumn; 312 pScan->nEquiv++; 313 } 314 } 315 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 316 /* Verify the affinity and collating sequence match */ 317 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 318 CollSeq *pColl; 319 Parse *pParse = pWC->pWInfo->pParse; 320 pX = pTerm->pExpr; 321 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 322 continue; 323 } 324 assert(pX->pLeft); 325 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 326 if( pColl==0 ) pColl = pParse->db->pDfltColl; 327 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ 328 continue; 329 } 330 } 331 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 332 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN 333 && pX->iTable==pScan->aiCur[0] 334 && pX->iColumn==pScan->aiColumn[0] 335 ){ 336 testcase( pTerm->eOperator & WO_IS ); 337 continue; 338 } 339 pScan->pWC = pWC; 340 pScan->k = k+1; 341 #ifdef WHERETRACE_ENABLED 342 if( sqlite3WhereTrace & 0x20000 ){ 343 int ii; 344 sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d", 345 pTerm, pScan->nEquiv); 346 for(ii=0; ii<pScan->nEquiv; ii++){ 347 sqlite3DebugPrintf(" {%d:%d}", 348 pScan->aiCur[ii], pScan->aiColumn[ii]); 349 } 350 sqlite3DebugPrintf("\n"); 351 } 352 #endif 353 return pTerm; 354 } 355 } 356 } 357 pWC = pWC->pOuter; 358 k = 0; 359 }while( pWC!=0 ); 360 if( pScan->iEquiv>=pScan->nEquiv ) break; 361 pWC = pScan->pOrigWC; 362 k = 0; 363 pScan->iEquiv++; 364 } 365 return 0; 366 } 367 368 /* 369 ** This is whereScanInit() for the case of an index on an expression. 370 ** It is factored out into a separate tail-recursion subroutine so that 371 ** the normal whereScanInit() routine, which is a high-runner, does not 372 ** need to push registers onto the stack as part of its prologue. 373 */ 374 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){ 375 pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr); 376 return whereScanNext(pScan); 377 } 378 379 /* 380 ** Initialize a WHERE clause scanner object. Return a pointer to the 381 ** first match. Return NULL if there are no matches. 382 ** 383 ** The scanner will be searching the WHERE clause pWC. It will look 384 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 385 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx 386 ** must be one of the indexes of table iCur. 387 ** 388 ** The <op> must be one of the operators described by opMask. 389 ** 390 ** If the search is for X and the WHERE clause contains terms of the 391 ** form X=Y then this routine might also return terms of the form 392 ** "Y <op> <expr>". The number of levels of transitivity is limited, 393 ** but is enough to handle most commonly occurring SQL statements. 394 ** 395 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 396 ** index pIdx. 397 */ 398 static WhereTerm *whereScanInit( 399 WhereScan *pScan, /* The WhereScan object being initialized */ 400 WhereClause *pWC, /* The WHERE clause to be scanned */ 401 int iCur, /* Cursor to scan for */ 402 int iColumn, /* Column to scan for */ 403 u32 opMask, /* Operator(s) to scan for */ 404 Index *pIdx /* Must be compatible with this index */ 405 ){ 406 pScan->pOrigWC = pWC; 407 pScan->pWC = pWC; 408 pScan->pIdxExpr = 0; 409 pScan->idxaff = 0; 410 pScan->zCollName = 0; 411 pScan->opMask = opMask; 412 pScan->k = 0; 413 pScan->aiCur[0] = iCur; 414 pScan->nEquiv = 1; 415 pScan->iEquiv = 1; 416 if( pIdx ){ 417 int j = iColumn; 418 iColumn = pIdx->aiColumn[j]; 419 if( iColumn==XN_EXPR ){ 420 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; 421 pScan->zCollName = pIdx->azColl[j]; 422 pScan->aiColumn[0] = XN_EXPR; 423 return whereScanInitIndexExpr(pScan); 424 }else if( iColumn==pIdx->pTable->iPKey ){ 425 iColumn = XN_ROWID; 426 }else if( iColumn>=0 ){ 427 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 428 pScan->zCollName = pIdx->azColl[j]; 429 } 430 }else if( iColumn==XN_EXPR ){ 431 return 0; 432 } 433 pScan->aiColumn[0] = iColumn; 434 return whereScanNext(pScan); 435 } 436 437 /* 438 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 439 ** where X is a reference to the iColumn of table iCur or of index pIdx 440 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by 441 ** the op parameter. Return a pointer to the term. Return 0 if not found. 442 ** 443 ** If pIdx!=0 then it must be one of the indexes of table iCur. 444 ** Search for terms matching the iColumn-th column of pIdx 445 ** rather than the iColumn-th column of table iCur. 446 ** 447 ** The term returned might by Y=<expr> if there is another constraint in 448 ** the WHERE clause that specifies that X=Y. Any such constraints will be 449 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 450 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 451 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 452 ** other equivalent values. Hence a search for X will return <expr> if X=A1 453 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. 454 ** 455 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 456 ** then try for the one with no dependencies on <expr> - in other words where 457 ** <expr> is a constant expression of some kind. Only return entries of 458 ** the form "X <op> Y" where Y is a column in another table if no terms of 459 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 460 ** exist, try to return a term that does not use WO_EQUIV. 461 */ 462 WhereTerm *sqlite3WhereFindTerm( 463 WhereClause *pWC, /* The WHERE clause to be searched */ 464 int iCur, /* Cursor number of LHS */ 465 int iColumn, /* Column number of LHS */ 466 Bitmask notReady, /* RHS must not overlap with this mask */ 467 u32 op, /* Mask of WO_xx values describing operator */ 468 Index *pIdx /* Must be compatible with this index, if not NULL */ 469 ){ 470 WhereTerm *pResult = 0; 471 WhereTerm *p; 472 WhereScan scan; 473 474 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 475 op &= WO_EQ|WO_IS; 476 while( p ){ 477 if( (p->prereqRight & notReady)==0 ){ 478 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ 479 testcase( p->eOperator & WO_IS ); 480 return p; 481 } 482 if( pResult==0 ) pResult = p; 483 } 484 p = whereScanNext(&scan); 485 } 486 return pResult; 487 } 488 489 /* 490 ** This function searches pList for an entry that matches the iCol-th column 491 ** of index pIdx. 492 ** 493 ** If such an expression is found, its index in pList->a[] is returned. If 494 ** no expression is found, -1 is returned. 495 */ 496 static int findIndexCol( 497 Parse *pParse, /* Parse context */ 498 ExprList *pList, /* Expression list to search */ 499 int iBase, /* Cursor for table associated with pIdx */ 500 Index *pIdx, /* Index to match column of */ 501 int iCol /* Column of index to match */ 502 ){ 503 int i; 504 const char *zColl = pIdx->azColl[iCol]; 505 506 for(i=0; i<pList->nExpr; i++){ 507 Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr); 508 if( ALWAYS(p!=0) 509 && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) 510 && p->iColumn==pIdx->aiColumn[iCol] 511 && p->iTable==iBase 512 ){ 513 CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr); 514 if( 0==sqlite3StrICmp(pColl->zName, zColl) ){ 515 return i; 516 } 517 } 518 } 519 520 return -1; 521 } 522 523 /* 524 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL 525 */ 526 static int indexColumnNotNull(Index *pIdx, int iCol){ 527 int j; 528 assert( pIdx!=0 ); 529 assert( iCol>=0 && iCol<pIdx->nColumn ); 530 j = pIdx->aiColumn[iCol]; 531 if( j>=0 ){ 532 return pIdx->pTable->aCol[j].notNull; 533 }else if( j==(-1) ){ 534 return 1; 535 }else{ 536 assert( j==(-2) ); 537 return 0; /* Assume an indexed expression can always yield a NULL */ 538 539 } 540 } 541 542 /* 543 ** Return true if the DISTINCT expression-list passed as the third argument 544 ** is redundant. 545 ** 546 ** A DISTINCT list is redundant if any subset of the columns in the 547 ** DISTINCT list are collectively unique and individually non-null. 548 */ 549 static int isDistinctRedundant( 550 Parse *pParse, /* Parsing context */ 551 SrcList *pTabList, /* The FROM clause */ 552 WhereClause *pWC, /* The WHERE clause */ 553 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 554 ){ 555 Table *pTab; 556 Index *pIdx; 557 int i; 558 int iBase; 559 560 /* If there is more than one table or sub-select in the FROM clause of 561 ** this query, then it will not be possible to show that the DISTINCT 562 ** clause is redundant. */ 563 if( pTabList->nSrc!=1 ) return 0; 564 iBase = pTabList->a[0].iCursor; 565 pTab = pTabList->a[0].pTab; 566 567 /* If any of the expressions is an IPK column on table iBase, then return 568 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 569 ** current SELECT is a correlated sub-query. 570 */ 571 for(i=0; i<pDistinct->nExpr; i++){ 572 Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr); 573 if( NEVER(p==0) ) continue; 574 if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue; 575 if( p->iTable==iBase && p->iColumn<0 ) return 1; 576 } 577 578 /* Loop through all indices on the table, checking each to see if it makes 579 ** the DISTINCT qualifier redundant. It does so if: 580 ** 581 ** 1. The index is itself UNIQUE, and 582 ** 583 ** 2. All of the columns in the index are either part of the pDistinct 584 ** list, or else the WHERE clause contains a term of the form "col=X", 585 ** where X is a constant value. The collation sequences of the 586 ** comparison and select-list expressions must match those of the index. 587 ** 588 ** 3. All of those index columns for which the WHERE clause does not 589 ** contain a "col=X" term are subject to a NOT NULL constraint. 590 */ 591 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 592 if( !IsUniqueIndex(pIdx) ) continue; 593 if( pIdx->pPartIdxWhere ) continue; 594 for(i=0; i<pIdx->nKeyCol; i++){ 595 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ 596 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; 597 if( indexColumnNotNull(pIdx, i)==0 ) break; 598 } 599 } 600 if( i==pIdx->nKeyCol ){ 601 /* This index implies that the DISTINCT qualifier is redundant. */ 602 return 1; 603 } 604 } 605 606 return 0; 607 } 608 609 610 /* 611 ** Estimate the logarithm of the input value to base 2. 612 */ 613 static LogEst estLog(LogEst N){ 614 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 615 } 616 617 /* 618 ** Convert OP_Column opcodes to OP_Copy in previously generated code. 619 ** 620 ** This routine runs over generated VDBE code and translates OP_Column 621 ** opcodes into OP_Copy when the table is being accessed via co-routine 622 ** instead of via table lookup. 623 ** 624 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on 625 ** cursor iTabCur are transformed into OP_Sequence opcode for the 626 ** iAutoidxCur cursor, in order to generate unique rowids for the 627 ** automatic index being generated. 628 */ 629 static void translateColumnToCopy( 630 Parse *pParse, /* Parsing context */ 631 int iStart, /* Translate from this opcode to the end */ 632 int iTabCur, /* OP_Column/OP_Rowid references to this table */ 633 int iRegister, /* The first column is in this register */ 634 int iAutoidxCur /* If non-zero, cursor of autoindex being generated */ 635 ){ 636 Vdbe *v = pParse->pVdbe; 637 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); 638 int iEnd = sqlite3VdbeCurrentAddr(v); 639 if( pParse->db->mallocFailed ) return; 640 for(; iStart<iEnd; iStart++, pOp++){ 641 if( pOp->p1!=iTabCur ) continue; 642 if( pOp->opcode==OP_Column ){ 643 pOp->opcode = OP_Copy; 644 pOp->p1 = pOp->p2 + iRegister; 645 pOp->p2 = pOp->p3; 646 pOp->p3 = 0; 647 }else if( pOp->opcode==OP_Rowid ){ 648 pOp->opcode = OP_Sequence; 649 pOp->p1 = iAutoidxCur; 650 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 651 if( iAutoidxCur==0 ){ 652 pOp->opcode = OP_Null; 653 pOp->p3 = 0; 654 } 655 #endif 656 } 657 } 658 } 659 660 /* 661 ** Two routines for printing the content of an sqlite3_index_info 662 ** structure. Used for testing and debugging only. If neither 663 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 664 ** are no-ops. 665 */ 666 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 667 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){ 668 int i; 669 if( !sqlite3WhereTrace ) return; 670 for(i=0; i<p->nConstraint; i++){ 671 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 672 i, 673 p->aConstraint[i].iColumn, 674 p->aConstraint[i].iTermOffset, 675 p->aConstraint[i].op, 676 p->aConstraint[i].usable); 677 } 678 for(i=0; i<p->nOrderBy; i++){ 679 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 680 i, 681 p->aOrderBy[i].iColumn, 682 p->aOrderBy[i].desc); 683 } 684 } 685 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){ 686 int i; 687 if( !sqlite3WhereTrace ) return; 688 for(i=0; i<p->nConstraint; i++){ 689 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 690 i, 691 p->aConstraintUsage[i].argvIndex, 692 p->aConstraintUsage[i].omit); 693 } 694 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 695 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 696 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 697 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 698 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 699 } 700 #else 701 #define whereTraceIndexInfoInputs(A) 702 #define whereTraceIndexInfoOutputs(A) 703 #endif 704 705 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 706 /* 707 ** Return TRUE if the WHERE clause term pTerm is of a form where it 708 ** could be used with an index to access pSrc, assuming an appropriate 709 ** index existed. 710 */ 711 static int termCanDriveIndex( 712 WhereTerm *pTerm, /* WHERE clause term to check */ 713 SrcItem *pSrc, /* Table we are trying to access */ 714 Bitmask notReady /* Tables in outer loops of the join */ 715 ){ 716 char aff; 717 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 718 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; 719 if( (pSrc->fg.jointype & JT_LEFT) 720 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 721 && (pTerm->eOperator & WO_IS) 722 ){ 723 /* Cannot use an IS term from the WHERE clause as an index driver for 724 ** the RHS of a LEFT JOIN. Such a term can only be used if it is from 725 ** the ON clause. */ 726 return 0; 727 } 728 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 729 if( pTerm->u.x.leftColumn<0 ) return 0; 730 aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity; 731 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 732 testcase( pTerm->pExpr->op==TK_IS ); 733 return 1; 734 } 735 #endif 736 737 738 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 739 /* 740 ** Generate code to construct the Index object for an automatic index 741 ** and to set up the WhereLevel object pLevel so that the code generator 742 ** makes use of the automatic index. 743 */ 744 static void constructAutomaticIndex( 745 Parse *pParse, /* The parsing context */ 746 WhereClause *pWC, /* The WHERE clause */ 747 SrcItem *pSrc, /* The FROM clause term to get the next index */ 748 Bitmask notReady, /* Mask of cursors that are not available */ 749 WhereLevel *pLevel /* Write new index here */ 750 ){ 751 int nKeyCol; /* Number of columns in the constructed index */ 752 WhereTerm *pTerm; /* A single term of the WHERE clause */ 753 WhereTerm *pWCEnd; /* End of pWC->a[] */ 754 Index *pIdx; /* Object describing the transient index */ 755 Vdbe *v; /* Prepared statement under construction */ 756 int addrInit; /* Address of the initialization bypass jump */ 757 Table *pTable; /* The table being indexed */ 758 int addrTop; /* Top of the index fill loop */ 759 int regRecord; /* Register holding an index record */ 760 int n; /* Column counter */ 761 int i; /* Loop counter */ 762 int mxBitCol; /* Maximum column in pSrc->colUsed */ 763 CollSeq *pColl; /* Collating sequence to on a column */ 764 WhereLoop *pLoop; /* The Loop object */ 765 char *zNotUsed; /* Extra space on the end of pIdx */ 766 Bitmask idxCols; /* Bitmap of columns used for indexing */ 767 Bitmask extraCols; /* Bitmap of additional columns */ 768 u8 sentWarning = 0; /* True if a warnning has been issued */ 769 Expr *pPartial = 0; /* Partial Index Expression */ 770 int iContinue = 0; /* Jump here to skip excluded rows */ 771 SrcItem *pTabItem; /* FROM clause term being indexed */ 772 int addrCounter = 0; /* Address where integer counter is initialized */ 773 int regBase; /* Array of registers where record is assembled */ 774 775 /* Generate code to skip over the creation and initialization of the 776 ** transient index on 2nd and subsequent iterations of the loop. */ 777 v = pParse->pVdbe; 778 assert( v!=0 ); 779 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 780 781 /* Count the number of columns that will be added to the index 782 ** and used to match WHERE clause constraints */ 783 nKeyCol = 0; 784 pTable = pSrc->pTab; 785 pWCEnd = &pWC->a[pWC->nTerm]; 786 pLoop = pLevel->pWLoop; 787 idxCols = 0; 788 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 789 Expr *pExpr = pTerm->pExpr; 790 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */ 791 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */ 792 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */ 793 if( pLoop->prereq==0 794 && (pTerm->wtFlags & TERM_VIRTUAL)==0 795 && !ExprHasProperty(pExpr, EP_FromJoin) 796 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){ 797 pPartial = sqlite3ExprAnd(pParse, pPartial, 798 sqlite3ExprDup(pParse->db, pExpr, 0)); 799 } 800 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 801 int iCol = pTerm->u.x.leftColumn; 802 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 803 testcase( iCol==BMS ); 804 testcase( iCol==BMS-1 ); 805 if( !sentWarning ){ 806 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 807 "automatic index on %s(%s)", pTable->zName, 808 pTable->aCol[iCol].zCnName); 809 sentWarning = 1; 810 } 811 if( (idxCols & cMask)==0 ){ 812 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 813 goto end_auto_index_create; 814 } 815 pLoop->aLTerm[nKeyCol++] = pTerm; 816 idxCols |= cMask; 817 } 818 } 819 } 820 assert( nKeyCol>0 || pParse->db->mallocFailed ); 821 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 822 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 823 | WHERE_AUTO_INDEX; 824 825 /* Count the number of additional columns needed to create a 826 ** covering index. A "covering index" is an index that contains all 827 ** columns that are needed by the query. With a covering index, the 828 ** original table never needs to be accessed. Automatic indices must 829 ** be a covering index because the index will not be updated if the 830 ** original table changes and the index and table cannot both be used 831 ** if they go out of sync. 832 */ 833 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 834 mxBitCol = MIN(BMS-1,pTable->nCol); 835 testcase( pTable->nCol==BMS-1 ); 836 testcase( pTable->nCol==BMS-2 ); 837 for(i=0; i<mxBitCol; i++){ 838 if( extraCols & MASKBIT(i) ) nKeyCol++; 839 } 840 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 841 nKeyCol += pTable->nCol - BMS + 1; 842 } 843 844 /* Construct the Index object to describe this index */ 845 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 846 if( pIdx==0 ) goto end_auto_index_create; 847 pLoop->u.btree.pIndex = pIdx; 848 pIdx->zName = "auto-index"; 849 pIdx->pTable = pTable; 850 n = 0; 851 idxCols = 0; 852 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 853 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 854 int iCol = pTerm->u.x.leftColumn; 855 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 856 testcase( iCol==BMS-1 ); 857 testcase( iCol==BMS ); 858 if( (idxCols & cMask)==0 ){ 859 Expr *pX = pTerm->pExpr; 860 idxCols |= cMask; 861 pIdx->aiColumn[n] = pTerm->u.x.leftColumn; 862 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 863 assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */ 864 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; 865 n++; 866 } 867 } 868 } 869 assert( (u32)n==pLoop->u.btree.nEq ); 870 871 /* Add additional columns needed to make the automatic index into 872 ** a covering index */ 873 for(i=0; i<mxBitCol; i++){ 874 if( extraCols & MASKBIT(i) ){ 875 pIdx->aiColumn[n] = i; 876 pIdx->azColl[n] = sqlite3StrBINARY; 877 n++; 878 } 879 } 880 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 881 for(i=BMS-1; i<pTable->nCol; i++){ 882 pIdx->aiColumn[n] = i; 883 pIdx->azColl[n] = sqlite3StrBINARY; 884 n++; 885 } 886 } 887 assert( n==nKeyCol ); 888 pIdx->aiColumn[n] = XN_ROWID; 889 pIdx->azColl[n] = sqlite3StrBINARY; 890 891 /* Create the automatic index */ 892 assert( pLevel->iIdxCur>=0 ); 893 pLevel->iIdxCur = pParse->nTab++; 894 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 895 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 896 VdbeComment((v, "for %s", pTable->zName)); 897 898 /* Fill the automatic index with content */ 899 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; 900 if( pTabItem->fg.viaCoroutine ){ 901 int regYield = pTabItem->regReturn; 902 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); 903 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 904 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); 905 VdbeCoverage(v); 906 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 907 }else{ 908 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 909 } 910 if( pPartial ){ 911 iContinue = sqlite3VdbeMakeLabel(pParse); 912 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 913 pLoop->wsFlags |= WHERE_PARTIALIDX; 914 } 915 regRecord = sqlite3GetTempReg(pParse); 916 regBase = sqlite3GenerateIndexKey( 917 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 918 ); 919 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 920 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 921 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 922 if( pTabItem->fg.viaCoroutine ){ 923 sqlite3VdbeChangeP2(v, addrCounter, regBase+n); 924 testcase( pParse->db->mallocFailed ); 925 assert( pLevel->iIdxCur>0 ); 926 translateColumnToCopy(pParse, addrTop, pLevel->iTabCur, 927 pTabItem->regResult, pLevel->iIdxCur); 928 sqlite3VdbeGoto(v, addrTop); 929 pTabItem->fg.viaCoroutine = 0; 930 }else{ 931 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 932 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 933 } 934 sqlite3VdbeJumpHere(v, addrTop); 935 sqlite3ReleaseTempReg(pParse, regRecord); 936 937 /* Jump here when skipping the initialization */ 938 sqlite3VdbeJumpHere(v, addrInit); 939 940 end_auto_index_create: 941 sqlite3ExprDelete(pParse->db, pPartial); 942 } 943 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 944 945 #ifndef SQLITE_OMIT_VIRTUALTABLE 946 /* 947 ** Allocate and populate an sqlite3_index_info structure. It is the 948 ** responsibility of the caller to eventually release the structure 949 ** by passing the pointer returned by this function to sqlite3_free(). 950 */ 951 static sqlite3_index_info *allocateIndexInfo( 952 Parse *pParse, /* The parsing context */ 953 WhereClause *pWC, /* The WHERE clause being analyzed */ 954 Bitmask mUnusable, /* Ignore terms with these prereqs */ 955 SrcItem *pSrc, /* The FROM clause term that is the vtab */ 956 ExprList *pOrderBy, /* The ORDER BY clause */ 957 u16 *pmNoOmit /* Mask of terms not to omit */ 958 ){ 959 int i, j; 960 int nTerm; 961 struct sqlite3_index_constraint *pIdxCons; 962 struct sqlite3_index_orderby *pIdxOrderBy; 963 struct sqlite3_index_constraint_usage *pUsage; 964 struct HiddenIndexInfo *pHidden; 965 WhereTerm *pTerm; 966 int nOrderBy; 967 sqlite3_index_info *pIdxInfo; 968 u16 mNoOmit = 0; 969 970 /* Count the number of possible WHERE clause constraints referring 971 ** to this virtual table */ 972 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 973 if( pTerm->leftCursor != pSrc->iCursor ) continue; 974 if( pTerm->prereqRight & mUnusable ) continue; 975 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 976 testcase( pTerm->eOperator & WO_IN ); 977 testcase( pTerm->eOperator & WO_ISNULL ); 978 testcase( pTerm->eOperator & WO_IS ); 979 testcase( pTerm->eOperator & WO_ALL ); 980 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 981 if( pTerm->wtFlags & TERM_VNULL ) continue; 982 assert( pTerm->u.x.leftColumn>=(-1) ); 983 nTerm++; 984 } 985 986 /* If the ORDER BY clause contains only columns in the current 987 ** virtual table then allocate space for the aOrderBy part of 988 ** the sqlite3_index_info structure. 989 */ 990 nOrderBy = 0; 991 if( pOrderBy ){ 992 int n = pOrderBy->nExpr; 993 for(i=0; i<n; i++){ 994 Expr *pExpr = pOrderBy->a[i].pExpr; 995 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 996 if( pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL ) break; 997 } 998 if( i==n){ 999 nOrderBy = n; 1000 } 1001 } 1002 1003 /* Allocate the sqlite3_index_info structure 1004 */ 1005 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 1006 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 1007 + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) ); 1008 if( pIdxInfo==0 ){ 1009 sqlite3ErrorMsg(pParse, "out of memory"); 1010 return 0; 1011 } 1012 pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1]; 1013 pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1]; 1014 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 1015 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 1016 pIdxInfo->nOrderBy = nOrderBy; 1017 pIdxInfo->aConstraint = pIdxCons; 1018 pIdxInfo->aOrderBy = pIdxOrderBy; 1019 pIdxInfo->aConstraintUsage = pUsage; 1020 pHidden->pWC = pWC; 1021 pHidden->pParse = pParse; 1022 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1023 u16 op; 1024 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1025 if( pTerm->prereqRight & mUnusable ) continue; 1026 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 1027 testcase( pTerm->eOperator & WO_IN ); 1028 testcase( pTerm->eOperator & WO_IS ); 1029 testcase( pTerm->eOperator & WO_ISNULL ); 1030 testcase( pTerm->eOperator & WO_ALL ); 1031 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 1032 if( pTerm->wtFlags & TERM_VNULL ) continue; 1033 1034 /* tag-20191211-002: WHERE-clause constraints are not useful to the 1035 ** right-hand table of a LEFT JOIN. See tag-20191211-001 for the 1036 ** equivalent restriction for ordinary tables. */ 1037 if( (pSrc->fg.jointype & JT_LEFT)!=0 1038 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 1039 ){ 1040 continue; 1041 } 1042 assert( pTerm->u.x.leftColumn>=(-1) ); 1043 pIdxCons[j].iColumn = pTerm->u.x.leftColumn; 1044 pIdxCons[j].iTermOffset = i; 1045 op = pTerm->eOperator & WO_ALL; 1046 if( op==WO_IN ) op = WO_EQ; 1047 if( op==WO_AUX ){ 1048 pIdxCons[j].op = pTerm->eMatchOp; 1049 }else if( op & (WO_ISNULL|WO_IS) ){ 1050 if( op==WO_ISNULL ){ 1051 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL; 1052 }else{ 1053 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS; 1054 } 1055 }else{ 1056 pIdxCons[j].op = (u8)op; 1057 /* The direct assignment in the previous line is possible only because 1058 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1059 ** following asserts verify this fact. */ 1060 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1061 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1062 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1063 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1064 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1065 assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) ); 1066 1067 if( op & (WO_LT|WO_LE|WO_GT|WO_GE) 1068 && sqlite3ExprIsVector(pTerm->pExpr->pRight) 1069 ){ 1070 testcase( j!=i ); 1071 if( j<16 ) mNoOmit |= (1 << j); 1072 if( op==WO_LT ) pIdxCons[j].op = WO_LE; 1073 if( op==WO_GT ) pIdxCons[j].op = WO_GE; 1074 } 1075 } 1076 1077 j++; 1078 } 1079 pIdxInfo->nConstraint = j; 1080 for(i=0; i<nOrderBy; i++){ 1081 Expr *pExpr = pOrderBy->a[i].pExpr; 1082 pIdxOrderBy[i].iColumn = pExpr->iColumn; 1083 pIdxOrderBy[i].desc = pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC; 1084 } 1085 1086 *pmNoOmit = mNoOmit; 1087 return pIdxInfo; 1088 } 1089 1090 /* 1091 ** The table object reference passed as the second argument to this function 1092 ** must represent a virtual table. This function invokes the xBestIndex() 1093 ** method of the virtual table with the sqlite3_index_info object that 1094 ** comes in as the 3rd argument to this function. 1095 ** 1096 ** If an error occurs, pParse is populated with an error message and an 1097 ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from 1098 ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that 1099 ** the current configuration of "unusable" flags in sqlite3_index_info can 1100 ** not result in a valid plan. 1101 ** 1102 ** Whether or not an error is returned, it is the responsibility of the 1103 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 1104 ** that this is required. 1105 */ 1106 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 1107 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 1108 int rc; 1109 1110 whereTraceIndexInfoInputs(p); 1111 rc = pVtab->pModule->xBestIndex(pVtab, p); 1112 whereTraceIndexInfoOutputs(p); 1113 1114 if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){ 1115 if( rc==SQLITE_NOMEM ){ 1116 sqlite3OomFault(pParse->db); 1117 }else if( !pVtab->zErrMsg ){ 1118 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1119 }else{ 1120 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 1121 } 1122 } 1123 sqlite3_free(pVtab->zErrMsg); 1124 pVtab->zErrMsg = 0; 1125 return rc; 1126 } 1127 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1128 1129 #ifdef SQLITE_ENABLE_STAT4 1130 /* 1131 ** Estimate the location of a particular key among all keys in an 1132 ** index. Store the results in aStat as follows: 1133 ** 1134 ** aStat[0] Est. number of rows less than pRec 1135 ** aStat[1] Est. number of rows equal to pRec 1136 ** 1137 ** Return the index of the sample that is the smallest sample that 1138 ** is greater than or equal to pRec. Note that this index is not an index 1139 ** into the aSample[] array - it is an index into a virtual set of samples 1140 ** based on the contents of aSample[] and the number of fields in record 1141 ** pRec. 1142 */ 1143 static int whereKeyStats( 1144 Parse *pParse, /* Database connection */ 1145 Index *pIdx, /* Index to consider domain of */ 1146 UnpackedRecord *pRec, /* Vector of values to consider */ 1147 int roundUp, /* Round up if true. Round down if false */ 1148 tRowcnt *aStat /* OUT: stats written here */ 1149 ){ 1150 IndexSample *aSample = pIdx->aSample; 1151 int iCol; /* Index of required stats in anEq[] etc. */ 1152 int i; /* Index of first sample >= pRec */ 1153 int iSample; /* Smallest sample larger than or equal to pRec */ 1154 int iMin = 0; /* Smallest sample not yet tested */ 1155 int iTest; /* Next sample to test */ 1156 int res; /* Result of comparison operation */ 1157 int nField; /* Number of fields in pRec */ 1158 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ 1159 1160 #ifndef SQLITE_DEBUG 1161 UNUSED_PARAMETER( pParse ); 1162 #endif 1163 assert( pRec!=0 ); 1164 assert( pIdx->nSample>0 ); 1165 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol ); 1166 1167 /* Do a binary search to find the first sample greater than or equal 1168 ** to pRec. If pRec contains a single field, the set of samples to search 1169 ** is simply the aSample[] array. If the samples in aSample[] contain more 1170 ** than one fields, all fields following the first are ignored. 1171 ** 1172 ** If pRec contains N fields, where N is more than one, then as well as the 1173 ** samples in aSample[] (truncated to N fields), the search also has to 1174 ** consider prefixes of those samples. For example, if the set of samples 1175 ** in aSample is: 1176 ** 1177 ** aSample[0] = (a, 5) 1178 ** aSample[1] = (a, 10) 1179 ** aSample[2] = (b, 5) 1180 ** aSample[3] = (c, 100) 1181 ** aSample[4] = (c, 105) 1182 ** 1183 ** Then the search space should ideally be the samples above and the 1184 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 1185 ** the code actually searches this set: 1186 ** 1187 ** 0: (a) 1188 ** 1: (a, 5) 1189 ** 2: (a, 10) 1190 ** 3: (a, 10) 1191 ** 4: (b) 1192 ** 5: (b, 5) 1193 ** 6: (c) 1194 ** 7: (c, 100) 1195 ** 8: (c, 105) 1196 ** 9: (c, 105) 1197 ** 1198 ** For each sample in the aSample[] array, N samples are present in the 1199 ** effective sample array. In the above, samples 0 and 1 are based on 1200 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. 1201 ** 1202 ** Often, sample i of each block of N effective samples has (i+1) fields. 1203 ** Except, each sample may be extended to ensure that it is greater than or 1204 ** equal to the previous sample in the array. For example, in the above, 1205 ** sample 2 is the first sample of a block of N samples, so at first it 1206 ** appears that it should be 1 field in size. However, that would make it 1207 ** smaller than sample 1, so the binary search would not work. As a result, 1208 ** it is extended to two fields. The duplicates that this creates do not 1209 ** cause any problems. 1210 */ 1211 nField = pRec->nField; 1212 iCol = 0; 1213 iSample = pIdx->nSample * nField; 1214 do{ 1215 int iSamp; /* Index in aSample[] of test sample */ 1216 int n; /* Number of fields in test sample */ 1217 1218 iTest = (iMin+iSample)/2; 1219 iSamp = iTest / nField; 1220 if( iSamp>0 ){ 1221 /* The proposed effective sample is a prefix of sample aSample[iSamp]. 1222 ** Specifically, the shortest prefix of at least (1 + iTest%nField) 1223 ** fields that is greater than the previous effective sample. */ 1224 for(n=(iTest % nField) + 1; n<nField; n++){ 1225 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; 1226 } 1227 }else{ 1228 n = iTest + 1; 1229 } 1230 1231 pRec->nField = n; 1232 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); 1233 if( res<0 ){ 1234 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; 1235 iMin = iTest+1; 1236 }else if( res==0 && n<nField ){ 1237 iLower = aSample[iSamp].anLt[n-1]; 1238 iMin = iTest+1; 1239 res = -1; 1240 }else{ 1241 iSample = iTest; 1242 iCol = n-1; 1243 } 1244 }while( res && iMin<iSample ); 1245 i = iSample / nField; 1246 1247 #ifdef SQLITE_DEBUG 1248 /* The following assert statements check that the binary search code 1249 ** above found the right answer. This block serves no purpose other 1250 ** than to invoke the asserts. */ 1251 if( pParse->db->mallocFailed==0 ){ 1252 if( res==0 ){ 1253 /* If (res==0) is true, then pRec must be equal to sample i. */ 1254 assert( i<pIdx->nSample ); 1255 assert( iCol==nField-1 ); 1256 pRec->nField = nField; 1257 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 1258 || pParse->db->mallocFailed 1259 ); 1260 }else{ 1261 /* Unless i==pIdx->nSample, indicating that pRec is larger than 1262 ** all samples in the aSample[] array, pRec must be smaller than the 1263 ** (iCol+1) field prefix of sample i. */ 1264 assert( i<=pIdx->nSample && i>=0 ); 1265 pRec->nField = iCol+1; 1266 assert( i==pIdx->nSample 1267 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 1268 || pParse->db->mallocFailed ); 1269 1270 /* if i==0 and iCol==0, then record pRec is smaller than all samples 1271 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must 1272 ** be greater than or equal to the (iCol) field prefix of sample i. 1273 ** If (i>0), then pRec must also be greater than sample (i-1). */ 1274 if( iCol>0 ){ 1275 pRec->nField = iCol; 1276 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 1277 || pParse->db->mallocFailed ); 1278 } 1279 if( i>0 ){ 1280 pRec->nField = nField; 1281 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 1282 || pParse->db->mallocFailed ); 1283 } 1284 } 1285 } 1286 #endif /* ifdef SQLITE_DEBUG */ 1287 1288 if( res==0 ){ 1289 /* Record pRec is equal to sample i */ 1290 assert( iCol==nField-1 ); 1291 aStat[0] = aSample[i].anLt[iCol]; 1292 aStat[1] = aSample[i].anEq[iCol]; 1293 }else{ 1294 /* At this point, the (iCol+1) field prefix of aSample[i] is the first 1295 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec 1296 ** is larger than all samples in the array. */ 1297 tRowcnt iUpper, iGap; 1298 if( i>=pIdx->nSample ){ 1299 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); 1300 }else{ 1301 iUpper = aSample[i].anLt[iCol]; 1302 } 1303 1304 if( iLower>=iUpper ){ 1305 iGap = 0; 1306 }else{ 1307 iGap = iUpper - iLower; 1308 } 1309 if( roundUp ){ 1310 iGap = (iGap*2)/3; 1311 }else{ 1312 iGap = iGap/3; 1313 } 1314 aStat[0] = iLower + iGap; 1315 aStat[1] = pIdx->aAvgEq[nField-1]; 1316 } 1317 1318 /* Restore the pRec->nField value before returning. */ 1319 pRec->nField = nField; 1320 return i; 1321 } 1322 #endif /* SQLITE_ENABLE_STAT4 */ 1323 1324 /* 1325 ** If it is not NULL, pTerm is a term that provides an upper or lower 1326 ** bound on a range scan. Without considering pTerm, it is estimated 1327 ** that the scan will visit nNew rows. This function returns the number 1328 ** estimated to be visited after taking pTerm into account. 1329 ** 1330 ** If the user explicitly specified a likelihood() value for this term, 1331 ** then the return value is the likelihood multiplied by the number of 1332 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 1333 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 1334 */ 1335 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 1336 LogEst nRet = nNew; 1337 if( pTerm ){ 1338 if( pTerm->truthProb<=0 ){ 1339 nRet += pTerm->truthProb; 1340 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 1341 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 1342 } 1343 } 1344 return nRet; 1345 } 1346 1347 1348 #ifdef SQLITE_ENABLE_STAT4 1349 /* 1350 ** Return the affinity for a single column of an index. 1351 */ 1352 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ 1353 assert( iCol>=0 && iCol<pIdx->nColumn ); 1354 if( !pIdx->zColAff ){ 1355 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; 1356 } 1357 assert( pIdx->zColAff[iCol]!=0 ); 1358 return pIdx->zColAff[iCol]; 1359 } 1360 #endif 1361 1362 1363 #ifdef SQLITE_ENABLE_STAT4 1364 /* 1365 ** This function is called to estimate the number of rows visited by a 1366 ** range-scan on a skip-scan index. For example: 1367 ** 1368 ** CREATE INDEX i1 ON t1(a, b, c); 1369 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 1370 ** 1371 ** Value pLoop->nOut is currently set to the estimated number of rows 1372 ** visited for scanning (a=? AND b=?). This function reduces that estimate 1373 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 1374 ** on the stat4 data for the index. this scan will be peformed multiple 1375 ** times (once for each (a,b) combination that matches a=?) is dealt with 1376 ** by the caller. 1377 ** 1378 ** It does this by scanning through all stat4 samples, comparing values 1379 ** extracted from pLower and pUpper with the corresponding column in each 1380 ** sample. If L and U are the number of samples found to be less than or 1381 ** equal to the values extracted from pLower and pUpper respectively, and 1382 ** N is the total number of samples, the pLoop->nOut value is adjusted 1383 ** as follows: 1384 ** 1385 ** nOut = nOut * ( min(U - L, 1) / N ) 1386 ** 1387 ** If pLower is NULL, or a value cannot be extracted from the term, L is 1388 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 1389 ** U is set to N. 1390 ** 1391 ** Normally, this function sets *pbDone to 1 before returning. However, 1392 ** if no value can be extracted from either pLower or pUpper (and so the 1393 ** estimate of the number of rows delivered remains unchanged), *pbDone 1394 ** is left as is. 1395 ** 1396 ** If an error occurs, an SQLite error code is returned. Otherwise, 1397 ** SQLITE_OK. 1398 */ 1399 static int whereRangeSkipScanEst( 1400 Parse *pParse, /* Parsing & code generating context */ 1401 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1402 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1403 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 1404 int *pbDone /* Set to true if at least one expr. value extracted */ 1405 ){ 1406 Index *p = pLoop->u.btree.pIndex; 1407 int nEq = pLoop->u.btree.nEq; 1408 sqlite3 *db = pParse->db; 1409 int nLower = -1; 1410 int nUpper = p->nSample+1; 1411 int rc = SQLITE_OK; 1412 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); 1413 CollSeq *pColl; 1414 1415 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 1416 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 1417 sqlite3_value *pVal = 0; /* Value extracted from record */ 1418 1419 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 1420 if( pLower ){ 1421 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 1422 nLower = 0; 1423 } 1424 if( pUpper && rc==SQLITE_OK ){ 1425 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 1426 nUpper = p2 ? 0 : p->nSample; 1427 } 1428 1429 if( p1 || p2 ){ 1430 int i; 1431 int nDiff; 1432 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 1433 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 1434 if( rc==SQLITE_OK && p1 ){ 1435 int res = sqlite3MemCompare(p1, pVal, pColl); 1436 if( res>=0 ) nLower++; 1437 } 1438 if( rc==SQLITE_OK && p2 ){ 1439 int res = sqlite3MemCompare(p2, pVal, pColl); 1440 if( res>=0 ) nUpper++; 1441 } 1442 } 1443 nDiff = (nUpper - nLower); 1444 if( nDiff<=0 ) nDiff = 1; 1445 1446 /* If there is both an upper and lower bound specified, and the 1447 ** comparisons indicate that they are close together, use the fallback 1448 ** method (assume that the scan visits 1/64 of the rows) for estimating 1449 ** the number of rows visited. Otherwise, estimate the number of rows 1450 ** using the method described in the header comment for this function. */ 1451 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 1452 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 1453 pLoop->nOut -= nAdjust; 1454 *pbDone = 1; 1455 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 1456 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 1457 } 1458 1459 }else{ 1460 assert( *pbDone==0 ); 1461 } 1462 1463 sqlite3ValueFree(p1); 1464 sqlite3ValueFree(p2); 1465 sqlite3ValueFree(pVal); 1466 1467 return rc; 1468 } 1469 #endif /* SQLITE_ENABLE_STAT4 */ 1470 1471 /* 1472 ** This function is used to estimate the number of rows that will be visited 1473 ** by scanning an index for a range of values. The range may have an upper 1474 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 1475 ** and lower bounds are represented by pLower and pUpper respectively. For 1476 ** example, assuming that index p is on t1(a): 1477 ** 1478 ** ... FROM t1 WHERE a > ? AND a < ? ... 1479 ** |_____| |_____| 1480 ** | | 1481 ** pLower pUpper 1482 ** 1483 ** If either of the upper or lower bound is not present, then NULL is passed in 1484 ** place of the corresponding WhereTerm. 1485 ** 1486 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 1487 ** column subject to the range constraint. Or, equivalently, the number of 1488 ** equality constraints optimized by the proposed index scan. For example, 1489 ** assuming index p is on t1(a, b), and the SQL query is: 1490 ** 1491 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 1492 ** 1493 ** then nEq is set to 1 (as the range restricted column, b, is the second 1494 ** left-most column of the index). Or, if the query is: 1495 ** 1496 ** ... FROM t1 WHERE a > ? AND a < ? ... 1497 ** 1498 ** then nEq is set to 0. 1499 ** 1500 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 1501 ** number of rows that the index scan is expected to visit without 1502 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 1503 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 1504 ** to account for the range constraints pLower and pUpper. 1505 ** 1506 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 1507 ** used, a single range inequality reduces the search space by a factor of 4. 1508 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 1509 ** rows visited by a factor of 64. 1510 */ 1511 static int whereRangeScanEst( 1512 Parse *pParse, /* Parsing & code generating context */ 1513 WhereLoopBuilder *pBuilder, 1514 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1515 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1516 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 1517 ){ 1518 int rc = SQLITE_OK; 1519 int nOut = pLoop->nOut; 1520 LogEst nNew; 1521 1522 #ifdef SQLITE_ENABLE_STAT4 1523 Index *p = pLoop->u.btree.pIndex; 1524 int nEq = pLoop->u.btree.nEq; 1525 1526 if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol) 1527 && OptimizationEnabled(pParse->db, SQLITE_Stat4) 1528 ){ 1529 if( nEq==pBuilder->nRecValid ){ 1530 UnpackedRecord *pRec = pBuilder->pRec; 1531 tRowcnt a[2]; 1532 int nBtm = pLoop->u.btree.nBtm; 1533 int nTop = pLoop->u.btree.nTop; 1534 1535 /* Variable iLower will be set to the estimate of the number of rows in 1536 ** the index that are less than the lower bound of the range query. The 1537 ** lower bound being the concatenation of $P and $L, where $P is the 1538 ** key-prefix formed by the nEq values matched against the nEq left-most 1539 ** columns of the index, and $L is the value in pLower. 1540 ** 1541 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 1542 ** is not a simple variable or literal value), the lower bound of the 1543 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 1544 ** if $L is available, whereKeyStats() is called for both ($P) and 1545 ** ($P:$L) and the larger of the two returned values is used. 1546 ** 1547 ** Similarly, iUpper is to be set to the estimate of the number of rows 1548 ** less than the upper bound of the range query. Where the upper bound 1549 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 1550 ** of iUpper are requested of whereKeyStats() and the smaller used. 1551 ** 1552 ** The number of rows between the two bounds is then just iUpper-iLower. 1553 */ 1554 tRowcnt iLower; /* Rows less than the lower bound */ 1555 tRowcnt iUpper; /* Rows less than the upper bound */ 1556 int iLwrIdx = -2; /* aSample[] for the lower bound */ 1557 int iUprIdx = -1; /* aSample[] for the upper bound */ 1558 1559 if( pRec ){ 1560 testcase( pRec->nField!=pBuilder->nRecValid ); 1561 pRec->nField = pBuilder->nRecValid; 1562 } 1563 /* Determine iLower and iUpper using ($P) only. */ 1564 if( nEq==0 ){ 1565 iLower = 0; 1566 iUpper = p->nRowEst0; 1567 }else{ 1568 /* Note: this call could be optimized away - since the same values must 1569 ** have been requested when testing key $P in whereEqualScanEst(). */ 1570 whereKeyStats(pParse, p, pRec, 0, a); 1571 iLower = a[0]; 1572 iUpper = a[0] + a[1]; 1573 } 1574 1575 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 1576 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 1577 assert( p->aSortOrder!=0 ); 1578 if( p->aSortOrder[nEq] ){ 1579 /* The roles of pLower and pUpper are swapped for a DESC index */ 1580 SWAP(WhereTerm*, pLower, pUpper); 1581 SWAP(int, nBtm, nTop); 1582 } 1583 1584 /* If possible, improve on the iLower estimate using ($P:$L). */ 1585 if( pLower ){ 1586 int n; /* Values extracted from pExpr */ 1587 Expr *pExpr = pLower->pExpr->pRight; 1588 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n); 1589 if( rc==SQLITE_OK && n ){ 1590 tRowcnt iNew; 1591 u16 mask = WO_GT|WO_LE; 1592 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1593 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 1594 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0); 1595 if( iNew>iLower ) iLower = iNew; 1596 nOut--; 1597 pLower = 0; 1598 } 1599 } 1600 1601 /* If possible, improve on the iUpper estimate using ($P:$U). */ 1602 if( pUpper ){ 1603 int n; /* Values extracted from pExpr */ 1604 Expr *pExpr = pUpper->pExpr->pRight; 1605 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n); 1606 if( rc==SQLITE_OK && n ){ 1607 tRowcnt iNew; 1608 u16 mask = WO_GT|WO_LE; 1609 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1610 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 1611 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0); 1612 if( iNew<iUpper ) iUpper = iNew; 1613 nOut--; 1614 pUpper = 0; 1615 } 1616 } 1617 1618 pBuilder->pRec = pRec; 1619 if( rc==SQLITE_OK ){ 1620 if( iUpper>iLower ){ 1621 nNew = sqlite3LogEst(iUpper - iLower); 1622 /* TUNING: If both iUpper and iLower are derived from the same 1623 ** sample, then assume they are 4x more selective. This brings 1624 ** the estimated selectivity more in line with what it would be 1625 ** if estimated without the use of STAT4 tables. */ 1626 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); 1627 }else{ 1628 nNew = 10; assert( 10==sqlite3LogEst(2) ); 1629 } 1630 if( nNew<nOut ){ 1631 nOut = nNew; 1632 } 1633 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", 1634 (u32)iLower, (u32)iUpper, nOut)); 1635 } 1636 }else{ 1637 int bDone = 0; 1638 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 1639 if( bDone ) return rc; 1640 } 1641 } 1642 #else 1643 UNUSED_PARAMETER(pParse); 1644 UNUSED_PARAMETER(pBuilder); 1645 assert( pLower || pUpper ); 1646 #endif 1647 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); 1648 nNew = whereRangeAdjust(pLower, nOut); 1649 nNew = whereRangeAdjust(pUpper, nNew); 1650 1651 /* TUNING: If there is both an upper and lower limit and neither limit 1652 ** has an application-defined likelihood(), assume the range is 1653 ** reduced by an additional 75%. This means that, by default, an open-ended 1654 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 1655 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 1656 ** match 1/64 of the index. */ 1657 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 1658 nNew -= 20; 1659 } 1660 1661 nOut -= (pLower!=0) + (pUpper!=0); 1662 if( nNew<10 ) nNew = 10; 1663 if( nNew<nOut ) nOut = nNew; 1664 #if defined(WHERETRACE_ENABLED) 1665 if( pLoop->nOut>nOut ){ 1666 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", 1667 pLoop->nOut, nOut)); 1668 } 1669 #endif 1670 pLoop->nOut = (LogEst)nOut; 1671 return rc; 1672 } 1673 1674 #ifdef SQLITE_ENABLE_STAT4 1675 /* 1676 ** Estimate the number of rows that will be returned based on 1677 ** an equality constraint x=VALUE and where that VALUE occurs in 1678 ** the histogram data. This only works when x is the left-most 1679 ** column of an index and sqlite_stat4 histogram data is available 1680 ** for that index. When pExpr==NULL that means the constraint is 1681 ** "x IS NULL" instead of "x=VALUE". 1682 ** 1683 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1684 ** If unable to make an estimate, leave *pnRow unchanged and return 1685 ** non-zero. 1686 ** 1687 ** This routine can fail if it is unable to load a collating sequence 1688 ** required for string comparison, or if unable to allocate memory 1689 ** for a UTF conversion required for comparison. The error is stored 1690 ** in the pParse structure. 1691 */ 1692 static int whereEqualScanEst( 1693 Parse *pParse, /* Parsing & code generating context */ 1694 WhereLoopBuilder *pBuilder, 1695 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 1696 tRowcnt *pnRow /* Write the revised row estimate here */ 1697 ){ 1698 Index *p = pBuilder->pNew->u.btree.pIndex; 1699 int nEq = pBuilder->pNew->u.btree.nEq; 1700 UnpackedRecord *pRec = pBuilder->pRec; 1701 int rc; /* Subfunction return code */ 1702 tRowcnt a[2]; /* Statistics */ 1703 int bOk; 1704 1705 assert( nEq>=1 ); 1706 assert( nEq<=p->nColumn ); 1707 assert( p->aSample!=0 ); 1708 assert( p->nSample>0 ); 1709 assert( pBuilder->nRecValid<nEq ); 1710 1711 /* If values are not available for all fields of the index to the left 1712 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 1713 if( pBuilder->nRecValid<(nEq-1) ){ 1714 return SQLITE_NOTFOUND; 1715 } 1716 1717 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 1718 ** below would return the same value. */ 1719 if( nEq>=p->nColumn ){ 1720 *pnRow = 1; 1721 return SQLITE_OK; 1722 } 1723 1724 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk); 1725 pBuilder->pRec = pRec; 1726 if( rc!=SQLITE_OK ) return rc; 1727 if( bOk==0 ) return SQLITE_NOTFOUND; 1728 pBuilder->nRecValid = nEq; 1729 1730 whereKeyStats(pParse, p, pRec, 0, a); 1731 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n", 1732 p->zName, nEq-1, (int)a[1])); 1733 *pnRow = a[1]; 1734 1735 return rc; 1736 } 1737 #endif /* SQLITE_ENABLE_STAT4 */ 1738 1739 #ifdef SQLITE_ENABLE_STAT4 1740 /* 1741 ** Estimate the number of rows that will be returned based on 1742 ** an IN constraint where the right-hand side of the IN operator 1743 ** is a list of values. Example: 1744 ** 1745 ** WHERE x IN (1,2,3,4) 1746 ** 1747 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1748 ** If unable to make an estimate, leave *pnRow unchanged and return 1749 ** non-zero. 1750 ** 1751 ** This routine can fail if it is unable to load a collating sequence 1752 ** required for string comparison, or if unable to allocate memory 1753 ** for a UTF conversion required for comparison. The error is stored 1754 ** in the pParse structure. 1755 */ 1756 static int whereInScanEst( 1757 Parse *pParse, /* Parsing & code generating context */ 1758 WhereLoopBuilder *pBuilder, 1759 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 1760 tRowcnt *pnRow /* Write the revised row estimate here */ 1761 ){ 1762 Index *p = pBuilder->pNew->u.btree.pIndex; 1763 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 1764 int nRecValid = pBuilder->nRecValid; 1765 int rc = SQLITE_OK; /* Subfunction return code */ 1766 tRowcnt nEst; /* Number of rows for a single term */ 1767 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 1768 int i; /* Loop counter */ 1769 1770 assert( p->aSample!=0 ); 1771 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 1772 nEst = nRow0; 1773 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 1774 nRowEst += nEst; 1775 pBuilder->nRecValid = nRecValid; 1776 } 1777 1778 if( rc==SQLITE_OK ){ 1779 if( nRowEst > nRow0 ) nRowEst = nRow0; 1780 *pnRow = nRowEst; 1781 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); 1782 } 1783 assert( pBuilder->nRecValid==nRecValid ); 1784 return rc; 1785 } 1786 #endif /* SQLITE_ENABLE_STAT4 */ 1787 1788 1789 #ifdef WHERETRACE_ENABLED 1790 /* 1791 ** Print the content of a WhereTerm object 1792 */ 1793 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){ 1794 if( pTerm==0 ){ 1795 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 1796 }else{ 1797 char zType[8]; 1798 char zLeft[50]; 1799 memcpy(zType, "....", 5); 1800 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 1801 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 1802 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; 1803 if( pTerm->wtFlags & TERM_CODED ) zType[3] = 'C'; 1804 if( pTerm->eOperator & WO_SINGLE ){ 1805 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}", 1806 pTerm->leftCursor, pTerm->u.x.leftColumn); 1807 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){ 1808 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx", 1809 pTerm->u.pOrInfo->indexable); 1810 }else{ 1811 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor); 1812 } 1813 sqlite3DebugPrintf( 1814 "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x", 1815 iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags); 1816 /* The 0x10000 .wheretrace flag causes extra information to be 1817 ** shown about each Term */ 1818 if( sqlite3WhereTrace & 0x10000 ){ 1819 sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx", 1820 pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight); 1821 } 1822 if( pTerm->u.x.iField ){ 1823 sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField); 1824 } 1825 if( pTerm->iParent>=0 ){ 1826 sqlite3DebugPrintf(" iParent=%d", pTerm->iParent); 1827 } 1828 sqlite3DebugPrintf("\n"); 1829 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 1830 } 1831 } 1832 #endif 1833 1834 #ifdef WHERETRACE_ENABLED 1835 /* 1836 ** Show the complete content of a WhereClause 1837 */ 1838 void sqlite3WhereClausePrint(WhereClause *pWC){ 1839 int i; 1840 for(i=0; i<pWC->nTerm; i++){ 1841 sqlite3WhereTermPrint(&pWC->a[i], i); 1842 } 1843 } 1844 #endif 1845 1846 #ifdef WHERETRACE_ENABLED 1847 /* 1848 ** Print a WhereLoop object for debugging purposes 1849 */ 1850 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){ 1851 WhereInfo *pWInfo = pWC->pWInfo; 1852 int nb = 1+(pWInfo->pTabList->nSrc+3)/4; 1853 SrcItem *pItem = pWInfo->pTabList->a + p->iTab; 1854 Table *pTab = pItem->pTab; 1855 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1; 1856 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 1857 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll); 1858 sqlite3DebugPrintf(" %12s", 1859 pItem->zAlias ? pItem->zAlias : pTab->zName); 1860 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 1861 const char *zName; 1862 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 1863 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 1864 int i = sqlite3Strlen30(zName) - 1; 1865 while( zName[i]!='_' ) i--; 1866 zName += i; 1867 } 1868 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 1869 }else{ 1870 sqlite3DebugPrintf("%20s",""); 1871 } 1872 }else{ 1873 char *z; 1874 if( p->u.vtab.idxStr ){ 1875 z = sqlite3_mprintf("(%d,\"%s\",%#x)", 1876 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 1877 }else{ 1878 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 1879 } 1880 sqlite3DebugPrintf(" %-19s", z); 1881 sqlite3_free(z); 1882 } 1883 if( p->wsFlags & WHERE_SKIPSCAN ){ 1884 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 1885 }else{ 1886 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); 1887 } 1888 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 1889 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ 1890 int i; 1891 for(i=0; i<p->nLTerm; i++){ 1892 sqlite3WhereTermPrint(p->aLTerm[i], i); 1893 } 1894 } 1895 } 1896 #endif 1897 1898 /* 1899 ** Convert bulk memory into a valid WhereLoop that can be passed 1900 ** to whereLoopClear harmlessly. 1901 */ 1902 static void whereLoopInit(WhereLoop *p){ 1903 p->aLTerm = p->aLTermSpace; 1904 p->nLTerm = 0; 1905 p->nLSlot = ArraySize(p->aLTermSpace); 1906 p->wsFlags = 0; 1907 } 1908 1909 /* 1910 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 1911 */ 1912 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 1913 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 1914 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 1915 sqlite3_free(p->u.vtab.idxStr); 1916 p->u.vtab.needFree = 0; 1917 p->u.vtab.idxStr = 0; 1918 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 1919 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 1920 sqlite3DbFreeNN(db, p->u.btree.pIndex); 1921 p->u.btree.pIndex = 0; 1922 } 1923 } 1924 } 1925 1926 /* 1927 ** Deallocate internal memory used by a WhereLoop object 1928 */ 1929 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 1930 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 1931 whereLoopClearUnion(db, p); 1932 whereLoopInit(p); 1933 } 1934 1935 /* 1936 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 1937 */ 1938 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 1939 WhereTerm **paNew; 1940 if( p->nLSlot>=n ) return SQLITE_OK; 1941 n = (n+7)&~7; 1942 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); 1943 if( paNew==0 ) return SQLITE_NOMEM_BKPT; 1944 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 1945 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 1946 p->aLTerm = paNew; 1947 p->nLSlot = n; 1948 return SQLITE_OK; 1949 } 1950 1951 /* 1952 ** Transfer content from the second pLoop into the first. 1953 */ 1954 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 1955 whereLoopClearUnion(db, pTo); 1956 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ 1957 memset(pTo, 0, WHERE_LOOP_XFER_SZ); 1958 return SQLITE_NOMEM_BKPT; 1959 } 1960 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 1961 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 1962 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 1963 pFrom->u.vtab.needFree = 0; 1964 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 1965 pFrom->u.btree.pIndex = 0; 1966 } 1967 return SQLITE_OK; 1968 } 1969 1970 /* 1971 ** Delete a WhereLoop object 1972 */ 1973 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 1974 whereLoopClear(db, p); 1975 sqlite3DbFreeNN(db, p); 1976 } 1977 1978 /* 1979 ** Free a WhereInfo structure 1980 */ 1981 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 1982 int i; 1983 assert( pWInfo!=0 ); 1984 for(i=0; i<pWInfo->nLevel; i++){ 1985 WhereLevel *pLevel = &pWInfo->a[i]; 1986 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){ 1987 sqlite3DbFree(db, pLevel->u.in.aInLoop); 1988 } 1989 } 1990 sqlite3WhereClauseClear(&pWInfo->sWC); 1991 while( pWInfo->pLoops ){ 1992 WhereLoop *p = pWInfo->pLoops; 1993 pWInfo->pLoops = p->pNextLoop; 1994 whereLoopDelete(db, p); 1995 } 1996 assert( pWInfo->pExprMods==0 ); 1997 sqlite3DbFreeNN(db, pWInfo); 1998 } 1999 2000 /* Undo all Expr node modifications 2001 */ 2002 static void whereUndoExprMods(WhereInfo *pWInfo){ 2003 while( pWInfo->pExprMods ){ 2004 WhereExprMod *p = pWInfo->pExprMods; 2005 pWInfo->pExprMods = p->pNext; 2006 memcpy(p->pExpr, &p->orig, sizeof(p->orig)); 2007 sqlite3DbFree(pWInfo->pParse->db, p); 2008 } 2009 } 2010 2011 /* 2012 ** Return TRUE if all of the following are true: 2013 ** 2014 ** (1) X has the same or lower cost, or returns the same or fewer rows, 2015 ** than Y. 2016 ** (2) X uses fewer WHERE clause terms than Y 2017 ** (3) Every WHERE clause term used by X is also used by Y 2018 ** (4) X skips at least as many columns as Y 2019 ** (5) If X is a covering index, than Y is too 2020 ** 2021 ** Conditions (2) and (3) mean that X is a "proper subset" of Y. 2022 ** If X is a proper subset of Y then Y is a better choice and ought 2023 ** to have a lower cost. This routine returns TRUE when that cost 2024 ** relationship is inverted and needs to be adjusted. Constraint (4) 2025 ** was added because if X uses skip-scan less than Y it still might 2026 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5) 2027 ** was added because a covering index probably deserves to have a lower cost 2028 ** than a non-covering index even if it is a proper subset. 2029 */ 2030 static int whereLoopCheaperProperSubset( 2031 const WhereLoop *pX, /* First WhereLoop to compare */ 2032 const WhereLoop *pY /* Compare against this WhereLoop */ 2033 ){ 2034 int i, j; 2035 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 2036 return 0; /* X is not a subset of Y */ 2037 } 2038 if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0; 2039 if( pY->nSkip > pX->nSkip ) return 0; 2040 for(i=pX->nLTerm-1; i>=0; i--){ 2041 if( pX->aLTerm[i]==0 ) continue; 2042 for(j=pY->nLTerm-1; j>=0; j--){ 2043 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 2044 } 2045 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ 2046 } 2047 if( (pX->wsFlags&WHERE_IDX_ONLY)!=0 2048 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){ 2049 return 0; /* Constraint (5) */ 2050 } 2051 return 1; /* All conditions meet */ 2052 } 2053 2054 /* 2055 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate 2056 ** upwards or downwards so that: 2057 ** 2058 ** (1) pTemplate costs less than any other WhereLoops that are a proper 2059 ** subset of pTemplate 2060 ** 2061 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 2062 ** is a proper subset. 2063 ** 2064 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 2065 ** WHERE clause terms than Y and that every WHERE clause term used by X is 2066 ** also used by Y. 2067 */ 2068 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 2069 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 2070 for(; p; p=p->pNextLoop){ 2071 if( p->iTab!=pTemplate->iTab ) continue; 2072 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 2073 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 2074 /* Adjust pTemplate cost downward so that it is cheaper than its 2075 ** subset p. */ 2076 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2077 pTemplate->rRun, pTemplate->nOut, 2078 MIN(p->rRun, pTemplate->rRun), 2079 MIN(p->nOut - 1, pTemplate->nOut))); 2080 pTemplate->rRun = MIN(p->rRun, pTemplate->rRun); 2081 pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut); 2082 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 2083 /* Adjust pTemplate cost upward so that it is costlier than p since 2084 ** pTemplate is a proper subset of p */ 2085 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2086 pTemplate->rRun, pTemplate->nOut, 2087 MAX(p->rRun, pTemplate->rRun), 2088 MAX(p->nOut + 1, pTemplate->nOut))); 2089 pTemplate->rRun = MAX(p->rRun, pTemplate->rRun); 2090 pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut); 2091 } 2092 } 2093 } 2094 2095 /* 2096 ** Search the list of WhereLoops in *ppPrev looking for one that can be 2097 ** replaced by pTemplate. 2098 ** 2099 ** Return NULL if pTemplate does not belong on the WhereLoop list. 2100 ** In other words if pTemplate ought to be dropped from further consideration. 2101 ** 2102 ** If pX is a WhereLoop that pTemplate can replace, then return the 2103 ** link that points to pX. 2104 ** 2105 ** If pTemplate cannot replace any existing element of the list but needs 2106 ** to be added to the list as a new entry, then return a pointer to the 2107 ** tail of the list. 2108 */ 2109 static WhereLoop **whereLoopFindLesser( 2110 WhereLoop **ppPrev, 2111 const WhereLoop *pTemplate 2112 ){ 2113 WhereLoop *p; 2114 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 2115 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 2116 /* If either the iTab or iSortIdx values for two WhereLoop are different 2117 ** then those WhereLoops need to be considered separately. Neither is 2118 ** a candidate to replace the other. */ 2119 continue; 2120 } 2121 /* In the current implementation, the rSetup value is either zero 2122 ** or the cost of building an automatic index (NlogN) and the NlogN 2123 ** is the same for compatible WhereLoops. */ 2124 assert( p->rSetup==0 || pTemplate->rSetup==0 2125 || p->rSetup==pTemplate->rSetup ); 2126 2127 /* whereLoopAddBtree() always generates and inserts the automatic index 2128 ** case first. Hence compatible candidate WhereLoops never have a larger 2129 ** rSetup. Call this SETUP-INVARIANT */ 2130 assert( p->rSetup>=pTemplate->rSetup ); 2131 2132 /* Any loop using an appliation-defined index (or PRIMARY KEY or 2133 ** UNIQUE constraint) with one or more == constraints is better 2134 ** than an automatic index. Unless it is a skip-scan. */ 2135 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 2136 && (pTemplate->nSkip)==0 2137 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 2138 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 2139 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 2140 ){ 2141 break; 2142 } 2143 2144 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 2145 ** discarded. WhereLoop p is better if: 2146 ** (1) p has no more dependencies than pTemplate, and 2147 ** (2) p has an equal or lower cost than pTemplate 2148 */ 2149 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 2150 && p->rSetup<=pTemplate->rSetup /* (2a) */ 2151 && p->rRun<=pTemplate->rRun /* (2b) */ 2152 && p->nOut<=pTemplate->nOut /* (2c) */ 2153 ){ 2154 return 0; /* Discard pTemplate */ 2155 } 2156 2157 /* If pTemplate is always better than p, then cause p to be overwritten 2158 ** with pTemplate. pTemplate is better than p if: 2159 ** (1) pTemplate has no more dependences than p, and 2160 ** (2) pTemplate has an equal or lower cost than p. 2161 */ 2162 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 2163 && p->rRun>=pTemplate->rRun /* (2a) */ 2164 && p->nOut>=pTemplate->nOut /* (2b) */ 2165 ){ 2166 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 2167 break; /* Cause p to be overwritten by pTemplate */ 2168 } 2169 } 2170 return ppPrev; 2171 } 2172 2173 /* 2174 ** Insert or replace a WhereLoop entry using the template supplied. 2175 ** 2176 ** An existing WhereLoop entry might be overwritten if the new template 2177 ** is better and has fewer dependencies. Or the template will be ignored 2178 ** and no insert will occur if an existing WhereLoop is faster and has 2179 ** fewer dependencies than the template. Otherwise a new WhereLoop is 2180 ** added based on the template. 2181 ** 2182 ** If pBuilder->pOrSet is not NULL then we care about only the 2183 ** prerequisites and rRun and nOut costs of the N best loops. That 2184 ** information is gathered in the pBuilder->pOrSet object. This special 2185 ** processing mode is used only for OR clause processing. 2186 ** 2187 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 2188 ** still might overwrite similar loops with the new template if the 2189 ** new template is better. Loops may be overwritten if the following 2190 ** conditions are met: 2191 ** 2192 ** (1) They have the same iTab. 2193 ** (2) They have the same iSortIdx. 2194 ** (3) The template has same or fewer dependencies than the current loop 2195 ** (4) The template has the same or lower cost than the current loop 2196 */ 2197 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 2198 WhereLoop **ppPrev, *p; 2199 WhereInfo *pWInfo = pBuilder->pWInfo; 2200 sqlite3 *db = pWInfo->pParse->db; 2201 int rc; 2202 2203 /* Stop the search once we hit the query planner search limit */ 2204 if( pBuilder->iPlanLimit==0 ){ 2205 WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n")); 2206 if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0; 2207 return SQLITE_DONE; 2208 } 2209 pBuilder->iPlanLimit--; 2210 2211 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 2212 2213 /* If pBuilder->pOrSet is defined, then only keep track of the costs 2214 ** and prereqs. 2215 */ 2216 if( pBuilder->pOrSet!=0 ){ 2217 if( pTemplate->nLTerm ){ 2218 #if WHERETRACE_ENABLED 2219 u16 n = pBuilder->pOrSet->n; 2220 int x = 2221 #endif 2222 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 2223 pTemplate->nOut); 2224 #if WHERETRACE_ENABLED /* 0x8 */ 2225 if( sqlite3WhereTrace & 0x8 ){ 2226 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 2227 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2228 } 2229 #endif 2230 } 2231 return SQLITE_OK; 2232 } 2233 2234 /* Look for an existing WhereLoop to replace with pTemplate 2235 */ 2236 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 2237 2238 if( ppPrev==0 ){ 2239 /* There already exists a WhereLoop on the list that is better 2240 ** than pTemplate, so just ignore pTemplate */ 2241 #if WHERETRACE_ENABLED /* 0x8 */ 2242 if( sqlite3WhereTrace & 0x8 ){ 2243 sqlite3DebugPrintf(" skip: "); 2244 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2245 } 2246 #endif 2247 return SQLITE_OK; 2248 }else{ 2249 p = *ppPrev; 2250 } 2251 2252 /* If we reach this point it means that either p[] should be overwritten 2253 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 2254 ** WhereLoop and insert it. 2255 */ 2256 #if WHERETRACE_ENABLED /* 0x8 */ 2257 if( sqlite3WhereTrace & 0x8 ){ 2258 if( p!=0 ){ 2259 sqlite3DebugPrintf("replace: "); 2260 sqlite3WhereLoopPrint(p, pBuilder->pWC); 2261 sqlite3DebugPrintf(" with: "); 2262 }else{ 2263 sqlite3DebugPrintf(" add: "); 2264 } 2265 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2266 } 2267 #endif 2268 if( p==0 ){ 2269 /* Allocate a new WhereLoop to add to the end of the list */ 2270 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); 2271 if( p==0 ) return SQLITE_NOMEM_BKPT; 2272 whereLoopInit(p); 2273 p->pNextLoop = 0; 2274 }else{ 2275 /* We will be overwriting WhereLoop p[]. But before we do, first 2276 ** go through the rest of the list and delete any other entries besides 2277 ** p[] that are also supplated by pTemplate */ 2278 WhereLoop **ppTail = &p->pNextLoop; 2279 WhereLoop *pToDel; 2280 while( *ppTail ){ 2281 ppTail = whereLoopFindLesser(ppTail, pTemplate); 2282 if( ppTail==0 ) break; 2283 pToDel = *ppTail; 2284 if( pToDel==0 ) break; 2285 *ppTail = pToDel->pNextLoop; 2286 #if WHERETRACE_ENABLED /* 0x8 */ 2287 if( sqlite3WhereTrace & 0x8 ){ 2288 sqlite3DebugPrintf(" delete: "); 2289 sqlite3WhereLoopPrint(pToDel, pBuilder->pWC); 2290 } 2291 #endif 2292 whereLoopDelete(db, pToDel); 2293 } 2294 } 2295 rc = whereLoopXfer(db, p, pTemplate); 2296 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2297 Index *pIndex = p->u.btree.pIndex; 2298 if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){ 2299 p->u.btree.pIndex = 0; 2300 } 2301 } 2302 return rc; 2303 } 2304 2305 /* 2306 ** Adjust the WhereLoop.nOut value downward to account for terms of the 2307 ** WHERE clause that reference the loop but which are not used by an 2308 ** index. 2309 * 2310 ** For every WHERE clause term that is not used by the index 2311 ** and which has a truth probability assigned by one of the likelihood(), 2312 ** likely(), or unlikely() SQL functions, reduce the estimated number 2313 ** of output rows by the probability specified. 2314 ** 2315 ** TUNING: For every WHERE clause term that is not used by the index 2316 ** and which does not have an assigned truth probability, heuristics 2317 ** described below are used to try to estimate the truth probability. 2318 ** TODO --> Perhaps this is something that could be improved by better 2319 ** table statistics. 2320 ** 2321 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 2322 ** value corresponds to -1 in LogEst notation, so this means decrement 2323 ** the WhereLoop.nOut field for every such WHERE clause term. 2324 ** 2325 ** Heuristic 2: If there exists one or more WHERE clause terms of the 2326 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 2327 ** final output row estimate is no greater than 1/4 of the total number 2328 ** of rows in the table. In other words, assume that x==EXPR will filter 2329 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 2330 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 2331 ** on the "x" column and so in that case only cap the output row estimate 2332 ** at 1/2 instead of 1/4. 2333 */ 2334 static void whereLoopOutputAdjust( 2335 WhereClause *pWC, /* The WHERE clause */ 2336 WhereLoop *pLoop, /* The loop to adjust downward */ 2337 LogEst nRow /* Number of rows in the entire table */ 2338 ){ 2339 WhereTerm *pTerm, *pX; 2340 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 2341 int i, j; 2342 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 2343 2344 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2345 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ 2346 assert( pTerm!=0 ); 2347 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; 2348 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 2349 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 2350 for(j=pLoop->nLTerm-1; j>=0; j--){ 2351 pX = pLoop->aLTerm[j]; 2352 if( pX==0 ) continue; 2353 if( pX==pTerm ) break; 2354 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 2355 } 2356 if( j<0 ){ 2357 if( pTerm->truthProb<=0 ){ 2358 /* If a truth probability is specified using the likelihood() hints, 2359 ** then use the probability provided by the application. */ 2360 pLoop->nOut += pTerm->truthProb; 2361 }else{ 2362 /* In the absence of explicit truth probabilities, use heuristics to 2363 ** guess a reasonable truth probability. */ 2364 pLoop->nOut--; 2365 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 2366 && (pTerm->wtFlags & TERM_HIGHTRUTH)==0 /* tag-20200224-1 */ 2367 ){ 2368 Expr *pRight = pTerm->pExpr->pRight; 2369 int k = 0; 2370 testcase( pTerm->pExpr->op==TK_IS ); 2371 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 2372 k = 10; 2373 }else{ 2374 k = 20; 2375 } 2376 if( iReduce<k ){ 2377 pTerm->wtFlags |= TERM_HEURTRUTH; 2378 iReduce = k; 2379 } 2380 } 2381 } 2382 } 2383 } 2384 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce; 2385 } 2386 2387 /* 2388 ** Term pTerm is a vector range comparison operation. The first comparison 2389 ** in the vector can be optimized using column nEq of the index. This 2390 ** function returns the total number of vector elements that can be used 2391 ** as part of the range comparison. 2392 ** 2393 ** For example, if the query is: 2394 ** 2395 ** WHERE a = ? AND (b, c, d) > (?, ?, ?) 2396 ** 2397 ** and the index: 2398 ** 2399 ** CREATE INDEX ... ON (a, b, c, d, e) 2400 ** 2401 ** then this function would be invoked with nEq=1. The value returned in 2402 ** this case is 3. 2403 */ 2404 static int whereRangeVectorLen( 2405 Parse *pParse, /* Parsing context */ 2406 int iCur, /* Cursor open on pIdx */ 2407 Index *pIdx, /* The index to be used for a inequality constraint */ 2408 int nEq, /* Number of prior equality constraints on same index */ 2409 WhereTerm *pTerm /* The vector inequality constraint */ 2410 ){ 2411 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft); 2412 int i; 2413 2414 nCmp = MIN(nCmp, (pIdx->nColumn - nEq)); 2415 for(i=1; i<nCmp; i++){ 2416 /* Test if comparison i of pTerm is compatible with column (i+nEq) 2417 ** of the index. If not, exit the loop. */ 2418 char aff; /* Comparison affinity */ 2419 char idxaff = 0; /* Indexed columns affinity */ 2420 CollSeq *pColl; /* Comparison collation sequence */ 2421 Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr; 2422 Expr *pRhs = pTerm->pExpr->pRight; 2423 if( pRhs->flags & EP_xIsSelect ){ 2424 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr; 2425 }else{ 2426 pRhs = pRhs->x.pList->a[i].pExpr; 2427 } 2428 2429 /* Check that the LHS of the comparison is a column reference to 2430 ** the right column of the right source table. And that the sort 2431 ** order of the index column is the same as the sort order of the 2432 ** leftmost index column. */ 2433 if( pLhs->op!=TK_COLUMN 2434 || pLhs->iTable!=iCur 2435 || pLhs->iColumn!=pIdx->aiColumn[i+nEq] 2436 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq] 2437 ){ 2438 break; 2439 } 2440 2441 testcase( pLhs->iColumn==XN_ROWID ); 2442 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs)); 2443 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn); 2444 if( aff!=idxaff ) break; 2445 2446 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2447 if( pColl==0 ) break; 2448 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; 2449 } 2450 return i; 2451 } 2452 2453 /* 2454 ** Adjust the cost C by the costMult facter T. This only occurs if 2455 ** compiled with -DSQLITE_ENABLE_COSTMULT 2456 */ 2457 #ifdef SQLITE_ENABLE_COSTMULT 2458 # define ApplyCostMultiplier(C,T) C += T 2459 #else 2460 # define ApplyCostMultiplier(C,T) 2461 #endif 2462 2463 /* 2464 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 2465 ** index pIndex. Try to match one more. 2466 ** 2467 ** When this function is called, pBuilder->pNew->nOut contains the 2468 ** number of rows expected to be visited by filtering using the nEq 2469 ** terms only. If it is modified, this value is restored before this 2470 ** function returns. 2471 ** 2472 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is 2473 ** a fake index used for the INTEGER PRIMARY KEY. 2474 */ 2475 static int whereLoopAddBtreeIndex( 2476 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 2477 SrcItem *pSrc, /* FROM clause term being analyzed */ 2478 Index *pProbe, /* An index on pSrc */ 2479 LogEst nInMul /* log(Number of iterations due to IN) */ 2480 ){ 2481 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ 2482 Parse *pParse = pWInfo->pParse; /* Parsing context */ 2483 sqlite3 *db = pParse->db; /* Database connection malloc context */ 2484 WhereLoop *pNew; /* Template WhereLoop under construction */ 2485 WhereTerm *pTerm; /* A WhereTerm under consideration */ 2486 int opMask; /* Valid operators for constraints */ 2487 WhereScan scan; /* Iterator for WHERE terms */ 2488 Bitmask saved_prereq; /* Original value of pNew->prereq */ 2489 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 2490 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 2491 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */ 2492 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */ 2493 u16 saved_nSkip; /* Original value of pNew->nSkip */ 2494 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 2495 LogEst saved_nOut; /* Original value of pNew->nOut */ 2496 int rc = SQLITE_OK; /* Return code */ 2497 LogEst rSize; /* Number of rows in the table */ 2498 LogEst rLogSize; /* Logarithm of table size */ 2499 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 2500 2501 pNew = pBuilder->pNew; 2502 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 2503 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n", 2504 pProbe->pTable->zName,pProbe->zName, 2505 pNew->u.btree.nEq, pNew->nSkip, pNew->rRun)); 2506 2507 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 2508 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 2509 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 2510 opMask = WO_LT|WO_LE; 2511 }else{ 2512 assert( pNew->u.btree.nBtm==0 ); 2513 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; 2514 } 2515 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 2516 2517 assert( pNew->u.btree.nEq<pProbe->nColumn ); 2518 assert( pNew->u.btree.nEq<pProbe->nKeyCol 2519 || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY ); 2520 2521 saved_nEq = pNew->u.btree.nEq; 2522 saved_nBtm = pNew->u.btree.nBtm; 2523 saved_nTop = pNew->u.btree.nTop; 2524 saved_nSkip = pNew->nSkip; 2525 saved_nLTerm = pNew->nLTerm; 2526 saved_wsFlags = pNew->wsFlags; 2527 saved_prereq = pNew->prereq; 2528 saved_nOut = pNew->nOut; 2529 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, 2530 opMask, pProbe); 2531 pNew->rSetup = 0; 2532 rSize = pProbe->aiRowLogEst[0]; 2533 rLogSize = estLog(rSize); 2534 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 2535 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 2536 LogEst rCostIdx; 2537 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 2538 int nIn = 0; 2539 #ifdef SQLITE_ENABLE_STAT4 2540 int nRecValid = pBuilder->nRecValid; 2541 #endif 2542 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 2543 && indexColumnNotNull(pProbe, saved_nEq) 2544 ){ 2545 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 2546 } 2547 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2548 2549 /* Do not allow the upper bound of a LIKE optimization range constraint 2550 ** to mix with a lower range bound from some other source */ 2551 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 2552 2553 /* tag-20191211-001: Do not allow constraints from the WHERE clause to 2554 ** be used by the right table of a LEFT JOIN. Only constraints in the 2555 ** ON clause are allowed. See tag-20191211-002 for the vtab equivalent. */ 2556 if( (pSrc->fg.jointype & JT_LEFT)!=0 2557 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 2558 ){ 2559 continue; 2560 } 2561 2562 if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){ 2563 pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE; 2564 }else{ 2565 pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED; 2566 } 2567 pNew->wsFlags = saved_wsFlags; 2568 pNew->u.btree.nEq = saved_nEq; 2569 pNew->u.btree.nBtm = saved_nBtm; 2570 pNew->u.btree.nTop = saved_nTop; 2571 pNew->nLTerm = saved_nLTerm; 2572 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2573 pNew->aLTerm[pNew->nLTerm++] = pTerm; 2574 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 2575 2576 assert( nInMul==0 2577 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 2578 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 2579 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 2580 ); 2581 2582 if( eOp & WO_IN ){ 2583 Expr *pExpr = pTerm->pExpr; 2584 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2585 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 2586 int i; 2587 nIn = 46; assert( 46==sqlite3LogEst(25) ); 2588 2589 /* The expression may actually be of the form (x, y) IN (SELECT...). 2590 ** In this case there is a separate term for each of (x) and (y). 2591 ** However, the nIn multiplier should only be applied once, not once 2592 ** for each such term. The following loop checks that pTerm is the 2593 ** first such term in use, and sets nIn back to 0 if it is not. */ 2594 for(i=0; i<pNew->nLTerm-1; i++){ 2595 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0; 2596 } 2597 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2598 /* "x IN (value, value, ...)" */ 2599 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 2600 } 2601 if( pProbe->hasStat1 && rLogSize>=10 ){ 2602 LogEst M, logK, x; 2603 /* Let: 2604 ** N = the total number of rows in the table 2605 ** K = the number of entries on the RHS of the IN operator 2606 ** M = the number of rows in the table that match terms to the 2607 ** to the left in the same index. If the IN operator is on 2608 ** the left-most index column, M==N. 2609 ** 2610 ** Given the definitions above, it is better to omit the IN operator 2611 ** from the index lookup and instead do a scan of the M elements, 2612 ** testing each scanned row against the IN operator separately, if: 2613 ** 2614 ** M*log(K) < K*log(N) 2615 ** 2616 ** Our estimates for M, K, and N might be inaccurate, so we build in 2617 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator 2618 ** with the index, as using an index has better worst-case behavior. 2619 ** If we do not have real sqlite_stat1 data, always prefer to use 2620 ** the index. Do not bother with this optimization on very small 2621 ** tables (less than 2 rows) as it is pointless in that case. 2622 */ 2623 M = pProbe->aiRowLogEst[saved_nEq]; 2624 logK = estLog(nIn); 2625 /* TUNING v----- 10 to bias toward indexed IN */ 2626 x = M + logK + 10 - (nIn + rLogSize); 2627 if( x>=0 ){ 2628 WHERETRACE(0x40, 2629 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) " 2630 "prefers indexed lookup\n", 2631 saved_nEq, M, logK, nIn, rLogSize, x)); 2632 }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){ 2633 WHERETRACE(0x40, 2634 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d" 2635 " nInMul=%d) prefers skip-scan\n", 2636 saved_nEq, M, logK, nIn, rLogSize, x, nInMul)); 2637 pNew->wsFlags |= WHERE_IN_SEEKSCAN; 2638 }else{ 2639 WHERETRACE(0x40, 2640 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d" 2641 " nInMul=%d) prefers normal scan\n", 2642 saved_nEq, M, logK, nIn, rLogSize, x, nInMul)); 2643 continue; 2644 } 2645 } 2646 pNew->wsFlags |= WHERE_COLUMN_IN; 2647 }else if( eOp & (WO_EQ|WO_IS) ){ 2648 int iCol = pProbe->aiColumn[saved_nEq]; 2649 pNew->wsFlags |= WHERE_COLUMN_EQ; 2650 assert( saved_nEq==pNew->u.btree.nEq ); 2651 if( iCol==XN_ROWID 2652 || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) 2653 ){ 2654 if( iCol==XN_ROWID || pProbe->uniqNotNull 2655 || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ) 2656 ){ 2657 pNew->wsFlags |= WHERE_ONEROW; 2658 }else{ 2659 pNew->wsFlags |= WHERE_UNQ_WANTED; 2660 } 2661 } 2662 if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS; 2663 }else if( eOp & WO_ISNULL ){ 2664 pNew->wsFlags |= WHERE_COLUMN_NULL; 2665 }else if( eOp & (WO_GT|WO_GE) ){ 2666 testcase( eOp & WO_GT ); 2667 testcase( eOp & WO_GE ); 2668 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 2669 pNew->u.btree.nBtm = whereRangeVectorLen( 2670 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2671 ); 2672 pBtm = pTerm; 2673 pTop = 0; 2674 if( pTerm->wtFlags & TERM_LIKEOPT ){ 2675 /* Range constraints that come from the LIKE optimization are 2676 ** always used in pairs. */ 2677 pTop = &pTerm[1]; 2678 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 2679 assert( pTop->wtFlags & TERM_LIKEOPT ); 2680 assert( pTop->eOperator==WO_LT ); 2681 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2682 pNew->aLTerm[pNew->nLTerm++] = pTop; 2683 pNew->wsFlags |= WHERE_TOP_LIMIT; 2684 pNew->u.btree.nTop = 1; 2685 } 2686 }else{ 2687 assert( eOp & (WO_LT|WO_LE) ); 2688 testcase( eOp & WO_LT ); 2689 testcase( eOp & WO_LE ); 2690 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 2691 pNew->u.btree.nTop = whereRangeVectorLen( 2692 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2693 ); 2694 pTop = pTerm; 2695 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 2696 pNew->aLTerm[pNew->nLTerm-2] : 0; 2697 } 2698 2699 /* At this point pNew->nOut is set to the number of rows expected to 2700 ** be visited by the index scan before considering term pTerm, or the 2701 ** values of nIn and nInMul. In other words, assuming that all 2702 ** "x IN(...)" terms are replaced with "x = ?". This block updates 2703 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 2704 assert( pNew->nOut==saved_nOut ); 2705 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2706 /* Adjust nOut using stat4 data. Or, if there is no stat4 2707 ** data, using some other estimate. */ 2708 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 2709 }else{ 2710 int nEq = ++pNew->u.btree.nEq; 2711 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); 2712 2713 assert( pNew->nOut==saved_nOut ); 2714 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ 2715 assert( (eOp & WO_IN) || nIn==0 ); 2716 testcase( eOp & WO_IN ); 2717 pNew->nOut += pTerm->truthProb; 2718 pNew->nOut -= nIn; 2719 }else{ 2720 #ifdef SQLITE_ENABLE_STAT4 2721 tRowcnt nOut = 0; 2722 if( nInMul==0 2723 && pProbe->nSample 2724 && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol) 2725 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) 2726 && OptimizationEnabled(db, SQLITE_Stat4) 2727 ){ 2728 Expr *pExpr = pTerm->pExpr; 2729 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ 2730 testcase( eOp & WO_EQ ); 2731 testcase( eOp & WO_IS ); 2732 testcase( eOp & WO_ISNULL ); 2733 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 2734 }else{ 2735 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 2736 } 2737 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 2738 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 2739 if( nOut ){ 2740 pNew->nOut = sqlite3LogEst(nOut); 2741 if( nEq==1 2742 /* TUNING: Mark terms as "low selectivity" if they seem likely 2743 ** to be true for half or more of the rows in the table. 2744 ** See tag-202002240-1 */ 2745 && pNew->nOut+10 > pProbe->aiRowLogEst[0] 2746 ){ 2747 #if WHERETRACE_ENABLED /* 0x01 */ 2748 if( sqlite3WhereTrace & 0x01 ){ 2749 sqlite3DebugPrintf( 2750 "STAT4 determines term has low selectivity:\n"); 2751 sqlite3WhereTermPrint(pTerm, 999); 2752 } 2753 #endif 2754 pTerm->wtFlags |= TERM_HIGHTRUTH; 2755 if( pTerm->wtFlags & TERM_HEURTRUTH ){ 2756 /* If the term has previously been used with an assumption of 2757 ** higher selectivity, then set the flag to rerun the 2758 ** loop computations. */ 2759 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS; 2760 } 2761 } 2762 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 2763 pNew->nOut -= nIn; 2764 } 2765 } 2766 if( nOut==0 ) 2767 #endif 2768 { 2769 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 2770 if( eOp & WO_ISNULL ){ 2771 /* TUNING: If there is no likelihood() value, assume that a 2772 ** "col IS NULL" expression matches twice as many rows 2773 ** as (col=?). */ 2774 pNew->nOut += 10; 2775 } 2776 } 2777 } 2778 } 2779 2780 /* Set rCostIdx to the cost of visiting selected rows in index. Add 2781 ** it to pNew->rRun, which is currently set to the cost of the index 2782 ** seek only. Then, if this is a non-covering index, add the cost of 2783 ** visiting the rows in the main table. */ 2784 assert( pSrc->pTab->szTabRow>0 ); 2785 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 2786 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); 2787 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ 2788 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 2789 } 2790 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 2791 2792 nOutUnadjusted = pNew->nOut; 2793 pNew->rRun += nInMul + nIn; 2794 pNew->nOut += nInMul + nIn; 2795 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 2796 rc = whereLoopInsert(pBuilder, pNew); 2797 2798 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2799 pNew->nOut = saved_nOut; 2800 }else{ 2801 pNew->nOut = nOutUnadjusted; 2802 } 2803 2804 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 2805 && pNew->u.btree.nEq<pProbe->nColumn 2806 && (pNew->u.btree.nEq<pProbe->nKeyCol || 2807 pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY) 2808 ){ 2809 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 2810 } 2811 pNew->nOut = saved_nOut; 2812 #ifdef SQLITE_ENABLE_STAT4 2813 pBuilder->nRecValid = nRecValid; 2814 #endif 2815 } 2816 pNew->prereq = saved_prereq; 2817 pNew->u.btree.nEq = saved_nEq; 2818 pNew->u.btree.nBtm = saved_nBtm; 2819 pNew->u.btree.nTop = saved_nTop; 2820 pNew->nSkip = saved_nSkip; 2821 pNew->wsFlags = saved_wsFlags; 2822 pNew->nOut = saved_nOut; 2823 pNew->nLTerm = saved_nLTerm; 2824 2825 /* Consider using a skip-scan if there are no WHERE clause constraints 2826 ** available for the left-most terms of the index, and if the average 2827 ** number of repeats in the left-most terms is at least 18. 2828 ** 2829 ** The magic number 18 is selected on the basis that scanning 17 rows 2830 ** is almost always quicker than an index seek (even though if the index 2831 ** contains fewer than 2^17 rows we assume otherwise in other parts of 2832 ** the code). And, even if it is not, it should not be too much slower. 2833 ** On the other hand, the extra seeks could end up being significantly 2834 ** more expensive. */ 2835 assert( 42==sqlite3LogEst(18) ); 2836 if( saved_nEq==saved_nSkip 2837 && saved_nEq+1<pProbe->nKeyCol 2838 && saved_nEq==pNew->nLTerm 2839 && pProbe->noSkipScan==0 2840 && pProbe->hasStat1!=0 2841 && OptimizationEnabled(db, SQLITE_SkipScan) 2842 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 2843 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 2844 ){ 2845 LogEst nIter; 2846 pNew->u.btree.nEq++; 2847 pNew->nSkip++; 2848 pNew->aLTerm[pNew->nLTerm++] = 0; 2849 pNew->wsFlags |= WHERE_SKIPSCAN; 2850 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 2851 pNew->nOut -= nIter; 2852 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 2853 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 2854 nIter += 5; 2855 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 2856 pNew->nOut = saved_nOut; 2857 pNew->u.btree.nEq = saved_nEq; 2858 pNew->nSkip = saved_nSkip; 2859 pNew->wsFlags = saved_wsFlags; 2860 } 2861 2862 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n", 2863 pProbe->pTable->zName, pProbe->zName, saved_nEq, rc)); 2864 return rc; 2865 } 2866 2867 /* 2868 ** Return True if it is possible that pIndex might be useful in 2869 ** implementing the ORDER BY clause in pBuilder. 2870 ** 2871 ** Return False if pBuilder does not contain an ORDER BY clause or 2872 ** if there is no way for pIndex to be useful in implementing that 2873 ** ORDER BY clause. 2874 */ 2875 static int indexMightHelpWithOrderBy( 2876 WhereLoopBuilder *pBuilder, 2877 Index *pIndex, 2878 int iCursor 2879 ){ 2880 ExprList *pOB; 2881 ExprList *aColExpr; 2882 int ii, jj; 2883 2884 if( pIndex->bUnordered ) return 0; 2885 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 2886 for(ii=0; ii<pOB->nExpr; ii++){ 2887 Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr); 2888 if( NEVER(pExpr==0) ) continue; 2889 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ 2890 if( pExpr->iColumn<0 ) return 1; 2891 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2892 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 2893 } 2894 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ 2895 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2896 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; 2897 if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ 2898 return 1; 2899 } 2900 } 2901 } 2902 } 2903 return 0; 2904 } 2905 2906 /* Check to see if a partial index with pPartIndexWhere can be used 2907 ** in the current query. Return true if it can be and false if not. 2908 */ 2909 static int whereUsablePartialIndex( 2910 int iTab, /* The table for which we want an index */ 2911 int isLeft, /* True if iTab is the right table of a LEFT JOIN */ 2912 WhereClause *pWC, /* The WHERE clause of the query */ 2913 Expr *pWhere /* The WHERE clause from the partial index */ 2914 ){ 2915 int i; 2916 WhereTerm *pTerm; 2917 Parse *pParse = pWC->pWInfo->pParse; 2918 while( pWhere->op==TK_AND ){ 2919 if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0; 2920 pWhere = pWhere->pRight; 2921 } 2922 if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0; 2923 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 2924 Expr *pExpr; 2925 pExpr = pTerm->pExpr; 2926 if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab) 2927 && (isLeft==0 || ExprHasProperty(pExpr, EP_FromJoin)) 2928 && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab) 2929 && (pTerm->wtFlags & TERM_VNULL)==0 2930 ){ 2931 return 1; 2932 } 2933 } 2934 return 0; 2935 } 2936 2937 /* 2938 ** Add all WhereLoop objects for a single table of the join where the table 2939 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be 2940 ** a b-tree table, not a virtual table. 2941 ** 2942 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 2943 ** are calculated as follows: 2944 ** 2945 ** For a full scan, assuming the table (or index) contains nRow rows: 2946 ** 2947 ** cost = nRow * 3.0 // full-table scan 2948 ** cost = nRow * K // scan of covering index 2949 ** cost = nRow * (K+3.0) // scan of non-covering index 2950 ** 2951 ** where K is a value between 1.1 and 3.0 set based on the relative 2952 ** estimated average size of the index and table records. 2953 ** 2954 ** For an index scan, where nVisit is the number of index rows visited 2955 ** by the scan, and nSeek is the number of seek operations required on 2956 ** the index b-tree: 2957 ** 2958 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 2959 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 2960 ** 2961 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 2962 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 2963 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 2964 ** 2965 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 2966 ** of uncertainty. For this reason, scoring is designed to pick plans that 2967 ** "do the least harm" if the estimates are inaccurate. For example, a 2968 ** log(nRow) factor is omitted from a non-covering index scan in order to 2969 ** bias the scoring in favor of using an index, since the worst-case 2970 ** performance of using an index is far better than the worst-case performance 2971 ** of a full table scan. 2972 */ 2973 static int whereLoopAddBtree( 2974 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 2975 Bitmask mPrereq /* Extra prerequesites for using this table */ 2976 ){ 2977 WhereInfo *pWInfo; /* WHERE analysis context */ 2978 Index *pProbe; /* An index we are evaluating */ 2979 Index sPk; /* A fake index object for the primary key */ 2980 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 2981 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 2982 SrcList *pTabList; /* The FROM clause */ 2983 SrcItem *pSrc; /* The FROM clause btree term to add */ 2984 WhereLoop *pNew; /* Template WhereLoop object */ 2985 int rc = SQLITE_OK; /* Return code */ 2986 int iSortIdx = 1; /* Index number */ 2987 int b; /* A boolean value */ 2988 LogEst rSize; /* number of rows in the table */ 2989 WhereClause *pWC; /* The parsed WHERE clause */ 2990 Table *pTab; /* Table being queried */ 2991 2992 pNew = pBuilder->pNew; 2993 pWInfo = pBuilder->pWInfo; 2994 pTabList = pWInfo->pTabList; 2995 pSrc = pTabList->a + pNew->iTab; 2996 pTab = pSrc->pTab; 2997 pWC = pBuilder->pWC; 2998 assert( !IsVirtual(pSrc->pTab) ); 2999 3000 if( pSrc->fg.isIndexedBy ){ 3001 /* An INDEXED BY clause specifies a particular index to use */ 3002 pProbe = pSrc->u2.pIBIndex; 3003 }else if( !HasRowid(pTab) ){ 3004 pProbe = pTab->pIndex; 3005 }else{ 3006 /* There is no INDEXED BY clause. Create a fake Index object in local 3007 ** variable sPk to represent the rowid primary key index. Make this 3008 ** fake index the first in a chain of Index objects with all of the real 3009 ** indices to follow */ 3010 Index *pFirst; /* First of real indices on the table */ 3011 memset(&sPk, 0, sizeof(Index)); 3012 sPk.nKeyCol = 1; 3013 sPk.nColumn = 1; 3014 sPk.aiColumn = &aiColumnPk; 3015 sPk.aiRowLogEst = aiRowEstPk; 3016 sPk.onError = OE_Replace; 3017 sPk.pTable = pTab; 3018 sPk.szIdxRow = pTab->szTabRow; 3019 sPk.idxType = SQLITE_IDXTYPE_IPK; 3020 aiRowEstPk[0] = pTab->nRowLogEst; 3021 aiRowEstPk[1] = 0; 3022 pFirst = pSrc->pTab->pIndex; 3023 if( pSrc->fg.notIndexed==0 ){ 3024 /* The real indices of the table are only considered if the 3025 ** NOT INDEXED qualifier is omitted from the FROM clause */ 3026 sPk.pNext = pFirst; 3027 } 3028 pProbe = &sPk; 3029 } 3030 rSize = pTab->nRowLogEst; 3031 3032 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 3033 /* Automatic indexes */ 3034 if( !pBuilder->pOrSet /* Not part of an OR optimization */ 3035 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 3036 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 3037 && !pSrc->fg.isIndexedBy /* Has no INDEXED BY clause */ 3038 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ 3039 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ 3040 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ 3041 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ 3042 ){ 3043 /* Generate auto-index WhereLoops */ 3044 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 3045 WhereTerm *pTerm; 3046 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 3047 rLogSize = estLog(rSize); 3048 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 3049 if( pTerm->prereqRight & pNew->maskSelf ) continue; 3050 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 3051 pNew->u.btree.nEq = 1; 3052 pNew->nSkip = 0; 3053 pNew->u.btree.pIndex = 0; 3054 pNew->nLTerm = 1; 3055 pNew->aLTerm[0] = pTerm; 3056 /* TUNING: One-time cost for computing the automatic index is 3057 ** estimated to be X*N*log2(N) where N is the number of rows in 3058 ** the table being indexed and where X is 7 (LogEst=28) for normal 3059 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value 3060 ** of X is smaller for views and subqueries so that the query planner 3061 ** will be more aggressive about generating automatic indexes for 3062 ** those objects, since there is no opportunity to add schema 3063 ** indexes on subqueries and views. */ 3064 pNew->rSetup = rLogSize + rSize; 3065 if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){ 3066 pNew->rSetup += 28; 3067 }else{ 3068 pNew->rSetup -= 10; 3069 } 3070 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 3071 if( pNew->rSetup<0 ) pNew->rSetup = 0; 3072 /* TUNING: Each index lookup yields 20 rows in the table. This 3073 ** is more than the usual guess of 10 rows, since we have no way 3074 ** of knowing how selective the index will ultimately be. It would 3075 ** not be unreasonable to make this value much larger. */ 3076 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 3077 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 3078 pNew->wsFlags = WHERE_AUTO_INDEX; 3079 pNew->prereq = mPrereq | pTerm->prereqRight; 3080 rc = whereLoopInsert(pBuilder, pNew); 3081 } 3082 } 3083 } 3084 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 3085 3086 /* Loop over all indices. If there was an INDEXED BY clause, then only 3087 ** consider index pProbe. */ 3088 for(; rc==SQLITE_OK && pProbe; 3089 pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++ 3090 ){ 3091 int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0; 3092 if( pProbe->pPartIdxWhere!=0 3093 && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC, 3094 pProbe->pPartIdxWhere) 3095 ){ 3096 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 3097 continue; /* Partial index inappropriate for this query */ 3098 } 3099 if( pProbe->bNoQuery ) continue; 3100 rSize = pProbe->aiRowLogEst[0]; 3101 pNew->u.btree.nEq = 0; 3102 pNew->u.btree.nBtm = 0; 3103 pNew->u.btree.nTop = 0; 3104 pNew->nSkip = 0; 3105 pNew->nLTerm = 0; 3106 pNew->iSortIdx = 0; 3107 pNew->rSetup = 0; 3108 pNew->prereq = mPrereq; 3109 pNew->nOut = rSize; 3110 pNew->u.btree.pIndex = pProbe; 3111 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 3112 3113 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 3114 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 3115 if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){ 3116 /* Integer primary key index */ 3117 pNew->wsFlags = WHERE_IPK; 3118 3119 /* Full table scan */ 3120 pNew->iSortIdx = b ? iSortIdx : 0; 3121 /* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an 3122 ** extra cost designed to discourage the use of full table scans, 3123 ** since index lookups have better worst-case performance if our 3124 ** stat guesses are wrong. Reduce the 3.0 penalty slightly 3125 ** (to 2.75) if we have valid STAT4 information for the table. 3126 ** At 2.75, a full table scan is preferred over using an index on 3127 ** a column with just two distinct values where each value has about 3128 ** an equal number of appearances. Without STAT4 data, we still want 3129 ** to use an index in that case, since the constraint might be for 3130 ** the scarcer of the two values, and in that case an index lookup is 3131 ** better. 3132 */ 3133 #ifdef SQLITE_ENABLE_STAT4 3134 pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0); 3135 #else 3136 pNew->rRun = rSize + 16; 3137 #endif 3138 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3139 whereLoopOutputAdjust(pWC, pNew, rSize); 3140 rc = whereLoopInsert(pBuilder, pNew); 3141 pNew->nOut = rSize; 3142 if( rc ) break; 3143 }else{ 3144 Bitmask m; 3145 if( pProbe->isCovering ){ 3146 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 3147 m = 0; 3148 }else{ 3149 m = pSrc->colUsed & pProbe->colNotIdxed; 3150 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; 3151 } 3152 3153 /* Full scan via index */ 3154 if( b 3155 || !HasRowid(pTab) 3156 || pProbe->pPartIdxWhere!=0 3157 || pSrc->fg.isIndexedBy 3158 || ( m==0 3159 && pProbe->bUnordered==0 3160 && (pProbe->szIdxRow<pTab->szTabRow) 3161 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 3162 && sqlite3GlobalConfig.bUseCis 3163 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 3164 ) 3165 ){ 3166 pNew->iSortIdx = b ? iSortIdx : 0; 3167 3168 /* The cost of visiting the index rows is N*K, where K is 3169 ** between 1.1 and 3.0, depending on the relative sizes of the 3170 ** index and table rows. */ 3171 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 3172 if( m!=0 ){ 3173 /* If this is a non-covering index scan, add in the cost of 3174 ** doing table lookups. The cost will be 3x the number of 3175 ** lookups. Take into account WHERE clause terms that can be 3176 ** satisfied using just the index, and that do not require a 3177 ** table lookup. */ 3178 LogEst nLookup = rSize + 16; /* Base cost: N*3 */ 3179 int ii; 3180 int iCur = pSrc->iCursor; 3181 WhereClause *pWC2 = &pWInfo->sWC; 3182 for(ii=0; ii<pWC2->nTerm; ii++){ 3183 WhereTerm *pTerm = &pWC2->a[ii]; 3184 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){ 3185 break; 3186 } 3187 /* pTerm can be evaluated using just the index. So reduce 3188 ** the expected number of table lookups accordingly */ 3189 if( pTerm->truthProb<=0 ){ 3190 nLookup += pTerm->truthProb; 3191 }else{ 3192 nLookup--; 3193 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19; 3194 } 3195 } 3196 3197 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup); 3198 } 3199 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3200 whereLoopOutputAdjust(pWC, pNew, rSize); 3201 rc = whereLoopInsert(pBuilder, pNew); 3202 pNew->nOut = rSize; 3203 if( rc ) break; 3204 } 3205 } 3206 3207 pBuilder->bldFlags1 = 0; 3208 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 3209 if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){ 3210 /* If a non-unique index is used, or if a prefix of the key for 3211 ** unique index is used (making the index functionally non-unique) 3212 ** then the sqlite_stat1 data becomes important for scoring the 3213 ** plan */ 3214 pTab->tabFlags |= TF_StatsUsed; 3215 } 3216 #ifdef SQLITE_ENABLE_STAT4 3217 sqlite3Stat4ProbeFree(pBuilder->pRec); 3218 pBuilder->nRecValid = 0; 3219 pBuilder->pRec = 0; 3220 #endif 3221 } 3222 return rc; 3223 } 3224 3225 #ifndef SQLITE_OMIT_VIRTUALTABLE 3226 3227 /* 3228 ** Argument pIdxInfo is already populated with all constraints that may 3229 ** be used by the virtual table identified by pBuilder->pNew->iTab. This 3230 ** function marks a subset of those constraints usable, invokes the 3231 ** xBestIndex method and adds the returned plan to pBuilder. 3232 ** 3233 ** A constraint is marked usable if: 3234 ** 3235 ** * Argument mUsable indicates that its prerequisites are available, and 3236 ** 3237 ** * It is not one of the operators specified in the mExclude mask passed 3238 ** as the fourth argument (which in practice is either WO_IN or 0). 3239 ** 3240 ** Argument mPrereq is a mask of tables that must be scanned before the 3241 ** virtual table in question. These are added to the plans prerequisites 3242 ** before it is added to pBuilder. 3243 ** 3244 ** Output parameter *pbIn is set to true if the plan added to pBuilder 3245 ** uses one or more WO_IN terms, or false otherwise. 3246 */ 3247 static int whereLoopAddVirtualOne( 3248 WhereLoopBuilder *pBuilder, 3249 Bitmask mPrereq, /* Mask of tables that must be used. */ 3250 Bitmask mUsable, /* Mask of usable tables */ 3251 u16 mExclude, /* Exclude terms using these operators */ 3252 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ 3253 u16 mNoOmit, /* Do not omit these constraints */ 3254 int *pbIn /* OUT: True if plan uses an IN(...) op */ 3255 ){ 3256 WhereClause *pWC = pBuilder->pWC; 3257 struct sqlite3_index_constraint *pIdxCons; 3258 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; 3259 int i; 3260 int mxTerm; 3261 int rc = SQLITE_OK; 3262 WhereLoop *pNew = pBuilder->pNew; 3263 Parse *pParse = pBuilder->pWInfo->pParse; 3264 SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; 3265 int nConstraint = pIdxInfo->nConstraint; 3266 3267 assert( (mUsable & mPrereq)==mPrereq ); 3268 *pbIn = 0; 3269 pNew->prereq = mPrereq; 3270 3271 /* Set the usable flag on the subset of constraints identified by 3272 ** arguments mUsable and mExclude. */ 3273 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3274 for(i=0; i<nConstraint; i++, pIdxCons++){ 3275 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset]; 3276 pIdxCons->usable = 0; 3277 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight 3278 && (pTerm->eOperator & mExclude)==0 3279 ){ 3280 pIdxCons->usable = 1; 3281 } 3282 } 3283 3284 /* Initialize the output fields of the sqlite3_index_info structure */ 3285 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); 3286 assert( pIdxInfo->needToFreeIdxStr==0 ); 3287 pIdxInfo->idxStr = 0; 3288 pIdxInfo->idxNum = 0; 3289 pIdxInfo->orderByConsumed = 0; 3290 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 3291 pIdxInfo->estimatedRows = 25; 3292 pIdxInfo->idxFlags = 0; 3293 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; 3294 3295 /* Invoke the virtual table xBestIndex() method */ 3296 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); 3297 if( rc ){ 3298 if( rc==SQLITE_CONSTRAINT ){ 3299 /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means 3300 ** that the particular combination of parameters provided is unusable. 3301 ** Make no entries in the loop table. 3302 */ 3303 WHERETRACE(0xffff, (" ^^^^--- non-viable plan rejected!\n")); 3304 return SQLITE_OK; 3305 } 3306 return rc; 3307 } 3308 3309 mxTerm = -1; 3310 assert( pNew->nLSlot>=nConstraint ); 3311 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; 3312 pNew->u.vtab.omitMask = 0; 3313 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3314 for(i=0; i<nConstraint; i++, pIdxCons++){ 3315 int iTerm; 3316 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 3317 WhereTerm *pTerm; 3318 int j = pIdxCons->iTermOffset; 3319 if( iTerm>=nConstraint 3320 || j<0 3321 || j>=pWC->nTerm 3322 || pNew->aLTerm[iTerm]!=0 3323 || pIdxCons->usable==0 3324 ){ 3325 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3326 testcase( pIdxInfo->needToFreeIdxStr ); 3327 return SQLITE_ERROR; 3328 } 3329 testcase( iTerm==nConstraint-1 ); 3330 testcase( j==0 ); 3331 testcase( j==pWC->nTerm-1 ); 3332 pTerm = &pWC->a[j]; 3333 pNew->prereq |= pTerm->prereqRight; 3334 assert( iTerm<pNew->nLSlot ); 3335 pNew->aLTerm[iTerm] = pTerm; 3336 if( iTerm>mxTerm ) mxTerm = iTerm; 3337 testcase( iTerm==15 ); 3338 testcase( iTerm==16 ); 3339 if( pUsage[i].omit ){ 3340 if( i<16 && ((1<<i)&mNoOmit)==0 ){ 3341 testcase( i!=iTerm ); 3342 pNew->u.vtab.omitMask |= 1<<iTerm; 3343 }else{ 3344 testcase( i!=iTerm ); 3345 } 3346 } 3347 if( (pTerm->eOperator & WO_IN)!=0 ){ 3348 /* A virtual table that is constrained by an IN clause may not 3349 ** consume the ORDER BY clause because (1) the order of IN terms 3350 ** is not necessarily related to the order of output terms and 3351 ** (2) Multiple outputs from a single IN value will not merge 3352 ** together. */ 3353 pIdxInfo->orderByConsumed = 0; 3354 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; 3355 *pbIn = 1; assert( (mExclude & WO_IN)==0 ); 3356 } 3357 } 3358 } 3359 3360 pNew->nLTerm = mxTerm+1; 3361 for(i=0; i<=mxTerm; i++){ 3362 if( pNew->aLTerm[i]==0 ){ 3363 /* The non-zero argvIdx values must be contiguous. Raise an 3364 ** error if they are not */ 3365 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3366 testcase( pIdxInfo->needToFreeIdxStr ); 3367 return SQLITE_ERROR; 3368 } 3369 } 3370 assert( pNew->nLTerm<=pNew->nLSlot ); 3371 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 3372 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 3373 pIdxInfo->needToFreeIdxStr = 0; 3374 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 3375 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 3376 pIdxInfo->nOrderBy : 0); 3377 pNew->rSetup = 0; 3378 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 3379 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 3380 3381 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated 3382 ** that the scan will visit at most one row. Clear it otherwise. */ 3383 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ 3384 pNew->wsFlags |= WHERE_ONEROW; 3385 }else{ 3386 pNew->wsFlags &= ~WHERE_ONEROW; 3387 } 3388 rc = whereLoopInsert(pBuilder, pNew); 3389 if( pNew->u.vtab.needFree ){ 3390 sqlite3_free(pNew->u.vtab.idxStr); 3391 pNew->u.vtab.needFree = 0; 3392 } 3393 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", 3394 *pbIn, (sqlite3_uint64)mPrereq, 3395 (sqlite3_uint64)(pNew->prereq & ~mPrereq))); 3396 3397 return rc; 3398 } 3399 3400 /* 3401 ** If this function is invoked from within an xBestIndex() callback, it 3402 ** returns a pointer to a buffer containing the name of the collation 3403 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint 3404 ** array. Or, if iCons is out of range or there is no active xBestIndex 3405 ** call, return NULL. 3406 */ 3407 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){ 3408 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3409 const char *zRet = 0; 3410 if( iCons>=0 && iCons<pIdxInfo->nConstraint ){ 3411 CollSeq *pC = 0; 3412 int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset; 3413 Expr *pX = pHidden->pWC->a[iTerm].pExpr; 3414 if( pX->pLeft ){ 3415 pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX); 3416 } 3417 zRet = (pC ? pC->zName : sqlite3StrBINARY); 3418 } 3419 return zRet; 3420 } 3421 3422 /* 3423 ** Add all WhereLoop objects for a table of the join identified by 3424 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 3425 ** 3426 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and 3427 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause 3428 ** entries that occur before the virtual table in the FROM clause and are 3429 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the 3430 ** mUnusable mask contains all FROM clause entries that occur after the 3431 ** virtual table and are separated from it by at least one LEFT or 3432 ** CROSS JOIN. 3433 ** 3434 ** For example, if the query were: 3435 ** 3436 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; 3437 ** 3438 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). 3439 ** 3440 ** All the tables in mPrereq must be scanned before the current virtual 3441 ** table. So any terms for which all prerequisites are satisfied by 3442 ** mPrereq may be specified as "usable" in all calls to xBestIndex. 3443 ** Conversely, all tables in mUnusable must be scanned after the current 3444 ** virtual table, so any terms for which the prerequisites overlap with 3445 ** mUnusable should always be configured as "not-usable" for xBestIndex. 3446 */ 3447 static int whereLoopAddVirtual( 3448 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3449 Bitmask mPrereq, /* Tables that must be scanned before this one */ 3450 Bitmask mUnusable /* Tables that must be scanned after this one */ 3451 ){ 3452 int rc = SQLITE_OK; /* Return code */ 3453 WhereInfo *pWInfo; /* WHERE analysis context */ 3454 Parse *pParse; /* The parsing context */ 3455 WhereClause *pWC; /* The WHERE clause */ 3456 SrcItem *pSrc; /* The FROM clause term to search */ 3457 sqlite3_index_info *p; /* Object to pass to xBestIndex() */ 3458 int nConstraint; /* Number of constraints in p */ 3459 int bIn; /* True if plan uses IN(...) operator */ 3460 WhereLoop *pNew; 3461 Bitmask mBest; /* Tables used by best possible plan */ 3462 u16 mNoOmit; 3463 3464 assert( (mPrereq & mUnusable)==0 ); 3465 pWInfo = pBuilder->pWInfo; 3466 pParse = pWInfo->pParse; 3467 pWC = pBuilder->pWC; 3468 pNew = pBuilder->pNew; 3469 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 3470 assert( IsVirtual(pSrc->pTab) ); 3471 p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy, 3472 &mNoOmit); 3473 if( p==0 ) return SQLITE_NOMEM_BKPT; 3474 pNew->rSetup = 0; 3475 pNew->wsFlags = WHERE_VIRTUALTABLE; 3476 pNew->nLTerm = 0; 3477 pNew->u.vtab.needFree = 0; 3478 nConstraint = p->nConstraint; 3479 if( whereLoopResize(pParse->db, pNew, nConstraint) ){ 3480 sqlite3DbFree(pParse->db, p); 3481 return SQLITE_NOMEM_BKPT; 3482 } 3483 3484 /* First call xBestIndex() with all constraints usable. */ 3485 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName)); 3486 WHERETRACE(0x40, (" VirtualOne: all usable\n")); 3487 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn); 3488 3489 /* If the call to xBestIndex() with all terms enabled produced a plan 3490 ** that does not require any source tables (IOW: a plan with mBest==0) 3491 ** and does not use an IN(...) operator, then there is no point in making 3492 ** any further calls to xBestIndex() since they will all return the same 3493 ** result (if the xBestIndex() implementation is sane). */ 3494 if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){ 3495 int seenZero = 0; /* True if a plan with no prereqs seen */ 3496 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ 3497 Bitmask mPrev = 0; 3498 Bitmask mBestNoIn = 0; 3499 3500 /* If the plan produced by the earlier call uses an IN(...) term, call 3501 ** xBestIndex again, this time with IN(...) terms disabled. */ 3502 if( bIn ){ 3503 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n")); 3504 rc = whereLoopAddVirtualOne( 3505 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn); 3506 assert( bIn==0 ); 3507 mBestNoIn = pNew->prereq & ~mPrereq; 3508 if( mBestNoIn==0 ){ 3509 seenZero = 1; 3510 seenZeroNoIN = 1; 3511 } 3512 } 3513 3514 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) 3515 ** in the set of terms that apply to the current virtual table. */ 3516 while( rc==SQLITE_OK ){ 3517 int i; 3518 Bitmask mNext = ALLBITS; 3519 assert( mNext>0 ); 3520 for(i=0; i<nConstraint; i++){ 3521 Bitmask mThis = ( 3522 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq 3523 ); 3524 if( mThis>mPrev && mThis<mNext ) mNext = mThis; 3525 } 3526 mPrev = mNext; 3527 if( mNext==ALLBITS ) break; 3528 if( mNext==mBest || mNext==mBestNoIn ) continue; 3529 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n", 3530 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext)); 3531 rc = whereLoopAddVirtualOne( 3532 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn); 3533 if( pNew->prereq==mPrereq ){ 3534 seenZero = 1; 3535 if( bIn==0 ) seenZeroNoIN = 1; 3536 } 3537 } 3538 3539 /* If the calls to xBestIndex() in the above loop did not find a plan 3540 ** that requires no source tables at all (i.e. one guaranteed to be 3541 ** usable), make a call here with all source tables disabled */ 3542 if( rc==SQLITE_OK && seenZero==0 ){ 3543 WHERETRACE(0x40, (" VirtualOne: all disabled\n")); 3544 rc = whereLoopAddVirtualOne( 3545 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn); 3546 if( bIn==0 ) seenZeroNoIN = 1; 3547 } 3548 3549 /* If the calls to xBestIndex() have so far failed to find a plan 3550 ** that requires no source tables at all and does not use an IN(...) 3551 ** operator, make a final call to obtain one here. */ 3552 if( rc==SQLITE_OK && seenZeroNoIN==0 ){ 3553 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n")); 3554 rc = whereLoopAddVirtualOne( 3555 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn); 3556 } 3557 } 3558 3559 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr); 3560 sqlite3DbFreeNN(pParse->db, p); 3561 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc)); 3562 return rc; 3563 } 3564 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3565 3566 /* 3567 ** Add WhereLoop entries to handle OR terms. This works for either 3568 ** btrees or virtual tables. 3569 */ 3570 static int whereLoopAddOr( 3571 WhereLoopBuilder *pBuilder, 3572 Bitmask mPrereq, 3573 Bitmask mUnusable 3574 ){ 3575 WhereInfo *pWInfo = pBuilder->pWInfo; 3576 WhereClause *pWC; 3577 WhereLoop *pNew; 3578 WhereTerm *pTerm, *pWCEnd; 3579 int rc = SQLITE_OK; 3580 int iCur; 3581 WhereClause tempWC; 3582 WhereLoopBuilder sSubBuild; 3583 WhereOrSet sSum, sCur; 3584 SrcItem *pItem; 3585 3586 pWC = pBuilder->pWC; 3587 pWCEnd = pWC->a + pWC->nTerm; 3588 pNew = pBuilder->pNew; 3589 memset(&sSum, 0, sizeof(sSum)); 3590 pItem = pWInfo->pTabList->a + pNew->iTab; 3591 iCur = pItem->iCursor; 3592 3593 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 3594 if( (pTerm->eOperator & WO_OR)!=0 3595 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 3596 ){ 3597 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 3598 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 3599 WhereTerm *pOrTerm; 3600 int once = 1; 3601 int i, j; 3602 3603 sSubBuild = *pBuilder; 3604 sSubBuild.pOrderBy = 0; 3605 sSubBuild.pOrSet = &sCur; 3606 3607 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); 3608 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 3609 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 3610 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 3611 }else if( pOrTerm->leftCursor==iCur ){ 3612 tempWC.pWInfo = pWC->pWInfo; 3613 tempWC.pOuter = pWC; 3614 tempWC.op = TK_AND; 3615 tempWC.nTerm = 1; 3616 tempWC.a = pOrTerm; 3617 sSubBuild.pWC = &tempWC; 3618 }else{ 3619 continue; 3620 } 3621 sCur.n = 0; 3622 #ifdef WHERETRACE_ENABLED 3623 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 3624 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 3625 if( sqlite3WhereTrace & 0x400 ){ 3626 sqlite3WhereClausePrint(sSubBuild.pWC); 3627 } 3628 #endif 3629 #ifndef SQLITE_OMIT_VIRTUALTABLE 3630 if( IsVirtual(pItem->pTab) ){ 3631 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); 3632 }else 3633 #endif 3634 { 3635 rc = whereLoopAddBtree(&sSubBuild, mPrereq); 3636 } 3637 if( rc==SQLITE_OK ){ 3638 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); 3639 } 3640 assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0 3641 || rc==SQLITE_NOMEM ); 3642 testcase( rc==SQLITE_NOMEM && sCur.n>0 ); 3643 testcase( rc==SQLITE_DONE ); 3644 if( sCur.n==0 ){ 3645 sSum.n = 0; 3646 break; 3647 }else if( once ){ 3648 whereOrMove(&sSum, &sCur); 3649 once = 0; 3650 }else{ 3651 WhereOrSet sPrev; 3652 whereOrMove(&sPrev, &sSum); 3653 sSum.n = 0; 3654 for(i=0; i<sPrev.n; i++){ 3655 for(j=0; j<sCur.n; j++){ 3656 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 3657 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 3658 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 3659 } 3660 } 3661 } 3662 } 3663 pNew->nLTerm = 1; 3664 pNew->aLTerm[0] = pTerm; 3665 pNew->wsFlags = WHERE_MULTI_OR; 3666 pNew->rSetup = 0; 3667 pNew->iSortIdx = 0; 3668 memset(&pNew->u, 0, sizeof(pNew->u)); 3669 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 3670 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 3671 ** of all sub-scans required by the OR-scan. However, due to rounding 3672 ** errors, it may be that the cost of the OR-scan is equal to its 3673 ** most expensive sub-scan. Add the smallest possible penalty 3674 ** (equivalent to multiplying the cost by 1.07) to ensure that 3675 ** this does not happen. Otherwise, for WHERE clauses such as the 3676 ** following where there is an index on "y": 3677 ** 3678 ** WHERE likelihood(x=?, 0.99) OR y=? 3679 ** 3680 ** the planner may elect to "OR" together a full-table scan and an 3681 ** index lookup. And other similarly odd results. */ 3682 pNew->rRun = sSum.a[i].rRun + 1; 3683 pNew->nOut = sSum.a[i].nOut; 3684 pNew->prereq = sSum.a[i].prereq; 3685 rc = whereLoopInsert(pBuilder, pNew); 3686 } 3687 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); 3688 } 3689 } 3690 return rc; 3691 } 3692 3693 /* 3694 ** Add all WhereLoop objects for all tables 3695 */ 3696 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 3697 WhereInfo *pWInfo = pBuilder->pWInfo; 3698 Bitmask mPrereq = 0; 3699 Bitmask mPrior = 0; 3700 int iTab; 3701 SrcList *pTabList = pWInfo->pTabList; 3702 SrcItem *pItem; 3703 SrcItem *pEnd = &pTabList->a[pWInfo->nLevel]; 3704 sqlite3 *db = pWInfo->pParse->db; 3705 int rc = SQLITE_OK; 3706 WhereLoop *pNew; 3707 3708 /* Loop over the tables in the join, from left to right */ 3709 pNew = pBuilder->pNew; 3710 whereLoopInit(pNew); 3711 pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT; 3712 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ 3713 Bitmask mUnusable = 0; 3714 pNew->iTab = iTab; 3715 pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR; 3716 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); 3717 if( (pItem->fg.jointype & (JT_LEFT|JT_CROSS))!=0 ){ 3718 /* This condition is true when pItem is the FROM clause term on the 3719 ** right-hand-side of a LEFT or CROSS JOIN. */ 3720 mPrereq = mPrior; 3721 }else{ 3722 mPrereq = 0; 3723 } 3724 #ifndef SQLITE_OMIT_VIRTUALTABLE 3725 if( IsVirtual(pItem->pTab) ){ 3726 SrcItem *p; 3727 for(p=&pItem[1]; p<pEnd; p++){ 3728 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){ 3729 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); 3730 } 3731 } 3732 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); 3733 }else 3734 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3735 { 3736 rc = whereLoopAddBtree(pBuilder, mPrereq); 3737 } 3738 if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){ 3739 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); 3740 } 3741 mPrior |= pNew->maskSelf; 3742 if( rc || db->mallocFailed ){ 3743 if( rc==SQLITE_DONE ){ 3744 /* We hit the query planner search limit set by iPlanLimit */ 3745 sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search"); 3746 rc = SQLITE_OK; 3747 }else{ 3748 break; 3749 } 3750 } 3751 } 3752 3753 whereLoopClear(db, pNew); 3754 return rc; 3755 } 3756 3757 /* 3758 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th 3759 ** parameters) to see if it outputs rows in the requested ORDER BY 3760 ** (or GROUP BY) without requiring a separate sort operation. Return N: 3761 ** 3762 ** N>0: N terms of the ORDER BY clause are satisfied 3763 ** N==0: No terms of the ORDER BY clause are satisfied 3764 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 3765 ** 3766 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 3767 ** strict. With GROUP BY and DISTINCT the only requirement is that 3768 ** equivalent rows appear immediately adjacent to one another. GROUP BY 3769 ** and DISTINCT do not require rows to appear in any particular order as long 3770 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 3771 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 3772 ** pOrderBy terms must be matched in strict left-to-right order. 3773 */ 3774 static i8 wherePathSatisfiesOrderBy( 3775 WhereInfo *pWInfo, /* The WHERE clause */ 3776 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 3777 WherePath *pPath, /* The WherePath to check */ 3778 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */ 3779 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 3780 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 3781 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 3782 ){ 3783 u8 revSet; /* True if rev is known */ 3784 u8 rev; /* Composite sort order */ 3785 u8 revIdx; /* Index sort order */ 3786 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 3787 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 3788 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 3789 u16 eqOpMask; /* Allowed equality operators */ 3790 u16 nKeyCol; /* Number of key columns in pIndex */ 3791 u16 nColumn; /* Total number of ordered columns in the index */ 3792 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 3793 int iLoop; /* Index of WhereLoop in pPath being processed */ 3794 int i, j; /* Loop counters */ 3795 int iCur; /* Cursor number for current WhereLoop */ 3796 int iColumn; /* A column number within table iCur */ 3797 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 3798 WhereTerm *pTerm; /* A single term of the WHERE clause */ 3799 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 3800 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 3801 Index *pIndex; /* The index associated with pLoop */ 3802 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 3803 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 3804 Bitmask obDone; /* Mask of all ORDER BY terms */ 3805 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 3806 Bitmask ready; /* Mask of inner loops */ 3807 3808 /* 3809 ** We say the WhereLoop is "one-row" if it generates no more than one 3810 ** row of output. A WhereLoop is one-row if all of the following are true: 3811 ** (a) All index columns match with WHERE_COLUMN_EQ. 3812 ** (b) The index is unique 3813 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 3814 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 3815 ** 3816 ** We say the WhereLoop is "order-distinct" if the set of columns from 3817 ** that WhereLoop that are in the ORDER BY clause are different for every 3818 ** row of the WhereLoop. Every one-row WhereLoop is automatically 3819 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 3820 ** is not order-distinct. To be order-distinct is not quite the same as being 3821 ** UNIQUE since a UNIQUE column or index can have multiple rows that 3822 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 3823 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 3824 ** 3825 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 3826 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 3827 ** automatically order-distinct. 3828 */ 3829 3830 assert( pOrderBy!=0 ); 3831 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 3832 3833 nOrderBy = pOrderBy->nExpr; 3834 testcase( nOrderBy==BMS-1 ); 3835 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 3836 isOrderDistinct = 1; 3837 obDone = MASKBIT(nOrderBy)-1; 3838 orderDistinctMask = 0; 3839 ready = 0; 3840 eqOpMask = WO_EQ | WO_IS | WO_ISNULL; 3841 if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){ 3842 eqOpMask |= WO_IN; 3843 } 3844 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 3845 if( iLoop>0 ) ready |= pLoop->maskSelf; 3846 if( iLoop<nLoop ){ 3847 pLoop = pPath->aLoop[iLoop]; 3848 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue; 3849 }else{ 3850 pLoop = pLast; 3851 } 3852 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 3853 if( pLoop->u.vtab.isOrdered && (wctrlFlags & WHERE_DISTINCTBY)==0 ){ 3854 obSat = obDone; 3855 } 3856 break; 3857 }else if( wctrlFlags & WHERE_DISTINCTBY ){ 3858 pLoop->u.btree.nDistinctCol = 0; 3859 } 3860 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 3861 3862 /* Mark off any ORDER BY term X that is a column in the table of 3863 ** the current loop for which there is term in the WHERE 3864 ** clause of the form X IS NULL or X=? that reference only outer 3865 ** loops. 3866 */ 3867 for(i=0; i<nOrderBy; i++){ 3868 if( MASKBIT(i) & obSat ) continue; 3869 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 3870 if( NEVER(pOBExpr==0) ) continue; 3871 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue; 3872 if( pOBExpr->iTable!=iCur ) continue; 3873 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 3874 ~ready, eqOpMask, 0); 3875 if( pTerm==0 ) continue; 3876 if( pTerm->eOperator==WO_IN ){ 3877 /* IN terms are only valid for sorting in the ORDER BY LIMIT 3878 ** optimization, and then only if they are actually used 3879 ** by the query plan */ 3880 assert( wctrlFlags & 3881 (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ); 3882 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){} 3883 if( j>=pLoop->nLTerm ) continue; 3884 } 3885 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ 3886 Parse *pParse = pWInfo->pParse; 3887 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr); 3888 CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr); 3889 assert( pColl1 ); 3890 if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){ 3891 continue; 3892 } 3893 testcase( pTerm->pExpr->op==TK_IS ); 3894 } 3895 obSat |= MASKBIT(i); 3896 } 3897 3898 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 3899 if( pLoop->wsFlags & WHERE_IPK ){ 3900 pIndex = 0; 3901 nKeyCol = 0; 3902 nColumn = 1; 3903 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 3904 return 0; 3905 }else{ 3906 nKeyCol = pIndex->nKeyCol; 3907 nColumn = pIndex->nColumn; 3908 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 3909 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID 3910 || !HasRowid(pIndex->pTable)); 3911 /* All relevant terms of the index must also be non-NULL in order 3912 ** for isOrderDistinct to be true. So the isOrderDistint value 3913 ** computed here might be a false positive. Corrections will be 3914 ** made at tag-20210426-1 below */ 3915 isOrderDistinct = IsUniqueIndex(pIndex) 3916 && (pLoop->wsFlags & WHERE_SKIPSCAN)==0; 3917 } 3918 3919 /* Loop through all columns of the index and deal with the ones 3920 ** that are not constrained by == or IN. 3921 */ 3922 rev = revSet = 0; 3923 distinctColumns = 0; 3924 for(j=0; j<nColumn; j++){ 3925 u8 bOnce = 1; /* True to run the ORDER BY search loop */ 3926 3927 assert( j>=pLoop->u.btree.nEq 3928 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip) 3929 ); 3930 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){ 3931 u16 eOp = pLoop->aLTerm[j]->eOperator; 3932 3933 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when 3934 ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL 3935 ** terms imply that the index is not UNIQUE NOT NULL in which case 3936 ** the loop need to be marked as not order-distinct because it can 3937 ** have repeated NULL rows. 3938 ** 3939 ** If the current term is a column of an ((?,?) IN (SELECT...)) 3940 ** expression for which the SELECT returns more than one column, 3941 ** check that it is the only column used by this loop. Otherwise, 3942 ** if it is one of two or more, none of the columns can be 3943 ** considered to match an ORDER BY term. 3944 */ 3945 if( (eOp & eqOpMask)!=0 ){ 3946 if( eOp & (WO_ISNULL|WO_IS) ){ 3947 testcase( eOp & WO_ISNULL ); 3948 testcase( eOp & WO_IS ); 3949 testcase( isOrderDistinct ); 3950 isOrderDistinct = 0; 3951 } 3952 continue; 3953 }else if( ALWAYS(eOp & WO_IN) ){ 3954 /* ALWAYS() justification: eOp is an equality operator due to the 3955 ** j<pLoop->u.btree.nEq constraint above. Any equality other 3956 ** than WO_IN is captured by the previous "if". So this one 3957 ** always has to be WO_IN. */ 3958 Expr *pX = pLoop->aLTerm[j]->pExpr; 3959 for(i=j+1; i<pLoop->u.btree.nEq; i++){ 3960 if( pLoop->aLTerm[i]->pExpr==pX ){ 3961 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) ); 3962 bOnce = 0; 3963 break; 3964 } 3965 } 3966 } 3967 } 3968 3969 /* Get the column number in the table (iColumn) and sort order 3970 ** (revIdx) for the j-th column of the index. 3971 */ 3972 if( pIndex ){ 3973 iColumn = pIndex->aiColumn[j]; 3974 revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC; 3975 if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID; 3976 }else{ 3977 iColumn = XN_ROWID; 3978 revIdx = 0; 3979 } 3980 3981 /* An unconstrained column that might be NULL means that this 3982 ** WhereLoop is not well-ordered. tag-20210426-1 3983 */ 3984 if( isOrderDistinct ){ 3985 if( iColumn>=0 3986 && j>=pLoop->u.btree.nEq 3987 && pIndex->pTable->aCol[iColumn].notNull==0 3988 ){ 3989 isOrderDistinct = 0; 3990 } 3991 if( iColumn==XN_EXPR ){ 3992 isOrderDistinct = 0; 3993 } 3994 } 3995 3996 /* Find the ORDER BY term that corresponds to the j-th column 3997 ** of the index and mark that ORDER BY term off 3998 */ 3999 isMatch = 0; 4000 for(i=0; bOnce && i<nOrderBy; i++){ 4001 if( MASKBIT(i) & obSat ) continue; 4002 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 4003 testcase( wctrlFlags & WHERE_GROUPBY ); 4004 testcase( wctrlFlags & WHERE_DISTINCTBY ); 4005 if( NEVER(pOBExpr==0) ) continue; 4006 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 4007 if( iColumn>=XN_ROWID ){ 4008 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue; 4009 if( pOBExpr->iTable!=iCur ) continue; 4010 if( pOBExpr->iColumn!=iColumn ) continue; 4011 }else{ 4012 Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr; 4013 if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){ 4014 continue; 4015 } 4016 } 4017 if( iColumn!=XN_ROWID ){ 4018 pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 4019 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 4020 } 4021 if( wctrlFlags & WHERE_DISTINCTBY ){ 4022 pLoop->u.btree.nDistinctCol = j+1; 4023 } 4024 isMatch = 1; 4025 break; 4026 } 4027 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 4028 /* Make sure the sort order is compatible in an ORDER BY clause. 4029 ** Sort order is irrelevant for a GROUP BY clause. */ 4030 if( revSet ){ 4031 if( (rev ^ revIdx)!=(pOrderBy->a[i].sortFlags&KEYINFO_ORDER_DESC) ){ 4032 isMatch = 0; 4033 } 4034 }else{ 4035 rev = revIdx ^ (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC); 4036 if( rev ) *pRevMask |= MASKBIT(iLoop); 4037 revSet = 1; 4038 } 4039 } 4040 if( isMatch && (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL) ){ 4041 if( j==pLoop->u.btree.nEq ){ 4042 pLoop->wsFlags |= WHERE_BIGNULL_SORT; 4043 }else{ 4044 isMatch = 0; 4045 } 4046 } 4047 if( isMatch ){ 4048 if( iColumn==XN_ROWID ){ 4049 testcase( distinctColumns==0 ); 4050 distinctColumns = 1; 4051 } 4052 obSat |= MASKBIT(i); 4053 }else{ 4054 /* No match found */ 4055 if( j==0 || j<nKeyCol ){ 4056 testcase( isOrderDistinct!=0 ); 4057 isOrderDistinct = 0; 4058 } 4059 break; 4060 } 4061 } /* end Loop over all index columns */ 4062 if( distinctColumns ){ 4063 testcase( isOrderDistinct==0 ); 4064 isOrderDistinct = 1; 4065 } 4066 } /* end-if not one-row */ 4067 4068 /* Mark off any other ORDER BY terms that reference pLoop */ 4069 if( isOrderDistinct ){ 4070 orderDistinctMask |= pLoop->maskSelf; 4071 for(i=0; i<nOrderBy; i++){ 4072 Expr *p; 4073 Bitmask mTerm; 4074 if( MASKBIT(i) & obSat ) continue; 4075 p = pOrderBy->a[i].pExpr; 4076 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); 4077 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; 4078 if( (mTerm&~orderDistinctMask)==0 ){ 4079 obSat |= MASKBIT(i); 4080 } 4081 } 4082 } 4083 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 4084 if( obSat==obDone ) return (i8)nOrderBy; 4085 if( !isOrderDistinct ){ 4086 for(i=nOrderBy-1; i>0; i--){ 4087 Bitmask m = MASKBIT(i) - 1; 4088 if( (obSat&m)==m ) return i; 4089 } 4090 return 0; 4091 } 4092 return -1; 4093 } 4094 4095 4096 /* 4097 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 4098 ** the planner assumes that the specified pOrderBy list is actually a GROUP 4099 ** BY clause - and so any order that groups rows as required satisfies the 4100 ** request. 4101 ** 4102 ** Normally, in this case it is not possible for the caller to determine 4103 ** whether or not the rows are really being delivered in sorted order, or 4104 ** just in some other order that provides the required grouping. However, 4105 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 4106 ** this function may be called on the returned WhereInfo object. It returns 4107 ** true if the rows really will be sorted in the specified order, or false 4108 ** otherwise. 4109 ** 4110 ** For example, assuming: 4111 ** 4112 ** CREATE INDEX i1 ON t1(x, Y); 4113 ** 4114 ** then 4115 ** 4116 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 4117 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 4118 */ 4119 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 4120 assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); 4121 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 4122 return pWInfo->sorted; 4123 } 4124 4125 #ifdef WHERETRACE_ENABLED 4126 /* For debugging use only: */ 4127 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 4128 static char zName[65]; 4129 int i; 4130 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 4131 if( pLast ) zName[i++] = pLast->cId; 4132 zName[i] = 0; 4133 return zName; 4134 } 4135 #endif 4136 4137 /* 4138 ** Return the cost of sorting nRow rows, assuming that the keys have 4139 ** nOrderby columns and that the first nSorted columns are already in 4140 ** order. 4141 */ 4142 static LogEst whereSortingCost( 4143 WhereInfo *pWInfo, 4144 LogEst nRow, 4145 int nOrderBy, 4146 int nSorted 4147 ){ 4148 /* TUNING: Estimated cost of a full external sort, where N is 4149 ** the number of rows to sort is: 4150 ** 4151 ** cost = (3.0 * N * log(N)). 4152 ** 4153 ** Or, if the order-by clause has X terms but only the last Y 4154 ** terms are out of order, then block-sorting will reduce the 4155 ** sorting cost to: 4156 ** 4157 ** cost = (3.0 * N * log(N)) * (Y/X) 4158 ** 4159 ** The (Y/X) term is implemented using stack variable rScale 4160 ** below. 4161 */ 4162 LogEst rScale, rSortCost; 4163 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); 4164 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 4165 rSortCost = nRow + rScale + 16; 4166 4167 /* Multiple by log(M) where M is the number of output rows. 4168 ** Use the LIMIT for M if it is smaller. Or if this sort is for 4169 ** a DISTINCT operator, M will be the number of distinct output 4170 ** rows, so fudge it downwards a bit. 4171 */ 4172 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){ 4173 nRow = pWInfo->iLimit; 4174 }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){ 4175 /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT 4176 ** reduces the number of output rows by a factor of 2 */ 4177 if( nRow>10 ){ nRow -= 10; assert( 10==sqlite3LogEst(2) ); } 4178 } 4179 rSortCost += estLog(nRow); 4180 return rSortCost; 4181 } 4182 4183 /* 4184 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 4185 ** attempts to find the lowest cost path that visits each WhereLoop 4186 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 4187 ** 4188 ** Assume that the total number of output rows that will need to be sorted 4189 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 4190 ** costs if nRowEst==0. 4191 ** 4192 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 4193 ** error occurs. 4194 */ 4195 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 4196 int mxChoice; /* Maximum number of simultaneous paths tracked */ 4197 int nLoop; /* Number of terms in the join */ 4198 Parse *pParse; /* Parsing context */ 4199 sqlite3 *db; /* The database connection */ 4200 int iLoop; /* Loop counter over the terms of the join */ 4201 int ii, jj; /* Loop counters */ 4202 int mxI = 0; /* Index of next entry to replace */ 4203 int nOrderBy; /* Number of ORDER BY clause terms */ 4204 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 4205 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 4206 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 4207 WherePath *aFrom; /* All nFrom paths at the previous level */ 4208 WherePath *aTo; /* The nTo best paths at the current level */ 4209 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 4210 WherePath *pTo; /* An element of aTo[] that we are working on */ 4211 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 4212 WhereLoop **pX; /* Used to divy up the pSpace memory */ 4213 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 4214 char *pSpace; /* Temporary memory used by this routine */ 4215 int nSpace; /* Bytes of space allocated at pSpace */ 4216 4217 pParse = pWInfo->pParse; 4218 db = pParse->db; 4219 nLoop = pWInfo->nLevel; 4220 /* TUNING: For simple queries, only the best path is tracked. 4221 ** For 2-way joins, the 5 best paths are followed. 4222 ** For joins of 3 or more tables, track the 10 best paths */ 4223 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 4224 assert( nLoop<=pWInfo->pTabList->nSrc ); 4225 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); 4226 4227 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 4228 ** case the purpose of this call is to estimate the number of rows returned 4229 ** by the overall query. Once this estimate has been obtained, the caller 4230 ** will invoke this function a second time, passing the estimate as the 4231 ** nRowEst parameter. */ 4232 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 4233 nOrderBy = 0; 4234 }else{ 4235 nOrderBy = pWInfo->pOrderBy->nExpr; 4236 } 4237 4238 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 4239 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 4240 nSpace += sizeof(LogEst) * nOrderBy; 4241 pSpace = sqlite3DbMallocRawNN(db, nSpace); 4242 if( pSpace==0 ) return SQLITE_NOMEM_BKPT; 4243 aTo = (WherePath*)pSpace; 4244 aFrom = aTo+mxChoice; 4245 memset(aFrom, 0, sizeof(aFrom[0])); 4246 pX = (WhereLoop**)(aFrom+mxChoice); 4247 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 4248 pFrom->aLoop = pX; 4249 } 4250 if( nOrderBy ){ 4251 /* If there is an ORDER BY clause and it is not being ignored, set up 4252 ** space for the aSortCost[] array. Each element of the aSortCost array 4253 ** is either zero - meaning it has not yet been initialized - or the 4254 ** cost of sorting nRowEst rows of data where the first X terms of 4255 ** the ORDER BY clause are already in order, where X is the array 4256 ** index. */ 4257 aSortCost = (LogEst*)pX; 4258 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 4259 } 4260 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 4261 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 4262 4263 /* Seed the search with a single WherePath containing zero WhereLoops. 4264 ** 4265 ** TUNING: Do not let the number of iterations go above 28. If the cost 4266 ** of computing an automatic index is not paid back within the first 28 4267 ** rows, then do not use the automatic index. */ 4268 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); 4269 nFrom = 1; 4270 assert( aFrom[0].isOrdered==0 ); 4271 if( nOrderBy ){ 4272 /* If nLoop is zero, then there are no FROM terms in the query. Since 4273 ** in this case the query may return a maximum of one row, the results 4274 ** are already in the requested order. Set isOrdered to nOrderBy to 4275 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 4276 ** -1, indicating that the result set may or may not be ordered, 4277 ** depending on the loops added to the current plan. */ 4278 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 4279 } 4280 4281 /* Compute successively longer WherePaths using the previous generation 4282 ** of WherePaths as the basis for the next. Keep track of the mxChoice 4283 ** best paths at each generation */ 4284 for(iLoop=0; iLoop<nLoop; iLoop++){ 4285 nTo = 0; 4286 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 4287 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 4288 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 4289 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 4290 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 4291 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ 4292 Bitmask maskNew; /* Mask of src visited by (..) */ 4293 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ 4294 4295 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 4296 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 4297 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){ 4298 /* Do not use an automatic index if the this loop is expected 4299 ** to run less than 1.25 times. It is tempting to also exclude 4300 ** automatic index usage on an outer loop, but sometimes an automatic 4301 ** index is useful in the outer loop of a correlated subquery. */ 4302 assert( 10==sqlite3LogEst(2) ); 4303 continue; 4304 } 4305 4306 /* At this point, pWLoop is a candidate to be the next loop. 4307 ** Compute its cost */ 4308 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 4309 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 4310 nOut = pFrom->nRow + pWLoop->nOut; 4311 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 4312 if( isOrdered<0 ){ 4313 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 4314 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 4315 iLoop, pWLoop, &revMask); 4316 }else{ 4317 revMask = pFrom->revLoop; 4318 } 4319 if( isOrdered>=0 && isOrdered<nOrderBy ){ 4320 if( aSortCost[isOrdered]==0 ){ 4321 aSortCost[isOrdered] = whereSortingCost( 4322 pWInfo, nRowEst, nOrderBy, isOrdered 4323 ); 4324 } 4325 /* TUNING: Add a small extra penalty (5) to sorting as an 4326 ** extra encouragment to the query planner to select a plan 4327 ** where the rows emerge in the correct order without any sorting 4328 ** required. */ 4329 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5; 4330 4331 WHERETRACE(0x002, 4332 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 4333 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 4334 rUnsorted, rCost)); 4335 }else{ 4336 rCost = rUnsorted; 4337 rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */ 4338 } 4339 4340 /* Check to see if pWLoop should be added to the set of 4341 ** mxChoice best-so-far paths. 4342 ** 4343 ** First look for an existing path among best-so-far paths 4344 ** that covers the same set of loops and has the same isOrdered 4345 ** setting as the current path candidate. 4346 ** 4347 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 4348 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 4349 ** of legal values for isOrdered, -1..64. 4350 */ 4351 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 4352 if( pTo->maskLoop==maskNew 4353 && ((pTo->isOrdered^isOrdered)&0x80)==0 4354 ){ 4355 testcase( jj==nTo-1 ); 4356 break; 4357 } 4358 } 4359 if( jj>=nTo ){ 4360 /* None of the existing best-so-far paths match the candidate. */ 4361 if( nTo>=mxChoice 4362 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 4363 ){ 4364 /* The current candidate is no better than any of the mxChoice 4365 ** paths currently in the best-so-far buffer. So discard 4366 ** this candidate as not viable. */ 4367 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4368 if( sqlite3WhereTrace&0x4 ){ 4369 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n", 4370 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4371 isOrdered>=0 ? isOrdered+'0' : '?'); 4372 } 4373 #endif 4374 continue; 4375 } 4376 /* If we reach this points it means that the new candidate path 4377 ** needs to be added to the set of best-so-far paths. */ 4378 if( nTo<mxChoice ){ 4379 /* Increase the size of the aTo set by one */ 4380 jj = nTo++; 4381 }else{ 4382 /* New path replaces the prior worst to keep count below mxChoice */ 4383 jj = mxI; 4384 } 4385 pTo = &aTo[jj]; 4386 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4387 if( sqlite3WhereTrace&0x4 ){ 4388 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n", 4389 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4390 isOrdered>=0 ? isOrdered+'0' : '?'); 4391 } 4392 #endif 4393 }else{ 4394 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 4395 ** same set of loops and has the same isOrdered setting as the 4396 ** candidate path. Check to see if the candidate should replace 4397 ** pTo or if the candidate should be skipped. 4398 ** 4399 ** The conditional is an expanded vector comparison equivalent to: 4400 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted) 4401 */ 4402 if( pTo->rCost<rCost 4403 || (pTo->rCost==rCost 4404 && (pTo->nRow<nOut 4405 || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted) 4406 ) 4407 ) 4408 ){ 4409 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4410 if( sqlite3WhereTrace&0x4 ){ 4411 sqlite3DebugPrintf( 4412 "Skip %s cost=%-3d,%3d,%3d order=%c", 4413 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4414 isOrdered>=0 ? isOrdered+'0' : '?'); 4415 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n", 4416 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4417 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4418 } 4419 #endif 4420 /* Discard the candidate path from further consideration */ 4421 testcase( pTo->rCost==rCost ); 4422 continue; 4423 } 4424 testcase( pTo->rCost==rCost+1 ); 4425 /* Control reaches here if the candidate path is better than the 4426 ** pTo path. Replace pTo with the candidate. */ 4427 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4428 if( sqlite3WhereTrace&0x4 ){ 4429 sqlite3DebugPrintf( 4430 "Update %s cost=%-3d,%3d,%3d order=%c", 4431 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4432 isOrdered>=0 ? isOrdered+'0' : '?'); 4433 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n", 4434 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4435 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4436 } 4437 #endif 4438 } 4439 /* pWLoop is a winner. Add it to the set of best so far */ 4440 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 4441 pTo->revLoop = revMask; 4442 pTo->nRow = nOut; 4443 pTo->rCost = rCost; 4444 pTo->rUnsorted = rUnsorted; 4445 pTo->isOrdered = isOrdered; 4446 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 4447 pTo->aLoop[iLoop] = pWLoop; 4448 if( nTo>=mxChoice ){ 4449 mxI = 0; 4450 mxCost = aTo[0].rCost; 4451 mxUnsorted = aTo[0].nRow; 4452 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 4453 if( pTo->rCost>mxCost 4454 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 4455 ){ 4456 mxCost = pTo->rCost; 4457 mxUnsorted = pTo->rUnsorted; 4458 mxI = jj; 4459 } 4460 } 4461 } 4462 } 4463 } 4464 4465 #ifdef WHERETRACE_ENABLED /* >=2 */ 4466 if( sqlite3WhereTrace & 0x02 ){ 4467 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 4468 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 4469 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 4470 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4471 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 4472 if( pTo->isOrdered>0 ){ 4473 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 4474 }else{ 4475 sqlite3DebugPrintf("\n"); 4476 } 4477 } 4478 } 4479 #endif 4480 4481 /* Swap the roles of aFrom and aTo for the next generation */ 4482 pFrom = aTo; 4483 aTo = aFrom; 4484 aFrom = pFrom; 4485 nFrom = nTo; 4486 } 4487 4488 if( nFrom==0 ){ 4489 sqlite3ErrorMsg(pParse, "no query solution"); 4490 sqlite3DbFreeNN(db, pSpace); 4491 return SQLITE_ERROR; 4492 } 4493 4494 /* Find the lowest cost path. pFrom will be left pointing to that path */ 4495 pFrom = aFrom; 4496 for(ii=1; ii<nFrom; ii++){ 4497 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 4498 } 4499 assert( pWInfo->nLevel==nLoop ); 4500 /* Load the lowest cost path into pWInfo */ 4501 for(iLoop=0; iLoop<nLoop; iLoop++){ 4502 WhereLevel *pLevel = pWInfo->a + iLoop; 4503 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 4504 pLevel->iFrom = pWLoop->iTab; 4505 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 4506 } 4507 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 4508 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 4509 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 4510 && nRowEst 4511 ){ 4512 Bitmask notUsed; 4513 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, 4514 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 4515 if( rc==pWInfo->pResultSet->nExpr ){ 4516 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4517 } 4518 } 4519 pWInfo->bOrderedInnerLoop = 0; 4520 if( pWInfo->pOrderBy ){ 4521 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 4522 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 4523 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4524 } 4525 }else{ 4526 pWInfo->nOBSat = pFrom->isOrdered; 4527 pWInfo->revMask = pFrom->revLoop; 4528 if( pWInfo->nOBSat<=0 ){ 4529 pWInfo->nOBSat = 0; 4530 if( nLoop>0 ){ 4531 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags; 4532 if( (wsFlags & WHERE_ONEROW)==0 4533 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN) 4534 ){ 4535 Bitmask m = 0; 4536 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 4537 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m); 4538 testcase( wsFlags & WHERE_IPK ); 4539 testcase( wsFlags & WHERE_COLUMN_IN ); 4540 if( rc==pWInfo->pOrderBy->nExpr ){ 4541 pWInfo->bOrderedInnerLoop = 1; 4542 pWInfo->revMask = m; 4543 } 4544 } 4545 } 4546 }else if( nLoop 4547 && pWInfo->nOBSat==1 4548 && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0 4549 ){ 4550 pWInfo->bOrderedInnerLoop = 1; 4551 } 4552 } 4553 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 4554 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 4555 ){ 4556 Bitmask revMask = 0; 4557 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 4558 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 4559 ); 4560 assert( pWInfo->sorted==0 ); 4561 if( nOrder==pWInfo->pOrderBy->nExpr ){ 4562 pWInfo->sorted = 1; 4563 pWInfo->revMask = revMask; 4564 } 4565 } 4566 } 4567 4568 4569 pWInfo->nRowOut = pFrom->nRow; 4570 4571 /* Free temporary memory and return success */ 4572 sqlite3DbFreeNN(db, pSpace); 4573 return SQLITE_OK; 4574 } 4575 4576 /* 4577 ** Most queries use only a single table (they are not joins) and have 4578 ** simple == constraints against indexed fields. This routine attempts 4579 ** to plan those simple cases using much less ceremony than the 4580 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 4581 ** times for the common case. 4582 ** 4583 ** Return non-zero on success, if this query can be handled by this 4584 ** no-frills query planner. Return zero if this query needs the 4585 ** general-purpose query planner. 4586 */ 4587 static int whereShortCut(WhereLoopBuilder *pBuilder){ 4588 WhereInfo *pWInfo; 4589 SrcItem *pItem; 4590 WhereClause *pWC; 4591 WhereTerm *pTerm; 4592 WhereLoop *pLoop; 4593 int iCur; 4594 int j; 4595 Table *pTab; 4596 Index *pIdx; 4597 4598 pWInfo = pBuilder->pWInfo; 4599 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0; 4600 assert( pWInfo->pTabList->nSrc>=1 ); 4601 pItem = pWInfo->pTabList->a; 4602 pTab = pItem->pTab; 4603 if( IsVirtual(pTab) ) return 0; 4604 if( pItem->fg.isIndexedBy ) return 0; 4605 iCur = pItem->iCursor; 4606 pWC = &pWInfo->sWC; 4607 pLoop = pBuilder->pNew; 4608 pLoop->wsFlags = 0; 4609 pLoop->nSkip = 0; 4610 pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0); 4611 if( pTerm ){ 4612 testcase( pTerm->eOperator & WO_IS ); 4613 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 4614 pLoop->aLTerm[0] = pTerm; 4615 pLoop->nLTerm = 1; 4616 pLoop->u.btree.nEq = 1; 4617 /* TUNING: Cost of a rowid lookup is 10 */ 4618 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 4619 }else{ 4620 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4621 int opMask; 4622 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 4623 if( !IsUniqueIndex(pIdx) 4624 || pIdx->pPartIdxWhere!=0 4625 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 4626 ) continue; 4627 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; 4628 for(j=0; j<pIdx->nKeyCol; j++){ 4629 pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx); 4630 if( pTerm==0 ) break; 4631 testcase( pTerm->eOperator & WO_IS ); 4632 pLoop->aLTerm[j] = pTerm; 4633 } 4634 if( j!=pIdx->nKeyCol ) continue; 4635 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 4636 if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){ 4637 pLoop->wsFlags |= WHERE_IDX_ONLY; 4638 } 4639 pLoop->nLTerm = j; 4640 pLoop->u.btree.nEq = j; 4641 pLoop->u.btree.pIndex = pIdx; 4642 /* TUNING: Cost of a unique index lookup is 15 */ 4643 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 4644 break; 4645 } 4646 } 4647 if( pLoop->wsFlags ){ 4648 pLoop->nOut = (LogEst)1; 4649 pWInfo->a[0].pWLoop = pLoop; 4650 assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] ); 4651 pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */ 4652 pWInfo->a[0].iTabCur = iCur; 4653 pWInfo->nRowOut = 1; 4654 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 4655 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 4656 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4657 } 4658 #ifdef SQLITE_DEBUG 4659 pLoop->cId = '0'; 4660 #endif 4661 return 1; 4662 } 4663 return 0; 4664 } 4665 4666 /* 4667 ** Helper function for exprIsDeterministic(). 4668 */ 4669 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){ 4670 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){ 4671 pWalker->eCode = 0; 4672 return WRC_Abort; 4673 } 4674 return WRC_Continue; 4675 } 4676 4677 /* 4678 ** Return true if the expression contains no non-deterministic SQL 4679 ** functions. Do not consider non-deterministic SQL functions that are 4680 ** part of sub-select statements. 4681 */ 4682 static int exprIsDeterministic(Expr *p){ 4683 Walker w; 4684 memset(&w, 0, sizeof(w)); 4685 w.eCode = 1; 4686 w.xExprCallback = exprNodeIsDeterministic; 4687 w.xSelectCallback = sqlite3SelectWalkFail; 4688 sqlite3WalkExpr(&w, p); 4689 return w.eCode; 4690 } 4691 4692 4693 #ifdef WHERETRACE_ENABLED 4694 /* 4695 ** Display all WhereLoops in pWInfo 4696 */ 4697 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){ 4698 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ 4699 WhereLoop *p; 4700 int i; 4701 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 4702 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 4703 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 4704 p->cId = zLabel[i%(sizeof(zLabel)-1)]; 4705 sqlite3WhereLoopPrint(p, pWC); 4706 } 4707 } 4708 } 4709 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C) 4710 #else 4711 # define WHERETRACE_ALL_LOOPS(W,C) 4712 #endif 4713 4714 /* 4715 ** Generate the beginning of the loop used for WHERE clause processing. 4716 ** The return value is a pointer to an opaque structure that contains 4717 ** information needed to terminate the loop. Later, the calling routine 4718 ** should invoke sqlite3WhereEnd() with the return value of this function 4719 ** in order to complete the WHERE clause processing. 4720 ** 4721 ** If an error occurs, this routine returns NULL. 4722 ** 4723 ** The basic idea is to do a nested loop, one loop for each table in 4724 ** the FROM clause of a select. (INSERT and UPDATE statements are the 4725 ** same as a SELECT with only a single table in the FROM clause.) For 4726 ** example, if the SQL is this: 4727 ** 4728 ** SELECT * FROM t1, t2, t3 WHERE ...; 4729 ** 4730 ** Then the code generated is conceptually like the following: 4731 ** 4732 ** foreach row1 in t1 do \ Code generated 4733 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 4734 ** foreach row3 in t3 do / 4735 ** ... 4736 ** end \ Code generated 4737 ** end |-- by sqlite3WhereEnd() 4738 ** end / 4739 ** 4740 ** Note that the loops might not be nested in the order in which they 4741 ** appear in the FROM clause if a different order is better able to make 4742 ** use of indices. Note also that when the IN operator appears in 4743 ** the WHERE clause, it might result in additional nested loops for 4744 ** scanning through all values on the right-hand side of the IN. 4745 ** 4746 ** There are Btree cursors associated with each table. t1 uses cursor 4747 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 4748 ** And so forth. This routine generates code to open those VDBE cursors 4749 ** and sqlite3WhereEnd() generates the code to close them. 4750 ** 4751 ** The code that sqlite3WhereBegin() generates leaves the cursors named 4752 ** in pTabList pointing at their appropriate entries. The [...] code 4753 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 4754 ** data from the various tables of the loop. 4755 ** 4756 ** If the WHERE clause is empty, the foreach loops must each scan their 4757 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 4758 ** the tables have indices and there are terms in the WHERE clause that 4759 ** refer to those indices, a complete table scan can be avoided and the 4760 ** code will run much faster. Most of the work of this routine is checking 4761 ** to see if there are indices that can be used to speed up the loop. 4762 ** 4763 ** Terms of the WHERE clause are also used to limit which rows actually 4764 ** make it to the "..." in the middle of the loop. After each "foreach", 4765 ** terms of the WHERE clause that use only terms in that loop and outer 4766 ** loops are evaluated and if false a jump is made around all subsequent 4767 ** inner loops (or around the "..." if the test occurs within the inner- 4768 ** most loop) 4769 ** 4770 ** OUTER JOINS 4771 ** 4772 ** An outer join of tables t1 and t2 is conceptally coded as follows: 4773 ** 4774 ** foreach row1 in t1 do 4775 ** flag = 0 4776 ** foreach row2 in t2 do 4777 ** start: 4778 ** ... 4779 ** flag = 1 4780 ** end 4781 ** if flag==0 then 4782 ** move the row2 cursor to a null row 4783 ** goto start 4784 ** fi 4785 ** end 4786 ** 4787 ** ORDER BY CLAUSE PROCESSING 4788 ** 4789 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 4790 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 4791 ** if there is one. If there is no ORDER BY clause or if this routine 4792 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 4793 ** 4794 ** The iIdxCur parameter is the cursor number of an index. If 4795 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index 4796 ** to use for OR clause processing. The WHERE clause should use this 4797 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 4798 ** the first cursor in an array of cursors for all indices. iIdxCur should 4799 ** be used to compute the appropriate cursor depending on which index is 4800 ** used. 4801 */ 4802 WhereInfo *sqlite3WhereBegin( 4803 Parse *pParse, /* The parser context */ 4804 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 4805 Expr *pWhere, /* The WHERE clause */ 4806 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 4807 ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */ 4808 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */ 4809 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number 4810 ** If WHERE_USE_LIMIT, then the limit amount */ 4811 ){ 4812 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 4813 int nTabList; /* Number of elements in pTabList */ 4814 WhereInfo *pWInfo; /* Will become the return value of this function */ 4815 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 4816 Bitmask notReady; /* Cursors that are not yet positioned */ 4817 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 4818 WhereMaskSet *pMaskSet; /* The expression mask set */ 4819 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 4820 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 4821 int ii; /* Loop counter */ 4822 sqlite3 *db; /* Database connection */ 4823 int rc; /* Return code */ 4824 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ 4825 4826 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( 4827 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 4828 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4829 )); 4830 4831 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */ 4832 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4833 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); 4834 4835 /* Variable initialization */ 4836 db = pParse->db; 4837 memset(&sWLB, 0, sizeof(sWLB)); 4838 4839 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 4840 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 4841 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; 4842 sWLB.pOrderBy = pOrderBy; 4843 4844 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 4845 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 4846 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 4847 wctrlFlags &= ~WHERE_WANT_DISTINCT; 4848 } 4849 4850 /* The number of tables in the FROM clause is limited by the number of 4851 ** bits in a Bitmask 4852 */ 4853 testcase( pTabList->nSrc==BMS ); 4854 if( pTabList->nSrc>BMS ){ 4855 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 4856 return 0; 4857 } 4858 4859 /* This function normally generates a nested loop for all tables in 4860 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should 4861 ** only generate code for the first table in pTabList and assume that 4862 ** any cursors associated with subsequent tables are uninitialized. 4863 */ 4864 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc; 4865 4866 /* Allocate and initialize the WhereInfo structure that will become the 4867 ** return value. A single allocation is used to store the WhereInfo 4868 ** struct, the contents of WhereInfo.a[], the WhereClause structure 4869 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 4870 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 4871 ** some architectures. Hence the ROUND8() below. 4872 */ 4873 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 4874 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop)); 4875 if( db->mallocFailed ){ 4876 sqlite3DbFree(db, pWInfo); 4877 pWInfo = 0; 4878 goto whereBeginError; 4879 } 4880 pWInfo->pParse = pParse; 4881 pWInfo->pTabList = pTabList; 4882 pWInfo->pOrderBy = pOrderBy; 4883 pWInfo->pWhere = pWhere; 4884 pWInfo->pResultSet = pResultSet; 4885 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 4886 pWInfo->nLevel = nTabList; 4887 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse); 4888 pWInfo->wctrlFlags = wctrlFlags; 4889 pWInfo->iLimit = iAuxArg; 4890 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 4891 memset(&pWInfo->nOBSat, 0, 4892 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat)); 4893 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel)); 4894 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ 4895 pMaskSet = &pWInfo->sMaskSet; 4896 sWLB.pWInfo = pWInfo; 4897 sWLB.pWC = &pWInfo->sWC; 4898 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 4899 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 4900 whereLoopInit(sWLB.pNew); 4901 #ifdef SQLITE_DEBUG 4902 sWLB.pNew->cId = '*'; 4903 #endif 4904 4905 /* Split the WHERE clause into separate subexpressions where each 4906 ** subexpression is separated by an AND operator. 4907 */ 4908 initMaskSet(pMaskSet); 4909 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); 4910 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); 4911 4912 /* Special case: No FROM clause 4913 */ 4914 if( nTabList==0 ){ 4915 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 4916 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4917 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4918 } 4919 ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW")); 4920 }else{ 4921 /* Assign a bit from the bitmask to every term in the FROM clause. 4922 ** 4923 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. 4924 ** 4925 ** The rule of the previous sentence ensures thta if X is the bitmask for 4926 ** a table T, then X-1 is the bitmask for all other tables to the left of T. 4927 ** Knowing the bitmask for all tables to the left of a left join is 4928 ** important. Ticket #3015. 4929 ** 4930 ** Note that bitmasks are created for all pTabList->nSrc tables in 4931 ** pTabList, not just the first nTabList tables. nTabList is normally 4932 ** equal to pTabList->nSrc but might be shortened to 1 if the 4933 ** WHERE_OR_SUBCLAUSE flag is set. 4934 */ 4935 ii = 0; 4936 do{ 4937 createMask(pMaskSet, pTabList->a[ii].iCursor); 4938 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); 4939 }while( (++ii)<pTabList->nSrc ); 4940 #ifdef SQLITE_DEBUG 4941 { 4942 Bitmask mx = 0; 4943 for(ii=0; ii<pTabList->nSrc; ii++){ 4944 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); 4945 assert( m>=mx ); 4946 mx = m; 4947 } 4948 } 4949 #endif 4950 } 4951 4952 /* Analyze all of the subexpressions. */ 4953 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); 4954 if( db->mallocFailed ) goto whereBeginError; 4955 4956 /* Special case: WHERE terms that do not refer to any tables in the join 4957 ** (constant expressions). Evaluate each such term, and jump over all the 4958 ** generated code if the result is not true. 4959 ** 4960 ** Do not do this if the expression contains non-deterministic functions 4961 ** that are not within a sub-select. This is not strictly required, but 4962 ** preserves SQLite's legacy behaviour in the following two cases: 4963 ** 4964 ** FROM ... WHERE random()>0; -- eval random() once per row 4965 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall 4966 */ 4967 for(ii=0; ii<sWLB.pWC->nTerm; ii++){ 4968 WhereTerm *pT = &sWLB.pWC->a[ii]; 4969 if( pT->wtFlags & TERM_VIRTUAL ) continue; 4970 if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){ 4971 sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL); 4972 pT->wtFlags |= TERM_CODED; 4973 } 4974 } 4975 4976 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4977 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ 4978 /* The DISTINCT marking is pointless. Ignore it. */ 4979 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4980 }else if( pOrderBy==0 ){ 4981 /* Try to ORDER BY the result set to make distinct processing easier */ 4982 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 4983 pWInfo->pOrderBy = pResultSet; 4984 } 4985 } 4986 4987 /* Construct the WhereLoop objects */ 4988 #if defined(WHERETRACE_ENABLED) 4989 if( sqlite3WhereTrace & 0xffff ){ 4990 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); 4991 if( wctrlFlags & WHERE_USE_LIMIT ){ 4992 sqlite3DebugPrintf(", limit: %d", iAuxArg); 4993 } 4994 sqlite3DebugPrintf(")\n"); 4995 if( sqlite3WhereTrace & 0x100 ){ 4996 Select sSelect; 4997 memset(&sSelect, 0, sizeof(sSelect)); 4998 sSelect.selFlags = SF_WhereBegin; 4999 sSelect.pSrc = pTabList; 5000 sSelect.pWhere = pWhere; 5001 sSelect.pOrderBy = pOrderBy; 5002 sSelect.pEList = pResultSet; 5003 sqlite3TreeViewSelect(0, &sSelect, 0); 5004 } 5005 } 5006 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 5007 sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n"); 5008 sqlite3WhereClausePrint(sWLB.pWC); 5009 } 5010 #endif 5011 5012 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 5013 rc = whereLoopAddAll(&sWLB); 5014 if( rc ) goto whereBeginError; 5015 5016 #ifdef SQLITE_ENABLE_STAT4 5017 /* If one or more WhereTerm.truthProb values were used in estimating 5018 ** loop parameters, but then those truthProb values were subsequently 5019 ** changed based on STAT4 information while computing subsequent loops, 5020 ** then we need to rerun the whole loop building process so that all 5021 ** loops will be built using the revised truthProb values. */ 5022 if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){ 5023 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); 5024 WHERETRACE(0xffff, 5025 ("**** Redo all loop computations due to" 5026 " TERM_HIGHTRUTH changes ****\n")); 5027 while( pWInfo->pLoops ){ 5028 WhereLoop *p = pWInfo->pLoops; 5029 pWInfo->pLoops = p->pNextLoop; 5030 whereLoopDelete(db, p); 5031 } 5032 rc = whereLoopAddAll(&sWLB); 5033 if( rc ) goto whereBeginError; 5034 } 5035 #endif 5036 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); 5037 5038 wherePathSolver(pWInfo, 0); 5039 if( db->mallocFailed ) goto whereBeginError; 5040 if( pWInfo->pOrderBy ){ 5041 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 5042 if( db->mallocFailed ) goto whereBeginError; 5043 } 5044 } 5045 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 5046 pWInfo->revMask = ALLBITS; 5047 } 5048 if( pParse->nErr || db->mallocFailed ){ 5049 goto whereBeginError; 5050 } 5051 #ifdef WHERETRACE_ENABLED 5052 if( sqlite3WhereTrace ){ 5053 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 5054 if( pWInfo->nOBSat>0 ){ 5055 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 5056 } 5057 switch( pWInfo->eDistinct ){ 5058 case WHERE_DISTINCT_UNIQUE: { 5059 sqlite3DebugPrintf(" DISTINCT=unique"); 5060 break; 5061 } 5062 case WHERE_DISTINCT_ORDERED: { 5063 sqlite3DebugPrintf(" DISTINCT=ordered"); 5064 break; 5065 } 5066 case WHERE_DISTINCT_UNORDERED: { 5067 sqlite3DebugPrintf(" DISTINCT=unordered"); 5068 break; 5069 } 5070 } 5071 sqlite3DebugPrintf("\n"); 5072 for(ii=0; ii<pWInfo->nLevel; ii++){ 5073 sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 5074 } 5075 } 5076 #endif 5077 5078 /* Attempt to omit tables from the join that do not affect the result. 5079 ** For a table to not affect the result, the following must be true: 5080 ** 5081 ** 1) The query must not be an aggregate. 5082 ** 2) The table must be the RHS of a LEFT JOIN. 5083 ** 3) Either the query must be DISTINCT, or else the ON or USING clause 5084 ** must contain a constraint that limits the scan of the table to 5085 ** at most a single row. 5086 ** 4) The table must not be referenced by any part of the query apart 5087 ** from its own USING or ON clause. 5088 ** 5089 ** For example, given: 5090 ** 5091 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1); 5092 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2); 5093 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3); 5094 ** 5095 ** then table t2 can be omitted from the following: 5096 ** 5097 ** SELECT v1, v3 FROM t1 5098 ** LEFT JOIN t2 ON (t1.ipk=t2.ipk) 5099 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) 5100 ** 5101 ** or from: 5102 ** 5103 ** SELECT DISTINCT v1, v3 FROM t1 5104 ** LEFT JOIN t2 5105 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) 5106 */ 5107 notReady = ~(Bitmask)0; 5108 if( pWInfo->nLevel>=2 5109 && pResultSet!=0 /* these two combine to guarantee */ 5110 && 0==(wctrlFlags & WHERE_AGG_DISTINCT) /* condition (1) above */ 5111 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) 5112 ){ 5113 int i; 5114 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet); 5115 if( sWLB.pOrderBy ){ 5116 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy); 5117 } 5118 for(i=pWInfo->nLevel-1; i>=1; i--){ 5119 WhereTerm *pTerm, *pEnd; 5120 SrcItem *pItem; 5121 pLoop = pWInfo->a[i].pWLoop; 5122 pItem = &pWInfo->pTabList->a[pLoop->iTab]; 5123 if( (pItem->fg.jointype & JT_LEFT)==0 ) continue; 5124 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 5125 && (pLoop->wsFlags & WHERE_ONEROW)==0 5126 ){ 5127 continue; 5128 } 5129 if( (tabUsed & pLoop->maskSelf)!=0 ) continue; 5130 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; 5131 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 5132 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 5133 if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 5134 || pTerm->pExpr->iRightJoinTable!=pItem->iCursor 5135 ){ 5136 break; 5137 } 5138 } 5139 } 5140 if( pTerm<pEnd ) continue; 5141 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); 5142 notReady &= ~pLoop->maskSelf; 5143 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 5144 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 5145 pTerm->wtFlags |= TERM_CODED; 5146 } 5147 } 5148 if( i!=pWInfo->nLevel-1 ){ 5149 int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel); 5150 memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte); 5151 } 5152 pWInfo->nLevel--; 5153 nTabList--; 5154 } 5155 } 5156 #if defined(WHERETRACE_ENABLED) 5157 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 5158 sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n"); 5159 sqlite3WhereClausePrint(sWLB.pWC); 5160 } 5161 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); 5162 #endif 5163 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 5164 5165 /* If the caller is an UPDATE or DELETE statement that is requesting 5166 ** to use a one-pass algorithm, determine if this is appropriate. 5167 ** 5168 ** A one-pass approach can be used if the caller has requested one 5169 ** and either (a) the scan visits at most one row or (b) each 5170 ** of the following are true: 5171 ** 5172 ** * the caller has indicated that a one-pass approach can be used 5173 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and 5174 ** * the table is not a virtual table, and 5175 ** * either the scan does not use the OR optimization or the caller 5176 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified 5177 ** for DELETE). 5178 ** 5179 ** The last qualification is because an UPDATE statement uses 5180 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can 5181 ** use a one-pass approach, and this is not set accurately for scans 5182 ** that use the OR optimization. 5183 */ 5184 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 5185 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ 5186 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; 5187 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; 5188 assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) ); 5189 if( bOnerow || ( 5190 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW) 5191 && !IsVirtual(pTabList->a[0].pTab) 5192 && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK)) 5193 )){ 5194 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; 5195 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ 5196 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ 5197 bFordelete = OPFLAG_FORDELETE; 5198 } 5199 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); 5200 } 5201 } 5202 } 5203 5204 /* Open all tables in the pTabList and any indices selected for 5205 ** searching those tables. 5206 */ 5207 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 5208 Table *pTab; /* Table to open */ 5209 int iDb; /* Index of database containing table/index */ 5210 SrcItem *pTabItem; 5211 5212 pTabItem = &pTabList->a[pLevel->iFrom]; 5213 pTab = pTabItem->pTab; 5214 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5215 pLoop = pLevel->pWLoop; 5216 if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){ 5217 /* Do nothing */ 5218 }else 5219 #ifndef SQLITE_OMIT_VIRTUALTABLE 5220 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 5221 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 5222 int iCur = pTabItem->iCursor; 5223 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 5224 }else if( IsVirtual(pTab) ){ 5225 /* noop */ 5226 }else 5227 #endif 5228 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 5229 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ 5230 int op = OP_OpenRead; 5231 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5232 op = OP_OpenWrite; 5233 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 5234 }; 5235 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 5236 assert( pTabItem->iCursor==pLevel->iTabCur ); 5237 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); 5238 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); 5239 if( pWInfo->eOnePass==ONEPASS_OFF 5240 && pTab->nCol<BMS 5241 && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0 5242 ){ 5243 /* If we know that only a prefix of the record will be used, 5244 ** it is advantageous to reduce the "column count" field in 5245 ** the P4 operand of the OP_OpenRead/Write opcode. */ 5246 Bitmask b = pTabItem->colUsed; 5247 int n = 0; 5248 for(; b; b=b>>1, n++){} 5249 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); 5250 assert( n<=pTab->nCol ); 5251 } 5252 #ifdef SQLITE_ENABLE_CURSOR_HINTS 5253 if( pLoop->u.btree.pIndex!=0 ){ 5254 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); 5255 }else 5256 #endif 5257 { 5258 sqlite3VdbeChangeP5(v, bFordelete); 5259 } 5260 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5261 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, 5262 (const u8*)&pTabItem->colUsed, P4_INT64); 5263 #endif 5264 }else{ 5265 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5266 } 5267 if( pLoop->wsFlags & WHERE_INDEXED ){ 5268 Index *pIx = pLoop->u.btree.pIndex; 5269 int iIndexCur; 5270 int op = OP_OpenRead; 5271 /* iAuxArg is always set to a positive value if ONEPASS is possible */ 5272 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 5273 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 5274 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 5275 ){ 5276 /* This is one term of an OR-optimization using the PRIMARY KEY of a 5277 ** WITHOUT ROWID table. No need for a separate index */ 5278 iIndexCur = pLevel->iTabCur; 5279 op = 0; 5280 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5281 Index *pJ = pTabItem->pTab->pIndex; 5282 iIndexCur = iAuxArg; 5283 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 5284 while( ALWAYS(pJ) && pJ!=pIx ){ 5285 iIndexCur++; 5286 pJ = pJ->pNext; 5287 } 5288 op = OP_OpenWrite; 5289 pWInfo->aiCurOnePass[1] = iIndexCur; 5290 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ 5291 iIndexCur = iAuxArg; 5292 op = OP_ReopenIdx; 5293 }else{ 5294 iIndexCur = pParse->nTab++; 5295 } 5296 pLevel->iIdxCur = iIndexCur; 5297 assert( pIx->pSchema==pTab->pSchema ); 5298 assert( iIndexCur>=0 ); 5299 if( op ){ 5300 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 5301 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 5302 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 5303 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 5304 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0 5305 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 5306 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 5307 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED 5308 ){ 5309 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); 5310 } 5311 VdbeComment((v, "%s", pIx->zName)); 5312 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5313 { 5314 u64 colUsed = 0; 5315 int ii, jj; 5316 for(ii=0; ii<pIx->nColumn; ii++){ 5317 jj = pIx->aiColumn[ii]; 5318 if( jj<0 ) continue; 5319 if( jj>63 ) jj = 63; 5320 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; 5321 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); 5322 } 5323 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, 5324 (u8*)&colUsed, P4_INT64); 5325 } 5326 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ 5327 } 5328 } 5329 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 5330 } 5331 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 5332 if( db->mallocFailed ) goto whereBeginError; 5333 5334 /* Generate the code to do the search. Each iteration of the for 5335 ** loop below generates code for a single nested loop of the VM 5336 ** program. 5337 */ 5338 for(ii=0; ii<nTabList; ii++){ 5339 int addrExplain; 5340 int wsFlags; 5341 pLevel = &pWInfo->a[ii]; 5342 wsFlags = pLevel->pWLoop->wsFlags; 5343 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 5344 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 5345 constructAutomaticIndex(pParse, &pWInfo->sWC, 5346 &pTabList->a[pLevel->iFrom], notReady, pLevel); 5347 if( db->mallocFailed ) goto whereBeginError; 5348 } 5349 #endif 5350 addrExplain = sqlite3WhereExplainOneScan( 5351 pParse, pTabList, pLevel, wctrlFlags 5352 ); 5353 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 5354 notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady); 5355 pWInfo->iContinue = pLevel->addrCont; 5356 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){ 5357 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); 5358 } 5359 } 5360 5361 /* Done. */ 5362 VdbeModuleComment((v, "Begin WHERE-core")); 5363 pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v); 5364 return pWInfo; 5365 5366 /* Jump here if malloc fails */ 5367 whereBeginError: 5368 if( pWInfo ){ 5369 testcase( pWInfo->pExprMods!=0 ); 5370 whereUndoExprMods(pWInfo); 5371 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 5372 whereInfoFree(db, pWInfo); 5373 } 5374 return 0; 5375 } 5376 5377 /* 5378 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the 5379 ** index rather than the main table. In SQLITE_DEBUG mode, we want 5380 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine 5381 ** does that. 5382 */ 5383 #ifndef SQLITE_DEBUG 5384 # define OpcodeRewriteTrace(D,K,P) /* no-op */ 5385 #else 5386 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P) 5387 static void sqlite3WhereOpcodeRewriteTrace( 5388 sqlite3 *db, 5389 int pc, 5390 VdbeOp *pOp 5391 ){ 5392 if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return; 5393 sqlite3VdbePrintOp(0, pc, pOp); 5394 } 5395 #endif 5396 5397 /* 5398 ** Generate the end of the WHERE loop. See comments on 5399 ** sqlite3WhereBegin() for additional information. 5400 */ 5401 void sqlite3WhereEnd(WhereInfo *pWInfo){ 5402 Parse *pParse = pWInfo->pParse; 5403 Vdbe *v = pParse->pVdbe; 5404 int i; 5405 WhereLevel *pLevel; 5406 WhereLoop *pLoop; 5407 SrcList *pTabList = pWInfo->pTabList; 5408 sqlite3 *db = pParse->db; 5409 int iEnd = sqlite3VdbeCurrentAddr(v); 5410 5411 /* Generate loop termination code. 5412 */ 5413 VdbeModuleComment((v, "End WHERE-core")); 5414 for(i=pWInfo->nLevel-1; i>=0; i--){ 5415 int addr; 5416 pLevel = &pWInfo->a[i]; 5417 pLoop = pLevel->pWLoop; 5418 if( pLevel->op!=OP_Noop ){ 5419 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 5420 int addrSeek = 0; 5421 Index *pIdx; 5422 int n; 5423 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED 5424 && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */ 5425 && (pLoop->wsFlags & WHERE_INDEXED)!=0 5426 && (pIdx = pLoop->u.btree.pIndex)->hasStat1 5427 && (n = pLoop->u.btree.nDistinctCol)>0 5428 && pIdx->aiRowLogEst[n]>=36 5429 ){ 5430 int r1 = pParse->nMem+1; 5431 int j, op; 5432 for(j=0; j<n; j++){ 5433 sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j); 5434 } 5435 pParse->nMem += n+1; 5436 op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT; 5437 addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n); 5438 VdbeCoverageIf(v, op==OP_SeekLT); 5439 VdbeCoverageIf(v, op==OP_SeekGT); 5440 sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2); 5441 } 5442 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */ 5443 /* The common case: Advance to the next row */ 5444 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 5445 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 5446 sqlite3VdbeChangeP5(v, pLevel->p5); 5447 VdbeCoverage(v); 5448 VdbeCoverageIf(v, pLevel->op==OP_Next); 5449 VdbeCoverageIf(v, pLevel->op==OP_Prev); 5450 VdbeCoverageIf(v, pLevel->op==OP_VNext); 5451 if( pLevel->regBignull ){ 5452 sqlite3VdbeResolveLabel(v, pLevel->addrBignull); 5453 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1); 5454 VdbeCoverage(v); 5455 } 5456 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 5457 if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek); 5458 #endif 5459 }else{ 5460 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 5461 } 5462 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ 5463 struct InLoop *pIn; 5464 int j; 5465 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 5466 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 5467 assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull 5468 || pParse->db->mallocFailed ); 5469 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 5470 if( pIn->eEndLoopOp!=OP_Noop ){ 5471 if( pIn->nPrefix ){ 5472 int bEarlyOut = 5473 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 5474 && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0; 5475 if( pLevel->iLeftJoin ){ 5476 /* For LEFT JOIN queries, cursor pIn->iCur may not have been 5477 ** opened yet. This occurs for WHERE clauses such as 5478 ** "a = ? AND b IN (...)", where the index is on (a, b). If 5479 ** the RHS of the (a=?) is NULL, then the "b IN (...)" may 5480 ** never have been coded, but the body of the loop run to 5481 ** return the null-row. So, if the cursor is not open yet, 5482 ** jump over the OP_Next or OP_Prev instruction about to 5483 ** be coded. */ 5484 sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur, 5485 sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut); 5486 VdbeCoverage(v); 5487 } 5488 if( bEarlyOut ){ 5489 sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur, 5490 sqlite3VdbeCurrentAddr(v)+2, 5491 pIn->iBase, pIn->nPrefix); 5492 VdbeCoverage(v); 5493 /* Retarget the OP_IsNull against the left operand of IN so 5494 ** it jumps past the OP_IfNoHope. This is because the 5495 ** OP_IsNull also bypasses the OP_Affinity opcode that is 5496 ** required by OP_IfNoHope. */ 5497 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 5498 } 5499 } 5500 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 5501 VdbeCoverage(v); 5502 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev); 5503 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next); 5504 } 5505 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 5506 } 5507 } 5508 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 5509 if( pLevel->addrSkip ){ 5510 sqlite3VdbeGoto(v, pLevel->addrSkip); 5511 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 5512 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 5513 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 5514 } 5515 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 5516 if( pLevel->addrLikeRep ){ 5517 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1), 5518 pLevel->addrLikeRep); 5519 VdbeCoverage(v); 5520 } 5521 #endif 5522 if( pLevel->iLeftJoin ){ 5523 int ws = pLoop->wsFlags; 5524 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 5525 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); 5526 if( (ws & WHERE_IDX_ONLY)==0 ){ 5527 assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor ); 5528 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur); 5529 } 5530 if( (ws & WHERE_INDEXED) 5531 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx) 5532 ){ 5533 if( ws & WHERE_MULTI_OR ){ 5534 Index *pIx = pLevel->u.pCovidx; 5535 int iDb = sqlite3SchemaToIndex(db, pIx->pSchema); 5536 sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb); 5537 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 5538 } 5539 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 5540 } 5541 if( pLevel->op==OP_Return ){ 5542 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 5543 }else{ 5544 sqlite3VdbeGoto(v, pLevel->addrFirst); 5545 } 5546 sqlite3VdbeJumpHere(v, addr); 5547 } 5548 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 5549 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 5550 } 5551 5552 /* The "break" point is here, just past the end of the outer loop. 5553 ** Set it. 5554 */ 5555 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 5556 5557 assert( pWInfo->nLevel<=pTabList->nSrc ); 5558 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 5559 int k, last; 5560 VdbeOp *pOp, *pLastOp; 5561 Index *pIdx = 0; 5562 SrcItem *pTabItem = &pTabList->a[pLevel->iFrom]; 5563 Table *pTab = pTabItem->pTab; 5564 assert( pTab!=0 ); 5565 pLoop = pLevel->pWLoop; 5566 5567 /* For a co-routine, change all OP_Column references to the table of 5568 ** the co-routine into OP_Copy of result contained in a register. 5569 ** OP_Rowid becomes OP_Null. 5570 */ 5571 if( pTabItem->fg.viaCoroutine ){ 5572 testcase( pParse->db->mallocFailed ); 5573 translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur, 5574 pTabItem->regResult, 0); 5575 continue; 5576 } 5577 5578 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE 5579 /* Close all of the cursors that were opened by sqlite3WhereBegin. 5580 ** Except, do not close cursors that will be reused by the OR optimization 5581 ** (WHERE_OR_SUBCLAUSE). And do not close the OP_OpenWrite cursors 5582 ** created for the ONEPASS optimization. 5583 */ 5584 if( (pTab->tabFlags & TF_Ephemeral)==0 5585 && !IsView(pTab) 5586 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 5587 ){ 5588 int ws = pLoop->wsFlags; 5589 if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){ 5590 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); 5591 } 5592 if( (ws & WHERE_INDEXED)!=0 5593 && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0 5594 && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1] 5595 ){ 5596 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); 5597 } 5598 } 5599 #endif 5600 5601 /* If this scan uses an index, make VDBE code substitutions to read data 5602 ** from the index instead of from the table where possible. In some cases 5603 ** this optimization prevents the table from ever being read, which can 5604 ** yield a significant performance boost. 5605 ** 5606 ** Calls to the code generator in between sqlite3WhereBegin and 5607 ** sqlite3WhereEnd will have created code that references the table 5608 ** directly. This loop scans all that code looking for opcodes 5609 ** that reference the table and converts them into opcodes that 5610 ** reference the index. 5611 */ 5612 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 5613 pIdx = pLoop->u.btree.pIndex; 5614 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 5615 pIdx = pLevel->u.pCovidx; 5616 } 5617 if( pIdx 5618 && !db->mallocFailed 5619 ){ 5620 if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){ 5621 last = iEnd; 5622 }else{ 5623 last = pWInfo->iEndWhere; 5624 } 5625 k = pLevel->addrBody + 1; 5626 #ifdef SQLITE_DEBUG 5627 if( db->flags & SQLITE_VdbeAddopTrace ){ 5628 printf("TRANSLATE opcodes in range %d..%d\n", k, last-1); 5629 } 5630 /* Proof that the "+1" on the k value above is safe */ 5631 pOp = sqlite3VdbeGetOp(v, k - 1); 5632 assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur ); 5633 assert( pOp->opcode!=OP_Rowid || pOp->p1!=pLevel->iTabCur ); 5634 assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur ); 5635 #endif 5636 pOp = sqlite3VdbeGetOp(v, k); 5637 pLastOp = pOp + (last - k); 5638 assert( pOp<=pLastOp ); 5639 do{ 5640 if( pOp->p1!=pLevel->iTabCur ){ 5641 /* no-op */ 5642 }else if( pOp->opcode==OP_Column 5643 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 5644 || pOp->opcode==OP_Offset 5645 #endif 5646 ){ 5647 int x = pOp->p2; 5648 assert( pIdx->pTable==pTab ); 5649 if( !HasRowid(pTab) ){ 5650 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 5651 x = pPk->aiColumn[x]; 5652 assert( x>=0 ); 5653 }else{ 5654 testcase( x!=sqlite3StorageColumnToTable(pTab,x) ); 5655 x = sqlite3StorageColumnToTable(pTab,x); 5656 } 5657 x = sqlite3TableColumnToIndex(pIdx, x); 5658 if( x>=0 ){ 5659 pOp->p2 = x; 5660 pOp->p1 = pLevel->iIdxCur; 5661 OpcodeRewriteTrace(db, k, pOp); 5662 } 5663 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 5664 || pWInfo->eOnePass ); 5665 }else if( pOp->opcode==OP_Rowid ){ 5666 pOp->p1 = pLevel->iIdxCur; 5667 pOp->opcode = OP_IdxRowid; 5668 OpcodeRewriteTrace(db, k, pOp); 5669 }else if( pOp->opcode==OP_IfNullRow ){ 5670 pOp->p1 = pLevel->iIdxCur; 5671 OpcodeRewriteTrace(db, k, pOp); 5672 } 5673 #ifdef SQLITE_DEBUG 5674 k++; 5675 #endif 5676 }while( (++pOp)<pLastOp ); 5677 #ifdef SQLITE_DEBUG 5678 if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n"); 5679 #endif 5680 } 5681 } 5682 5683 /* Final cleanup 5684 */ 5685 if( pWInfo->pExprMods ) whereUndoExprMods(pWInfo); 5686 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 5687 whereInfoFree(db, pWInfo); 5688 return; 5689 } 5690