xref: /sqlite-3.40.0/src/where.c (revision fb32c44e)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /*
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly.  The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
26 **
27 ** This object is not an API and can be changed from one release to the
28 ** next.  As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
30 */
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33   WhereClause *pWC;   /* The Where clause being analyzed */
34   Parse *pParse;      /* The parsing context */
35 };
36 
37 /* Forward declaration of methods */
38 static int whereLoopResize(sqlite3*, WhereLoop*, int);
39 
40 /* Test variable that can be set to enable WHERE tracing */
41 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
42 /***/ int sqlite3WhereTrace = 0;
43 #endif
44 
45 
46 /*
47 ** Return the estimated number of output rows from a WHERE clause
48 */
49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
50   return pWInfo->nRowOut;
51 }
52 
53 /*
54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
55 ** WHERE clause returns outputs for DISTINCT processing.
56 */
57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
58   return pWInfo->eDistinct;
59 }
60 
61 /*
62 ** Return TRUE if the WHERE clause returns rows in ORDER BY order.
63 ** Return FALSE if the output needs to be sorted.
64 */
65 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
66   return pWInfo->nOBSat;
67 }
68 
69 /*
70 ** Return TRUE if the innermost loop of the WHERE clause implementation
71 ** returns rows in ORDER BY order for complete run of the inner loop.
72 **
73 ** Across multiple iterations of outer loops, the output rows need not be
74 ** sorted.  As long as rows are sorted for just the innermost loop, this
75 ** routine can return TRUE.
76 */
77 int sqlite3WhereOrderedInnerLoop(WhereInfo *pWInfo){
78   return pWInfo->bOrderedInnerLoop;
79 }
80 
81 /*
82 ** Return the VDBE address or label to jump to in order to continue
83 ** immediately with the next row of a WHERE clause.
84 */
85 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
86   assert( pWInfo->iContinue!=0 );
87   return pWInfo->iContinue;
88 }
89 
90 /*
91 ** Return the VDBE address or label to jump to in order to break
92 ** out of a WHERE loop.
93 */
94 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
95   return pWInfo->iBreak;
96 }
97 
98 /*
99 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
100 ** operate directly on the rowis returned by a WHERE clause.  Return
101 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
102 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
103 ** optimization can be used on multiple
104 **
105 ** If the ONEPASS optimization is used (if this routine returns true)
106 ** then also write the indices of open cursors used by ONEPASS
107 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
108 ** table and iaCur[1] gets the cursor used by an auxiliary index.
109 ** Either value may be -1, indicating that cursor is not used.
110 ** Any cursors returned will have been opened for writing.
111 **
112 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
113 ** unable to use the ONEPASS optimization.
114 */
115 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
116   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
117 #ifdef WHERETRACE_ENABLED
118   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
119     sqlite3DebugPrintf("%s cursors: %d %d\n",
120          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
121          aiCur[0], aiCur[1]);
122   }
123 #endif
124   return pWInfo->eOnePass;
125 }
126 
127 /*
128 ** Move the content of pSrc into pDest
129 */
130 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
131   pDest->n = pSrc->n;
132   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
133 }
134 
135 /*
136 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
137 **
138 ** The new entry might overwrite an existing entry, or it might be
139 ** appended, or it might be discarded.  Do whatever is the right thing
140 ** so that pSet keeps the N_OR_COST best entries seen so far.
141 */
142 static int whereOrInsert(
143   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
144   Bitmask prereq,        /* Prerequisites of the new entry */
145   LogEst rRun,           /* Run-cost of the new entry */
146   LogEst nOut            /* Number of outputs for the new entry */
147 ){
148   u16 i;
149   WhereOrCost *p;
150   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
151     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
152       goto whereOrInsert_done;
153     }
154     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
155       return 0;
156     }
157   }
158   if( pSet->n<N_OR_COST ){
159     p = &pSet->a[pSet->n++];
160     p->nOut = nOut;
161   }else{
162     p = pSet->a;
163     for(i=1; i<pSet->n; i++){
164       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
165     }
166     if( p->rRun<=rRun ) return 0;
167   }
168 whereOrInsert_done:
169   p->prereq = prereq;
170   p->rRun = rRun;
171   if( p->nOut>nOut ) p->nOut = nOut;
172   return 1;
173 }
174 
175 /*
176 ** Return the bitmask for the given cursor number.  Return 0 if
177 ** iCursor is not in the set.
178 */
179 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
180   int i;
181   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
182   for(i=0; i<pMaskSet->n; i++){
183     if( pMaskSet->ix[i]==iCursor ){
184       return MASKBIT(i);
185     }
186   }
187   return 0;
188 }
189 
190 /*
191 ** Create a new mask for cursor iCursor.
192 **
193 ** There is one cursor per table in the FROM clause.  The number of
194 ** tables in the FROM clause is limited by a test early in the
195 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
196 ** array will never overflow.
197 */
198 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
199   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
200   pMaskSet->ix[pMaskSet->n++] = iCursor;
201 }
202 
203 /*
204 ** Advance to the next WhereTerm that matches according to the criteria
205 ** established when the pScan object was initialized by whereScanInit().
206 ** Return NULL if there are no more matching WhereTerms.
207 */
208 static WhereTerm *whereScanNext(WhereScan *pScan){
209   int iCur;            /* The cursor on the LHS of the term */
210   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
211   Expr *pX;            /* An expression being tested */
212   WhereClause *pWC;    /* Shorthand for pScan->pWC */
213   WhereTerm *pTerm;    /* The term being tested */
214   int k = pScan->k;    /* Where to start scanning */
215 
216   assert( pScan->iEquiv<=pScan->nEquiv );
217   pWC = pScan->pWC;
218   while(1){
219     iColumn = pScan->aiColumn[pScan->iEquiv-1];
220     iCur = pScan->aiCur[pScan->iEquiv-1];
221     assert( pWC!=0 );
222     do{
223       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
224         if( pTerm->leftCursor==iCur
225          && pTerm->u.leftColumn==iColumn
226          && (iColumn!=XN_EXPR
227              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
228                                        pScan->pIdxExpr,iCur)==0)
229          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
230         ){
231           if( (pTerm->eOperator & WO_EQUIV)!=0
232            && pScan->nEquiv<ArraySize(pScan->aiCur)
233            && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN
234           ){
235             int j;
236             for(j=0; j<pScan->nEquiv; j++){
237               if( pScan->aiCur[j]==pX->iTable
238                && pScan->aiColumn[j]==pX->iColumn ){
239                   break;
240               }
241             }
242             if( j==pScan->nEquiv ){
243               pScan->aiCur[j] = pX->iTable;
244               pScan->aiColumn[j] = pX->iColumn;
245               pScan->nEquiv++;
246             }
247           }
248           if( (pTerm->eOperator & pScan->opMask)!=0 ){
249             /* Verify the affinity and collating sequence match */
250             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
251               CollSeq *pColl;
252               Parse *pParse = pWC->pWInfo->pParse;
253               pX = pTerm->pExpr;
254               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
255                 continue;
256               }
257               assert(pX->pLeft);
258               pColl = sqlite3BinaryCompareCollSeq(pParse,
259                                                   pX->pLeft, pX->pRight);
260               if( pColl==0 ) pColl = pParse->db->pDfltColl;
261               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
262                 continue;
263               }
264             }
265             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
266              && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
267              && pX->iTable==pScan->aiCur[0]
268              && pX->iColumn==pScan->aiColumn[0]
269             ){
270               testcase( pTerm->eOperator & WO_IS );
271               continue;
272             }
273             pScan->pWC = pWC;
274             pScan->k = k+1;
275             return pTerm;
276           }
277         }
278       }
279       pWC = pWC->pOuter;
280       k = 0;
281     }while( pWC!=0 );
282     if( pScan->iEquiv>=pScan->nEquiv ) break;
283     pWC = pScan->pOrigWC;
284     k = 0;
285     pScan->iEquiv++;
286   }
287   return 0;
288 }
289 
290 /*
291 ** Initialize a WHERE clause scanner object.  Return a pointer to the
292 ** first match.  Return NULL if there are no matches.
293 **
294 ** The scanner will be searching the WHERE clause pWC.  It will look
295 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
296 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
297 ** must be one of the indexes of table iCur.
298 **
299 ** The <op> must be one of the operators described by opMask.
300 **
301 ** If the search is for X and the WHERE clause contains terms of the
302 ** form X=Y then this routine might also return terms of the form
303 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
304 ** but is enough to handle most commonly occurring SQL statements.
305 **
306 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
307 ** index pIdx.
308 */
309 static WhereTerm *whereScanInit(
310   WhereScan *pScan,       /* The WhereScan object being initialized */
311   WhereClause *pWC,       /* The WHERE clause to be scanned */
312   int iCur,               /* Cursor to scan for */
313   int iColumn,            /* Column to scan for */
314   u32 opMask,             /* Operator(s) to scan for */
315   Index *pIdx             /* Must be compatible with this index */
316 ){
317   pScan->pOrigWC = pWC;
318   pScan->pWC = pWC;
319   pScan->pIdxExpr = 0;
320   pScan->idxaff = 0;
321   pScan->zCollName = 0;
322   if( pIdx ){
323     int j = iColumn;
324     iColumn = pIdx->aiColumn[j];
325     if( iColumn==XN_EXPR ){
326       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
327       pScan->zCollName = pIdx->azColl[j];
328     }else if( iColumn==pIdx->pTable->iPKey ){
329       iColumn = XN_ROWID;
330     }else if( iColumn>=0 ){
331       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
332       pScan->zCollName = pIdx->azColl[j];
333     }
334   }else if( iColumn==XN_EXPR ){
335     return 0;
336   }
337   pScan->opMask = opMask;
338   pScan->k = 0;
339   pScan->aiCur[0] = iCur;
340   pScan->aiColumn[0] = iColumn;
341   pScan->nEquiv = 1;
342   pScan->iEquiv = 1;
343   return whereScanNext(pScan);
344 }
345 
346 /*
347 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
348 ** where X is a reference to the iColumn of table iCur or of index pIdx
349 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
350 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
351 **
352 ** If pIdx!=0 then it must be one of the indexes of table iCur.
353 ** Search for terms matching the iColumn-th column of pIdx
354 ** rather than the iColumn-th column of table iCur.
355 **
356 ** The term returned might by Y=<expr> if there is another constraint in
357 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
358 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
359 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
360 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
361 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
362 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
363 **
364 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
365 ** then try for the one with no dependencies on <expr> - in other words where
366 ** <expr> is a constant expression of some kind.  Only return entries of
367 ** the form "X <op> Y" where Y is a column in another table if no terms of
368 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
369 ** exist, try to return a term that does not use WO_EQUIV.
370 */
371 WhereTerm *sqlite3WhereFindTerm(
372   WhereClause *pWC,     /* The WHERE clause to be searched */
373   int iCur,             /* Cursor number of LHS */
374   int iColumn,          /* Column number of LHS */
375   Bitmask notReady,     /* RHS must not overlap with this mask */
376   u32 op,               /* Mask of WO_xx values describing operator */
377   Index *pIdx           /* Must be compatible with this index, if not NULL */
378 ){
379   WhereTerm *pResult = 0;
380   WhereTerm *p;
381   WhereScan scan;
382 
383   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
384   op &= WO_EQ|WO_IS;
385   while( p ){
386     if( (p->prereqRight & notReady)==0 ){
387       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
388         testcase( p->eOperator & WO_IS );
389         return p;
390       }
391       if( pResult==0 ) pResult = p;
392     }
393     p = whereScanNext(&scan);
394   }
395   return pResult;
396 }
397 
398 /*
399 ** This function searches pList for an entry that matches the iCol-th column
400 ** of index pIdx.
401 **
402 ** If such an expression is found, its index in pList->a[] is returned. If
403 ** no expression is found, -1 is returned.
404 */
405 static int findIndexCol(
406   Parse *pParse,                  /* Parse context */
407   ExprList *pList,                /* Expression list to search */
408   int iBase,                      /* Cursor for table associated with pIdx */
409   Index *pIdx,                    /* Index to match column of */
410   int iCol                        /* Column of index to match */
411 ){
412   int i;
413   const char *zColl = pIdx->azColl[iCol];
414 
415   for(i=0; i<pList->nExpr; i++){
416     Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr);
417     if( p->op==TK_COLUMN
418      && p->iColumn==pIdx->aiColumn[iCol]
419      && p->iTable==iBase
420     ){
421       CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
422       if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
423         return i;
424       }
425     }
426   }
427 
428   return -1;
429 }
430 
431 /*
432 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
433 */
434 static int indexColumnNotNull(Index *pIdx, int iCol){
435   int j;
436   assert( pIdx!=0 );
437   assert( iCol>=0 && iCol<pIdx->nColumn );
438   j = pIdx->aiColumn[iCol];
439   if( j>=0 ){
440     return pIdx->pTable->aCol[j].notNull;
441   }else if( j==(-1) ){
442     return 1;
443   }else{
444     assert( j==(-2) );
445     return 0;  /* Assume an indexed expression can always yield a NULL */
446 
447   }
448 }
449 
450 /*
451 ** Return true if the DISTINCT expression-list passed as the third argument
452 ** is redundant.
453 **
454 ** A DISTINCT list is redundant if any subset of the columns in the
455 ** DISTINCT list are collectively unique and individually non-null.
456 */
457 static int isDistinctRedundant(
458   Parse *pParse,            /* Parsing context */
459   SrcList *pTabList,        /* The FROM clause */
460   WhereClause *pWC,         /* The WHERE clause */
461   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
462 ){
463   Table *pTab;
464   Index *pIdx;
465   int i;
466   int iBase;
467 
468   /* If there is more than one table or sub-select in the FROM clause of
469   ** this query, then it will not be possible to show that the DISTINCT
470   ** clause is redundant. */
471   if( pTabList->nSrc!=1 ) return 0;
472   iBase = pTabList->a[0].iCursor;
473   pTab = pTabList->a[0].pTab;
474 
475   /* If any of the expressions is an IPK column on table iBase, then return
476   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
477   ** current SELECT is a correlated sub-query.
478   */
479   for(i=0; i<pDistinct->nExpr; i++){
480     Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr);
481     if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
482   }
483 
484   /* Loop through all indices on the table, checking each to see if it makes
485   ** the DISTINCT qualifier redundant. It does so if:
486   **
487   **   1. The index is itself UNIQUE, and
488   **
489   **   2. All of the columns in the index are either part of the pDistinct
490   **      list, or else the WHERE clause contains a term of the form "col=X",
491   **      where X is a constant value. The collation sequences of the
492   **      comparison and select-list expressions must match those of the index.
493   **
494   **   3. All of those index columns for which the WHERE clause does not
495   **      contain a "col=X" term are subject to a NOT NULL constraint.
496   */
497   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
498     if( !IsUniqueIndex(pIdx) ) continue;
499     for(i=0; i<pIdx->nKeyCol; i++){
500       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
501         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
502         if( indexColumnNotNull(pIdx, i)==0 ) break;
503       }
504     }
505     if( i==pIdx->nKeyCol ){
506       /* This index implies that the DISTINCT qualifier is redundant. */
507       return 1;
508     }
509   }
510 
511   return 0;
512 }
513 
514 
515 /*
516 ** Estimate the logarithm of the input value to base 2.
517 */
518 static LogEst estLog(LogEst N){
519   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
520 }
521 
522 /*
523 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
524 **
525 ** This routine runs over generated VDBE code and translates OP_Column
526 ** opcodes into OP_Copy when the table is being accessed via co-routine
527 ** instead of via table lookup.
528 **
529 ** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on
530 ** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero,
531 ** then each OP_Rowid is transformed into an instruction to increment the
532 ** value stored in its output register.
533 */
534 static void translateColumnToCopy(
535   Parse *pParse,      /* Parsing context */
536   int iStart,         /* Translate from this opcode to the end */
537   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
538   int iRegister,      /* The first column is in this register */
539   int bIncrRowid      /* If non-zero, transform OP_rowid to OP_AddImm(1) */
540 ){
541   Vdbe *v = pParse->pVdbe;
542   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
543   int iEnd = sqlite3VdbeCurrentAddr(v);
544   if( pParse->db->mallocFailed ) return;
545   for(; iStart<iEnd; iStart++, pOp++){
546     if( pOp->p1!=iTabCur ) continue;
547     if( pOp->opcode==OP_Column ){
548       pOp->opcode = OP_Copy;
549       pOp->p1 = pOp->p2 + iRegister;
550       pOp->p2 = pOp->p3;
551       pOp->p3 = 0;
552     }else if( pOp->opcode==OP_Rowid ){
553       if( bIncrRowid ){
554         /* Increment the value stored in the P2 operand of the OP_Rowid. */
555         pOp->opcode = OP_AddImm;
556         pOp->p1 = pOp->p2;
557         pOp->p2 = 1;
558       }else{
559         pOp->opcode = OP_Null;
560         pOp->p1 = 0;
561         pOp->p3 = 0;
562       }
563     }
564   }
565 }
566 
567 /*
568 ** Two routines for printing the content of an sqlite3_index_info
569 ** structure.  Used for testing and debugging only.  If neither
570 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
571 ** are no-ops.
572 */
573 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
574 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
575   int i;
576   if( !sqlite3WhereTrace ) return;
577   for(i=0; i<p->nConstraint; i++){
578     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
579        i,
580        p->aConstraint[i].iColumn,
581        p->aConstraint[i].iTermOffset,
582        p->aConstraint[i].op,
583        p->aConstraint[i].usable);
584   }
585   for(i=0; i<p->nOrderBy; i++){
586     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
587        i,
588        p->aOrderBy[i].iColumn,
589        p->aOrderBy[i].desc);
590   }
591 }
592 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
593   int i;
594   if( !sqlite3WhereTrace ) return;
595   for(i=0; i<p->nConstraint; i++){
596     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
597        i,
598        p->aConstraintUsage[i].argvIndex,
599        p->aConstraintUsage[i].omit);
600   }
601   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
602   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
603   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
604   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
605   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
606 }
607 #else
608 #define TRACE_IDX_INPUTS(A)
609 #define TRACE_IDX_OUTPUTS(A)
610 #endif
611 
612 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
613 /*
614 ** Return TRUE if the WHERE clause term pTerm is of a form where it
615 ** could be used with an index to access pSrc, assuming an appropriate
616 ** index existed.
617 */
618 static int termCanDriveIndex(
619   WhereTerm *pTerm,              /* WHERE clause term to check */
620   struct SrcList_item *pSrc,     /* Table we are trying to access */
621   Bitmask notReady               /* Tables in outer loops of the join */
622 ){
623   char aff;
624   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
625   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
626   if( (pSrc->fg.jointype & JT_LEFT)
627    && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
628    && (pTerm->eOperator & WO_IS)
629   ){
630     /* Cannot use an IS term from the WHERE clause as an index driver for
631     ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
632     ** the ON clause.  */
633     return 0;
634   }
635   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
636   if( pTerm->u.leftColumn<0 ) return 0;
637   aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
638   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
639   testcase( pTerm->pExpr->op==TK_IS );
640   return 1;
641 }
642 #endif
643 
644 
645 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
646 /*
647 ** Generate code to construct the Index object for an automatic index
648 ** and to set up the WhereLevel object pLevel so that the code generator
649 ** makes use of the automatic index.
650 */
651 static void constructAutomaticIndex(
652   Parse *pParse,              /* The parsing context */
653   WhereClause *pWC,           /* The WHERE clause */
654   struct SrcList_item *pSrc,  /* The FROM clause term to get the next index */
655   Bitmask notReady,           /* Mask of cursors that are not available */
656   WhereLevel *pLevel          /* Write new index here */
657 ){
658   int nKeyCol;                /* Number of columns in the constructed index */
659   WhereTerm *pTerm;           /* A single term of the WHERE clause */
660   WhereTerm *pWCEnd;          /* End of pWC->a[] */
661   Index *pIdx;                /* Object describing the transient index */
662   Vdbe *v;                    /* Prepared statement under construction */
663   int addrInit;               /* Address of the initialization bypass jump */
664   Table *pTable;              /* The table being indexed */
665   int addrTop;                /* Top of the index fill loop */
666   int regRecord;              /* Register holding an index record */
667   int n;                      /* Column counter */
668   int i;                      /* Loop counter */
669   int mxBitCol;               /* Maximum column in pSrc->colUsed */
670   CollSeq *pColl;             /* Collating sequence to on a column */
671   WhereLoop *pLoop;           /* The Loop object */
672   char *zNotUsed;             /* Extra space on the end of pIdx */
673   Bitmask idxCols;            /* Bitmap of columns used for indexing */
674   Bitmask extraCols;          /* Bitmap of additional columns */
675   u8 sentWarning = 0;         /* True if a warnning has been issued */
676   Expr *pPartial = 0;         /* Partial Index Expression */
677   int iContinue = 0;          /* Jump here to skip excluded rows */
678   struct SrcList_item *pTabItem;  /* FROM clause term being indexed */
679   int addrCounter = 0;        /* Address where integer counter is initialized */
680   int regBase;                /* Array of registers where record is assembled */
681 
682   /* Generate code to skip over the creation and initialization of the
683   ** transient index on 2nd and subsequent iterations of the loop. */
684   v = pParse->pVdbe;
685   assert( v!=0 );
686   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
687 
688   /* Count the number of columns that will be added to the index
689   ** and used to match WHERE clause constraints */
690   nKeyCol = 0;
691   pTable = pSrc->pTab;
692   pWCEnd = &pWC->a[pWC->nTerm];
693   pLoop = pLevel->pWLoop;
694   idxCols = 0;
695   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
696     Expr *pExpr = pTerm->pExpr;
697     assert( !ExprHasProperty(pExpr, EP_FromJoin)    /* prereq always non-zero */
698          || pExpr->iRightJoinTable!=pSrc->iCursor   /*   for the right-hand   */
699          || pLoop->prereq!=0 );                     /*   table of a LEFT JOIN */
700     if( pLoop->prereq==0
701      && (pTerm->wtFlags & TERM_VIRTUAL)==0
702      && !ExprHasProperty(pExpr, EP_FromJoin)
703      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
704       pPartial = sqlite3ExprAnd(pParse->db, pPartial,
705                                 sqlite3ExprDup(pParse->db, pExpr, 0));
706     }
707     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
708       int iCol = pTerm->u.leftColumn;
709       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
710       testcase( iCol==BMS );
711       testcase( iCol==BMS-1 );
712       if( !sentWarning ){
713         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
714             "automatic index on %s(%s)", pTable->zName,
715             pTable->aCol[iCol].zName);
716         sentWarning = 1;
717       }
718       if( (idxCols & cMask)==0 ){
719         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
720           goto end_auto_index_create;
721         }
722         pLoop->aLTerm[nKeyCol++] = pTerm;
723         idxCols |= cMask;
724       }
725     }
726   }
727   assert( nKeyCol>0 );
728   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
729   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
730                      | WHERE_AUTO_INDEX;
731 
732   /* Count the number of additional columns needed to create a
733   ** covering index.  A "covering index" is an index that contains all
734   ** columns that are needed by the query.  With a covering index, the
735   ** original table never needs to be accessed.  Automatic indices must
736   ** be a covering index because the index will not be updated if the
737   ** original table changes and the index and table cannot both be used
738   ** if they go out of sync.
739   */
740   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
741   mxBitCol = MIN(BMS-1,pTable->nCol);
742   testcase( pTable->nCol==BMS-1 );
743   testcase( pTable->nCol==BMS-2 );
744   for(i=0; i<mxBitCol; i++){
745     if( extraCols & MASKBIT(i) ) nKeyCol++;
746   }
747   if( pSrc->colUsed & MASKBIT(BMS-1) ){
748     nKeyCol += pTable->nCol - BMS + 1;
749   }
750 
751   /* Construct the Index object to describe this index */
752   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
753   if( pIdx==0 ) goto end_auto_index_create;
754   pLoop->u.btree.pIndex = pIdx;
755   pIdx->zName = "auto-index";
756   pIdx->pTable = pTable;
757   n = 0;
758   idxCols = 0;
759   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
760     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
761       int iCol = pTerm->u.leftColumn;
762       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
763       testcase( iCol==BMS-1 );
764       testcase( iCol==BMS );
765       if( (idxCols & cMask)==0 ){
766         Expr *pX = pTerm->pExpr;
767         idxCols |= cMask;
768         pIdx->aiColumn[n] = pTerm->u.leftColumn;
769         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
770         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
771         n++;
772       }
773     }
774   }
775   assert( (u32)n==pLoop->u.btree.nEq );
776 
777   /* Add additional columns needed to make the automatic index into
778   ** a covering index */
779   for(i=0; i<mxBitCol; i++){
780     if( extraCols & MASKBIT(i) ){
781       pIdx->aiColumn[n] = i;
782       pIdx->azColl[n] = sqlite3StrBINARY;
783       n++;
784     }
785   }
786   if( pSrc->colUsed & MASKBIT(BMS-1) ){
787     for(i=BMS-1; i<pTable->nCol; i++){
788       pIdx->aiColumn[n] = i;
789       pIdx->azColl[n] = sqlite3StrBINARY;
790       n++;
791     }
792   }
793   assert( n==nKeyCol );
794   pIdx->aiColumn[n] = XN_ROWID;
795   pIdx->azColl[n] = sqlite3StrBINARY;
796 
797   /* Create the automatic index */
798   assert( pLevel->iIdxCur>=0 );
799   pLevel->iIdxCur = pParse->nTab++;
800   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
801   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
802   VdbeComment((v, "for %s", pTable->zName));
803 
804   /* Fill the automatic index with content */
805   sqlite3ExprCachePush(pParse);
806   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
807   if( pTabItem->fg.viaCoroutine ){
808     int regYield = pTabItem->regReturn;
809     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
810     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
811     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
812     VdbeCoverage(v);
813     VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
814   }else{
815     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
816   }
817   if( pPartial ){
818     iContinue = sqlite3VdbeMakeLabel(v);
819     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
820     pLoop->wsFlags |= WHERE_PARTIALIDX;
821   }
822   regRecord = sqlite3GetTempReg(pParse);
823   regBase = sqlite3GenerateIndexKey(
824       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
825   );
826   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
827   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
828   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
829   if( pTabItem->fg.viaCoroutine ){
830     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
831     testcase( pParse->db->mallocFailed );
832     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
833                           pTabItem->regResult, 1);
834     sqlite3VdbeGoto(v, addrTop);
835     pTabItem->fg.viaCoroutine = 0;
836   }else{
837     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
838   }
839   sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
840   sqlite3VdbeJumpHere(v, addrTop);
841   sqlite3ReleaseTempReg(pParse, regRecord);
842   sqlite3ExprCachePop(pParse);
843 
844   /* Jump here when skipping the initialization */
845   sqlite3VdbeJumpHere(v, addrInit);
846 
847 end_auto_index_create:
848   sqlite3ExprDelete(pParse->db, pPartial);
849 }
850 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
851 
852 #ifndef SQLITE_OMIT_VIRTUALTABLE
853 /*
854 ** Allocate and populate an sqlite3_index_info structure. It is the
855 ** responsibility of the caller to eventually release the structure
856 ** by passing the pointer returned by this function to sqlite3_free().
857 */
858 static sqlite3_index_info *allocateIndexInfo(
859   Parse *pParse,                  /* The parsing context */
860   WhereClause *pWC,               /* The WHERE clause being analyzed */
861   Bitmask mUnusable,              /* Ignore terms with these prereqs */
862   struct SrcList_item *pSrc,      /* The FROM clause term that is the vtab */
863   ExprList *pOrderBy,             /* The ORDER BY clause */
864   u16 *pmNoOmit                   /* Mask of terms not to omit */
865 ){
866   int i, j;
867   int nTerm;
868   struct sqlite3_index_constraint *pIdxCons;
869   struct sqlite3_index_orderby *pIdxOrderBy;
870   struct sqlite3_index_constraint_usage *pUsage;
871   struct HiddenIndexInfo *pHidden;
872   WhereTerm *pTerm;
873   int nOrderBy;
874   sqlite3_index_info *pIdxInfo;
875   u16 mNoOmit = 0;
876 
877   /* Count the number of possible WHERE clause constraints referring
878   ** to this virtual table */
879   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
880     if( pTerm->leftCursor != pSrc->iCursor ) continue;
881     if( pTerm->prereqRight & mUnusable ) continue;
882     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
883     testcase( pTerm->eOperator & WO_IN );
884     testcase( pTerm->eOperator & WO_ISNULL );
885     testcase( pTerm->eOperator & WO_IS );
886     testcase( pTerm->eOperator & WO_ALL );
887     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
888     if( pTerm->wtFlags & TERM_VNULL ) continue;
889     assert( pTerm->u.leftColumn>=(-1) );
890     nTerm++;
891   }
892 
893   /* If the ORDER BY clause contains only columns in the current
894   ** virtual table then allocate space for the aOrderBy part of
895   ** the sqlite3_index_info structure.
896   */
897   nOrderBy = 0;
898   if( pOrderBy ){
899     int n = pOrderBy->nExpr;
900     for(i=0; i<n; i++){
901       Expr *pExpr = pOrderBy->a[i].pExpr;
902       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
903     }
904     if( i==n){
905       nOrderBy = n;
906     }
907   }
908 
909   /* Allocate the sqlite3_index_info structure
910   */
911   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
912                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
913                            + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) );
914   if( pIdxInfo==0 ){
915     sqlite3ErrorMsg(pParse, "out of memory");
916     return 0;
917   }
918 
919   /* Initialize the structure.  The sqlite3_index_info structure contains
920   ** many fields that are declared "const" to prevent xBestIndex from
921   ** changing them.  We have to do some funky casting in order to
922   ** initialize those fields.
923   */
924   pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
925   pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1];
926   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
927   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
928   *(int*)&pIdxInfo->nConstraint = nTerm;
929   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
930   *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
931   *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
932   *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
933                                                                    pUsage;
934 
935   pHidden->pWC = pWC;
936   pHidden->pParse = pParse;
937   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
938     u16 op;
939     if( pTerm->leftCursor != pSrc->iCursor ) continue;
940     if( pTerm->prereqRight & mUnusable ) continue;
941     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
942     testcase( pTerm->eOperator & WO_IN );
943     testcase( pTerm->eOperator & WO_IS );
944     testcase( pTerm->eOperator & WO_ISNULL );
945     testcase( pTerm->eOperator & WO_ALL );
946     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
947     if( pTerm->wtFlags & TERM_VNULL ) continue;
948     assert( pTerm->u.leftColumn>=(-1) );
949     pIdxCons[j].iColumn = pTerm->u.leftColumn;
950     pIdxCons[j].iTermOffset = i;
951     op = pTerm->eOperator & WO_ALL;
952     if( op==WO_IN ) op = WO_EQ;
953     if( op==WO_AUX ){
954       pIdxCons[j].op = pTerm->eMatchOp;
955     }else if( op & (WO_ISNULL|WO_IS) ){
956       if( op==WO_ISNULL ){
957         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
958       }else{
959         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
960       }
961     }else{
962       pIdxCons[j].op = (u8)op;
963       /* The direct assignment in the previous line is possible only because
964       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
965       ** following asserts verify this fact. */
966       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
967       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
968       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
969       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
970       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
971       assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
972 
973       if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
974        && sqlite3ExprIsVector(pTerm->pExpr->pRight)
975       ){
976         if( i<16 ) mNoOmit |= (1 << i);
977         if( op==WO_LT ) pIdxCons[j].op = WO_LE;
978         if( op==WO_GT ) pIdxCons[j].op = WO_GE;
979       }
980     }
981 
982     j++;
983   }
984   for(i=0; i<nOrderBy; i++){
985     Expr *pExpr = pOrderBy->a[i].pExpr;
986     pIdxOrderBy[i].iColumn = pExpr->iColumn;
987     pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
988   }
989 
990   *pmNoOmit = mNoOmit;
991   return pIdxInfo;
992 }
993 
994 /*
995 ** The table object reference passed as the second argument to this function
996 ** must represent a virtual table. This function invokes the xBestIndex()
997 ** method of the virtual table with the sqlite3_index_info object that
998 ** comes in as the 3rd argument to this function.
999 **
1000 ** If an error occurs, pParse is populated with an error message and a
1001 ** non-zero value is returned. Otherwise, 0 is returned and the output
1002 ** part of the sqlite3_index_info structure is left populated.
1003 **
1004 ** Whether or not an error is returned, it is the responsibility of the
1005 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1006 ** that this is required.
1007 */
1008 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1009   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1010   int rc;
1011 
1012   TRACE_IDX_INPUTS(p);
1013   rc = pVtab->pModule->xBestIndex(pVtab, p);
1014   TRACE_IDX_OUTPUTS(p);
1015 
1016   if( rc!=SQLITE_OK ){
1017     if( rc==SQLITE_NOMEM ){
1018       sqlite3OomFault(pParse->db);
1019     }else if( !pVtab->zErrMsg ){
1020       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1021     }else{
1022       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1023     }
1024   }
1025   sqlite3_free(pVtab->zErrMsg);
1026   pVtab->zErrMsg = 0;
1027 
1028 #if 0
1029   /* This error is now caught by the caller.
1030   ** Search for "xBestIndex malfunction" below */
1031   for(i=0; i<p->nConstraint; i++){
1032     if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
1033       sqlite3ErrorMsg(pParse,
1034           "table %s: xBestIndex returned an invalid plan", pTab->zName);
1035     }
1036   }
1037 #endif
1038 
1039   return pParse->nErr;
1040 }
1041 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1042 
1043 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1044 /*
1045 ** Estimate the location of a particular key among all keys in an
1046 ** index.  Store the results in aStat as follows:
1047 **
1048 **    aStat[0]      Est. number of rows less than pRec
1049 **    aStat[1]      Est. number of rows equal to pRec
1050 **
1051 ** Return the index of the sample that is the smallest sample that
1052 ** is greater than or equal to pRec. Note that this index is not an index
1053 ** into the aSample[] array - it is an index into a virtual set of samples
1054 ** based on the contents of aSample[] and the number of fields in record
1055 ** pRec.
1056 */
1057 static int whereKeyStats(
1058   Parse *pParse,              /* Database connection */
1059   Index *pIdx,                /* Index to consider domain of */
1060   UnpackedRecord *pRec,       /* Vector of values to consider */
1061   int roundUp,                /* Round up if true.  Round down if false */
1062   tRowcnt *aStat              /* OUT: stats written here */
1063 ){
1064   IndexSample *aSample = pIdx->aSample;
1065   int iCol;                   /* Index of required stats in anEq[] etc. */
1066   int i;                      /* Index of first sample >= pRec */
1067   int iSample;                /* Smallest sample larger than or equal to pRec */
1068   int iMin = 0;               /* Smallest sample not yet tested */
1069   int iTest;                  /* Next sample to test */
1070   int res;                    /* Result of comparison operation */
1071   int nField;                 /* Number of fields in pRec */
1072   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1073 
1074 #ifndef SQLITE_DEBUG
1075   UNUSED_PARAMETER( pParse );
1076 #endif
1077   assert( pRec!=0 );
1078   assert( pIdx->nSample>0 );
1079   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1080 
1081   /* Do a binary search to find the first sample greater than or equal
1082   ** to pRec. If pRec contains a single field, the set of samples to search
1083   ** is simply the aSample[] array. If the samples in aSample[] contain more
1084   ** than one fields, all fields following the first are ignored.
1085   **
1086   ** If pRec contains N fields, where N is more than one, then as well as the
1087   ** samples in aSample[] (truncated to N fields), the search also has to
1088   ** consider prefixes of those samples. For example, if the set of samples
1089   ** in aSample is:
1090   **
1091   **     aSample[0] = (a, 5)
1092   **     aSample[1] = (a, 10)
1093   **     aSample[2] = (b, 5)
1094   **     aSample[3] = (c, 100)
1095   **     aSample[4] = (c, 105)
1096   **
1097   ** Then the search space should ideally be the samples above and the
1098   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1099   ** the code actually searches this set:
1100   **
1101   **     0: (a)
1102   **     1: (a, 5)
1103   **     2: (a, 10)
1104   **     3: (a, 10)
1105   **     4: (b)
1106   **     5: (b, 5)
1107   **     6: (c)
1108   **     7: (c, 100)
1109   **     8: (c, 105)
1110   **     9: (c, 105)
1111   **
1112   ** For each sample in the aSample[] array, N samples are present in the
1113   ** effective sample array. In the above, samples 0 and 1 are based on
1114   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1115   **
1116   ** Often, sample i of each block of N effective samples has (i+1) fields.
1117   ** Except, each sample may be extended to ensure that it is greater than or
1118   ** equal to the previous sample in the array. For example, in the above,
1119   ** sample 2 is the first sample of a block of N samples, so at first it
1120   ** appears that it should be 1 field in size. However, that would make it
1121   ** smaller than sample 1, so the binary search would not work. As a result,
1122   ** it is extended to two fields. The duplicates that this creates do not
1123   ** cause any problems.
1124   */
1125   nField = pRec->nField;
1126   iCol = 0;
1127   iSample = pIdx->nSample * nField;
1128   do{
1129     int iSamp;                    /* Index in aSample[] of test sample */
1130     int n;                        /* Number of fields in test sample */
1131 
1132     iTest = (iMin+iSample)/2;
1133     iSamp = iTest / nField;
1134     if( iSamp>0 ){
1135       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1136       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1137       ** fields that is greater than the previous effective sample.  */
1138       for(n=(iTest % nField) + 1; n<nField; n++){
1139         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1140       }
1141     }else{
1142       n = iTest + 1;
1143     }
1144 
1145     pRec->nField = n;
1146     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1147     if( res<0 ){
1148       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1149       iMin = iTest+1;
1150     }else if( res==0 && n<nField ){
1151       iLower = aSample[iSamp].anLt[n-1];
1152       iMin = iTest+1;
1153       res = -1;
1154     }else{
1155       iSample = iTest;
1156       iCol = n-1;
1157     }
1158   }while( res && iMin<iSample );
1159   i = iSample / nField;
1160 
1161 #ifdef SQLITE_DEBUG
1162   /* The following assert statements check that the binary search code
1163   ** above found the right answer. This block serves no purpose other
1164   ** than to invoke the asserts.  */
1165   if( pParse->db->mallocFailed==0 ){
1166     if( res==0 ){
1167       /* If (res==0) is true, then pRec must be equal to sample i. */
1168       assert( i<pIdx->nSample );
1169       assert( iCol==nField-1 );
1170       pRec->nField = nField;
1171       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1172            || pParse->db->mallocFailed
1173       );
1174     }else{
1175       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1176       ** all samples in the aSample[] array, pRec must be smaller than the
1177       ** (iCol+1) field prefix of sample i.  */
1178       assert( i<=pIdx->nSample && i>=0 );
1179       pRec->nField = iCol+1;
1180       assert( i==pIdx->nSample
1181            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1182            || pParse->db->mallocFailed );
1183 
1184       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1185       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1186       ** be greater than or equal to the (iCol) field prefix of sample i.
1187       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1188       if( iCol>0 ){
1189         pRec->nField = iCol;
1190         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1191              || pParse->db->mallocFailed );
1192       }
1193       if( i>0 ){
1194         pRec->nField = nField;
1195         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1196              || pParse->db->mallocFailed );
1197       }
1198     }
1199   }
1200 #endif /* ifdef SQLITE_DEBUG */
1201 
1202   if( res==0 ){
1203     /* Record pRec is equal to sample i */
1204     assert( iCol==nField-1 );
1205     aStat[0] = aSample[i].anLt[iCol];
1206     aStat[1] = aSample[i].anEq[iCol];
1207   }else{
1208     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1209     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1210     ** is larger than all samples in the array. */
1211     tRowcnt iUpper, iGap;
1212     if( i>=pIdx->nSample ){
1213       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1214     }else{
1215       iUpper = aSample[i].anLt[iCol];
1216     }
1217 
1218     if( iLower>=iUpper ){
1219       iGap = 0;
1220     }else{
1221       iGap = iUpper - iLower;
1222     }
1223     if( roundUp ){
1224       iGap = (iGap*2)/3;
1225     }else{
1226       iGap = iGap/3;
1227     }
1228     aStat[0] = iLower + iGap;
1229     aStat[1] = pIdx->aAvgEq[nField-1];
1230   }
1231 
1232   /* Restore the pRec->nField value before returning.  */
1233   pRec->nField = nField;
1234   return i;
1235 }
1236 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1237 
1238 /*
1239 ** If it is not NULL, pTerm is a term that provides an upper or lower
1240 ** bound on a range scan. Without considering pTerm, it is estimated
1241 ** that the scan will visit nNew rows. This function returns the number
1242 ** estimated to be visited after taking pTerm into account.
1243 **
1244 ** If the user explicitly specified a likelihood() value for this term,
1245 ** then the return value is the likelihood multiplied by the number of
1246 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1247 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1248 */
1249 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1250   LogEst nRet = nNew;
1251   if( pTerm ){
1252     if( pTerm->truthProb<=0 ){
1253       nRet += pTerm->truthProb;
1254     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1255       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1256     }
1257   }
1258   return nRet;
1259 }
1260 
1261 
1262 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1263 /*
1264 ** Return the affinity for a single column of an index.
1265 */
1266 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1267   assert( iCol>=0 && iCol<pIdx->nColumn );
1268   if( !pIdx->zColAff ){
1269     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1270   }
1271   return pIdx->zColAff[iCol];
1272 }
1273 #endif
1274 
1275 
1276 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1277 /*
1278 ** This function is called to estimate the number of rows visited by a
1279 ** range-scan on a skip-scan index. For example:
1280 **
1281 **   CREATE INDEX i1 ON t1(a, b, c);
1282 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1283 **
1284 ** Value pLoop->nOut is currently set to the estimated number of rows
1285 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1286 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1287 ** on the stat4 data for the index. this scan will be peformed multiple
1288 ** times (once for each (a,b) combination that matches a=?) is dealt with
1289 ** by the caller.
1290 **
1291 ** It does this by scanning through all stat4 samples, comparing values
1292 ** extracted from pLower and pUpper with the corresponding column in each
1293 ** sample. If L and U are the number of samples found to be less than or
1294 ** equal to the values extracted from pLower and pUpper respectively, and
1295 ** N is the total number of samples, the pLoop->nOut value is adjusted
1296 ** as follows:
1297 **
1298 **   nOut = nOut * ( min(U - L, 1) / N )
1299 **
1300 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1301 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1302 ** U is set to N.
1303 **
1304 ** Normally, this function sets *pbDone to 1 before returning. However,
1305 ** if no value can be extracted from either pLower or pUpper (and so the
1306 ** estimate of the number of rows delivered remains unchanged), *pbDone
1307 ** is left as is.
1308 **
1309 ** If an error occurs, an SQLite error code is returned. Otherwise,
1310 ** SQLITE_OK.
1311 */
1312 static int whereRangeSkipScanEst(
1313   Parse *pParse,       /* Parsing & code generating context */
1314   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1315   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1316   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1317   int *pbDone          /* Set to true if at least one expr. value extracted */
1318 ){
1319   Index *p = pLoop->u.btree.pIndex;
1320   int nEq = pLoop->u.btree.nEq;
1321   sqlite3 *db = pParse->db;
1322   int nLower = -1;
1323   int nUpper = p->nSample+1;
1324   int rc = SQLITE_OK;
1325   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1326   CollSeq *pColl;
1327 
1328   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1329   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1330   sqlite3_value *pVal = 0;        /* Value extracted from record */
1331 
1332   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1333   if( pLower ){
1334     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1335     nLower = 0;
1336   }
1337   if( pUpper && rc==SQLITE_OK ){
1338     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1339     nUpper = p2 ? 0 : p->nSample;
1340   }
1341 
1342   if( p1 || p2 ){
1343     int i;
1344     int nDiff;
1345     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1346       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1347       if( rc==SQLITE_OK && p1 ){
1348         int res = sqlite3MemCompare(p1, pVal, pColl);
1349         if( res>=0 ) nLower++;
1350       }
1351       if( rc==SQLITE_OK && p2 ){
1352         int res = sqlite3MemCompare(p2, pVal, pColl);
1353         if( res>=0 ) nUpper++;
1354       }
1355     }
1356     nDiff = (nUpper - nLower);
1357     if( nDiff<=0 ) nDiff = 1;
1358 
1359     /* If there is both an upper and lower bound specified, and the
1360     ** comparisons indicate that they are close together, use the fallback
1361     ** method (assume that the scan visits 1/64 of the rows) for estimating
1362     ** the number of rows visited. Otherwise, estimate the number of rows
1363     ** using the method described in the header comment for this function. */
1364     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1365       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1366       pLoop->nOut -= nAdjust;
1367       *pbDone = 1;
1368       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1369                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1370     }
1371 
1372   }else{
1373     assert( *pbDone==0 );
1374   }
1375 
1376   sqlite3ValueFree(p1);
1377   sqlite3ValueFree(p2);
1378   sqlite3ValueFree(pVal);
1379 
1380   return rc;
1381 }
1382 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1383 
1384 /*
1385 ** This function is used to estimate the number of rows that will be visited
1386 ** by scanning an index for a range of values. The range may have an upper
1387 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1388 ** and lower bounds are represented by pLower and pUpper respectively. For
1389 ** example, assuming that index p is on t1(a):
1390 **
1391 **   ... FROM t1 WHERE a > ? AND a < ? ...
1392 **                    |_____|   |_____|
1393 **                       |         |
1394 **                     pLower    pUpper
1395 **
1396 ** If either of the upper or lower bound is not present, then NULL is passed in
1397 ** place of the corresponding WhereTerm.
1398 **
1399 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1400 ** column subject to the range constraint. Or, equivalently, the number of
1401 ** equality constraints optimized by the proposed index scan. For example,
1402 ** assuming index p is on t1(a, b), and the SQL query is:
1403 **
1404 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1405 **
1406 ** then nEq is set to 1 (as the range restricted column, b, is the second
1407 ** left-most column of the index). Or, if the query is:
1408 **
1409 **   ... FROM t1 WHERE a > ? AND a < ? ...
1410 **
1411 ** then nEq is set to 0.
1412 **
1413 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1414 ** number of rows that the index scan is expected to visit without
1415 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1416 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1417 ** to account for the range constraints pLower and pUpper.
1418 **
1419 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1420 ** used, a single range inequality reduces the search space by a factor of 4.
1421 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1422 ** rows visited by a factor of 64.
1423 */
1424 static int whereRangeScanEst(
1425   Parse *pParse,       /* Parsing & code generating context */
1426   WhereLoopBuilder *pBuilder,
1427   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1428   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1429   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1430 ){
1431   int rc = SQLITE_OK;
1432   int nOut = pLoop->nOut;
1433   LogEst nNew;
1434 
1435 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1436   Index *p = pLoop->u.btree.pIndex;
1437   int nEq = pLoop->u.btree.nEq;
1438 
1439   if( p->nSample>0 && nEq<p->nSampleCol ){
1440     if( nEq==pBuilder->nRecValid ){
1441       UnpackedRecord *pRec = pBuilder->pRec;
1442       tRowcnt a[2];
1443       int nBtm = pLoop->u.btree.nBtm;
1444       int nTop = pLoop->u.btree.nTop;
1445 
1446       /* Variable iLower will be set to the estimate of the number of rows in
1447       ** the index that are less than the lower bound of the range query. The
1448       ** lower bound being the concatenation of $P and $L, where $P is the
1449       ** key-prefix formed by the nEq values matched against the nEq left-most
1450       ** columns of the index, and $L is the value in pLower.
1451       **
1452       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1453       ** is not a simple variable or literal value), the lower bound of the
1454       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1455       ** if $L is available, whereKeyStats() is called for both ($P) and
1456       ** ($P:$L) and the larger of the two returned values is used.
1457       **
1458       ** Similarly, iUpper is to be set to the estimate of the number of rows
1459       ** less than the upper bound of the range query. Where the upper bound
1460       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1461       ** of iUpper are requested of whereKeyStats() and the smaller used.
1462       **
1463       ** The number of rows between the two bounds is then just iUpper-iLower.
1464       */
1465       tRowcnt iLower;     /* Rows less than the lower bound */
1466       tRowcnt iUpper;     /* Rows less than the upper bound */
1467       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1468       int iUprIdx = -1;   /* aSample[] for the upper bound */
1469 
1470       if( pRec ){
1471         testcase( pRec->nField!=pBuilder->nRecValid );
1472         pRec->nField = pBuilder->nRecValid;
1473       }
1474       /* Determine iLower and iUpper using ($P) only. */
1475       if( nEq==0 ){
1476         iLower = 0;
1477         iUpper = p->nRowEst0;
1478       }else{
1479         /* Note: this call could be optimized away - since the same values must
1480         ** have been requested when testing key $P in whereEqualScanEst().  */
1481         whereKeyStats(pParse, p, pRec, 0, a);
1482         iLower = a[0];
1483         iUpper = a[0] + a[1];
1484       }
1485 
1486       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1487       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1488       assert( p->aSortOrder!=0 );
1489       if( p->aSortOrder[nEq] ){
1490         /* The roles of pLower and pUpper are swapped for a DESC index */
1491         SWAP(WhereTerm*, pLower, pUpper);
1492         SWAP(int, nBtm, nTop);
1493       }
1494 
1495       /* If possible, improve on the iLower estimate using ($P:$L). */
1496       if( pLower ){
1497         int n;                    /* Values extracted from pExpr */
1498         Expr *pExpr = pLower->pExpr->pRight;
1499         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1500         if( rc==SQLITE_OK && n ){
1501           tRowcnt iNew;
1502           u16 mask = WO_GT|WO_LE;
1503           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1504           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1505           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1506           if( iNew>iLower ) iLower = iNew;
1507           nOut--;
1508           pLower = 0;
1509         }
1510       }
1511 
1512       /* If possible, improve on the iUpper estimate using ($P:$U). */
1513       if( pUpper ){
1514         int n;                    /* Values extracted from pExpr */
1515         Expr *pExpr = pUpper->pExpr->pRight;
1516         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1517         if( rc==SQLITE_OK && n ){
1518           tRowcnt iNew;
1519           u16 mask = WO_GT|WO_LE;
1520           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1521           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1522           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1523           if( iNew<iUpper ) iUpper = iNew;
1524           nOut--;
1525           pUpper = 0;
1526         }
1527       }
1528 
1529       pBuilder->pRec = pRec;
1530       if( rc==SQLITE_OK ){
1531         if( iUpper>iLower ){
1532           nNew = sqlite3LogEst(iUpper - iLower);
1533           /* TUNING:  If both iUpper and iLower are derived from the same
1534           ** sample, then assume they are 4x more selective.  This brings
1535           ** the estimated selectivity more in line with what it would be
1536           ** if estimated without the use of STAT3/4 tables. */
1537           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1538         }else{
1539           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1540         }
1541         if( nNew<nOut ){
1542           nOut = nNew;
1543         }
1544         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1545                            (u32)iLower, (u32)iUpper, nOut));
1546       }
1547     }else{
1548       int bDone = 0;
1549       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1550       if( bDone ) return rc;
1551     }
1552   }
1553 #else
1554   UNUSED_PARAMETER(pParse);
1555   UNUSED_PARAMETER(pBuilder);
1556   assert( pLower || pUpper );
1557 #endif
1558   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1559   nNew = whereRangeAdjust(pLower, nOut);
1560   nNew = whereRangeAdjust(pUpper, nNew);
1561 
1562   /* TUNING: If there is both an upper and lower limit and neither limit
1563   ** has an application-defined likelihood(), assume the range is
1564   ** reduced by an additional 75%. This means that, by default, an open-ended
1565   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1566   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1567   ** match 1/64 of the index. */
1568   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1569     nNew -= 20;
1570   }
1571 
1572   nOut -= (pLower!=0) + (pUpper!=0);
1573   if( nNew<10 ) nNew = 10;
1574   if( nNew<nOut ) nOut = nNew;
1575 #if defined(WHERETRACE_ENABLED)
1576   if( pLoop->nOut>nOut ){
1577     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1578                     pLoop->nOut, nOut));
1579   }
1580 #endif
1581   pLoop->nOut = (LogEst)nOut;
1582   return rc;
1583 }
1584 
1585 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1586 /*
1587 ** Estimate the number of rows that will be returned based on
1588 ** an equality constraint x=VALUE and where that VALUE occurs in
1589 ** the histogram data.  This only works when x is the left-most
1590 ** column of an index and sqlite_stat3 histogram data is available
1591 ** for that index.  When pExpr==NULL that means the constraint is
1592 ** "x IS NULL" instead of "x=VALUE".
1593 **
1594 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1595 ** If unable to make an estimate, leave *pnRow unchanged and return
1596 ** non-zero.
1597 **
1598 ** This routine can fail if it is unable to load a collating sequence
1599 ** required for string comparison, or if unable to allocate memory
1600 ** for a UTF conversion required for comparison.  The error is stored
1601 ** in the pParse structure.
1602 */
1603 static int whereEqualScanEst(
1604   Parse *pParse,       /* Parsing & code generating context */
1605   WhereLoopBuilder *pBuilder,
1606   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1607   tRowcnt *pnRow       /* Write the revised row estimate here */
1608 ){
1609   Index *p = pBuilder->pNew->u.btree.pIndex;
1610   int nEq = pBuilder->pNew->u.btree.nEq;
1611   UnpackedRecord *pRec = pBuilder->pRec;
1612   int rc;                   /* Subfunction return code */
1613   tRowcnt a[2];             /* Statistics */
1614   int bOk;
1615 
1616   assert( nEq>=1 );
1617   assert( nEq<=p->nColumn );
1618   assert( p->aSample!=0 );
1619   assert( p->nSample>0 );
1620   assert( pBuilder->nRecValid<nEq );
1621 
1622   /* If values are not available for all fields of the index to the left
1623   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1624   if( pBuilder->nRecValid<(nEq-1) ){
1625     return SQLITE_NOTFOUND;
1626   }
1627 
1628   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1629   ** below would return the same value.  */
1630   if( nEq>=p->nColumn ){
1631     *pnRow = 1;
1632     return SQLITE_OK;
1633   }
1634 
1635   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1636   pBuilder->pRec = pRec;
1637   if( rc!=SQLITE_OK ) return rc;
1638   if( bOk==0 ) return SQLITE_NOTFOUND;
1639   pBuilder->nRecValid = nEq;
1640 
1641   whereKeyStats(pParse, p, pRec, 0, a);
1642   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1643                    p->zName, nEq-1, (int)a[1]));
1644   *pnRow = a[1];
1645 
1646   return rc;
1647 }
1648 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1649 
1650 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1651 /*
1652 ** Estimate the number of rows that will be returned based on
1653 ** an IN constraint where the right-hand side of the IN operator
1654 ** is a list of values.  Example:
1655 **
1656 **        WHERE x IN (1,2,3,4)
1657 **
1658 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1659 ** If unable to make an estimate, leave *pnRow unchanged and return
1660 ** non-zero.
1661 **
1662 ** This routine can fail if it is unable to load a collating sequence
1663 ** required for string comparison, or if unable to allocate memory
1664 ** for a UTF conversion required for comparison.  The error is stored
1665 ** in the pParse structure.
1666 */
1667 static int whereInScanEst(
1668   Parse *pParse,       /* Parsing & code generating context */
1669   WhereLoopBuilder *pBuilder,
1670   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1671   tRowcnt *pnRow       /* Write the revised row estimate here */
1672 ){
1673   Index *p = pBuilder->pNew->u.btree.pIndex;
1674   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1675   int nRecValid = pBuilder->nRecValid;
1676   int rc = SQLITE_OK;     /* Subfunction return code */
1677   tRowcnt nEst;           /* Number of rows for a single term */
1678   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
1679   int i;                  /* Loop counter */
1680 
1681   assert( p->aSample!=0 );
1682   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1683     nEst = nRow0;
1684     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1685     nRowEst += nEst;
1686     pBuilder->nRecValid = nRecValid;
1687   }
1688 
1689   if( rc==SQLITE_OK ){
1690     if( nRowEst > nRow0 ) nRowEst = nRow0;
1691     *pnRow = nRowEst;
1692     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1693   }
1694   assert( pBuilder->nRecValid==nRecValid );
1695   return rc;
1696 }
1697 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1698 
1699 
1700 #ifdef WHERETRACE_ENABLED
1701 /*
1702 ** Print the content of a WhereTerm object
1703 */
1704 static void whereTermPrint(WhereTerm *pTerm, int iTerm){
1705   if( pTerm==0 ){
1706     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1707   }else{
1708     char zType[4];
1709     char zLeft[50];
1710     memcpy(zType, "...", 4);
1711     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1712     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
1713     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1714     if( pTerm->eOperator & WO_SINGLE ){
1715       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1716                        pTerm->leftCursor, pTerm->u.leftColumn);
1717     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1718       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld",
1719                        pTerm->u.pOrInfo->indexable);
1720     }else{
1721       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1722     }
1723     sqlite3DebugPrintf(
1724        "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x",
1725        iTerm, pTerm, zType, zLeft, pTerm->truthProb,
1726        pTerm->eOperator, pTerm->wtFlags);
1727     if( pTerm->iField ){
1728       sqlite3DebugPrintf(" iField=%d\n", pTerm->iField);
1729     }else{
1730       sqlite3DebugPrintf("\n");
1731     }
1732     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1733   }
1734 }
1735 #endif
1736 
1737 #ifdef WHERETRACE_ENABLED
1738 /*
1739 ** Show the complete content of a WhereClause
1740 */
1741 void sqlite3WhereClausePrint(WhereClause *pWC){
1742   int i;
1743   for(i=0; i<pWC->nTerm; i++){
1744     whereTermPrint(&pWC->a[i], i);
1745   }
1746 }
1747 #endif
1748 
1749 #ifdef WHERETRACE_ENABLED
1750 /*
1751 ** Print a WhereLoop object for debugging purposes
1752 */
1753 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
1754   WhereInfo *pWInfo = pWC->pWInfo;
1755   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1756   struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
1757   Table *pTab = pItem->pTab;
1758   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1759   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1760                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1761   sqlite3DebugPrintf(" %12s",
1762                      pItem->zAlias ? pItem->zAlias : pTab->zName);
1763   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1764     const char *zName;
1765     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1766       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1767         int i = sqlite3Strlen30(zName) - 1;
1768         while( zName[i]!='_' ) i--;
1769         zName += i;
1770       }
1771       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1772     }else{
1773       sqlite3DebugPrintf("%20s","");
1774     }
1775   }else{
1776     char *z;
1777     if( p->u.vtab.idxStr ){
1778       z = sqlite3_mprintf("(%d,\"%s\",%x)",
1779                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1780     }else{
1781       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1782     }
1783     sqlite3DebugPrintf(" %-19s", z);
1784     sqlite3_free(z);
1785   }
1786   if( p->wsFlags & WHERE_SKIPSCAN ){
1787     sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1788   }else{
1789     sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1790   }
1791   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1792   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1793     int i;
1794     for(i=0; i<p->nLTerm; i++){
1795       whereTermPrint(p->aLTerm[i], i);
1796     }
1797   }
1798 }
1799 #endif
1800 
1801 /*
1802 ** Convert bulk memory into a valid WhereLoop that can be passed
1803 ** to whereLoopClear harmlessly.
1804 */
1805 static void whereLoopInit(WhereLoop *p){
1806   p->aLTerm = p->aLTermSpace;
1807   p->nLTerm = 0;
1808   p->nLSlot = ArraySize(p->aLTermSpace);
1809   p->wsFlags = 0;
1810 }
1811 
1812 /*
1813 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
1814 */
1815 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1816   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1817     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1818       sqlite3_free(p->u.vtab.idxStr);
1819       p->u.vtab.needFree = 0;
1820       p->u.vtab.idxStr = 0;
1821     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1822       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1823       sqlite3DbFreeNN(db, p->u.btree.pIndex);
1824       p->u.btree.pIndex = 0;
1825     }
1826   }
1827 }
1828 
1829 /*
1830 ** Deallocate internal memory used by a WhereLoop object
1831 */
1832 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1833   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1834   whereLoopClearUnion(db, p);
1835   whereLoopInit(p);
1836 }
1837 
1838 /*
1839 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1840 */
1841 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1842   WhereTerm **paNew;
1843   if( p->nLSlot>=n ) return SQLITE_OK;
1844   n = (n+7)&~7;
1845   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1846   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1847   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1848   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1849   p->aLTerm = paNew;
1850   p->nLSlot = n;
1851   return SQLITE_OK;
1852 }
1853 
1854 /*
1855 ** Transfer content from the second pLoop into the first.
1856 */
1857 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1858   whereLoopClearUnion(db, pTo);
1859   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1860     memset(&pTo->u, 0, sizeof(pTo->u));
1861     return SQLITE_NOMEM_BKPT;
1862   }
1863   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1864   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1865   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1866     pFrom->u.vtab.needFree = 0;
1867   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1868     pFrom->u.btree.pIndex = 0;
1869   }
1870   return SQLITE_OK;
1871 }
1872 
1873 /*
1874 ** Delete a WhereLoop object
1875 */
1876 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1877   whereLoopClear(db, p);
1878   sqlite3DbFreeNN(db, p);
1879 }
1880 
1881 /*
1882 ** Free a WhereInfo structure
1883 */
1884 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1885   int i;
1886   assert( pWInfo!=0 );
1887   for(i=0; i<pWInfo->nLevel; i++){
1888     WhereLevel *pLevel = &pWInfo->a[i];
1889     if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1890       sqlite3DbFree(db, pLevel->u.in.aInLoop);
1891     }
1892   }
1893   sqlite3WhereClauseClear(&pWInfo->sWC);
1894   while( pWInfo->pLoops ){
1895     WhereLoop *p = pWInfo->pLoops;
1896     pWInfo->pLoops = p->pNextLoop;
1897     whereLoopDelete(db, p);
1898   }
1899   sqlite3DbFreeNN(db, pWInfo);
1900 }
1901 
1902 /*
1903 ** Return TRUE if all of the following are true:
1904 **
1905 **   (1)  X has the same or lower cost that Y
1906 **   (2)  X uses fewer WHERE clause terms than Y
1907 **   (3)  Every WHERE clause term used by X is also used by Y
1908 **   (4)  X skips at least as many columns as Y
1909 **   (5)  If X is a covering index, than Y is too
1910 **
1911 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
1912 ** If X is a proper subset of Y then Y is a better choice and ought
1913 ** to have a lower cost.  This routine returns TRUE when that cost
1914 ** relationship is inverted and needs to be adjusted.  Constraint (4)
1915 ** was added because if X uses skip-scan less than Y it still might
1916 ** deserve a lower cost even if it is a proper subset of Y.  Constraint (5)
1917 ** was added because a covering index probably deserves to have a lower cost
1918 ** than a non-covering index even if it is a proper subset.
1919 */
1920 static int whereLoopCheaperProperSubset(
1921   const WhereLoop *pX,       /* First WhereLoop to compare */
1922   const WhereLoop *pY        /* Compare against this WhereLoop */
1923 ){
1924   int i, j;
1925   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
1926     return 0; /* X is not a subset of Y */
1927   }
1928   if( pY->nSkip > pX->nSkip ) return 0;
1929   if( pX->rRun >= pY->rRun ){
1930     if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
1931     if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
1932   }
1933   for(i=pX->nLTerm-1; i>=0; i--){
1934     if( pX->aLTerm[i]==0 ) continue;
1935     for(j=pY->nLTerm-1; j>=0; j--){
1936       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
1937     }
1938     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
1939   }
1940   if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
1941    && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
1942     return 0;  /* Constraint (5) */
1943   }
1944   return 1;  /* All conditions meet */
1945 }
1946 
1947 /*
1948 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
1949 ** that:
1950 **
1951 **   (1) pTemplate costs less than any other WhereLoops that are a proper
1952 **       subset of pTemplate
1953 **
1954 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
1955 **       is a proper subset.
1956 **
1957 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
1958 ** WHERE clause terms than Y and that every WHERE clause term used by X is
1959 ** also used by Y.
1960 */
1961 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
1962   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
1963   for(; p; p=p->pNextLoop){
1964     if( p->iTab!=pTemplate->iTab ) continue;
1965     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
1966     if( whereLoopCheaperProperSubset(p, pTemplate) ){
1967       /* Adjust pTemplate cost downward so that it is cheaper than its
1968       ** subset p. */
1969       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1970                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
1971       pTemplate->rRun = p->rRun;
1972       pTemplate->nOut = p->nOut - 1;
1973     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
1974       /* Adjust pTemplate cost upward so that it is costlier than p since
1975       ** pTemplate is a proper subset of p */
1976       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1977                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
1978       pTemplate->rRun = p->rRun;
1979       pTemplate->nOut = p->nOut + 1;
1980     }
1981   }
1982 }
1983 
1984 /*
1985 ** Search the list of WhereLoops in *ppPrev looking for one that can be
1986 ** replaced by pTemplate.
1987 **
1988 ** Return NULL if pTemplate does not belong on the WhereLoop list.
1989 ** In other words if pTemplate ought to be dropped from further consideration.
1990 **
1991 ** If pX is a WhereLoop that pTemplate can replace, then return the
1992 ** link that points to pX.
1993 **
1994 ** If pTemplate cannot replace any existing element of the list but needs
1995 ** to be added to the list as a new entry, then return a pointer to the
1996 ** tail of the list.
1997 */
1998 static WhereLoop **whereLoopFindLesser(
1999   WhereLoop **ppPrev,
2000   const WhereLoop *pTemplate
2001 ){
2002   WhereLoop *p;
2003   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2004     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2005       /* If either the iTab or iSortIdx values for two WhereLoop are different
2006       ** then those WhereLoops need to be considered separately.  Neither is
2007       ** a candidate to replace the other. */
2008       continue;
2009     }
2010     /* In the current implementation, the rSetup value is either zero
2011     ** or the cost of building an automatic index (NlogN) and the NlogN
2012     ** is the same for compatible WhereLoops. */
2013     assert( p->rSetup==0 || pTemplate->rSetup==0
2014                  || p->rSetup==pTemplate->rSetup );
2015 
2016     /* whereLoopAddBtree() always generates and inserts the automatic index
2017     ** case first.  Hence compatible candidate WhereLoops never have a larger
2018     ** rSetup. Call this SETUP-INVARIANT */
2019     assert( p->rSetup>=pTemplate->rSetup );
2020 
2021     /* Any loop using an appliation-defined index (or PRIMARY KEY or
2022     ** UNIQUE constraint) with one or more == constraints is better
2023     ** than an automatic index. Unless it is a skip-scan. */
2024     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2025      && (pTemplate->nSkip)==0
2026      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2027      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2028      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2029     ){
2030       break;
2031     }
2032 
2033     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2034     ** discarded.  WhereLoop p is better if:
2035     **   (1)  p has no more dependencies than pTemplate, and
2036     **   (2)  p has an equal or lower cost than pTemplate
2037     */
2038     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2039      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2040      && p->rRun<=pTemplate->rRun                      /* (2b) */
2041      && p->nOut<=pTemplate->nOut                      /* (2c) */
2042     ){
2043       return 0;  /* Discard pTemplate */
2044     }
2045 
2046     /* If pTemplate is always better than p, then cause p to be overwritten
2047     ** with pTemplate.  pTemplate is better than p if:
2048     **   (1)  pTemplate has no more dependences than p, and
2049     **   (2)  pTemplate has an equal or lower cost than p.
2050     */
2051     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2052      && p->rRun>=pTemplate->rRun                             /* (2a) */
2053      && p->nOut>=pTemplate->nOut                             /* (2b) */
2054     ){
2055       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2056       break;   /* Cause p to be overwritten by pTemplate */
2057     }
2058   }
2059   return ppPrev;
2060 }
2061 
2062 /*
2063 ** Insert or replace a WhereLoop entry using the template supplied.
2064 **
2065 ** An existing WhereLoop entry might be overwritten if the new template
2066 ** is better and has fewer dependencies.  Or the template will be ignored
2067 ** and no insert will occur if an existing WhereLoop is faster and has
2068 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2069 ** added based on the template.
2070 **
2071 ** If pBuilder->pOrSet is not NULL then we care about only the
2072 ** prerequisites and rRun and nOut costs of the N best loops.  That
2073 ** information is gathered in the pBuilder->pOrSet object.  This special
2074 ** processing mode is used only for OR clause processing.
2075 **
2076 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2077 ** still might overwrite similar loops with the new template if the
2078 ** new template is better.  Loops may be overwritten if the following
2079 ** conditions are met:
2080 **
2081 **    (1)  They have the same iTab.
2082 **    (2)  They have the same iSortIdx.
2083 **    (3)  The template has same or fewer dependencies than the current loop
2084 **    (4)  The template has the same or lower cost than the current loop
2085 */
2086 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2087   WhereLoop **ppPrev, *p;
2088   WhereInfo *pWInfo = pBuilder->pWInfo;
2089   sqlite3 *db = pWInfo->pParse->db;
2090   int rc;
2091 
2092   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2093   ** and prereqs.
2094   */
2095   if( pBuilder->pOrSet!=0 ){
2096     if( pTemplate->nLTerm ){
2097 #if WHERETRACE_ENABLED
2098       u16 n = pBuilder->pOrSet->n;
2099       int x =
2100 #endif
2101       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2102                                     pTemplate->nOut);
2103 #if WHERETRACE_ENABLED /* 0x8 */
2104       if( sqlite3WhereTrace & 0x8 ){
2105         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2106         whereLoopPrint(pTemplate, pBuilder->pWC);
2107       }
2108 #endif
2109     }
2110     return SQLITE_OK;
2111   }
2112 
2113   /* Look for an existing WhereLoop to replace with pTemplate
2114   */
2115   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2116   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2117 
2118   if( ppPrev==0 ){
2119     /* There already exists a WhereLoop on the list that is better
2120     ** than pTemplate, so just ignore pTemplate */
2121 #if WHERETRACE_ENABLED /* 0x8 */
2122     if( sqlite3WhereTrace & 0x8 ){
2123       sqlite3DebugPrintf("   skip: ");
2124       whereLoopPrint(pTemplate, pBuilder->pWC);
2125     }
2126 #endif
2127     return SQLITE_OK;
2128   }else{
2129     p = *ppPrev;
2130   }
2131 
2132   /* If we reach this point it means that either p[] should be overwritten
2133   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2134   ** WhereLoop and insert it.
2135   */
2136 #if WHERETRACE_ENABLED /* 0x8 */
2137   if( sqlite3WhereTrace & 0x8 ){
2138     if( p!=0 ){
2139       sqlite3DebugPrintf("replace: ");
2140       whereLoopPrint(p, pBuilder->pWC);
2141       sqlite3DebugPrintf("   with: ");
2142     }else{
2143       sqlite3DebugPrintf("    add: ");
2144     }
2145     whereLoopPrint(pTemplate, pBuilder->pWC);
2146   }
2147 #endif
2148   if( p==0 ){
2149     /* Allocate a new WhereLoop to add to the end of the list */
2150     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2151     if( p==0 ) return SQLITE_NOMEM_BKPT;
2152     whereLoopInit(p);
2153     p->pNextLoop = 0;
2154   }else{
2155     /* We will be overwriting WhereLoop p[].  But before we do, first
2156     ** go through the rest of the list and delete any other entries besides
2157     ** p[] that are also supplated by pTemplate */
2158     WhereLoop **ppTail = &p->pNextLoop;
2159     WhereLoop *pToDel;
2160     while( *ppTail ){
2161       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2162       if( ppTail==0 ) break;
2163       pToDel = *ppTail;
2164       if( pToDel==0 ) break;
2165       *ppTail = pToDel->pNextLoop;
2166 #if WHERETRACE_ENABLED /* 0x8 */
2167       if( sqlite3WhereTrace & 0x8 ){
2168         sqlite3DebugPrintf(" delete: ");
2169         whereLoopPrint(pToDel, pBuilder->pWC);
2170       }
2171 #endif
2172       whereLoopDelete(db, pToDel);
2173     }
2174   }
2175   rc = whereLoopXfer(db, p, pTemplate);
2176   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2177     Index *pIndex = p->u.btree.pIndex;
2178     if( pIndex && pIndex->tnum==0 ){
2179       p->u.btree.pIndex = 0;
2180     }
2181   }
2182   return rc;
2183 }
2184 
2185 /*
2186 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2187 ** WHERE clause that reference the loop but which are not used by an
2188 ** index.
2189 *
2190 ** For every WHERE clause term that is not used by the index
2191 ** and which has a truth probability assigned by one of the likelihood(),
2192 ** likely(), or unlikely() SQL functions, reduce the estimated number
2193 ** of output rows by the probability specified.
2194 **
2195 ** TUNING:  For every WHERE clause term that is not used by the index
2196 ** and which does not have an assigned truth probability, heuristics
2197 ** described below are used to try to estimate the truth probability.
2198 ** TODO --> Perhaps this is something that could be improved by better
2199 ** table statistics.
2200 **
2201 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2202 ** value corresponds to -1 in LogEst notation, so this means decrement
2203 ** the WhereLoop.nOut field for every such WHERE clause term.
2204 **
2205 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2206 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2207 ** final output row estimate is no greater than 1/4 of the total number
2208 ** of rows in the table.  In other words, assume that x==EXPR will filter
2209 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2210 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2211 ** on the "x" column and so in that case only cap the output row estimate
2212 ** at 1/2 instead of 1/4.
2213 */
2214 static void whereLoopOutputAdjust(
2215   WhereClause *pWC,      /* The WHERE clause */
2216   WhereLoop *pLoop,      /* The loop to adjust downward */
2217   LogEst nRow            /* Number of rows in the entire table */
2218 ){
2219   WhereTerm *pTerm, *pX;
2220   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2221   int i, j, k;
2222   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2223 
2224   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2225   for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2226     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2227     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2228     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2229     for(j=pLoop->nLTerm-1; j>=0; j--){
2230       pX = pLoop->aLTerm[j];
2231       if( pX==0 ) continue;
2232       if( pX==pTerm ) break;
2233       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2234     }
2235     if( j<0 ){
2236       if( pTerm->truthProb<=0 ){
2237         /* If a truth probability is specified using the likelihood() hints,
2238         ** then use the probability provided by the application. */
2239         pLoop->nOut += pTerm->truthProb;
2240       }else{
2241         /* In the absence of explicit truth probabilities, use heuristics to
2242         ** guess a reasonable truth probability. */
2243         pLoop->nOut--;
2244         if( pTerm->eOperator&(WO_EQ|WO_IS) ){
2245           Expr *pRight = pTerm->pExpr->pRight;
2246           testcase( pTerm->pExpr->op==TK_IS );
2247           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2248             k = 10;
2249           }else{
2250             k = 20;
2251           }
2252           if( iReduce<k ) iReduce = k;
2253         }
2254       }
2255     }
2256   }
2257   if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;
2258 }
2259 
2260 /*
2261 ** Term pTerm is a vector range comparison operation. The first comparison
2262 ** in the vector can be optimized using column nEq of the index. This
2263 ** function returns the total number of vector elements that can be used
2264 ** as part of the range comparison.
2265 **
2266 ** For example, if the query is:
2267 **
2268 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2269 **
2270 ** and the index:
2271 **
2272 **   CREATE INDEX ... ON (a, b, c, d, e)
2273 **
2274 ** then this function would be invoked with nEq=1. The value returned in
2275 ** this case is 3.
2276 */
2277 static int whereRangeVectorLen(
2278   Parse *pParse,       /* Parsing context */
2279   int iCur,            /* Cursor open on pIdx */
2280   Index *pIdx,         /* The index to be used for a inequality constraint */
2281   int nEq,             /* Number of prior equality constraints on same index */
2282   WhereTerm *pTerm     /* The vector inequality constraint */
2283 ){
2284   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2285   int i;
2286 
2287   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2288   for(i=1; i<nCmp; i++){
2289     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2290     ** of the index. If not, exit the loop.  */
2291     char aff;                     /* Comparison affinity */
2292     char idxaff = 0;              /* Indexed columns affinity */
2293     CollSeq *pColl;               /* Comparison collation sequence */
2294     Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2295     Expr *pRhs = pTerm->pExpr->pRight;
2296     if( pRhs->flags & EP_xIsSelect ){
2297       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2298     }else{
2299       pRhs = pRhs->x.pList->a[i].pExpr;
2300     }
2301 
2302     /* Check that the LHS of the comparison is a column reference to
2303     ** the right column of the right source table. And that the sort
2304     ** order of the index column is the same as the sort order of the
2305     ** leftmost index column.  */
2306     if( pLhs->op!=TK_COLUMN
2307      || pLhs->iTable!=iCur
2308      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2309      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2310     ){
2311       break;
2312     }
2313 
2314     testcase( pLhs->iColumn==XN_ROWID );
2315     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2316     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2317     if( aff!=idxaff ) break;
2318 
2319     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2320     if( pColl==0 ) break;
2321     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2322   }
2323   return i;
2324 }
2325 
2326 /*
2327 ** Adjust the cost C by the costMult facter T.  This only occurs if
2328 ** compiled with -DSQLITE_ENABLE_COSTMULT
2329 */
2330 #ifdef SQLITE_ENABLE_COSTMULT
2331 # define ApplyCostMultiplier(C,T)  C += T
2332 #else
2333 # define ApplyCostMultiplier(C,T)
2334 #endif
2335 
2336 /*
2337 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2338 ** index pIndex. Try to match one more.
2339 **
2340 ** When this function is called, pBuilder->pNew->nOut contains the
2341 ** number of rows expected to be visited by filtering using the nEq
2342 ** terms only. If it is modified, this value is restored before this
2343 ** function returns.
2344 **
2345 ** If pProbe->tnum==0, that means pIndex is a fake index used for the
2346 ** INTEGER PRIMARY KEY.
2347 */
2348 static int whereLoopAddBtreeIndex(
2349   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2350   struct SrcList_item *pSrc,      /* FROM clause term being analyzed */
2351   Index *pProbe,                  /* An index on pSrc */
2352   LogEst nInMul                   /* log(Number of iterations due to IN) */
2353 ){
2354   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2355   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2356   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2357   WhereLoop *pNew;                /* Template WhereLoop under construction */
2358   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2359   int opMask;                     /* Valid operators for constraints */
2360   WhereScan scan;                 /* Iterator for WHERE terms */
2361   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2362   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2363   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2364   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2365   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2366   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2367   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2368   LogEst saved_nOut;              /* Original value of pNew->nOut */
2369   int rc = SQLITE_OK;             /* Return code */
2370   LogEst rSize;                   /* Number of rows in the table */
2371   LogEst rLogSize;                /* Logarithm of table size */
2372   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2373 
2374   pNew = pBuilder->pNew;
2375   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2376   WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d\n",
2377                      pProbe->pTable->zName,pProbe->zName, pNew->u.btree.nEq));
2378 
2379   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2380   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2381   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2382     opMask = WO_LT|WO_LE;
2383   }else{
2384     assert( pNew->u.btree.nBtm==0 );
2385     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2386   }
2387   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2388 
2389   assert( pNew->u.btree.nEq<pProbe->nColumn );
2390 
2391   saved_nEq = pNew->u.btree.nEq;
2392   saved_nBtm = pNew->u.btree.nBtm;
2393   saved_nTop = pNew->u.btree.nTop;
2394   saved_nSkip = pNew->nSkip;
2395   saved_nLTerm = pNew->nLTerm;
2396   saved_wsFlags = pNew->wsFlags;
2397   saved_prereq = pNew->prereq;
2398   saved_nOut = pNew->nOut;
2399   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2400                         opMask, pProbe);
2401   pNew->rSetup = 0;
2402   rSize = pProbe->aiRowLogEst[0];
2403   rLogSize = estLog(rSize);
2404   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2405     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2406     LogEst rCostIdx;
2407     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2408     int nIn = 0;
2409 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2410     int nRecValid = pBuilder->nRecValid;
2411 #endif
2412     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2413      && indexColumnNotNull(pProbe, saved_nEq)
2414     ){
2415       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2416     }
2417     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2418 
2419     /* Do not allow the upper bound of a LIKE optimization range constraint
2420     ** to mix with a lower range bound from some other source */
2421     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2422 
2423     /* Do not allow IS constraints from the WHERE clause to be used by the
2424     ** right table of a LEFT JOIN.  Only constraints in the ON clause are
2425     ** allowed */
2426     if( (pSrc->fg.jointype & JT_LEFT)!=0
2427      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2428      && (eOp & (WO_IS|WO_ISNULL))!=0
2429     ){
2430       testcase( eOp & WO_IS );
2431       testcase( eOp & WO_ISNULL );
2432       continue;
2433     }
2434 
2435     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2436       pBuilder->bldFlags |= SQLITE_BLDF_UNIQUE;
2437     }else{
2438       pBuilder->bldFlags |= SQLITE_BLDF_INDEXED;
2439     }
2440     pNew->wsFlags = saved_wsFlags;
2441     pNew->u.btree.nEq = saved_nEq;
2442     pNew->u.btree.nBtm = saved_nBtm;
2443     pNew->u.btree.nTop = saved_nTop;
2444     pNew->nLTerm = saved_nLTerm;
2445     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2446     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2447     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2448 
2449     assert( nInMul==0
2450         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2451         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2452         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2453     );
2454 
2455     if( eOp & WO_IN ){
2456       Expr *pExpr = pTerm->pExpr;
2457       pNew->wsFlags |= WHERE_COLUMN_IN;
2458       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2459         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2460         int i;
2461         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2462 
2463         /* The expression may actually be of the form (x, y) IN (SELECT...).
2464         ** In this case there is a separate term for each of (x) and (y).
2465         ** However, the nIn multiplier should only be applied once, not once
2466         ** for each such term. The following loop checks that pTerm is the
2467         ** first such term in use, and sets nIn back to 0 if it is not. */
2468         for(i=0; i<pNew->nLTerm-1; i++){
2469           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2470         }
2471       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2472         /* "x IN (value, value, ...)" */
2473         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2474         assert( nIn>0 );  /* RHS always has 2 or more terms...  The parser
2475                           ** changes "x IN (?)" into "x=?". */
2476       }
2477     }else if( eOp & (WO_EQ|WO_IS) ){
2478       int iCol = pProbe->aiColumn[saved_nEq];
2479       pNew->wsFlags |= WHERE_COLUMN_EQ;
2480       assert( saved_nEq==pNew->u.btree.nEq );
2481       if( iCol==XN_ROWID
2482        || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2483       ){
2484         if( iCol==XN_ROWID || pProbe->uniqNotNull
2485          || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2486         ){
2487           pNew->wsFlags |= WHERE_ONEROW;
2488         }else{
2489           pNew->wsFlags |= WHERE_UNQ_WANTED;
2490         }
2491       }
2492     }else if( eOp & WO_ISNULL ){
2493       pNew->wsFlags |= WHERE_COLUMN_NULL;
2494     }else if( eOp & (WO_GT|WO_GE) ){
2495       testcase( eOp & WO_GT );
2496       testcase( eOp & WO_GE );
2497       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2498       pNew->u.btree.nBtm = whereRangeVectorLen(
2499           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2500       );
2501       pBtm = pTerm;
2502       pTop = 0;
2503       if( pTerm->wtFlags & TERM_LIKEOPT ){
2504         /* Range contraints that come from the LIKE optimization are
2505         ** always used in pairs. */
2506         pTop = &pTerm[1];
2507         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2508         assert( pTop->wtFlags & TERM_LIKEOPT );
2509         assert( pTop->eOperator==WO_LT );
2510         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2511         pNew->aLTerm[pNew->nLTerm++] = pTop;
2512         pNew->wsFlags |= WHERE_TOP_LIMIT;
2513         pNew->u.btree.nTop = 1;
2514       }
2515     }else{
2516       assert( eOp & (WO_LT|WO_LE) );
2517       testcase( eOp & WO_LT );
2518       testcase( eOp & WO_LE );
2519       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2520       pNew->u.btree.nTop = whereRangeVectorLen(
2521           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2522       );
2523       pTop = pTerm;
2524       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2525                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2526     }
2527 
2528     /* At this point pNew->nOut is set to the number of rows expected to
2529     ** be visited by the index scan before considering term pTerm, or the
2530     ** values of nIn and nInMul. In other words, assuming that all
2531     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2532     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2533     assert( pNew->nOut==saved_nOut );
2534     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2535       /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4
2536       ** data, using some other estimate.  */
2537       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2538     }else{
2539       int nEq = ++pNew->u.btree.nEq;
2540       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2541 
2542       assert( pNew->nOut==saved_nOut );
2543       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2544         assert( (eOp & WO_IN) || nIn==0 );
2545         testcase( eOp & WO_IN );
2546         pNew->nOut += pTerm->truthProb;
2547         pNew->nOut -= nIn;
2548       }else{
2549 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2550         tRowcnt nOut = 0;
2551         if( nInMul==0
2552          && pProbe->nSample
2553          && pNew->u.btree.nEq<=pProbe->nSampleCol
2554          && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2555         ){
2556           Expr *pExpr = pTerm->pExpr;
2557           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2558             testcase( eOp & WO_EQ );
2559             testcase( eOp & WO_IS );
2560             testcase( eOp & WO_ISNULL );
2561             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2562           }else{
2563             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2564           }
2565           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2566           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2567           if( nOut ){
2568             pNew->nOut = sqlite3LogEst(nOut);
2569             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2570             pNew->nOut -= nIn;
2571           }
2572         }
2573         if( nOut==0 )
2574 #endif
2575         {
2576           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2577           if( eOp & WO_ISNULL ){
2578             /* TUNING: If there is no likelihood() value, assume that a
2579             ** "col IS NULL" expression matches twice as many rows
2580             ** as (col=?). */
2581             pNew->nOut += 10;
2582           }
2583         }
2584       }
2585     }
2586 
2587     /* Set rCostIdx to the cost of visiting selected rows in index. Add
2588     ** it to pNew->rRun, which is currently set to the cost of the index
2589     ** seek only. Then, if this is a non-covering index, add the cost of
2590     ** visiting the rows in the main table.  */
2591     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2592     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2593     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2594       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2595     }
2596     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2597 
2598     nOutUnadjusted = pNew->nOut;
2599     pNew->rRun += nInMul + nIn;
2600     pNew->nOut += nInMul + nIn;
2601     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2602     rc = whereLoopInsert(pBuilder, pNew);
2603 
2604     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2605       pNew->nOut = saved_nOut;
2606     }else{
2607       pNew->nOut = nOutUnadjusted;
2608     }
2609 
2610     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2611      && pNew->u.btree.nEq<pProbe->nColumn
2612     ){
2613       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2614     }
2615     pNew->nOut = saved_nOut;
2616 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2617     pBuilder->nRecValid = nRecValid;
2618 #endif
2619   }
2620   pNew->prereq = saved_prereq;
2621   pNew->u.btree.nEq = saved_nEq;
2622   pNew->u.btree.nBtm = saved_nBtm;
2623   pNew->u.btree.nTop = saved_nTop;
2624   pNew->nSkip = saved_nSkip;
2625   pNew->wsFlags = saved_wsFlags;
2626   pNew->nOut = saved_nOut;
2627   pNew->nLTerm = saved_nLTerm;
2628 
2629   /* Consider using a skip-scan if there are no WHERE clause constraints
2630   ** available for the left-most terms of the index, and if the average
2631   ** number of repeats in the left-most terms is at least 18.
2632   **
2633   ** The magic number 18 is selected on the basis that scanning 17 rows
2634   ** is almost always quicker than an index seek (even though if the index
2635   ** contains fewer than 2^17 rows we assume otherwise in other parts of
2636   ** the code). And, even if it is not, it should not be too much slower.
2637   ** On the other hand, the extra seeks could end up being significantly
2638   ** more expensive.  */
2639   assert( 42==sqlite3LogEst(18) );
2640   if( saved_nEq==saved_nSkip
2641    && saved_nEq+1<pProbe->nKeyCol
2642    && pProbe->noSkipScan==0
2643    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
2644    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2645   ){
2646     LogEst nIter;
2647     pNew->u.btree.nEq++;
2648     pNew->nSkip++;
2649     pNew->aLTerm[pNew->nLTerm++] = 0;
2650     pNew->wsFlags |= WHERE_SKIPSCAN;
2651     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2652     pNew->nOut -= nIter;
2653     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
2654     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2655     nIter += 5;
2656     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2657     pNew->nOut = saved_nOut;
2658     pNew->u.btree.nEq = saved_nEq;
2659     pNew->nSkip = saved_nSkip;
2660     pNew->wsFlags = saved_wsFlags;
2661   }
2662 
2663   WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
2664                       pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
2665   return rc;
2666 }
2667 
2668 /*
2669 ** Return True if it is possible that pIndex might be useful in
2670 ** implementing the ORDER BY clause in pBuilder.
2671 **
2672 ** Return False if pBuilder does not contain an ORDER BY clause or
2673 ** if there is no way for pIndex to be useful in implementing that
2674 ** ORDER BY clause.
2675 */
2676 static int indexMightHelpWithOrderBy(
2677   WhereLoopBuilder *pBuilder,
2678   Index *pIndex,
2679   int iCursor
2680 ){
2681   ExprList *pOB;
2682   ExprList *aColExpr;
2683   int ii, jj;
2684 
2685   if( pIndex->bUnordered ) return 0;
2686   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2687   for(ii=0; ii<pOB->nExpr; ii++){
2688     Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
2689     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2690       if( pExpr->iColumn<0 ) return 1;
2691       for(jj=0; jj<pIndex->nKeyCol; jj++){
2692         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2693       }
2694     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2695       for(jj=0; jj<pIndex->nKeyCol; jj++){
2696         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2697         if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2698           return 1;
2699         }
2700       }
2701     }
2702   }
2703   return 0;
2704 }
2705 
2706 /*
2707 ** Return a bitmask where 1s indicate that the corresponding column of
2708 ** the table is used by an index.  Only the first 63 columns are considered.
2709 */
2710 static Bitmask columnsInIndex(Index *pIdx){
2711   Bitmask m = 0;
2712   int j;
2713   for(j=pIdx->nColumn-1; j>=0; j--){
2714     int x = pIdx->aiColumn[j];
2715     if( x>=0 ){
2716       testcase( x==BMS-1 );
2717       testcase( x==BMS-2 );
2718       if( x<BMS-1 ) m |= MASKBIT(x);
2719     }
2720   }
2721   return m;
2722 }
2723 
2724 /* Check to see if a partial index with pPartIndexWhere can be used
2725 ** in the current query.  Return true if it can be and false if not.
2726 */
2727 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){
2728   int i;
2729   WhereTerm *pTerm;
2730   Parse *pParse = pWC->pWInfo->pParse;
2731   while( pWhere->op==TK_AND ){
2732     if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0;
2733     pWhere = pWhere->pRight;
2734   }
2735   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
2736   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2737     Expr *pExpr = pTerm->pExpr;
2738     if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2739      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
2740     ){
2741       return 1;
2742     }
2743   }
2744   return 0;
2745 }
2746 
2747 /*
2748 ** Add all WhereLoop objects for a single table of the join where the table
2749 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
2750 ** a b-tree table, not a virtual table.
2751 **
2752 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2753 ** are calculated as follows:
2754 **
2755 ** For a full scan, assuming the table (or index) contains nRow rows:
2756 **
2757 **     cost = nRow * 3.0                    // full-table scan
2758 **     cost = nRow * K                      // scan of covering index
2759 **     cost = nRow * (K+3.0)                // scan of non-covering index
2760 **
2761 ** where K is a value between 1.1 and 3.0 set based on the relative
2762 ** estimated average size of the index and table records.
2763 **
2764 ** For an index scan, where nVisit is the number of index rows visited
2765 ** by the scan, and nSeek is the number of seek operations required on
2766 ** the index b-tree:
2767 **
2768 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
2769 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
2770 **
2771 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2772 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2773 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2774 **
2775 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2776 ** of uncertainty.  For this reason, scoring is designed to pick plans that
2777 ** "do the least harm" if the estimates are inaccurate.  For example, a
2778 ** log(nRow) factor is omitted from a non-covering index scan in order to
2779 ** bias the scoring in favor of using an index, since the worst-case
2780 ** performance of using an index is far better than the worst-case performance
2781 ** of a full table scan.
2782 */
2783 static int whereLoopAddBtree(
2784   WhereLoopBuilder *pBuilder, /* WHERE clause information */
2785   Bitmask mPrereq             /* Extra prerequesites for using this table */
2786 ){
2787   WhereInfo *pWInfo;          /* WHERE analysis context */
2788   Index *pProbe;              /* An index we are evaluating */
2789   Index sPk;                  /* A fake index object for the primary key */
2790   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
2791   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
2792   SrcList *pTabList;          /* The FROM clause */
2793   struct SrcList_item *pSrc;  /* The FROM clause btree term to add */
2794   WhereLoop *pNew;            /* Template WhereLoop object */
2795   int rc = SQLITE_OK;         /* Return code */
2796   int iSortIdx = 1;           /* Index number */
2797   int b;                      /* A boolean value */
2798   LogEst rSize;               /* number of rows in the table */
2799   LogEst rLogSize;            /* Logarithm of the number of rows in the table */
2800   WhereClause *pWC;           /* The parsed WHERE clause */
2801   Table *pTab;                /* Table being queried */
2802 
2803   pNew = pBuilder->pNew;
2804   pWInfo = pBuilder->pWInfo;
2805   pTabList = pWInfo->pTabList;
2806   pSrc = pTabList->a + pNew->iTab;
2807   pTab = pSrc->pTab;
2808   pWC = pBuilder->pWC;
2809   assert( !IsVirtual(pSrc->pTab) );
2810 
2811   if( pSrc->pIBIndex ){
2812     /* An INDEXED BY clause specifies a particular index to use */
2813     pProbe = pSrc->pIBIndex;
2814   }else if( !HasRowid(pTab) ){
2815     pProbe = pTab->pIndex;
2816   }else{
2817     /* There is no INDEXED BY clause.  Create a fake Index object in local
2818     ** variable sPk to represent the rowid primary key index.  Make this
2819     ** fake index the first in a chain of Index objects with all of the real
2820     ** indices to follow */
2821     Index *pFirst;                  /* First of real indices on the table */
2822     memset(&sPk, 0, sizeof(Index));
2823     sPk.nKeyCol = 1;
2824     sPk.nColumn = 1;
2825     sPk.aiColumn = &aiColumnPk;
2826     sPk.aiRowLogEst = aiRowEstPk;
2827     sPk.onError = OE_Replace;
2828     sPk.pTable = pTab;
2829     sPk.szIdxRow = pTab->szTabRow;
2830     aiRowEstPk[0] = pTab->nRowLogEst;
2831     aiRowEstPk[1] = 0;
2832     pFirst = pSrc->pTab->pIndex;
2833     if( pSrc->fg.notIndexed==0 ){
2834       /* The real indices of the table are only considered if the
2835       ** NOT INDEXED qualifier is omitted from the FROM clause */
2836       sPk.pNext = pFirst;
2837     }
2838     pProbe = &sPk;
2839   }
2840   rSize = pTab->nRowLogEst;
2841   rLogSize = estLog(rSize);
2842 
2843 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
2844   /* Automatic indexes */
2845   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
2846    && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
2847    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
2848    && pSrc->pIBIndex==0      /* Has no INDEXED BY clause */
2849    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
2850    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
2851    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
2852    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
2853   ){
2854     /* Generate auto-index WhereLoops */
2855     WhereTerm *pTerm;
2856     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
2857     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
2858       if( pTerm->prereqRight & pNew->maskSelf ) continue;
2859       if( termCanDriveIndex(pTerm, pSrc, 0) ){
2860         pNew->u.btree.nEq = 1;
2861         pNew->nSkip = 0;
2862         pNew->u.btree.pIndex = 0;
2863         pNew->nLTerm = 1;
2864         pNew->aLTerm[0] = pTerm;
2865         /* TUNING: One-time cost for computing the automatic index is
2866         ** estimated to be X*N*log2(N) where N is the number of rows in
2867         ** the table being indexed and where X is 7 (LogEst=28) for normal
2868         ** tables or 1.375 (LogEst=4) for views and subqueries.  The value
2869         ** of X is smaller for views and subqueries so that the query planner
2870         ** will be more aggressive about generating automatic indexes for
2871         ** those objects, since there is no opportunity to add schema
2872         ** indexes on subqueries and views. */
2873         pNew->rSetup = rLogSize + rSize + 4;
2874         if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
2875           pNew->rSetup += 24;
2876         }
2877         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
2878         if( pNew->rSetup<0 ) pNew->rSetup = 0;
2879         /* TUNING: Each index lookup yields 20 rows in the table.  This
2880         ** is more than the usual guess of 10 rows, since we have no way
2881         ** of knowing how selective the index will ultimately be.  It would
2882         ** not be unreasonable to make this value much larger. */
2883         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
2884         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
2885         pNew->wsFlags = WHERE_AUTO_INDEX;
2886         pNew->prereq = mPrereq | pTerm->prereqRight;
2887         rc = whereLoopInsert(pBuilder, pNew);
2888       }
2889     }
2890   }
2891 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
2892 
2893   /* Loop over all indices. If there was an INDEXED BY clause, then only
2894   ** consider index pProbe.  */
2895   for(; rc==SQLITE_OK && pProbe;
2896       pProbe=(pSrc->pIBIndex ? 0 : pProbe->pNext), iSortIdx++
2897   ){
2898     if( pProbe->pPartIdxWhere!=0
2899      && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){
2900       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
2901       continue;  /* Partial index inappropriate for this query */
2902     }
2903     if( pProbe->bNoQuery ) continue;
2904     rSize = pProbe->aiRowLogEst[0];
2905     pNew->u.btree.nEq = 0;
2906     pNew->u.btree.nBtm = 0;
2907     pNew->u.btree.nTop = 0;
2908     pNew->nSkip = 0;
2909     pNew->nLTerm = 0;
2910     pNew->iSortIdx = 0;
2911     pNew->rSetup = 0;
2912     pNew->prereq = mPrereq;
2913     pNew->nOut = rSize;
2914     pNew->u.btree.pIndex = pProbe;
2915     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
2916     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
2917     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
2918     if( pProbe->tnum<=0 ){
2919       /* Integer primary key index */
2920       pNew->wsFlags = WHERE_IPK;
2921 
2922       /* Full table scan */
2923       pNew->iSortIdx = b ? iSortIdx : 0;
2924       /* TUNING: Cost of full table scan is (N*3.0). */
2925       pNew->rRun = rSize + 16;
2926       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
2927       whereLoopOutputAdjust(pWC, pNew, rSize);
2928       rc = whereLoopInsert(pBuilder, pNew);
2929       pNew->nOut = rSize;
2930       if( rc ) break;
2931     }else{
2932       Bitmask m;
2933       if( pProbe->isCovering ){
2934         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
2935         m = 0;
2936       }else{
2937         m = pSrc->colUsed & ~columnsInIndex(pProbe);
2938         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
2939       }
2940 
2941       /* Full scan via index */
2942       if( b
2943        || !HasRowid(pTab)
2944        || pProbe->pPartIdxWhere!=0
2945        || ( m==0
2946          && pProbe->bUnordered==0
2947          && (pProbe->szIdxRow<pTab->szTabRow)
2948          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
2949          && sqlite3GlobalConfig.bUseCis
2950          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
2951           )
2952       ){
2953         pNew->iSortIdx = b ? iSortIdx : 0;
2954 
2955         /* The cost of visiting the index rows is N*K, where K is
2956         ** between 1.1 and 3.0, depending on the relative sizes of the
2957         ** index and table rows. */
2958         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
2959         if( m!=0 ){
2960           /* If this is a non-covering index scan, add in the cost of
2961           ** doing table lookups.  The cost will be 3x the number of
2962           ** lookups.  Take into account WHERE clause terms that can be
2963           ** satisfied using just the index, and that do not require a
2964           ** table lookup. */
2965           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
2966           int ii;
2967           int iCur = pSrc->iCursor;
2968           WhereClause *pWC2 = &pWInfo->sWC;
2969           for(ii=0; ii<pWC2->nTerm; ii++){
2970             WhereTerm *pTerm = &pWC2->a[ii];
2971             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
2972               break;
2973             }
2974             /* pTerm can be evaluated using just the index.  So reduce
2975             ** the expected number of table lookups accordingly */
2976             if( pTerm->truthProb<=0 ){
2977               nLookup += pTerm->truthProb;
2978             }else{
2979               nLookup--;
2980               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
2981             }
2982           }
2983 
2984           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
2985         }
2986         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
2987         whereLoopOutputAdjust(pWC, pNew, rSize);
2988         rc = whereLoopInsert(pBuilder, pNew);
2989         pNew->nOut = rSize;
2990         if( rc ) break;
2991       }
2992     }
2993 
2994     pBuilder->bldFlags = 0;
2995     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
2996     if( pBuilder->bldFlags==SQLITE_BLDF_INDEXED ){
2997       /* If a non-unique index is used, or if a prefix of the key for
2998       ** unique index is used (making the index functionally non-unique)
2999       ** then the sqlite_stat1 data becomes important for scoring the
3000       ** plan */
3001       pTab->tabFlags |= TF_StatsUsed;
3002     }
3003 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
3004     sqlite3Stat4ProbeFree(pBuilder->pRec);
3005     pBuilder->nRecValid = 0;
3006     pBuilder->pRec = 0;
3007 #endif
3008   }
3009   return rc;
3010 }
3011 
3012 #ifndef SQLITE_OMIT_VIRTUALTABLE
3013 
3014 /*
3015 ** Argument pIdxInfo is already populated with all constraints that may
3016 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3017 ** function marks a subset of those constraints usable, invokes the
3018 ** xBestIndex method and adds the returned plan to pBuilder.
3019 **
3020 ** A constraint is marked usable if:
3021 **
3022 **   * Argument mUsable indicates that its prerequisites are available, and
3023 **
3024 **   * It is not one of the operators specified in the mExclude mask passed
3025 **     as the fourth argument (which in practice is either WO_IN or 0).
3026 **
3027 ** Argument mPrereq is a mask of tables that must be scanned before the
3028 ** virtual table in question. These are added to the plans prerequisites
3029 ** before it is added to pBuilder.
3030 **
3031 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3032 ** uses one or more WO_IN terms, or false otherwise.
3033 */
3034 static int whereLoopAddVirtualOne(
3035   WhereLoopBuilder *pBuilder,
3036   Bitmask mPrereq,                /* Mask of tables that must be used. */
3037   Bitmask mUsable,                /* Mask of usable tables */
3038   u16 mExclude,                   /* Exclude terms using these operators */
3039   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3040   u16 mNoOmit,                    /* Do not omit these constraints */
3041   int *pbIn                       /* OUT: True if plan uses an IN(...) op */
3042 ){
3043   WhereClause *pWC = pBuilder->pWC;
3044   struct sqlite3_index_constraint *pIdxCons;
3045   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3046   int i;
3047   int mxTerm;
3048   int rc = SQLITE_OK;
3049   WhereLoop *pNew = pBuilder->pNew;
3050   Parse *pParse = pBuilder->pWInfo->pParse;
3051   struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3052   int nConstraint = pIdxInfo->nConstraint;
3053 
3054   assert( (mUsable & mPrereq)==mPrereq );
3055   *pbIn = 0;
3056   pNew->prereq = mPrereq;
3057 
3058   /* Set the usable flag on the subset of constraints identified by
3059   ** arguments mUsable and mExclude. */
3060   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3061   for(i=0; i<nConstraint; i++, pIdxCons++){
3062     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3063     pIdxCons->usable = 0;
3064     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3065      && (pTerm->eOperator & mExclude)==0
3066     ){
3067       pIdxCons->usable = 1;
3068     }
3069   }
3070 
3071   /* Initialize the output fields of the sqlite3_index_info structure */
3072   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3073   assert( pIdxInfo->needToFreeIdxStr==0 );
3074   pIdxInfo->idxStr = 0;
3075   pIdxInfo->idxNum = 0;
3076   pIdxInfo->orderByConsumed = 0;
3077   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3078   pIdxInfo->estimatedRows = 25;
3079   pIdxInfo->idxFlags = 0;
3080   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3081 
3082   /* Invoke the virtual table xBestIndex() method */
3083   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3084   if( rc ) return rc;
3085 
3086   mxTerm = -1;
3087   assert( pNew->nLSlot>=nConstraint );
3088   for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3089   pNew->u.vtab.omitMask = 0;
3090   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3091   for(i=0; i<nConstraint; i++, pIdxCons++){
3092     int iTerm;
3093     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3094       WhereTerm *pTerm;
3095       int j = pIdxCons->iTermOffset;
3096       if( iTerm>=nConstraint
3097        || j<0
3098        || j>=pWC->nTerm
3099        || pNew->aLTerm[iTerm]!=0
3100        || pIdxCons->usable==0
3101       ){
3102         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3103         testcase( pIdxInfo->needToFreeIdxStr );
3104         return SQLITE_ERROR;
3105       }
3106       testcase( iTerm==nConstraint-1 );
3107       testcase( j==0 );
3108       testcase( j==pWC->nTerm-1 );
3109       pTerm = &pWC->a[j];
3110       pNew->prereq |= pTerm->prereqRight;
3111       assert( iTerm<pNew->nLSlot );
3112       pNew->aLTerm[iTerm] = pTerm;
3113       if( iTerm>mxTerm ) mxTerm = iTerm;
3114       testcase( iTerm==15 );
3115       testcase( iTerm==16 );
3116       if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm;
3117       if( (pTerm->eOperator & WO_IN)!=0 ){
3118         /* A virtual table that is constrained by an IN clause may not
3119         ** consume the ORDER BY clause because (1) the order of IN terms
3120         ** is not necessarily related to the order of output terms and
3121         ** (2) Multiple outputs from a single IN value will not merge
3122         ** together.  */
3123         pIdxInfo->orderByConsumed = 0;
3124         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3125         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3126       }
3127     }
3128   }
3129   pNew->u.vtab.omitMask &= ~mNoOmit;
3130 
3131   pNew->nLTerm = mxTerm+1;
3132   for(i=0; i<=mxTerm; i++){
3133     if( pNew->aLTerm[i]==0 ){
3134       /* The non-zero argvIdx values must be contiguous.  Raise an
3135       ** error if they are not */
3136       sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3137       testcase( pIdxInfo->needToFreeIdxStr );
3138       return SQLITE_ERROR;
3139     }
3140   }
3141   assert( pNew->nLTerm<=pNew->nLSlot );
3142   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3143   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3144   pIdxInfo->needToFreeIdxStr = 0;
3145   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3146   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3147       pIdxInfo->nOrderBy : 0);
3148   pNew->rSetup = 0;
3149   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3150   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3151 
3152   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3153   ** that the scan will visit at most one row. Clear it otherwise. */
3154   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3155     pNew->wsFlags |= WHERE_ONEROW;
3156   }else{
3157     pNew->wsFlags &= ~WHERE_ONEROW;
3158   }
3159   rc = whereLoopInsert(pBuilder, pNew);
3160   if( pNew->u.vtab.needFree ){
3161     sqlite3_free(pNew->u.vtab.idxStr);
3162     pNew->u.vtab.needFree = 0;
3163   }
3164   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3165                       *pbIn, (sqlite3_uint64)mPrereq,
3166                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3167 
3168   return rc;
3169 }
3170 
3171 /*
3172 ** If this function is invoked from within an xBestIndex() callback, it
3173 ** returns a pointer to a buffer containing the name of the collation
3174 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint
3175 ** array. Or, if iCons is out of range or there is no active xBestIndex
3176 ** call, return NULL.
3177 */
3178 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3179   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3180   const char *zRet = 0;
3181   if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3182     CollSeq *pC = 0;
3183     int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3184     Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3185     if( pX->pLeft ){
3186       pC = sqlite3BinaryCompareCollSeq(pHidden->pParse, pX->pLeft, pX->pRight);
3187     }
3188     zRet = (pC ? pC->zName : "BINARY");
3189   }
3190   return zRet;
3191 }
3192 
3193 /*
3194 ** Add all WhereLoop objects for a table of the join identified by
3195 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3196 **
3197 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3198 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3199 ** entries that occur before the virtual table in the FROM clause and are
3200 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3201 ** mUnusable mask contains all FROM clause entries that occur after the
3202 ** virtual table and are separated from it by at least one LEFT or
3203 ** CROSS JOIN.
3204 **
3205 ** For example, if the query were:
3206 **
3207 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3208 **
3209 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3210 **
3211 ** All the tables in mPrereq must be scanned before the current virtual
3212 ** table. So any terms for which all prerequisites are satisfied by
3213 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3214 ** Conversely, all tables in mUnusable must be scanned after the current
3215 ** virtual table, so any terms for which the prerequisites overlap with
3216 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3217 */
3218 static int whereLoopAddVirtual(
3219   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3220   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3221   Bitmask mUnusable            /* Tables that must be scanned after this one */
3222 ){
3223   int rc = SQLITE_OK;          /* Return code */
3224   WhereInfo *pWInfo;           /* WHERE analysis context */
3225   Parse *pParse;               /* The parsing context */
3226   WhereClause *pWC;            /* The WHERE clause */
3227   struct SrcList_item *pSrc;   /* The FROM clause term to search */
3228   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3229   int nConstraint;             /* Number of constraints in p */
3230   int bIn;                     /* True if plan uses IN(...) operator */
3231   WhereLoop *pNew;
3232   Bitmask mBest;               /* Tables used by best possible plan */
3233   u16 mNoOmit;
3234 
3235   assert( (mPrereq & mUnusable)==0 );
3236   pWInfo = pBuilder->pWInfo;
3237   pParse = pWInfo->pParse;
3238   pWC = pBuilder->pWC;
3239   pNew = pBuilder->pNew;
3240   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3241   assert( IsVirtual(pSrc->pTab) );
3242   p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3243       &mNoOmit);
3244   if( p==0 ) return SQLITE_NOMEM_BKPT;
3245   pNew->rSetup = 0;
3246   pNew->wsFlags = WHERE_VIRTUALTABLE;
3247   pNew->nLTerm = 0;
3248   pNew->u.vtab.needFree = 0;
3249   nConstraint = p->nConstraint;
3250   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3251     sqlite3DbFree(pParse->db, p);
3252     return SQLITE_NOMEM_BKPT;
3253   }
3254 
3255   /* First call xBestIndex() with all constraints usable. */
3256   WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3257   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3258   rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3259 
3260   /* If the call to xBestIndex() with all terms enabled produced a plan
3261   ** that does not require any source tables (IOW: a plan with mBest==0),
3262   ** then there is no point in making any further calls to xBestIndex()
3263   ** since they will all return the same result (if the xBestIndex()
3264   ** implementation is sane). */
3265   if( rc==SQLITE_OK && (mBest = (pNew->prereq & ~mPrereq))!=0 ){
3266     int seenZero = 0;             /* True if a plan with no prereqs seen */
3267     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3268     Bitmask mPrev = 0;
3269     Bitmask mBestNoIn = 0;
3270 
3271     /* If the plan produced by the earlier call uses an IN(...) term, call
3272     ** xBestIndex again, this time with IN(...) terms disabled. */
3273     if( bIn ){
3274       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3275       rc = whereLoopAddVirtualOne(
3276           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3277       assert( bIn==0 );
3278       mBestNoIn = pNew->prereq & ~mPrereq;
3279       if( mBestNoIn==0 ){
3280         seenZero = 1;
3281         seenZeroNoIN = 1;
3282       }
3283     }
3284 
3285     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3286     ** in the set of terms that apply to the current virtual table.  */
3287     while( rc==SQLITE_OK ){
3288       int i;
3289       Bitmask mNext = ALLBITS;
3290       assert( mNext>0 );
3291       for(i=0; i<nConstraint; i++){
3292         Bitmask mThis = (
3293             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3294         );
3295         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3296       }
3297       mPrev = mNext;
3298       if( mNext==ALLBITS ) break;
3299       if( mNext==mBest || mNext==mBestNoIn ) continue;
3300       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
3301                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3302       rc = whereLoopAddVirtualOne(
3303           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3304       if( pNew->prereq==mPrereq ){
3305         seenZero = 1;
3306         if( bIn==0 ) seenZeroNoIN = 1;
3307       }
3308     }
3309 
3310     /* If the calls to xBestIndex() in the above loop did not find a plan
3311     ** that requires no source tables at all (i.e. one guaranteed to be
3312     ** usable), make a call here with all source tables disabled */
3313     if( rc==SQLITE_OK && seenZero==0 ){
3314       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
3315       rc = whereLoopAddVirtualOne(
3316           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3317       if( bIn==0 ) seenZeroNoIN = 1;
3318     }
3319 
3320     /* If the calls to xBestIndex() have so far failed to find a plan
3321     ** that requires no source tables at all and does not use an IN(...)
3322     ** operator, make a final call to obtain one here.  */
3323     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3324       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
3325       rc = whereLoopAddVirtualOne(
3326           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3327     }
3328   }
3329 
3330   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3331   sqlite3DbFreeNN(pParse->db, p);
3332   WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
3333   return rc;
3334 }
3335 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3336 
3337 /*
3338 ** Add WhereLoop entries to handle OR terms.  This works for either
3339 ** btrees or virtual tables.
3340 */
3341 static int whereLoopAddOr(
3342   WhereLoopBuilder *pBuilder,
3343   Bitmask mPrereq,
3344   Bitmask mUnusable
3345 ){
3346   WhereInfo *pWInfo = pBuilder->pWInfo;
3347   WhereClause *pWC;
3348   WhereLoop *pNew;
3349   WhereTerm *pTerm, *pWCEnd;
3350   int rc = SQLITE_OK;
3351   int iCur;
3352   WhereClause tempWC;
3353   WhereLoopBuilder sSubBuild;
3354   WhereOrSet sSum, sCur;
3355   struct SrcList_item *pItem;
3356 
3357   pWC = pBuilder->pWC;
3358   pWCEnd = pWC->a + pWC->nTerm;
3359   pNew = pBuilder->pNew;
3360   memset(&sSum, 0, sizeof(sSum));
3361   pItem = pWInfo->pTabList->a + pNew->iTab;
3362   iCur = pItem->iCursor;
3363 
3364   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3365     if( (pTerm->eOperator & WO_OR)!=0
3366      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3367     ){
3368       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3369       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3370       WhereTerm *pOrTerm;
3371       int once = 1;
3372       int i, j;
3373 
3374       sSubBuild = *pBuilder;
3375       sSubBuild.pOrderBy = 0;
3376       sSubBuild.pOrSet = &sCur;
3377 
3378       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3379       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3380         if( (pOrTerm->eOperator & WO_AND)!=0 ){
3381           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3382         }else if( pOrTerm->leftCursor==iCur ){
3383           tempWC.pWInfo = pWC->pWInfo;
3384           tempWC.pOuter = pWC;
3385           tempWC.op = TK_AND;
3386           tempWC.nTerm = 1;
3387           tempWC.a = pOrTerm;
3388           sSubBuild.pWC = &tempWC;
3389         }else{
3390           continue;
3391         }
3392         sCur.n = 0;
3393 #ifdef WHERETRACE_ENABLED
3394         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3395                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3396         if( sqlite3WhereTrace & 0x400 ){
3397           sqlite3WhereClausePrint(sSubBuild.pWC);
3398         }
3399 #endif
3400 #ifndef SQLITE_OMIT_VIRTUALTABLE
3401         if( IsVirtual(pItem->pTab) ){
3402           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3403         }else
3404 #endif
3405         {
3406           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3407         }
3408         if( rc==SQLITE_OK ){
3409           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3410         }
3411         assert( rc==SQLITE_OK || sCur.n==0 );
3412         if( sCur.n==0 ){
3413           sSum.n = 0;
3414           break;
3415         }else if( once ){
3416           whereOrMove(&sSum, &sCur);
3417           once = 0;
3418         }else{
3419           WhereOrSet sPrev;
3420           whereOrMove(&sPrev, &sSum);
3421           sSum.n = 0;
3422           for(i=0; i<sPrev.n; i++){
3423             for(j=0; j<sCur.n; j++){
3424               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3425                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3426                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3427             }
3428           }
3429         }
3430       }
3431       pNew->nLTerm = 1;
3432       pNew->aLTerm[0] = pTerm;
3433       pNew->wsFlags = WHERE_MULTI_OR;
3434       pNew->rSetup = 0;
3435       pNew->iSortIdx = 0;
3436       memset(&pNew->u, 0, sizeof(pNew->u));
3437       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3438         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3439         ** of all sub-scans required by the OR-scan. However, due to rounding
3440         ** errors, it may be that the cost of the OR-scan is equal to its
3441         ** most expensive sub-scan. Add the smallest possible penalty
3442         ** (equivalent to multiplying the cost by 1.07) to ensure that
3443         ** this does not happen. Otherwise, for WHERE clauses such as the
3444         ** following where there is an index on "y":
3445         **
3446         **     WHERE likelihood(x=?, 0.99) OR y=?
3447         **
3448         ** the planner may elect to "OR" together a full-table scan and an
3449         ** index lookup. And other similarly odd results.  */
3450         pNew->rRun = sSum.a[i].rRun + 1;
3451         pNew->nOut = sSum.a[i].nOut;
3452         pNew->prereq = sSum.a[i].prereq;
3453         rc = whereLoopInsert(pBuilder, pNew);
3454       }
3455       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3456     }
3457   }
3458   return rc;
3459 }
3460 
3461 /*
3462 ** Add all WhereLoop objects for all tables
3463 */
3464 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3465   WhereInfo *pWInfo = pBuilder->pWInfo;
3466   Bitmask mPrereq = 0;
3467   Bitmask mPrior = 0;
3468   int iTab;
3469   SrcList *pTabList = pWInfo->pTabList;
3470   struct SrcList_item *pItem;
3471   struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel];
3472   sqlite3 *db = pWInfo->pParse->db;
3473   int rc = SQLITE_OK;
3474   WhereLoop *pNew;
3475   u8 priorJointype = 0;
3476 
3477   /* Loop over the tables in the join, from left to right */
3478   pNew = pBuilder->pNew;
3479   whereLoopInit(pNew);
3480   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3481     Bitmask mUnusable = 0;
3482     pNew->iTab = iTab;
3483     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3484     if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){
3485       /* This condition is true when pItem is the FROM clause term on the
3486       ** right-hand-side of a LEFT or CROSS JOIN.  */
3487       mPrereq = mPrior;
3488     }
3489     priorJointype = pItem->fg.jointype;
3490 #ifndef SQLITE_OMIT_VIRTUALTABLE
3491     if( IsVirtual(pItem->pTab) ){
3492       struct SrcList_item *p;
3493       for(p=&pItem[1]; p<pEnd; p++){
3494         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3495           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3496         }
3497       }
3498       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3499     }else
3500 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3501     {
3502       rc = whereLoopAddBtree(pBuilder, mPrereq);
3503     }
3504     if( rc==SQLITE_OK ){
3505       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3506     }
3507     mPrior |= pNew->maskSelf;
3508     if( rc || db->mallocFailed ) break;
3509   }
3510 
3511   whereLoopClear(db, pNew);
3512   return rc;
3513 }
3514 
3515 /*
3516 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
3517 ** parameters) to see if it outputs rows in the requested ORDER BY
3518 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
3519 **
3520 **   N>0:   N terms of the ORDER BY clause are satisfied
3521 **   N==0:  No terms of the ORDER BY clause are satisfied
3522 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
3523 **
3524 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3525 ** strict.  With GROUP BY and DISTINCT the only requirement is that
3526 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
3527 ** and DISTINCT do not require rows to appear in any particular order as long
3528 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
3529 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
3530 ** pOrderBy terms must be matched in strict left-to-right order.
3531 */
3532 static i8 wherePathSatisfiesOrderBy(
3533   WhereInfo *pWInfo,    /* The WHERE clause */
3534   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
3535   WherePath *pPath,     /* The WherePath to check */
3536   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3537   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
3538   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
3539   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
3540 ){
3541   u8 revSet;            /* True if rev is known */
3542   u8 rev;               /* Composite sort order */
3543   u8 revIdx;            /* Index sort order */
3544   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
3545   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
3546   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
3547   u16 eqOpMask;         /* Allowed equality operators */
3548   u16 nKeyCol;          /* Number of key columns in pIndex */
3549   u16 nColumn;          /* Total number of ordered columns in the index */
3550   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
3551   int iLoop;            /* Index of WhereLoop in pPath being processed */
3552   int i, j;             /* Loop counters */
3553   int iCur;             /* Cursor number for current WhereLoop */
3554   int iColumn;          /* A column number within table iCur */
3555   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3556   WhereTerm *pTerm;     /* A single term of the WHERE clause */
3557   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
3558   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
3559   Index *pIndex;        /* The index associated with pLoop */
3560   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
3561   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
3562   Bitmask obDone;       /* Mask of all ORDER BY terms */
3563   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
3564   Bitmask ready;              /* Mask of inner loops */
3565 
3566   /*
3567   ** We say the WhereLoop is "one-row" if it generates no more than one
3568   ** row of output.  A WhereLoop is one-row if all of the following are true:
3569   **  (a) All index columns match with WHERE_COLUMN_EQ.
3570   **  (b) The index is unique
3571   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3572   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3573   **
3574   ** We say the WhereLoop is "order-distinct" if the set of columns from
3575   ** that WhereLoop that are in the ORDER BY clause are different for every
3576   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
3577   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
3578   ** is not order-distinct. To be order-distinct is not quite the same as being
3579   ** UNIQUE since a UNIQUE column or index can have multiple rows that
3580   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3581   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3582   **
3583   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3584   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3585   ** automatically order-distinct.
3586   */
3587 
3588   assert( pOrderBy!=0 );
3589   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3590 
3591   nOrderBy = pOrderBy->nExpr;
3592   testcase( nOrderBy==BMS-1 );
3593   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
3594   isOrderDistinct = 1;
3595   obDone = MASKBIT(nOrderBy)-1;
3596   orderDistinctMask = 0;
3597   ready = 0;
3598   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3599   if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN;
3600   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3601     if( iLoop>0 ) ready |= pLoop->maskSelf;
3602     if( iLoop<nLoop ){
3603       pLoop = pPath->aLoop[iLoop];
3604       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3605     }else{
3606       pLoop = pLast;
3607     }
3608     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3609       if( pLoop->u.vtab.isOrdered ) obSat = obDone;
3610       break;
3611     }else{
3612       pLoop->u.btree.nIdxCol = 0;
3613     }
3614     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3615 
3616     /* Mark off any ORDER BY term X that is a column in the table of
3617     ** the current loop for which there is term in the WHERE
3618     ** clause of the form X IS NULL or X=? that reference only outer
3619     ** loops.
3620     */
3621     for(i=0; i<nOrderBy; i++){
3622       if( MASKBIT(i) & obSat ) continue;
3623       pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3624       if( pOBExpr->op!=TK_COLUMN ) continue;
3625       if( pOBExpr->iTable!=iCur ) continue;
3626       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3627                        ~ready, eqOpMask, 0);
3628       if( pTerm==0 ) continue;
3629       if( pTerm->eOperator==WO_IN ){
3630         /* IN terms are only valid for sorting in the ORDER BY LIMIT
3631         ** optimization, and then only if they are actually used
3632         ** by the query plan */
3633         assert( wctrlFlags & WHERE_ORDERBY_LIMIT );
3634         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3635         if( j>=pLoop->nLTerm ) continue;
3636       }
3637       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3638         if( sqlite3ExprCollSeqMatch(pWInfo->pParse,
3639                   pOrderBy->a[i].pExpr, pTerm->pExpr)==0 ){
3640           continue;
3641         }
3642         testcase( pTerm->pExpr->op==TK_IS );
3643       }
3644       obSat |= MASKBIT(i);
3645     }
3646 
3647     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3648       if( pLoop->wsFlags & WHERE_IPK ){
3649         pIndex = 0;
3650         nKeyCol = 0;
3651         nColumn = 1;
3652       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3653         return 0;
3654       }else{
3655         nKeyCol = pIndex->nKeyCol;
3656         nColumn = pIndex->nColumn;
3657         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3658         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3659                           || !HasRowid(pIndex->pTable));
3660         isOrderDistinct = IsUniqueIndex(pIndex);
3661       }
3662 
3663       /* Loop through all columns of the index and deal with the ones
3664       ** that are not constrained by == or IN.
3665       */
3666       rev = revSet = 0;
3667       distinctColumns = 0;
3668       for(j=0; j<nColumn; j++){
3669         u8 bOnce = 1; /* True to run the ORDER BY search loop */
3670 
3671         assert( j>=pLoop->u.btree.nEq
3672             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3673         );
3674         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3675           u16 eOp = pLoop->aLTerm[j]->eOperator;
3676 
3677           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
3678           ** doing WHERE_ORDERBY_LIMIT processing).
3679           **
3680           ** If the current term is a column of an ((?,?) IN (SELECT...))
3681           ** expression for which the SELECT returns more than one column,
3682           ** check that it is the only column used by this loop. Otherwise,
3683           ** if it is one of two or more, none of the columns can be
3684           ** considered to match an ORDER BY term.  */
3685           if( (eOp & eqOpMask)!=0 ){
3686             if( eOp & WO_ISNULL ){
3687               testcase( isOrderDistinct );
3688               isOrderDistinct = 0;
3689             }
3690             continue;
3691           }else if( ALWAYS(eOp & WO_IN) ){
3692             /* ALWAYS() justification: eOp is an equality operator due to the
3693             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
3694             ** than WO_IN is captured by the previous "if".  So this one
3695             ** always has to be WO_IN. */
3696             Expr *pX = pLoop->aLTerm[j]->pExpr;
3697             for(i=j+1; i<pLoop->u.btree.nEq; i++){
3698               if( pLoop->aLTerm[i]->pExpr==pX ){
3699                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3700                 bOnce = 0;
3701                 break;
3702               }
3703             }
3704           }
3705         }
3706 
3707         /* Get the column number in the table (iColumn) and sort order
3708         ** (revIdx) for the j-th column of the index.
3709         */
3710         if( pIndex ){
3711           iColumn = pIndex->aiColumn[j];
3712           revIdx = pIndex->aSortOrder[j];
3713           if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
3714         }else{
3715           iColumn = XN_ROWID;
3716           revIdx = 0;
3717         }
3718 
3719         /* An unconstrained column that might be NULL means that this
3720         ** WhereLoop is not well-ordered
3721         */
3722         if( isOrderDistinct
3723          && iColumn>=0
3724          && j>=pLoop->u.btree.nEq
3725          && pIndex->pTable->aCol[iColumn].notNull==0
3726         ){
3727           isOrderDistinct = 0;
3728         }
3729 
3730         /* Find the ORDER BY term that corresponds to the j-th column
3731         ** of the index and mark that ORDER BY term off
3732         */
3733         isMatch = 0;
3734         for(i=0; bOnce && i<nOrderBy; i++){
3735           if( MASKBIT(i) & obSat ) continue;
3736           pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3737           testcase( wctrlFlags & WHERE_GROUPBY );
3738           testcase( wctrlFlags & WHERE_DISTINCTBY );
3739           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
3740           if( iColumn>=XN_ROWID ){
3741             if( pOBExpr->op!=TK_COLUMN ) continue;
3742             if( pOBExpr->iTable!=iCur ) continue;
3743             if( pOBExpr->iColumn!=iColumn ) continue;
3744           }else{
3745             Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
3746             if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
3747               continue;
3748             }
3749           }
3750           if( iColumn!=XN_ROWID ){
3751             pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3752             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
3753           }
3754           pLoop->u.btree.nIdxCol = j+1;
3755           isMatch = 1;
3756           break;
3757         }
3758         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
3759           /* Make sure the sort order is compatible in an ORDER BY clause.
3760           ** Sort order is irrelevant for a GROUP BY clause. */
3761           if( revSet ){
3762             if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0;
3763           }else{
3764             rev = revIdx ^ pOrderBy->a[i].sortOrder;
3765             if( rev ) *pRevMask |= MASKBIT(iLoop);
3766             revSet = 1;
3767           }
3768         }
3769         if( isMatch ){
3770           if( iColumn==XN_ROWID ){
3771             testcase( distinctColumns==0 );
3772             distinctColumns = 1;
3773           }
3774           obSat |= MASKBIT(i);
3775         }else{
3776           /* No match found */
3777           if( j==0 || j<nKeyCol ){
3778             testcase( isOrderDistinct!=0 );
3779             isOrderDistinct = 0;
3780           }
3781           break;
3782         }
3783       } /* end Loop over all index columns */
3784       if( distinctColumns ){
3785         testcase( isOrderDistinct==0 );
3786         isOrderDistinct = 1;
3787       }
3788     } /* end-if not one-row */
3789 
3790     /* Mark off any other ORDER BY terms that reference pLoop */
3791     if( isOrderDistinct ){
3792       orderDistinctMask |= pLoop->maskSelf;
3793       for(i=0; i<nOrderBy; i++){
3794         Expr *p;
3795         Bitmask mTerm;
3796         if( MASKBIT(i) & obSat ) continue;
3797         p = pOrderBy->a[i].pExpr;
3798         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
3799         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
3800         if( (mTerm&~orderDistinctMask)==0 ){
3801           obSat |= MASKBIT(i);
3802         }
3803       }
3804     }
3805   } /* End the loop over all WhereLoops from outer-most down to inner-most */
3806   if( obSat==obDone ) return (i8)nOrderBy;
3807   if( !isOrderDistinct ){
3808     for(i=nOrderBy-1; i>0; i--){
3809       Bitmask m = MASKBIT(i) - 1;
3810       if( (obSat&m)==m ) return i;
3811     }
3812     return 0;
3813   }
3814   return -1;
3815 }
3816 
3817 
3818 /*
3819 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
3820 ** the planner assumes that the specified pOrderBy list is actually a GROUP
3821 ** BY clause - and so any order that groups rows as required satisfies the
3822 ** request.
3823 **
3824 ** Normally, in this case it is not possible for the caller to determine
3825 ** whether or not the rows are really being delivered in sorted order, or
3826 ** just in some other order that provides the required grouping. However,
3827 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
3828 ** this function may be called on the returned WhereInfo object. It returns
3829 ** true if the rows really will be sorted in the specified order, or false
3830 ** otherwise.
3831 **
3832 ** For example, assuming:
3833 **
3834 **   CREATE INDEX i1 ON t1(x, Y);
3835 **
3836 ** then
3837 **
3838 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
3839 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
3840 */
3841 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
3842   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
3843   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
3844   return pWInfo->sorted;
3845 }
3846 
3847 #ifdef WHERETRACE_ENABLED
3848 /* For debugging use only: */
3849 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
3850   static char zName[65];
3851   int i;
3852   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
3853   if( pLast ) zName[i++] = pLast->cId;
3854   zName[i] = 0;
3855   return zName;
3856 }
3857 #endif
3858 
3859 /*
3860 ** Return the cost of sorting nRow rows, assuming that the keys have
3861 ** nOrderby columns and that the first nSorted columns are already in
3862 ** order.
3863 */
3864 static LogEst whereSortingCost(
3865   WhereInfo *pWInfo,
3866   LogEst nRow,
3867   int nOrderBy,
3868   int nSorted
3869 ){
3870   /* TUNING: Estimated cost of a full external sort, where N is
3871   ** the number of rows to sort is:
3872   **
3873   **   cost = (3.0 * N * log(N)).
3874   **
3875   ** Or, if the order-by clause has X terms but only the last Y
3876   ** terms are out of order, then block-sorting will reduce the
3877   ** sorting cost to:
3878   **
3879   **   cost = (3.0 * N * log(N)) * (Y/X)
3880   **
3881   ** The (Y/X) term is implemented using stack variable rScale
3882   ** below.  */
3883   LogEst rScale, rSortCost;
3884   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
3885   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
3886   rSortCost = nRow + rScale + 16;
3887 
3888   /* Multiple by log(M) where M is the number of output rows.
3889   ** Use the LIMIT for M if it is smaller */
3890   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
3891     nRow = pWInfo->iLimit;
3892   }
3893   rSortCost += estLog(nRow);
3894   return rSortCost;
3895 }
3896 
3897 /*
3898 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
3899 ** attempts to find the lowest cost path that visits each WhereLoop
3900 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
3901 **
3902 ** Assume that the total number of output rows that will need to be sorted
3903 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
3904 ** costs if nRowEst==0.
3905 **
3906 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
3907 ** error occurs.
3908 */
3909 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
3910   int mxChoice;             /* Maximum number of simultaneous paths tracked */
3911   int nLoop;                /* Number of terms in the join */
3912   Parse *pParse;            /* Parsing context */
3913   sqlite3 *db;              /* The database connection */
3914   int iLoop;                /* Loop counter over the terms of the join */
3915   int ii, jj;               /* Loop counters */
3916   int mxI = 0;              /* Index of next entry to replace */
3917   int nOrderBy;             /* Number of ORDER BY clause terms */
3918   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
3919   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
3920   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
3921   WherePath *aFrom;         /* All nFrom paths at the previous level */
3922   WherePath *aTo;           /* The nTo best paths at the current level */
3923   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
3924   WherePath *pTo;           /* An element of aTo[] that we are working on */
3925   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
3926   WhereLoop **pX;           /* Used to divy up the pSpace memory */
3927   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
3928   char *pSpace;             /* Temporary memory used by this routine */
3929   int nSpace;               /* Bytes of space allocated at pSpace */
3930 
3931   pParse = pWInfo->pParse;
3932   db = pParse->db;
3933   nLoop = pWInfo->nLevel;
3934   /* TUNING: For simple queries, only the best path is tracked.
3935   ** For 2-way joins, the 5 best paths are followed.
3936   ** For joins of 3 or more tables, track the 10 best paths */
3937   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
3938   assert( nLoop<=pWInfo->pTabList->nSrc );
3939   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
3940 
3941   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
3942   ** case the purpose of this call is to estimate the number of rows returned
3943   ** by the overall query. Once this estimate has been obtained, the caller
3944   ** will invoke this function a second time, passing the estimate as the
3945   ** nRowEst parameter.  */
3946   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
3947     nOrderBy = 0;
3948   }else{
3949     nOrderBy = pWInfo->pOrderBy->nExpr;
3950   }
3951 
3952   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
3953   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
3954   nSpace += sizeof(LogEst) * nOrderBy;
3955   pSpace = sqlite3DbMallocRawNN(db, nSpace);
3956   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
3957   aTo = (WherePath*)pSpace;
3958   aFrom = aTo+mxChoice;
3959   memset(aFrom, 0, sizeof(aFrom[0]));
3960   pX = (WhereLoop**)(aFrom+mxChoice);
3961   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
3962     pFrom->aLoop = pX;
3963   }
3964   if( nOrderBy ){
3965     /* If there is an ORDER BY clause and it is not being ignored, set up
3966     ** space for the aSortCost[] array. Each element of the aSortCost array
3967     ** is either zero - meaning it has not yet been initialized - or the
3968     ** cost of sorting nRowEst rows of data where the first X terms of
3969     ** the ORDER BY clause are already in order, where X is the array
3970     ** index.  */
3971     aSortCost = (LogEst*)pX;
3972     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
3973   }
3974   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
3975   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
3976 
3977   /* Seed the search with a single WherePath containing zero WhereLoops.
3978   **
3979   ** TUNING: Do not let the number of iterations go above 28.  If the cost
3980   ** of computing an automatic index is not paid back within the first 28
3981   ** rows, then do not use the automatic index. */
3982   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
3983   nFrom = 1;
3984   assert( aFrom[0].isOrdered==0 );
3985   if( nOrderBy ){
3986     /* If nLoop is zero, then there are no FROM terms in the query. Since
3987     ** in this case the query may return a maximum of one row, the results
3988     ** are already in the requested order. Set isOrdered to nOrderBy to
3989     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
3990     ** -1, indicating that the result set may or may not be ordered,
3991     ** depending on the loops added to the current plan.  */
3992     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
3993   }
3994 
3995   /* Compute successively longer WherePaths using the previous generation
3996   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
3997   ** best paths at each generation */
3998   for(iLoop=0; iLoop<nLoop; iLoop++){
3999     nTo = 0;
4000     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4001       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4002         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
4003         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
4004         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
4005         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
4006         Bitmask maskNew;                  /* Mask of src visited by (..) */
4007         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
4008 
4009         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4010         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4011         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<10 ){
4012           /* Do not use an automatic index if the this loop is expected
4013           ** to run less than 2 times. */
4014           assert( 10==sqlite3LogEst(2) );
4015           continue;
4016         }
4017         /* At this point, pWLoop is a candidate to be the next loop.
4018         ** Compute its cost */
4019         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4020         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4021         nOut = pFrom->nRow + pWLoop->nOut;
4022         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4023         if( isOrdered<0 ){
4024           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4025                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4026                        iLoop, pWLoop, &revMask);
4027         }else{
4028           revMask = pFrom->revLoop;
4029         }
4030         if( isOrdered>=0 && isOrdered<nOrderBy ){
4031           if( aSortCost[isOrdered]==0 ){
4032             aSortCost[isOrdered] = whereSortingCost(
4033                 pWInfo, nRowEst, nOrderBy, isOrdered
4034             );
4035           }
4036           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]);
4037 
4038           WHERETRACE(0x002,
4039               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4040                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4041                rUnsorted, rCost));
4042         }else{
4043           rCost = rUnsorted;
4044           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
4045         }
4046 
4047         /* Check to see if pWLoop should be added to the set of
4048         ** mxChoice best-so-far paths.
4049         **
4050         ** First look for an existing path among best-so-far paths
4051         ** that covers the same set of loops and has the same isOrdered
4052         ** setting as the current path candidate.
4053         **
4054         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4055         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4056         ** of legal values for isOrdered, -1..64.
4057         */
4058         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4059           if( pTo->maskLoop==maskNew
4060            && ((pTo->isOrdered^isOrdered)&0x80)==0
4061           ){
4062             testcase( jj==nTo-1 );
4063             break;
4064           }
4065         }
4066         if( jj>=nTo ){
4067           /* None of the existing best-so-far paths match the candidate. */
4068           if( nTo>=mxChoice
4069            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4070           ){
4071             /* The current candidate is no better than any of the mxChoice
4072             ** paths currently in the best-so-far buffer.  So discard
4073             ** this candidate as not viable. */
4074 #ifdef WHERETRACE_ENABLED /* 0x4 */
4075             if( sqlite3WhereTrace&0x4 ){
4076               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4077                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4078                   isOrdered>=0 ? isOrdered+'0' : '?');
4079             }
4080 #endif
4081             continue;
4082           }
4083           /* If we reach this points it means that the new candidate path
4084           ** needs to be added to the set of best-so-far paths. */
4085           if( nTo<mxChoice ){
4086             /* Increase the size of the aTo set by one */
4087             jj = nTo++;
4088           }else{
4089             /* New path replaces the prior worst to keep count below mxChoice */
4090             jj = mxI;
4091           }
4092           pTo = &aTo[jj];
4093 #ifdef WHERETRACE_ENABLED /* 0x4 */
4094           if( sqlite3WhereTrace&0x4 ){
4095             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4096                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4097                 isOrdered>=0 ? isOrdered+'0' : '?');
4098           }
4099 #endif
4100         }else{
4101           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4102           ** same set of loops and has the same isOrdered setting as the
4103           ** candidate path.  Check to see if the candidate should replace
4104           ** pTo or if the candidate should be skipped.
4105           **
4106           ** The conditional is an expanded vector comparison equivalent to:
4107           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4108           */
4109           if( pTo->rCost<rCost
4110            || (pTo->rCost==rCost
4111                && (pTo->nRow<nOut
4112                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4113                   )
4114               )
4115           ){
4116 #ifdef WHERETRACE_ENABLED /* 0x4 */
4117             if( sqlite3WhereTrace&0x4 ){
4118               sqlite3DebugPrintf(
4119                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4120                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4121                   isOrdered>=0 ? isOrdered+'0' : '?');
4122               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4123                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4124                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4125             }
4126 #endif
4127             /* Discard the candidate path from further consideration */
4128             testcase( pTo->rCost==rCost );
4129             continue;
4130           }
4131           testcase( pTo->rCost==rCost+1 );
4132           /* Control reaches here if the candidate path is better than the
4133           ** pTo path.  Replace pTo with the candidate. */
4134 #ifdef WHERETRACE_ENABLED /* 0x4 */
4135           if( sqlite3WhereTrace&0x4 ){
4136             sqlite3DebugPrintf(
4137                 "Update %s cost=%-3d,%3d,%3d order=%c",
4138                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4139                 isOrdered>=0 ? isOrdered+'0' : '?');
4140             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4141                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4142                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4143           }
4144 #endif
4145         }
4146         /* pWLoop is a winner.  Add it to the set of best so far */
4147         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4148         pTo->revLoop = revMask;
4149         pTo->nRow = nOut;
4150         pTo->rCost = rCost;
4151         pTo->rUnsorted = rUnsorted;
4152         pTo->isOrdered = isOrdered;
4153         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4154         pTo->aLoop[iLoop] = pWLoop;
4155         if( nTo>=mxChoice ){
4156           mxI = 0;
4157           mxCost = aTo[0].rCost;
4158           mxUnsorted = aTo[0].nRow;
4159           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4160             if( pTo->rCost>mxCost
4161              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4162             ){
4163               mxCost = pTo->rCost;
4164               mxUnsorted = pTo->rUnsorted;
4165               mxI = jj;
4166             }
4167           }
4168         }
4169       }
4170     }
4171 
4172 #ifdef WHERETRACE_ENABLED  /* >=2 */
4173     if( sqlite3WhereTrace & 0x02 ){
4174       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4175       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4176         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4177            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4178            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4179         if( pTo->isOrdered>0 ){
4180           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4181         }else{
4182           sqlite3DebugPrintf("\n");
4183         }
4184       }
4185     }
4186 #endif
4187 
4188     /* Swap the roles of aFrom and aTo for the next generation */
4189     pFrom = aTo;
4190     aTo = aFrom;
4191     aFrom = pFrom;
4192     nFrom = nTo;
4193   }
4194 
4195   if( nFrom==0 ){
4196     sqlite3ErrorMsg(pParse, "no query solution");
4197     sqlite3DbFreeNN(db, pSpace);
4198     return SQLITE_ERROR;
4199   }
4200 
4201   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4202   pFrom = aFrom;
4203   for(ii=1; ii<nFrom; ii++){
4204     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4205   }
4206   assert( pWInfo->nLevel==nLoop );
4207   /* Load the lowest cost path into pWInfo */
4208   for(iLoop=0; iLoop<nLoop; iLoop++){
4209     WhereLevel *pLevel = pWInfo->a + iLoop;
4210     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4211     pLevel->iFrom = pWLoop->iTab;
4212     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4213   }
4214   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4215    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4216    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4217    && nRowEst
4218   ){
4219     Bitmask notUsed;
4220     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4221                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4222     if( rc==pWInfo->pResultSet->nExpr ){
4223       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4224     }
4225   }
4226   if( pWInfo->pOrderBy ){
4227     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4228       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4229         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4230       }
4231     }else{
4232       pWInfo->nOBSat = pFrom->isOrdered;
4233       pWInfo->revMask = pFrom->revLoop;
4234       if( pWInfo->nOBSat<=0 ){
4235         pWInfo->nOBSat = 0;
4236         if( nLoop>0 ){
4237           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4238           if( (wsFlags & WHERE_ONEROW)==0
4239            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4240           ){
4241             Bitmask m = 0;
4242             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4243                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4244             testcase( wsFlags & WHERE_IPK );
4245             testcase( wsFlags & WHERE_COLUMN_IN );
4246             if( rc==pWInfo->pOrderBy->nExpr ){
4247               pWInfo->bOrderedInnerLoop = 1;
4248               pWInfo->revMask = m;
4249             }
4250           }
4251         }
4252       }
4253     }
4254     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4255         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4256     ){
4257       Bitmask revMask = 0;
4258       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4259           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4260       );
4261       assert( pWInfo->sorted==0 );
4262       if( nOrder==pWInfo->pOrderBy->nExpr ){
4263         pWInfo->sorted = 1;
4264         pWInfo->revMask = revMask;
4265       }
4266     }
4267   }
4268 
4269 
4270   pWInfo->nRowOut = pFrom->nRow;
4271 
4272   /* Free temporary memory and return success */
4273   sqlite3DbFreeNN(db, pSpace);
4274   return SQLITE_OK;
4275 }
4276 
4277 /*
4278 ** Most queries use only a single table (they are not joins) and have
4279 ** simple == constraints against indexed fields.  This routine attempts
4280 ** to plan those simple cases using much less ceremony than the
4281 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4282 ** times for the common case.
4283 **
4284 ** Return non-zero on success, if this query can be handled by this
4285 ** no-frills query planner.  Return zero if this query needs the
4286 ** general-purpose query planner.
4287 */
4288 static int whereShortCut(WhereLoopBuilder *pBuilder){
4289   WhereInfo *pWInfo;
4290   struct SrcList_item *pItem;
4291   WhereClause *pWC;
4292   WhereTerm *pTerm;
4293   WhereLoop *pLoop;
4294   int iCur;
4295   int j;
4296   Table *pTab;
4297   Index *pIdx;
4298 
4299   pWInfo = pBuilder->pWInfo;
4300   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4301   assert( pWInfo->pTabList->nSrc>=1 );
4302   pItem = pWInfo->pTabList->a;
4303   pTab = pItem->pTab;
4304   if( IsVirtual(pTab) ) return 0;
4305   if( pItem->fg.isIndexedBy ) return 0;
4306   iCur = pItem->iCursor;
4307   pWC = &pWInfo->sWC;
4308   pLoop = pBuilder->pNew;
4309   pLoop->wsFlags = 0;
4310   pLoop->nSkip = 0;
4311   pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
4312   if( pTerm ){
4313     testcase( pTerm->eOperator & WO_IS );
4314     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4315     pLoop->aLTerm[0] = pTerm;
4316     pLoop->nLTerm = 1;
4317     pLoop->u.btree.nEq = 1;
4318     /* TUNING: Cost of a rowid lookup is 10 */
4319     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
4320   }else{
4321     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4322       int opMask;
4323       assert( pLoop->aLTermSpace==pLoop->aLTerm );
4324       if( !IsUniqueIndex(pIdx)
4325        || pIdx->pPartIdxWhere!=0
4326        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4327       ) continue;
4328       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4329       for(j=0; j<pIdx->nKeyCol; j++){
4330         pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
4331         if( pTerm==0 ) break;
4332         testcase( pTerm->eOperator & WO_IS );
4333         pLoop->aLTerm[j] = pTerm;
4334       }
4335       if( j!=pIdx->nKeyCol ) continue;
4336       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4337       if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){
4338         pLoop->wsFlags |= WHERE_IDX_ONLY;
4339       }
4340       pLoop->nLTerm = j;
4341       pLoop->u.btree.nEq = j;
4342       pLoop->u.btree.pIndex = pIdx;
4343       /* TUNING: Cost of a unique index lookup is 15 */
4344       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
4345       break;
4346     }
4347   }
4348   if( pLoop->wsFlags ){
4349     pLoop->nOut = (LogEst)1;
4350     pWInfo->a[0].pWLoop = pLoop;
4351     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
4352     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4353     pWInfo->a[0].iTabCur = iCur;
4354     pWInfo->nRowOut = 1;
4355     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
4356     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4357       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4358     }
4359 #ifdef SQLITE_DEBUG
4360     pLoop->cId = '0';
4361 #endif
4362     return 1;
4363   }
4364   return 0;
4365 }
4366 
4367 /*
4368 ** Helper function for exprIsDeterministic().
4369 */
4370 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
4371   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
4372     pWalker->eCode = 0;
4373     return WRC_Abort;
4374   }
4375   return WRC_Continue;
4376 }
4377 
4378 /*
4379 ** Return true if the expression contains no non-deterministic SQL
4380 ** functions. Do not consider non-deterministic SQL functions that are
4381 ** part of sub-select statements.
4382 */
4383 static int exprIsDeterministic(Expr *p){
4384   Walker w;
4385   memset(&w, 0, sizeof(w));
4386   w.eCode = 1;
4387   w.xExprCallback = exprNodeIsDeterministic;
4388   w.xSelectCallback = sqlite3SelectWalkFail;
4389   sqlite3WalkExpr(&w, p);
4390   return w.eCode;
4391 }
4392 
4393 /*
4394 ** Generate the beginning of the loop used for WHERE clause processing.
4395 ** The return value is a pointer to an opaque structure that contains
4396 ** information needed to terminate the loop.  Later, the calling routine
4397 ** should invoke sqlite3WhereEnd() with the return value of this function
4398 ** in order to complete the WHERE clause processing.
4399 **
4400 ** If an error occurs, this routine returns NULL.
4401 **
4402 ** The basic idea is to do a nested loop, one loop for each table in
4403 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
4404 ** same as a SELECT with only a single table in the FROM clause.)  For
4405 ** example, if the SQL is this:
4406 **
4407 **       SELECT * FROM t1, t2, t3 WHERE ...;
4408 **
4409 ** Then the code generated is conceptually like the following:
4410 **
4411 **      foreach row1 in t1 do       \    Code generated
4412 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
4413 **          foreach row3 in t3 do   /
4414 **            ...
4415 **          end                     \    Code generated
4416 **        end                        |-- by sqlite3WhereEnd()
4417 **      end                         /
4418 **
4419 ** Note that the loops might not be nested in the order in which they
4420 ** appear in the FROM clause if a different order is better able to make
4421 ** use of indices.  Note also that when the IN operator appears in
4422 ** the WHERE clause, it might result in additional nested loops for
4423 ** scanning through all values on the right-hand side of the IN.
4424 **
4425 ** There are Btree cursors associated with each table.  t1 uses cursor
4426 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
4427 ** And so forth.  This routine generates code to open those VDBE cursors
4428 ** and sqlite3WhereEnd() generates the code to close them.
4429 **
4430 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4431 ** in pTabList pointing at their appropriate entries.  The [...] code
4432 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4433 ** data from the various tables of the loop.
4434 **
4435 ** If the WHERE clause is empty, the foreach loops must each scan their
4436 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
4437 ** the tables have indices and there are terms in the WHERE clause that
4438 ** refer to those indices, a complete table scan can be avoided and the
4439 ** code will run much faster.  Most of the work of this routine is checking
4440 ** to see if there are indices that can be used to speed up the loop.
4441 **
4442 ** Terms of the WHERE clause are also used to limit which rows actually
4443 ** make it to the "..." in the middle of the loop.  After each "foreach",
4444 ** terms of the WHERE clause that use only terms in that loop and outer
4445 ** loops are evaluated and if false a jump is made around all subsequent
4446 ** inner loops (or around the "..." if the test occurs within the inner-
4447 ** most loop)
4448 **
4449 ** OUTER JOINS
4450 **
4451 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4452 **
4453 **    foreach row1 in t1 do
4454 **      flag = 0
4455 **      foreach row2 in t2 do
4456 **        start:
4457 **          ...
4458 **          flag = 1
4459 **      end
4460 **      if flag==0 then
4461 **        move the row2 cursor to a null row
4462 **        goto start
4463 **      fi
4464 **    end
4465 **
4466 ** ORDER BY CLAUSE PROCESSING
4467 **
4468 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4469 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4470 ** if there is one.  If there is no ORDER BY clause or if this routine
4471 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4472 **
4473 ** The iIdxCur parameter is the cursor number of an index.  If
4474 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4475 ** to use for OR clause processing.  The WHERE clause should use this
4476 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4477 ** the first cursor in an array of cursors for all indices.  iIdxCur should
4478 ** be used to compute the appropriate cursor depending on which index is
4479 ** used.
4480 */
4481 WhereInfo *sqlite3WhereBegin(
4482   Parse *pParse,          /* The parser context */
4483   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
4484   Expr *pWhere,           /* The WHERE clause */
4485   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
4486   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
4487   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
4488   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4489                           ** If WHERE_USE_LIMIT, then the limit amount */
4490 ){
4491   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
4492   int nTabList;              /* Number of elements in pTabList */
4493   WhereInfo *pWInfo;         /* Will become the return value of this function */
4494   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
4495   Bitmask notReady;          /* Cursors that are not yet positioned */
4496   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
4497   WhereMaskSet *pMaskSet;    /* The expression mask set */
4498   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
4499   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
4500   int ii;                    /* Loop counter */
4501   sqlite3 *db;               /* Database connection */
4502   int rc;                    /* Return code */
4503   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
4504 
4505   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4506         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4507      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4508   ));
4509 
4510   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4511   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4512             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4513 
4514   /* Variable initialization */
4515   db = pParse->db;
4516   memset(&sWLB, 0, sizeof(sWLB));
4517 
4518   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4519   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4520   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4521   sWLB.pOrderBy = pOrderBy;
4522 
4523   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4524   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4525   if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4526     wctrlFlags &= ~WHERE_WANT_DISTINCT;
4527   }
4528 
4529   /* The number of tables in the FROM clause is limited by the number of
4530   ** bits in a Bitmask
4531   */
4532   testcase( pTabList->nSrc==BMS );
4533   if( pTabList->nSrc>BMS ){
4534     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4535     return 0;
4536   }
4537 
4538   /* This function normally generates a nested loop for all tables in
4539   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4540   ** only generate code for the first table in pTabList and assume that
4541   ** any cursors associated with subsequent tables are uninitialized.
4542   */
4543   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4544 
4545   /* Allocate and initialize the WhereInfo structure that will become the
4546   ** return value. A single allocation is used to store the WhereInfo
4547   ** struct, the contents of WhereInfo.a[], the WhereClause structure
4548   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4549   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4550   ** some architectures. Hence the ROUND8() below.
4551   */
4552   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4553   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4554   if( db->mallocFailed ){
4555     sqlite3DbFree(db, pWInfo);
4556     pWInfo = 0;
4557     goto whereBeginError;
4558   }
4559   pWInfo->pParse = pParse;
4560   pWInfo->pTabList = pTabList;
4561   pWInfo->pOrderBy = pOrderBy;
4562   pWInfo->pWhere = pWhere;
4563   pWInfo->pResultSet = pResultSet;
4564   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4565   pWInfo->nLevel = nTabList;
4566   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
4567   pWInfo->wctrlFlags = wctrlFlags;
4568   pWInfo->iLimit = iAuxArg;
4569   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4570   memset(&pWInfo->nOBSat, 0,
4571          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4572   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4573   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
4574   pMaskSet = &pWInfo->sMaskSet;
4575   sWLB.pWInfo = pWInfo;
4576   sWLB.pWC = &pWInfo->sWC;
4577   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4578   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4579   whereLoopInit(sWLB.pNew);
4580 #ifdef SQLITE_DEBUG
4581   sWLB.pNew->cId = '*';
4582 #endif
4583 
4584   /* Split the WHERE clause into separate subexpressions where each
4585   ** subexpression is separated by an AND operator.
4586   */
4587   initMaskSet(pMaskSet);
4588   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4589   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4590 
4591   /* Special case: No FROM clause
4592   */
4593   if( nTabList==0 ){
4594     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4595     if( wctrlFlags & WHERE_WANT_DISTINCT ){
4596       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4597     }
4598   }else{
4599     /* Assign a bit from the bitmask to every term in the FROM clause.
4600     **
4601     ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4602     **
4603     ** The rule of the previous sentence ensures thta if X is the bitmask for
4604     ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4605     ** Knowing the bitmask for all tables to the left of a left join is
4606     ** important.  Ticket #3015.
4607     **
4608     ** Note that bitmasks are created for all pTabList->nSrc tables in
4609     ** pTabList, not just the first nTabList tables.  nTabList is normally
4610     ** equal to pTabList->nSrc but might be shortened to 1 if the
4611     ** WHERE_OR_SUBCLAUSE flag is set.
4612     */
4613     ii = 0;
4614     do{
4615       createMask(pMaskSet, pTabList->a[ii].iCursor);
4616       sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4617     }while( (++ii)<pTabList->nSrc );
4618   #ifdef SQLITE_DEBUG
4619     {
4620       Bitmask mx = 0;
4621       for(ii=0; ii<pTabList->nSrc; ii++){
4622         Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4623         assert( m>=mx );
4624         mx = m;
4625       }
4626     }
4627   #endif
4628   }
4629 
4630   /* Analyze all of the subexpressions. */
4631   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4632   if( db->mallocFailed ) goto whereBeginError;
4633 
4634   /* Special case: WHERE terms that do not refer to any tables in the join
4635   ** (constant expressions). Evaluate each such term, and jump over all the
4636   ** generated code if the result is not true.
4637   **
4638   ** Do not do this if the expression contains non-deterministic functions
4639   ** that are not within a sub-select. This is not strictly required, but
4640   ** preserves SQLite's legacy behaviour in the following two cases:
4641   **
4642   **   FROM ... WHERE random()>0;           -- eval random() once per row
4643   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
4644   */
4645   for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4646     WhereTerm *pT = &sWLB.pWC->a[ii];
4647     if( pT->wtFlags & TERM_VIRTUAL ) continue;
4648     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
4649       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
4650       pT->wtFlags |= TERM_CODED;
4651     }
4652   }
4653 
4654   if( wctrlFlags & WHERE_WANT_DISTINCT ){
4655     if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
4656       /* The DISTINCT marking is pointless.  Ignore it. */
4657       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4658     }else if( pOrderBy==0 ){
4659       /* Try to ORDER BY the result set to make distinct processing easier */
4660       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4661       pWInfo->pOrderBy = pResultSet;
4662     }
4663   }
4664 
4665   /* Construct the WhereLoop objects */
4666 #if defined(WHERETRACE_ENABLED)
4667   if( sqlite3WhereTrace & 0xffff ){
4668     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
4669     if( wctrlFlags & WHERE_USE_LIMIT ){
4670       sqlite3DebugPrintf(", limit: %d", iAuxArg);
4671     }
4672     sqlite3DebugPrintf(")\n");
4673   }
4674   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
4675     sqlite3WhereClausePrint(sWLB.pWC);
4676   }
4677 #endif
4678 
4679   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
4680     rc = whereLoopAddAll(&sWLB);
4681     if( rc ) goto whereBeginError;
4682 
4683 #ifdef WHERETRACE_ENABLED
4684     if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
4685       WhereLoop *p;
4686       int i;
4687       static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4688                                              "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4689       for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4690         p->cId = zLabel[i%(sizeof(zLabel)-1)];
4691         whereLoopPrint(p, sWLB.pWC);
4692       }
4693     }
4694 #endif
4695 
4696     wherePathSolver(pWInfo, 0);
4697     if( db->mallocFailed ) goto whereBeginError;
4698     if( pWInfo->pOrderBy ){
4699        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
4700        if( db->mallocFailed ) goto whereBeginError;
4701     }
4702   }
4703   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
4704      pWInfo->revMask = ALLBITS;
4705   }
4706   if( pParse->nErr || NEVER(db->mallocFailed) ){
4707     goto whereBeginError;
4708   }
4709 #ifdef WHERETRACE_ENABLED
4710   if( sqlite3WhereTrace ){
4711     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
4712     if( pWInfo->nOBSat>0 ){
4713       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
4714     }
4715     switch( pWInfo->eDistinct ){
4716       case WHERE_DISTINCT_UNIQUE: {
4717         sqlite3DebugPrintf("  DISTINCT=unique");
4718         break;
4719       }
4720       case WHERE_DISTINCT_ORDERED: {
4721         sqlite3DebugPrintf("  DISTINCT=ordered");
4722         break;
4723       }
4724       case WHERE_DISTINCT_UNORDERED: {
4725         sqlite3DebugPrintf("  DISTINCT=unordered");
4726         break;
4727       }
4728     }
4729     sqlite3DebugPrintf("\n");
4730     for(ii=0; ii<pWInfo->nLevel; ii++){
4731       whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
4732     }
4733   }
4734 #endif
4735 
4736   /* Attempt to omit tables from the join that do not affect the result.
4737   ** For a table to not affect the result, the following must be true:
4738   **
4739   **   1) The query must not be an aggregate.
4740   **   2) The table must be the RHS of a LEFT JOIN.
4741   **   3) Either the query must be DISTINCT, or else the ON or USING clause
4742   **      must contain a constraint that limits the scan of the table to
4743   **      at most a single row.
4744   **   4) The table must not be referenced by any part of the query apart
4745   **      from its own USING or ON clause.
4746   **
4747   ** For example, given:
4748   **
4749   **     CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
4750   **     CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
4751   **     CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
4752   **
4753   ** then table t2 can be omitted from the following:
4754   **
4755   **     SELECT v1, v3 FROM t1
4756   **       LEFT JOIN t2 USING (t1.ipk=t2.ipk)
4757   **       LEFT JOIN t3 USING (t1.ipk=t3.ipk)
4758   **
4759   ** or from:
4760   **
4761   **     SELECT DISTINCT v1, v3 FROM t1
4762   **       LEFT JOIN t2
4763   **       LEFT JOIN t3 USING (t1.ipk=t3.ipk)
4764   */
4765   notReady = ~(Bitmask)0;
4766   if( pWInfo->nLevel>=2
4767    && pResultSet!=0               /* guarantees condition (1) above */
4768    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
4769   ){
4770     int i;
4771     Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
4772     if( sWLB.pOrderBy ){
4773       tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
4774     }
4775     for(i=pWInfo->nLevel-1; i>=1; i--){
4776       WhereTerm *pTerm, *pEnd;
4777       struct SrcList_item *pItem;
4778       pLoop = pWInfo->a[i].pWLoop;
4779       pItem = &pWInfo->pTabList->a[pLoop->iTab];
4780       if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
4781       if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
4782        && (pLoop->wsFlags & WHERE_ONEROW)==0
4783       ){
4784         continue;
4785       }
4786       if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
4787       pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
4788       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
4789         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
4790           if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
4791            || pTerm->pExpr->iRightJoinTable!=pItem->iCursor
4792           ){
4793             break;
4794           }
4795         }
4796       }
4797       if( pTerm<pEnd ) continue;
4798       WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
4799       notReady &= ~pLoop->maskSelf;
4800       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
4801         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
4802           pTerm->wtFlags |= TERM_CODED;
4803         }
4804       }
4805       if( i!=pWInfo->nLevel-1 ){
4806         int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
4807         memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
4808       }
4809       pWInfo->nLevel--;
4810       nTabList--;
4811     }
4812   }
4813   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
4814   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
4815 
4816   /* If the caller is an UPDATE or DELETE statement that is requesting
4817   ** to use a one-pass algorithm, determine if this is appropriate.
4818   **
4819   ** A one-pass approach can be used if the caller has requested one
4820   ** and either (a) the scan visits at most one row or (b) each
4821   ** of the following are true:
4822   **
4823   **   * the caller has indicated that a one-pass approach can be used
4824   **     with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
4825   **   * the table is not a virtual table, and
4826   **   * either the scan does not use the OR optimization or the caller
4827   **     is a DELETE operation (WHERE_DUPLICATES_OK is only specified
4828   **     for DELETE).
4829   **
4830   ** The last qualification is because an UPDATE statement uses
4831   ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
4832   ** use a one-pass approach, and this is not set accurately for scans
4833   ** that use the OR optimization.
4834   */
4835   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
4836   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
4837     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
4838     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
4839     if( bOnerow || (
4840         0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
4841      && 0==(wsFlags & WHERE_VIRTUALTABLE)
4842      && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
4843     )){
4844       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
4845       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
4846         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
4847           bFordelete = OPFLAG_FORDELETE;
4848         }
4849         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
4850       }
4851     }
4852   }
4853 
4854   /* Open all tables in the pTabList and any indices selected for
4855   ** searching those tables.
4856   */
4857   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
4858     Table *pTab;     /* Table to open */
4859     int iDb;         /* Index of database containing table/index */
4860     struct SrcList_item *pTabItem;
4861 
4862     pTabItem = &pTabList->a[pLevel->iFrom];
4863     pTab = pTabItem->pTab;
4864     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4865     pLoop = pLevel->pWLoop;
4866     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
4867       /* Do nothing */
4868     }else
4869 #ifndef SQLITE_OMIT_VIRTUALTABLE
4870     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
4871       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
4872       int iCur = pTabItem->iCursor;
4873       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
4874     }else if( IsVirtual(pTab) ){
4875       /* noop */
4876     }else
4877 #endif
4878     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
4879          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
4880       int op = OP_OpenRead;
4881       if( pWInfo->eOnePass!=ONEPASS_OFF ){
4882         op = OP_OpenWrite;
4883         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
4884       };
4885       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
4886       assert( pTabItem->iCursor==pLevel->iTabCur );
4887       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
4888       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
4889       if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){
4890         Bitmask b = pTabItem->colUsed;
4891         int n = 0;
4892         for(; b; b=b>>1, n++){}
4893         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
4894         assert( n<=pTab->nCol );
4895       }
4896 #ifdef SQLITE_ENABLE_CURSOR_HINTS
4897       if( pLoop->u.btree.pIndex!=0 ){
4898         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
4899       }else
4900 #endif
4901       {
4902         sqlite3VdbeChangeP5(v, bFordelete);
4903       }
4904 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4905       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
4906                             (const u8*)&pTabItem->colUsed, P4_INT64);
4907 #endif
4908     }else{
4909       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4910     }
4911     if( pLoop->wsFlags & WHERE_INDEXED ){
4912       Index *pIx = pLoop->u.btree.pIndex;
4913       int iIndexCur;
4914       int op = OP_OpenRead;
4915       /* iAuxArg is always set to a positive value if ONEPASS is possible */
4916       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
4917       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
4918        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
4919       ){
4920         /* This is one term of an OR-optimization using the PRIMARY KEY of a
4921         ** WITHOUT ROWID table.  No need for a separate index */
4922         iIndexCur = pLevel->iTabCur;
4923         op = 0;
4924       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
4925         Index *pJ = pTabItem->pTab->pIndex;
4926         iIndexCur = iAuxArg;
4927         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
4928         while( ALWAYS(pJ) && pJ!=pIx ){
4929           iIndexCur++;
4930           pJ = pJ->pNext;
4931         }
4932         op = OP_OpenWrite;
4933         pWInfo->aiCurOnePass[1] = iIndexCur;
4934       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
4935         iIndexCur = iAuxArg;
4936         op = OP_ReopenIdx;
4937       }else{
4938         iIndexCur = pParse->nTab++;
4939       }
4940       pLevel->iIdxCur = iIndexCur;
4941       assert( pIx->pSchema==pTab->pSchema );
4942       assert( iIndexCur>=0 );
4943       if( op ){
4944         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
4945         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
4946         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
4947          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
4948          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
4949          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
4950         ){
4951           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */
4952         }
4953         VdbeComment((v, "%s", pIx->zName));
4954 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4955         {
4956           u64 colUsed = 0;
4957           int ii, jj;
4958           for(ii=0; ii<pIx->nColumn; ii++){
4959             jj = pIx->aiColumn[ii];
4960             if( jj<0 ) continue;
4961             if( jj>63 ) jj = 63;
4962             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
4963             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
4964           }
4965           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
4966                                 (u8*)&colUsed, P4_INT64);
4967         }
4968 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
4969       }
4970     }
4971     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
4972   }
4973   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
4974   if( db->mallocFailed ) goto whereBeginError;
4975 
4976   /* Generate the code to do the search.  Each iteration of the for
4977   ** loop below generates code for a single nested loop of the VM
4978   ** program.
4979   */
4980   for(ii=0; ii<nTabList; ii++){
4981     int addrExplain;
4982     int wsFlags;
4983     pLevel = &pWInfo->a[ii];
4984     wsFlags = pLevel->pWLoop->wsFlags;
4985 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
4986     if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
4987       constructAutomaticIndex(pParse, &pWInfo->sWC,
4988                 &pTabList->a[pLevel->iFrom], notReady, pLevel);
4989       if( db->mallocFailed ) goto whereBeginError;
4990     }
4991 #endif
4992     addrExplain = sqlite3WhereExplainOneScan(
4993         pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags
4994     );
4995     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
4996     notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady);
4997     pWInfo->iContinue = pLevel->addrCont;
4998     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
4999       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
5000     }
5001   }
5002 
5003   /* Done. */
5004   VdbeModuleComment((v, "Begin WHERE-core"));
5005   return pWInfo;
5006 
5007   /* Jump here if malloc fails */
5008 whereBeginError:
5009   if( pWInfo ){
5010     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5011     whereInfoFree(db, pWInfo);
5012   }
5013   return 0;
5014 }
5015 
5016 /*
5017 ** Generate the end of the WHERE loop.  See comments on
5018 ** sqlite3WhereBegin() for additional information.
5019 */
5020 void sqlite3WhereEnd(WhereInfo *pWInfo){
5021   Parse *pParse = pWInfo->pParse;
5022   Vdbe *v = pParse->pVdbe;
5023   int i;
5024   WhereLevel *pLevel;
5025   WhereLoop *pLoop;
5026   SrcList *pTabList = pWInfo->pTabList;
5027   sqlite3 *db = pParse->db;
5028 
5029   /* Generate loop termination code.
5030   */
5031   VdbeModuleComment((v, "End WHERE-core"));
5032   sqlite3ExprCacheClear(pParse);
5033   for(i=pWInfo->nLevel-1; i>=0; i--){
5034     int addr;
5035     pLevel = &pWInfo->a[i];
5036     pLoop = pLevel->pWLoop;
5037     if( pLevel->op!=OP_Noop ){
5038 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5039       int addrSeek = 0;
5040       Index *pIdx;
5041       int n;
5042       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
5043        && i==pWInfo->nLevel-1  /* Ticket [ef9318757b152e3] 2017-10-21 */
5044        && (pLoop->wsFlags & WHERE_INDEXED)!=0
5045        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
5046        && (n = pLoop->u.btree.nIdxCol)>0
5047        && pIdx->aiRowLogEst[n]>=36
5048       ){
5049         int r1 = pParse->nMem+1;
5050         int j, op;
5051         for(j=0; j<n; j++){
5052           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
5053         }
5054         pParse->nMem += n+1;
5055         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
5056         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
5057         VdbeCoverageIf(v, op==OP_SeekLT);
5058         VdbeCoverageIf(v, op==OP_SeekGT);
5059         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
5060       }
5061 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
5062       /* The common case: Advance to the next row */
5063       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5064       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
5065       sqlite3VdbeChangeP5(v, pLevel->p5);
5066       VdbeCoverage(v);
5067       VdbeCoverageIf(v, pLevel->op==OP_Next);
5068       VdbeCoverageIf(v, pLevel->op==OP_Prev);
5069       VdbeCoverageIf(v, pLevel->op==OP_VNext);
5070 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5071       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
5072 #endif
5073     }else{
5074       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5075     }
5076     if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
5077       struct InLoop *pIn;
5078       int j;
5079       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
5080       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
5081         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5082         if( pIn->eEndLoopOp!=OP_Noop ){
5083           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
5084           VdbeCoverage(v);
5085           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen);
5086           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen);
5087         }
5088         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
5089       }
5090     }
5091     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
5092     if( pLevel->addrSkip ){
5093       sqlite3VdbeGoto(v, pLevel->addrSkip);
5094       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
5095       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
5096       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
5097     }
5098 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
5099     if( pLevel->addrLikeRep ){
5100       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
5101                         pLevel->addrLikeRep);
5102       VdbeCoverage(v);
5103     }
5104 #endif
5105     if( pLevel->iLeftJoin ){
5106       int ws = pLoop->wsFlags;
5107       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
5108       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
5109       if( (ws & WHERE_IDX_ONLY)==0 ){
5110         assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
5111         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
5112       }
5113       if( (ws & WHERE_INDEXED)
5114        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx)
5115       ){
5116         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
5117       }
5118       if( pLevel->op==OP_Return ){
5119         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
5120       }else{
5121         sqlite3VdbeGoto(v, pLevel->addrFirst);
5122       }
5123       sqlite3VdbeJumpHere(v, addr);
5124     }
5125     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
5126                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
5127   }
5128 
5129   /* The "break" point is here, just past the end of the outer loop.
5130   ** Set it.
5131   */
5132   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
5133 
5134   assert( pWInfo->nLevel<=pTabList->nSrc );
5135   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
5136     int k, last;
5137     VdbeOp *pOp;
5138     Index *pIdx = 0;
5139     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
5140     Table *pTab = pTabItem->pTab;
5141     assert( pTab!=0 );
5142     pLoop = pLevel->pWLoop;
5143 
5144     /* For a co-routine, change all OP_Column references to the table of
5145     ** the co-routine into OP_Copy of result contained in a register.
5146     ** OP_Rowid becomes OP_Null.
5147     */
5148     if( pTabItem->fg.viaCoroutine ){
5149       testcase( pParse->db->mallocFailed );
5150       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
5151                             pTabItem->regResult, 0);
5152       continue;
5153     }
5154 
5155     /* If this scan uses an index, make VDBE code substitutions to read data
5156     ** from the index instead of from the table where possible.  In some cases
5157     ** this optimization prevents the table from ever being read, which can
5158     ** yield a significant performance boost.
5159     **
5160     ** Calls to the code generator in between sqlite3WhereBegin and
5161     ** sqlite3WhereEnd will have created code that references the table
5162     ** directly.  This loop scans all that code looking for opcodes
5163     ** that reference the table and converts them into opcodes that
5164     ** reference the index.
5165     */
5166     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
5167       pIdx = pLoop->u.btree.pIndex;
5168     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
5169       pIdx = pLevel->u.pCovidx;
5170     }
5171     if( pIdx
5172      && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable))
5173      && !db->mallocFailed
5174     ){
5175       last = sqlite3VdbeCurrentAddr(v);
5176       k = pLevel->addrBody;
5177       pOp = sqlite3VdbeGetOp(v, k);
5178       for(; k<last; k++, pOp++){
5179         if( pOp->p1!=pLevel->iTabCur ) continue;
5180         if( pOp->opcode==OP_Column
5181 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
5182          || pOp->opcode==OP_Offset
5183 #endif
5184         ){
5185           int x = pOp->p2;
5186           assert( pIdx->pTable==pTab );
5187           if( !HasRowid(pTab) ){
5188             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5189             x = pPk->aiColumn[x];
5190             assert( x>=0 );
5191           }
5192           x = sqlite3ColumnOfIndex(pIdx, x);
5193           if( x>=0 ){
5194             pOp->p2 = x;
5195             pOp->p1 = pLevel->iIdxCur;
5196           }
5197           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
5198               || pWInfo->eOnePass );
5199         }else if( pOp->opcode==OP_Rowid ){
5200           pOp->p1 = pLevel->iIdxCur;
5201           pOp->opcode = OP_IdxRowid;
5202         }else if( pOp->opcode==OP_IfNullRow ){
5203           pOp->p1 = pLevel->iIdxCur;
5204         }
5205       }
5206     }
5207   }
5208 
5209   /* Final cleanup
5210   */
5211   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5212   whereInfoFree(db, pWInfo);
5213   return;
5214 }
5215