1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* 23 ** Extra information appended to the end of sqlite3_index_info but not 24 ** visible to the xBestIndex function, at least not directly. The 25 ** sqlite3_vtab_collation() interface knows how to reach it, however. 26 ** 27 ** This object is not an API and can be changed from one release to the 28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation() 29 ** agree on the structure, all will be well. 30 */ 31 typedef struct HiddenIndexInfo HiddenIndexInfo; 32 struct HiddenIndexInfo { 33 WhereClause *pWC; /* The Where clause being analyzed */ 34 Parse *pParse; /* The parsing context */ 35 int eDistinct; /* Value to return from sqlite3_vtab_distinct() */ 36 u32 mIn; /* Mask of terms that are <col> IN (...) */ 37 u32 mHandleIn; /* Terms that vtab will handle as <col> IN (...) */ 38 sqlite3_value *aRhs[1]; /* RHS values for constraints. MUST BE LAST 39 ** because extra space is allocated to hold up 40 ** to nTerm such values */ 41 }; 42 43 /* Forward declaration of methods */ 44 static int whereLoopResize(sqlite3*, WhereLoop*, int); 45 46 /* 47 ** Return the estimated number of output rows from a WHERE clause 48 */ 49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 50 return pWInfo->nRowOut; 51 } 52 53 /* 54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 55 ** WHERE clause returns outputs for DISTINCT processing. 56 */ 57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 58 return pWInfo->eDistinct; 59 } 60 61 /* 62 ** Return the number of ORDER BY terms that are satisfied by the 63 ** WHERE clause. A return of 0 means that the output must be 64 ** completely sorted. A return equal to the number of ORDER BY 65 ** terms means that no sorting is needed at all. A return that 66 ** is positive but less than the number of ORDER BY terms means that 67 ** block sorting is required. 68 */ 69 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 70 return pWInfo->nOBSat; 71 } 72 73 /* 74 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known 75 ** to emit rows in increasing order, and if the last row emitted by the 76 ** inner-most loop did not fit within the sorter, then we can skip all 77 ** subsequent rows for the current iteration of the inner loop (because they 78 ** will not fit in the sorter either) and continue with the second inner 79 ** loop - the loop immediately outside the inner-most. 80 ** 81 ** When a row does not fit in the sorter (because the sorter already 82 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the 83 ** label returned by this function. 84 ** 85 ** If the ORDER BY LIMIT optimization applies, the jump destination should 86 ** be the continuation for the second-inner-most loop. If the ORDER BY 87 ** LIMIT optimization does not apply, then the jump destination should 88 ** be the continuation for the inner-most loop. 89 ** 90 ** It is always safe for this routine to return the continuation of the 91 ** inner-most loop, in the sense that a correct answer will result. 92 ** Returning the continuation the second inner loop is an optimization 93 ** that might make the code run a little faster, but should not change 94 ** the final answer. 95 */ 96 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){ 97 WhereLevel *pInner; 98 if( !pWInfo->bOrderedInnerLoop ){ 99 /* The ORDER BY LIMIT optimization does not apply. Jump to the 100 ** continuation of the inner-most loop. */ 101 return pWInfo->iContinue; 102 } 103 pInner = &pWInfo->a[pWInfo->nLevel-1]; 104 assert( pInner->addrNxt!=0 ); 105 return pInner->pRJ ? pWInfo->iContinue : pInner->addrNxt; 106 } 107 108 /* 109 ** While generating code for the min/max optimization, after handling 110 ** the aggregate-step call to min() or max(), check to see if any 111 ** additional looping is required. If the output order is such that 112 ** we are certain that the correct answer has already been found, then 113 ** code an OP_Goto to by pass subsequent processing. 114 ** 115 ** Any extra OP_Goto that is coded here is an optimization. The 116 ** correct answer should be obtained regardless. This OP_Goto just 117 ** makes the answer appear faster. 118 */ 119 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){ 120 WhereLevel *pInner; 121 int i; 122 if( !pWInfo->bOrderedInnerLoop ) return; 123 if( pWInfo->nOBSat==0 ) return; 124 for(i=pWInfo->nLevel-1; i>=0; i--){ 125 pInner = &pWInfo->a[i]; 126 if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){ 127 sqlite3VdbeGoto(v, pInner->addrNxt); 128 return; 129 } 130 } 131 sqlite3VdbeGoto(v, pWInfo->iBreak); 132 } 133 134 /* 135 ** Return the VDBE address or label to jump to in order to continue 136 ** immediately with the next row of a WHERE clause. 137 */ 138 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 139 assert( pWInfo->iContinue!=0 ); 140 return pWInfo->iContinue; 141 } 142 143 /* 144 ** Return the VDBE address or label to jump to in order to break 145 ** out of a WHERE loop. 146 */ 147 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 148 return pWInfo->iBreak; 149 } 150 151 /* 152 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to 153 ** operate directly on the rowids returned by a WHERE clause. Return 154 ** ONEPASS_SINGLE (1) if the statement can operation directly because only 155 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass 156 ** optimization can be used on multiple 157 ** 158 ** If the ONEPASS optimization is used (if this routine returns true) 159 ** then also write the indices of open cursors used by ONEPASS 160 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 161 ** table and iaCur[1] gets the cursor used by an auxiliary index. 162 ** Either value may be -1, indicating that cursor is not used. 163 ** Any cursors returned will have been opened for writing. 164 ** 165 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 166 ** unable to use the ONEPASS optimization. 167 */ 168 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 169 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 170 #ifdef WHERETRACE_ENABLED 171 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ 172 sqlite3DebugPrintf("%s cursors: %d %d\n", 173 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", 174 aiCur[0], aiCur[1]); 175 } 176 #endif 177 return pWInfo->eOnePass; 178 } 179 180 /* 181 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move 182 ** the data cursor to the row selected by the index cursor. 183 */ 184 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){ 185 return pWInfo->bDeferredSeek; 186 } 187 188 /* 189 ** Move the content of pSrc into pDest 190 */ 191 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 192 pDest->n = pSrc->n; 193 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 194 } 195 196 /* 197 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 198 ** 199 ** The new entry might overwrite an existing entry, or it might be 200 ** appended, or it might be discarded. Do whatever is the right thing 201 ** so that pSet keeps the N_OR_COST best entries seen so far. 202 */ 203 static int whereOrInsert( 204 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 205 Bitmask prereq, /* Prerequisites of the new entry */ 206 LogEst rRun, /* Run-cost of the new entry */ 207 LogEst nOut /* Number of outputs for the new entry */ 208 ){ 209 u16 i; 210 WhereOrCost *p; 211 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 212 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 213 goto whereOrInsert_done; 214 } 215 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 216 return 0; 217 } 218 } 219 if( pSet->n<N_OR_COST ){ 220 p = &pSet->a[pSet->n++]; 221 p->nOut = nOut; 222 }else{ 223 p = pSet->a; 224 for(i=1; i<pSet->n; i++){ 225 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 226 } 227 if( p->rRun<=rRun ) return 0; 228 } 229 whereOrInsert_done: 230 p->prereq = prereq; 231 p->rRun = rRun; 232 if( p->nOut>nOut ) p->nOut = nOut; 233 return 1; 234 } 235 236 /* 237 ** Return the bitmask for the given cursor number. Return 0 if 238 ** iCursor is not in the set. 239 */ 240 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ 241 int i; 242 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 243 assert( pMaskSet->n>0 || pMaskSet->ix[0]<0 ); 244 assert( iCursor>=-1 ); 245 if( pMaskSet->ix[0]==iCursor ){ 246 return 1; 247 } 248 for(i=1; i<pMaskSet->n; i++){ 249 if( pMaskSet->ix[i]==iCursor ){ 250 return MASKBIT(i); 251 } 252 } 253 return 0; 254 } 255 256 /* Allocate memory that is automatically freed when pWInfo is freed. 257 */ 258 void *sqlite3WhereMalloc(WhereInfo *pWInfo, u64 nByte){ 259 WhereMemBlock *pBlock; 260 pBlock = sqlite3DbMallocRawNN(pWInfo->pParse->db, nByte+sizeof(*pBlock)); 261 if( pBlock ){ 262 pBlock->pNext = pWInfo->pMemToFree; 263 pBlock->sz = nByte; 264 pWInfo->pMemToFree = pBlock; 265 pBlock++; 266 } 267 return (void*)pBlock; 268 } 269 void *sqlite3WhereRealloc(WhereInfo *pWInfo, void *pOld, u64 nByte){ 270 void *pNew = sqlite3WhereMalloc(pWInfo, nByte); 271 if( pNew && pOld ){ 272 WhereMemBlock *pOldBlk = (WhereMemBlock*)pOld; 273 pOldBlk--; 274 assert( pOldBlk->sz<nByte ); 275 memcpy(pNew, pOld, pOldBlk->sz); 276 } 277 return pNew; 278 } 279 280 /* 281 ** Create a new mask for cursor iCursor. 282 ** 283 ** There is one cursor per table in the FROM clause. The number of 284 ** tables in the FROM clause is limited by a test early in the 285 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 286 ** array will never overflow. 287 */ 288 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 289 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 290 pMaskSet->ix[pMaskSet->n++] = iCursor; 291 } 292 293 /* 294 ** If the right-hand branch of the expression is a TK_COLUMN, then return 295 ** a pointer to the right-hand branch. Otherwise, return NULL. 296 */ 297 static Expr *whereRightSubexprIsColumn(Expr *p){ 298 p = sqlite3ExprSkipCollateAndLikely(p->pRight); 299 if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){ 300 return p; 301 } 302 return 0; 303 } 304 305 /* 306 ** Advance to the next WhereTerm that matches according to the criteria 307 ** established when the pScan object was initialized by whereScanInit(). 308 ** Return NULL if there are no more matching WhereTerms. 309 */ 310 static WhereTerm *whereScanNext(WhereScan *pScan){ 311 int iCur; /* The cursor on the LHS of the term */ 312 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ 313 Expr *pX; /* An expression being tested */ 314 WhereClause *pWC; /* Shorthand for pScan->pWC */ 315 WhereTerm *pTerm; /* The term being tested */ 316 int k = pScan->k; /* Where to start scanning */ 317 318 assert( pScan->iEquiv<=pScan->nEquiv ); 319 pWC = pScan->pWC; 320 while(1){ 321 iColumn = pScan->aiColumn[pScan->iEquiv-1]; 322 iCur = pScan->aiCur[pScan->iEquiv-1]; 323 assert( pWC!=0 ); 324 assert( iCur>=0 ); 325 do{ 326 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 327 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 || pTerm->leftCursor<0 ); 328 if( pTerm->leftCursor==iCur 329 && pTerm->u.x.leftColumn==iColumn 330 && (iColumn!=XN_EXPR 331 || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft, 332 pScan->pIdxExpr,iCur)==0) 333 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_OuterON)) 334 ){ 335 if( (pTerm->eOperator & WO_EQUIV)!=0 336 && pScan->nEquiv<ArraySize(pScan->aiCur) 337 && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0 338 ){ 339 int j; 340 for(j=0; j<pScan->nEquiv; j++){ 341 if( pScan->aiCur[j]==pX->iTable 342 && pScan->aiColumn[j]==pX->iColumn ){ 343 break; 344 } 345 } 346 if( j==pScan->nEquiv ){ 347 pScan->aiCur[j] = pX->iTable; 348 pScan->aiColumn[j] = pX->iColumn; 349 pScan->nEquiv++; 350 } 351 } 352 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 353 /* Verify the affinity and collating sequence match */ 354 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 355 CollSeq *pColl; 356 Parse *pParse = pWC->pWInfo->pParse; 357 pX = pTerm->pExpr; 358 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 359 continue; 360 } 361 assert(pX->pLeft); 362 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 363 if( pColl==0 ) pColl = pParse->db->pDfltColl; 364 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ 365 continue; 366 } 367 } 368 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 369 && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0)) 370 && pX->op==TK_COLUMN 371 && pX->iTable==pScan->aiCur[0] 372 && pX->iColumn==pScan->aiColumn[0] 373 ){ 374 testcase( pTerm->eOperator & WO_IS ); 375 continue; 376 } 377 pScan->pWC = pWC; 378 pScan->k = k+1; 379 #ifdef WHERETRACE_ENABLED 380 if( sqlite3WhereTrace & 0x20000 ){ 381 int ii; 382 sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d", 383 pTerm, pScan->nEquiv); 384 for(ii=0; ii<pScan->nEquiv; ii++){ 385 sqlite3DebugPrintf(" {%d:%d}", 386 pScan->aiCur[ii], pScan->aiColumn[ii]); 387 } 388 sqlite3DebugPrintf("\n"); 389 } 390 #endif 391 return pTerm; 392 } 393 } 394 } 395 pWC = pWC->pOuter; 396 k = 0; 397 }while( pWC!=0 ); 398 if( pScan->iEquiv>=pScan->nEquiv ) break; 399 pWC = pScan->pOrigWC; 400 k = 0; 401 pScan->iEquiv++; 402 } 403 return 0; 404 } 405 406 /* 407 ** This is whereScanInit() for the case of an index on an expression. 408 ** It is factored out into a separate tail-recursion subroutine so that 409 ** the normal whereScanInit() routine, which is a high-runner, does not 410 ** need to push registers onto the stack as part of its prologue. 411 */ 412 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){ 413 pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr); 414 return whereScanNext(pScan); 415 } 416 417 /* 418 ** Initialize a WHERE clause scanner object. Return a pointer to the 419 ** first match. Return NULL if there are no matches. 420 ** 421 ** The scanner will be searching the WHERE clause pWC. It will look 422 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 423 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx 424 ** must be one of the indexes of table iCur. 425 ** 426 ** The <op> must be one of the operators described by opMask. 427 ** 428 ** If the search is for X and the WHERE clause contains terms of the 429 ** form X=Y then this routine might also return terms of the form 430 ** "Y <op> <expr>". The number of levels of transitivity is limited, 431 ** but is enough to handle most commonly occurring SQL statements. 432 ** 433 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 434 ** index pIdx. 435 */ 436 static WhereTerm *whereScanInit( 437 WhereScan *pScan, /* The WhereScan object being initialized */ 438 WhereClause *pWC, /* The WHERE clause to be scanned */ 439 int iCur, /* Cursor to scan for */ 440 int iColumn, /* Column to scan for */ 441 u32 opMask, /* Operator(s) to scan for */ 442 Index *pIdx /* Must be compatible with this index */ 443 ){ 444 pScan->pOrigWC = pWC; 445 pScan->pWC = pWC; 446 pScan->pIdxExpr = 0; 447 pScan->idxaff = 0; 448 pScan->zCollName = 0; 449 pScan->opMask = opMask; 450 pScan->k = 0; 451 pScan->aiCur[0] = iCur; 452 pScan->nEquiv = 1; 453 pScan->iEquiv = 1; 454 if( pIdx ){ 455 int j = iColumn; 456 iColumn = pIdx->aiColumn[j]; 457 if( iColumn==pIdx->pTable->iPKey ){ 458 iColumn = XN_ROWID; 459 }else if( iColumn>=0 ){ 460 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 461 pScan->zCollName = pIdx->azColl[j]; 462 }else if( iColumn==XN_EXPR ){ 463 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; 464 pScan->zCollName = pIdx->azColl[j]; 465 pScan->aiColumn[0] = XN_EXPR; 466 return whereScanInitIndexExpr(pScan); 467 } 468 }else if( iColumn==XN_EXPR ){ 469 return 0; 470 } 471 pScan->aiColumn[0] = iColumn; 472 return whereScanNext(pScan); 473 } 474 475 /* 476 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 477 ** where X is a reference to the iColumn of table iCur or of index pIdx 478 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by 479 ** the op parameter. Return a pointer to the term. Return 0 if not found. 480 ** 481 ** If pIdx!=0 then it must be one of the indexes of table iCur. 482 ** Search for terms matching the iColumn-th column of pIdx 483 ** rather than the iColumn-th column of table iCur. 484 ** 485 ** The term returned might by Y=<expr> if there is another constraint in 486 ** the WHERE clause that specifies that X=Y. Any such constraints will be 487 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 488 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 489 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 490 ** other equivalent values. Hence a search for X will return <expr> if X=A1 491 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. 492 ** 493 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 494 ** then try for the one with no dependencies on <expr> - in other words where 495 ** <expr> is a constant expression of some kind. Only return entries of 496 ** the form "X <op> Y" where Y is a column in another table if no terms of 497 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 498 ** exist, try to return a term that does not use WO_EQUIV. 499 */ 500 WhereTerm *sqlite3WhereFindTerm( 501 WhereClause *pWC, /* The WHERE clause to be searched */ 502 int iCur, /* Cursor number of LHS */ 503 int iColumn, /* Column number of LHS */ 504 Bitmask notReady, /* RHS must not overlap with this mask */ 505 u32 op, /* Mask of WO_xx values describing operator */ 506 Index *pIdx /* Must be compatible with this index, if not NULL */ 507 ){ 508 WhereTerm *pResult = 0; 509 WhereTerm *p; 510 WhereScan scan; 511 512 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 513 op &= WO_EQ|WO_IS; 514 while( p ){ 515 if( (p->prereqRight & notReady)==0 ){ 516 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ 517 testcase( p->eOperator & WO_IS ); 518 return p; 519 } 520 if( pResult==0 ) pResult = p; 521 } 522 p = whereScanNext(&scan); 523 } 524 return pResult; 525 } 526 527 /* 528 ** This function searches pList for an entry that matches the iCol-th column 529 ** of index pIdx. 530 ** 531 ** If such an expression is found, its index in pList->a[] is returned. If 532 ** no expression is found, -1 is returned. 533 */ 534 static int findIndexCol( 535 Parse *pParse, /* Parse context */ 536 ExprList *pList, /* Expression list to search */ 537 int iBase, /* Cursor for table associated with pIdx */ 538 Index *pIdx, /* Index to match column of */ 539 int iCol /* Column of index to match */ 540 ){ 541 int i; 542 const char *zColl = pIdx->azColl[iCol]; 543 544 for(i=0; i<pList->nExpr; i++){ 545 Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr); 546 if( ALWAYS(p!=0) 547 && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) 548 && p->iColumn==pIdx->aiColumn[iCol] 549 && p->iTable==iBase 550 ){ 551 CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr); 552 if( 0==sqlite3StrICmp(pColl->zName, zColl) ){ 553 return i; 554 } 555 } 556 } 557 558 return -1; 559 } 560 561 /* 562 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL 563 */ 564 static int indexColumnNotNull(Index *pIdx, int iCol){ 565 int j; 566 assert( pIdx!=0 ); 567 assert( iCol>=0 && iCol<pIdx->nColumn ); 568 j = pIdx->aiColumn[iCol]; 569 if( j>=0 ){ 570 return pIdx->pTable->aCol[j].notNull; 571 }else if( j==(-1) ){ 572 return 1; 573 }else{ 574 assert( j==(-2) ); 575 return 0; /* Assume an indexed expression can always yield a NULL */ 576 577 } 578 } 579 580 /* 581 ** Return true if the DISTINCT expression-list passed as the third argument 582 ** is redundant. 583 ** 584 ** A DISTINCT list is redundant if any subset of the columns in the 585 ** DISTINCT list are collectively unique and individually non-null. 586 */ 587 static int isDistinctRedundant( 588 Parse *pParse, /* Parsing context */ 589 SrcList *pTabList, /* The FROM clause */ 590 WhereClause *pWC, /* The WHERE clause */ 591 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 592 ){ 593 Table *pTab; 594 Index *pIdx; 595 int i; 596 int iBase; 597 598 /* If there is more than one table or sub-select in the FROM clause of 599 ** this query, then it will not be possible to show that the DISTINCT 600 ** clause is redundant. */ 601 if( pTabList->nSrc!=1 ) return 0; 602 iBase = pTabList->a[0].iCursor; 603 pTab = pTabList->a[0].pTab; 604 605 /* If any of the expressions is an IPK column on table iBase, then return 606 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 607 ** current SELECT is a correlated sub-query. 608 */ 609 for(i=0; i<pDistinct->nExpr; i++){ 610 Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr); 611 if( NEVER(p==0) ) continue; 612 if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue; 613 if( p->iTable==iBase && p->iColumn<0 ) return 1; 614 } 615 616 /* Loop through all indices on the table, checking each to see if it makes 617 ** the DISTINCT qualifier redundant. It does so if: 618 ** 619 ** 1. The index is itself UNIQUE, and 620 ** 621 ** 2. All of the columns in the index are either part of the pDistinct 622 ** list, or else the WHERE clause contains a term of the form "col=X", 623 ** where X is a constant value. The collation sequences of the 624 ** comparison and select-list expressions must match those of the index. 625 ** 626 ** 3. All of those index columns for which the WHERE clause does not 627 ** contain a "col=X" term are subject to a NOT NULL constraint. 628 */ 629 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 630 if( !IsUniqueIndex(pIdx) ) continue; 631 if( pIdx->pPartIdxWhere ) continue; 632 for(i=0; i<pIdx->nKeyCol; i++){ 633 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ 634 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; 635 if( indexColumnNotNull(pIdx, i)==0 ) break; 636 } 637 } 638 if( i==pIdx->nKeyCol ){ 639 /* This index implies that the DISTINCT qualifier is redundant. */ 640 return 1; 641 } 642 } 643 644 return 0; 645 } 646 647 648 /* 649 ** Estimate the logarithm of the input value to base 2. 650 */ 651 static LogEst estLog(LogEst N){ 652 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 653 } 654 655 /* 656 ** Convert OP_Column opcodes to OP_Copy in previously generated code. 657 ** 658 ** This routine runs over generated VDBE code and translates OP_Column 659 ** opcodes into OP_Copy when the table is being accessed via co-routine 660 ** instead of via table lookup. 661 ** 662 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on 663 ** cursor iTabCur are transformed into OP_Sequence opcode for the 664 ** iAutoidxCur cursor, in order to generate unique rowids for the 665 ** automatic index being generated. 666 */ 667 static void translateColumnToCopy( 668 Parse *pParse, /* Parsing context */ 669 int iStart, /* Translate from this opcode to the end */ 670 int iTabCur, /* OP_Column/OP_Rowid references to this table */ 671 int iRegister, /* The first column is in this register */ 672 int iAutoidxCur /* If non-zero, cursor of autoindex being generated */ 673 ){ 674 Vdbe *v = pParse->pVdbe; 675 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); 676 int iEnd = sqlite3VdbeCurrentAddr(v); 677 if( pParse->db->mallocFailed ) return; 678 for(; iStart<iEnd; iStart++, pOp++){ 679 if( pOp->p1!=iTabCur ) continue; 680 if( pOp->opcode==OP_Column ){ 681 pOp->opcode = OP_Copy; 682 pOp->p1 = pOp->p2 + iRegister; 683 pOp->p2 = pOp->p3; 684 pOp->p3 = 0; 685 pOp->p5 = 2; /* Cause the MEM_Subtype flag to be cleared */ 686 }else if( pOp->opcode==OP_Rowid ){ 687 pOp->opcode = OP_Sequence; 688 pOp->p1 = iAutoidxCur; 689 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 690 if( iAutoidxCur==0 ){ 691 pOp->opcode = OP_Null; 692 pOp->p3 = 0; 693 } 694 #endif 695 } 696 } 697 } 698 699 /* 700 ** Two routines for printing the content of an sqlite3_index_info 701 ** structure. Used for testing and debugging only. If neither 702 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 703 ** are no-ops. 704 */ 705 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 706 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){ 707 int i; 708 if( !sqlite3WhereTrace ) return; 709 for(i=0; i<p->nConstraint; i++){ 710 sqlite3DebugPrintf( 711 " constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n", 712 i, 713 p->aConstraint[i].iColumn, 714 p->aConstraint[i].iTermOffset, 715 p->aConstraint[i].op, 716 p->aConstraint[i].usable, 717 sqlite3_vtab_collation(p,i)); 718 } 719 for(i=0; i<p->nOrderBy; i++){ 720 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 721 i, 722 p->aOrderBy[i].iColumn, 723 p->aOrderBy[i].desc); 724 } 725 } 726 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){ 727 int i; 728 if( !sqlite3WhereTrace ) return; 729 for(i=0; i<p->nConstraint; i++){ 730 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 731 i, 732 p->aConstraintUsage[i].argvIndex, 733 p->aConstraintUsage[i].omit); 734 } 735 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 736 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 737 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 738 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 739 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 740 } 741 #else 742 #define whereTraceIndexInfoInputs(A) 743 #define whereTraceIndexInfoOutputs(A) 744 #endif 745 746 /* 747 ** We know that pSrc is an operand of an outer join. Return true if 748 ** pTerm is a constraint that is compatible with that join. 749 ** 750 ** pTerm must be EP_OuterON if pSrc is the right operand of an 751 ** outer join. pTerm can be either EP_OuterON or EP_InnerON if pSrc 752 ** is the left operand of a RIGHT join. 753 */ 754 static int constraintCompatibleWithOuterJoin( 755 const WhereTerm *pTerm, /* WHERE clause term to check */ 756 const SrcItem *pSrc /* Table we are trying to access */ 757 ){ 758 assert( (pSrc->fg.jointype&(JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ); /* By caller */ 759 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT ); 760 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ ); 761 testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) 762 testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) ); 763 if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) 764 || pTerm->pExpr->w.iJoin != pSrc->iCursor 765 ){ 766 return 0; 767 } 768 if( (pSrc->fg.jointype & (JT_LEFT|JT_RIGHT))!=0 769 && ExprHasProperty(pTerm->pExpr, EP_InnerON) 770 ){ 771 return 0; 772 } 773 return 1; 774 } 775 776 777 778 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 779 /* 780 ** Return TRUE if the WHERE clause term pTerm is of a form where it 781 ** could be used with an index to access pSrc, assuming an appropriate 782 ** index existed. 783 */ 784 static int termCanDriveIndex( 785 const WhereTerm *pTerm, /* WHERE clause term to check */ 786 const SrcItem *pSrc, /* Table we are trying to access */ 787 const Bitmask notReady /* Tables in outer loops of the join */ 788 ){ 789 char aff; 790 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 791 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; 792 assert( (pSrc->fg.jointype & JT_RIGHT)==0 ); 793 if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 794 && !constraintCompatibleWithOuterJoin(pTerm,pSrc) 795 ){ 796 return 0; 797 } 798 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 799 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 800 if( pTerm->u.x.leftColumn<0 ) return 0; 801 aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity; 802 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 803 testcase( pTerm->pExpr->op==TK_IS ); 804 return 1; 805 } 806 #endif 807 808 809 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 810 /* 811 ** Generate code to construct the Index object for an automatic index 812 ** and to set up the WhereLevel object pLevel so that the code generator 813 ** makes use of the automatic index. 814 */ 815 static SQLITE_NOINLINE void constructAutomaticIndex( 816 Parse *pParse, /* The parsing context */ 817 const WhereClause *pWC, /* The WHERE clause */ 818 const SrcItem *pSrc, /* The FROM clause term to get the next index */ 819 const Bitmask notReady, /* Mask of cursors that are not available */ 820 WhereLevel *pLevel /* Write new index here */ 821 ){ 822 int nKeyCol; /* Number of columns in the constructed index */ 823 WhereTerm *pTerm; /* A single term of the WHERE clause */ 824 WhereTerm *pWCEnd; /* End of pWC->a[] */ 825 Index *pIdx; /* Object describing the transient index */ 826 Vdbe *v; /* Prepared statement under construction */ 827 int addrInit; /* Address of the initialization bypass jump */ 828 Table *pTable; /* The table being indexed */ 829 int addrTop; /* Top of the index fill loop */ 830 int regRecord; /* Register holding an index record */ 831 int n; /* Column counter */ 832 int i; /* Loop counter */ 833 int mxBitCol; /* Maximum column in pSrc->colUsed */ 834 CollSeq *pColl; /* Collating sequence to on a column */ 835 WhereLoop *pLoop; /* The Loop object */ 836 char *zNotUsed; /* Extra space on the end of pIdx */ 837 Bitmask idxCols; /* Bitmap of columns used for indexing */ 838 Bitmask extraCols; /* Bitmap of additional columns */ 839 u8 sentWarning = 0; /* True if a warnning has been issued */ 840 Expr *pPartial = 0; /* Partial Index Expression */ 841 int iContinue = 0; /* Jump here to skip excluded rows */ 842 SrcItem *pTabItem; /* FROM clause term being indexed */ 843 int addrCounter = 0; /* Address where integer counter is initialized */ 844 int regBase; /* Array of registers where record is assembled */ 845 846 /* Generate code to skip over the creation and initialization of the 847 ** transient index on 2nd and subsequent iterations of the loop. */ 848 v = pParse->pVdbe; 849 assert( v!=0 ); 850 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 851 852 /* Count the number of columns that will be added to the index 853 ** and used to match WHERE clause constraints */ 854 nKeyCol = 0; 855 pTable = pSrc->pTab; 856 pWCEnd = &pWC->a[pWC->nTerm]; 857 pLoop = pLevel->pWLoop; 858 idxCols = 0; 859 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 860 Expr *pExpr = pTerm->pExpr; 861 /* Make the automatic index a partial index if there are terms in the 862 ** WHERE clause (or the ON clause of a LEFT join) that constrain which 863 ** rows of the target table (pSrc) that can be used. */ 864 if( (pTerm->wtFlags & TERM_VIRTUAL)==0 865 && sqlite3ExprIsTableConstraint(pExpr, pSrc) 866 ){ 867 pPartial = sqlite3ExprAnd(pParse, pPartial, 868 sqlite3ExprDup(pParse->db, pExpr, 0)); 869 } 870 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 871 int iCol; 872 Bitmask cMask; 873 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 874 iCol = pTerm->u.x.leftColumn; 875 cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 876 testcase( iCol==BMS ); 877 testcase( iCol==BMS-1 ); 878 if( !sentWarning ){ 879 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 880 "automatic index on %s(%s)", pTable->zName, 881 pTable->aCol[iCol].zCnName); 882 sentWarning = 1; 883 } 884 if( (idxCols & cMask)==0 ){ 885 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 886 goto end_auto_index_create; 887 } 888 pLoop->aLTerm[nKeyCol++] = pTerm; 889 idxCols |= cMask; 890 } 891 } 892 } 893 assert( nKeyCol>0 || pParse->db->mallocFailed ); 894 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 895 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 896 | WHERE_AUTO_INDEX; 897 898 /* Count the number of additional columns needed to create a 899 ** covering index. A "covering index" is an index that contains all 900 ** columns that are needed by the query. With a covering index, the 901 ** original table never needs to be accessed. Automatic indices must 902 ** be a covering index because the index will not be updated if the 903 ** original table changes and the index and table cannot both be used 904 ** if they go out of sync. 905 */ 906 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 907 mxBitCol = MIN(BMS-1,pTable->nCol); 908 testcase( pTable->nCol==BMS-1 ); 909 testcase( pTable->nCol==BMS-2 ); 910 for(i=0; i<mxBitCol; i++){ 911 if( extraCols & MASKBIT(i) ) nKeyCol++; 912 } 913 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 914 nKeyCol += pTable->nCol - BMS + 1; 915 } 916 917 /* Construct the Index object to describe this index */ 918 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 919 if( pIdx==0 ) goto end_auto_index_create; 920 pLoop->u.btree.pIndex = pIdx; 921 pIdx->zName = "auto-index"; 922 pIdx->pTable = pTable; 923 n = 0; 924 idxCols = 0; 925 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 926 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 927 int iCol; 928 Bitmask cMask; 929 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 930 iCol = pTerm->u.x.leftColumn; 931 cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 932 testcase( iCol==BMS-1 ); 933 testcase( iCol==BMS ); 934 if( (idxCols & cMask)==0 ){ 935 Expr *pX = pTerm->pExpr; 936 idxCols |= cMask; 937 pIdx->aiColumn[n] = pTerm->u.x.leftColumn; 938 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 939 assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */ 940 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; 941 n++; 942 } 943 } 944 } 945 assert( (u32)n==pLoop->u.btree.nEq ); 946 947 /* Add additional columns needed to make the automatic index into 948 ** a covering index */ 949 for(i=0; i<mxBitCol; i++){ 950 if( extraCols & MASKBIT(i) ){ 951 pIdx->aiColumn[n] = i; 952 pIdx->azColl[n] = sqlite3StrBINARY; 953 n++; 954 } 955 } 956 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 957 for(i=BMS-1; i<pTable->nCol; i++){ 958 pIdx->aiColumn[n] = i; 959 pIdx->azColl[n] = sqlite3StrBINARY; 960 n++; 961 } 962 } 963 assert( n==nKeyCol ); 964 pIdx->aiColumn[n] = XN_ROWID; 965 pIdx->azColl[n] = sqlite3StrBINARY; 966 967 /* Create the automatic index */ 968 assert( pLevel->iIdxCur>=0 ); 969 pLevel->iIdxCur = pParse->nTab++; 970 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 971 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 972 VdbeComment((v, "for %s", pTable->zName)); 973 if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) ){ 974 pLevel->regFilter = ++pParse->nMem; 975 sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter); 976 } 977 978 /* Fill the automatic index with content */ 979 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; 980 if( pTabItem->fg.viaCoroutine ){ 981 int regYield = pTabItem->regReturn; 982 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); 983 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 984 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); 985 VdbeCoverage(v); 986 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 987 }else{ 988 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 989 } 990 if( pPartial ){ 991 iContinue = sqlite3VdbeMakeLabel(pParse); 992 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 993 pLoop->wsFlags |= WHERE_PARTIALIDX; 994 } 995 regRecord = sqlite3GetTempReg(pParse); 996 regBase = sqlite3GenerateIndexKey( 997 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 998 ); 999 if( pLevel->regFilter ){ 1000 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, 1001 regBase, pLoop->u.btree.nEq); 1002 } 1003 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 1004 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1005 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 1006 if( pTabItem->fg.viaCoroutine ){ 1007 sqlite3VdbeChangeP2(v, addrCounter, regBase+n); 1008 testcase( pParse->db->mallocFailed ); 1009 assert( pLevel->iIdxCur>0 ); 1010 translateColumnToCopy(pParse, addrTop, pLevel->iTabCur, 1011 pTabItem->regResult, pLevel->iIdxCur); 1012 sqlite3VdbeGoto(v, addrTop); 1013 pTabItem->fg.viaCoroutine = 0; 1014 }else{ 1015 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 1016 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 1017 } 1018 sqlite3VdbeJumpHere(v, addrTop); 1019 sqlite3ReleaseTempReg(pParse, regRecord); 1020 1021 /* Jump here when skipping the initialization */ 1022 sqlite3VdbeJumpHere(v, addrInit); 1023 1024 end_auto_index_create: 1025 sqlite3ExprDelete(pParse->db, pPartial); 1026 } 1027 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 1028 1029 /* 1030 ** Generate bytecode that will initialize a Bloom filter that is appropriate 1031 ** for pLevel. 1032 ** 1033 ** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER 1034 ** flag set, initialize a Bloomfilter for them as well. Except don't do 1035 ** this recursive initialization if the SQLITE_BloomPulldown optimization has 1036 ** been turned off. 1037 ** 1038 ** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared 1039 ** from the loop, but the regFilter value is set to a register that implements 1040 ** the Bloom filter. When regFilter is positive, the 1041 ** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter 1042 ** and skip the subsequence B-Tree seek if the Bloom filter indicates that 1043 ** no matching rows exist. 1044 ** 1045 ** This routine may only be called if it has previously been determined that 1046 ** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit 1047 ** is set. 1048 */ 1049 static SQLITE_NOINLINE void sqlite3ConstructBloomFilter( 1050 WhereInfo *pWInfo, /* The WHERE clause */ 1051 int iLevel, /* Index in pWInfo->a[] that is pLevel */ 1052 WhereLevel *pLevel, /* Make a Bloom filter for this FROM term */ 1053 Bitmask notReady /* Loops that are not ready */ 1054 ){ 1055 int addrOnce; /* Address of opening OP_Once */ 1056 int addrTop; /* Address of OP_Rewind */ 1057 int addrCont; /* Jump here to skip a row */ 1058 const WhereTerm *pTerm; /* For looping over WHERE clause terms */ 1059 const WhereTerm *pWCEnd; /* Last WHERE clause term */ 1060 Parse *pParse = pWInfo->pParse; /* Parsing context */ 1061 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 1062 WhereLoop *pLoop = pLevel->pWLoop; /* The loop being coded */ 1063 int iCur; /* Cursor for table getting the filter */ 1064 1065 assert( pLoop!=0 ); 1066 assert( v!=0 ); 1067 assert( pLoop->wsFlags & WHERE_BLOOMFILTER ); 1068 1069 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1070 do{ 1071 const SrcItem *pItem; 1072 const Table *pTab; 1073 u64 sz; 1074 sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel); 1075 addrCont = sqlite3VdbeMakeLabel(pParse); 1076 iCur = pLevel->iTabCur; 1077 pLevel->regFilter = ++pParse->nMem; 1078 1079 /* The Bloom filter is a Blob held in a register. Initialize it 1080 ** to zero-filled blob of at least 80K bits, but maybe more if the 1081 ** estimated size of the table is larger. We could actually 1082 ** measure the size of the table at run-time using OP_Count with 1083 ** P3==1 and use that value to initialize the blob. But that makes 1084 ** testing complicated. By basing the blob size on the value in the 1085 ** sqlite_stat1 table, testing is much easier. 1086 */ 1087 pItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1088 assert( pItem!=0 ); 1089 pTab = pItem->pTab; 1090 assert( pTab!=0 ); 1091 sz = sqlite3LogEstToInt(pTab->nRowLogEst); 1092 if( sz<10000 ){ 1093 sz = 10000; 1094 }else if( sz>10000000 ){ 1095 sz = 10000000; 1096 } 1097 sqlite3VdbeAddOp2(v, OP_Blob, (int)sz, pLevel->regFilter); 1098 1099 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 1100 pWCEnd = &pWInfo->sWC.a[pWInfo->sWC.nTerm]; 1101 for(pTerm=pWInfo->sWC.a; pTerm<pWCEnd; pTerm++){ 1102 Expr *pExpr = pTerm->pExpr; 1103 if( (pTerm->wtFlags & TERM_VIRTUAL)==0 1104 && sqlite3ExprIsTableConstraint(pExpr, pItem) 1105 ){ 1106 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 1107 } 1108 } 1109 if( pLoop->wsFlags & WHERE_IPK ){ 1110 int r1 = sqlite3GetTempReg(pParse); 1111 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1); 1112 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, 1); 1113 sqlite3ReleaseTempReg(pParse, r1); 1114 }else{ 1115 Index *pIdx = pLoop->u.btree.pIndex; 1116 int n = pLoop->u.btree.nEq; 1117 int r1 = sqlite3GetTempRange(pParse, n); 1118 int jj; 1119 for(jj=0; jj<n; jj++){ 1120 int iCol = pIdx->aiColumn[jj]; 1121 assert( pIdx->pTable==pItem->pTab ); 1122 sqlite3ExprCodeGetColumnOfTable(v, pIdx->pTable, iCur, iCol,r1+jj); 1123 } 1124 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, n); 1125 sqlite3ReleaseTempRange(pParse, r1, n); 1126 } 1127 sqlite3VdbeResolveLabel(v, addrCont); 1128 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); 1129 VdbeCoverage(v); 1130 sqlite3VdbeJumpHere(v, addrTop); 1131 pLoop->wsFlags &= ~WHERE_BLOOMFILTER; 1132 if( OptimizationDisabled(pParse->db, SQLITE_BloomPulldown) ) break; 1133 while( ++iLevel < pWInfo->nLevel ){ 1134 const SrcItem *pTabItem; 1135 pLevel = &pWInfo->a[iLevel]; 1136 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1137 if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ) ) continue; 1138 pLoop = pLevel->pWLoop; 1139 if( NEVER(pLoop==0) ) continue; 1140 if( pLoop->prereq & notReady ) continue; 1141 if( (pLoop->wsFlags & (WHERE_BLOOMFILTER|WHERE_COLUMN_IN)) 1142 ==WHERE_BLOOMFILTER 1143 ){ 1144 /* This is a candidate for bloom-filter pull-down (early evaluation). 1145 ** The test that WHERE_COLUMN_IN is omitted is important, as we are 1146 ** not able to do early evaluation of bloom filters that make use of 1147 ** the IN operator */ 1148 break; 1149 } 1150 } 1151 }while( iLevel < pWInfo->nLevel ); 1152 sqlite3VdbeJumpHere(v, addrOnce); 1153 } 1154 1155 1156 #ifndef SQLITE_OMIT_VIRTUALTABLE 1157 /* 1158 ** Allocate and populate an sqlite3_index_info structure. It is the 1159 ** responsibility of the caller to eventually release the structure 1160 ** by passing the pointer returned by this function to freeIndexInfo(). 1161 */ 1162 static sqlite3_index_info *allocateIndexInfo( 1163 WhereInfo *pWInfo, /* The WHERE clause */ 1164 WhereClause *pWC, /* The WHERE clause being analyzed */ 1165 Bitmask mUnusable, /* Ignore terms with these prereqs */ 1166 SrcItem *pSrc, /* The FROM clause term that is the vtab */ 1167 u16 *pmNoOmit /* Mask of terms not to omit */ 1168 ){ 1169 int i, j; 1170 int nTerm; 1171 Parse *pParse = pWInfo->pParse; 1172 struct sqlite3_index_constraint *pIdxCons; 1173 struct sqlite3_index_orderby *pIdxOrderBy; 1174 struct sqlite3_index_constraint_usage *pUsage; 1175 struct HiddenIndexInfo *pHidden; 1176 WhereTerm *pTerm; 1177 int nOrderBy; 1178 sqlite3_index_info *pIdxInfo; 1179 u16 mNoOmit = 0; 1180 const Table *pTab; 1181 int eDistinct = 0; 1182 ExprList *pOrderBy = pWInfo->pOrderBy; 1183 1184 assert( pSrc!=0 ); 1185 pTab = pSrc->pTab; 1186 assert( pTab!=0 ); 1187 assert( IsVirtual(pTab) ); 1188 1189 /* Find all WHERE clause constraints referring to this virtual table. 1190 ** Mark each term with the TERM_OK flag. Set nTerm to the number of 1191 ** terms found. 1192 */ 1193 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1194 pTerm->wtFlags &= ~TERM_OK; 1195 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1196 if( pTerm->prereqRight & mUnusable ) continue; 1197 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 1198 testcase( pTerm->eOperator & WO_IN ); 1199 testcase( pTerm->eOperator & WO_ISNULL ); 1200 testcase( pTerm->eOperator & WO_IS ); 1201 testcase( pTerm->eOperator & WO_ALL ); 1202 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 1203 if( pTerm->wtFlags & TERM_VNULL ) continue; 1204 1205 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 1206 assert( pTerm->u.x.leftColumn>=XN_ROWID ); 1207 assert( pTerm->u.x.leftColumn<pTab->nCol ); 1208 1209 /* tag-20191211-002: WHERE-clause constraints are not useful to the 1210 ** right-hand table of a LEFT JOIN nor to the either table of a 1211 ** RIGHT JOIN. See tag-20191211-001 for the 1212 ** equivalent restriction for ordinary tables. */ 1213 if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 1214 && !constraintCompatibleWithOuterJoin(pTerm,pSrc) 1215 ){ 1216 continue; 1217 } 1218 nTerm++; 1219 pTerm->wtFlags |= TERM_OK; 1220 } 1221 1222 /* If the ORDER BY clause contains only columns in the current 1223 ** virtual table then allocate space for the aOrderBy part of 1224 ** the sqlite3_index_info structure. 1225 */ 1226 nOrderBy = 0; 1227 if( pOrderBy ){ 1228 int n = pOrderBy->nExpr; 1229 for(i=0; i<n; i++){ 1230 Expr *pExpr = pOrderBy->a[i].pExpr; 1231 Expr *pE2; 1232 1233 /* Skip over constant terms in the ORDER BY clause */ 1234 if( sqlite3ExprIsConstant(pExpr) ){ 1235 continue; 1236 } 1237 1238 /* Virtual tables are unable to deal with NULLS FIRST */ 1239 if( pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL ) break; 1240 1241 /* First case - a direct column references without a COLLATE operator */ 1242 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSrc->iCursor ){ 1243 assert( pExpr->iColumn>=XN_ROWID && pExpr->iColumn<pTab->nCol ); 1244 continue; 1245 } 1246 1247 /* 2nd case - a column reference with a COLLATE operator. Only match 1248 ** of the COLLATE operator matches the collation of the column. */ 1249 if( pExpr->op==TK_COLLATE 1250 && (pE2 = pExpr->pLeft)->op==TK_COLUMN 1251 && pE2->iTable==pSrc->iCursor 1252 ){ 1253 const char *zColl; /* The collating sequence name */ 1254 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1255 assert( pExpr->u.zToken!=0 ); 1256 assert( pE2->iColumn>=XN_ROWID && pE2->iColumn<pTab->nCol ); 1257 pExpr->iColumn = pE2->iColumn; 1258 if( pE2->iColumn<0 ) continue; /* Collseq does not matter for rowid */ 1259 zColl = sqlite3ColumnColl(&pTab->aCol[pE2->iColumn]); 1260 if( zColl==0 ) zColl = sqlite3StrBINARY; 1261 if( sqlite3_stricmp(pExpr->u.zToken, zColl)==0 ) continue; 1262 } 1263 1264 /* No matches cause a break out of the loop */ 1265 break; 1266 } 1267 if( i==n ){ 1268 nOrderBy = n; 1269 if( (pWInfo->wctrlFlags & WHERE_DISTINCTBY) ){ 1270 eDistinct = 2 + ((pWInfo->wctrlFlags & WHERE_SORTBYGROUP)!=0); 1271 }else if( pWInfo->wctrlFlags & WHERE_GROUPBY ){ 1272 eDistinct = 1; 1273 } 1274 } 1275 } 1276 1277 /* Allocate the sqlite3_index_info structure 1278 */ 1279 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 1280 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 1281 + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) 1282 + sizeof(sqlite3_value*)*nTerm ); 1283 if( pIdxInfo==0 ){ 1284 sqlite3ErrorMsg(pParse, "out of memory"); 1285 return 0; 1286 } 1287 pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1]; 1288 pIdxCons = (struct sqlite3_index_constraint*)&pHidden->aRhs[nTerm]; 1289 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 1290 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 1291 pIdxInfo->aConstraint = pIdxCons; 1292 pIdxInfo->aOrderBy = pIdxOrderBy; 1293 pIdxInfo->aConstraintUsage = pUsage; 1294 pHidden->pWC = pWC; 1295 pHidden->pParse = pParse; 1296 pHidden->eDistinct = eDistinct; 1297 pHidden->mIn = 0; 1298 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1299 u16 op; 1300 if( (pTerm->wtFlags & TERM_OK)==0 ) continue; 1301 pIdxCons[j].iColumn = pTerm->u.x.leftColumn; 1302 pIdxCons[j].iTermOffset = i; 1303 op = pTerm->eOperator & WO_ALL; 1304 if( op==WO_IN ){ 1305 if( (pTerm->wtFlags & TERM_SLICE)==0 ){ 1306 pHidden->mIn |= SMASKBIT32(j); 1307 } 1308 op = WO_EQ; 1309 } 1310 if( op==WO_AUX ){ 1311 pIdxCons[j].op = pTerm->eMatchOp; 1312 }else if( op & (WO_ISNULL|WO_IS) ){ 1313 if( op==WO_ISNULL ){ 1314 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL; 1315 }else{ 1316 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS; 1317 } 1318 }else{ 1319 pIdxCons[j].op = (u8)op; 1320 /* The direct assignment in the previous line is possible only because 1321 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1322 ** following asserts verify this fact. */ 1323 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1324 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1325 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1326 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1327 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1328 assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) ); 1329 1330 if( op & (WO_LT|WO_LE|WO_GT|WO_GE) 1331 && sqlite3ExprIsVector(pTerm->pExpr->pRight) 1332 ){ 1333 testcase( j!=i ); 1334 if( j<16 ) mNoOmit |= (1 << j); 1335 if( op==WO_LT ) pIdxCons[j].op = WO_LE; 1336 if( op==WO_GT ) pIdxCons[j].op = WO_GE; 1337 } 1338 } 1339 1340 j++; 1341 } 1342 assert( j==nTerm ); 1343 pIdxInfo->nConstraint = j; 1344 for(i=j=0; i<nOrderBy; i++){ 1345 Expr *pExpr = pOrderBy->a[i].pExpr; 1346 if( sqlite3ExprIsConstant(pExpr) ) continue; 1347 assert( pExpr->op==TK_COLUMN 1348 || (pExpr->op==TK_COLLATE && pExpr->pLeft->op==TK_COLUMN 1349 && pExpr->iColumn==pExpr->pLeft->iColumn) ); 1350 pIdxOrderBy[j].iColumn = pExpr->iColumn; 1351 pIdxOrderBy[j].desc = pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC; 1352 j++; 1353 } 1354 pIdxInfo->nOrderBy = j; 1355 1356 *pmNoOmit = mNoOmit; 1357 return pIdxInfo; 1358 } 1359 1360 /* 1361 ** Free an sqlite3_index_info structure allocated by allocateIndexInfo() 1362 ** and possibly modified by xBestIndex methods. 1363 */ 1364 static void freeIndexInfo(sqlite3 *db, sqlite3_index_info *pIdxInfo){ 1365 HiddenIndexInfo *pHidden; 1366 int i; 1367 assert( pIdxInfo!=0 ); 1368 pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 1369 assert( pHidden->pParse!=0 ); 1370 assert( pHidden->pParse->db==db ); 1371 for(i=0; i<pIdxInfo->nConstraint; i++){ 1372 sqlite3ValueFree(pHidden->aRhs[i]); /* IMP: R-14553-25174 */ 1373 pHidden->aRhs[i] = 0; 1374 } 1375 sqlite3DbFree(db, pIdxInfo); 1376 } 1377 1378 /* 1379 ** The table object reference passed as the second argument to this function 1380 ** must represent a virtual table. This function invokes the xBestIndex() 1381 ** method of the virtual table with the sqlite3_index_info object that 1382 ** comes in as the 3rd argument to this function. 1383 ** 1384 ** If an error occurs, pParse is populated with an error message and an 1385 ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from 1386 ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that 1387 ** the current configuration of "unusable" flags in sqlite3_index_info can 1388 ** not result in a valid plan. 1389 ** 1390 ** Whether or not an error is returned, it is the responsibility of the 1391 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 1392 ** that this is required. 1393 */ 1394 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 1395 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 1396 int rc; 1397 1398 whereTraceIndexInfoInputs(p); 1399 pParse->db->nSchemaLock++; 1400 rc = pVtab->pModule->xBestIndex(pVtab, p); 1401 pParse->db->nSchemaLock--; 1402 whereTraceIndexInfoOutputs(p); 1403 1404 if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){ 1405 if( rc==SQLITE_NOMEM ){ 1406 sqlite3OomFault(pParse->db); 1407 }else if( !pVtab->zErrMsg ){ 1408 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1409 }else{ 1410 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 1411 } 1412 } 1413 sqlite3_free(pVtab->zErrMsg); 1414 pVtab->zErrMsg = 0; 1415 return rc; 1416 } 1417 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1418 1419 #ifdef SQLITE_ENABLE_STAT4 1420 /* 1421 ** Estimate the location of a particular key among all keys in an 1422 ** index. Store the results in aStat as follows: 1423 ** 1424 ** aStat[0] Est. number of rows less than pRec 1425 ** aStat[1] Est. number of rows equal to pRec 1426 ** 1427 ** Return the index of the sample that is the smallest sample that 1428 ** is greater than or equal to pRec. Note that this index is not an index 1429 ** into the aSample[] array - it is an index into a virtual set of samples 1430 ** based on the contents of aSample[] and the number of fields in record 1431 ** pRec. 1432 */ 1433 static int whereKeyStats( 1434 Parse *pParse, /* Database connection */ 1435 Index *pIdx, /* Index to consider domain of */ 1436 UnpackedRecord *pRec, /* Vector of values to consider */ 1437 int roundUp, /* Round up if true. Round down if false */ 1438 tRowcnt *aStat /* OUT: stats written here */ 1439 ){ 1440 IndexSample *aSample = pIdx->aSample; 1441 int iCol; /* Index of required stats in anEq[] etc. */ 1442 int i; /* Index of first sample >= pRec */ 1443 int iSample; /* Smallest sample larger than or equal to pRec */ 1444 int iMin = 0; /* Smallest sample not yet tested */ 1445 int iTest; /* Next sample to test */ 1446 int res; /* Result of comparison operation */ 1447 int nField; /* Number of fields in pRec */ 1448 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ 1449 1450 #ifndef SQLITE_DEBUG 1451 UNUSED_PARAMETER( pParse ); 1452 #endif 1453 assert( pRec!=0 ); 1454 assert( pIdx->nSample>0 ); 1455 assert( pRec->nField>0 ); 1456 1457 /* Do a binary search to find the first sample greater than or equal 1458 ** to pRec. If pRec contains a single field, the set of samples to search 1459 ** is simply the aSample[] array. If the samples in aSample[] contain more 1460 ** than one fields, all fields following the first are ignored. 1461 ** 1462 ** If pRec contains N fields, where N is more than one, then as well as the 1463 ** samples in aSample[] (truncated to N fields), the search also has to 1464 ** consider prefixes of those samples. For example, if the set of samples 1465 ** in aSample is: 1466 ** 1467 ** aSample[0] = (a, 5) 1468 ** aSample[1] = (a, 10) 1469 ** aSample[2] = (b, 5) 1470 ** aSample[3] = (c, 100) 1471 ** aSample[4] = (c, 105) 1472 ** 1473 ** Then the search space should ideally be the samples above and the 1474 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 1475 ** the code actually searches this set: 1476 ** 1477 ** 0: (a) 1478 ** 1: (a, 5) 1479 ** 2: (a, 10) 1480 ** 3: (a, 10) 1481 ** 4: (b) 1482 ** 5: (b, 5) 1483 ** 6: (c) 1484 ** 7: (c, 100) 1485 ** 8: (c, 105) 1486 ** 9: (c, 105) 1487 ** 1488 ** For each sample in the aSample[] array, N samples are present in the 1489 ** effective sample array. In the above, samples 0 and 1 are based on 1490 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. 1491 ** 1492 ** Often, sample i of each block of N effective samples has (i+1) fields. 1493 ** Except, each sample may be extended to ensure that it is greater than or 1494 ** equal to the previous sample in the array. For example, in the above, 1495 ** sample 2 is the first sample of a block of N samples, so at first it 1496 ** appears that it should be 1 field in size. However, that would make it 1497 ** smaller than sample 1, so the binary search would not work. As a result, 1498 ** it is extended to two fields. The duplicates that this creates do not 1499 ** cause any problems. 1500 */ 1501 nField = MIN(pRec->nField, pIdx->nSample); 1502 iCol = 0; 1503 iSample = pIdx->nSample * nField; 1504 do{ 1505 int iSamp; /* Index in aSample[] of test sample */ 1506 int n; /* Number of fields in test sample */ 1507 1508 iTest = (iMin+iSample)/2; 1509 iSamp = iTest / nField; 1510 if( iSamp>0 ){ 1511 /* The proposed effective sample is a prefix of sample aSample[iSamp]. 1512 ** Specifically, the shortest prefix of at least (1 + iTest%nField) 1513 ** fields that is greater than the previous effective sample. */ 1514 for(n=(iTest % nField) + 1; n<nField; n++){ 1515 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; 1516 } 1517 }else{ 1518 n = iTest + 1; 1519 } 1520 1521 pRec->nField = n; 1522 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); 1523 if( res<0 ){ 1524 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; 1525 iMin = iTest+1; 1526 }else if( res==0 && n<nField ){ 1527 iLower = aSample[iSamp].anLt[n-1]; 1528 iMin = iTest+1; 1529 res = -1; 1530 }else{ 1531 iSample = iTest; 1532 iCol = n-1; 1533 } 1534 }while( res && iMin<iSample ); 1535 i = iSample / nField; 1536 1537 #ifdef SQLITE_DEBUG 1538 /* The following assert statements check that the binary search code 1539 ** above found the right answer. This block serves no purpose other 1540 ** than to invoke the asserts. */ 1541 if( pParse->db->mallocFailed==0 ){ 1542 if( res==0 ){ 1543 /* If (res==0) is true, then pRec must be equal to sample i. */ 1544 assert( i<pIdx->nSample ); 1545 assert( iCol==nField-1 ); 1546 pRec->nField = nField; 1547 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 1548 || pParse->db->mallocFailed 1549 ); 1550 }else{ 1551 /* Unless i==pIdx->nSample, indicating that pRec is larger than 1552 ** all samples in the aSample[] array, pRec must be smaller than the 1553 ** (iCol+1) field prefix of sample i. */ 1554 assert( i<=pIdx->nSample && i>=0 ); 1555 pRec->nField = iCol+1; 1556 assert( i==pIdx->nSample 1557 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 1558 || pParse->db->mallocFailed ); 1559 1560 /* if i==0 and iCol==0, then record pRec is smaller than all samples 1561 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must 1562 ** be greater than or equal to the (iCol) field prefix of sample i. 1563 ** If (i>0), then pRec must also be greater than sample (i-1). */ 1564 if( iCol>0 ){ 1565 pRec->nField = iCol; 1566 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 1567 || pParse->db->mallocFailed ); 1568 } 1569 if( i>0 ){ 1570 pRec->nField = nField; 1571 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 1572 || pParse->db->mallocFailed ); 1573 } 1574 } 1575 } 1576 #endif /* ifdef SQLITE_DEBUG */ 1577 1578 if( res==0 ){ 1579 /* Record pRec is equal to sample i */ 1580 assert( iCol==nField-1 ); 1581 aStat[0] = aSample[i].anLt[iCol]; 1582 aStat[1] = aSample[i].anEq[iCol]; 1583 }else{ 1584 /* At this point, the (iCol+1) field prefix of aSample[i] is the first 1585 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec 1586 ** is larger than all samples in the array. */ 1587 tRowcnt iUpper, iGap; 1588 if( i>=pIdx->nSample ){ 1589 iUpper = pIdx->nRowEst0; 1590 }else{ 1591 iUpper = aSample[i].anLt[iCol]; 1592 } 1593 1594 if( iLower>=iUpper ){ 1595 iGap = 0; 1596 }else{ 1597 iGap = iUpper - iLower; 1598 } 1599 if( roundUp ){ 1600 iGap = (iGap*2)/3; 1601 }else{ 1602 iGap = iGap/3; 1603 } 1604 aStat[0] = iLower + iGap; 1605 aStat[1] = pIdx->aAvgEq[nField-1]; 1606 } 1607 1608 /* Restore the pRec->nField value before returning. */ 1609 pRec->nField = nField; 1610 return i; 1611 } 1612 #endif /* SQLITE_ENABLE_STAT4 */ 1613 1614 /* 1615 ** If it is not NULL, pTerm is a term that provides an upper or lower 1616 ** bound on a range scan. Without considering pTerm, it is estimated 1617 ** that the scan will visit nNew rows. This function returns the number 1618 ** estimated to be visited after taking pTerm into account. 1619 ** 1620 ** If the user explicitly specified a likelihood() value for this term, 1621 ** then the return value is the likelihood multiplied by the number of 1622 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 1623 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 1624 */ 1625 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 1626 LogEst nRet = nNew; 1627 if( pTerm ){ 1628 if( pTerm->truthProb<=0 ){ 1629 nRet += pTerm->truthProb; 1630 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 1631 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 1632 } 1633 } 1634 return nRet; 1635 } 1636 1637 1638 #ifdef SQLITE_ENABLE_STAT4 1639 /* 1640 ** Return the affinity for a single column of an index. 1641 */ 1642 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ 1643 assert( iCol>=0 && iCol<pIdx->nColumn ); 1644 if( !pIdx->zColAff ){ 1645 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; 1646 } 1647 assert( pIdx->zColAff[iCol]!=0 ); 1648 return pIdx->zColAff[iCol]; 1649 } 1650 #endif 1651 1652 1653 #ifdef SQLITE_ENABLE_STAT4 1654 /* 1655 ** This function is called to estimate the number of rows visited by a 1656 ** range-scan on a skip-scan index. For example: 1657 ** 1658 ** CREATE INDEX i1 ON t1(a, b, c); 1659 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 1660 ** 1661 ** Value pLoop->nOut is currently set to the estimated number of rows 1662 ** visited for scanning (a=? AND b=?). This function reduces that estimate 1663 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 1664 ** on the stat4 data for the index. this scan will be peformed multiple 1665 ** times (once for each (a,b) combination that matches a=?) is dealt with 1666 ** by the caller. 1667 ** 1668 ** It does this by scanning through all stat4 samples, comparing values 1669 ** extracted from pLower and pUpper with the corresponding column in each 1670 ** sample. If L and U are the number of samples found to be less than or 1671 ** equal to the values extracted from pLower and pUpper respectively, and 1672 ** N is the total number of samples, the pLoop->nOut value is adjusted 1673 ** as follows: 1674 ** 1675 ** nOut = nOut * ( min(U - L, 1) / N ) 1676 ** 1677 ** If pLower is NULL, or a value cannot be extracted from the term, L is 1678 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 1679 ** U is set to N. 1680 ** 1681 ** Normally, this function sets *pbDone to 1 before returning. However, 1682 ** if no value can be extracted from either pLower or pUpper (and so the 1683 ** estimate of the number of rows delivered remains unchanged), *pbDone 1684 ** is left as is. 1685 ** 1686 ** If an error occurs, an SQLite error code is returned. Otherwise, 1687 ** SQLITE_OK. 1688 */ 1689 static int whereRangeSkipScanEst( 1690 Parse *pParse, /* Parsing & code generating context */ 1691 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1692 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1693 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 1694 int *pbDone /* Set to true if at least one expr. value extracted */ 1695 ){ 1696 Index *p = pLoop->u.btree.pIndex; 1697 int nEq = pLoop->u.btree.nEq; 1698 sqlite3 *db = pParse->db; 1699 int nLower = -1; 1700 int nUpper = p->nSample+1; 1701 int rc = SQLITE_OK; 1702 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); 1703 CollSeq *pColl; 1704 1705 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 1706 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 1707 sqlite3_value *pVal = 0; /* Value extracted from record */ 1708 1709 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 1710 if( pLower ){ 1711 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 1712 nLower = 0; 1713 } 1714 if( pUpper && rc==SQLITE_OK ){ 1715 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 1716 nUpper = p2 ? 0 : p->nSample; 1717 } 1718 1719 if( p1 || p2 ){ 1720 int i; 1721 int nDiff; 1722 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 1723 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 1724 if( rc==SQLITE_OK && p1 ){ 1725 int res = sqlite3MemCompare(p1, pVal, pColl); 1726 if( res>=0 ) nLower++; 1727 } 1728 if( rc==SQLITE_OK && p2 ){ 1729 int res = sqlite3MemCompare(p2, pVal, pColl); 1730 if( res>=0 ) nUpper++; 1731 } 1732 } 1733 nDiff = (nUpper - nLower); 1734 if( nDiff<=0 ) nDiff = 1; 1735 1736 /* If there is both an upper and lower bound specified, and the 1737 ** comparisons indicate that they are close together, use the fallback 1738 ** method (assume that the scan visits 1/64 of the rows) for estimating 1739 ** the number of rows visited. Otherwise, estimate the number of rows 1740 ** using the method described in the header comment for this function. */ 1741 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 1742 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 1743 pLoop->nOut -= nAdjust; 1744 *pbDone = 1; 1745 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 1746 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 1747 } 1748 1749 }else{ 1750 assert( *pbDone==0 ); 1751 } 1752 1753 sqlite3ValueFree(p1); 1754 sqlite3ValueFree(p2); 1755 sqlite3ValueFree(pVal); 1756 1757 return rc; 1758 } 1759 #endif /* SQLITE_ENABLE_STAT4 */ 1760 1761 /* 1762 ** This function is used to estimate the number of rows that will be visited 1763 ** by scanning an index for a range of values. The range may have an upper 1764 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 1765 ** and lower bounds are represented by pLower and pUpper respectively. For 1766 ** example, assuming that index p is on t1(a): 1767 ** 1768 ** ... FROM t1 WHERE a > ? AND a < ? ... 1769 ** |_____| |_____| 1770 ** | | 1771 ** pLower pUpper 1772 ** 1773 ** If either of the upper or lower bound is not present, then NULL is passed in 1774 ** place of the corresponding WhereTerm. 1775 ** 1776 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 1777 ** column subject to the range constraint. Or, equivalently, the number of 1778 ** equality constraints optimized by the proposed index scan. For example, 1779 ** assuming index p is on t1(a, b), and the SQL query is: 1780 ** 1781 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 1782 ** 1783 ** then nEq is set to 1 (as the range restricted column, b, is the second 1784 ** left-most column of the index). Or, if the query is: 1785 ** 1786 ** ... FROM t1 WHERE a > ? AND a < ? ... 1787 ** 1788 ** then nEq is set to 0. 1789 ** 1790 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 1791 ** number of rows that the index scan is expected to visit without 1792 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 1793 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 1794 ** to account for the range constraints pLower and pUpper. 1795 ** 1796 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 1797 ** used, a single range inequality reduces the search space by a factor of 4. 1798 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 1799 ** rows visited by a factor of 64. 1800 */ 1801 static int whereRangeScanEst( 1802 Parse *pParse, /* Parsing & code generating context */ 1803 WhereLoopBuilder *pBuilder, 1804 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1805 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1806 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 1807 ){ 1808 int rc = SQLITE_OK; 1809 int nOut = pLoop->nOut; 1810 LogEst nNew; 1811 1812 #ifdef SQLITE_ENABLE_STAT4 1813 Index *p = pLoop->u.btree.pIndex; 1814 int nEq = pLoop->u.btree.nEq; 1815 1816 if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol) 1817 && OptimizationEnabled(pParse->db, SQLITE_Stat4) 1818 ){ 1819 if( nEq==pBuilder->nRecValid ){ 1820 UnpackedRecord *pRec = pBuilder->pRec; 1821 tRowcnt a[2]; 1822 int nBtm = pLoop->u.btree.nBtm; 1823 int nTop = pLoop->u.btree.nTop; 1824 1825 /* Variable iLower will be set to the estimate of the number of rows in 1826 ** the index that are less than the lower bound of the range query. The 1827 ** lower bound being the concatenation of $P and $L, where $P is the 1828 ** key-prefix formed by the nEq values matched against the nEq left-most 1829 ** columns of the index, and $L is the value in pLower. 1830 ** 1831 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 1832 ** is not a simple variable or literal value), the lower bound of the 1833 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 1834 ** if $L is available, whereKeyStats() is called for both ($P) and 1835 ** ($P:$L) and the larger of the two returned values is used. 1836 ** 1837 ** Similarly, iUpper is to be set to the estimate of the number of rows 1838 ** less than the upper bound of the range query. Where the upper bound 1839 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 1840 ** of iUpper are requested of whereKeyStats() and the smaller used. 1841 ** 1842 ** The number of rows between the two bounds is then just iUpper-iLower. 1843 */ 1844 tRowcnt iLower; /* Rows less than the lower bound */ 1845 tRowcnt iUpper; /* Rows less than the upper bound */ 1846 int iLwrIdx = -2; /* aSample[] for the lower bound */ 1847 int iUprIdx = -1; /* aSample[] for the upper bound */ 1848 1849 if( pRec ){ 1850 testcase( pRec->nField!=pBuilder->nRecValid ); 1851 pRec->nField = pBuilder->nRecValid; 1852 } 1853 /* Determine iLower and iUpper using ($P) only. */ 1854 if( nEq==0 ){ 1855 iLower = 0; 1856 iUpper = p->nRowEst0; 1857 }else{ 1858 /* Note: this call could be optimized away - since the same values must 1859 ** have been requested when testing key $P in whereEqualScanEst(). */ 1860 whereKeyStats(pParse, p, pRec, 0, a); 1861 iLower = a[0]; 1862 iUpper = a[0] + a[1]; 1863 } 1864 1865 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 1866 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 1867 assert( p->aSortOrder!=0 ); 1868 if( p->aSortOrder[nEq] ){ 1869 /* The roles of pLower and pUpper are swapped for a DESC index */ 1870 SWAP(WhereTerm*, pLower, pUpper); 1871 SWAP(int, nBtm, nTop); 1872 } 1873 1874 /* If possible, improve on the iLower estimate using ($P:$L). */ 1875 if( pLower ){ 1876 int n; /* Values extracted from pExpr */ 1877 Expr *pExpr = pLower->pExpr->pRight; 1878 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n); 1879 if( rc==SQLITE_OK && n ){ 1880 tRowcnt iNew; 1881 u16 mask = WO_GT|WO_LE; 1882 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1883 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 1884 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0); 1885 if( iNew>iLower ) iLower = iNew; 1886 nOut--; 1887 pLower = 0; 1888 } 1889 } 1890 1891 /* If possible, improve on the iUpper estimate using ($P:$U). */ 1892 if( pUpper ){ 1893 int n; /* Values extracted from pExpr */ 1894 Expr *pExpr = pUpper->pExpr->pRight; 1895 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n); 1896 if( rc==SQLITE_OK && n ){ 1897 tRowcnt iNew; 1898 u16 mask = WO_GT|WO_LE; 1899 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1900 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 1901 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0); 1902 if( iNew<iUpper ) iUpper = iNew; 1903 nOut--; 1904 pUpper = 0; 1905 } 1906 } 1907 1908 pBuilder->pRec = pRec; 1909 if( rc==SQLITE_OK ){ 1910 if( iUpper>iLower ){ 1911 nNew = sqlite3LogEst(iUpper - iLower); 1912 /* TUNING: If both iUpper and iLower are derived from the same 1913 ** sample, then assume they are 4x more selective. This brings 1914 ** the estimated selectivity more in line with what it would be 1915 ** if estimated without the use of STAT4 tables. */ 1916 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); 1917 }else{ 1918 nNew = 10; assert( 10==sqlite3LogEst(2) ); 1919 } 1920 if( nNew<nOut ){ 1921 nOut = nNew; 1922 } 1923 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", 1924 (u32)iLower, (u32)iUpper, nOut)); 1925 } 1926 }else{ 1927 int bDone = 0; 1928 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 1929 if( bDone ) return rc; 1930 } 1931 } 1932 #else 1933 UNUSED_PARAMETER(pParse); 1934 UNUSED_PARAMETER(pBuilder); 1935 assert( pLower || pUpper ); 1936 #endif 1937 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); 1938 nNew = whereRangeAdjust(pLower, nOut); 1939 nNew = whereRangeAdjust(pUpper, nNew); 1940 1941 /* TUNING: If there is both an upper and lower limit and neither limit 1942 ** has an application-defined likelihood(), assume the range is 1943 ** reduced by an additional 75%. This means that, by default, an open-ended 1944 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 1945 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 1946 ** match 1/64 of the index. */ 1947 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 1948 nNew -= 20; 1949 } 1950 1951 nOut -= (pLower!=0) + (pUpper!=0); 1952 if( nNew<10 ) nNew = 10; 1953 if( nNew<nOut ) nOut = nNew; 1954 #if defined(WHERETRACE_ENABLED) 1955 if( pLoop->nOut>nOut ){ 1956 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", 1957 pLoop->nOut, nOut)); 1958 } 1959 #endif 1960 pLoop->nOut = (LogEst)nOut; 1961 return rc; 1962 } 1963 1964 #ifdef SQLITE_ENABLE_STAT4 1965 /* 1966 ** Estimate the number of rows that will be returned based on 1967 ** an equality constraint x=VALUE and where that VALUE occurs in 1968 ** the histogram data. This only works when x is the left-most 1969 ** column of an index and sqlite_stat4 histogram data is available 1970 ** for that index. When pExpr==NULL that means the constraint is 1971 ** "x IS NULL" instead of "x=VALUE". 1972 ** 1973 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1974 ** If unable to make an estimate, leave *pnRow unchanged and return 1975 ** non-zero. 1976 ** 1977 ** This routine can fail if it is unable to load a collating sequence 1978 ** required for string comparison, or if unable to allocate memory 1979 ** for a UTF conversion required for comparison. The error is stored 1980 ** in the pParse structure. 1981 */ 1982 static int whereEqualScanEst( 1983 Parse *pParse, /* Parsing & code generating context */ 1984 WhereLoopBuilder *pBuilder, 1985 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 1986 tRowcnt *pnRow /* Write the revised row estimate here */ 1987 ){ 1988 Index *p = pBuilder->pNew->u.btree.pIndex; 1989 int nEq = pBuilder->pNew->u.btree.nEq; 1990 UnpackedRecord *pRec = pBuilder->pRec; 1991 int rc; /* Subfunction return code */ 1992 tRowcnt a[2]; /* Statistics */ 1993 int bOk; 1994 1995 assert( nEq>=1 ); 1996 assert( nEq<=p->nColumn ); 1997 assert( p->aSample!=0 ); 1998 assert( p->nSample>0 ); 1999 assert( pBuilder->nRecValid<nEq ); 2000 2001 /* If values are not available for all fields of the index to the left 2002 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 2003 if( pBuilder->nRecValid<(nEq-1) ){ 2004 return SQLITE_NOTFOUND; 2005 } 2006 2007 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 2008 ** below would return the same value. */ 2009 if( nEq>=p->nColumn ){ 2010 *pnRow = 1; 2011 return SQLITE_OK; 2012 } 2013 2014 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk); 2015 pBuilder->pRec = pRec; 2016 if( rc!=SQLITE_OK ) return rc; 2017 if( bOk==0 ) return SQLITE_NOTFOUND; 2018 pBuilder->nRecValid = nEq; 2019 2020 whereKeyStats(pParse, p, pRec, 0, a); 2021 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n", 2022 p->zName, nEq-1, (int)a[1])); 2023 *pnRow = a[1]; 2024 2025 return rc; 2026 } 2027 #endif /* SQLITE_ENABLE_STAT4 */ 2028 2029 #ifdef SQLITE_ENABLE_STAT4 2030 /* 2031 ** Estimate the number of rows that will be returned based on 2032 ** an IN constraint where the right-hand side of the IN operator 2033 ** is a list of values. Example: 2034 ** 2035 ** WHERE x IN (1,2,3,4) 2036 ** 2037 ** Write the estimated row count into *pnRow and return SQLITE_OK. 2038 ** If unable to make an estimate, leave *pnRow unchanged and return 2039 ** non-zero. 2040 ** 2041 ** This routine can fail if it is unable to load a collating sequence 2042 ** required for string comparison, or if unable to allocate memory 2043 ** for a UTF conversion required for comparison. The error is stored 2044 ** in the pParse structure. 2045 */ 2046 static int whereInScanEst( 2047 Parse *pParse, /* Parsing & code generating context */ 2048 WhereLoopBuilder *pBuilder, 2049 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 2050 tRowcnt *pnRow /* Write the revised row estimate here */ 2051 ){ 2052 Index *p = pBuilder->pNew->u.btree.pIndex; 2053 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 2054 int nRecValid = pBuilder->nRecValid; 2055 int rc = SQLITE_OK; /* Subfunction return code */ 2056 tRowcnt nEst; /* Number of rows for a single term */ 2057 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 2058 int i; /* Loop counter */ 2059 2060 assert( p->aSample!=0 ); 2061 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 2062 nEst = nRow0; 2063 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 2064 nRowEst += nEst; 2065 pBuilder->nRecValid = nRecValid; 2066 } 2067 2068 if( rc==SQLITE_OK ){ 2069 if( nRowEst > nRow0 ) nRowEst = nRow0; 2070 *pnRow = nRowEst; 2071 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); 2072 } 2073 assert( pBuilder->nRecValid==nRecValid ); 2074 return rc; 2075 } 2076 #endif /* SQLITE_ENABLE_STAT4 */ 2077 2078 2079 #ifdef WHERETRACE_ENABLED 2080 /* 2081 ** Print the content of a WhereTerm object 2082 */ 2083 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){ 2084 if( pTerm==0 ){ 2085 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 2086 }else{ 2087 char zType[8]; 2088 char zLeft[50]; 2089 memcpy(zType, "....", 5); 2090 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 2091 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 2092 if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) zType[2] = 'L'; 2093 if( pTerm->wtFlags & TERM_CODED ) zType[3] = 'C'; 2094 if( pTerm->eOperator & WO_SINGLE ){ 2095 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 2096 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}", 2097 pTerm->leftCursor, pTerm->u.x.leftColumn); 2098 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){ 2099 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx", 2100 pTerm->u.pOrInfo->indexable); 2101 }else{ 2102 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor); 2103 } 2104 sqlite3DebugPrintf( 2105 "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x", 2106 iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags); 2107 /* The 0x10000 .wheretrace flag causes extra information to be 2108 ** shown about each Term */ 2109 if( sqlite3WhereTrace & 0x10000 ){ 2110 sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx", 2111 pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight); 2112 } 2113 if( (pTerm->eOperator & (WO_OR|WO_AND))==0 && pTerm->u.x.iField ){ 2114 sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField); 2115 } 2116 if( pTerm->iParent>=0 ){ 2117 sqlite3DebugPrintf(" iParent=%d", pTerm->iParent); 2118 } 2119 sqlite3DebugPrintf("\n"); 2120 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 2121 } 2122 } 2123 #endif 2124 2125 #ifdef WHERETRACE_ENABLED 2126 /* 2127 ** Show the complete content of a WhereClause 2128 */ 2129 void sqlite3WhereClausePrint(WhereClause *pWC){ 2130 int i; 2131 for(i=0; i<pWC->nTerm; i++){ 2132 sqlite3WhereTermPrint(&pWC->a[i], i); 2133 } 2134 } 2135 #endif 2136 2137 #ifdef WHERETRACE_ENABLED 2138 /* 2139 ** Print a WhereLoop object for debugging purposes 2140 */ 2141 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){ 2142 WhereInfo *pWInfo = pWC->pWInfo; 2143 int nb = 1+(pWInfo->pTabList->nSrc+3)/4; 2144 SrcItem *pItem = pWInfo->pTabList->a + p->iTab; 2145 Table *pTab = pItem->pTab; 2146 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1; 2147 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 2148 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll); 2149 sqlite3DebugPrintf(" %12s", 2150 pItem->zAlias ? pItem->zAlias : pTab->zName); 2151 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2152 const char *zName; 2153 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 2154 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 2155 int i = sqlite3Strlen30(zName) - 1; 2156 while( zName[i]!='_' ) i--; 2157 zName += i; 2158 } 2159 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 2160 }else{ 2161 sqlite3DebugPrintf("%20s",""); 2162 } 2163 }else{ 2164 char *z; 2165 if( p->u.vtab.idxStr ){ 2166 z = sqlite3_mprintf("(%d,\"%s\",%#x)", 2167 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 2168 }else{ 2169 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 2170 } 2171 sqlite3DebugPrintf(" %-19s", z); 2172 sqlite3_free(z); 2173 } 2174 if( p->wsFlags & WHERE_SKIPSCAN ){ 2175 sqlite3DebugPrintf(" f %06x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 2176 }else{ 2177 sqlite3DebugPrintf(" f %06x N %d", p->wsFlags, p->nLTerm); 2178 } 2179 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 2180 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ 2181 int i; 2182 for(i=0; i<p->nLTerm; i++){ 2183 sqlite3WhereTermPrint(p->aLTerm[i], i); 2184 } 2185 } 2186 } 2187 #endif 2188 2189 /* 2190 ** Convert bulk memory into a valid WhereLoop that can be passed 2191 ** to whereLoopClear harmlessly. 2192 */ 2193 static void whereLoopInit(WhereLoop *p){ 2194 p->aLTerm = p->aLTermSpace; 2195 p->nLTerm = 0; 2196 p->nLSlot = ArraySize(p->aLTermSpace); 2197 p->wsFlags = 0; 2198 } 2199 2200 /* 2201 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 2202 */ 2203 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 2204 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 2205 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 2206 sqlite3_free(p->u.vtab.idxStr); 2207 p->u.vtab.needFree = 0; 2208 p->u.vtab.idxStr = 0; 2209 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 2210 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 2211 sqlite3DbFreeNN(db, p->u.btree.pIndex); 2212 p->u.btree.pIndex = 0; 2213 } 2214 } 2215 } 2216 2217 /* 2218 ** Deallocate internal memory used by a WhereLoop object. Leave the 2219 ** object in an initialized state, as if it had been newly allocated. 2220 */ 2221 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 2222 if( p->aLTerm!=p->aLTermSpace ){ 2223 sqlite3DbFreeNN(db, p->aLTerm); 2224 p->aLTerm = p->aLTermSpace; 2225 p->nLSlot = ArraySize(p->aLTermSpace); 2226 } 2227 whereLoopClearUnion(db, p); 2228 p->nLTerm = 0; 2229 p->wsFlags = 0; 2230 } 2231 2232 /* 2233 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 2234 */ 2235 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 2236 WhereTerm **paNew; 2237 if( p->nLSlot>=n ) return SQLITE_OK; 2238 n = (n+7)&~7; 2239 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); 2240 if( paNew==0 ) return SQLITE_NOMEM_BKPT; 2241 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 2242 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 2243 p->aLTerm = paNew; 2244 p->nLSlot = n; 2245 return SQLITE_OK; 2246 } 2247 2248 /* 2249 ** Transfer content from the second pLoop into the first. 2250 */ 2251 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 2252 whereLoopClearUnion(db, pTo); 2253 if( pFrom->nLTerm > pTo->nLSlot 2254 && whereLoopResize(db, pTo, pFrom->nLTerm) 2255 ){ 2256 memset(pTo, 0, WHERE_LOOP_XFER_SZ); 2257 return SQLITE_NOMEM_BKPT; 2258 } 2259 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 2260 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 2261 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 2262 pFrom->u.vtab.needFree = 0; 2263 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 2264 pFrom->u.btree.pIndex = 0; 2265 } 2266 return SQLITE_OK; 2267 } 2268 2269 /* 2270 ** Delete a WhereLoop object 2271 */ 2272 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 2273 assert( db!=0 ); 2274 whereLoopClear(db, p); 2275 sqlite3DbNNFreeNN(db, p); 2276 } 2277 2278 /* 2279 ** Free a WhereInfo structure 2280 */ 2281 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 2282 assert( pWInfo!=0 ); 2283 assert( db!=0 ); 2284 sqlite3WhereClauseClear(&pWInfo->sWC); 2285 while( pWInfo->pLoops ){ 2286 WhereLoop *p = pWInfo->pLoops; 2287 pWInfo->pLoops = p->pNextLoop; 2288 whereLoopDelete(db, p); 2289 } 2290 assert( pWInfo->pExprMods==0 ); 2291 while( pWInfo->pMemToFree ){ 2292 WhereMemBlock *pNext = pWInfo->pMemToFree->pNext; 2293 sqlite3DbNNFreeNN(db, pWInfo->pMemToFree); 2294 pWInfo->pMemToFree = pNext; 2295 } 2296 sqlite3DbNNFreeNN(db, pWInfo); 2297 } 2298 2299 /* Undo all Expr node modifications 2300 */ 2301 static void whereUndoExprMods(WhereInfo *pWInfo){ 2302 while( pWInfo->pExprMods ){ 2303 WhereExprMod *p = pWInfo->pExprMods; 2304 pWInfo->pExprMods = p->pNext; 2305 memcpy(p->pExpr, &p->orig, sizeof(p->orig)); 2306 sqlite3DbFree(pWInfo->pParse->db, p); 2307 } 2308 } 2309 2310 /* 2311 ** Return TRUE if all of the following are true: 2312 ** 2313 ** (1) X has the same or lower cost, or returns the same or fewer rows, 2314 ** than Y. 2315 ** (2) X uses fewer WHERE clause terms than Y 2316 ** (3) Every WHERE clause term used by X is also used by Y 2317 ** (4) X skips at least as many columns as Y 2318 ** (5) If X is a covering index, than Y is too 2319 ** 2320 ** Conditions (2) and (3) mean that X is a "proper subset" of Y. 2321 ** If X is a proper subset of Y then Y is a better choice and ought 2322 ** to have a lower cost. This routine returns TRUE when that cost 2323 ** relationship is inverted and needs to be adjusted. Constraint (4) 2324 ** was added because if X uses skip-scan less than Y it still might 2325 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5) 2326 ** was added because a covering index probably deserves to have a lower cost 2327 ** than a non-covering index even if it is a proper subset. 2328 */ 2329 static int whereLoopCheaperProperSubset( 2330 const WhereLoop *pX, /* First WhereLoop to compare */ 2331 const WhereLoop *pY /* Compare against this WhereLoop */ 2332 ){ 2333 int i, j; 2334 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 2335 return 0; /* X is not a subset of Y */ 2336 } 2337 if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0; 2338 if( pY->nSkip > pX->nSkip ) return 0; 2339 for(i=pX->nLTerm-1; i>=0; i--){ 2340 if( pX->aLTerm[i]==0 ) continue; 2341 for(j=pY->nLTerm-1; j>=0; j--){ 2342 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 2343 } 2344 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ 2345 } 2346 if( (pX->wsFlags&WHERE_IDX_ONLY)!=0 2347 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){ 2348 return 0; /* Constraint (5) */ 2349 } 2350 return 1; /* All conditions meet */ 2351 } 2352 2353 /* 2354 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate 2355 ** upwards or downwards so that: 2356 ** 2357 ** (1) pTemplate costs less than any other WhereLoops that are a proper 2358 ** subset of pTemplate 2359 ** 2360 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 2361 ** is a proper subset. 2362 ** 2363 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 2364 ** WHERE clause terms than Y and that every WHERE clause term used by X is 2365 ** also used by Y. 2366 */ 2367 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 2368 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 2369 for(; p; p=p->pNextLoop){ 2370 if( p->iTab!=pTemplate->iTab ) continue; 2371 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 2372 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 2373 /* Adjust pTemplate cost downward so that it is cheaper than its 2374 ** subset p. */ 2375 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2376 pTemplate->rRun, pTemplate->nOut, 2377 MIN(p->rRun, pTemplate->rRun), 2378 MIN(p->nOut - 1, pTemplate->nOut))); 2379 pTemplate->rRun = MIN(p->rRun, pTemplate->rRun); 2380 pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut); 2381 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 2382 /* Adjust pTemplate cost upward so that it is costlier than p since 2383 ** pTemplate is a proper subset of p */ 2384 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2385 pTemplate->rRun, pTemplate->nOut, 2386 MAX(p->rRun, pTemplate->rRun), 2387 MAX(p->nOut + 1, pTemplate->nOut))); 2388 pTemplate->rRun = MAX(p->rRun, pTemplate->rRun); 2389 pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut); 2390 } 2391 } 2392 } 2393 2394 /* 2395 ** Search the list of WhereLoops in *ppPrev looking for one that can be 2396 ** replaced by pTemplate. 2397 ** 2398 ** Return NULL if pTemplate does not belong on the WhereLoop list. 2399 ** In other words if pTemplate ought to be dropped from further consideration. 2400 ** 2401 ** If pX is a WhereLoop that pTemplate can replace, then return the 2402 ** link that points to pX. 2403 ** 2404 ** If pTemplate cannot replace any existing element of the list but needs 2405 ** to be added to the list as a new entry, then return a pointer to the 2406 ** tail of the list. 2407 */ 2408 static WhereLoop **whereLoopFindLesser( 2409 WhereLoop **ppPrev, 2410 const WhereLoop *pTemplate 2411 ){ 2412 WhereLoop *p; 2413 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 2414 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 2415 /* If either the iTab or iSortIdx values for two WhereLoop are different 2416 ** then those WhereLoops need to be considered separately. Neither is 2417 ** a candidate to replace the other. */ 2418 continue; 2419 } 2420 /* In the current implementation, the rSetup value is either zero 2421 ** or the cost of building an automatic index (NlogN) and the NlogN 2422 ** is the same for compatible WhereLoops. */ 2423 assert( p->rSetup==0 || pTemplate->rSetup==0 2424 || p->rSetup==pTemplate->rSetup ); 2425 2426 /* whereLoopAddBtree() always generates and inserts the automatic index 2427 ** case first. Hence compatible candidate WhereLoops never have a larger 2428 ** rSetup. Call this SETUP-INVARIANT */ 2429 assert( p->rSetup>=pTemplate->rSetup ); 2430 2431 /* Any loop using an appliation-defined index (or PRIMARY KEY or 2432 ** UNIQUE constraint) with one or more == constraints is better 2433 ** than an automatic index. Unless it is a skip-scan. */ 2434 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 2435 && (pTemplate->nSkip)==0 2436 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 2437 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 2438 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 2439 ){ 2440 break; 2441 } 2442 2443 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 2444 ** discarded. WhereLoop p is better if: 2445 ** (1) p has no more dependencies than pTemplate, and 2446 ** (2) p has an equal or lower cost than pTemplate 2447 */ 2448 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 2449 && p->rSetup<=pTemplate->rSetup /* (2a) */ 2450 && p->rRun<=pTemplate->rRun /* (2b) */ 2451 && p->nOut<=pTemplate->nOut /* (2c) */ 2452 ){ 2453 return 0; /* Discard pTemplate */ 2454 } 2455 2456 /* If pTemplate is always better than p, then cause p to be overwritten 2457 ** with pTemplate. pTemplate is better than p if: 2458 ** (1) pTemplate has no more dependences than p, and 2459 ** (2) pTemplate has an equal or lower cost than p. 2460 */ 2461 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 2462 && p->rRun>=pTemplate->rRun /* (2a) */ 2463 && p->nOut>=pTemplate->nOut /* (2b) */ 2464 ){ 2465 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 2466 break; /* Cause p to be overwritten by pTemplate */ 2467 } 2468 } 2469 return ppPrev; 2470 } 2471 2472 /* 2473 ** Insert or replace a WhereLoop entry using the template supplied. 2474 ** 2475 ** An existing WhereLoop entry might be overwritten if the new template 2476 ** is better and has fewer dependencies. Or the template will be ignored 2477 ** and no insert will occur if an existing WhereLoop is faster and has 2478 ** fewer dependencies than the template. Otherwise a new WhereLoop is 2479 ** added based on the template. 2480 ** 2481 ** If pBuilder->pOrSet is not NULL then we care about only the 2482 ** prerequisites and rRun and nOut costs of the N best loops. That 2483 ** information is gathered in the pBuilder->pOrSet object. This special 2484 ** processing mode is used only for OR clause processing. 2485 ** 2486 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 2487 ** still might overwrite similar loops with the new template if the 2488 ** new template is better. Loops may be overwritten if the following 2489 ** conditions are met: 2490 ** 2491 ** (1) They have the same iTab. 2492 ** (2) They have the same iSortIdx. 2493 ** (3) The template has same or fewer dependencies than the current loop 2494 ** (4) The template has the same or lower cost than the current loop 2495 */ 2496 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 2497 WhereLoop **ppPrev, *p; 2498 WhereInfo *pWInfo = pBuilder->pWInfo; 2499 sqlite3 *db = pWInfo->pParse->db; 2500 int rc; 2501 2502 /* Stop the search once we hit the query planner search limit */ 2503 if( pBuilder->iPlanLimit==0 ){ 2504 WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n")); 2505 if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0; 2506 return SQLITE_DONE; 2507 } 2508 pBuilder->iPlanLimit--; 2509 2510 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 2511 2512 /* If pBuilder->pOrSet is defined, then only keep track of the costs 2513 ** and prereqs. 2514 */ 2515 if( pBuilder->pOrSet!=0 ){ 2516 if( pTemplate->nLTerm ){ 2517 #if WHERETRACE_ENABLED 2518 u16 n = pBuilder->pOrSet->n; 2519 int x = 2520 #endif 2521 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 2522 pTemplate->nOut); 2523 #if WHERETRACE_ENABLED /* 0x8 */ 2524 if( sqlite3WhereTrace & 0x8 ){ 2525 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 2526 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2527 } 2528 #endif 2529 } 2530 return SQLITE_OK; 2531 } 2532 2533 /* Look for an existing WhereLoop to replace with pTemplate 2534 */ 2535 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 2536 2537 if( ppPrev==0 ){ 2538 /* There already exists a WhereLoop on the list that is better 2539 ** than pTemplate, so just ignore pTemplate */ 2540 #if WHERETRACE_ENABLED /* 0x8 */ 2541 if( sqlite3WhereTrace & 0x8 ){ 2542 sqlite3DebugPrintf(" skip: "); 2543 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2544 } 2545 #endif 2546 return SQLITE_OK; 2547 }else{ 2548 p = *ppPrev; 2549 } 2550 2551 /* If we reach this point it means that either p[] should be overwritten 2552 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 2553 ** WhereLoop and insert it. 2554 */ 2555 #if WHERETRACE_ENABLED /* 0x8 */ 2556 if( sqlite3WhereTrace & 0x8 ){ 2557 if( p!=0 ){ 2558 sqlite3DebugPrintf("replace: "); 2559 sqlite3WhereLoopPrint(p, pBuilder->pWC); 2560 sqlite3DebugPrintf(" with: "); 2561 }else{ 2562 sqlite3DebugPrintf(" add: "); 2563 } 2564 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2565 } 2566 #endif 2567 if( p==0 ){ 2568 /* Allocate a new WhereLoop to add to the end of the list */ 2569 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); 2570 if( p==0 ) return SQLITE_NOMEM_BKPT; 2571 whereLoopInit(p); 2572 p->pNextLoop = 0; 2573 }else{ 2574 /* We will be overwriting WhereLoop p[]. But before we do, first 2575 ** go through the rest of the list and delete any other entries besides 2576 ** p[] that are also supplated by pTemplate */ 2577 WhereLoop **ppTail = &p->pNextLoop; 2578 WhereLoop *pToDel; 2579 while( *ppTail ){ 2580 ppTail = whereLoopFindLesser(ppTail, pTemplate); 2581 if( ppTail==0 ) break; 2582 pToDel = *ppTail; 2583 if( pToDel==0 ) break; 2584 *ppTail = pToDel->pNextLoop; 2585 #if WHERETRACE_ENABLED /* 0x8 */ 2586 if( sqlite3WhereTrace & 0x8 ){ 2587 sqlite3DebugPrintf(" delete: "); 2588 sqlite3WhereLoopPrint(pToDel, pBuilder->pWC); 2589 } 2590 #endif 2591 whereLoopDelete(db, pToDel); 2592 } 2593 } 2594 rc = whereLoopXfer(db, p, pTemplate); 2595 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2596 Index *pIndex = p->u.btree.pIndex; 2597 if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){ 2598 p->u.btree.pIndex = 0; 2599 } 2600 } 2601 return rc; 2602 } 2603 2604 /* 2605 ** Adjust the WhereLoop.nOut value downward to account for terms of the 2606 ** WHERE clause that reference the loop but which are not used by an 2607 ** index. 2608 * 2609 ** For every WHERE clause term that is not used by the index 2610 ** and which has a truth probability assigned by one of the likelihood(), 2611 ** likely(), or unlikely() SQL functions, reduce the estimated number 2612 ** of output rows by the probability specified. 2613 ** 2614 ** TUNING: For every WHERE clause term that is not used by the index 2615 ** and which does not have an assigned truth probability, heuristics 2616 ** described below are used to try to estimate the truth probability. 2617 ** TODO --> Perhaps this is something that could be improved by better 2618 ** table statistics. 2619 ** 2620 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 2621 ** value corresponds to -1 in LogEst notation, so this means decrement 2622 ** the WhereLoop.nOut field for every such WHERE clause term. 2623 ** 2624 ** Heuristic 2: If there exists one or more WHERE clause terms of the 2625 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 2626 ** final output row estimate is no greater than 1/4 of the total number 2627 ** of rows in the table. In other words, assume that x==EXPR will filter 2628 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 2629 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 2630 ** on the "x" column and so in that case only cap the output row estimate 2631 ** at 1/2 instead of 1/4. 2632 */ 2633 static void whereLoopOutputAdjust( 2634 WhereClause *pWC, /* The WHERE clause */ 2635 WhereLoop *pLoop, /* The loop to adjust downward */ 2636 LogEst nRow /* Number of rows in the entire table */ 2637 ){ 2638 WhereTerm *pTerm, *pX; 2639 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 2640 int i, j; 2641 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 2642 2643 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2644 for(i=pWC->nBase, pTerm=pWC->a; i>0; i--, pTerm++){ 2645 assert( pTerm!=0 ); 2646 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 2647 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 2648 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) continue; 2649 for(j=pLoop->nLTerm-1; j>=0; j--){ 2650 pX = pLoop->aLTerm[j]; 2651 if( pX==0 ) continue; 2652 if( pX==pTerm ) break; 2653 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 2654 } 2655 if( j<0 ){ 2656 if( pLoop->maskSelf==pTerm->prereqAll ){ 2657 /* If there are extra terms in the WHERE clause not used by an index 2658 ** that depend only on the table being scanned, and that will tend to 2659 ** cause many rows to be omitted, then mark that table as 2660 ** "self-culling". 2661 ** 2662 ** 2022-03-24: Self-culling only applies if either the extra terms 2663 ** are straight comparison operators that are non-true with NULL 2664 ** operand, or if the loop is not an OUTER JOIN. 2665 */ 2666 if( (pTerm->eOperator & 0x3f)!=0 2667 || (pWC->pWInfo->pTabList->a[pLoop->iTab].fg.jointype 2668 & (JT_LEFT|JT_LTORJ))==0 2669 ){ 2670 pLoop->wsFlags |= WHERE_SELFCULL; 2671 } 2672 } 2673 if( pTerm->truthProb<=0 ){ 2674 /* If a truth probability is specified using the likelihood() hints, 2675 ** then use the probability provided by the application. */ 2676 pLoop->nOut += pTerm->truthProb; 2677 }else{ 2678 /* In the absence of explicit truth probabilities, use heuristics to 2679 ** guess a reasonable truth probability. */ 2680 pLoop->nOut--; 2681 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 2682 && (pTerm->wtFlags & TERM_HIGHTRUTH)==0 /* tag-20200224-1 */ 2683 ){ 2684 Expr *pRight = pTerm->pExpr->pRight; 2685 int k = 0; 2686 testcase( pTerm->pExpr->op==TK_IS ); 2687 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 2688 k = 10; 2689 }else{ 2690 k = 20; 2691 } 2692 if( iReduce<k ){ 2693 pTerm->wtFlags |= TERM_HEURTRUTH; 2694 iReduce = k; 2695 } 2696 } 2697 } 2698 } 2699 } 2700 if( pLoop->nOut > nRow-iReduce ){ 2701 pLoop->nOut = nRow - iReduce; 2702 } 2703 } 2704 2705 /* 2706 ** Term pTerm is a vector range comparison operation. The first comparison 2707 ** in the vector can be optimized using column nEq of the index. This 2708 ** function returns the total number of vector elements that can be used 2709 ** as part of the range comparison. 2710 ** 2711 ** For example, if the query is: 2712 ** 2713 ** WHERE a = ? AND (b, c, d) > (?, ?, ?) 2714 ** 2715 ** and the index: 2716 ** 2717 ** CREATE INDEX ... ON (a, b, c, d, e) 2718 ** 2719 ** then this function would be invoked with nEq=1. The value returned in 2720 ** this case is 3. 2721 */ 2722 static int whereRangeVectorLen( 2723 Parse *pParse, /* Parsing context */ 2724 int iCur, /* Cursor open on pIdx */ 2725 Index *pIdx, /* The index to be used for a inequality constraint */ 2726 int nEq, /* Number of prior equality constraints on same index */ 2727 WhereTerm *pTerm /* The vector inequality constraint */ 2728 ){ 2729 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft); 2730 int i; 2731 2732 nCmp = MIN(nCmp, (pIdx->nColumn - nEq)); 2733 for(i=1; i<nCmp; i++){ 2734 /* Test if comparison i of pTerm is compatible with column (i+nEq) 2735 ** of the index. If not, exit the loop. */ 2736 char aff; /* Comparison affinity */ 2737 char idxaff = 0; /* Indexed columns affinity */ 2738 CollSeq *pColl; /* Comparison collation sequence */ 2739 Expr *pLhs, *pRhs; 2740 2741 assert( ExprUseXList(pTerm->pExpr->pLeft) ); 2742 pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr; 2743 pRhs = pTerm->pExpr->pRight; 2744 if( ExprUseXSelect(pRhs) ){ 2745 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr; 2746 }else{ 2747 pRhs = pRhs->x.pList->a[i].pExpr; 2748 } 2749 2750 /* Check that the LHS of the comparison is a column reference to 2751 ** the right column of the right source table. And that the sort 2752 ** order of the index column is the same as the sort order of the 2753 ** leftmost index column. */ 2754 if( pLhs->op!=TK_COLUMN 2755 || pLhs->iTable!=iCur 2756 || pLhs->iColumn!=pIdx->aiColumn[i+nEq] 2757 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq] 2758 ){ 2759 break; 2760 } 2761 2762 testcase( pLhs->iColumn==XN_ROWID ); 2763 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs)); 2764 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn); 2765 if( aff!=idxaff ) break; 2766 2767 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2768 if( pColl==0 ) break; 2769 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; 2770 } 2771 return i; 2772 } 2773 2774 /* 2775 ** Adjust the cost C by the costMult facter T. This only occurs if 2776 ** compiled with -DSQLITE_ENABLE_COSTMULT 2777 */ 2778 #ifdef SQLITE_ENABLE_COSTMULT 2779 # define ApplyCostMultiplier(C,T) C += T 2780 #else 2781 # define ApplyCostMultiplier(C,T) 2782 #endif 2783 2784 /* 2785 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 2786 ** index pIndex. Try to match one more. 2787 ** 2788 ** When this function is called, pBuilder->pNew->nOut contains the 2789 ** number of rows expected to be visited by filtering using the nEq 2790 ** terms only. If it is modified, this value is restored before this 2791 ** function returns. 2792 ** 2793 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is 2794 ** a fake index used for the INTEGER PRIMARY KEY. 2795 */ 2796 static int whereLoopAddBtreeIndex( 2797 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 2798 SrcItem *pSrc, /* FROM clause term being analyzed */ 2799 Index *pProbe, /* An index on pSrc */ 2800 LogEst nInMul /* log(Number of iterations due to IN) */ 2801 ){ 2802 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ 2803 Parse *pParse = pWInfo->pParse; /* Parsing context */ 2804 sqlite3 *db = pParse->db; /* Database connection malloc context */ 2805 WhereLoop *pNew; /* Template WhereLoop under construction */ 2806 WhereTerm *pTerm; /* A WhereTerm under consideration */ 2807 int opMask; /* Valid operators for constraints */ 2808 WhereScan scan; /* Iterator for WHERE terms */ 2809 Bitmask saved_prereq; /* Original value of pNew->prereq */ 2810 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 2811 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 2812 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */ 2813 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */ 2814 u16 saved_nSkip; /* Original value of pNew->nSkip */ 2815 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 2816 LogEst saved_nOut; /* Original value of pNew->nOut */ 2817 int rc = SQLITE_OK; /* Return code */ 2818 LogEst rSize; /* Number of rows in the table */ 2819 LogEst rLogSize; /* Logarithm of table size */ 2820 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 2821 2822 pNew = pBuilder->pNew; 2823 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 2824 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n", 2825 pProbe->pTable->zName,pProbe->zName, 2826 pNew->u.btree.nEq, pNew->nSkip, pNew->rRun)); 2827 2828 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 2829 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 2830 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 2831 opMask = WO_LT|WO_LE; 2832 }else{ 2833 assert( pNew->u.btree.nBtm==0 ); 2834 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; 2835 } 2836 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 2837 2838 assert( pNew->u.btree.nEq<pProbe->nColumn ); 2839 assert( pNew->u.btree.nEq<pProbe->nKeyCol 2840 || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY ); 2841 2842 saved_nEq = pNew->u.btree.nEq; 2843 saved_nBtm = pNew->u.btree.nBtm; 2844 saved_nTop = pNew->u.btree.nTop; 2845 saved_nSkip = pNew->nSkip; 2846 saved_nLTerm = pNew->nLTerm; 2847 saved_wsFlags = pNew->wsFlags; 2848 saved_prereq = pNew->prereq; 2849 saved_nOut = pNew->nOut; 2850 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, 2851 opMask, pProbe); 2852 pNew->rSetup = 0; 2853 rSize = pProbe->aiRowLogEst[0]; 2854 rLogSize = estLog(rSize); 2855 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 2856 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 2857 LogEst rCostIdx; 2858 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 2859 int nIn = 0; 2860 #ifdef SQLITE_ENABLE_STAT4 2861 int nRecValid = pBuilder->nRecValid; 2862 #endif 2863 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 2864 && indexColumnNotNull(pProbe, saved_nEq) 2865 ){ 2866 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 2867 } 2868 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2869 2870 /* Do not allow the upper bound of a LIKE optimization range constraint 2871 ** to mix with a lower range bound from some other source */ 2872 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 2873 2874 /* tag-20191211-001: Do not allow constraints from the WHERE clause to 2875 ** be used by the right table of a LEFT JOIN nor by the left table of a 2876 ** RIGHT JOIN. Only constraints in the ON clause are allowed. 2877 ** See tag-20191211-002 for the vtab equivalent. 2878 ** 2879 ** 2022-06-06: See https://sqlite.org/forum/forumpost/206d99a16dd9212f 2880 ** for an example of a WHERE clause constraints that may not be used on 2881 ** the right table of a RIGHT JOIN because the constraint implies a 2882 ** not-NULL condition on the left table of the RIGHT JOIN. 2883 ** 2884 ** 2022-06-10: The same condition applies to termCanDriveIndex() above. 2885 ** https://sqlite.org/forum/forumpost/51e6959f61 2886 */ 2887 if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 2888 && !constraintCompatibleWithOuterJoin(pTerm,pSrc) 2889 ){ 2890 continue; 2891 } 2892 2893 if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){ 2894 pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE; 2895 }else{ 2896 pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED; 2897 } 2898 pNew->wsFlags = saved_wsFlags; 2899 pNew->u.btree.nEq = saved_nEq; 2900 pNew->u.btree.nBtm = saved_nBtm; 2901 pNew->u.btree.nTop = saved_nTop; 2902 pNew->nLTerm = saved_nLTerm; 2903 if( pNew->nLTerm>=pNew->nLSlot 2904 && whereLoopResize(db, pNew, pNew->nLTerm+1) 2905 ){ 2906 break; /* OOM while trying to enlarge the pNew->aLTerm array */ 2907 } 2908 pNew->aLTerm[pNew->nLTerm++] = pTerm; 2909 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 2910 2911 assert( nInMul==0 2912 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 2913 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 2914 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 2915 ); 2916 2917 if( eOp & WO_IN ){ 2918 Expr *pExpr = pTerm->pExpr; 2919 if( ExprUseXSelect(pExpr) ){ 2920 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 2921 int i; 2922 nIn = 46; assert( 46==sqlite3LogEst(25) ); 2923 2924 /* The expression may actually be of the form (x, y) IN (SELECT...). 2925 ** In this case there is a separate term for each of (x) and (y). 2926 ** However, the nIn multiplier should only be applied once, not once 2927 ** for each such term. The following loop checks that pTerm is the 2928 ** first such term in use, and sets nIn back to 0 if it is not. */ 2929 for(i=0; i<pNew->nLTerm-1; i++){ 2930 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0; 2931 } 2932 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2933 /* "x IN (value, value, ...)" */ 2934 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 2935 } 2936 if( pProbe->hasStat1 && rLogSize>=10 ){ 2937 LogEst M, logK, x; 2938 /* Let: 2939 ** N = the total number of rows in the table 2940 ** K = the number of entries on the RHS of the IN operator 2941 ** M = the number of rows in the table that match terms to the 2942 ** to the left in the same index. If the IN operator is on 2943 ** the left-most index column, M==N. 2944 ** 2945 ** Given the definitions above, it is better to omit the IN operator 2946 ** from the index lookup and instead do a scan of the M elements, 2947 ** testing each scanned row against the IN operator separately, if: 2948 ** 2949 ** M*log(K) < K*log(N) 2950 ** 2951 ** Our estimates for M, K, and N might be inaccurate, so we build in 2952 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator 2953 ** with the index, as using an index has better worst-case behavior. 2954 ** If we do not have real sqlite_stat1 data, always prefer to use 2955 ** the index. Do not bother with this optimization on very small 2956 ** tables (less than 2 rows) as it is pointless in that case. 2957 */ 2958 M = pProbe->aiRowLogEst[saved_nEq]; 2959 logK = estLog(nIn); 2960 /* TUNING v----- 10 to bias toward indexed IN */ 2961 x = M + logK + 10 - (nIn + rLogSize); 2962 if( x>=0 ){ 2963 WHERETRACE(0x40, 2964 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) " 2965 "prefers indexed lookup\n", 2966 saved_nEq, M, logK, nIn, rLogSize, x)); 2967 }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){ 2968 WHERETRACE(0x40, 2969 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d" 2970 " nInMul=%d) prefers skip-scan\n", 2971 saved_nEq, M, logK, nIn, rLogSize, x, nInMul)); 2972 pNew->wsFlags |= WHERE_IN_SEEKSCAN; 2973 }else{ 2974 WHERETRACE(0x40, 2975 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d" 2976 " nInMul=%d) prefers normal scan\n", 2977 saved_nEq, M, logK, nIn, rLogSize, x, nInMul)); 2978 continue; 2979 } 2980 } 2981 pNew->wsFlags |= WHERE_COLUMN_IN; 2982 }else if( eOp & (WO_EQ|WO_IS) ){ 2983 int iCol = pProbe->aiColumn[saved_nEq]; 2984 pNew->wsFlags |= WHERE_COLUMN_EQ; 2985 assert( saved_nEq==pNew->u.btree.nEq ); 2986 if( iCol==XN_ROWID 2987 || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) 2988 ){ 2989 if( iCol==XN_ROWID || pProbe->uniqNotNull 2990 || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ) 2991 ){ 2992 pNew->wsFlags |= WHERE_ONEROW; 2993 }else{ 2994 pNew->wsFlags |= WHERE_UNQ_WANTED; 2995 } 2996 } 2997 if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS; 2998 }else if( eOp & WO_ISNULL ){ 2999 pNew->wsFlags |= WHERE_COLUMN_NULL; 3000 }else{ 3001 int nVecLen = whereRangeVectorLen( 3002 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 3003 ); 3004 if( eOp & (WO_GT|WO_GE) ){ 3005 testcase( eOp & WO_GT ); 3006 testcase( eOp & WO_GE ); 3007 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 3008 pNew->u.btree.nBtm = nVecLen; 3009 pBtm = pTerm; 3010 pTop = 0; 3011 if( pTerm->wtFlags & TERM_LIKEOPT ){ 3012 /* Range constraints that come from the LIKE optimization are 3013 ** always used in pairs. */ 3014 pTop = &pTerm[1]; 3015 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 3016 assert( pTop->wtFlags & TERM_LIKEOPT ); 3017 assert( pTop->eOperator==WO_LT ); 3018 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 3019 pNew->aLTerm[pNew->nLTerm++] = pTop; 3020 pNew->wsFlags |= WHERE_TOP_LIMIT; 3021 pNew->u.btree.nTop = 1; 3022 } 3023 }else{ 3024 assert( eOp & (WO_LT|WO_LE) ); 3025 testcase( eOp & WO_LT ); 3026 testcase( eOp & WO_LE ); 3027 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 3028 pNew->u.btree.nTop = nVecLen; 3029 pTop = pTerm; 3030 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 3031 pNew->aLTerm[pNew->nLTerm-2] : 0; 3032 } 3033 } 3034 3035 /* At this point pNew->nOut is set to the number of rows expected to 3036 ** be visited by the index scan before considering term pTerm, or the 3037 ** values of nIn and nInMul. In other words, assuming that all 3038 ** "x IN(...)" terms are replaced with "x = ?". This block updates 3039 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 3040 assert( pNew->nOut==saved_nOut ); 3041 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 3042 /* Adjust nOut using stat4 data. Or, if there is no stat4 3043 ** data, using some other estimate. */ 3044 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 3045 }else{ 3046 int nEq = ++pNew->u.btree.nEq; 3047 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); 3048 3049 assert( pNew->nOut==saved_nOut ); 3050 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ 3051 assert( (eOp & WO_IN) || nIn==0 ); 3052 testcase( eOp & WO_IN ); 3053 pNew->nOut += pTerm->truthProb; 3054 pNew->nOut -= nIn; 3055 }else{ 3056 #ifdef SQLITE_ENABLE_STAT4 3057 tRowcnt nOut = 0; 3058 if( nInMul==0 3059 && pProbe->nSample 3060 && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol) 3061 && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr)) 3062 && OptimizationEnabled(db, SQLITE_Stat4) 3063 ){ 3064 Expr *pExpr = pTerm->pExpr; 3065 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ 3066 testcase( eOp & WO_EQ ); 3067 testcase( eOp & WO_IS ); 3068 testcase( eOp & WO_ISNULL ); 3069 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 3070 }else{ 3071 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 3072 } 3073 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 3074 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 3075 if( nOut ){ 3076 pNew->nOut = sqlite3LogEst(nOut); 3077 if( nEq==1 3078 /* TUNING: Mark terms as "low selectivity" if they seem likely 3079 ** to be true for half or more of the rows in the table. 3080 ** See tag-202002240-1 */ 3081 && pNew->nOut+10 > pProbe->aiRowLogEst[0] 3082 ){ 3083 #if WHERETRACE_ENABLED /* 0x01 */ 3084 if( sqlite3WhereTrace & 0x01 ){ 3085 sqlite3DebugPrintf( 3086 "STAT4 determines term has low selectivity:\n"); 3087 sqlite3WhereTermPrint(pTerm, 999); 3088 } 3089 #endif 3090 pTerm->wtFlags |= TERM_HIGHTRUTH; 3091 if( pTerm->wtFlags & TERM_HEURTRUTH ){ 3092 /* If the term has previously been used with an assumption of 3093 ** higher selectivity, then set the flag to rerun the 3094 ** loop computations. */ 3095 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS; 3096 } 3097 } 3098 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 3099 pNew->nOut -= nIn; 3100 } 3101 } 3102 if( nOut==0 ) 3103 #endif 3104 { 3105 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 3106 if( eOp & WO_ISNULL ){ 3107 /* TUNING: If there is no likelihood() value, assume that a 3108 ** "col IS NULL" expression matches twice as many rows 3109 ** as (col=?). */ 3110 pNew->nOut += 10; 3111 } 3112 } 3113 } 3114 } 3115 3116 /* Set rCostIdx to the cost of visiting selected rows in index. Add 3117 ** it to pNew->rRun, which is currently set to the cost of the index 3118 ** seek only. Then, if this is a non-covering index, add the cost of 3119 ** visiting the rows in the main table. */ 3120 assert( pSrc->pTab->szTabRow>0 ); 3121 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 3122 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); 3123 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ 3124 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 3125 } 3126 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 3127 3128 nOutUnadjusted = pNew->nOut; 3129 pNew->rRun += nInMul + nIn; 3130 pNew->nOut += nInMul + nIn; 3131 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 3132 rc = whereLoopInsert(pBuilder, pNew); 3133 3134 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 3135 pNew->nOut = saved_nOut; 3136 }else{ 3137 pNew->nOut = nOutUnadjusted; 3138 } 3139 3140 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 3141 && pNew->u.btree.nEq<pProbe->nColumn 3142 && (pNew->u.btree.nEq<pProbe->nKeyCol || 3143 pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY) 3144 ){ 3145 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 3146 } 3147 pNew->nOut = saved_nOut; 3148 #ifdef SQLITE_ENABLE_STAT4 3149 pBuilder->nRecValid = nRecValid; 3150 #endif 3151 } 3152 pNew->prereq = saved_prereq; 3153 pNew->u.btree.nEq = saved_nEq; 3154 pNew->u.btree.nBtm = saved_nBtm; 3155 pNew->u.btree.nTop = saved_nTop; 3156 pNew->nSkip = saved_nSkip; 3157 pNew->wsFlags = saved_wsFlags; 3158 pNew->nOut = saved_nOut; 3159 pNew->nLTerm = saved_nLTerm; 3160 3161 /* Consider using a skip-scan if there are no WHERE clause constraints 3162 ** available for the left-most terms of the index, and if the average 3163 ** number of repeats in the left-most terms is at least 18. 3164 ** 3165 ** The magic number 18 is selected on the basis that scanning 17 rows 3166 ** is almost always quicker than an index seek (even though if the index 3167 ** contains fewer than 2^17 rows we assume otherwise in other parts of 3168 ** the code). And, even if it is not, it should not be too much slower. 3169 ** On the other hand, the extra seeks could end up being significantly 3170 ** more expensive. */ 3171 assert( 42==sqlite3LogEst(18) ); 3172 if( saved_nEq==saved_nSkip 3173 && saved_nEq+1<pProbe->nKeyCol 3174 && saved_nEq==pNew->nLTerm 3175 && pProbe->noSkipScan==0 3176 && pProbe->hasStat1!=0 3177 && OptimizationEnabled(db, SQLITE_SkipScan) 3178 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 3179 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 3180 ){ 3181 LogEst nIter; 3182 pNew->u.btree.nEq++; 3183 pNew->nSkip++; 3184 pNew->aLTerm[pNew->nLTerm++] = 0; 3185 pNew->wsFlags |= WHERE_SKIPSCAN; 3186 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 3187 pNew->nOut -= nIter; 3188 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 3189 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 3190 nIter += 5; 3191 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 3192 pNew->nOut = saved_nOut; 3193 pNew->u.btree.nEq = saved_nEq; 3194 pNew->nSkip = saved_nSkip; 3195 pNew->wsFlags = saved_wsFlags; 3196 } 3197 3198 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n", 3199 pProbe->pTable->zName, pProbe->zName, saved_nEq, rc)); 3200 return rc; 3201 } 3202 3203 /* 3204 ** Return True if it is possible that pIndex might be useful in 3205 ** implementing the ORDER BY clause in pBuilder. 3206 ** 3207 ** Return False if pBuilder does not contain an ORDER BY clause or 3208 ** if there is no way for pIndex to be useful in implementing that 3209 ** ORDER BY clause. 3210 */ 3211 static int indexMightHelpWithOrderBy( 3212 WhereLoopBuilder *pBuilder, 3213 Index *pIndex, 3214 int iCursor 3215 ){ 3216 ExprList *pOB; 3217 ExprList *aColExpr; 3218 int ii, jj; 3219 3220 if( pIndex->bUnordered ) return 0; 3221 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 3222 for(ii=0; ii<pOB->nExpr; ii++){ 3223 Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr); 3224 if( NEVER(pExpr==0) ) continue; 3225 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ 3226 if( pExpr->iColumn<0 ) return 1; 3227 for(jj=0; jj<pIndex->nKeyCol; jj++){ 3228 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 3229 } 3230 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ 3231 for(jj=0; jj<pIndex->nKeyCol; jj++){ 3232 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; 3233 if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ 3234 return 1; 3235 } 3236 } 3237 } 3238 } 3239 return 0; 3240 } 3241 3242 /* Check to see if a partial index with pPartIndexWhere can be used 3243 ** in the current query. Return true if it can be and false if not. 3244 */ 3245 static int whereUsablePartialIndex( 3246 int iTab, /* The table for which we want an index */ 3247 u8 jointype, /* The JT_* flags on the join */ 3248 WhereClause *pWC, /* The WHERE clause of the query */ 3249 Expr *pWhere /* The WHERE clause from the partial index */ 3250 ){ 3251 int i; 3252 WhereTerm *pTerm; 3253 Parse *pParse; 3254 3255 if( jointype & JT_LTORJ ) return 0; 3256 pParse = pWC->pWInfo->pParse; 3257 while( pWhere->op==TK_AND ){ 3258 if( !whereUsablePartialIndex(iTab,jointype,pWC,pWhere->pLeft) ) return 0; 3259 pWhere = pWhere->pRight; 3260 } 3261 if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0; 3262 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 3263 Expr *pExpr; 3264 pExpr = pTerm->pExpr; 3265 if( (!ExprHasProperty(pExpr, EP_OuterON) || pExpr->w.iJoin==iTab) 3266 && ((jointype & JT_OUTER)==0 || ExprHasProperty(pExpr, EP_OuterON)) 3267 && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab) 3268 && (pTerm->wtFlags & TERM_VNULL)==0 3269 ){ 3270 return 1; 3271 } 3272 } 3273 return 0; 3274 } 3275 3276 /* 3277 ** Add all WhereLoop objects for a single table of the join where the table 3278 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be 3279 ** a b-tree table, not a virtual table. 3280 ** 3281 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 3282 ** are calculated as follows: 3283 ** 3284 ** For a full scan, assuming the table (or index) contains nRow rows: 3285 ** 3286 ** cost = nRow * 3.0 // full-table scan 3287 ** cost = nRow * K // scan of covering index 3288 ** cost = nRow * (K+3.0) // scan of non-covering index 3289 ** 3290 ** where K is a value between 1.1 and 3.0 set based on the relative 3291 ** estimated average size of the index and table records. 3292 ** 3293 ** For an index scan, where nVisit is the number of index rows visited 3294 ** by the scan, and nSeek is the number of seek operations required on 3295 ** the index b-tree: 3296 ** 3297 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 3298 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 3299 ** 3300 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 3301 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 3302 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 3303 ** 3304 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 3305 ** of uncertainty. For this reason, scoring is designed to pick plans that 3306 ** "do the least harm" if the estimates are inaccurate. For example, a 3307 ** log(nRow) factor is omitted from a non-covering index scan in order to 3308 ** bias the scoring in favor of using an index, since the worst-case 3309 ** performance of using an index is far better than the worst-case performance 3310 ** of a full table scan. 3311 */ 3312 static int whereLoopAddBtree( 3313 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3314 Bitmask mPrereq /* Extra prerequesites for using this table */ 3315 ){ 3316 WhereInfo *pWInfo; /* WHERE analysis context */ 3317 Index *pProbe; /* An index we are evaluating */ 3318 Index sPk; /* A fake index object for the primary key */ 3319 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 3320 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 3321 SrcList *pTabList; /* The FROM clause */ 3322 SrcItem *pSrc; /* The FROM clause btree term to add */ 3323 WhereLoop *pNew; /* Template WhereLoop object */ 3324 int rc = SQLITE_OK; /* Return code */ 3325 int iSortIdx = 1; /* Index number */ 3326 int b; /* A boolean value */ 3327 LogEst rSize; /* number of rows in the table */ 3328 WhereClause *pWC; /* The parsed WHERE clause */ 3329 Table *pTab; /* Table being queried */ 3330 3331 pNew = pBuilder->pNew; 3332 pWInfo = pBuilder->pWInfo; 3333 pTabList = pWInfo->pTabList; 3334 pSrc = pTabList->a + pNew->iTab; 3335 pTab = pSrc->pTab; 3336 pWC = pBuilder->pWC; 3337 assert( !IsVirtual(pSrc->pTab) ); 3338 3339 if( pSrc->fg.isIndexedBy ){ 3340 assert( pSrc->fg.isCte==0 ); 3341 /* An INDEXED BY clause specifies a particular index to use */ 3342 pProbe = pSrc->u2.pIBIndex; 3343 }else if( !HasRowid(pTab) ){ 3344 pProbe = pTab->pIndex; 3345 }else{ 3346 /* There is no INDEXED BY clause. Create a fake Index object in local 3347 ** variable sPk to represent the rowid primary key index. Make this 3348 ** fake index the first in a chain of Index objects with all of the real 3349 ** indices to follow */ 3350 Index *pFirst; /* First of real indices on the table */ 3351 memset(&sPk, 0, sizeof(Index)); 3352 sPk.nKeyCol = 1; 3353 sPk.nColumn = 1; 3354 sPk.aiColumn = &aiColumnPk; 3355 sPk.aiRowLogEst = aiRowEstPk; 3356 sPk.onError = OE_Replace; 3357 sPk.pTable = pTab; 3358 sPk.szIdxRow = pTab->szTabRow; 3359 sPk.idxType = SQLITE_IDXTYPE_IPK; 3360 aiRowEstPk[0] = pTab->nRowLogEst; 3361 aiRowEstPk[1] = 0; 3362 pFirst = pSrc->pTab->pIndex; 3363 if( pSrc->fg.notIndexed==0 ){ 3364 /* The real indices of the table are only considered if the 3365 ** NOT INDEXED qualifier is omitted from the FROM clause */ 3366 sPk.pNext = pFirst; 3367 } 3368 pProbe = &sPk; 3369 } 3370 rSize = pTab->nRowLogEst; 3371 3372 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 3373 /* Automatic indexes */ 3374 if( !pBuilder->pOrSet /* Not part of an OR optimization */ 3375 && (pWInfo->wctrlFlags & (WHERE_RIGHT_JOIN|WHERE_OR_SUBCLAUSE))==0 3376 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 3377 && !pSrc->fg.isIndexedBy /* Has no INDEXED BY clause */ 3378 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ 3379 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ 3380 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ 3381 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ 3382 && (pSrc->fg.jointype & JT_RIGHT)==0 /* Not the right tab of a RIGHT JOIN */ 3383 ){ 3384 /* Generate auto-index WhereLoops */ 3385 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 3386 WhereTerm *pTerm; 3387 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 3388 rLogSize = estLog(rSize); 3389 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 3390 if( pTerm->prereqRight & pNew->maskSelf ) continue; 3391 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 3392 pNew->u.btree.nEq = 1; 3393 pNew->nSkip = 0; 3394 pNew->u.btree.pIndex = 0; 3395 pNew->nLTerm = 1; 3396 pNew->aLTerm[0] = pTerm; 3397 /* TUNING: One-time cost for computing the automatic index is 3398 ** estimated to be X*N*log2(N) where N is the number of rows in 3399 ** the table being indexed and where X is 7 (LogEst=28) for normal 3400 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value 3401 ** of X is smaller for views and subqueries so that the query planner 3402 ** will be more aggressive about generating automatic indexes for 3403 ** those objects, since there is no opportunity to add schema 3404 ** indexes on subqueries and views. */ 3405 pNew->rSetup = rLogSize + rSize; 3406 if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){ 3407 pNew->rSetup += 28; 3408 }else{ 3409 pNew->rSetup -= 10; 3410 } 3411 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 3412 if( pNew->rSetup<0 ) pNew->rSetup = 0; 3413 /* TUNING: Each index lookup yields 20 rows in the table. This 3414 ** is more than the usual guess of 10 rows, since we have no way 3415 ** of knowing how selective the index will ultimately be. It would 3416 ** not be unreasonable to make this value much larger. */ 3417 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 3418 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 3419 pNew->wsFlags = WHERE_AUTO_INDEX; 3420 pNew->prereq = mPrereq | pTerm->prereqRight; 3421 rc = whereLoopInsert(pBuilder, pNew); 3422 } 3423 } 3424 } 3425 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 3426 3427 /* Loop over all indices. If there was an INDEXED BY clause, then only 3428 ** consider index pProbe. */ 3429 for(; rc==SQLITE_OK && pProbe; 3430 pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++ 3431 ){ 3432 if( pProbe->pPartIdxWhere!=0 3433 && !whereUsablePartialIndex(pSrc->iCursor, pSrc->fg.jointype, pWC, 3434 pProbe->pPartIdxWhere) 3435 ){ 3436 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 3437 continue; /* Partial index inappropriate for this query */ 3438 } 3439 if( pProbe->bNoQuery ) continue; 3440 rSize = pProbe->aiRowLogEst[0]; 3441 pNew->u.btree.nEq = 0; 3442 pNew->u.btree.nBtm = 0; 3443 pNew->u.btree.nTop = 0; 3444 pNew->nSkip = 0; 3445 pNew->nLTerm = 0; 3446 pNew->iSortIdx = 0; 3447 pNew->rSetup = 0; 3448 pNew->prereq = mPrereq; 3449 pNew->nOut = rSize; 3450 pNew->u.btree.pIndex = pProbe; 3451 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 3452 3453 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 3454 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 3455 if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){ 3456 /* Integer primary key index */ 3457 pNew->wsFlags = WHERE_IPK; 3458 3459 /* Full table scan */ 3460 pNew->iSortIdx = b ? iSortIdx : 0; 3461 /* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an 3462 ** extra cost designed to discourage the use of full table scans, 3463 ** since index lookups have better worst-case performance if our 3464 ** stat guesses are wrong. Reduce the 3.0 penalty slightly 3465 ** (to 2.75) if we have valid STAT4 information for the table. 3466 ** At 2.75, a full table scan is preferred over using an index on 3467 ** a column with just two distinct values where each value has about 3468 ** an equal number of appearances. Without STAT4 data, we still want 3469 ** to use an index in that case, since the constraint might be for 3470 ** the scarcer of the two values, and in that case an index lookup is 3471 ** better. 3472 */ 3473 #ifdef SQLITE_ENABLE_STAT4 3474 pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0); 3475 #else 3476 pNew->rRun = rSize + 16; 3477 #endif 3478 if( IsView(pTab) || (pTab->tabFlags & TF_Ephemeral)!=0 ){ 3479 pNew->wsFlags |= WHERE_VIEWSCAN; 3480 } 3481 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3482 whereLoopOutputAdjust(pWC, pNew, rSize); 3483 rc = whereLoopInsert(pBuilder, pNew); 3484 pNew->nOut = rSize; 3485 if( rc ) break; 3486 }else{ 3487 Bitmask m; 3488 if( pProbe->isCovering ){ 3489 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 3490 m = 0; 3491 }else{ 3492 m = pSrc->colUsed & pProbe->colNotIdxed; 3493 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; 3494 } 3495 3496 /* Full scan via index */ 3497 if( b 3498 || !HasRowid(pTab) 3499 || pProbe->pPartIdxWhere!=0 3500 || pSrc->fg.isIndexedBy 3501 || ( m==0 3502 && pProbe->bUnordered==0 3503 && (pProbe->szIdxRow<pTab->szTabRow) 3504 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 3505 && sqlite3GlobalConfig.bUseCis 3506 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 3507 ) 3508 ){ 3509 pNew->iSortIdx = b ? iSortIdx : 0; 3510 3511 /* The cost of visiting the index rows is N*K, where K is 3512 ** between 1.1 and 3.0, depending on the relative sizes of the 3513 ** index and table rows. */ 3514 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 3515 if( m!=0 ){ 3516 /* If this is a non-covering index scan, add in the cost of 3517 ** doing table lookups. The cost will be 3x the number of 3518 ** lookups. Take into account WHERE clause terms that can be 3519 ** satisfied using just the index, and that do not require a 3520 ** table lookup. */ 3521 LogEst nLookup = rSize + 16; /* Base cost: N*3 */ 3522 int ii; 3523 int iCur = pSrc->iCursor; 3524 WhereClause *pWC2 = &pWInfo->sWC; 3525 for(ii=0; ii<pWC2->nTerm; ii++){ 3526 WhereTerm *pTerm = &pWC2->a[ii]; 3527 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){ 3528 break; 3529 } 3530 /* pTerm can be evaluated using just the index. So reduce 3531 ** the expected number of table lookups accordingly */ 3532 if( pTerm->truthProb<=0 ){ 3533 nLookup += pTerm->truthProb; 3534 }else{ 3535 nLookup--; 3536 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19; 3537 } 3538 } 3539 3540 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup); 3541 } 3542 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3543 whereLoopOutputAdjust(pWC, pNew, rSize); 3544 if( (pSrc->fg.jointype & JT_RIGHT)!=0 && pProbe->aColExpr ){ 3545 /* Do not do an SCAN of a index-on-expression in a RIGHT JOIN 3546 ** because the cursor used to access the index might not be 3547 ** positioned to the correct row during the right-join no-match 3548 ** loop. */ 3549 }else{ 3550 rc = whereLoopInsert(pBuilder, pNew); 3551 } 3552 pNew->nOut = rSize; 3553 if( rc ) break; 3554 } 3555 } 3556 3557 pBuilder->bldFlags1 = 0; 3558 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 3559 if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){ 3560 /* If a non-unique index is used, or if a prefix of the key for 3561 ** unique index is used (making the index functionally non-unique) 3562 ** then the sqlite_stat1 data becomes important for scoring the 3563 ** plan */ 3564 pTab->tabFlags |= TF_StatsUsed; 3565 } 3566 #ifdef SQLITE_ENABLE_STAT4 3567 sqlite3Stat4ProbeFree(pBuilder->pRec); 3568 pBuilder->nRecValid = 0; 3569 pBuilder->pRec = 0; 3570 #endif 3571 } 3572 return rc; 3573 } 3574 3575 #ifndef SQLITE_OMIT_VIRTUALTABLE 3576 3577 /* 3578 ** Return true if pTerm is a virtual table LIMIT or OFFSET term. 3579 */ 3580 static int isLimitTerm(WhereTerm *pTerm){ 3581 assert( pTerm->eOperator==WO_AUX || pTerm->eMatchOp==0 ); 3582 return pTerm->eMatchOp>=SQLITE_INDEX_CONSTRAINT_LIMIT 3583 && pTerm->eMatchOp<=SQLITE_INDEX_CONSTRAINT_OFFSET; 3584 } 3585 3586 /* 3587 ** Argument pIdxInfo is already populated with all constraints that may 3588 ** be used by the virtual table identified by pBuilder->pNew->iTab. This 3589 ** function marks a subset of those constraints usable, invokes the 3590 ** xBestIndex method and adds the returned plan to pBuilder. 3591 ** 3592 ** A constraint is marked usable if: 3593 ** 3594 ** * Argument mUsable indicates that its prerequisites are available, and 3595 ** 3596 ** * It is not one of the operators specified in the mExclude mask passed 3597 ** as the fourth argument (which in practice is either WO_IN or 0). 3598 ** 3599 ** Argument mPrereq is a mask of tables that must be scanned before the 3600 ** virtual table in question. These are added to the plans prerequisites 3601 ** before it is added to pBuilder. 3602 ** 3603 ** Output parameter *pbIn is set to true if the plan added to pBuilder 3604 ** uses one or more WO_IN terms, or false otherwise. 3605 */ 3606 static int whereLoopAddVirtualOne( 3607 WhereLoopBuilder *pBuilder, 3608 Bitmask mPrereq, /* Mask of tables that must be used. */ 3609 Bitmask mUsable, /* Mask of usable tables */ 3610 u16 mExclude, /* Exclude terms using these operators */ 3611 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ 3612 u16 mNoOmit, /* Do not omit these constraints */ 3613 int *pbIn, /* OUT: True if plan uses an IN(...) op */ 3614 int *pbRetryLimit /* OUT: Retry without LIMIT/OFFSET */ 3615 ){ 3616 WhereClause *pWC = pBuilder->pWC; 3617 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3618 struct sqlite3_index_constraint *pIdxCons; 3619 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; 3620 int i; 3621 int mxTerm; 3622 int rc = SQLITE_OK; 3623 WhereLoop *pNew = pBuilder->pNew; 3624 Parse *pParse = pBuilder->pWInfo->pParse; 3625 SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; 3626 int nConstraint = pIdxInfo->nConstraint; 3627 3628 assert( (mUsable & mPrereq)==mPrereq ); 3629 *pbIn = 0; 3630 pNew->prereq = mPrereq; 3631 3632 /* Set the usable flag on the subset of constraints identified by 3633 ** arguments mUsable and mExclude. */ 3634 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3635 for(i=0; i<nConstraint; i++, pIdxCons++){ 3636 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset]; 3637 pIdxCons->usable = 0; 3638 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight 3639 && (pTerm->eOperator & mExclude)==0 3640 && (pbRetryLimit || !isLimitTerm(pTerm)) 3641 ){ 3642 pIdxCons->usable = 1; 3643 } 3644 } 3645 3646 /* Initialize the output fields of the sqlite3_index_info structure */ 3647 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); 3648 assert( pIdxInfo->needToFreeIdxStr==0 ); 3649 pIdxInfo->idxStr = 0; 3650 pIdxInfo->idxNum = 0; 3651 pIdxInfo->orderByConsumed = 0; 3652 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 3653 pIdxInfo->estimatedRows = 25; 3654 pIdxInfo->idxFlags = 0; 3655 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; 3656 pHidden->mHandleIn = 0; 3657 3658 /* Invoke the virtual table xBestIndex() method */ 3659 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); 3660 if( rc ){ 3661 if( rc==SQLITE_CONSTRAINT ){ 3662 /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means 3663 ** that the particular combination of parameters provided is unusable. 3664 ** Make no entries in the loop table. 3665 */ 3666 WHERETRACE(0xffff, (" ^^^^--- non-viable plan rejected!\n")); 3667 return SQLITE_OK; 3668 } 3669 return rc; 3670 } 3671 3672 mxTerm = -1; 3673 assert( pNew->nLSlot>=nConstraint ); 3674 memset(pNew->aLTerm, 0, sizeof(pNew->aLTerm[0])*nConstraint ); 3675 memset(&pNew->u.vtab, 0, sizeof(pNew->u.vtab)); 3676 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3677 for(i=0; i<nConstraint; i++, pIdxCons++){ 3678 int iTerm; 3679 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 3680 WhereTerm *pTerm; 3681 int j = pIdxCons->iTermOffset; 3682 if( iTerm>=nConstraint 3683 || j<0 3684 || j>=pWC->nTerm 3685 || pNew->aLTerm[iTerm]!=0 3686 || pIdxCons->usable==0 3687 ){ 3688 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3689 testcase( pIdxInfo->needToFreeIdxStr ); 3690 return SQLITE_ERROR; 3691 } 3692 testcase( iTerm==nConstraint-1 ); 3693 testcase( j==0 ); 3694 testcase( j==pWC->nTerm-1 ); 3695 pTerm = &pWC->a[j]; 3696 pNew->prereq |= pTerm->prereqRight; 3697 assert( iTerm<pNew->nLSlot ); 3698 pNew->aLTerm[iTerm] = pTerm; 3699 if( iTerm>mxTerm ) mxTerm = iTerm; 3700 testcase( iTerm==15 ); 3701 testcase( iTerm==16 ); 3702 if( pUsage[i].omit ){ 3703 if( i<16 && ((1<<i)&mNoOmit)==0 ){ 3704 testcase( i!=iTerm ); 3705 pNew->u.vtab.omitMask |= 1<<iTerm; 3706 }else{ 3707 testcase( i!=iTerm ); 3708 } 3709 if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET ){ 3710 pNew->u.vtab.bOmitOffset = 1; 3711 } 3712 } 3713 if( SMASKBIT32(i) & pHidden->mHandleIn ){ 3714 pNew->u.vtab.mHandleIn |= MASKBIT32(iTerm); 3715 }else if( (pTerm->eOperator & WO_IN)!=0 ){ 3716 /* A virtual table that is constrained by an IN clause may not 3717 ** consume the ORDER BY clause because (1) the order of IN terms 3718 ** is not necessarily related to the order of output terms and 3719 ** (2) Multiple outputs from a single IN value will not merge 3720 ** together. */ 3721 pIdxInfo->orderByConsumed = 0; 3722 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; 3723 *pbIn = 1; assert( (mExclude & WO_IN)==0 ); 3724 } 3725 3726 assert( pbRetryLimit || !isLimitTerm(pTerm) ); 3727 if( isLimitTerm(pTerm) && *pbIn ){ 3728 /* If there is an IN(...) term handled as an == (separate call to 3729 ** xFilter for each value on the RHS of the IN) and a LIMIT or 3730 ** OFFSET term handled as well, the plan is unusable. Set output 3731 ** variable *pbRetryLimit to true to tell the caller to retry with 3732 ** LIMIT and OFFSET disabled. */ 3733 if( pIdxInfo->needToFreeIdxStr ){ 3734 sqlite3_free(pIdxInfo->idxStr); 3735 pIdxInfo->idxStr = 0; 3736 pIdxInfo->needToFreeIdxStr = 0; 3737 } 3738 *pbRetryLimit = 1; 3739 return SQLITE_OK; 3740 } 3741 } 3742 } 3743 3744 pNew->nLTerm = mxTerm+1; 3745 for(i=0; i<=mxTerm; i++){ 3746 if( pNew->aLTerm[i]==0 ){ 3747 /* The non-zero argvIdx values must be contiguous. Raise an 3748 ** error if they are not */ 3749 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3750 testcase( pIdxInfo->needToFreeIdxStr ); 3751 return SQLITE_ERROR; 3752 } 3753 } 3754 assert( pNew->nLTerm<=pNew->nLSlot ); 3755 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 3756 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 3757 pIdxInfo->needToFreeIdxStr = 0; 3758 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 3759 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 3760 pIdxInfo->nOrderBy : 0); 3761 pNew->rSetup = 0; 3762 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 3763 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 3764 3765 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated 3766 ** that the scan will visit at most one row. Clear it otherwise. */ 3767 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ 3768 pNew->wsFlags |= WHERE_ONEROW; 3769 }else{ 3770 pNew->wsFlags &= ~WHERE_ONEROW; 3771 } 3772 rc = whereLoopInsert(pBuilder, pNew); 3773 if( pNew->u.vtab.needFree ){ 3774 sqlite3_free(pNew->u.vtab.idxStr); 3775 pNew->u.vtab.needFree = 0; 3776 } 3777 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", 3778 *pbIn, (sqlite3_uint64)mPrereq, 3779 (sqlite3_uint64)(pNew->prereq & ~mPrereq))); 3780 3781 return rc; 3782 } 3783 3784 /* 3785 ** Return the collating sequence for a constraint passed into xBestIndex. 3786 ** 3787 ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex. 3788 ** This routine depends on there being a HiddenIndexInfo structure immediately 3789 ** following the sqlite3_index_info structure. 3790 ** 3791 ** Return a pointer to the collation name: 3792 ** 3793 ** 1. If there is an explicit COLLATE operator on the constaint, return it. 3794 ** 3795 ** 2. Else, if the column has an alternative collation, return that. 3796 ** 3797 ** 3. Otherwise, return "BINARY". 3798 */ 3799 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){ 3800 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3801 const char *zRet = 0; 3802 if( iCons>=0 && iCons<pIdxInfo->nConstraint ){ 3803 CollSeq *pC = 0; 3804 int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset; 3805 Expr *pX = pHidden->pWC->a[iTerm].pExpr; 3806 if( pX->pLeft ){ 3807 pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX); 3808 } 3809 zRet = (pC ? pC->zName : sqlite3StrBINARY); 3810 } 3811 return zRet; 3812 } 3813 3814 /* 3815 ** Return true if constraint iCons is really an IN(...) constraint, or 3816 ** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0) 3817 ** or clear (if bHandle==0) the flag to handle it using an iterator. 3818 */ 3819 int sqlite3_vtab_in(sqlite3_index_info *pIdxInfo, int iCons, int bHandle){ 3820 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3821 u32 m = SMASKBIT32(iCons); 3822 if( m & pHidden->mIn ){ 3823 if( bHandle==0 ){ 3824 pHidden->mHandleIn &= ~m; 3825 }else if( bHandle>0 ){ 3826 pHidden->mHandleIn |= m; 3827 } 3828 return 1; 3829 } 3830 return 0; 3831 } 3832 3833 /* 3834 ** This interface is callable from within the xBestIndex callback only. 3835 ** 3836 ** If possible, set (*ppVal) to point to an object containing the value 3837 ** on the right-hand-side of constraint iCons. 3838 */ 3839 int sqlite3_vtab_rhs_value( 3840 sqlite3_index_info *pIdxInfo, /* Copy of first argument to xBestIndex */ 3841 int iCons, /* Constraint for which RHS is wanted */ 3842 sqlite3_value **ppVal /* Write value extracted here */ 3843 ){ 3844 HiddenIndexInfo *pH = (HiddenIndexInfo*)&pIdxInfo[1]; 3845 sqlite3_value *pVal = 0; 3846 int rc = SQLITE_OK; 3847 if( iCons<0 || iCons>=pIdxInfo->nConstraint ){ 3848 rc = SQLITE_MISUSE; /* EV: R-30545-25046 */ 3849 }else{ 3850 if( pH->aRhs[iCons]==0 ){ 3851 WhereTerm *pTerm = &pH->pWC->a[pIdxInfo->aConstraint[iCons].iTermOffset]; 3852 rc = sqlite3ValueFromExpr( 3853 pH->pParse->db, pTerm->pExpr->pRight, ENC(pH->pParse->db), 3854 SQLITE_AFF_BLOB, &pH->aRhs[iCons] 3855 ); 3856 testcase( rc!=SQLITE_OK ); 3857 } 3858 pVal = pH->aRhs[iCons]; 3859 } 3860 *ppVal = pVal; 3861 3862 if( rc==SQLITE_OK && pVal==0 ){ /* IMP: R-19933-32160 */ 3863 rc = SQLITE_NOTFOUND; /* IMP: R-36424-56542 */ 3864 } 3865 3866 return rc; 3867 } 3868 3869 /* 3870 ** Return true if ORDER BY clause may be handled as DISTINCT. 3871 */ 3872 int sqlite3_vtab_distinct(sqlite3_index_info *pIdxInfo){ 3873 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3874 assert( pHidden->eDistinct>=0 && pHidden->eDistinct<=3 ); 3875 return pHidden->eDistinct; 3876 } 3877 3878 #if (defined(SQLITE_ENABLE_DBPAGE_VTAB) || defined(SQLITE_TEST)) \ 3879 && !defined(SQLITE_OMIT_VIRTUALTABLE) 3880 /* 3881 ** Cause the prepared statement that is associated with a call to 3882 ** xBestIndex to potentiall use all schemas. If the statement being 3883 ** prepared is read-only, then just start read transactions on all 3884 ** schemas. But if this is a write operation, start writes on all 3885 ** schemas. 3886 ** 3887 ** This is used by the (built-in) sqlite_dbpage virtual table. 3888 */ 3889 void sqlite3VtabUsesAllSchemas(sqlite3_index_info *pIdxInfo){ 3890 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3891 Parse *pParse = pHidden->pParse; 3892 int nDb = pParse->db->nDb; 3893 int i; 3894 for(i=0; i<nDb; i++){ 3895 sqlite3CodeVerifySchema(pParse, i); 3896 } 3897 if( pParse->writeMask ){ 3898 for(i=0; i<nDb; i++){ 3899 sqlite3BeginWriteOperation(pParse, 0, i); 3900 } 3901 } 3902 } 3903 #endif 3904 3905 /* 3906 ** Add all WhereLoop objects for a table of the join identified by 3907 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 3908 ** 3909 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and 3910 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause 3911 ** entries that occur before the virtual table in the FROM clause and are 3912 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the 3913 ** mUnusable mask contains all FROM clause entries that occur after the 3914 ** virtual table and are separated from it by at least one LEFT or 3915 ** CROSS JOIN. 3916 ** 3917 ** For example, if the query were: 3918 ** 3919 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; 3920 ** 3921 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). 3922 ** 3923 ** All the tables in mPrereq must be scanned before the current virtual 3924 ** table. So any terms for which all prerequisites are satisfied by 3925 ** mPrereq may be specified as "usable" in all calls to xBestIndex. 3926 ** Conversely, all tables in mUnusable must be scanned after the current 3927 ** virtual table, so any terms for which the prerequisites overlap with 3928 ** mUnusable should always be configured as "not-usable" for xBestIndex. 3929 */ 3930 static int whereLoopAddVirtual( 3931 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3932 Bitmask mPrereq, /* Tables that must be scanned before this one */ 3933 Bitmask mUnusable /* Tables that must be scanned after this one */ 3934 ){ 3935 int rc = SQLITE_OK; /* Return code */ 3936 WhereInfo *pWInfo; /* WHERE analysis context */ 3937 Parse *pParse; /* The parsing context */ 3938 WhereClause *pWC; /* The WHERE clause */ 3939 SrcItem *pSrc; /* The FROM clause term to search */ 3940 sqlite3_index_info *p; /* Object to pass to xBestIndex() */ 3941 int nConstraint; /* Number of constraints in p */ 3942 int bIn; /* True if plan uses IN(...) operator */ 3943 WhereLoop *pNew; 3944 Bitmask mBest; /* Tables used by best possible plan */ 3945 u16 mNoOmit; 3946 int bRetry = 0; /* True to retry with LIMIT/OFFSET disabled */ 3947 3948 assert( (mPrereq & mUnusable)==0 ); 3949 pWInfo = pBuilder->pWInfo; 3950 pParse = pWInfo->pParse; 3951 pWC = pBuilder->pWC; 3952 pNew = pBuilder->pNew; 3953 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 3954 assert( IsVirtual(pSrc->pTab) ); 3955 p = allocateIndexInfo(pWInfo, pWC, mUnusable, pSrc, &mNoOmit); 3956 if( p==0 ) return SQLITE_NOMEM_BKPT; 3957 pNew->rSetup = 0; 3958 pNew->wsFlags = WHERE_VIRTUALTABLE; 3959 pNew->nLTerm = 0; 3960 pNew->u.vtab.needFree = 0; 3961 nConstraint = p->nConstraint; 3962 if( whereLoopResize(pParse->db, pNew, nConstraint) ){ 3963 freeIndexInfo(pParse->db, p); 3964 return SQLITE_NOMEM_BKPT; 3965 } 3966 3967 /* First call xBestIndex() with all constraints usable. */ 3968 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName)); 3969 WHERETRACE(0x40, (" VirtualOne: all usable\n")); 3970 rc = whereLoopAddVirtualOne( 3971 pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, &bRetry 3972 ); 3973 if( bRetry ){ 3974 assert( rc==SQLITE_OK ); 3975 rc = whereLoopAddVirtualOne( 3976 pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, 0 3977 ); 3978 } 3979 3980 /* If the call to xBestIndex() with all terms enabled produced a plan 3981 ** that does not require any source tables (IOW: a plan with mBest==0) 3982 ** and does not use an IN(...) operator, then there is no point in making 3983 ** any further calls to xBestIndex() since they will all return the same 3984 ** result (if the xBestIndex() implementation is sane). */ 3985 if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){ 3986 int seenZero = 0; /* True if a plan with no prereqs seen */ 3987 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ 3988 Bitmask mPrev = 0; 3989 Bitmask mBestNoIn = 0; 3990 3991 /* If the plan produced by the earlier call uses an IN(...) term, call 3992 ** xBestIndex again, this time with IN(...) terms disabled. */ 3993 if( bIn ){ 3994 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n")); 3995 rc = whereLoopAddVirtualOne( 3996 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn, 0); 3997 assert( bIn==0 ); 3998 mBestNoIn = pNew->prereq & ~mPrereq; 3999 if( mBestNoIn==0 ){ 4000 seenZero = 1; 4001 seenZeroNoIN = 1; 4002 } 4003 } 4004 4005 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) 4006 ** in the set of terms that apply to the current virtual table. */ 4007 while( rc==SQLITE_OK ){ 4008 int i; 4009 Bitmask mNext = ALLBITS; 4010 assert( mNext>0 ); 4011 for(i=0; i<nConstraint; i++){ 4012 Bitmask mThis = ( 4013 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq 4014 ); 4015 if( mThis>mPrev && mThis<mNext ) mNext = mThis; 4016 } 4017 mPrev = mNext; 4018 if( mNext==ALLBITS ) break; 4019 if( mNext==mBest || mNext==mBestNoIn ) continue; 4020 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n", 4021 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext)); 4022 rc = whereLoopAddVirtualOne( 4023 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn, 0); 4024 if( pNew->prereq==mPrereq ){ 4025 seenZero = 1; 4026 if( bIn==0 ) seenZeroNoIN = 1; 4027 } 4028 } 4029 4030 /* If the calls to xBestIndex() in the above loop did not find a plan 4031 ** that requires no source tables at all (i.e. one guaranteed to be 4032 ** usable), make a call here with all source tables disabled */ 4033 if( rc==SQLITE_OK && seenZero==0 ){ 4034 WHERETRACE(0x40, (" VirtualOne: all disabled\n")); 4035 rc = whereLoopAddVirtualOne( 4036 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn, 0); 4037 if( bIn==0 ) seenZeroNoIN = 1; 4038 } 4039 4040 /* If the calls to xBestIndex() have so far failed to find a plan 4041 ** that requires no source tables at all and does not use an IN(...) 4042 ** operator, make a final call to obtain one here. */ 4043 if( rc==SQLITE_OK && seenZeroNoIN==0 ){ 4044 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n")); 4045 rc = whereLoopAddVirtualOne( 4046 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn, 0); 4047 } 4048 } 4049 4050 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr); 4051 freeIndexInfo(pParse->db, p); 4052 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc)); 4053 return rc; 4054 } 4055 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4056 4057 /* 4058 ** Add WhereLoop entries to handle OR terms. This works for either 4059 ** btrees or virtual tables. 4060 */ 4061 static int whereLoopAddOr( 4062 WhereLoopBuilder *pBuilder, 4063 Bitmask mPrereq, 4064 Bitmask mUnusable 4065 ){ 4066 WhereInfo *pWInfo = pBuilder->pWInfo; 4067 WhereClause *pWC; 4068 WhereLoop *pNew; 4069 WhereTerm *pTerm, *pWCEnd; 4070 int rc = SQLITE_OK; 4071 int iCur; 4072 WhereClause tempWC; 4073 WhereLoopBuilder sSubBuild; 4074 WhereOrSet sSum, sCur; 4075 SrcItem *pItem; 4076 4077 pWC = pBuilder->pWC; 4078 pWCEnd = pWC->a + pWC->nTerm; 4079 pNew = pBuilder->pNew; 4080 memset(&sSum, 0, sizeof(sSum)); 4081 pItem = pWInfo->pTabList->a + pNew->iTab; 4082 iCur = pItem->iCursor; 4083 4084 /* The multi-index OR optimization does not work for RIGHT and FULL JOIN */ 4085 if( pItem->fg.jointype & JT_RIGHT ) return SQLITE_OK; 4086 4087 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 4088 if( (pTerm->eOperator & WO_OR)!=0 4089 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 4090 ){ 4091 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 4092 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 4093 WhereTerm *pOrTerm; 4094 int once = 1; 4095 int i, j; 4096 4097 sSubBuild = *pBuilder; 4098 sSubBuild.pOrSet = &sCur; 4099 4100 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); 4101 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 4102 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 4103 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 4104 }else if( pOrTerm->leftCursor==iCur ){ 4105 tempWC.pWInfo = pWC->pWInfo; 4106 tempWC.pOuter = pWC; 4107 tempWC.op = TK_AND; 4108 tempWC.nTerm = 1; 4109 tempWC.nBase = 1; 4110 tempWC.a = pOrTerm; 4111 sSubBuild.pWC = &tempWC; 4112 }else{ 4113 continue; 4114 } 4115 sCur.n = 0; 4116 #ifdef WHERETRACE_ENABLED 4117 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 4118 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 4119 if( sqlite3WhereTrace & 0x400 ){ 4120 sqlite3WhereClausePrint(sSubBuild.pWC); 4121 } 4122 #endif 4123 #ifndef SQLITE_OMIT_VIRTUALTABLE 4124 if( IsVirtual(pItem->pTab) ){ 4125 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); 4126 }else 4127 #endif 4128 { 4129 rc = whereLoopAddBtree(&sSubBuild, mPrereq); 4130 } 4131 if( rc==SQLITE_OK ){ 4132 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); 4133 } 4134 assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0 4135 || rc==SQLITE_NOMEM ); 4136 testcase( rc==SQLITE_NOMEM && sCur.n>0 ); 4137 testcase( rc==SQLITE_DONE ); 4138 if( sCur.n==0 ){ 4139 sSum.n = 0; 4140 break; 4141 }else if( once ){ 4142 whereOrMove(&sSum, &sCur); 4143 once = 0; 4144 }else{ 4145 WhereOrSet sPrev; 4146 whereOrMove(&sPrev, &sSum); 4147 sSum.n = 0; 4148 for(i=0; i<sPrev.n; i++){ 4149 for(j=0; j<sCur.n; j++){ 4150 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 4151 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 4152 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 4153 } 4154 } 4155 } 4156 } 4157 pNew->nLTerm = 1; 4158 pNew->aLTerm[0] = pTerm; 4159 pNew->wsFlags = WHERE_MULTI_OR; 4160 pNew->rSetup = 0; 4161 pNew->iSortIdx = 0; 4162 memset(&pNew->u, 0, sizeof(pNew->u)); 4163 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 4164 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 4165 ** of all sub-scans required by the OR-scan. However, due to rounding 4166 ** errors, it may be that the cost of the OR-scan is equal to its 4167 ** most expensive sub-scan. Add the smallest possible penalty 4168 ** (equivalent to multiplying the cost by 1.07) to ensure that 4169 ** this does not happen. Otherwise, for WHERE clauses such as the 4170 ** following where there is an index on "y": 4171 ** 4172 ** WHERE likelihood(x=?, 0.99) OR y=? 4173 ** 4174 ** the planner may elect to "OR" together a full-table scan and an 4175 ** index lookup. And other similarly odd results. */ 4176 pNew->rRun = sSum.a[i].rRun + 1; 4177 pNew->nOut = sSum.a[i].nOut; 4178 pNew->prereq = sSum.a[i].prereq; 4179 rc = whereLoopInsert(pBuilder, pNew); 4180 } 4181 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); 4182 } 4183 } 4184 return rc; 4185 } 4186 4187 /* 4188 ** Add all WhereLoop objects for all tables 4189 */ 4190 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 4191 WhereInfo *pWInfo = pBuilder->pWInfo; 4192 Bitmask mPrereq = 0; 4193 Bitmask mPrior = 0; 4194 int iTab; 4195 SrcList *pTabList = pWInfo->pTabList; 4196 SrcItem *pItem; 4197 SrcItem *pEnd = &pTabList->a[pWInfo->nLevel]; 4198 sqlite3 *db = pWInfo->pParse->db; 4199 int rc = SQLITE_OK; 4200 int bFirstPastRJ = 0; 4201 int hasRightJoin = 0; 4202 WhereLoop *pNew; 4203 4204 4205 /* Loop over the tables in the join, from left to right */ 4206 pNew = pBuilder->pNew; 4207 4208 /* Verify that pNew has already been initialized */ 4209 assert( pNew->nLTerm==0 ); 4210 assert( pNew->wsFlags==0 ); 4211 assert( pNew->nLSlot>=ArraySize(pNew->aLTermSpace) ); 4212 assert( pNew->aLTerm!=0 ); 4213 4214 pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT; 4215 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ 4216 Bitmask mUnusable = 0; 4217 pNew->iTab = iTab; 4218 pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR; 4219 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); 4220 if( bFirstPastRJ 4221 || (pItem->fg.jointype & (JT_OUTER|JT_CROSS|JT_LTORJ))!=0 4222 ){ 4223 /* Add prerequisites to prevent reordering of FROM clause terms 4224 ** across CROSS joins and outer joins. The bFirstPastRJ boolean 4225 ** prevents the right operand of a RIGHT JOIN from being swapped with 4226 ** other elements even further to the right. 4227 ** 4228 ** The JT_LTORJ case and the hasRightJoin flag work together to 4229 ** prevent FROM-clause terms from moving from the right side of 4230 ** a LEFT JOIN over to the left side of that join if the LEFT JOIN 4231 ** is itself on the left side of a RIGHT JOIN. 4232 */ 4233 if( pItem->fg.jointype & JT_LTORJ ) hasRightJoin = 1; 4234 mPrereq |= mPrior; 4235 bFirstPastRJ = (pItem->fg.jointype & JT_RIGHT)!=0; 4236 }else if( !hasRightJoin ){ 4237 mPrereq = 0; 4238 } 4239 #ifndef SQLITE_OMIT_VIRTUALTABLE 4240 if( IsVirtual(pItem->pTab) ){ 4241 SrcItem *p; 4242 for(p=&pItem[1]; p<pEnd; p++){ 4243 if( mUnusable || (p->fg.jointype & (JT_OUTER|JT_CROSS)) ){ 4244 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); 4245 } 4246 } 4247 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); 4248 }else 4249 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4250 { 4251 rc = whereLoopAddBtree(pBuilder, mPrereq); 4252 } 4253 if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){ 4254 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); 4255 } 4256 mPrior |= pNew->maskSelf; 4257 if( rc || db->mallocFailed ){ 4258 if( rc==SQLITE_DONE ){ 4259 /* We hit the query planner search limit set by iPlanLimit */ 4260 sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search"); 4261 rc = SQLITE_OK; 4262 }else{ 4263 break; 4264 } 4265 } 4266 } 4267 4268 whereLoopClear(db, pNew); 4269 return rc; 4270 } 4271 4272 /* 4273 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th 4274 ** parameters) to see if it outputs rows in the requested ORDER BY 4275 ** (or GROUP BY) without requiring a separate sort operation. Return N: 4276 ** 4277 ** N>0: N terms of the ORDER BY clause are satisfied 4278 ** N==0: No terms of the ORDER BY clause are satisfied 4279 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 4280 ** 4281 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 4282 ** strict. With GROUP BY and DISTINCT the only requirement is that 4283 ** equivalent rows appear immediately adjacent to one another. GROUP BY 4284 ** and DISTINCT do not require rows to appear in any particular order as long 4285 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 4286 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 4287 ** pOrderBy terms must be matched in strict left-to-right order. 4288 */ 4289 static i8 wherePathSatisfiesOrderBy( 4290 WhereInfo *pWInfo, /* The WHERE clause */ 4291 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 4292 WherePath *pPath, /* The WherePath to check */ 4293 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */ 4294 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 4295 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 4296 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 4297 ){ 4298 u8 revSet; /* True if rev is known */ 4299 u8 rev; /* Composite sort order */ 4300 u8 revIdx; /* Index sort order */ 4301 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 4302 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 4303 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 4304 u16 eqOpMask; /* Allowed equality operators */ 4305 u16 nKeyCol; /* Number of key columns in pIndex */ 4306 u16 nColumn; /* Total number of ordered columns in the index */ 4307 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 4308 int iLoop; /* Index of WhereLoop in pPath being processed */ 4309 int i, j; /* Loop counters */ 4310 int iCur; /* Cursor number for current WhereLoop */ 4311 int iColumn; /* A column number within table iCur */ 4312 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 4313 WhereTerm *pTerm; /* A single term of the WHERE clause */ 4314 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 4315 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 4316 Index *pIndex; /* The index associated with pLoop */ 4317 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 4318 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 4319 Bitmask obDone; /* Mask of all ORDER BY terms */ 4320 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 4321 Bitmask ready; /* Mask of inner loops */ 4322 4323 /* 4324 ** We say the WhereLoop is "one-row" if it generates no more than one 4325 ** row of output. A WhereLoop is one-row if all of the following are true: 4326 ** (a) All index columns match with WHERE_COLUMN_EQ. 4327 ** (b) The index is unique 4328 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 4329 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 4330 ** 4331 ** We say the WhereLoop is "order-distinct" if the set of columns from 4332 ** that WhereLoop that are in the ORDER BY clause are different for every 4333 ** row of the WhereLoop. Every one-row WhereLoop is automatically 4334 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 4335 ** is not order-distinct. To be order-distinct is not quite the same as being 4336 ** UNIQUE since a UNIQUE column or index can have multiple rows that 4337 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 4338 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 4339 ** 4340 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 4341 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 4342 ** automatically order-distinct. 4343 */ 4344 4345 assert( pOrderBy!=0 ); 4346 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 4347 4348 nOrderBy = pOrderBy->nExpr; 4349 testcase( nOrderBy==BMS-1 ); 4350 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 4351 isOrderDistinct = 1; 4352 obDone = MASKBIT(nOrderBy)-1; 4353 orderDistinctMask = 0; 4354 ready = 0; 4355 eqOpMask = WO_EQ | WO_IS | WO_ISNULL; 4356 if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){ 4357 eqOpMask |= WO_IN; 4358 } 4359 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 4360 if( iLoop>0 ) ready |= pLoop->maskSelf; 4361 if( iLoop<nLoop ){ 4362 pLoop = pPath->aLoop[iLoop]; 4363 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue; 4364 }else{ 4365 pLoop = pLast; 4366 } 4367 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 4368 if( pLoop->u.vtab.isOrdered 4369 && ((wctrlFlags&(WHERE_DISTINCTBY|WHERE_SORTBYGROUP))!=WHERE_DISTINCTBY) 4370 ){ 4371 obSat = obDone; 4372 } 4373 break; 4374 }else if( wctrlFlags & WHERE_DISTINCTBY ){ 4375 pLoop->u.btree.nDistinctCol = 0; 4376 } 4377 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 4378 4379 /* Mark off any ORDER BY term X that is a column in the table of 4380 ** the current loop for which there is term in the WHERE 4381 ** clause of the form X IS NULL or X=? that reference only outer 4382 ** loops. 4383 */ 4384 for(i=0; i<nOrderBy; i++){ 4385 if( MASKBIT(i) & obSat ) continue; 4386 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 4387 if( NEVER(pOBExpr==0) ) continue; 4388 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue; 4389 if( pOBExpr->iTable!=iCur ) continue; 4390 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 4391 ~ready, eqOpMask, 0); 4392 if( pTerm==0 ) continue; 4393 if( pTerm->eOperator==WO_IN ){ 4394 /* IN terms are only valid for sorting in the ORDER BY LIMIT 4395 ** optimization, and then only if they are actually used 4396 ** by the query plan */ 4397 assert( wctrlFlags & 4398 (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ); 4399 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){} 4400 if( j>=pLoop->nLTerm ) continue; 4401 } 4402 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ 4403 Parse *pParse = pWInfo->pParse; 4404 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr); 4405 CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr); 4406 assert( pColl1 ); 4407 if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){ 4408 continue; 4409 } 4410 testcase( pTerm->pExpr->op==TK_IS ); 4411 } 4412 obSat |= MASKBIT(i); 4413 } 4414 4415 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 4416 if( pLoop->wsFlags & WHERE_IPK ){ 4417 pIndex = 0; 4418 nKeyCol = 0; 4419 nColumn = 1; 4420 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 4421 return 0; 4422 }else{ 4423 nKeyCol = pIndex->nKeyCol; 4424 nColumn = pIndex->nColumn; 4425 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 4426 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID 4427 || !HasRowid(pIndex->pTable)); 4428 /* All relevant terms of the index must also be non-NULL in order 4429 ** for isOrderDistinct to be true. So the isOrderDistint value 4430 ** computed here might be a false positive. Corrections will be 4431 ** made at tag-20210426-1 below */ 4432 isOrderDistinct = IsUniqueIndex(pIndex) 4433 && (pLoop->wsFlags & WHERE_SKIPSCAN)==0; 4434 } 4435 4436 /* Loop through all columns of the index and deal with the ones 4437 ** that are not constrained by == or IN. 4438 */ 4439 rev = revSet = 0; 4440 distinctColumns = 0; 4441 for(j=0; j<nColumn; j++){ 4442 u8 bOnce = 1; /* True to run the ORDER BY search loop */ 4443 4444 assert( j>=pLoop->u.btree.nEq 4445 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip) 4446 ); 4447 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){ 4448 u16 eOp = pLoop->aLTerm[j]->eOperator; 4449 4450 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when 4451 ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL 4452 ** terms imply that the index is not UNIQUE NOT NULL in which case 4453 ** the loop need to be marked as not order-distinct because it can 4454 ** have repeated NULL rows. 4455 ** 4456 ** If the current term is a column of an ((?,?) IN (SELECT...)) 4457 ** expression for which the SELECT returns more than one column, 4458 ** check that it is the only column used by this loop. Otherwise, 4459 ** if it is one of two or more, none of the columns can be 4460 ** considered to match an ORDER BY term. 4461 */ 4462 if( (eOp & eqOpMask)!=0 ){ 4463 if( eOp & (WO_ISNULL|WO_IS) ){ 4464 testcase( eOp & WO_ISNULL ); 4465 testcase( eOp & WO_IS ); 4466 testcase( isOrderDistinct ); 4467 isOrderDistinct = 0; 4468 } 4469 continue; 4470 }else if( ALWAYS(eOp & WO_IN) ){ 4471 /* ALWAYS() justification: eOp is an equality operator due to the 4472 ** j<pLoop->u.btree.nEq constraint above. Any equality other 4473 ** than WO_IN is captured by the previous "if". So this one 4474 ** always has to be WO_IN. */ 4475 Expr *pX = pLoop->aLTerm[j]->pExpr; 4476 for(i=j+1; i<pLoop->u.btree.nEq; i++){ 4477 if( pLoop->aLTerm[i]->pExpr==pX ){ 4478 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) ); 4479 bOnce = 0; 4480 break; 4481 } 4482 } 4483 } 4484 } 4485 4486 /* Get the column number in the table (iColumn) and sort order 4487 ** (revIdx) for the j-th column of the index. 4488 */ 4489 if( pIndex ){ 4490 iColumn = pIndex->aiColumn[j]; 4491 revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC; 4492 if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID; 4493 }else{ 4494 iColumn = XN_ROWID; 4495 revIdx = 0; 4496 } 4497 4498 /* An unconstrained column that might be NULL means that this 4499 ** WhereLoop is not well-ordered. tag-20210426-1 4500 */ 4501 if( isOrderDistinct ){ 4502 if( iColumn>=0 4503 && j>=pLoop->u.btree.nEq 4504 && pIndex->pTable->aCol[iColumn].notNull==0 4505 ){ 4506 isOrderDistinct = 0; 4507 } 4508 if( iColumn==XN_EXPR ){ 4509 isOrderDistinct = 0; 4510 } 4511 } 4512 4513 /* Find the ORDER BY term that corresponds to the j-th column 4514 ** of the index and mark that ORDER BY term off 4515 */ 4516 isMatch = 0; 4517 for(i=0; bOnce && i<nOrderBy; i++){ 4518 if( MASKBIT(i) & obSat ) continue; 4519 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 4520 testcase( wctrlFlags & WHERE_GROUPBY ); 4521 testcase( wctrlFlags & WHERE_DISTINCTBY ); 4522 if( NEVER(pOBExpr==0) ) continue; 4523 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 4524 if( iColumn>=XN_ROWID ){ 4525 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue; 4526 if( pOBExpr->iTable!=iCur ) continue; 4527 if( pOBExpr->iColumn!=iColumn ) continue; 4528 }else{ 4529 Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr; 4530 if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){ 4531 continue; 4532 } 4533 } 4534 if( iColumn!=XN_ROWID ){ 4535 pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 4536 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 4537 } 4538 if( wctrlFlags & WHERE_DISTINCTBY ){ 4539 pLoop->u.btree.nDistinctCol = j+1; 4540 } 4541 isMatch = 1; 4542 break; 4543 } 4544 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 4545 /* Make sure the sort order is compatible in an ORDER BY clause. 4546 ** Sort order is irrelevant for a GROUP BY clause. */ 4547 if( revSet ){ 4548 if( (rev ^ revIdx) 4549 != (pOrderBy->a[i].fg.sortFlags&KEYINFO_ORDER_DESC) 4550 ){ 4551 isMatch = 0; 4552 } 4553 }else{ 4554 rev = revIdx ^ (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC); 4555 if( rev ) *pRevMask |= MASKBIT(iLoop); 4556 revSet = 1; 4557 } 4558 } 4559 if( isMatch && (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL) ){ 4560 if( j==pLoop->u.btree.nEq ){ 4561 pLoop->wsFlags |= WHERE_BIGNULL_SORT; 4562 }else{ 4563 isMatch = 0; 4564 } 4565 } 4566 if( isMatch ){ 4567 if( iColumn==XN_ROWID ){ 4568 testcase( distinctColumns==0 ); 4569 distinctColumns = 1; 4570 } 4571 obSat |= MASKBIT(i); 4572 }else{ 4573 /* No match found */ 4574 if( j==0 || j<nKeyCol ){ 4575 testcase( isOrderDistinct!=0 ); 4576 isOrderDistinct = 0; 4577 } 4578 break; 4579 } 4580 } /* end Loop over all index columns */ 4581 if( distinctColumns ){ 4582 testcase( isOrderDistinct==0 ); 4583 isOrderDistinct = 1; 4584 } 4585 } /* end-if not one-row */ 4586 4587 /* Mark off any other ORDER BY terms that reference pLoop */ 4588 if( isOrderDistinct ){ 4589 orderDistinctMask |= pLoop->maskSelf; 4590 for(i=0; i<nOrderBy; i++){ 4591 Expr *p; 4592 Bitmask mTerm; 4593 if( MASKBIT(i) & obSat ) continue; 4594 p = pOrderBy->a[i].pExpr; 4595 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); 4596 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; 4597 if( (mTerm&~orderDistinctMask)==0 ){ 4598 obSat |= MASKBIT(i); 4599 } 4600 } 4601 } 4602 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 4603 if( obSat==obDone ) return (i8)nOrderBy; 4604 if( !isOrderDistinct ){ 4605 for(i=nOrderBy-1; i>0; i--){ 4606 Bitmask m = ALWAYS(i<BMS) ? MASKBIT(i) - 1 : 0; 4607 if( (obSat&m)==m ) return i; 4608 } 4609 return 0; 4610 } 4611 return -1; 4612 } 4613 4614 4615 /* 4616 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 4617 ** the planner assumes that the specified pOrderBy list is actually a GROUP 4618 ** BY clause - and so any order that groups rows as required satisfies the 4619 ** request. 4620 ** 4621 ** Normally, in this case it is not possible for the caller to determine 4622 ** whether or not the rows are really being delivered in sorted order, or 4623 ** just in some other order that provides the required grouping. However, 4624 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 4625 ** this function may be called on the returned WhereInfo object. It returns 4626 ** true if the rows really will be sorted in the specified order, or false 4627 ** otherwise. 4628 ** 4629 ** For example, assuming: 4630 ** 4631 ** CREATE INDEX i1 ON t1(x, Y); 4632 ** 4633 ** then 4634 ** 4635 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 4636 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 4637 */ 4638 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 4639 assert( pWInfo->wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY) ); 4640 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 4641 return pWInfo->sorted; 4642 } 4643 4644 #ifdef WHERETRACE_ENABLED 4645 /* For debugging use only: */ 4646 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 4647 static char zName[65]; 4648 int i; 4649 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 4650 if( pLast ) zName[i++] = pLast->cId; 4651 zName[i] = 0; 4652 return zName; 4653 } 4654 #endif 4655 4656 /* 4657 ** Return the cost of sorting nRow rows, assuming that the keys have 4658 ** nOrderby columns and that the first nSorted columns are already in 4659 ** order. 4660 */ 4661 static LogEst whereSortingCost( 4662 WhereInfo *pWInfo, 4663 LogEst nRow, 4664 int nOrderBy, 4665 int nSorted 4666 ){ 4667 /* TUNING: Estimated cost of a full external sort, where N is 4668 ** the number of rows to sort is: 4669 ** 4670 ** cost = (3.0 * N * log(N)). 4671 ** 4672 ** Or, if the order-by clause has X terms but only the last Y 4673 ** terms are out of order, then block-sorting will reduce the 4674 ** sorting cost to: 4675 ** 4676 ** cost = (3.0 * N * log(N)) * (Y/X) 4677 ** 4678 ** The (Y/X) term is implemented using stack variable rScale 4679 ** below. 4680 */ 4681 LogEst rScale, rSortCost; 4682 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); 4683 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 4684 rSortCost = nRow + rScale + 16; 4685 4686 /* Multiple by log(M) where M is the number of output rows. 4687 ** Use the LIMIT for M if it is smaller. Or if this sort is for 4688 ** a DISTINCT operator, M will be the number of distinct output 4689 ** rows, so fudge it downwards a bit. 4690 */ 4691 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){ 4692 nRow = pWInfo->iLimit; 4693 }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){ 4694 /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT 4695 ** reduces the number of output rows by a factor of 2 */ 4696 if( nRow>10 ){ nRow -= 10; assert( 10==sqlite3LogEst(2) ); } 4697 } 4698 rSortCost += estLog(nRow); 4699 return rSortCost; 4700 } 4701 4702 /* 4703 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 4704 ** attempts to find the lowest cost path that visits each WhereLoop 4705 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 4706 ** 4707 ** Assume that the total number of output rows that will need to be sorted 4708 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 4709 ** costs if nRowEst==0. 4710 ** 4711 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 4712 ** error occurs. 4713 */ 4714 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 4715 int mxChoice; /* Maximum number of simultaneous paths tracked */ 4716 int nLoop; /* Number of terms in the join */ 4717 Parse *pParse; /* Parsing context */ 4718 sqlite3 *db; /* The database connection */ 4719 int iLoop; /* Loop counter over the terms of the join */ 4720 int ii, jj; /* Loop counters */ 4721 int mxI = 0; /* Index of next entry to replace */ 4722 int nOrderBy; /* Number of ORDER BY clause terms */ 4723 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 4724 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 4725 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 4726 WherePath *aFrom; /* All nFrom paths at the previous level */ 4727 WherePath *aTo; /* The nTo best paths at the current level */ 4728 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 4729 WherePath *pTo; /* An element of aTo[] that we are working on */ 4730 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 4731 WhereLoop **pX; /* Used to divy up the pSpace memory */ 4732 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 4733 char *pSpace; /* Temporary memory used by this routine */ 4734 int nSpace; /* Bytes of space allocated at pSpace */ 4735 4736 pParse = pWInfo->pParse; 4737 db = pParse->db; 4738 nLoop = pWInfo->nLevel; 4739 /* TUNING: For simple queries, only the best path is tracked. 4740 ** For 2-way joins, the 5 best paths are followed. 4741 ** For joins of 3 or more tables, track the 10 best paths */ 4742 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 4743 assert( nLoop<=pWInfo->pTabList->nSrc ); 4744 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); 4745 4746 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 4747 ** case the purpose of this call is to estimate the number of rows returned 4748 ** by the overall query. Once this estimate has been obtained, the caller 4749 ** will invoke this function a second time, passing the estimate as the 4750 ** nRowEst parameter. */ 4751 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 4752 nOrderBy = 0; 4753 }else{ 4754 nOrderBy = pWInfo->pOrderBy->nExpr; 4755 } 4756 4757 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 4758 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 4759 nSpace += sizeof(LogEst) * nOrderBy; 4760 pSpace = sqlite3DbMallocRawNN(db, nSpace); 4761 if( pSpace==0 ) return SQLITE_NOMEM_BKPT; 4762 aTo = (WherePath*)pSpace; 4763 aFrom = aTo+mxChoice; 4764 memset(aFrom, 0, sizeof(aFrom[0])); 4765 pX = (WhereLoop**)(aFrom+mxChoice); 4766 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 4767 pFrom->aLoop = pX; 4768 } 4769 if( nOrderBy ){ 4770 /* If there is an ORDER BY clause and it is not being ignored, set up 4771 ** space for the aSortCost[] array. Each element of the aSortCost array 4772 ** is either zero - meaning it has not yet been initialized - or the 4773 ** cost of sorting nRowEst rows of data where the first X terms of 4774 ** the ORDER BY clause are already in order, where X is the array 4775 ** index. */ 4776 aSortCost = (LogEst*)pX; 4777 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 4778 } 4779 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 4780 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 4781 4782 /* Seed the search with a single WherePath containing zero WhereLoops. 4783 ** 4784 ** TUNING: Do not let the number of iterations go above 28. If the cost 4785 ** of computing an automatic index is not paid back within the first 28 4786 ** rows, then do not use the automatic index. */ 4787 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); 4788 nFrom = 1; 4789 assert( aFrom[0].isOrdered==0 ); 4790 if( nOrderBy ){ 4791 /* If nLoop is zero, then there are no FROM terms in the query. Since 4792 ** in this case the query may return a maximum of one row, the results 4793 ** are already in the requested order. Set isOrdered to nOrderBy to 4794 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 4795 ** -1, indicating that the result set may or may not be ordered, 4796 ** depending on the loops added to the current plan. */ 4797 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 4798 } 4799 4800 /* Compute successively longer WherePaths using the previous generation 4801 ** of WherePaths as the basis for the next. Keep track of the mxChoice 4802 ** best paths at each generation */ 4803 for(iLoop=0; iLoop<nLoop; iLoop++){ 4804 nTo = 0; 4805 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 4806 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 4807 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 4808 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 4809 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 4810 i8 isOrdered; /* isOrdered for (pFrom+pWLoop) */ 4811 Bitmask maskNew; /* Mask of src visited by (..) */ 4812 Bitmask revMask; /* Mask of rev-order loops for (..) */ 4813 4814 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 4815 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 4816 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){ 4817 /* Do not use an automatic index if the this loop is expected 4818 ** to run less than 1.25 times. It is tempting to also exclude 4819 ** automatic index usage on an outer loop, but sometimes an automatic 4820 ** index is useful in the outer loop of a correlated subquery. */ 4821 assert( 10==sqlite3LogEst(2) ); 4822 continue; 4823 } 4824 4825 /* At this point, pWLoop is a candidate to be the next loop. 4826 ** Compute its cost */ 4827 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 4828 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 4829 nOut = pFrom->nRow + pWLoop->nOut; 4830 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 4831 isOrdered = pFrom->isOrdered; 4832 if( isOrdered<0 ){ 4833 revMask = 0; 4834 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 4835 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 4836 iLoop, pWLoop, &revMask); 4837 }else{ 4838 revMask = pFrom->revLoop; 4839 } 4840 if( isOrdered>=0 && isOrdered<nOrderBy ){ 4841 if( aSortCost[isOrdered]==0 ){ 4842 aSortCost[isOrdered] = whereSortingCost( 4843 pWInfo, nRowEst, nOrderBy, isOrdered 4844 ); 4845 } 4846 /* TUNING: Add a small extra penalty (5) to sorting as an 4847 ** extra encouragment to the query planner to select a plan 4848 ** where the rows emerge in the correct order without any sorting 4849 ** required. */ 4850 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5; 4851 4852 WHERETRACE(0x002, 4853 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 4854 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 4855 rUnsorted, rCost)); 4856 }else{ 4857 rCost = rUnsorted; 4858 rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */ 4859 } 4860 4861 /* TUNING: A full-scan of a VIEW or subquery in the outer loop 4862 ** is not so bad. */ 4863 if( iLoop==0 && (pWLoop->wsFlags & WHERE_VIEWSCAN)!=0 ){ 4864 rCost += -10; 4865 nOut += -30; 4866 } 4867 4868 /* Check to see if pWLoop should be added to the set of 4869 ** mxChoice best-so-far paths. 4870 ** 4871 ** First look for an existing path among best-so-far paths 4872 ** that covers the same set of loops and has the same isOrdered 4873 ** setting as the current path candidate. 4874 ** 4875 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 4876 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 4877 ** of legal values for isOrdered, -1..64. 4878 */ 4879 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 4880 if( pTo->maskLoop==maskNew 4881 && ((pTo->isOrdered^isOrdered)&0x80)==0 4882 ){ 4883 testcase( jj==nTo-1 ); 4884 break; 4885 } 4886 } 4887 if( jj>=nTo ){ 4888 /* None of the existing best-so-far paths match the candidate. */ 4889 if( nTo>=mxChoice 4890 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 4891 ){ 4892 /* The current candidate is no better than any of the mxChoice 4893 ** paths currently in the best-so-far buffer. So discard 4894 ** this candidate as not viable. */ 4895 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4896 if( sqlite3WhereTrace&0x4 ){ 4897 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n", 4898 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4899 isOrdered>=0 ? isOrdered+'0' : '?'); 4900 } 4901 #endif 4902 continue; 4903 } 4904 /* If we reach this points it means that the new candidate path 4905 ** needs to be added to the set of best-so-far paths. */ 4906 if( nTo<mxChoice ){ 4907 /* Increase the size of the aTo set by one */ 4908 jj = nTo++; 4909 }else{ 4910 /* New path replaces the prior worst to keep count below mxChoice */ 4911 jj = mxI; 4912 } 4913 pTo = &aTo[jj]; 4914 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4915 if( sqlite3WhereTrace&0x4 ){ 4916 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n", 4917 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4918 isOrdered>=0 ? isOrdered+'0' : '?'); 4919 } 4920 #endif 4921 }else{ 4922 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 4923 ** same set of loops and has the same isOrdered setting as the 4924 ** candidate path. Check to see if the candidate should replace 4925 ** pTo or if the candidate should be skipped. 4926 ** 4927 ** The conditional is an expanded vector comparison equivalent to: 4928 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted) 4929 */ 4930 if( pTo->rCost<rCost 4931 || (pTo->rCost==rCost 4932 && (pTo->nRow<nOut 4933 || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted) 4934 ) 4935 ) 4936 ){ 4937 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4938 if( sqlite3WhereTrace&0x4 ){ 4939 sqlite3DebugPrintf( 4940 "Skip %s cost=%-3d,%3d,%3d order=%c", 4941 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4942 isOrdered>=0 ? isOrdered+'0' : '?'); 4943 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n", 4944 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4945 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4946 } 4947 #endif 4948 /* Discard the candidate path from further consideration */ 4949 testcase( pTo->rCost==rCost ); 4950 continue; 4951 } 4952 testcase( pTo->rCost==rCost+1 ); 4953 /* Control reaches here if the candidate path is better than the 4954 ** pTo path. Replace pTo with the candidate. */ 4955 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4956 if( sqlite3WhereTrace&0x4 ){ 4957 sqlite3DebugPrintf( 4958 "Update %s cost=%-3d,%3d,%3d order=%c", 4959 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4960 isOrdered>=0 ? isOrdered+'0' : '?'); 4961 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n", 4962 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4963 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4964 } 4965 #endif 4966 } 4967 /* pWLoop is a winner. Add it to the set of best so far */ 4968 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 4969 pTo->revLoop = revMask; 4970 pTo->nRow = nOut; 4971 pTo->rCost = rCost; 4972 pTo->rUnsorted = rUnsorted; 4973 pTo->isOrdered = isOrdered; 4974 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 4975 pTo->aLoop[iLoop] = pWLoop; 4976 if( nTo>=mxChoice ){ 4977 mxI = 0; 4978 mxCost = aTo[0].rCost; 4979 mxUnsorted = aTo[0].nRow; 4980 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 4981 if( pTo->rCost>mxCost 4982 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 4983 ){ 4984 mxCost = pTo->rCost; 4985 mxUnsorted = pTo->rUnsorted; 4986 mxI = jj; 4987 } 4988 } 4989 } 4990 } 4991 } 4992 4993 #ifdef WHERETRACE_ENABLED /* >=2 */ 4994 if( sqlite3WhereTrace & 0x02 ){ 4995 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 4996 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 4997 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 4998 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4999 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 5000 if( pTo->isOrdered>0 ){ 5001 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 5002 }else{ 5003 sqlite3DebugPrintf("\n"); 5004 } 5005 } 5006 } 5007 #endif 5008 5009 /* Swap the roles of aFrom and aTo for the next generation */ 5010 pFrom = aTo; 5011 aTo = aFrom; 5012 aFrom = pFrom; 5013 nFrom = nTo; 5014 } 5015 5016 if( nFrom==0 ){ 5017 sqlite3ErrorMsg(pParse, "no query solution"); 5018 sqlite3DbFreeNN(db, pSpace); 5019 return SQLITE_ERROR; 5020 } 5021 5022 /* Find the lowest cost path. pFrom will be left pointing to that path */ 5023 pFrom = aFrom; 5024 for(ii=1; ii<nFrom; ii++){ 5025 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 5026 } 5027 assert( pWInfo->nLevel==nLoop ); 5028 /* Load the lowest cost path into pWInfo */ 5029 for(iLoop=0; iLoop<nLoop; iLoop++){ 5030 WhereLevel *pLevel = pWInfo->a + iLoop; 5031 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 5032 pLevel->iFrom = pWLoop->iTab; 5033 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 5034 } 5035 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 5036 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 5037 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 5038 && nRowEst 5039 ){ 5040 Bitmask notUsed; 5041 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, 5042 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 5043 if( rc==pWInfo->pResultSet->nExpr ){ 5044 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 5045 } 5046 } 5047 pWInfo->bOrderedInnerLoop = 0; 5048 if( pWInfo->pOrderBy ){ 5049 pWInfo->nOBSat = pFrom->isOrdered; 5050 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 5051 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 5052 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 5053 } 5054 }else{ 5055 pWInfo->revMask = pFrom->revLoop; 5056 if( pWInfo->nOBSat<=0 ){ 5057 pWInfo->nOBSat = 0; 5058 if( nLoop>0 ){ 5059 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags; 5060 if( (wsFlags & WHERE_ONEROW)==0 5061 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN) 5062 ){ 5063 Bitmask m = 0; 5064 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 5065 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m); 5066 testcase( wsFlags & WHERE_IPK ); 5067 testcase( wsFlags & WHERE_COLUMN_IN ); 5068 if( rc==pWInfo->pOrderBy->nExpr ){ 5069 pWInfo->bOrderedInnerLoop = 1; 5070 pWInfo->revMask = m; 5071 } 5072 } 5073 } 5074 }else if( nLoop 5075 && pWInfo->nOBSat==1 5076 && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0 5077 ){ 5078 pWInfo->bOrderedInnerLoop = 1; 5079 } 5080 } 5081 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 5082 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 5083 ){ 5084 Bitmask revMask = 0; 5085 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 5086 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 5087 ); 5088 assert( pWInfo->sorted==0 ); 5089 if( nOrder==pWInfo->pOrderBy->nExpr ){ 5090 pWInfo->sorted = 1; 5091 pWInfo->revMask = revMask; 5092 } 5093 } 5094 } 5095 5096 5097 pWInfo->nRowOut = pFrom->nRow; 5098 5099 /* Free temporary memory and return success */ 5100 assert( db!=0 ); 5101 sqlite3DbNNFreeNN(db, pSpace); 5102 return SQLITE_OK; 5103 } 5104 5105 /* 5106 ** Most queries use only a single table (they are not joins) and have 5107 ** simple == constraints against indexed fields. This routine attempts 5108 ** to plan those simple cases using much less ceremony than the 5109 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 5110 ** times for the common case. 5111 ** 5112 ** Return non-zero on success, if this query can be handled by this 5113 ** no-frills query planner. Return zero if this query needs the 5114 ** general-purpose query planner. 5115 */ 5116 static int whereShortCut(WhereLoopBuilder *pBuilder){ 5117 WhereInfo *pWInfo; 5118 SrcItem *pItem; 5119 WhereClause *pWC; 5120 WhereTerm *pTerm; 5121 WhereLoop *pLoop; 5122 int iCur; 5123 int j; 5124 Table *pTab; 5125 Index *pIdx; 5126 WhereScan scan; 5127 5128 pWInfo = pBuilder->pWInfo; 5129 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0; 5130 assert( pWInfo->pTabList->nSrc>=1 ); 5131 pItem = pWInfo->pTabList->a; 5132 pTab = pItem->pTab; 5133 if( IsVirtual(pTab) ) return 0; 5134 if( pItem->fg.isIndexedBy || pItem->fg.notIndexed ){ 5135 testcase( pItem->fg.isIndexedBy ); 5136 testcase( pItem->fg.notIndexed ); 5137 return 0; 5138 } 5139 iCur = pItem->iCursor; 5140 pWC = &pWInfo->sWC; 5141 pLoop = pBuilder->pNew; 5142 pLoop->wsFlags = 0; 5143 pLoop->nSkip = 0; 5144 pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0); 5145 while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan); 5146 if( pTerm ){ 5147 testcase( pTerm->eOperator & WO_IS ); 5148 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 5149 pLoop->aLTerm[0] = pTerm; 5150 pLoop->nLTerm = 1; 5151 pLoop->u.btree.nEq = 1; 5152 /* TUNING: Cost of a rowid lookup is 10 */ 5153 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 5154 }else{ 5155 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5156 int opMask; 5157 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 5158 if( !IsUniqueIndex(pIdx) 5159 || pIdx->pPartIdxWhere!=0 5160 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 5161 ) continue; 5162 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; 5163 for(j=0; j<pIdx->nKeyCol; j++){ 5164 pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx); 5165 while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan); 5166 if( pTerm==0 ) break; 5167 testcase( pTerm->eOperator & WO_IS ); 5168 pLoop->aLTerm[j] = pTerm; 5169 } 5170 if( j!=pIdx->nKeyCol ) continue; 5171 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 5172 if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){ 5173 pLoop->wsFlags |= WHERE_IDX_ONLY; 5174 } 5175 pLoop->nLTerm = j; 5176 pLoop->u.btree.nEq = j; 5177 pLoop->u.btree.pIndex = pIdx; 5178 /* TUNING: Cost of a unique index lookup is 15 */ 5179 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 5180 break; 5181 } 5182 } 5183 if( pLoop->wsFlags ){ 5184 pLoop->nOut = (LogEst)1; 5185 pWInfo->a[0].pWLoop = pLoop; 5186 assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] ); 5187 pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */ 5188 pWInfo->a[0].iTabCur = iCur; 5189 pWInfo->nRowOut = 1; 5190 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 5191 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 5192 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 5193 } 5194 if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS; 5195 #ifdef SQLITE_DEBUG 5196 pLoop->cId = '0'; 5197 #endif 5198 #ifdef WHERETRACE_ENABLED 5199 if( sqlite3WhereTrace ){ 5200 sqlite3DebugPrintf("whereShortCut() used to compute solution\n"); 5201 } 5202 #endif 5203 return 1; 5204 } 5205 return 0; 5206 } 5207 5208 /* 5209 ** Helper function for exprIsDeterministic(). 5210 */ 5211 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){ 5212 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){ 5213 pWalker->eCode = 0; 5214 return WRC_Abort; 5215 } 5216 return WRC_Continue; 5217 } 5218 5219 /* 5220 ** Return true if the expression contains no non-deterministic SQL 5221 ** functions. Do not consider non-deterministic SQL functions that are 5222 ** part of sub-select statements. 5223 */ 5224 static int exprIsDeterministic(Expr *p){ 5225 Walker w; 5226 memset(&w, 0, sizeof(w)); 5227 w.eCode = 1; 5228 w.xExprCallback = exprNodeIsDeterministic; 5229 w.xSelectCallback = sqlite3SelectWalkFail; 5230 sqlite3WalkExpr(&w, p); 5231 return w.eCode; 5232 } 5233 5234 5235 #ifdef WHERETRACE_ENABLED 5236 /* 5237 ** Display all WhereLoops in pWInfo 5238 */ 5239 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){ 5240 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ 5241 WhereLoop *p; 5242 int i; 5243 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 5244 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 5245 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 5246 p->cId = zLabel[i%(sizeof(zLabel)-1)]; 5247 sqlite3WhereLoopPrint(p, pWC); 5248 } 5249 } 5250 } 5251 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C) 5252 #else 5253 # define WHERETRACE_ALL_LOOPS(W,C) 5254 #endif 5255 5256 /* Attempt to omit tables from a join that do not affect the result. 5257 ** For a table to not affect the result, the following must be true: 5258 ** 5259 ** 1) The query must not be an aggregate. 5260 ** 2) The table must be the RHS of a LEFT JOIN. 5261 ** 3) Either the query must be DISTINCT, or else the ON or USING clause 5262 ** must contain a constraint that limits the scan of the table to 5263 ** at most a single row. 5264 ** 4) The table must not be referenced by any part of the query apart 5265 ** from its own USING or ON clause. 5266 ** 5267 ** For example, given: 5268 ** 5269 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1); 5270 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2); 5271 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3); 5272 ** 5273 ** then table t2 can be omitted from the following: 5274 ** 5275 ** SELECT v1, v3 FROM t1 5276 ** LEFT JOIN t2 ON (t1.ipk=t2.ipk) 5277 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) 5278 ** 5279 ** or from: 5280 ** 5281 ** SELECT DISTINCT v1, v3 FROM t1 5282 ** LEFT JOIN t2 5283 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) 5284 */ 5285 static SQLITE_NOINLINE Bitmask whereOmitNoopJoin( 5286 WhereInfo *pWInfo, 5287 Bitmask notReady 5288 ){ 5289 int i; 5290 Bitmask tabUsed; 5291 5292 /* Preconditions checked by the caller */ 5293 assert( pWInfo->nLevel>=2 ); 5294 assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) ); 5295 5296 /* These two preconditions checked by the caller combine to guarantee 5297 ** condition (1) of the header comment */ 5298 assert( pWInfo->pResultSet!=0 ); 5299 assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) ); 5300 5301 tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet); 5302 if( pWInfo->pOrderBy ){ 5303 tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy); 5304 } 5305 for(i=pWInfo->nLevel-1; i>=1; i--){ 5306 WhereTerm *pTerm, *pEnd; 5307 SrcItem *pItem; 5308 WhereLoop *pLoop; 5309 pLoop = pWInfo->a[i].pWLoop; 5310 pItem = &pWInfo->pTabList->a[pLoop->iTab]; 5311 if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ) continue; 5312 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)==0 5313 && (pLoop->wsFlags & WHERE_ONEROW)==0 5314 ){ 5315 continue; 5316 } 5317 if( (tabUsed & pLoop->maskSelf)!=0 ) continue; 5318 pEnd = pWInfo->sWC.a + pWInfo->sWC.nTerm; 5319 for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){ 5320 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 5321 if( !ExprHasProperty(pTerm->pExpr, EP_OuterON) 5322 || pTerm->pExpr->w.iJoin!=pItem->iCursor 5323 ){ 5324 break; 5325 } 5326 } 5327 } 5328 if( pTerm<pEnd ) continue; 5329 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); 5330 notReady &= ~pLoop->maskSelf; 5331 for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){ 5332 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 5333 pTerm->wtFlags |= TERM_CODED; 5334 } 5335 } 5336 if( i!=pWInfo->nLevel-1 ){ 5337 int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel); 5338 memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte); 5339 } 5340 pWInfo->nLevel--; 5341 assert( pWInfo->nLevel>0 ); 5342 } 5343 return notReady; 5344 } 5345 5346 /* 5347 ** Check to see if there are any SEARCH loops that might benefit from 5348 ** using a Bloom filter. Consider a Bloom filter if: 5349 ** 5350 ** (1) The SEARCH happens more than N times where N is the number 5351 ** of rows in the table that is being considered for the Bloom 5352 ** filter. 5353 ** (2) Some searches are expected to find zero rows. (This is determined 5354 ** by the WHERE_SELFCULL flag on the term.) 5355 ** (3) Bloom-filter processing is not disabled. (Checked by the 5356 ** caller.) 5357 ** (4) The size of the table being searched is known by ANALYZE. 5358 ** 5359 ** This block of code merely checks to see if a Bloom filter would be 5360 ** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the 5361 ** WhereLoop. The implementation of the Bloom filter comes further 5362 ** down where the code for each WhereLoop is generated. 5363 */ 5364 static SQLITE_NOINLINE void whereCheckIfBloomFilterIsUseful( 5365 const WhereInfo *pWInfo 5366 ){ 5367 int i; 5368 LogEst nSearch; 5369 5370 assert( pWInfo->nLevel>=2 ); 5371 assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) ); 5372 nSearch = pWInfo->a[0].pWLoop->nOut; 5373 for(i=1; i<pWInfo->nLevel; i++){ 5374 WhereLoop *pLoop = pWInfo->a[i].pWLoop; 5375 const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ); 5376 if( (pLoop->wsFlags & reqFlags)==reqFlags 5377 /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */ 5378 && ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0) 5379 ){ 5380 SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab]; 5381 Table *pTab = pItem->pTab; 5382 pTab->tabFlags |= TF_StatsUsed; 5383 if( nSearch > pTab->nRowLogEst 5384 && (pTab->tabFlags & TF_HasStat1)!=0 5385 ){ 5386 testcase( pItem->fg.jointype & JT_LEFT ); 5387 pLoop->wsFlags |= WHERE_BLOOMFILTER; 5388 pLoop->wsFlags &= ~WHERE_IDX_ONLY; 5389 WHERETRACE(0xffff, ( 5390 "-> use Bloom-filter on loop %c because there are ~%.1e " 5391 "lookups into %s which has only ~%.1e rows\n", 5392 pLoop->cId, (double)sqlite3LogEstToInt(nSearch), pTab->zName, 5393 (double)sqlite3LogEstToInt(pTab->nRowLogEst))); 5394 } 5395 } 5396 nSearch += pLoop->nOut; 5397 } 5398 } 5399 5400 /* 5401 ** Generate the beginning of the loop used for WHERE clause processing. 5402 ** The return value is a pointer to an opaque structure that contains 5403 ** information needed to terminate the loop. Later, the calling routine 5404 ** should invoke sqlite3WhereEnd() with the return value of this function 5405 ** in order to complete the WHERE clause processing. 5406 ** 5407 ** If an error occurs, this routine returns NULL. 5408 ** 5409 ** The basic idea is to do a nested loop, one loop for each table in 5410 ** the FROM clause of a select. (INSERT and UPDATE statements are the 5411 ** same as a SELECT with only a single table in the FROM clause.) For 5412 ** example, if the SQL is this: 5413 ** 5414 ** SELECT * FROM t1, t2, t3 WHERE ...; 5415 ** 5416 ** Then the code generated is conceptually like the following: 5417 ** 5418 ** foreach row1 in t1 do \ Code generated 5419 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 5420 ** foreach row3 in t3 do / 5421 ** ... 5422 ** end \ Code generated 5423 ** end |-- by sqlite3WhereEnd() 5424 ** end / 5425 ** 5426 ** Note that the loops might not be nested in the order in which they 5427 ** appear in the FROM clause if a different order is better able to make 5428 ** use of indices. Note also that when the IN operator appears in 5429 ** the WHERE clause, it might result in additional nested loops for 5430 ** scanning through all values on the right-hand side of the IN. 5431 ** 5432 ** There are Btree cursors associated with each table. t1 uses cursor 5433 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 5434 ** And so forth. This routine generates code to open those VDBE cursors 5435 ** and sqlite3WhereEnd() generates the code to close them. 5436 ** 5437 ** The code that sqlite3WhereBegin() generates leaves the cursors named 5438 ** in pTabList pointing at their appropriate entries. The [...] code 5439 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 5440 ** data from the various tables of the loop. 5441 ** 5442 ** If the WHERE clause is empty, the foreach loops must each scan their 5443 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 5444 ** the tables have indices and there are terms in the WHERE clause that 5445 ** refer to those indices, a complete table scan can be avoided and the 5446 ** code will run much faster. Most of the work of this routine is checking 5447 ** to see if there are indices that can be used to speed up the loop. 5448 ** 5449 ** Terms of the WHERE clause are also used to limit which rows actually 5450 ** make it to the "..." in the middle of the loop. After each "foreach", 5451 ** terms of the WHERE clause that use only terms in that loop and outer 5452 ** loops are evaluated and if false a jump is made around all subsequent 5453 ** inner loops (or around the "..." if the test occurs within the inner- 5454 ** most loop) 5455 ** 5456 ** OUTER JOINS 5457 ** 5458 ** An outer join of tables t1 and t2 is conceptally coded as follows: 5459 ** 5460 ** foreach row1 in t1 do 5461 ** flag = 0 5462 ** foreach row2 in t2 do 5463 ** start: 5464 ** ... 5465 ** flag = 1 5466 ** end 5467 ** if flag==0 then 5468 ** move the row2 cursor to a null row 5469 ** goto start 5470 ** fi 5471 ** end 5472 ** 5473 ** ORDER BY CLAUSE PROCESSING 5474 ** 5475 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 5476 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 5477 ** if there is one. If there is no ORDER BY clause or if this routine 5478 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 5479 ** 5480 ** The iIdxCur parameter is the cursor number of an index. If 5481 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index 5482 ** to use for OR clause processing. The WHERE clause should use this 5483 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 5484 ** the first cursor in an array of cursors for all indices. iIdxCur should 5485 ** be used to compute the appropriate cursor depending on which index is 5486 ** used. 5487 */ 5488 WhereInfo *sqlite3WhereBegin( 5489 Parse *pParse, /* The parser context */ 5490 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 5491 Expr *pWhere, /* The WHERE clause */ 5492 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 5493 ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */ 5494 Select *pLimit, /* Use this LIMIT/OFFSET clause, if any */ 5495 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */ 5496 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number 5497 ** If WHERE_USE_LIMIT, then the limit amount */ 5498 ){ 5499 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 5500 int nTabList; /* Number of elements in pTabList */ 5501 WhereInfo *pWInfo; /* Will become the return value of this function */ 5502 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 5503 Bitmask notReady; /* Cursors that are not yet positioned */ 5504 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 5505 WhereMaskSet *pMaskSet; /* The expression mask set */ 5506 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 5507 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 5508 int ii; /* Loop counter */ 5509 sqlite3 *db; /* Database connection */ 5510 int rc; /* Return code */ 5511 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ 5512 5513 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( 5514 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 5515 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 5516 )); 5517 5518 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */ 5519 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 5520 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); 5521 5522 /* Variable initialization */ 5523 db = pParse->db; 5524 memset(&sWLB, 0, sizeof(sWLB)); 5525 5526 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 5527 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 5528 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; 5529 5530 /* The number of tables in the FROM clause is limited by the number of 5531 ** bits in a Bitmask 5532 */ 5533 testcase( pTabList->nSrc==BMS ); 5534 if( pTabList->nSrc>BMS ){ 5535 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 5536 return 0; 5537 } 5538 5539 /* This function normally generates a nested loop for all tables in 5540 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should 5541 ** only generate code for the first table in pTabList and assume that 5542 ** any cursors associated with subsequent tables are uninitialized. 5543 */ 5544 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc; 5545 5546 /* Allocate and initialize the WhereInfo structure that will become the 5547 ** return value. A single allocation is used to store the WhereInfo 5548 ** struct, the contents of WhereInfo.a[], the WhereClause structure 5549 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 5550 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 5551 ** some architectures. Hence the ROUND8() below. 5552 */ 5553 nByteWInfo = ROUND8P(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 5554 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop)); 5555 if( db->mallocFailed ){ 5556 sqlite3DbFree(db, pWInfo); 5557 pWInfo = 0; 5558 goto whereBeginError; 5559 } 5560 pWInfo->pParse = pParse; 5561 pWInfo->pTabList = pTabList; 5562 pWInfo->pOrderBy = pOrderBy; 5563 pWInfo->pWhere = pWhere; 5564 pWInfo->pResultSet = pResultSet; 5565 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 5566 pWInfo->nLevel = nTabList; 5567 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse); 5568 pWInfo->wctrlFlags = wctrlFlags; 5569 pWInfo->iLimit = iAuxArg; 5570 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 5571 #ifndef SQLITE_OMIT_VIRTUALTABLE 5572 pWInfo->pLimit = pLimit; 5573 #endif 5574 memset(&pWInfo->nOBSat, 0, 5575 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat)); 5576 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel)); 5577 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ 5578 pMaskSet = &pWInfo->sMaskSet; 5579 pMaskSet->n = 0; 5580 pMaskSet->ix[0] = -99; /* Initialize ix[0] to a value that can never be 5581 ** a valid cursor number, to avoid an initial 5582 ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */ 5583 sWLB.pWInfo = pWInfo; 5584 sWLB.pWC = &pWInfo->sWC; 5585 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 5586 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 5587 whereLoopInit(sWLB.pNew); 5588 #ifdef SQLITE_DEBUG 5589 sWLB.pNew->cId = '*'; 5590 #endif 5591 5592 /* Split the WHERE clause into separate subexpressions where each 5593 ** subexpression is separated by an AND operator. 5594 */ 5595 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); 5596 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); 5597 5598 /* Special case: No FROM clause 5599 */ 5600 if( nTabList==0 ){ 5601 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 5602 if( (wctrlFlags & WHERE_WANT_DISTINCT)!=0 5603 && OptimizationEnabled(db, SQLITE_DistinctOpt) 5604 ){ 5605 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 5606 } 5607 ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW")); 5608 }else{ 5609 /* Assign a bit from the bitmask to every term in the FROM clause. 5610 ** 5611 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. 5612 ** 5613 ** The rule of the previous sentence ensures thta if X is the bitmask for 5614 ** a table T, then X-1 is the bitmask for all other tables to the left of T. 5615 ** Knowing the bitmask for all tables to the left of a left join is 5616 ** important. Ticket #3015. 5617 ** 5618 ** Note that bitmasks are created for all pTabList->nSrc tables in 5619 ** pTabList, not just the first nTabList tables. nTabList is normally 5620 ** equal to pTabList->nSrc but might be shortened to 1 if the 5621 ** WHERE_OR_SUBCLAUSE flag is set. 5622 */ 5623 ii = 0; 5624 do{ 5625 createMask(pMaskSet, pTabList->a[ii].iCursor); 5626 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); 5627 }while( (++ii)<pTabList->nSrc ); 5628 #ifdef SQLITE_DEBUG 5629 { 5630 Bitmask mx = 0; 5631 for(ii=0; ii<pTabList->nSrc; ii++){ 5632 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); 5633 assert( m>=mx ); 5634 mx = m; 5635 } 5636 } 5637 #endif 5638 } 5639 5640 /* Analyze all of the subexpressions. */ 5641 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); 5642 sqlite3WhereAddLimit(&pWInfo->sWC, pLimit); 5643 if( pParse->nErr ) goto whereBeginError; 5644 5645 /* Special case: WHERE terms that do not refer to any tables in the join 5646 ** (constant expressions). Evaluate each such term, and jump over all the 5647 ** generated code if the result is not true. 5648 ** 5649 ** Do not do this if the expression contains non-deterministic functions 5650 ** that are not within a sub-select. This is not strictly required, but 5651 ** preserves SQLite's legacy behaviour in the following two cases: 5652 ** 5653 ** FROM ... WHERE random()>0; -- eval random() once per row 5654 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall 5655 */ 5656 for(ii=0; ii<sWLB.pWC->nBase; ii++){ 5657 WhereTerm *pT = &sWLB.pWC->a[ii]; 5658 if( pT->wtFlags & TERM_VIRTUAL ) continue; 5659 if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){ 5660 sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL); 5661 pT->wtFlags |= TERM_CODED; 5662 } 5663 } 5664 5665 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 5666 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 5667 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 5668 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 5669 wctrlFlags &= ~WHERE_WANT_DISTINCT; 5670 pWInfo->wctrlFlags &= ~WHERE_WANT_DISTINCT; 5671 }else if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ 5672 /* The DISTINCT marking is pointless. Ignore it. */ 5673 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 5674 }else if( pOrderBy==0 ){ 5675 /* Try to ORDER BY the result set to make distinct processing easier */ 5676 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 5677 pWInfo->pOrderBy = pResultSet; 5678 } 5679 } 5680 5681 /* Construct the WhereLoop objects */ 5682 #if defined(WHERETRACE_ENABLED) 5683 if( sqlite3WhereTrace & 0xffff ){ 5684 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); 5685 if( wctrlFlags & WHERE_USE_LIMIT ){ 5686 sqlite3DebugPrintf(", limit: %d", iAuxArg); 5687 } 5688 sqlite3DebugPrintf(")\n"); 5689 if( sqlite3WhereTrace & 0x100 ){ 5690 Select sSelect; 5691 memset(&sSelect, 0, sizeof(sSelect)); 5692 sSelect.selFlags = SF_WhereBegin; 5693 sSelect.pSrc = pTabList; 5694 sSelect.pWhere = pWhere; 5695 sSelect.pOrderBy = pOrderBy; 5696 sSelect.pEList = pResultSet; 5697 sqlite3TreeViewSelect(0, &sSelect, 0); 5698 } 5699 } 5700 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 5701 sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n"); 5702 sqlite3WhereClausePrint(sWLB.pWC); 5703 } 5704 #endif 5705 5706 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 5707 rc = whereLoopAddAll(&sWLB); 5708 if( rc ) goto whereBeginError; 5709 5710 #ifdef SQLITE_ENABLE_STAT4 5711 /* If one or more WhereTerm.truthProb values were used in estimating 5712 ** loop parameters, but then those truthProb values were subsequently 5713 ** changed based on STAT4 information while computing subsequent loops, 5714 ** then we need to rerun the whole loop building process so that all 5715 ** loops will be built using the revised truthProb values. */ 5716 if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){ 5717 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); 5718 WHERETRACE(0xffff, 5719 ("**** Redo all loop computations due to" 5720 " TERM_HIGHTRUTH changes ****\n")); 5721 while( pWInfo->pLoops ){ 5722 WhereLoop *p = pWInfo->pLoops; 5723 pWInfo->pLoops = p->pNextLoop; 5724 whereLoopDelete(db, p); 5725 } 5726 rc = whereLoopAddAll(&sWLB); 5727 if( rc ) goto whereBeginError; 5728 } 5729 #endif 5730 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); 5731 5732 wherePathSolver(pWInfo, 0); 5733 if( db->mallocFailed ) goto whereBeginError; 5734 if( pWInfo->pOrderBy ){ 5735 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 5736 if( db->mallocFailed ) goto whereBeginError; 5737 } 5738 } 5739 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 5740 pWInfo->revMask = ALLBITS; 5741 } 5742 if( pParse->nErr ){ 5743 goto whereBeginError; 5744 } 5745 assert( db->mallocFailed==0 ); 5746 #ifdef WHERETRACE_ENABLED 5747 if( sqlite3WhereTrace ){ 5748 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 5749 if( pWInfo->nOBSat>0 ){ 5750 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 5751 } 5752 switch( pWInfo->eDistinct ){ 5753 case WHERE_DISTINCT_UNIQUE: { 5754 sqlite3DebugPrintf(" DISTINCT=unique"); 5755 break; 5756 } 5757 case WHERE_DISTINCT_ORDERED: { 5758 sqlite3DebugPrintf(" DISTINCT=ordered"); 5759 break; 5760 } 5761 case WHERE_DISTINCT_UNORDERED: { 5762 sqlite3DebugPrintf(" DISTINCT=unordered"); 5763 break; 5764 } 5765 } 5766 sqlite3DebugPrintf("\n"); 5767 for(ii=0; ii<pWInfo->nLevel; ii++){ 5768 sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 5769 } 5770 } 5771 #endif 5772 5773 /* Attempt to omit tables from a join that do not affect the result. 5774 ** See the comment on whereOmitNoopJoin() for further information. 5775 ** 5776 ** This query optimization is factored out into a separate "no-inline" 5777 ** procedure to keep the sqlite3WhereBegin() procedure from becoming 5778 ** too large. If sqlite3WhereBegin() becomes too large, that prevents 5779 ** some C-compiler optimizers from in-lining the 5780 ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to 5781 ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons. 5782 */ 5783 notReady = ~(Bitmask)0; 5784 if( pWInfo->nLevel>=2 5785 && pResultSet!=0 /* these two combine to guarantee */ 5786 && 0==(wctrlFlags & WHERE_AGG_DISTINCT) /* condition (1) above */ 5787 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) 5788 ){ 5789 notReady = whereOmitNoopJoin(pWInfo, notReady); 5790 nTabList = pWInfo->nLevel; 5791 assert( nTabList>0 ); 5792 } 5793 5794 /* Check to see if there are any SEARCH loops that might benefit from 5795 ** using a Bloom filter. 5796 */ 5797 if( pWInfo->nLevel>=2 5798 && OptimizationEnabled(db, SQLITE_BloomFilter) 5799 ){ 5800 whereCheckIfBloomFilterIsUseful(pWInfo); 5801 } 5802 5803 #if defined(WHERETRACE_ENABLED) 5804 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 5805 sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n"); 5806 sqlite3WhereClausePrint(sWLB.pWC); 5807 } 5808 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); 5809 #endif 5810 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 5811 5812 /* If the caller is an UPDATE or DELETE statement that is requesting 5813 ** to use a one-pass algorithm, determine if this is appropriate. 5814 ** 5815 ** A one-pass approach can be used if the caller has requested one 5816 ** and either (a) the scan visits at most one row or (b) each 5817 ** of the following are true: 5818 ** 5819 ** * the caller has indicated that a one-pass approach can be used 5820 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and 5821 ** * the table is not a virtual table, and 5822 ** * either the scan does not use the OR optimization or the caller 5823 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified 5824 ** for DELETE). 5825 ** 5826 ** The last qualification is because an UPDATE statement uses 5827 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can 5828 ** use a one-pass approach, and this is not set accurately for scans 5829 ** that use the OR optimization. 5830 */ 5831 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 5832 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ 5833 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; 5834 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; 5835 assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) ); 5836 if( bOnerow || ( 5837 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW) 5838 && !IsVirtual(pTabList->a[0].pTab) 5839 && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK)) 5840 )){ 5841 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; 5842 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ 5843 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ 5844 bFordelete = OPFLAG_FORDELETE; 5845 } 5846 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); 5847 } 5848 } 5849 } 5850 5851 /* Open all tables in the pTabList and any indices selected for 5852 ** searching those tables. 5853 */ 5854 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 5855 Table *pTab; /* Table to open */ 5856 int iDb; /* Index of database containing table/index */ 5857 SrcItem *pTabItem; 5858 5859 pTabItem = &pTabList->a[pLevel->iFrom]; 5860 pTab = pTabItem->pTab; 5861 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5862 pLoop = pLevel->pWLoop; 5863 if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){ 5864 /* Do nothing */ 5865 }else 5866 #ifndef SQLITE_OMIT_VIRTUALTABLE 5867 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 5868 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 5869 int iCur = pTabItem->iCursor; 5870 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 5871 }else if( IsVirtual(pTab) ){ 5872 /* noop */ 5873 }else 5874 #endif 5875 if( ((pLoop->wsFlags & WHERE_IDX_ONLY)==0 5876 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0) 5877 || (pTabItem->fg.jointype & (JT_LTORJ|JT_RIGHT))!=0 5878 ){ 5879 int op = OP_OpenRead; 5880 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5881 op = OP_OpenWrite; 5882 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 5883 }; 5884 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 5885 assert( pTabItem->iCursor==pLevel->iTabCur ); 5886 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); 5887 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); 5888 if( pWInfo->eOnePass==ONEPASS_OFF 5889 && pTab->nCol<BMS 5890 && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0 5891 && (pLoop->wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))==0 5892 ){ 5893 /* If we know that only a prefix of the record will be used, 5894 ** it is advantageous to reduce the "column count" field in 5895 ** the P4 operand of the OP_OpenRead/Write opcode. */ 5896 Bitmask b = pTabItem->colUsed; 5897 int n = 0; 5898 for(; b; b=b>>1, n++){} 5899 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); 5900 assert( n<=pTab->nCol ); 5901 } 5902 #ifdef SQLITE_ENABLE_CURSOR_HINTS 5903 if( pLoop->u.btree.pIndex!=0 ){ 5904 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); 5905 }else 5906 #endif 5907 { 5908 sqlite3VdbeChangeP5(v, bFordelete); 5909 } 5910 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5911 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, 5912 (const u8*)&pTabItem->colUsed, P4_INT64); 5913 #endif 5914 }else{ 5915 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5916 } 5917 if( pLoop->wsFlags & WHERE_INDEXED ){ 5918 Index *pIx = pLoop->u.btree.pIndex; 5919 int iIndexCur; 5920 int op = OP_OpenRead; 5921 /* iAuxArg is always set to a positive value if ONEPASS is possible */ 5922 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 5923 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 5924 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 5925 ){ 5926 /* This is one term of an OR-optimization using the PRIMARY KEY of a 5927 ** WITHOUT ROWID table. No need for a separate index */ 5928 iIndexCur = pLevel->iTabCur; 5929 op = 0; 5930 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5931 Index *pJ = pTabItem->pTab->pIndex; 5932 iIndexCur = iAuxArg; 5933 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 5934 while( ALWAYS(pJ) && pJ!=pIx ){ 5935 iIndexCur++; 5936 pJ = pJ->pNext; 5937 } 5938 op = OP_OpenWrite; 5939 pWInfo->aiCurOnePass[1] = iIndexCur; 5940 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ 5941 iIndexCur = iAuxArg; 5942 op = OP_ReopenIdx; 5943 }else{ 5944 iIndexCur = pParse->nTab++; 5945 } 5946 pLevel->iIdxCur = iIndexCur; 5947 assert( pIx!=0 ); 5948 assert( pIx->pSchema==pTab->pSchema ); 5949 assert( iIndexCur>=0 ); 5950 if( op ){ 5951 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 5952 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 5953 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 5954 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 5955 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0 5956 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 5957 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 5958 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED 5959 ){ 5960 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); 5961 } 5962 VdbeComment((v, "%s", pIx->zName)); 5963 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5964 { 5965 u64 colUsed = 0; 5966 int ii, jj; 5967 for(ii=0; ii<pIx->nColumn; ii++){ 5968 jj = pIx->aiColumn[ii]; 5969 if( jj<0 ) continue; 5970 if( jj>63 ) jj = 63; 5971 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; 5972 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); 5973 } 5974 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, 5975 (u8*)&colUsed, P4_INT64); 5976 } 5977 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ 5978 } 5979 } 5980 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 5981 if( (pTabItem->fg.jointype & JT_RIGHT)!=0 5982 && (pLevel->pRJ = sqlite3WhereMalloc(pWInfo, sizeof(WhereRightJoin)))!=0 5983 ){ 5984 WhereRightJoin *pRJ = pLevel->pRJ; 5985 pRJ->iMatch = pParse->nTab++; 5986 pRJ->regBloom = ++pParse->nMem; 5987 sqlite3VdbeAddOp2(v, OP_Blob, 65536, pRJ->regBloom); 5988 pRJ->regReturn = ++pParse->nMem; 5989 sqlite3VdbeAddOp2(v, OP_Null, 0, pRJ->regReturn); 5990 assert( pTab==pTabItem->pTab ); 5991 if( HasRowid(pTab) ){ 5992 KeyInfo *pInfo; 5993 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, 1); 5994 pInfo = sqlite3KeyInfoAlloc(pParse->db, 1, 0); 5995 if( pInfo ){ 5996 pInfo->aColl[0] = 0; 5997 pInfo->aSortFlags[0] = 0; 5998 sqlite3VdbeAppendP4(v, pInfo, P4_KEYINFO); 5999 } 6000 }else{ 6001 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 6002 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, pPk->nKeyCol); 6003 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 6004 } 6005 pLoop->wsFlags &= ~WHERE_IDX_ONLY; 6006 /* The nature of RIGHT JOIN processing is such that it messes up 6007 ** the output order. So omit any ORDER BY/GROUP BY elimination 6008 ** optimizations. We need to do an actual sort for RIGHT JOIN. */ 6009 pWInfo->nOBSat = 0; 6010 pWInfo->eDistinct = WHERE_DISTINCT_UNORDERED; 6011 } 6012 } 6013 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 6014 if( db->mallocFailed ) goto whereBeginError; 6015 6016 /* Generate the code to do the search. Each iteration of the for 6017 ** loop below generates code for a single nested loop of the VM 6018 ** program. 6019 */ 6020 for(ii=0; ii<nTabList; ii++){ 6021 int addrExplain; 6022 int wsFlags; 6023 SrcItem *pSrc; 6024 if( pParse->nErr ) goto whereBeginError; 6025 pLevel = &pWInfo->a[ii]; 6026 wsFlags = pLevel->pWLoop->wsFlags; 6027 pSrc = &pTabList->a[pLevel->iFrom]; 6028 if( pSrc->fg.isMaterialized ){ 6029 if( pSrc->fg.isCorrelated ){ 6030 sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub); 6031 }else{ 6032 int iOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6033 sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub); 6034 sqlite3VdbeJumpHere(v, iOnce); 6035 } 6036 } 6037 if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){ 6038 if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){ 6039 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 6040 constructAutomaticIndex(pParse, &pWInfo->sWC, 6041 &pTabList->a[pLevel->iFrom], notReady, pLevel); 6042 #endif 6043 }else{ 6044 sqlite3ConstructBloomFilter(pWInfo, ii, pLevel, notReady); 6045 } 6046 if( db->mallocFailed ) goto whereBeginError; 6047 } 6048 addrExplain = sqlite3WhereExplainOneScan( 6049 pParse, pTabList, pLevel, wctrlFlags 6050 ); 6051 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 6052 notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady); 6053 pWInfo->iContinue = pLevel->addrCont; 6054 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){ 6055 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); 6056 } 6057 } 6058 6059 /* Done. */ 6060 VdbeModuleComment((v, "Begin WHERE-core")); 6061 pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v); 6062 return pWInfo; 6063 6064 /* Jump here if malloc fails */ 6065 whereBeginError: 6066 if( pWInfo ){ 6067 testcase( pWInfo->pExprMods!=0 ); 6068 whereUndoExprMods(pWInfo); 6069 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 6070 whereInfoFree(db, pWInfo); 6071 } 6072 return 0; 6073 } 6074 6075 /* 6076 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the 6077 ** index rather than the main table. In SQLITE_DEBUG mode, we want 6078 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine 6079 ** does that. 6080 */ 6081 #ifndef SQLITE_DEBUG 6082 # define OpcodeRewriteTrace(D,K,P) /* no-op */ 6083 #else 6084 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P) 6085 static void sqlite3WhereOpcodeRewriteTrace( 6086 sqlite3 *db, 6087 int pc, 6088 VdbeOp *pOp 6089 ){ 6090 if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return; 6091 sqlite3VdbePrintOp(0, pc, pOp); 6092 } 6093 #endif 6094 6095 #ifdef SQLITE_DEBUG 6096 /* 6097 ** Return true if cursor iCur is opened by instruction k of the 6098 ** bytecode. Used inside of assert() only. 6099 */ 6100 static int cursorIsOpen(Vdbe *v, int iCur, int k){ 6101 while( k>=0 ){ 6102 VdbeOp *pOp = sqlite3VdbeGetOp(v,k--); 6103 if( pOp->p1!=iCur ) continue; 6104 if( pOp->opcode==OP_Close ) return 0; 6105 if( pOp->opcode==OP_OpenRead ) return 1; 6106 if( pOp->opcode==OP_OpenWrite ) return 1; 6107 if( pOp->opcode==OP_OpenDup ) return 1; 6108 if( pOp->opcode==OP_OpenAutoindex ) return 1; 6109 if( pOp->opcode==OP_OpenEphemeral ) return 1; 6110 } 6111 return 0; 6112 } 6113 #endif /* SQLITE_DEBUG */ 6114 6115 /* 6116 ** Generate the end of the WHERE loop. See comments on 6117 ** sqlite3WhereBegin() for additional information. 6118 */ 6119 void sqlite3WhereEnd(WhereInfo *pWInfo){ 6120 Parse *pParse = pWInfo->pParse; 6121 Vdbe *v = pParse->pVdbe; 6122 int i; 6123 WhereLevel *pLevel; 6124 WhereLoop *pLoop; 6125 SrcList *pTabList = pWInfo->pTabList; 6126 sqlite3 *db = pParse->db; 6127 int iEnd = sqlite3VdbeCurrentAddr(v); 6128 int nRJ = 0; 6129 6130 /* Generate loop termination code. 6131 */ 6132 VdbeModuleComment((v, "End WHERE-core")); 6133 for(i=pWInfo->nLevel-1; i>=0; i--){ 6134 int addr; 6135 pLevel = &pWInfo->a[i]; 6136 if( pLevel->pRJ ){ 6137 /* Terminate the subroutine that forms the interior of the loop of 6138 ** the RIGHT JOIN table */ 6139 WhereRightJoin *pRJ = pLevel->pRJ; 6140 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 6141 pLevel->addrCont = 0; 6142 pRJ->endSubrtn = sqlite3VdbeCurrentAddr(v); 6143 sqlite3VdbeAddOp3(v, OP_Return, pRJ->regReturn, pRJ->addrSubrtn, 1); 6144 VdbeCoverage(v); 6145 nRJ++; 6146 } 6147 pLoop = pLevel->pWLoop; 6148 if( pLevel->op!=OP_Noop ){ 6149 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 6150 int addrSeek = 0; 6151 Index *pIdx; 6152 int n; 6153 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED 6154 && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */ 6155 && (pLoop->wsFlags & WHERE_INDEXED)!=0 6156 && (pIdx = pLoop->u.btree.pIndex)->hasStat1 6157 && (n = pLoop->u.btree.nDistinctCol)>0 6158 && pIdx->aiRowLogEst[n]>=36 6159 ){ 6160 int r1 = pParse->nMem+1; 6161 int j, op; 6162 for(j=0; j<n; j++){ 6163 sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j); 6164 } 6165 pParse->nMem += n+1; 6166 op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT; 6167 addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n); 6168 VdbeCoverageIf(v, op==OP_SeekLT); 6169 VdbeCoverageIf(v, op==OP_SeekGT); 6170 sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2); 6171 } 6172 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */ 6173 /* The common case: Advance to the next row */ 6174 if( pLevel->addrCont ) sqlite3VdbeResolveLabel(v, pLevel->addrCont); 6175 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 6176 sqlite3VdbeChangeP5(v, pLevel->p5); 6177 VdbeCoverage(v); 6178 VdbeCoverageIf(v, pLevel->op==OP_Next); 6179 VdbeCoverageIf(v, pLevel->op==OP_Prev); 6180 VdbeCoverageIf(v, pLevel->op==OP_VNext); 6181 if( pLevel->regBignull ){ 6182 sqlite3VdbeResolveLabel(v, pLevel->addrBignull); 6183 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1); 6184 VdbeCoverage(v); 6185 } 6186 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 6187 if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek); 6188 #endif 6189 }else if( pLevel->addrCont ){ 6190 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 6191 } 6192 if( (pLoop->wsFlags & WHERE_IN_ABLE)!=0 && pLevel->u.in.nIn>0 ){ 6193 struct InLoop *pIn; 6194 int j; 6195 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 6196 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 6197 assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull 6198 || pParse->db->mallocFailed ); 6199 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 6200 if( pIn->eEndLoopOp!=OP_Noop ){ 6201 if( pIn->nPrefix ){ 6202 int bEarlyOut = 6203 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 6204 && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0; 6205 if( pLevel->iLeftJoin ){ 6206 /* For LEFT JOIN queries, cursor pIn->iCur may not have been 6207 ** opened yet. This occurs for WHERE clauses such as 6208 ** "a = ? AND b IN (...)", where the index is on (a, b). If 6209 ** the RHS of the (a=?) is NULL, then the "b IN (...)" may 6210 ** never have been coded, but the body of the loop run to 6211 ** return the null-row. So, if the cursor is not open yet, 6212 ** jump over the OP_Next or OP_Prev instruction about to 6213 ** be coded. */ 6214 sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur, 6215 sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut); 6216 VdbeCoverage(v); 6217 } 6218 if( bEarlyOut ){ 6219 sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur, 6220 sqlite3VdbeCurrentAddr(v)+2, 6221 pIn->iBase, pIn->nPrefix); 6222 VdbeCoverage(v); 6223 /* Retarget the OP_IsNull against the left operand of IN so 6224 ** it jumps past the OP_IfNoHope. This is because the 6225 ** OP_IsNull also bypasses the OP_Affinity opcode that is 6226 ** required by OP_IfNoHope. */ 6227 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 6228 } 6229 } 6230 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 6231 VdbeCoverage(v); 6232 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev); 6233 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next); 6234 } 6235 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 6236 } 6237 } 6238 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 6239 if( pLevel->pRJ ){ 6240 sqlite3VdbeAddOp3(v, OP_Return, pLevel->pRJ->regReturn, 0, 1); 6241 VdbeCoverage(v); 6242 } 6243 if( pLevel->addrSkip ){ 6244 sqlite3VdbeGoto(v, pLevel->addrSkip); 6245 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 6246 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 6247 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 6248 } 6249 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 6250 if( pLevel->addrLikeRep ){ 6251 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1), 6252 pLevel->addrLikeRep); 6253 VdbeCoverage(v); 6254 } 6255 #endif 6256 if( pLevel->iLeftJoin ){ 6257 int ws = pLoop->wsFlags; 6258 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 6259 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); 6260 if( (ws & WHERE_IDX_ONLY)==0 ){ 6261 assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor ); 6262 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur); 6263 } 6264 if( (ws & WHERE_INDEXED) 6265 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCoveringIdx) 6266 ){ 6267 if( ws & WHERE_MULTI_OR ){ 6268 Index *pIx = pLevel->u.pCoveringIdx; 6269 int iDb = sqlite3SchemaToIndex(db, pIx->pSchema); 6270 sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb); 6271 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 6272 } 6273 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 6274 } 6275 if( pLevel->op==OP_Return ){ 6276 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 6277 }else{ 6278 sqlite3VdbeGoto(v, pLevel->addrFirst); 6279 } 6280 sqlite3VdbeJumpHere(v, addr); 6281 } 6282 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 6283 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 6284 } 6285 6286 assert( pWInfo->nLevel<=pTabList->nSrc ); 6287 if( pWInfo->pExprMods ) whereUndoExprMods(pWInfo); 6288 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 6289 int k, last; 6290 VdbeOp *pOp, *pLastOp; 6291 Index *pIdx = 0; 6292 SrcItem *pTabItem = &pTabList->a[pLevel->iFrom]; 6293 Table *pTab = pTabItem->pTab; 6294 assert( pTab!=0 ); 6295 pLoop = pLevel->pWLoop; 6296 6297 /* Do RIGHT JOIN processing. Generate code that will output the 6298 ** unmatched rows of the right operand of the RIGHT JOIN with 6299 ** all of the columns of the left operand set to NULL. 6300 */ 6301 if( pLevel->pRJ ){ 6302 sqlite3WhereRightJoinLoop(pWInfo, i, pLevel); 6303 continue; 6304 } 6305 6306 /* For a co-routine, change all OP_Column references to the table of 6307 ** the co-routine into OP_Copy of result contained in a register. 6308 ** OP_Rowid becomes OP_Null. 6309 */ 6310 if( pTabItem->fg.viaCoroutine ){ 6311 testcase( pParse->db->mallocFailed ); 6312 translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur, 6313 pTabItem->regResult, 0); 6314 continue; 6315 } 6316 6317 /* If this scan uses an index, make VDBE code substitutions to read data 6318 ** from the index instead of from the table where possible. In some cases 6319 ** this optimization prevents the table from ever being read, which can 6320 ** yield a significant performance boost. 6321 ** 6322 ** Calls to the code generator in between sqlite3WhereBegin and 6323 ** sqlite3WhereEnd will have created code that references the table 6324 ** directly. This loop scans all that code looking for opcodes 6325 ** that reference the table and converts them into opcodes that 6326 ** reference the index. 6327 */ 6328 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 6329 pIdx = pLoop->u.btree.pIndex; 6330 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 6331 pIdx = pLevel->u.pCoveringIdx; 6332 } 6333 if( pIdx 6334 && !db->mallocFailed 6335 ){ 6336 if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){ 6337 last = iEnd; 6338 }else{ 6339 last = pWInfo->iEndWhere; 6340 } 6341 k = pLevel->addrBody + 1; 6342 #ifdef SQLITE_DEBUG 6343 if( db->flags & SQLITE_VdbeAddopTrace ){ 6344 printf("TRANSLATE opcodes in range %d..%d\n", k, last-1); 6345 } 6346 /* Proof that the "+1" on the k value above is safe */ 6347 pOp = sqlite3VdbeGetOp(v, k - 1); 6348 assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur ); 6349 assert( pOp->opcode!=OP_Rowid || pOp->p1!=pLevel->iTabCur ); 6350 assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur ); 6351 #endif 6352 pOp = sqlite3VdbeGetOp(v, k); 6353 pLastOp = pOp + (last - k); 6354 assert( pOp<=pLastOp ); 6355 do{ 6356 if( pOp->p1!=pLevel->iTabCur ){ 6357 /* no-op */ 6358 }else if( pOp->opcode==OP_Column 6359 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 6360 || pOp->opcode==OP_Offset 6361 #endif 6362 ){ 6363 int x = pOp->p2; 6364 assert( pIdx->pTable==pTab ); 6365 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 6366 if( pOp->opcode==OP_Offset ){ 6367 /* Do not need to translate the column number */ 6368 }else 6369 #endif 6370 if( !HasRowid(pTab) ){ 6371 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 6372 x = pPk->aiColumn[x]; 6373 assert( x>=0 ); 6374 }else{ 6375 testcase( x!=sqlite3StorageColumnToTable(pTab,x) ); 6376 x = sqlite3StorageColumnToTable(pTab,x); 6377 } 6378 x = sqlite3TableColumnToIndex(pIdx, x); 6379 if( x>=0 ){ 6380 pOp->p2 = x; 6381 pOp->p1 = pLevel->iIdxCur; 6382 OpcodeRewriteTrace(db, k, pOp); 6383 }else{ 6384 /* Unable to translate the table reference into an index 6385 ** reference. Verify that this is harmless - that the 6386 ** table being referenced really is open. 6387 */ 6388 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 6389 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 6390 || cursorIsOpen(v,pOp->p1,k) 6391 || pOp->opcode==OP_Offset 6392 ); 6393 #else 6394 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 6395 || cursorIsOpen(v,pOp->p1,k) 6396 ); 6397 #endif 6398 } 6399 }else if( pOp->opcode==OP_Rowid ){ 6400 pOp->p1 = pLevel->iIdxCur; 6401 pOp->opcode = OP_IdxRowid; 6402 OpcodeRewriteTrace(db, k, pOp); 6403 }else if( pOp->opcode==OP_IfNullRow ){ 6404 pOp->p1 = pLevel->iIdxCur; 6405 OpcodeRewriteTrace(db, k, pOp); 6406 } 6407 #ifdef SQLITE_DEBUG 6408 k++; 6409 #endif 6410 }while( (++pOp)<pLastOp ); 6411 #ifdef SQLITE_DEBUG 6412 if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n"); 6413 #endif 6414 } 6415 } 6416 6417 /* The "break" point is here, just past the end of the outer loop. 6418 ** Set it. 6419 */ 6420 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 6421 6422 /* Final cleanup 6423 */ 6424 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 6425 whereInfoFree(db, pWInfo); 6426 pParse->withinRJSubrtn -= nRJ; 6427 return; 6428 } 6429