xref: /sqlite-3.40.0/src/where.c (revision faaacd3f)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /*
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly.  The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
26 **
27 ** This object is not an API and can be changed from one release to the
28 ** next.  As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
30 */
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33   WhereClause *pWC;        /* The Where clause being analyzed */
34   Parse *pParse;           /* The parsing context */
35   int eDistinct;           /* Value to return from sqlite3_vtab_distinct() */
36   u32 mIn;                 /* Mask of terms that are <col> IN (...) */
37   u32 mHandleIn;           /* Terms that vtab will handle as <col> IN (...) */
38   sqlite3_value *aRhs[1];  /* RHS values for constraints. MUST BE LAST
39                            ** because extra space is allocated to hold up
40                            ** to nTerm such values */
41 };
42 
43 /* Forward declaration of methods */
44 static int whereLoopResize(sqlite3*, WhereLoop*, int);
45 
46 /*
47 ** Return the estimated number of output rows from a WHERE clause
48 */
49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
50   return pWInfo->nRowOut;
51 }
52 
53 /*
54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
55 ** WHERE clause returns outputs for DISTINCT processing.
56 */
57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
58   return pWInfo->eDistinct;
59 }
60 
61 /*
62 ** Return the number of ORDER BY terms that are satisfied by the
63 ** WHERE clause.  A return of 0 means that the output must be
64 ** completely sorted.  A return equal to the number of ORDER BY
65 ** terms means that no sorting is needed at all.  A return that
66 ** is positive but less than the number of ORDER BY terms means that
67 ** block sorting is required.
68 */
69 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
70   return pWInfo->nOBSat;
71 }
72 
73 /*
74 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
75 ** to emit rows in increasing order, and if the last row emitted by the
76 ** inner-most loop did not fit within the sorter, then we can skip all
77 ** subsequent rows for the current iteration of the inner loop (because they
78 ** will not fit in the sorter either) and continue with the second inner
79 ** loop - the loop immediately outside the inner-most.
80 **
81 ** When a row does not fit in the sorter (because the sorter already
82 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
83 ** label returned by this function.
84 **
85 ** If the ORDER BY LIMIT optimization applies, the jump destination should
86 ** be the continuation for the second-inner-most loop.  If the ORDER BY
87 ** LIMIT optimization does not apply, then the jump destination should
88 ** be the continuation for the inner-most loop.
89 **
90 ** It is always safe for this routine to return the continuation of the
91 ** inner-most loop, in the sense that a correct answer will result.
92 ** Returning the continuation the second inner loop is an optimization
93 ** that might make the code run a little faster, but should not change
94 ** the final answer.
95 */
96 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
97   WhereLevel *pInner;
98   if( !pWInfo->bOrderedInnerLoop ){
99     /* The ORDER BY LIMIT optimization does not apply.  Jump to the
100     ** continuation of the inner-most loop. */
101     return pWInfo->iContinue;
102   }
103   pInner = &pWInfo->a[pWInfo->nLevel-1];
104   assert( pInner->addrNxt!=0 );
105   return pInner->pRJ ? pWInfo->iContinue : pInner->addrNxt;
106 }
107 
108 /*
109 ** While generating code for the min/max optimization, after handling
110 ** the aggregate-step call to min() or max(), check to see if any
111 ** additional looping is required.  If the output order is such that
112 ** we are certain that the correct answer has already been found, then
113 ** code an OP_Goto to by pass subsequent processing.
114 **
115 ** Any extra OP_Goto that is coded here is an optimization.  The
116 ** correct answer should be obtained regardless.  This OP_Goto just
117 ** makes the answer appear faster.
118 */
119 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){
120   WhereLevel *pInner;
121   int i;
122   if( !pWInfo->bOrderedInnerLoop ) return;
123   if( pWInfo->nOBSat==0 ) return;
124   for(i=pWInfo->nLevel-1; i>=0; i--){
125     pInner = &pWInfo->a[i];
126     if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){
127       sqlite3VdbeGoto(v, pInner->addrNxt);
128       return;
129     }
130   }
131   sqlite3VdbeGoto(v, pWInfo->iBreak);
132 }
133 
134 /*
135 ** Return the VDBE address or label to jump to in order to continue
136 ** immediately with the next row of a WHERE clause.
137 */
138 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
139   assert( pWInfo->iContinue!=0 );
140   return pWInfo->iContinue;
141 }
142 
143 /*
144 ** Return the VDBE address or label to jump to in order to break
145 ** out of a WHERE loop.
146 */
147 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
148   return pWInfo->iBreak;
149 }
150 
151 /*
152 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
153 ** operate directly on the rowids returned by a WHERE clause.  Return
154 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
155 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
156 ** optimization can be used on multiple
157 **
158 ** If the ONEPASS optimization is used (if this routine returns true)
159 ** then also write the indices of open cursors used by ONEPASS
160 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
161 ** table and iaCur[1] gets the cursor used by an auxiliary index.
162 ** Either value may be -1, indicating that cursor is not used.
163 ** Any cursors returned will have been opened for writing.
164 **
165 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
166 ** unable to use the ONEPASS optimization.
167 */
168 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
169   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
170 #ifdef WHERETRACE_ENABLED
171   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
172     sqlite3DebugPrintf("%s cursors: %d %d\n",
173          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
174          aiCur[0], aiCur[1]);
175   }
176 #endif
177   return pWInfo->eOnePass;
178 }
179 
180 /*
181 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
182 ** the data cursor to the row selected by the index cursor.
183 */
184 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
185   return pWInfo->bDeferredSeek;
186 }
187 
188 /*
189 ** Move the content of pSrc into pDest
190 */
191 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
192   pDest->n = pSrc->n;
193   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
194 }
195 
196 /*
197 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
198 **
199 ** The new entry might overwrite an existing entry, or it might be
200 ** appended, or it might be discarded.  Do whatever is the right thing
201 ** so that pSet keeps the N_OR_COST best entries seen so far.
202 */
203 static int whereOrInsert(
204   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
205   Bitmask prereq,        /* Prerequisites of the new entry */
206   LogEst rRun,           /* Run-cost of the new entry */
207   LogEst nOut            /* Number of outputs for the new entry */
208 ){
209   u16 i;
210   WhereOrCost *p;
211   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
212     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
213       goto whereOrInsert_done;
214     }
215     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
216       return 0;
217     }
218   }
219   if( pSet->n<N_OR_COST ){
220     p = &pSet->a[pSet->n++];
221     p->nOut = nOut;
222   }else{
223     p = pSet->a;
224     for(i=1; i<pSet->n; i++){
225       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
226     }
227     if( p->rRun<=rRun ) return 0;
228   }
229 whereOrInsert_done:
230   p->prereq = prereq;
231   p->rRun = rRun;
232   if( p->nOut>nOut ) p->nOut = nOut;
233   return 1;
234 }
235 
236 /*
237 ** Return the bitmask for the given cursor number.  Return 0 if
238 ** iCursor is not in the set.
239 */
240 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
241   int i;
242   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
243   assert( pMaskSet->n>0 || pMaskSet->ix[0]<0 );
244   assert( iCursor>=-1 );
245   if( pMaskSet->ix[0]==iCursor ){
246     return 1;
247   }
248   for(i=1; i<pMaskSet->n; i++){
249     if( pMaskSet->ix[i]==iCursor ){
250       return MASKBIT(i);
251     }
252   }
253   return 0;
254 }
255 
256 /* Allocate memory that is automatically freed when pWInfo is freed.
257 */
258 void *sqlite3WhereMalloc(WhereInfo *pWInfo, u64 nByte){
259   WhereMemBlock *pBlock;
260   pBlock = sqlite3DbMallocRawNN(pWInfo->pParse->db, nByte+sizeof(*pBlock));
261   if( pBlock ){
262     pBlock->pNext = pWInfo->pMemToFree;
263     pBlock->sz = nByte;
264     pWInfo->pMemToFree = pBlock;
265     pBlock++;
266   }
267   return (void*)pBlock;
268 }
269 void *sqlite3WhereRealloc(WhereInfo *pWInfo, void *pOld, u64 nByte){
270   void *pNew = sqlite3WhereMalloc(pWInfo, nByte);
271   if( pNew && pOld ){
272     WhereMemBlock *pOldBlk = (WhereMemBlock*)pOld;
273     pOldBlk--;
274     assert( pOldBlk->sz<nByte );
275     memcpy(pNew, pOld, pOldBlk->sz);
276   }
277   return pNew;
278 }
279 
280 /*
281 ** Create a new mask for cursor iCursor.
282 **
283 ** There is one cursor per table in the FROM clause.  The number of
284 ** tables in the FROM clause is limited by a test early in the
285 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
286 ** array will never overflow.
287 */
288 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
289   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
290   pMaskSet->ix[pMaskSet->n++] = iCursor;
291 }
292 
293 /*
294 ** If the right-hand branch of the expression is a TK_COLUMN, then return
295 ** a pointer to the right-hand branch.  Otherwise, return NULL.
296 */
297 static Expr *whereRightSubexprIsColumn(Expr *p){
298   p = sqlite3ExprSkipCollateAndLikely(p->pRight);
299   if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
300     return p;
301   }
302   return 0;
303 }
304 
305 /*
306 ** Advance to the next WhereTerm that matches according to the criteria
307 ** established when the pScan object was initialized by whereScanInit().
308 ** Return NULL if there are no more matching WhereTerms.
309 */
310 static WhereTerm *whereScanNext(WhereScan *pScan){
311   int iCur;            /* The cursor on the LHS of the term */
312   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
313   Expr *pX;            /* An expression being tested */
314   WhereClause *pWC;    /* Shorthand for pScan->pWC */
315   WhereTerm *pTerm;    /* The term being tested */
316   int k = pScan->k;    /* Where to start scanning */
317 
318   assert( pScan->iEquiv<=pScan->nEquiv );
319   pWC = pScan->pWC;
320   while(1){
321     iColumn = pScan->aiColumn[pScan->iEquiv-1];
322     iCur = pScan->aiCur[pScan->iEquiv-1];
323     assert( pWC!=0 );
324     assert( iCur>=0 );
325     do{
326       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
327         assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 || pTerm->leftCursor<0 );
328         if( pTerm->leftCursor==iCur
329          && pTerm->u.x.leftColumn==iColumn
330          && (iColumn!=XN_EXPR
331              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
332                                        pScan->pIdxExpr,iCur)==0)
333          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_OuterON))
334         ){
335           if( (pTerm->eOperator & WO_EQUIV)!=0
336            && pScan->nEquiv<ArraySize(pScan->aiCur)
337            && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0
338           ){
339             int j;
340             for(j=0; j<pScan->nEquiv; j++){
341               if( pScan->aiCur[j]==pX->iTable
342                && pScan->aiColumn[j]==pX->iColumn ){
343                   break;
344               }
345             }
346             if( j==pScan->nEquiv ){
347               pScan->aiCur[j] = pX->iTable;
348               pScan->aiColumn[j] = pX->iColumn;
349               pScan->nEquiv++;
350             }
351           }
352           if( (pTerm->eOperator & pScan->opMask)!=0 ){
353             /* Verify the affinity and collating sequence match */
354             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
355               CollSeq *pColl;
356               Parse *pParse = pWC->pWInfo->pParse;
357               pX = pTerm->pExpr;
358               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
359                 continue;
360               }
361               assert(pX->pLeft);
362               pColl = sqlite3ExprCompareCollSeq(pParse, pX);
363               if( pColl==0 ) pColl = pParse->db->pDfltColl;
364               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
365                 continue;
366               }
367             }
368             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
369              && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0))
370              && pX->op==TK_COLUMN
371              && pX->iTable==pScan->aiCur[0]
372              && pX->iColumn==pScan->aiColumn[0]
373             ){
374               testcase( pTerm->eOperator & WO_IS );
375               continue;
376             }
377             pScan->pWC = pWC;
378             pScan->k = k+1;
379 #ifdef WHERETRACE_ENABLED
380             if( sqlite3WhereTrace & 0x20000 ){
381               int ii;
382               sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d",
383                  pTerm, pScan->nEquiv);
384               for(ii=0; ii<pScan->nEquiv; ii++){
385                 sqlite3DebugPrintf(" {%d:%d}",
386                    pScan->aiCur[ii], pScan->aiColumn[ii]);
387               }
388               sqlite3DebugPrintf("\n");
389             }
390 #endif
391             return pTerm;
392           }
393         }
394       }
395       pWC = pWC->pOuter;
396       k = 0;
397     }while( pWC!=0 );
398     if( pScan->iEquiv>=pScan->nEquiv ) break;
399     pWC = pScan->pOrigWC;
400     k = 0;
401     pScan->iEquiv++;
402   }
403   return 0;
404 }
405 
406 /*
407 ** This is whereScanInit() for the case of an index on an expression.
408 ** It is factored out into a separate tail-recursion subroutine so that
409 ** the normal whereScanInit() routine, which is a high-runner, does not
410 ** need to push registers onto the stack as part of its prologue.
411 */
412 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
413   pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
414   return whereScanNext(pScan);
415 }
416 
417 /*
418 ** Initialize a WHERE clause scanner object.  Return a pointer to the
419 ** first match.  Return NULL if there are no matches.
420 **
421 ** The scanner will be searching the WHERE clause pWC.  It will look
422 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
423 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
424 ** must be one of the indexes of table iCur.
425 **
426 ** The <op> must be one of the operators described by opMask.
427 **
428 ** If the search is for X and the WHERE clause contains terms of the
429 ** form X=Y then this routine might also return terms of the form
430 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
431 ** but is enough to handle most commonly occurring SQL statements.
432 **
433 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
434 ** index pIdx.
435 */
436 static WhereTerm *whereScanInit(
437   WhereScan *pScan,       /* The WhereScan object being initialized */
438   WhereClause *pWC,       /* The WHERE clause to be scanned */
439   int iCur,               /* Cursor to scan for */
440   int iColumn,            /* Column to scan for */
441   u32 opMask,             /* Operator(s) to scan for */
442   Index *pIdx             /* Must be compatible with this index */
443 ){
444   pScan->pOrigWC = pWC;
445   pScan->pWC = pWC;
446   pScan->pIdxExpr = 0;
447   pScan->idxaff = 0;
448   pScan->zCollName = 0;
449   pScan->opMask = opMask;
450   pScan->k = 0;
451   pScan->aiCur[0] = iCur;
452   pScan->nEquiv = 1;
453   pScan->iEquiv = 1;
454   if( pIdx ){
455     int j = iColumn;
456     iColumn = pIdx->aiColumn[j];
457     if( iColumn==pIdx->pTable->iPKey ){
458       iColumn = XN_ROWID;
459     }else if( iColumn>=0 ){
460       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
461       pScan->zCollName = pIdx->azColl[j];
462     }else if( iColumn==XN_EXPR ){
463       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
464       pScan->zCollName = pIdx->azColl[j];
465       pScan->aiColumn[0] = XN_EXPR;
466       return whereScanInitIndexExpr(pScan);
467     }
468   }else if( iColumn==XN_EXPR ){
469     return 0;
470   }
471   pScan->aiColumn[0] = iColumn;
472   return whereScanNext(pScan);
473 }
474 
475 /*
476 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
477 ** where X is a reference to the iColumn of table iCur or of index pIdx
478 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
479 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
480 **
481 ** If pIdx!=0 then it must be one of the indexes of table iCur.
482 ** Search for terms matching the iColumn-th column of pIdx
483 ** rather than the iColumn-th column of table iCur.
484 **
485 ** The term returned might by Y=<expr> if there is another constraint in
486 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
487 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
488 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
489 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
490 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
491 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
492 **
493 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
494 ** then try for the one with no dependencies on <expr> - in other words where
495 ** <expr> is a constant expression of some kind.  Only return entries of
496 ** the form "X <op> Y" where Y is a column in another table if no terms of
497 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
498 ** exist, try to return a term that does not use WO_EQUIV.
499 */
500 WhereTerm *sqlite3WhereFindTerm(
501   WhereClause *pWC,     /* The WHERE clause to be searched */
502   int iCur,             /* Cursor number of LHS */
503   int iColumn,          /* Column number of LHS */
504   Bitmask notReady,     /* RHS must not overlap with this mask */
505   u32 op,               /* Mask of WO_xx values describing operator */
506   Index *pIdx           /* Must be compatible with this index, if not NULL */
507 ){
508   WhereTerm *pResult = 0;
509   WhereTerm *p;
510   WhereScan scan;
511 
512   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
513   op &= WO_EQ|WO_IS;
514   while( p ){
515     if( (p->prereqRight & notReady)==0 ){
516       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
517         testcase( p->eOperator & WO_IS );
518         return p;
519       }
520       if( pResult==0 ) pResult = p;
521     }
522     p = whereScanNext(&scan);
523   }
524   return pResult;
525 }
526 
527 /*
528 ** This function searches pList for an entry that matches the iCol-th column
529 ** of index pIdx.
530 **
531 ** If such an expression is found, its index in pList->a[] is returned. If
532 ** no expression is found, -1 is returned.
533 */
534 static int findIndexCol(
535   Parse *pParse,                  /* Parse context */
536   ExprList *pList,                /* Expression list to search */
537   int iBase,                      /* Cursor for table associated with pIdx */
538   Index *pIdx,                    /* Index to match column of */
539   int iCol                        /* Column of index to match */
540 ){
541   int i;
542   const char *zColl = pIdx->azColl[iCol];
543 
544   for(i=0; i<pList->nExpr; i++){
545     Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
546     if( ALWAYS(p!=0)
547      && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
548      && p->iColumn==pIdx->aiColumn[iCol]
549      && p->iTable==iBase
550     ){
551       CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
552       if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
553         return i;
554       }
555     }
556   }
557 
558   return -1;
559 }
560 
561 /*
562 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
563 */
564 static int indexColumnNotNull(Index *pIdx, int iCol){
565   int j;
566   assert( pIdx!=0 );
567   assert( iCol>=0 && iCol<pIdx->nColumn );
568   j = pIdx->aiColumn[iCol];
569   if( j>=0 ){
570     return pIdx->pTable->aCol[j].notNull;
571   }else if( j==(-1) ){
572     return 1;
573   }else{
574     assert( j==(-2) );
575     return 0;  /* Assume an indexed expression can always yield a NULL */
576 
577   }
578 }
579 
580 /*
581 ** Return true if the DISTINCT expression-list passed as the third argument
582 ** is redundant.
583 **
584 ** A DISTINCT list is redundant if any subset of the columns in the
585 ** DISTINCT list are collectively unique and individually non-null.
586 */
587 static int isDistinctRedundant(
588   Parse *pParse,            /* Parsing context */
589   SrcList *pTabList,        /* The FROM clause */
590   WhereClause *pWC,         /* The WHERE clause */
591   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
592 ){
593   Table *pTab;
594   Index *pIdx;
595   int i;
596   int iBase;
597 
598   /* If there is more than one table or sub-select in the FROM clause of
599   ** this query, then it will not be possible to show that the DISTINCT
600   ** clause is redundant. */
601   if( pTabList->nSrc!=1 ) return 0;
602   iBase = pTabList->a[0].iCursor;
603   pTab = pTabList->a[0].pTab;
604 
605   /* If any of the expressions is an IPK column on table iBase, then return
606   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
607   ** current SELECT is a correlated sub-query.
608   */
609   for(i=0; i<pDistinct->nExpr; i++){
610     Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
611     if( NEVER(p==0) ) continue;
612     if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue;
613     if( p->iTable==iBase && p->iColumn<0 ) return 1;
614   }
615 
616   /* Loop through all indices on the table, checking each to see if it makes
617   ** the DISTINCT qualifier redundant. It does so if:
618   **
619   **   1. The index is itself UNIQUE, and
620   **
621   **   2. All of the columns in the index are either part of the pDistinct
622   **      list, or else the WHERE clause contains a term of the form "col=X",
623   **      where X is a constant value. The collation sequences of the
624   **      comparison and select-list expressions must match those of the index.
625   **
626   **   3. All of those index columns for which the WHERE clause does not
627   **      contain a "col=X" term are subject to a NOT NULL constraint.
628   */
629   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
630     if( !IsUniqueIndex(pIdx) ) continue;
631     if( pIdx->pPartIdxWhere ) continue;
632     for(i=0; i<pIdx->nKeyCol; i++){
633       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
634         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
635         if( indexColumnNotNull(pIdx, i)==0 ) break;
636       }
637     }
638     if( i==pIdx->nKeyCol ){
639       /* This index implies that the DISTINCT qualifier is redundant. */
640       return 1;
641     }
642   }
643 
644   return 0;
645 }
646 
647 
648 /*
649 ** Estimate the logarithm of the input value to base 2.
650 */
651 static LogEst estLog(LogEst N){
652   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
653 }
654 
655 /*
656 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
657 **
658 ** This routine runs over generated VDBE code and translates OP_Column
659 ** opcodes into OP_Copy when the table is being accessed via co-routine
660 ** instead of via table lookup.
661 **
662 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
663 ** cursor iTabCur are transformed into OP_Sequence opcode for the
664 ** iAutoidxCur cursor, in order to generate unique rowids for the
665 ** automatic index being generated.
666 */
667 static void translateColumnToCopy(
668   Parse *pParse,      /* Parsing context */
669   int iStart,         /* Translate from this opcode to the end */
670   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
671   int iRegister,      /* The first column is in this register */
672   int iAutoidxCur     /* If non-zero, cursor of autoindex being generated */
673 ){
674   Vdbe *v = pParse->pVdbe;
675   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
676   int iEnd = sqlite3VdbeCurrentAddr(v);
677   if( pParse->db->mallocFailed ) return;
678   for(; iStart<iEnd; iStart++, pOp++){
679     if( pOp->p1!=iTabCur ) continue;
680     if( pOp->opcode==OP_Column ){
681       pOp->opcode = OP_Copy;
682       pOp->p1 = pOp->p2 + iRegister;
683       pOp->p2 = pOp->p3;
684       pOp->p3 = 0;
685       pOp->p5 = 2;  /* Cause the MEM_Subtype flag to be cleared */
686     }else if( pOp->opcode==OP_Rowid ){
687       pOp->opcode = OP_Sequence;
688       pOp->p1 = iAutoidxCur;
689 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
690       if( iAutoidxCur==0 ){
691         pOp->opcode = OP_Null;
692         pOp->p3 = 0;
693       }
694 #endif
695     }
696   }
697 }
698 
699 /*
700 ** Two routines for printing the content of an sqlite3_index_info
701 ** structure.  Used for testing and debugging only.  If neither
702 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
703 ** are no-ops.
704 */
705 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
706 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
707   int i;
708   if( !sqlite3WhereTrace ) return;
709   for(i=0; i<p->nConstraint; i++){
710     sqlite3DebugPrintf(
711        "  constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n",
712        i,
713        p->aConstraint[i].iColumn,
714        p->aConstraint[i].iTermOffset,
715        p->aConstraint[i].op,
716        p->aConstraint[i].usable,
717        sqlite3_vtab_collation(p,i));
718   }
719   for(i=0; i<p->nOrderBy; i++){
720     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
721        i,
722        p->aOrderBy[i].iColumn,
723        p->aOrderBy[i].desc);
724   }
725 }
726 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
727   int i;
728   if( !sqlite3WhereTrace ) return;
729   for(i=0; i<p->nConstraint; i++){
730     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
731        i,
732        p->aConstraintUsage[i].argvIndex,
733        p->aConstraintUsage[i].omit);
734   }
735   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
736   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
737   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
738   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
739   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
740 }
741 #else
742 #define whereTraceIndexInfoInputs(A)
743 #define whereTraceIndexInfoOutputs(A)
744 #endif
745 
746 /*
747 ** We know that pSrc is an operand of an outer join.  Return true if
748 ** pTerm is a constraint that is compatible with that join.
749 **
750 ** pTerm must be EP_OuterON if pSrc is the right operand of an
751 ** outer join.  pTerm can be either EP_OuterON or EP_InnerON if pSrc
752 ** is the left operand of a RIGHT join.
753 */
754 static int constraintCompatibleWithOuterJoin(
755   const WhereTerm *pTerm,       /* WHERE clause term to check */
756   const SrcItem *pSrc           /* Table we are trying to access */
757 ){
758   assert( (pSrc->fg.jointype&(JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ); /* By caller */
759   testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT );
760   testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ );
761   testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) )
762   testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) );
763   if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON)
764    || pTerm->pExpr->w.iJoin != pSrc->iCursor
765   ){
766     return 0;
767   }
768   if( (pSrc->fg.jointype & (JT_LEFT|JT_RIGHT))!=0
769    && ExprHasProperty(pTerm->pExpr, EP_InnerON)
770   ){
771     return 0;
772   }
773   return 1;
774 }
775 
776 
777 
778 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
779 /*
780 ** Return TRUE if the WHERE clause term pTerm is of a form where it
781 ** could be used with an index to access pSrc, assuming an appropriate
782 ** index existed.
783 */
784 static int termCanDriveIndex(
785   const WhereTerm *pTerm,        /* WHERE clause term to check */
786   const SrcItem *pSrc,           /* Table we are trying to access */
787   const Bitmask notReady         /* Tables in outer loops of the join */
788 ){
789   char aff;
790   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
791   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
792   assert( (pSrc->fg.jointype & JT_RIGHT)==0 );
793   if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0
794    && !constraintCompatibleWithOuterJoin(pTerm,pSrc)
795   ){
796     return 0;
797   }
798   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
799   assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
800   if( pTerm->u.x.leftColumn<0 ) return 0;
801   aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
802   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
803   testcase( pTerm->pExpr->op==TK_IS );
804   return 1;
805 }
806 #endif
807 
808 
809 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
810 /*
811 ** Generate code to construct the Index object for an automatic index
812 ** and to set up the WhereLevel object pLevel so that the code generator
813 ** makes use of the automatic index.
814 */
815 static SQLITE_NOINLINE void constructAutomaticIndex(
816   Parse *pParse,              /* The parsing context */
817   const WhereClause *pWC,     /* The WHERE clause */
818   const SrcItem *pSrc,        /* The FROM clause term to get the next index */
819   const Bitmask notReady,     /* Mask of cursors that are not available */
820   WhereLevel *pLevel          /* Write new index here */
821 ){
822   int nKeyCol;                /* Number of columns in the constructed index */
823   WhereTerm *pTerm;           /* A single term of the WHERE clause */
824   WhereTerm *pWCEnd;          /* End of pWC->a[] */
825   Index *pIdx;                /* Object describing the transient index */
826   Vdbe *v;                    /* Prepared statement under construction */
827   int addrInit;               /* Address of the initialization bypass jump */
828   Table *pTable;              /* The table being indexed */
829   int addrTop;                /* Top of the index fill loop */
830   int regRecord;              /* Register holding an index record */
831   int n;                      /* Column counter */
832   int i;                      /* Loop counter */
833   int mxBitCol;               /* Maximum column in pSrc->colUsed */
834   CollSeq *pColl;             /* Collating sequence to on a column */
835   WhereLoop *pLoop;           /* The Loop object */
836   char *zNotUsed;             /* Extra space on the end of pIdx */
837   Bitmask idxCols;            /* Bitmap of columns used for indexing */
838   Bitmask extraCols;          /* Bitmap of additional columns */
839   u8 sentWarning = 0;         /* True if a warnning has been issued */
840   Expr *pPartial = 0;         /* Partial Index Expression */
841   int iContinue = 0;          /* Jump here to skip excluded rows */
842   SrcItem *pTabItem;          /* FROM clause term being indexed */
843   int addrCounter = 0;        /* Address where integer counter is initialized */
844   int regBase;                /* Array of registers where record is assembled */
845 
846   /* Generate code to skip over the creation and initialization of the
847   ** transient index on 2nd and subsequent iterations of the loop. */
848   v = pParse->pVdbe;
849   assert( v!=0 );
850   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
851 
852   /* Count the number of columns that will be added to the index
853   ** and used to match WHERE clause constraints */
854   nKeyCol = 0;
855   pTable = pSrc->pTab;
856   pWCEnd = &pWC->a[pWC->nTerm];
857   pLoop = pLevel->pWLoop;
858   idxCols = 0;
859   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
860     Expr *pExpr = pTerm->pExpr;
861     /* Make the automatic index a partial index if there are terms in the
862     ** WHERE clause (or the ON clause of a LEFT join) that constrain which
863     ** rows of the target table (pSrc) that can be used. */
864     if( (pTerm->wtFlags & TERM_VIRTUAL)==0
865      && sqlite3ExprIsTableConstraint(pExpr, pSrc)
866     ){
867       pPartial = sqlite3ExprAnd(pParse, pPartial,
868                                 sqlite3ExprDup(pParse->db, pExpr, 0));
869     }
870     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
871       int iCol;
872       Bitmask cMask;
873       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
874       iCol = pTerm->u.x.leftColumn;
875       cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
876       testcase( iCol==BMS );
877       testcase( iCol==BMS-1 );
878       if( !sentWarning ){
879         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
880             "automatic index on %s(%s)", pTable->zName,
881             pTable->aCol[iCol].zCnName);
882         sentWarning = 1;
883       }
884       if( (idxCols & cMask)==0 ){
885         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
886           goto end_auto_index_create;
887         }
888         pLoop->aLTerm[nKeyCol++] = pTerm;
889         idxCols |= cMask;
890       }
891     }
892   }
893   assert( nKeyCol>0 || pParse->db->mallocFailed );
894   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
895   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
896                      | WHERE_AUTO_INDEX;
897 
898   /* Count the number of additional columns needed to create a
899   ** covering index.  A "covering index" is an index that contains all
900   ** columns that are needed by the query.  With a covering index, the
901   ** original table never needs to be accessed.  Automatic indices must
902   ** be a covering index because the index will not be updated if the
903   ** original table changes and the index and table cannot both be used
904   ** if they go out of sync.
905   */
906   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
907   mxBitCol = MIN(BMS-1,pTable->nCol);
908   testcase( pTable->nCol==BMS-1 );
909   testcase( pTable->nCol==BMS-2 );
910   for(i=0; i<mxBitCol; i++){
911     if( extraCols & MASKBIT(i) ) nKeyCol++;
912   }
913   if( pSrc->colUsed & MASKBIT(BMS-1) ){
914     nKeyCol += pTable->nCol - BMS + 1;
915   }
916 
917   /* Construct the Index object to describe this index */
918   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
919   if( pIdx==0 ) goto end_auto_index_create;
920   pLoop->u.btree.pIndex = pIdx;
921   pIdx->zName = "auto-index";
922   pIdx->pTable = pTable;
923   n = 0;
924   idxCols = 0;
925   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
926     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
927       int iCol;
928       Bitmask cMask;
929       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
930       iCol = pTerm->u.x.leftColumn;
931       cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
932       testcase( iCol==BMS-1 );
933       testcase( iCol==BMS );
934       if( (idxCols & cMask)==0 ){
935         Expr *pX = pTerm->pExpr;
936         idxCols |= cMask;
937         pIdx->aiColumn[n] = pTerm->u.x.leftColumn;
938         pColl = sqlite3ExprCompareCollSeq(pParse, pX);
939         assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
940         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
941         n++;
942       }
943     }
944   }
945   assert( (u32)n==pLoop->u.btree.nEq );
946 
947   /* Add additional columns needed to make the automatic index into
948   ** a covering index */
949   for(i=0; i<mxBitCol; i++){
950     if( extraCols & MASKBIT(i) ){
951       pIdx->aiColumn[n] = i;
952       pIdx->azColl[n] = sqlite3StrBINARY;
953       n++;
954     }
955   }
956   if( pSrc->colUsed & MASKBIT(BMS-1) ){
957     for(i=BMS-1; i<pTable->nCol; i++){
958       pIdx->aiColumn[n] = i;
959       pIdx->azColl[n] = sqlite3StrBINARY;
960       n++;
961     }
962   }
963   assert( n==nKeyCol );
964   pIdx->aiColumn[n] = XN_ROWID;
965   pIdx->azColl[n] = sqlite3StrBINARY;
966 
967   /* Create the automatic index */
968   assert( pLevel->iIdxCur>=0 );
969   pLevel->iIdxCur = pParse->nTab++;
970   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
971   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
972   VdbeComment((v, "for %s", pTable->zName));
973   if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) ){
974     pLevel->regFilter = ++pParse->nMem;
975     sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter);
976   }
977 
978   /* Fill the automatic index with content */
979   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
980   if( pTabItem->fg.viaCoroutine ){
981     int regYield = pTabItem->regReturn;
982     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
983     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
984     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
985     VdbeCoverage(v);
986     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
987   }else{
988     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
989   }
990   if( pPartial ){
991     iContinue = sqlite3VdbeMakeLabel(pParse);
992     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
993     pLoop->wsFlags |= WHERE_PARTIALIDX;
994   }
995   regRecord = sqlite3GetTempReg(pParse);
996   regBase = sqlite3GenerateIndexKey(
997       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
998   );
999   if( pLevel->regFilter ){
1000     sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0,
1001                          regBase, pLoop->u.btree.nEq);
1002   }
1003   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
1004   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1005   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
1006   if( pTabItem->fg.viaCoroutine ){
1007     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
1008     testcase( pParse->db->mallocFailed );
1009     assert( pLevel->iIdxCur>0 );
1010     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
1011                           pTabItem->regResult, pLevel->iIdxCur);
1012     sqlite3VdbeGoto(v, addrTop);
1013     pTabItem->fg.viaCoroutine = 0;
1014   }else{
1015     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
1016     sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
1017   }
1018   sqlite3VdbeJumpHere(v, addrTop);
1019   sqlite3ReleaseTempReg(pParse, regRecord);
1020 
1021   /* Jump here when skipping the initialization */
1022   sqlite3VdbeJumpHere(v, addrInit);
1023 
1024 end_auto_index_create:
1025   sqlite3ExprDelete(pParse->db, pPartial);
1026 }
1027 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
1028 
1029 /*
1030 ** Generate bytecode that will initialize a Bloom filter that is appropriate
1031 ** for pLevel.
1032 **
1033 ** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER
1034 ** flag set, initialize a Bloomfilter for them as well.  Except don't do
1035 ** this recursive initialization if the SQLITE_BloomPulldown optimization has
1036 ** been turned off.
1037 **
1038 ** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared
1039 ** from the loop, but the regFilter value is set to a register that implements
1040 ** the Bloom filter.  When regFilter is positive, the
1041 ** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter
1042 ** and skip the subsequence B-Tree seek if the Bloom filter indicates that
1043 ** no matching rows exist.
1044 **
1045 ** This routine may only be called if it has previously been determined that
1046 ** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit
1047 ** is set.
1048 */
1049 static SQLITE_NOINLINE void sqlite3ConstructBloomFilter(
1050   WhereInfo *pWInfo,    /* The WHERE clause */
1051   int iLevel,           /* Index in pWInfo->a[] that is pLevel */
1052   WhereLevel *pLevel,   /* Make a Bloom filter for this FROM term */
1053   Bitmask notReady      /* Loops that are not ready */
1054 ){
1055   int addrOnce;                        /* Address of opening OP_Once */
1056   int addrTop;                         /* Address of OP_Rewind */
1057   int addrCont;                        /* Jump here to skip a row */
1058   const WhereTerm *pTerm;              /* For looping over WHERE clause terms */
1059   const WhereTerm *pWCEnd;             /* Last WHERE clause term */
1060   Parse *pParse = pWInfo->pParse;      /* Parsing context */
1061   Vdbe *v = pParse->pVdbe;             /* VDBE under construction */
1062   WhereLoop *pLoop = pLevel->pWLoop;   /* The loop being coded */
1063   int iCur;                            /* Cursor for table getting the filter */
1064 
1065   assert( pLoop!=0 );
1066   assert( v!=0 );
1067   assert( pLoop->wsFlags & WHERE_BLOOMFILTER );
1068 
1069   addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1070   do{
1071     const SrcItem *pItem;
1072     const Table *pTab;
1073     u64 sz;
1074     sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel);
1075     addrCont = sqlite3VdbeMakeLabel(pParse);
1076     iCur = pLevel->iTabCur;
1077     pLevel->regFilter = ++pParse->nMem;
1078 
1079     /* The Bloom filter is a Blob held in a register.  Initialize it
1080     ** to zero-filled blob of at least 80K bits, but maybe more if the
1081     ** estimated size of the table is larger.  We could actually
1082     ** measure the size of the table at run-time using OP_Count with
1083     ** P3==1 and use that value to initialize the blob.  But that makes
1084     ** testing complicated.  By basing the blob size on the value in the
1085     ** sqlite_stat1 table, testing is much easier.
1086     */
1087     pItem = &pWInfo->pTabList->a[pLevel->iFrom];
1088     assert( pItem!=0 );
1089     pTab = pItem->pTab;
1090     assert( pTab!=0 );
1091     sz = sqlite3LogEstToInt(pTab->nRowLogEst);
1092     if( sz<10000 ){
1093       sz = 10000;
1094     }else if( sz>10000000 ){
1095       sz = 10000000;
1096     }
1097     sqlite3VdbeAddOp2(v, OP_Blob, (int)sz, pLevel->regFilter);
1098 
1099     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1100     pWCEnd = &pWInfo->sWC.a[pWInfo->sWC.nTerm];
1101     for(pTerm=pWInfo->sWC.a; pTerm<pWCEnd; pTerm++){
1102       Expr *pExpr = pTerm->pExpr;
1103       if( (pTerm->wtFlags & TERM_VIRTUAL)==0
1104        && sqlite3ExprIsTableConstraint(pExpr, pItem)
1105       ){
1106         sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
1107       }
1108     }
1109     if( pLoop->wsFlags & WHERE_IPK ){
1110       int r1 = sqlite3GetTempReg(pParse);
1111       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1);
1112       sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, 1);
1113       sqlite3ReleaseTempReg(pParse, r1);
1114     }else{
1115       Index *pIdx = pLoop->u.btree.pIndex;
1116       int n = pLoop->u.btree.nEq;
1117       int r1 = sqlite3GetTempRange(pParse, n);
1118       int jj;
1119       for(jj=0; jj<n; jj++){
1120         int iCol = pIdx->aiColumn[jj];
1121         assert( pIdx->pTable==pItem->pTab );
1122         sqlite3ExprCodeGetColumnOfTable(v, pIdx->pTable, iCur, iCol,r1+jj);
1123       }
1124       sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, n);
1125       sqlite3ReleaseTempRange(pParse, r1, n);
1126     }
1127     sqlite3VdbeResolveLabel(v, addrCont);
1128     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
1129     VdbeCoverage(v);
1130     sqlite3VdbeJumpHere(v, addrTop);
1131     pLoop->wsFlags &= ~WHERE_BLOOMFILTER;
1132     if( OptimizationDisabled(pParse->db, SQLITE_BloomPulldown) ) break;
1133     while( ++iLevel < pWInfo->nLevel ){
1134       const SrcItem *pTabItem;
1135       pLevel = &pWInfo->a[iLevel];
1136       pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1137       if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ) ) continue;
1138       pLoop = pLevel->pWLoop;
1139       if( NEVER(pLoop==0) ) continue;
1140       if( pLoop->prereq & notReady ) continue;
1141       if( (pLoop->wsFlags & (WHERE_BLOOMFILTER|WHERE_COLUMN_IN))
1142                  ==WHERE_BLOOMFILTER
1143       ){
1144         /* This is a candidate for bloom-filter pull-down (early evaluation).
1145         ** The test that WHERE_COLUMN_IN is omitted is important, as we are
1146         ** not able to do early evaluation of bloom filters that make use of
1147         ** the IN operator */
1148         break;
1149       }
1150     }
1151   }while( iLevel < pWInfo->nLevel );
1152   sqlite3VdbeJumpHere(v, addrOnce);
1153 }
1154 
1155 
1156 #ifndef SQLITE_OMIT_VIRTUALTABLE
1157 /*
1158 ** Allocate and populate an sqlite3_index_info structure. It is the
1159 ** responsibility of the caller to eventually release the structure
1160 ** by passing the pointer returned by this function to freeIndexInfo().
1161 */
1162 static sqlite3_index_info *allocateIndexInfo(
1163   WhereInfo *pWInfo,              /* The WHERE clause */
1164   WhereClause *pWC,               /* The WHERE clause being analyzed */
1165   Bitmask mUnusable,              /* Ignore terms with these prereqs */
1166   SrcItem *pSrc,                  /* The FROM clause term that is the vtab */
1167   u16 *pmNoOmit                   /* Mask of terms not to omit */
1168 ){
1169   int i, j;
1170   int nTerm;
1171   Parse *pParse = pWInfo->pParse;
1172   struct sqlite3_index_constraint *pIdxCons;
1173   struct sqlite3_index_orderby *pIdxOrderBy;
1174   struct sqlite3_index_constraint_usage *pUsage;
1175   struct HiddenIndexInfo *pHidden;
1176   WhereTerm *pTerm;
1177   int nOrderBy;
1178   sqlite3_index_info *pIdxInfo;
1179   u16 mNoOmit = 0;
1180   const Table *pTab;
1181   int eDistinct = 0;
1182   ExprList *pOrderBy = pWInfo->pOrderBy;
1183 
1184   assert( pSrc!=0 );
1185   pTab = pSrc->pTab;
1186   assert( pTab!=0 );
1187   assert( IsVirtual(pTab) );
1188 
1189   /* Find all WHERE clause constraints referring to this virtual table.
1190   ** Mark each term with the TERM_OK flag.  Set nTerm to the number of
1191   ** terms found.
1192   */
1193   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1194     pTerm->wtFlags &= ~TERM_OK;
1195     if( pTerm->leftCursor != pSrc->iCursor ) continue;
1196     if( pTerm->prereqRight & mUnusable ) continue;
1197     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
1198     testcase( pTerm->eOperator & WO_IN );
1199     testcase( pTerm->eOperator & WO_ISNULL );
1200     testcase( pTerm->eOperator & WO_IS );
1201     testcase( pTerm->eOperator & WO_ALL );
1202     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
1203     if( pTerm->wtFlags & TERM_VNULL ) continue;
1204 
1205     assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
1206     assert( pTerm->u.x.leftColumn>=XN_ROWID );
1207     assert( pTerm->u.x.leftColumn<pTab->nCol );
1208 
1209     /* tag-20191211-002: WHERE-clause constraints are not useful to the
1210     ** right-hand table of a LEFT JOIN nor to the either table of a
1211     ** RIGHT JOIN.  See tag-20191211-001 for the
1212     ** equivalent restriction for ordinary tables. */
1213     if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0
1214      && !constraintCompatibleWithOuterJoin(pTerm,pSrc)
1215     ){
1216       continue;
1217     }
1218     nTerm++;
1219     pTerm->wtFlags |= TERM_OK;
1220   }
1221 
1222   /* If the ORDER BY clause contains only columns in the current
1223   ** virtual table then allocate space for the aOrderBy part of
1224   ** the sqlite3_index_info structure.
1225   */
1226   nOrderBy = 0;
1227   if( pOrderBy ){
1228     int n = pOrderBy->nExpr;
1229     for(i=0; i<n; i++){
1230       Expr *pExpr = pOrderBy->a[i].pExpr;
1231       Expr *pE2;
1232 
1233       /* Skip over constant terms in the ORDER BY clause */
1234       if( sqlite3ExprIsConstant(pExpr) ){
1235         continue;
1236       }
1237 
1238       /* Virtual tables are unable to deal with NULLS FIRST */
1239       if( pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL ) break;
1240 
1241       /* First case - a direct column references without a COLLATE operator */
1242       if( pExpr->op==TK_COLUMN && pExpr->iTable==pSrc->iCursor ){
1243         assert( pExpr->iColumn>=XN_ROWID && pExpr->iColumn<pTab->nCol );
1244         continue;
1245       }
1246 
1247       /* 2nd case - a column reference with a COLLATE operator.  Only match
1248       ** of the COLLATE operator matches the collation of the column. */
1249       if( pExpr->op==TK_COLLATE
1250        && (pE2 = pExpr->pLeft)->op==TK_COLUMN
1251        && pE2->iTable==pSrc->iCursor
1252       ){
1253         const char *zColl;  /* The collating sequence name */
1254         assert( !ExprHasProperty(pExpr, EP_IntValue) );
1255         assert( pExpr->u.zToken!=0 );
1256         assert( pE2->iColumn>=XN_ROWID && pE2->iColumn<pTab->nCol );
1257         pExpr->iColumn = pE2->iColumn;
1258         if( pE2->iColumn<0 ) continue;  /* Collseq does not matter for rowid */
1259         zColl = sqlite3ColumnColl(&pTab->aCol[pE2->iColumn]);
1260         if( zColl==0 ) zColl = sqlite3StrBINARY;
1261         if( sqlite3_stricmp(pExpr->u.zToken, zColl)==0 ) continue;
1262       }
1263 
1264       /* No matches cause a break out of the loop */
1265       break;
1266     }
1267     if( i==n ){
1268       nOrderBy = n;
1269       if( (pWInfo->wctrlFlags & WHERE_DISTINCTBY) ){
1270         eDistinct = 2 + ((pWInfo->wctrlFlags & WHERE_SORTBYGROUP)!=0);
1271       }else if( pWInfo->wctrlFlags & WHERE_GROUPBY ){
1272         eDistinct = 1;
1273       }
1274     }
1275   }
1276 
1277   /* Allocate the sqlite3_index_info structure
1278   */
1279   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1280                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1281                            + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden)
1282                            + sizeof(sqlite3_value*)*nTerm );
1283   if( pIdxInfo==0 ){
1284     sqlite3ErrorMsg(pParse, "out of memory");
1285     return 0;
1286   }
1287   pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
1288   pIdxCons = (struct sqlite3_index_constraint*)&pHidden->aRhs[nTerm];
1289   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1290   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1291   pIdxInfo->aConstraint = pIdxCons;
1292   pIdxInfo->aOrderBy = pIdxOrderBy;
1293   pIdxInfo->aConstraintUsage = pUsage;
1294   pHidden->pWC = pWC;
1295   pHidden->pParse = pParse;
1296   pHidden->eDistinct = eDistinct;
1297   pHidden->mIn = 0;
1298   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1299     u16 op;
1300     if( (pTerm->wtFlags & TERM_OK)==0 ) continue;
1301     pIdxCons[j].iColumn = pTerm->u.x.leftColumn;
1302     pIdxCons[j].iTermOffset = i;
1303     op = pTerm->eOperator & WO_ALL;
1304     if( op==WO_IN ){
1305       if( (pTerm->wtFlags & TERM_SLICE)==0 ){
1306         pHidden->mIn |= SMASKBIT32(j);
1307       }
1308       op = WO_EQ;
1309     }
1310     if( op==WO_AUX ){
1311       pIdxCons[j].op = pTerm->eMatchOp;
1312     }else if( op & (WO_ISNULL|WO_IS) ){
1313       if( op==WO_ISNULL ){
1314         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
1315       }else{
1316         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
1317       }
1318     }else{
1319       pIdxCons[j].op = (u8)op;
1320       /* The direct assignment in the previous line is possible only because
1321       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1322       ** following asserts verify this fact. */
1323       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1324       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1325       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1326       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1327       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1328       assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1329 
1330       if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1331        && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1332       ){
1333         testcase( j!=i );
1334         if( j<16 ) mNoOmit |= (1 << j);
1335         if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1336         if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1337       }
1338     }
1339 
1340     j++;
1341   }
1342   assert( j==nTerm );
1343   pIdxInfo->nConstraint = j;
1344   for(i=j=0; i<nOrderBy; i++){
1345     Expr *pExpr = pOrderBy->a[i].pExpr;
1346     if( sqlite3ExprIsConstant(pExpr) ) continue;
1347     assert( pExpr->op==TK_COLUMN
1348          || (pExpr->op==TK_COLLATE && pExpr->pLeft->op==TK_COLUMN
1349               && pExpr->iColumn==pExpr->pLeft->iColumn) );
1350     pIdxOrderBy[j].iColumn = pExpr->iColumn;
1351     pIdxOrderBy[j].desc = pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC;
1352     j++;
1353   }
1354   pIdxInfo->nOrderBy = j;
1355 
1356   *pmNoOmit = mNoOmit;
1357   return pIdxInfo;
1358 }
1359 
1360 /*
1361 ** Free an sqlite3_index_info structure allocated by allocateIndexInfo()
1362 ** and possibly modified by xBestIndex methods.
1363 */
1364 static void freeIndexInfo(sqlite3 *db, sqlite3_index_info *pIdxInfo){
1365   HiddenIndexInfo *pHidden;
1366   int i;
1367   assert( pIdxInfo!=0 );
1368   pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
1369   assert( pHidden->pParse!=0 );
1370   assert( pHidden->pParse->db==db );
1371   for(i=0; i<pIdxInfo->nConstraint; i++){
1372     sqlite3ValueFree(pHidden->aRhs[i]); /* IMP: R-14553-25174 */
1373     pHidden->aRhs[i] = 0;
1374   }
1375   sqlite3DbFree(db, pIdxInfo);
1376 }
1377 
1378 /*
1379 ** The table object reference passed as the second argument to this function
1380 ** must represent a virtual table. This function invokes the xBestIndex()
1381 ** method of the virtual table with the sqlite3_index_info object that
1382 ** comes in as the 3rd argument to this function.
1383 **
1384 ** If an error occurs, pParse is populated with an error message and an
1385 ** appropriate error code is returned.  A return of SQLITE_CONSTRAINT from
1386 ** xBestIndex is not considered an error.  SQLITE_CONSTRAINT indicates that
1387 ** the current configuration of "unusable" flags in sqlite3_index_info can
1388 ** not result in a valid plan.
1389 **
1390 ** Whether or not an error is returned, it is the responsibility of the
1391 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1392 ** that this is required.
1393 */
1394 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1395   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1396   int rc;
1397 
1398   whereTraceIndexInfoInputs(p);
1399   pParse->db->nSchemaLock++;
1400   rc = pVtab->pModule->xBestIndex(pVtab, p);
1401   pParse->db->nSchemaLock--;
1402   whereTraceIndexInfoOutputs(p);
1403 
1404   if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1405     if( rc==SQLITE_NOMEM ){
1406       sqlite3OomFault(pParse->db);
1407     }else if( !pVtab->zErrMsg ){
1408       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1409     }else{
1410       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1411     }
1412   }
1413   sqlite3_free(pVtab->zErrMsg);
1414   pVtab->zErrMsg = 0;
1415   return rc;
1416 }
1417 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1418 
1419 #ifdef SQLITE_ENABLE_STAT4
1420 /*
1421 ** Estimate the location of a particular key among all keys in an
1422 ** index.  Store the results in aStat as follows:
1423 **
1424 **    aStat[0]      Est. number of rows less than pRec
1425 **    aStat[1]      Est. number of rows equal to pRec
1426 **
1427 ** Return the index of the sample that is the smallest sample that
1428 ** is greater than or equal to pRec. Note that this index is not an index
1429 ** into the aSample[] array - it is an index into a virtual set of samples
1430 ** based on the contents of aSample[] and the number of fields in record
1431 ** pRec.
1432 */
1433 static int whereKeyStats(
1434   Parse *pParse,              /* Database connection */
1435   Index *pIdx,                /* Index to consider domain of */
1436   UnpackedRecord *pRec,       /* Vector of values to consider */
1437   int roundUp,                /* Round up if true.  Round down if false */
1438   tRowcnt *aStat              /* OUT: stats written here */
1439 ){
1440   IndexSample *aSample = pIdx->aSample;
1441   int iCol;                   /* Index of required stats in anEq[] etc. */
1442   int i;                      /* Index of first sample >= pRec */
1443   int iSample;                /* Smallest sample larger than or equal to pRec */
1444   int iMin = 0;               /* Smallest sample not yet tested */
1445   int iTest;                  /* Next sample to test */
1446   int res;                    /* Result of comparison operation */
1447   int nField;                 /* Number of fields in pRec */
1448   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1449 
1450 #ifndef SQLITE_DEBUG
1451   UNUSED_PARAMETER( pParse );
1452 #endif
1453   assert( pRec!=0 );
1454   assert( pIdx->nSample>0 );
1455   assert( pRec->nField>0 );
1456 
1457   /* Do a binary search to find the first sample greater than or equal
1458   ** to pRec. If pRec contains a single field, the set of samples to search
1459   ** is simply the aSample[] array. If the samples in aSample[] contain more
1460   ** than one fields, all fields following the first are ignored.
1461   **
1462   ** If pRec contains N fields, where N is more than one, then as well as the
1463   ** samples in aSample[] (truncated to N fields), the search also has to
1464   ** consider prefixes of those samples. For example, if the set of samples
1465   ** in aSample is:
1466   **
1467   **     aSample[0] = (a, 5)
1468   **     aSample[1] = (a, 10)
1469   **     aSample[2] = (b, 5)
1470   **     aSample[3] = (c, 100)
1471   **     aSample[4] = (c, 105)
1472   **
1473   ** Then the search space should ideally be the samples above and the
1474   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1475   ** the code actually searches this set:
1476   **
1477   **     0: (a)
1478   **     1: (a, 5)
1479   **     2: (a, 10)
1480   **     3: (a, 10)
1481   **     4: (b)
1482   **     5: (b, 5)
1483   **     6: (c)
1484   **     7: (c, 100)
1485   **     8: (c, 105)
1486   **     9: (c, 105)
1487   **
1488   ** For each sample in the aSample[] array, N samples are present in the
1489   ** effective sample array. In the above, samples 0 and 1 are based on
1490   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1491   **
1492   ** Often, sample i of each block of N effective samples has (i+1) fields.
1493   ** Except, each sample may be extended to ensure that it is greater than or
1494   ** equal to the previous sample in the array. For example, in the above,
1495   ** sample 2 is the first sample of a block of N samples, so at first it
1496   ** appears that it should be 1 field in size. However, that would make it
1497   ** smaller than sample 1, so the binary search would not work. As a result,
1498   ** it is extended to two fields. The duplicates that this creates do not
1499   ** cause any problems.
1500   */
1501   nField = MIN(pRec->nField, pIdx->nSample);
1502   iCol = 0;
1503   iSample = pIdx->nSample * nField;
1504   do{
1505     int iSamp;                    /* Index in aSample[] of test sample */
1506     int n;                        /* Number of fields in test sample */
1507 
1508     iTest = (iMin+iSample)/2;
1509     iSamp = iTest / nField;
1510     if( iSamp>0 ){
1511       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1512       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1513       ** fields that is greater than the previous effective sample.  */
1514       for(n=(iTest % nField) + 1; n<nField; n++){
1515         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1516       }
1517     }else{
1518       n = iTest + 1;
1519     }
1520 
1521     pRec->nField = n;
1522     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1523     if( res<0 ){
1524       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1525       iMin = iTest+1;
1526     }else if( res==0 && n<nField ){
1527       iLower = aSample[iSamp].anLt[n-1];
1528       iMin = iTest+1;
1529       res = -1;
1530     }else{
1531       iSample = iTest;
1532       iCol = n-1;
1533     }
1534   }while( res && iMin<iSample );
1535   i = iSample / nField;
1536 
1537 #ifdef SQLITE_DEBUG
1538   /* The following assert statements check that the binary search code
1539   ** above found the right answer. This block serves no purpose other
1540   ** than to invoke the asserts.  */
1541   if( pParse->db->mallocFailed==0 ){
1542     if( res==0 ){
1543       /* If (res==0) is true, then pRec must be equal to sample i. */
1544       assert( i<pIdx->nSample );
1545       assert( iCol==nField-1 );
1546       pRec->nField = nField;
1547       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1548            || pParse->db->mallocFailed
1549       );
1550     }else{
1551       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1552       ** all samples in the aSample[] array, pRec must be smaller than the
1553       ** (iCol+1) field prefix of sample i.  */
1554       assert( i<=pIdx->nSample && i>=0 );
1555       pRec->nField = iCol+1;
1556       assert( i==pIdx->nSample
1557            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1558            || pParse->db->mallocFailed );
1559 
1560       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1561       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1562       ** be greater than or equal to the (iCol) field prefix of sample i.
1563       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1564       if( iCol>0 ){
1565         pRec->nField = iCol;
1566         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1567              || pParse->db->mallocFailed );
1568       }
1569       if( i>0 ){
1570         pRec->nField = nField;
1571         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1572              || pParse->db->mallocFailed );
1573       }
1574     }
1575   }
1576 #endif /* ifdef SQLITE_DEBUG */
1577 
1578   if( res==0 ){
1579     /* Record pRec is equal to sample i */
1580     assert( iCol==nField-1 );
1581     aStat[0] = aSample[i].anLt[iCol];
1582     aStat[1] = aSample[i].anEq[iCol];
1583   }else{
1584     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1585     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1586     ** is larger than all samples in the array. */
1587     tRowcnt iUpper, iGap;
1588     if( i>=pIdx->nSample ){
1589       iUpper = pIdx->nRowEst0;
1590     }else{
1591       iUpper = aSample[i].anLt[iCol];
1592     }
1593 
1594     if( iLower>=iUpper ){
1595       iGap = 0;
1596     }else{
1597       iGap = iUpper - iLower;
1598     }
1599     if( roundUp ){
1600       iGap = (iGap*2)/3;
1601     }else{
1602       iGap = iGap/3;
1603     }
1604     aStat[0] = iLower + iGap;
1605     aStat[1] = pIdx->aAvgEq[nField-1];
1606   }
1607 
1608   /* Restore the pRec->nField value before returning.  */
1609   pRec->nField = nField;
1610   return i;
1611 }
1612 #endif /* SQLITE_ENABLE_STAT4 */
1613 
1614 /*
1615 ** If it is not NULL, pTerm is a term that provides an upper or lower
1616 ** bound on a range scan. Without considering pTerm, it is estimated
1617 ** that the scan will visit nNew rows. This function returns the number
1618 ** estimated to be visited after taking pTerm into account.
1619 **
1620 ** If the user explicitly specified a likelihood() value for this term,
1621 ** then the return value is the likelihood multiplied by the number of
1622 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1623 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1624 */
1625 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1626   LogEst nRet = nNew;
1627   if( pTerm ){
1628     if( pTerm->truthProb<=0 ){
1629       nRet += pTerm->truthProb;
1630     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1631       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1632     }
1633   }
1634   return nRet;
1635 }
1636 
1637 
1638 #ifdef SQLITE_ENABLE_STAT4
1639 /*
1640 ** Return the affinity for a single column of an index.
1641 */
1642 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1643   assert( iCol>=0 && iCol<pIdx->nColumn );
1644   if( !pIdx->zColAff ){
1645     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1646   }
1647   assert( pIdx->zColAff[iCol]!=0 );
1648   return pIdx->zColAff[iCol];
1649 }
1650 #endif
1651 
1652 
1653 #ifdef SQLITE_ENABLE_STAT4
1654 /*
1655 ** This function is called to estimate the number of rows visited by a
1656 ** range-scan on a skip-scan index. For example:
1657 **
1658 **   CREATE INDEX i1 ON t1(a, b, c);
1659 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1660 **
1661 ** Value pLoop->nOut is currently set to the estimated number of rows
1662 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1663 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1664 ** on the stat4 data for the index. this scan will be peformed multiple
1665 ** times (once for each (a,b) combination that matches a=?) is dealt with
1666 ** by the caller.
1667 **
1668 ** It does this by scanning through all stat4 samples, comparing values
1669 ** extracted from pLower and pUpper with the corresponding column in each
1670 ** sample. If L and U are the number of samples found to be less than or
1671 ** equal to the values extracted from pLower and pUpper respectively, and
1672 ** N is the total number of samples, the pLoop->nOut value is adjusted
1673 ** as follows:
1674 **
1675 **   nOut = nOut * ( min(U - L, 1) / N )
1676 **
1677 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1678 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1679 ** U is set to N.
1680 **
1681 ** Normally, this function sets *pbDone to 1 before returning. However,
1682 ** if no value can be extracted from either pLower or pUpper (and so the
1683 ** estimate of the number of rows delivered remains unchanged), *pbDone
1684 ** is left as is.
1685 **
1686 ** If an error occurs, an SQLite error code is returned. Otherwise,
1687 ** SQLITE_OK.
1688 */
1689 static int whereRangeSkipScanEst(
1690   Parse *pParse,       /* Parsing & code generating context */
1691   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1692   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1693   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1694   int *pbDone          /* Set to true if at least one expr. value extracted */
1695 ){
1696   Index *p = pLoop->u.btree.pIndex;
1697   int nEq = pLoop->u.btree.nEq;
1698   sqlite3 *db = pParse->db;
1699   int nLower = -1;
1700   int nUpper = p->nSample+1;
1701   int rc = SQLITE_OK;
1702   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1703   CollSeq *pColl;
1704 
1705   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1706   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1707   sqlite3_value *pVal = 0;        /* Value extracted from record */
1708 
1709   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1710   if( pLower ){
1711     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1712     nLower = 0;
1713   }
1714   if( pUpper && rc==SQLITE_OK ){
1715     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1716     nUpper = p2 ? 0 : p->nSample;
1717   }
1718 
1719   if( p1 || p2 ){
1720     int i;
1721     int nDiff;
1722     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1723       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1724       if( rc==SQLITE_OK && p1 ){
1725         int res = sqlite3MemCompare(p1, pVal, pColl);
1726         if( res>=0 ) nLower++;
1727       }
1728       if( rc==SQLITE_OK && p2 ){
1729         int res = sqlite3MemCompare(p2, pVal, pColl);
1730         if( res>=0 ) nUpper++;
1731       }
1732     }
1733     nDiff = (nUpper - nLower);
1734     if( nDiff<=0 ) nDiff = 1;
1735 
1736     /* If there is both an upper and lower bound specified, and the
1737     ** comparisons indicate that they are close together, use the fallback
1738     ** method (assume that the scan visits 1/64 of the rows) for estimating
1739     ** the number of rows visited. Otherwise, estimate the number of rows
1740     ** using the method described in the header comment for this function. */
1741     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1742       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1743       pLoop->nOut -= nAdjust;
1744       *pbDone = 1;
1745       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1746                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1747     }
1748 
1749   }else{
1750     assert( *pbDone==0 );
1751   }
1752 
1753   sqlite3ValueFree(p1);
1754   sqlite3ValueFree(p2);
1755   sqlite3ValueFree(pVal);
1756 
1757   return rc;
1758 }
1759 #endif /* SQLITE_ENABLE_STAT4 */
1760 
1761 /*
1762 ** This function is used to estimate the number of rows that will be visited
1763 ** by scanning an index for a range of values. The range may have an upper
1764 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1765 ** and lower bounds are represented by pLower and pUpper respectively. For
1766 ** example, assuming that index p is on t1(a):
1767 **
1768 **   ... FROM t1 WHERE a > ? AND a < ? ...
1769 **                    |_____|   |_____|
1770 **                       |         |
1771 **                     pLower    pUpper
1772 **
1773 ** If either of the upper or lower bound is not present, then NULL is passed in
1774 ** place of the corresponding WhereTerm.
1775 **
1776 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1777 ** column subject to the range constraint. Or, equivalently, the number of
1778 ** equality constraints optimized by the proposed index scan. For example,
1779 ** assuming index p is on t1(a, b), and the SQL query is:
1780 **
1781 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1782 **
1783 ** then nEq is set to 1 (as the range restricted column, b, is the second
1784 ** left-most column of the index). Or, if the query is:
1785 **
1786 **   ... FROM t1 WHERE a > ? AND a < ? ...
1787 **
1788 ** then nEq is set to 0.
1789 **
1790 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1791 ** number of rows that the index scan is expected to visit without
1792 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1793 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1794 ** to account for the range constraints pLower and pUpper.
1795 **
1796 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1797 ** used, a single range inequality reduces the search space by a factor of 4.
1798 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1799 ** rows visited by a factor of 64.
1800 */
1801 static int whereRangeScanEst(
1802   Parse *pParse,       /* Parsing & code generating context */
1803   WhereLoopBuilder *pBuilder,
1804   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1805   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1806   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1807 ){
1808   int rc = SQLITE_OK;
1809   int nOut = pLoop->nOut;
1810   LogEst nNew;
1811 
1812 #ifdef SQLITE_ENABLE_STAT4
1813   Index *p = pLoop->u.btree.pIndex;
1814   int nEq = pLoop->u.btree.nEq;
1815 
1816   if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
1817    && OptimizationEnabled(pParse->db, SQLITE_Stat4)
1818   ){
1819     if( nEq==pBuilder->nRecValid ){
1820       UnpackedRecord *pRec = pBuilder->pRec;
1821       tRowcnt a[2];
1822       int nBtm = pLoop->u.btree.nBtm;
1823       int nTop = pLoop->u.btree.nTop;
1824 
1825       /* Variable iLower will be set to the estimate of the number of rows in
1826       ** the index that are less than the lower bound of the range query. The
1827       ** lower bound being the concatenation of $P and $L, where $P is the
1828       ** key-prefix formed by the nEq values matched against the nEq left-most
1829       ** columns of the index, and $L is the value in pLower.
1830       **
1831       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1832       ** is not a simple variable or literal value), the lower bound of the
1833       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1834       ** if $L is available, whereKeyStats() is called for both ($P) and
1835       ** ($P:$L) and the larger of the two returned values is used.
1836       **
1837       ** Similarly, iUpper is to be set to the estimate of the number of rows
1838       ** less than the upper bound of the range query. Where the upper bound
1839       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1840       ** of iUpper are requested of whereKeyStats() and the smaller used.
1841       **
1842       ** The number of rows between the two bounds is then just iUpper-iLower.
1843       */
1844       tRowcnt iLower;     /* Rows less than the lower bound */
1845       tRowcnt iUpper;     /* Rows less than the upper bound */
1846       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1847       int iUprIdx = -1;   /* aSample[] for the upper bound */
1848 
1849       if( pRec ){
1850         testcase( pRec->nField!=pBuilder->nRecValid );
1851         pRec->nField = pBuilder->nRecValid;
1852       }
1853       /* Determine iLower and iUpper using ($P) only. */
1854       if( nEq==0 ){
1855         iLower = 0;
1856         iUpper = p->nRowEst0;
1857       }else{
1858         /* Note: this call could be optimized away - since the same values must
1859         ** have been requested when testing key $P in whereEqualScanEst().  */
1860         whereKeyStats(pParse, p, pRec, 0, a);
1861         iLower = a[0];
1862         iUpper = a[0] + a[1];
1863       }
1864 
1865       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1866       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1867       assert( p->aSortOrder!=0 );
1868       if( p->aSortOrder[nEq] ){
1869         /* The roles of pLower and pUpper are swapped for a DESC index */
1870         SWAP(WhereTerm*, pLower, pUpper);
1871         SWAP(int, nBtm, nTop);
1872       }
1873 
1874       /* If possible, improve on the iLower estimate using ($P:$L). */
1875       if( pLower ){
1876         int n;                    /* Values extracted from pExpr */
1877         Expr *pExpr = pLower->pExpr->pRight;
1878         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1879         if( rc==SQLITE_OK && n ){
1880           tRowcnt iNew;
1881           u16 mask = WO_GT|WO_LE;
1882           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1883           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1884           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1885           if( iNew>iLower ) iLower = iNew;
1886           nOut--;
1887           pLower = 0;
1888         }
1889       }
1890 
1891       /* If possible, improve on the iUpper estimate using ($P:$U). */
1892       if( pUpper ){
1893         int n;                    /* Values extracted from pExpr */
1894         Expr *pExpr = pUpper->pExpr->pRight;
1895         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1896         if( rc==SQLITE_OK && n ){
1897           tRowcnt iNew;
1898           u16 mask = WO_GT|WO_LE;
1899           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1900           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1901           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1902           if( iNew<iUpper ) iUpper = iNew;
1903           nOut--;
1904           pUpper = 0;
1905         }
1906       }
1907 
1908       pBuilder->pRec = pRec;
1909       if( rc==SQLITE_OK ){
1910         if( iUpper>iLower ){
1911           nNew = sqlite3LogEst(iUpper - iLower);
1912           /* TUNING:  If both iUpper and iLower are derived from the same
1913           ** sample, then assume they are 4x more selective.  This brings
1914           ** the estimated selectivity more in line with what it would be
1915           ** if estimated without the use of STAT4 tables. */
1916           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1917         }else{
1918           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1919         }
1920         if( nNew<nOut ){
1921           nOut = nNew;
1922         }
1923         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1924                            (u32)iLower, (u32)iUpper, nOut));
1925       }
1926     }else{
1927       int bDone = 0;
1928       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1929       if( bDone ) return rc;
1930     }
1931   }
1932 #else
1933   UNUSED_PARAMETER(pParse);
1934   UNUSED_PARAMETER(pBuilder);
1935   assert( pLower || pUpper );
1936 #endif
1937   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1938   nNew = whereRangeAdjust(pLower, nOut);
1939   nNew = whereRangeAdjust(pUpper, nNew);
1940 
1941   /* TUNING: If there is both an upper and lower limit and neither limit
1942   ** has an application-defined likelihood(), assume the range is
1943   ** reduced by an additional 75%. This means that, by default, an open-ended
1944   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1945   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1946   ** match 1/64 of the index. */
1947   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1948     nNew -= 20;
1949   }
1950 
1951   nOut -= (pLower!=0) + (pUpper!=0);
1952   if( nNew<10 ) nNew = 10;
1953   if( nNew<nOut ) nOut = nNew;
1954 #if defined(WHERETRACE_ENABLED)
1955   if( pLoop->nOut>nOut ){
1956     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1957                     pLoop->nOut, nOut));
1958   }
1959 #endif
1960   pLoop->nOut = (LogEst)nOut;
1961   return rc;
1962 }
1963 
1964 #ifdef SQLITE_ENABLE_STAT4
1965 /*
1966 ** Estimate the number of rows that will be returned based on
1967 ** an equality constraint x=VALUE and where that VALUE occurs in
1968 ** the histogram data.  This only works when x is the left-most
1969 ** column of an index and sqlite_stat4 histogram data is available
1970 ** for that index.  When pExpr==NULL that means the constraint is
1971 ** "x IS NULL" instead of "x=VALUE".
1972 **
1973 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1974 ** If unable to make an estimate, leave *pnRow unchanged and return
1975 ** non-zero.
1976 **
1977 ** This routine can fail if it is unable to load a collating sequence
1978 ** required for string comparison, or if unable to allocate memory
1979 ** for a UTF conversion required for comparison.  The error is stored
1980 ** in the pParse structure.
1981 */
1982 static int whereEqualScanEst(
1983   Parse *pParse,       /* Parsing & code generating context */
1984   WhereLoopBuilder *pBuilder,
1985   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1986   tRowcnt *pnRow       /* Write the revised row estimate here */
1987 ){
1988   Index *p = pBuilder->pNew->u.btree.pIndex;
1989   int nEq = pBuilder->pNew->u.btree.nEq;
1990   UnpackedRecord *pRec = pBuilder->pRec;
1991   int rc;                   /* Subfunction return code */
1992   tRowcnt a[2];             /* Statistics */
1993   int bOk;
1994 
1995   assert( nEq>=1 );
1996   assert( nEq<=p->nColumn );
1997   assert( p->aSample!=0 );
1998   assert( p->nSample>0 );
1999   assert( pBuilder->nRecValid<nEq );
2000 
2001   /* If values are not available for all fields of the index to the left
2002   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
2003   if( pBuilder->nRecValid<(nEq-1) ){
2004     return SQLITE_NOTFOUND;
2005   }
2006 
2007   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
2008   ** below would return the same value.  */
2009   if( nEq>=p->nColumn ){
2010     *pnRow = 1;
2011     return SQLITE_OK;
2012   }
2013 
2014   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
2015   pBuilder->pRec = pRec;
2016   if( rc!=SQLITE_OK ) return rc;
2017   if( bOk==0 ) return SQLITE_NOTFOUND;
2018   pBuilder->nRecValid = nEq;
2019 
2020   whereKeyStats(pParse, p, pRec, 0, a);
2021   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
2022                    p->zName, nEq-1, (int)a[1]));
2023   *pnRow = a[1];
2024 
2025   return rc;
2026 }
2027 #endif /* SQLITE_ENABLE_STAT4 */
2028 
2029 #ifdef SQLITE_ENABLE_STAT4
2030 /*
2031 ** Estimate the number of rows that will be returned based on
2032 ** an IN constraint where the right-hand side of the IN operator
2033 ** is a list of values.  Example:
2034 **
2035 **        WHERE x IN (1,2,3,4)
2036 **
2037 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2038 ** If unable to make an estimate, leave *pnRow unchanged and return
2039 ** non-zero.
2040 **
2041 ** This routine can fail if it is unable to load a collating sequence
2042 ** required for string comparison, or if unable to allocate memory
2043 ** for a UTF conversion required for comparison.  The error is stored
2044 ** in the pParse structure.
2045 */
2046 static int whereInScanEst(
2047   Parse *pParse,       /* Parsing & code generating context */
2048   WhereLoopBuilder *pBuilder,
2049   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
2050   tRowcnt *pnRow       /* Write the revised row estimate here */
2051 ){
2052   Index *p = pBuilder->pNew->u.btree.pIndex;
2053   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
2054   int nRecValid = pBuilder->nRecValid;
2055   int rc = SQLITE_OK;     /* Subfunction return code */
2056   tRowcnt nEst;           /* Number of rows for a single term */
2057   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
2058   int i;                  /* Loop counter */
2059 
2060   assert( p->aSample!=0 );
2061   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
2062     nEst = nRow0;
2063     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
2064     nRowEst += nEst;
2065     pBuilder->nRecValid = nRecValid;
2066   }
2067 
2068   if( rc==SQLITE_OK ){
2069     if( nRowEst > nRow0 ) nRowEst = nRow0;
2070     *pnRow = nRowEst;
2071     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
2072   }
2073   assert( pBuilder->nRecValid==nRecValid );
2074   return rc;
2075 }
2076 #endif /* SQLITE_ENABLE_STAT4 */
2077 
2078 
2079 #ifdef WHERETRACE_ENABLED
2080 /*
2081 ** Print the content of a WhereTerm object
2082 */
2083 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
2084   if( pTerm==0 ){
2085     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
2086   }else{
2087     char zType[8];
2088     char zLeft[50];
2089     memcpy(zType, "....", 5);
2090     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
2091     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
2092     if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) zType[2] = 'L';
2093     if( pTerm->wtFlags & TERM_CODED  ) zType[3] = 'C';
2094     if( pTerm->eOperator & WO_SINGLE ){
2095       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
2096       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
2097                        pTerm->leftCursor, pTerm->u.x.leftColumn);
2098     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
2099       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx",
2100                        pTerm->u.pOrInfo->indexable);
2101     }else{
2102       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
2103     }
2104     sqlite3DebugPrintf(
2105        "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
2106        iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
2107     /* The 0x10000 .wheretrace flag causes extra information to be
2108     ** shown about each Term */
2109     if( sqlite3WhereTrace & 0x10000 ){
2110       sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
2111         pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
2112     }
2113     if( (pTerm->eOperator & (WO_OR|WO_AND))==0 && pTerm->u.x.iField ){
2114       sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField);
2115     }
2116     if( pTerm->iParent>=0 ){
2117       sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
2118     }
2119     sqlite3DebugPrintf("\n");
2120     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
2121   }
2122 }
2123 #endif
2124 
2125 #ifdef WHERETRACE_ENABLED
2126 /*
2127 ** Show the complete content of a WhereClause
2128 */
2129 void sqlite3WhereClausePrint(WhereClause *pWC){
2130   int i;
2131   for(i=0; i<pWC->nTerm; i++){
2132     sqlite3WhereTermPrint(&pWC->a[i], i);
2133   }
2134 }
2135 #endif
2136 
2137 #ifdef WHERETRACE_ENABLED
2138 /*
2139 ** Print a WhereLoop object for debugging purposes
2140 */
2141 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){
2142   WhereInfo *pWInfo = pWC->pWInfo;
2143   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
2144   SrcItem *pItem = pWInfo->pTabList->a + p->iTab;
2145   Table *pTab = pItem->pTab;
2146   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
2147   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
2148                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
2149   sqlite3DebugPrintf(" %12s",
2150                      pItem->zAlias ? pItem->zAlias : pTab->zName);
2151   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2152     const char *zName;
2153     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
2154       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
2155         int i = sqlite3Strlen30(zName) - 1;
2156         while( zName[i]!='_' ) i--;
2157         zName += i;
2158       }
2159       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
2160     }else{
2161       sqlite3DebugPrintf("%20s","");
2162     }
2163   }else{
2164     char *z;
2165     if( p->u.vtab.idxStr ){
2166       z = sqlite3_mprintf("(%d,\"%s\",%#x)",
2167                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
2168     }else{
2169       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
2170     }
2171     sqlite3DebugPrintf(" %-19s", z);
2172     sqlite3_free(z);
2173   }
2174   if( p->wsFlags & WHERE_SKIPSCAN ){
2175     sqlite3DebugPrintf(" f %06x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
2176   }else{
2177     sqlite3DebugPrintf(" f %06x N %d", p->wsFlags, p->nLTerm);
2178   }
2179   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
2180   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
2181     int i;
2182     for(i=0; i<p->nLTerm; i++){
2183       sqlite3WhereTermPrint(p->aLTerm[i], i);
2184     }
2185   }
2186 }
2187 #endif
2188 
2189 /*
2190 ** Convert bulk memory into a valid WhereLoop that can be passed
2191 ** to whereLoopClear harmlessly.
2192 */
2193 static void whereLoopInit(WhereLoop *p){
2194   p->aLTerm = p->aLTermSpace;
2195   p->nLTerm = 0;
2196   p->nLSlot = ArraySize(p->aLTermSpace);
2197   p->wsFlags = 0;
2198 }
2199 
2200 /*
2201 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
2202 */
2203 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
2204   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
2205     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
2206       sqlite3_free(p->u.vtab.idxStr);
2207       p->u.vtab.needFree = 0;
2208       p->u.vtab.idxStr = 0;
2209     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
2210       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
2211       sqlite3DbFreeNN(db, p->u.btree.pIndex);
2212       p->u.btree.pIndex = 0;
2213     }
2214   }
2215 }
2216 
2217 /*
2218 ** Deallocate internal memory used by a WhereLoop object.  Leave the
2219 ** object in an initialized state, as if it had been newly allocated.
2220 */
2221 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
2222   if( p->aLTerm!=p->aLTermSpace ){
2223     sqlite3DbFreeNN(db, p->aLTerm);
2224     p->aLTerm = p->aLTermSpace;
2225     p->nLSlot = ArraySize(p->aLTermSpace);
2226   }
2227   whereLoopClearUnion(db, p);
2228   p->nLTerm = 0;
2229   p->wsFlags = 0;
2230 }
2231 
2232 /*
2233 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
2234 */
2235 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
2236   WhereTerm **paNew;
2237   if( p->nLSlot>=n ) return SQLITE_OK;
2238   n = (n+7)&~7;
2239   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
2240   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
2241   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
2242   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
2243   p->aLTerm = paNew;
2244   p->nLSlot = n;
2245   return SQLITE_OK;
2246 }
2247 
2248 /*
2249 ** Transfer content from the second pLoop into the first.
2250 */
2251 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
2252   whereLoopClearUnion(db, pTo);
2253   if( pFrom->nLTerm > pTo->nLSlot
2254    && whereLoopResize(db, pTo, pFrom->nLTerm)
2255   ){
2256     memset(pTo, 0, WHERE_LOOP_XFER_SZ);
2257     return SQLITE_NOMEM_BKPT;
2258   }
2259   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
2260   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
2261   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
2262     pFrom->u.vtab.needFree = 0;
2263   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
2264     pFrom->u.btree.pIndex = 0;
2265   }
2266   return SQLITE_OK;
2267 }
2268 
2269 /*
2270 ** Delete a WhereLoop object
2271 */
2272 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
2273   assert( db!=0 );
2274   whereLoopClear(db, p);
2275   sqlite3DbNNFreeNN(db, p);
2276 }
2277 
2278 /*
2279 ** Free a WhereInfo structure
2280 */
2281 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
2282   assert( pWInfo!=0 );
2283   assert( db!=0 );
2284   sqlite3WhereClauseClear(&pWInfo->sWC);
2285   while( pWInfo->pLoops ){
2286     WhereLoop *p = pWInfo->pLoops;
2287     pWInfo->pLoops = p->pNextLoop;
2288     whereLoopDelete(db, p);
2289   }
2290   assert( pWInfo->pExprMods==0 );
2291   while( pWInfo->pMemToFree ){
2292     WhereMemBlock *pNext = pWInfo->pMemToFree->pNext;
2293     sqlite3DbNNFreeNN(db, pWInfo->pMemToFree);
2294     pWInfo->pMemToFree = pNext;
2295   }
2296   sqlite3DbNNFreeNN(db, pWInfo);
2297 }
2298 
2299 /* Undo all Expr node modifications
2300 */
2301 static void whereUndoExprMods(WhereInfo *pWInfo){
2302   while( pWInfo->pExprMods ){
2303     WhereExprMod *p = pWInfo->pExprMods;
2304     pWInfo->pExprMods = p->pNext;
2305     memcpy(p->pExpr, &p->orig, sizeof(p->orig));
2306     sqlite3DbFree(pWInfo->pParse->db, p);
2307   }
2308 }
2309 
2310 /*
2311 ** Return TRUE if all of the following are true:
2312 **
2313 **   (1)  X has the same or lower cost, or returns the same or fewer rows,
2314 **        than Y.
2315 **   (2)  X uses fewer WHERE clause terms than Y
2316 **   (3)  Every WHERE clause term used by X is also used by Y
2317 **   (4)  X skips at least as many columns as Y
2318 **   (5)  If X is a covering index, than Y is too
2319 **
2320 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
2321 ** If X is a proper subset of Y then Y is a better choice and ought
2322 ** to have a lower cost.  This routine returns TRUE when that cost
2323 ** relationship is inverted and needs to be adjusted.  Constraint (4)
2324 ** was added because if X uses skip-scan less than Y it still might
2325 ** deserve a lower cost even if it is a proper subset of Y.  Constraint (5)
2326 ** was added because a covering index probably deserves to have a lower cost
2327 ** than a non-covering index even if it is a proper subset.
2328 */
2329 static int whereLoopCheaperProperSubset(
2330   const WhereLoop *pX,       /* First WhereLoop to compare */
2331   const WhereLoop *pY        /* Compare against this WhereLoop */
2332 ){
2333   int i, j;
2334   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
2335     return 0; /* X is not a subset of Y */
2336   }
2337   if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0;
2338   if( pY->nSkip > pX->nSkip ) return 0;
2339   for(i=pX->nLTerm-1; i>=0; i--){
2340     if( pX->aLTerm[i]==0 ) continue;
2341     for(j=pY->nLTerm-1; j>=0; j--){
2342       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
2343     }
2344     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
2345   }
2346   if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
2347    && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
2348     return 0;  /* Constraint (5) */
2349   }
2350   return 1;  /* All conditions meet */
2351 }
2352 
2353 /*
2354 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate
2355 ** upwards or downwards so that:
2356 **
2357 **   (1) pTemplate costs less than any other WhereLoops that are a proper
2358 **       subset of pTemplate
2359 **
2360 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
2361 **       is a proper subset.
2362 **
2363 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2364 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2365 ** also used by Y.
2366 */
2367 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
2368   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
2369   for(; p; p=p->pNextLoop){
2370     if( p->iTab!=pTemplate->iTab ) continue;
2371     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
2372     if( whereLoopCheaperProperSubset(p, pTemplate) ){
2373       /* Adjust pTemplate cost downward so that it is cheaper than its
2374       ** subset p. */
2375       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2376                        pTemplate->rRun, pTemplate->nOut,
2377                        MIN(p->rRun, pTemplate->rRun),
2378                        MIN(p->nOut - 1, pTemplate->nOut)));
2379       pTemplate->rRun = MIN(p->rRun, pTemplate->rRun);
2380       pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut);
2381     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2382       /* Adjust pTemplate cost upward so that it is costlier than p since
2383       ** pTemplate is a proper subset of p */
2384       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2385                        pTemplate->rRun, pTemplate->nOut,
2386                        MAX(p->rRun, pTemplate->rRun),
2387                        MAX(p->nOut + 1, pTemplate->nOut)));
2388       pTemplate->rRun = MAX(p->rRun, pTemplate->rRun);
2389       pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut);
2390     }
2391   }
2392 }
2393 
2394 /*
2395 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2396 ** replaced by pTemplate.
2397 **
2398 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2399 ** In other words if pTemplate ought to be dropped from further consideration.
2400 **
2401 ** If pX is a WhereLoop that pTemplate can replace, then return the
2402 ** link that points to pX.
2403 **
2404 ** If pTemplate cannot replace any existing element of the list but needs
2405 ** to be added to the list as a new entry, then return a pointer to the
2406 ** tail of the list.
2407 */
2408 static WhereLoop **whereLoopFindLesser(
2409   WhereLoop **ppPrev,
2410   const WhereLoop *pTemplate
2411 ){
2412   WhereLoop *p;
2413   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2414     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2415       /* If either the iTab or iSortIdx values for two WhereLoop are different
2416       ** then those WhereLoops need to be considered separately.  Neither is
2417       ** a candidate to replace the other. */
2418       continue;
2419     }
2420     /* In the current implementation, the rSetup value is either zero
2421     ** or the cost of building an automatic index (NlogN) and the NlogN
2422     ** is the same for compatible WhereLoops. */
2423     assert( p->rSetup==0 || pTemplate->rSetup==0
2424                  || p->rSetup==pTemplate->rSetup );
2425 
2426     /* whereLoopAddBtree() always generates and inserts the automatic index
2427     ** case first.  Hence compatible candidate WhereLoops never have a larger
2428     ** rSetup. Call this SETUP-INVARIANT */
2429     assert( p->rSetup>=pTemplate->rSetup );
2430 
2431     /* Any loop using an appliation-defined index (or PRIMARY KEY or
2432     ** UNIQUE constraint) with one or more == constraints is better
2433     ** than an automatic index. Unless it is a skip-scan. */
2434     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2435      && (pTemplate->nSkip)==0
2436      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2437      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2438      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2439     ){
2440       break;
2441     }
2442 
2443     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2444     ** discarded.  WhereLoop p is better if:
2445     **   (1)  p has no more dependencies than pTemplate, and
2446     **   (2)  p has an equal or lower cost than pTemplate
2447     */
2448     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2449      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2450      && p->rRun<=pTemplate->rRun                      /* (2b) */
2451      && p->nOut<=pTemplate->nOut                      /* (2c) */
2452     ){
2453       return 0;  /* Discard pTemplate */
2454     }
2455 
2456     /* If pTemplate is always better than p, then cause p to be overwritten
2457     ** with pTemplate.  pTemplate is better than p if:
2458     **   (1)  pTemplate has no more dependences than p, and
2459     **   (2)  pTemplate has an equal or lower cost than p.
2460     */
2461     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2462      && p->rRun>=pTemplate->rRun                             /* (2a) */
2463      && p->nOut>=pTemplate->nOut                             /* (2b) */
2464     ){
2465       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2466       break;   /* Cause p to be overwritten by pTemplate */
2467     }
2468   }
2469   return ppPrev;
2470 }
2471 
2472 /*
2473 ** Insert or replace a WhereLoop entry using the template supplied.
2474 **
2475 ** An existing WhereLoop entry might be overwritten if the new template
2476 ** is better and has fewer dependencies.  Or the template will be ignored
2477 ** and no insert will occur if an existing WhereLoop is faster and has
2478 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2479 ** added based on the template.
2480 **
2481 ** If pBuilder->pOrSet is not NULL then we care about only the
2482 ** prerequisites and rRun and nOut costs of the N best loops.  That
2483 ** information is gathered in the pBuilder->pOrSet object.  This special
2484 ** processing mode is used only for OR clause processing.
2485 **
2486 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2487 ** still might overwrite similar loops with the new template if the
2488 ** new template is better.  Loops may be overwritten if the following
2489 ** conditions are met:
2490 **
2491 **    (1)  They have the same iTab.
2492 **    (2)  They have the same iSortIdx.
2493 **    (3)  The template has same or fewer dependencies than the current loop
2494 **    (4)  The template has the same or lower cost than the current loop
2495 */
2496 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2497   WhereLoop **ppPrev, *p;
2498   WhereInfo *pWInfo = pBuilder->pWInfo;
2499   sqlite3 *db = pWInfo->pParse->db;
2500   int rc;
2501 
2502   /* Stop the search once we hit the query planner search limit */
2503   if( pBuilder->iPlanLimit==0 ){
2504     WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2505     if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2506     return SQLITE_DONE;
2507   }
2508   pBuilder->iPlanLimit--;
2509 
2510   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2511 
2512   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2513   ** and prereqs.
2514   */
2515   if( pBuilder->pOrSet!=0 ){
2516     if( pTemplate->nLTerm ){
2517 #if WHERETRACE_ENABLED
2518       u16 n = pBuilder->pOrSet->n;
2519       int x =
2520 #endif
2521       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2522                                     pTemplate->nOut);
2523 #if WHERETRACE_ENABLED /* 0x8 */
2524       if( sqlite3WhereTrace & 0x8 ){
2525         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2526         sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2527       }
2528 #endif
2529     }
2530     return SQLITE_OK;
2531   }
2532 
2533   /* Look for an existing WhereLoop to replace with pTemplate
2534   */
2535   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2536 
2537   if( ppPrev==0 ){
2538     /* There already exists a WhereLoop on the list that is better
2539     ** than pTemplate, so just ignore pTemplate */
2540 #if WHERETRACE_ENABLED /* 0x8 */
2541     if( sqlite3WhereTrace & 0x8 ){
2542       sqlite3DebugPrintf("   skip: ");
2543       sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2544     }
2545 #endif
2546     return SQLITE_OK;
2547   }else{
2548     p = *ppPrev;
2549   }
2550 
2551   /* If we reach this point it means that either p[] should be overwritten
2552   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2553   ** WhereLoop and insert it.
2554   */
2555 #if WHERETRACE_ENABLED /* 0x8 */
2556   if( sqlite3WhereTrace & 0x8 ){
2557     if( p!=0 ){
2558       sqlite3DebugPrintf("replace: ");
2559       sqlite3WhereLoopPrint(p, pBuilder->pWC);
2560       sqlite3DebugPrintf("   with: ");
2561     }else{
2562       sqlite3DebugPrintf("    add: ");
2563     }
2564     sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2565   }
2566 #endif
2567   if( p==0 ){
2568     /* Allocate a new WhereLoop to add to the end of the list */
2569     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2570     if( p==0 ) return SQLITE_NOMEM_BKPT;
2571     whereLoopInit(p);
2572     p->pNextLoop = 0;
2573   }else{
2574     /* We will be overwriting WhereLoop p[].  But before we do, first
2575     ** go through the rest of the list and delete any other entries besides
2576     ** p[] that are also supplated by pTemplate */
2577     WhereLoop **ppTail = &p->pNextLoop;
2578     WhereLoop *pToDel;
2579     while( *ppTail ){
2580       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2581       if( ppTail==0 ) break;
2582       pToDel = *ppTail;
2583       if( pToDel==0 ) break;
2584       *ppTail = pToDel->pNextLoop;
2585 #if WHERETRACE_ENABLED /* 0x8 */
2586       if( sqlite3WhereTrace & 0x8 ){
2587         sqlite3DebugPrintf(" delete: ");
2588         sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
2589       }
2590 #endif
2591       whereLoopDelete(db, pToDel);
2592     }
2593   }
2594   rc = whereLoopXfer(db, p, pTemplate);
2595   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2596     Index *pIndex = p->u.btree.pIndex;
2597     if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
2598       p->u.btree.pIndex = 0;
2599     }
2600   }
2601   return rc;
2602 }
2603 
2604 /*
2605 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2606 ** WHERE clause that reference the loop but which are not used by an
2607 ** index.
2608 *
2609 ** For every WHERE clause term that is not used by the index
2610 ** and which has a truth probability assigned by one of the likelihood(),
2611 ** likely(), or unlikely() SQL functions, reduce the estimated number
2612 ** of output rows by the probability specified.
2613 **
2614 ** TUNING:  For every WHERE clause term that is not used by the index
2615 ** and which does not have an assigned truth probability, heuristics
2616 ** described below are used to try to estimate the truth probability.
2617 ** TODO --> Perhaps this is something that could be improved by better
2618 ** table statistics.
2619 **
2620 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2621 ** value corresponds to -1 in LogEst notation, so this means decrement
2622 ** the WhereLoop.nOut field for every such WHERE clause term.
2623 **
2624 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2625 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2626 ** final output row estimate is no greater than 1/4 of the total number
2627 ** of rows in the table.  In other words, assume that x==EXPR will filter
2628 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2629 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2630 ** on the "x" column and so in that case only cap the output row estimate
2631 ** at 1/2 instead of 1/4.
2632 */
2633 static void whereLoopOutputAdjust(
2634   WhereClause *pWC,      /* The WHERE clause */
2635   WhereLoop *pLoop,      /* The loop to adjust downward */
2636   LogEst nRow            /* Number of rows in the entire table */
2637 ){
2638   WhereTerm *pTerm, *pX;
2639   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2640   int i, j;
2641   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2642 
2643   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2644   for(i=pWC->nBase, pTerm=pWC->a; i>0; i--, pTerm++){
2645     assert( pTerm!=0 );
2646     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2647     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2648     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) continue;
2649     for(j=pLoop->nLTerm-1; j>=0; j--){
2650       pX = pLoop->aLTerm[j];
2651       if( pX==0 ) continue;
2652       if( pX==pTerm ) break;
2653       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2654     }
2655     if( j<0 ){
2656       if( pLoop->maskSelf==pTerm->prereqAll ){
2657         /* If there are extra terms in the WHERE clause not used by an index
2658         ** that depend only on the table being scanned, and that will tend to
2659         ** cause many rows to be omitted, then mark that table as
2660         ** "self-culling".
2661         **
2662         ** 2022-03-24:  Self-culling only applies if either the extra terms
2663         ** are straight comparison operators that are non-true with NULL
2664         ** operand, or if the loop is not an OUTER JOIN.
2665         */
2666         if( (pTerm->eOperator & 0x3f)!=0
2667          || (pWC->pWInfo->pTabList->a[pLoop->iTab].fg.jointype
2668                   & (JT_LEFT|JT_LTORJ))==0
2669         ){
2670           pLoop->wsFlags |= WHERE_SELFCULL;
2671         }
2672       }
2673       if( pTerm->truthProb<=0 ){
2674         /* If a truth probability is specified using the likelihood() hints,
2675         ** then use the probability provided by the application. */
2676         pLoop->nOut += pTerm->truthProb;
2677       }else{
2678         /* In the absence of explicit truth probabilities, use heuristics to
2679         ** guess a reasonable truth probability. */
2680         pLoop->nOut--;
2681         if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
2682          && (pTerm->wtFlags & TERM_HIGHTRUTH)==0  /* tag-20200224-1 */
2683         ){
2684           Expr *pRight = pTerm->pExpr->pRight;
2685           int k = 0;
2686           testcase( pTerm->pExpr->op==TK_IS );
2687           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2688             k = 10;
2689           }else{
2690             k = 20;
2691           }
2692           if( iReduce<k ){
2693             pTerm->wtFlags |= TERM_HEURTRUTH;
2694             iReduce = k;
2695           }
2696         }
2697       }
2698     }
2699   }
2700   if( pLoop->nOut > nRow-iReduce ){
2701     pLoop->nOut = nRow - iReduce;
2702   }
2703 }
2704 
2705 /*
2706 ** Term pTerm is a vector range comparison operation. The first comparison
2707 ** in the vector can be optimized using column nEq of the index. This
2708 ** function returns the total number of vector elements that can be used
2709 ** as part of the range comparison.
2710 **
2711 ** For example, if the query is:
2712 **
2713 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2714 **
2715 ** and the index:
2716 **
2717 **   CREATE INDEX ... ON (a, b, c, d, e)
2718 **
2719 ** then this function would be invoked with nEq=1. The value returned in
2720 ** this case is 3.
2721 */
2722 static int whereRangeVectorLen(
2723   Parse *pParse,       /* Parsing context */
2724   int iCur,            /* Cursor open on pIdx */
2725   Index *pIdx,         /* The index to be used for a inequality constraint */
2726   int nEq,             /* Number of prior equality constraints on same index */
2727   WhereTerm *pTerm     /* The vector inequality constraint */
2728 ){
2729   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2730   int i;
2731 
2732   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2733   for(i=1; i<nCmp; i++){
2734     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2735     ** of the index. If not, exit the loop.  */
2736     char aff;                     /* Comparison affinity */
2737     char idxaff = 0;              /* Indexed columns affinity */
2738     CollSeq *pColl;               /* Comparison collation sequence */
2739     Expr *pLhs, *pRhs;
2740 
2741     assert( ExprUseXList(pTerm->pExpr->pLeft) );
2742     pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2743     pRhs = pTerm->pExpr->pRight;
2744     if( ExprUseXSelect(pRhs) ){
2745       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2746     }else{
2747       pRhs = pRhs->x.pList->a[i].pExpr;
2748     }
2749 
2750     /* Check that the LHS of the comparison is a column reference to
2751     ** the right column of the right source table. And that the sort
2752     ** order of the index column is the same as the sort order of the
2753     ** leftmost index column.  */
2754     if( pLhs->op!=TK_COLUMN
2755      || pLhs->iTable!=iCur
2756      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2757      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2758     ){
2759       break;
2760     }
2761 
2762     testcase( pLhs->iColumn==XN_ROWID );
2763     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2764     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2765     if( aff!=idxaff ) break;
2766 
2767     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2768     if( pColl==0 ) break;
2769     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2770   }
2771   return i;
2772 }
2773 
2774 /*
2775 ** Adjust the cost C by the costMult facter T.  This only occurs if
2776 ** compiled with -DSQLITE_ENABLE_COSTMULT
2777 */
2778 #ifdef SQLITE_ENABLE_COSTMULT
2779 # define ApplyCostMultiplier(C,T)  C += T
2780 #else
2781 # define ApplyCostMultiplier(C,T)
2782 #endif
2783 
2784 /*
2785 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2786 ** index pIndex. Try to match one more.
2787 **
2788 ** When this function is called, pBuilder->pNew->nOut contains the
2789 ** number of rows expected to be visited by filtering using the nEq
2790 ** terms only. If it is modified, this value is restored before this
2791 ** function returns.
2792 **
2793 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2794 ** a fake index used for the INTEGER PRIMARY KEY.
2795 */
2796 static int whereLoopAddBtreeIndex(
2797   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2798   SrcItem *pSrc,                  /* FROM clause term being analyzed */
2799   Index *pProbe,                  /* An index on pSrc */
2800   LogEst nInMul                   /* log(Number of iterations due to IN) */
2801 ){
2802   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2803   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2804   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2805   WhereLoop *pNew;                /* Template WhereLoop under construction */
2806   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2807   int opMask;                     /* Valid operators for constraints */
2808   WhereScan scan;                 /* Iterator for WHERE terms */
2809   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2810   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2811   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2812   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2813   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2814   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2815   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2816   LogEst saved_nOut;              /* Original value of pNew->nOut */
2817   int rc = SQLITE_OK;             /* Return code */
2818   LogEst rSize;                   /* Number of rows in the table */
2819   LogEst rLogSize;                /* Logarithm of table size */
2820   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2821 
2822   pNew = pBuilder->pNew;
2823   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2824   WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
2825                      pProbe->pTable->zName,pProbe->zName,
2826                      pNew->u.btree.nEq, pNew->nSkip, pNew->rRun));
2827 
2828   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2829   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2830   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2831     opMask = WO_LT|WO_LE;
2832   }else{
2833     assert( pNew->u.btree.nBtm==0 );
2834     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2835   }
2836   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2837 
2838   assert( pNew->u.btree.nEq<pProbe->nColumn );
2839   assert( pNew->u.btree.nEq<pProbe->nKeyCol
2840        || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY );
2841 
2842   saved_nEq = pNew->u.btree.nEq;
2843   saved_nBtm = pNew->u.btree.nBtm;
2844   saved_nTop = pNew->u.btree.nTop;
2845   saved_nSkip = pNew->nSkip;
2846   saved_nLTerm = pNew->nLTerm;
2847   saved_wsFlags = pNew->wsFlags;
2848   saved_prereq = pNew->prereq;
2849   saved_nOut = pNew->nOut;
2850   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2851                         opMask, pProbe);
2852   pNew->rSetup = 0;
2853   rSize = pProbe->aiRowLogEst[0];
2854   rLogSize = estLog(rSize);
2855   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2856     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2857     LogEst rCostIdx;
2858     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2859     int nIn = 0;
2860 #ifdef SQLITE_ENABLE_STAT4
2861     int nRecValid = pBuilder->nRecValid;
2862 #endif
2863     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2864      && indexColumnNotNull(pProbe, saved_nEq)
2865     ){
2866       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2867     }
2868     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2869 
2870     /* Do not allow the upper bound of a LIKE optimization range constraint
2871     ** to mix with a lower range bound from some other source */
2872     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2873 
2874     /* tag-20191211-001:  Do not allow constraints from the WHERE clause to
2875     ** be used by the right table of a LEFT JOIN nor by the left table of a
2876     ** RIGHT JOIN.  Only constraints in the ON clause are allowed.
2877     ** See tag-20191211-002 for the vtab equivalent.
2878     **
2879     ** 2022-06-06: See https://sqlite.org/forum/forumpost/206d99a16dd9212f
2880     ** for an example of a WHERE clause constraints that may not be used on
2881     ** the right table of a RIGHT JOIN because the constraint implies a
2882     ** not-NULL condition on the left table of the RIGHT JOIN.
2883     **
2884     ** 2022-06-10: The same condition applies to termCanDriveIndex() above.
2885     ** https://sqlite.org/forum/forumpost/51e6959f61
2886     */
2887     if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0
2888      && !constraintCompatibleWithOuterJoin(pTerm,pSrc)
2889     ){
2890       continue;
2891     }
2892 
2893     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2894       pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
2895     }else{
2896       pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
2897     }
2898     pNew->wsFlags = saved_wsFlags;
2899     pNew->u.btree.nEq = saved_nEq;
2900     pNew->u.btree.nBtm = saved_nBtm;
2901     pNew->u.btree.nTop = saved_nTop;
2902     pNew->nLTerm = saved_nLTerm;
2903     if( pNew->nLTerm>=pNew->nLSlot
2904      && whereLoopResize(db, pNew, pNew->nLTerm+1)
2905     ){
2906        break; /* OOM while trying to enlarge the pNew->aLTerm array */
2907     }
2908     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2909     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2910 
2911     assert( nInMul==0
2912         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2913         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2914         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2915     );
2916 
2917     if( eOp & WO_IN ){
2918       Expr *pExpr = pTerm->pExpr;
2919       if( ExprUseXSelect(pExpr) ){
2920         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2921         int i;
2922         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2923 
2924         /* The expression may actually be of the form (x, y) IN (SELECT...).
2925         ** In this case there is a separate term for each of (x) and (y).
2926         ** However, the nIn multiplier should only be applied once, not once
2927         ** for each such term. The following loop checks that pTerm is the
2928         ** first such term in use, and sets nIn back to 0 if it is not. */
2929         for(i=0; i<pNew->nLTerm-1; i++){
2930           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2931         }
2932       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2933         /* "x IN (value, value, ...)" */
2934         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2935       }
2936       if( pProbe->hasStat1 && rLogSize>=10 ){
2937         LogEst M, logK, x;
2938         /* Let:
2939         **   N = the total number of rows in the table
2940         **   K = the number of entries on the RHS of the IN operator
2941         **   M = the number of rows in the table that match terms to the
2942         **       to the left in the same index.  If the IN operator is on
2943         **       the left-most index column, M==N.
2944         **
2945         ** Given the definitions above, it is better to omit the IN operator
2946         ** from the index lookup and instead do a scan of the M elements,
2947         ** testing each scanned row against the IN operator separately, if:
2948         **
2949         **        M*log(K) < K*log(N)
2950         **
2951         ** Our estimates for M, K, and N might be inaccurate, so we build in
2952         ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2953         ** with the index, as using an index has better worst-case behavior.
2954         ** If we do not have real sqlite_stat1 data, always prefer to use
2955         ** the index.  Do not bother with this optimization on very small
2956         ** tables (less than 2 rows) as it is pointless in that case.
2957         */
2958         M = pProbe->aiRowLogEst[saved_nEq];
2959         logK = estLog(nIn);
2960         /* TUNING      v-----  10 to bias toward indexed IN */
2961         x = M + logK + 10 - (nIn + rLogSize);
2962         if( x>=0 ){
2963           WHERETRACE(0x40,
2964             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) "
2965              "prefers indexed lookup\n",
2966              saved_nEq, M, logK, nIn, rLogSize, x));
2967         }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){
2968           WHERETRACE(0x40,
2969             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2970              " nInMul=%d) prefers skip-scan\n",
2971              saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2972           pNew->wsFlags |= WHERE_IN_SEEKSCAN;
2973         }else{
2974           WHERETRACE(0x40,
2975             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2976              " nInMul=%d) prefers normal scan\n",
2977              saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2978           continue;
2979         }
2980       }
2981       pNew->wsFlags |= WHERE_COLUMN_IN;
2982     }else if( eOp & (WO_EQ|WO_IS) ){
2983       int iCol = pProbe->aiColumn[saved_nEq];
2984       pNew->wsFlags |= WHERE_COLUMN_EQ;
2985       assert( saved_nEq==pNew->u.btree.nEq );
2986       if( iCol==XN_ROWID
2987        || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2988       ){
2989         if( iCol==XN_ROWID || pProbe->uniqNotNull
2990          || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2991         ){
2992           pNew->wsFlags |= WHERE_ONEROW;
2993         }else{
2994           pNew->wsFlags |= WHERE_UNQ_WANTED;
2995         }
2996       }
2997       if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS;
2998     }else if( eOp & WO_ISNULL ){
2999       pNew->wsFlags |= WHERE_COLUMN_NULL;
3000     }else{
3001       int nVecLen = whereRangeVectorLen(
3002           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
3003       );
3004       if( eOp & (WO_GT|WO_GE) ){
3005         testcase( eOp & WO_GT );
3006         testcase( eOp & WO_GE );
3007         pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
3008         pNew->u.btree.nBtm = nVecLen;
3009         pBtm = pTerm;
3010         pTop = 0;
3011         if( pTerm->wtFlags & TERM_LIKEOPT ){
3012           /* Range constraints that come from the LIKE optimization are
3013           ** always used in pairs. */
3014           pTop = &pTerm[1];
3015           assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
3016           assert( pTop->wtFlags & TERM_LIKEOPT );
3017           assert( pTop->eOperator==WO_LT );
3018           if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
3019           pNew->aLTerm[pNew->nLTerm++] = pTop;
3020           pNew->wsFlags |= WHERE_TOP_LIMIT;
3021           pNew->u.btree.nTop = 1;
3022         }
3023       }else{
3024         assert( eOp & (WO_LT|WO_LE) );
3025         testcase( eOp & WO_LT );
3026         testcase( eOp & WO_LE );
3027         pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
3028         pNew->u.btree.nTop = nVecLen;
3029         pTop = pTerm;
3030         pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
3031                        pNew->aLTerm[pNew->nLTerm-2] : 0;
3032       }
3033     }
3034 
3035     /* At this point pNew->nOut is set to the number of rows expected to
3036     ** be visited by the index scan before considering term pTerm, or the
3037     ** values of nIn and nInMul. In other words, assuming that all
3038     ** "x IN(...)" terms are replaced with "x = ?". This block updates
3039     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
3040     assert( pNew->nOut==saved_nOut );
3041     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
3042       /* Adjust nOut using stat4 data. Or, if there is no stat4
3043       ** data, using some other estimate.  */
3044       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
3045     }else{
3046       int nEq = ++pNew->u.btree.nEq;
3047       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
3048 
3049       assert( pNew->nOut==saved_nOut );
3050       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
3051         assert( (eOp & WO_IN) || nIn==0 );
3052         testcase( eOp & WO_IN );
3053         pNew->nOut += pTerm->truthProb;
3054         pNew->nOut -= nIn;
3055       }else{
3056 #ifdef SQLITE_ENABLE_STAT4
3057         tRowcnt nOut = 0;
3058         if( nInMul==0
3059          && pProbe->nSample
3060          && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol)
3061          && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr))
3062          && OptimizationEnabled(db, SQLITE_Stat4)
3063         ){
3064           Expr *pExpr = pTerm->pExpr;
3065           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
3066             testcase( eOp & WO_EQ );
3067             testcase( eOp & WO_IS );
3068             testcase( eOp & WO_ISNULL );
3069             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
3070           }else{
3071             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
3072           }
3073           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
3074           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
3075           if( nOut ){
3076             pNew->nOut = sqlite3LogEst(nOut);
3077             if( nEq==1
3078              /* TUNING: Mark terms as "low selectivity" if they seem likely
3079              ** to be true for half or more of the rows in the table.
3080              ** See tag-202002240-1 */
3081              && pNew->nOut+10 > pProbe->aiRowLogEst[0]
3082             ){
3083 #if WHERETRACE_ENABLED /* 0x01 */
3084               if( sqlite3WhereTrace & 0x01 ){
3085                 sqlite3DebugPrintf(
3086                    "STAT4 determines term has low selectivity:\n");
3087                 sqlite3WhereTermPrint(pTerm, 999);
3088               }
3089 #endif
3090               pTerm->wtFlags |= TERM_HIGHTRUTH;
3091               if( pTerm->wtFlags & TERM_HEURTRUTH ){
3092                 /* If the term has previously been used with an assumption of
3093                 ** higher selectivity, then set the flag to rerun the
3094                 ** loop computations. */
3095                 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
3096               }
3097             }
3098             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
3099             pNew->nOut -= nIn;
3100           }
3101         }
3102         if( nOut==0 )
3103 #endif
3104         {
3105           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
3106           if( eOp & WO_ISNULL ){
3107             /* TUNING: If there is no likelihood() value, assume that a
3108             ** "col IS NULL" expression matches twice as many rows
3109             ** as (col=?). */
3110             pNew->nOut += 10;
3111           }
3112         }
3113       }
3114     }
3115 
3116     /* Set rCostIdx to the cost of visiting selected rows in index. Add
3117     ** it to pNew->rRun, which is currently set to the cost of the index
3118     ** seek only. Then, if this is a non-covering index, add the cost of
3119     ** visiting the rows in the main table.  */
3120     assert( pSrc->pTab->szTabRow>0 );
3121     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
3122     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
3123     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
3124       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
3125     }
3126     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
3127 
3128     nOutUnadjusted = pNew->nOut;
3129     pNew->rRun += nInMul + nIn;
3130     pNew->nOut += nInMul + nIn;
3131     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
3132     rc = whereLoopInsert(pBuilder, pNew);
3133 
3134     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
3135       pNew->nOut = saved_nOut;
3136     }else{
3137       pNew->nOut = nOutUnadjusted;
3138     }
3139 
3140     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
3141      && pNew->u.btree.nEq<pProbe->nColumn
3142      && (pNew->u.btree.nEq<pProbe->nKeyCol ||
3143            pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY)
3144     ){
3145       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
3146     }
3147     pNew->nOut = saved_nOut;
3148 #ifdef SQLITE_ENABLE_STAT4
3149     pBuilder->nRecValid = nRecValid;
3150 #endif
3151   }
3152   pNew->prereq = saved_prereq;
3153   pNew->u.btree.nEq = saved_nEq;
3154   pNew->u.btree.nBtm = saved_nBtm;
3155   pNew->u.btree.nTop = saved_nTop;
3156   pNew->nSkip = saved_nSkip;
3157   pNew->wsFlags = saved_wsFlags;
3158   pNew->nOut = saved_nOut;
3159   pNew->nLTerm = saved_nLTerm;
3160 
3161   /* Consider using a skip-scan if there are no WHERE clause constraints
3162   ** available for the left-most terms of the index, and if the average
3163   ** number of repeats in the left-most terms is at least 18.
3164   **
3165   ** The magic number 18 is selected on the basis that scanning 17 rows
3166   ** is almost always quicker than an index seek (even though if the index
3167   ** contains fewer than 2^17 rows we assume otherwise in other parts of
3168   ** the code). And, even if it is not, it should not be too much slower.
3169   ** On the other hand, the extra seeks could end up being significantly
3170   ** more expensive.  */
3171   assert( 42==sqlite3LogEst(18) );
3172   if( saved_nEq==saved_nSkip
3173    && saved_nEq+1<pProbe->nKeyCol
3174    && saved_nEq==pNew->nLTerm
3175    && pProbe->noSkipScan==0
3176    && pProbe->hasStat1!=0
3177    && OptimizationEnabled(db, SQLITE_SkipScan)
3178    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
3179    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
3180   ){
3181     LogEst nIter;
3182     pNew->u.btree.nEq++;
3183     pNew->nSkip++;
3184     pNew->aLTerm[pNew->nLTerm++] = 0;
3185     pNew->wsFlags |= WHERE_SKIPSCAN;
3186     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
3187     pNew->nOut -= nIter;
3188     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
3189     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
3190     nIter += 5;
3191     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
3192     pNew->nOut = saved_nOut;
3193     pNew->u.btree.nEq = saved_nEq;
3194     pNew->nSkip = saved_nSkip;
3195     pNew->wsFlags = saved_wsFlags;
3196   }
3197 
3198   WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
3199                       pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
3200   return rc;
3201 }
3202 
3203 /*
3204 ** Return True if it is possible that pIndex might be useful in
3205 ** implementing the ORDER BY clause in pBuilder.
3206 **
3207 ** Return False if pBuilder does not contain an ORDER BY clause or
3208 ** if there is no way for pIndex to be useful in implementing that
3209 ** ORDER BY clause.
3210 */
3211 static int indexMightHelpWithOrderBy(
3212   WhereLoopBuilder *pBuilder,
3213   Index *pIndex,
3214   int iCursor
3215 ){
3216   ExprList *pOB;
3217   ExprList *aColExpr;
3218   int ii, jj;
3219 
3220   if( pIndex->bUnordered ) return 0;
3221   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
3222   for(ii=0; ii<pOB->nExpr; ii++){
3223     Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
3224     if( NEVER(pExpr==0) ) continue;
3225     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
3226       if( pExpr->iColumn<0 ) return 1;
3227       for(jj=0; jj<pIndex->nKeyCol; jj++){
3228         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
3229       }
3230     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
3231       for(jj=0; jj<pIndex->nKeyCol; jj++){
3232         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
3233         if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
3234           return 1;
3235         }
3236       }
3237     }
3238   }
3239   return 0;
3240 }
3241 
3242 /* Check to see if a partial index with pPartIndexWhere can be used
3243 ** in the current query.  Return true if it can be and false if not.
3244 */
3245 static int whereUsablePartialIndex(
3246   int iTab,             /* The table for which we want an index */
3247   u8 jointype,          /* The JT_* flags on the join */
3248   WhereClause *pWC,     /* The WHERE clause of the query */
3249   Expr *pWhere          /* The WHERE clause from the partial index */
3250 ){
3251   int i;
3252   WhereTerm *pTerm;
3253   Parse *pParse;
3254 
3255   if( jointype & JT_LTORJ ) return 0;
3256   pParse = pWC->pWInfo->pParse;
3257   while( pWhere->op==TK_AND ){
3258     if( !whereUsablePartialIndex(iTab,jointype,pWC,pWhere->pLeft) ) return 0;
3259     pWhere = pWhere->pRight;
3260   }
3261   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
3262   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
3263     Expr *pExpr;
3264     pExpr = pTerm->pExpr;
3265     if( (!ExprHasProperty(pExpr, EP_OuterON) || pExpr->w.iJoin==iTab)
3266      && ((jointype & JT_OUTER)==0 || ExprHasProperty(pExpr, EP_OuterON))
3267      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
3268      && (pTerm->wtFlags & TERM_VNULL)==0
3269     ){
3270       return 1;
3271     }
3272   }
3273   return 0;
3274 }
3275 
3276 /*
3277 ** Add all WhereLoop objects for a single table of the join where the table
3278 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
3279 ** a b-tree table, not a virtual table.
3280 **
3281 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
3282 ** are calculated as follows:
3283 **
3284 ** For a full scan, assuming the table (or index) contains nRow rows:
3285 **
3286 **     cost = nRow * 3.0                    // full-table scan
3287 **     cost = nRow * K                      // scan of covering index
3288 **     cost = nRow * (K+3.0)                // scan of non-covering index
3289 **
3290 ** where K is a value between 1.1 and 3.0 set based on the relative
3291 ** estimated average size of the index and table records.
3292 **
3293 ** For an index scan, where nVisit is the number of index rows visited
3294 ** by the scan, and nSeek is the number of seek operations required on
3295 ** the index b-tree:
3296 **
3297 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
3298 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
3299 **
3300 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
3301 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
3302 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
3303 **
3304 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
3305 ** of uncertainty.  For this reason, scoring is designed to pick plans that
3306 ** "do the least harm" if the estimates are inaccurate.  For example, a
3307 ** log(nRow) factor is omitted from a non-covering index scan in order to
3308 ** bias the scoring in favor of using an index, since the worst-case
3309 ** performance of using an index is far better than the worst-case performance
3310 ** of a full table scan.
3311 */
3312 static int whereLoopAddBtree(
3313   WhereLoopBuilder *pBuilder, /* WHERE clause information */
3314   Bitmask mPrereq             /* Extra prerequesites for using this table */
3315 ){
3316   WhereInfo *pWInfo;          /* WHERE analysis context */
3317   Index *pProbe;              /* An index we are evaluating */
3318   Index sPk;                  /* A fake index object for the primary key */
3319   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
3320   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
3321   SrcList *pTabList;          /* The FROM clause */
3322   SrcItem *pSrc;              /* The FROM clause btree term to add */
3323   WhereLoop *pNew;            /* Template WhereLoop object */
3324   int rc = SQLITE_OK;         /* Return code */
3325   int iSortIdx = 1;           /* Index number */
3326   int b;                      /* A boolean value */
3327   LogEst rSize;               /* number of rows in the table */
3328   WhereClause *pWC;           /* The parsed WHERE clause */
3329   Table *pTab;                /* Table being queried */
3330 
3331   pNew = pBuilder->pNew;
3332   pWInfo = pBuilder->pWInfo;
3333   pTabList = pWInfo->pTabList;
3334   pSrc = pTabList->a + pNew->iTab;
3335   pTab = pSrc->pTab;
3336   pWC = pBuilder->pWC;
3337   assert( !IsVirtual(pSrc->pTab) );
3338 
3339   if( pSrc->fg.isIndexedBy ){
3340     assert( pSrc->fg.isCte==0 );
3341     /* An INDEXED BY clause specifies a particular index to use */
3342     pProbe = pSrc->u2.pIBIndex;
3343   }else if( !HasRowid(pTab) ){
3344     pProbe = pTab->pIndex;
3345   }else{
3346     /* There is no INDEXED BY clause.  Create a fake Index object in local
3347     ** variable sPk to represent the rowid primary key index.  Make this
3348     ** fake index the first in a chain of Index objects with all of the real
3349     ** indices to follow */
3350     Index *pFirst;                  /* First of real indices on the table */
3351     memset(&sPk, 0, sizeof(Index));
3352     sPk.nKeyCol = 1;
3353     sPk.nColumn = 1;
3354     sPk.aiColumn = &aiColumnPk;
3355     sPk.aiRowLogEst = aiRowEstPk;
3356     sPk.onError = OE_Replace;
3357     sPk.pTable = pTab;
3358     sPk.szIdxRow = pTab->szTabRow;
3359     sPk.idxType = SQLITE_IDXTYPE_IPK;
3360     aiRowEstPk[0] = pTab->nRowLogEst;
3361     aiRowEstPk[1] = 0;
3362     pFirst = pSrc->pTab->pIndex;
3363     if( pSrc->fg.notIndexed==0 ){
3364       /* The real indices of the table are only considered if the
3365       ** NOT INDEXED qualifier is omitted from the FROM clause */
3366       sPk.pNext = pFirst;
3367     }
3368     pProbe = &sPk;
3369   }
3370   rSize = pTab->nRowLogEst;
3371 
3372 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
3373   /* Automatic indexes */
3374   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
3375    && (pWInfo->wctrlFlags & (WHERE_RIGHT_JOIN|WHERE_OR_SUBCLAUSE))==0
3376    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
3377    && !pSrc->fg.isIndexedBy  /* Has no INDEXED BY clause */
3378    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
3379    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
3380    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
3381    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
3382    && (pSrc->fg.jointype & JT_RIGHT)==0 /* Not the right tab of a RIGHT JOIN */
3383   ){
3384     /* Generate auto-index WhereLoops */
3385     LogEst rLogSize;         /* Logarithm of the number of rows in the table */
3386     WhereTerm *pTerm;
3387     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
3388     rLogSize = estLog(rSize);
3389     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
3390       if( pTerm->prereqRight & pNew->maskSelf ) continue;
3391       if( termCanDriveIndex(pTerm, pSrc, 0) ){
3392         pNew->u.btree.nEq = 1;
3393         pNew->nSkip = 0;
3394         pNew->u.btree.pIndex = 0;
3395         pNew->nLTerm = 1;
3396         pNew->aLTerm[0] = pTerm;
3397         /* TUNING: One-time cost for computing the automatic index is
3398         ** estimated to be X*N*log2(N) where N is the number of rows in
3399         ** the table being indexed and where X is 7 (LogEst=28) for normal
3400         ** tables or 0.5 (LogEst=-10) for views and subqueries.  The value
3401         ** of X is smaller for views and subqueries so that the query planner
3402         ** will be more aggressive about generating automatic indexes for
3403         ** those objects, since there is no opportunity to add schema
3404         ** indexes on subqueries and views. */
3405         pNew->rSetup = rLogSize + rSize;
3406         if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){
3407           pNew->rSetup += 28;
3408         }else{
3409           pNew->rSetup -= 10;
3410         }
3411         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
3412         if( pNew->rSetup<0 ) pNew->rSetup = 0;
3413         /* TUNING: Each index lookup yields 20 rows in the table.  This
3414         ** is more than the usual guess of 10 rows, since we have no way
3415         ** of knowing how selective the index will ultimately be.  It would
3416         ** not be unreasonable to make this value much larger. */
3417         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
3418         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
3419         pNew->wsFlags = WHERE_AUTO_INDEX;
3420         pNew->prereq = mPrereq | pTerm->prereqRight;
3421         rc = whereLoopInsert(pBuilder, pNew);
3422       }
3423     }
3424   }
3425 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3426 
3427   /* Loop over all indices. If there was an INDEXED BY clause, then only
3428   ** consider index pProbe.  */
3429   for(; rc==SQLITE_OK && pProbe;
3430       pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++
3431   ){
3432     if( pProbe->pPartIdxWhere!=0
3433      && !whereUsablePartialIndex(pSrc->iCursor, pSrc->fg.jointype, pWC,
3434                                  pProbe->pPartIdxWhere)
3435     ){
3436       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
3437       continue;  /* Partial index inappropriate for this query */
3438     }
3439     if( pProbe->bNoQuery ) continue;
3440     rSize = pProbe->aiRowLogEst[0];
3441     pNew->u.btree.nEq = 0;
3442     pNew->u.btree.nBtm = 0;
3443     pNew->u.btree.nTop = 0;
3444     pNew->nSkip = 0;
3445     pNew->nLTerm = 0;
3446     pNew->iSortIdx = 0;
3447     pNew->rSetup = 0;
3448     pNew->prereq = mPrereq;
3449     pNew->nOut = rSize;
3450     pNew->u.btree.pIndex = pProbe;
3451     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
3452 
3453     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3454     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
3455     if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
3456       /* Integer primary key index */
3457       pNew->wsFlags = WHERE_IPK;
3458 
3459       /* Full table scan */
3460       pNew->iSortIdx = b ? iSortIdx : 0;
3461       /* TUNING: Cost of full table scan is 3.0*N.  The 3.0 factor is an
3462       ** extra cost designed to discourage the use of full table scans,
3463       ** since index lookups have better worst-case performance if our
3464       ** stat guesses are wrong.  Reduce the 3.0 penalty slightly
3465       ** (to 2.75) if we have valid STAT4 information for the table.
3466       ** At 2.75, a full table scan is preferred over using an index on
3467       ** a column with just two distinct values where each value has about
3468       ** an equal number of appearances.  Without STAT4 data, we still want
3469       ** to use an index in that case, since the constraint might be for
3470       ** the scarcer of the two values, and in that case an index lookup is
3471       ** better.
3472       */
3473 #ifdef SQLITE_ENABLE_STAT4
3474       pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
3475 #else
3476       pNew->rRun = rSize + 16;
3477 #endif
3478       if( IsView(pTab) || (pTab->tabFlags & TF_Ephemeral)!=0 ){
3479         pNew->wsFlags |= WHERE_VIEWSCAN;
3480       }
3481       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3482       whereLoopOutputAdjust(pWC, pNew, rSize);
3483       rc = whereLoopInsert(pBuilder, pNew);
3484       pNew->nOut = rSize;
3485       if( rc ) break;
3486     }else{
3487       Bitmask m;
3488       if( pProbe->isCovering ){
3489         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
3490         m = 0;
3491       }else{
3492         m = pSrc->colUsed & pProbe->colNotIdxed;
3493         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
3494       }
3495 
3496       /* Full scan via index */
3497       if( b
3498        || !HasRowid(pTab)
3499        || pProbe->pPartIdxWhere!=0
3500        || pSrc->fg.isIndexedBy
3501        || ( m==0
3502          && pProbe->bUnordered==0
3503          && (pProbe->szIdxRow<pTab->szTabRow)
3504          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3505          && sqlite3GlobalConfig.bUseCis
3506          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3507           )
3508       ){
3509         pNew->iSortIdx = b ? iSortIdx : 0;
3510 
3511         /* The cost of visiting the index rows is N*K, where K is
3512         ** between 1.1 and 3.0, depending on the relative sizes of the
3513         ** index and table rows. */
3514         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3515         if( m!=0 ){
3516           /* If this is a non-covering index scan, add in the cost of
3517           ** doing table lookups.  The cost will be 3x the number of
3518           ** lookups.  Take into account WHERE clause terms that can be
3519           ** satisfied using just the index, and that do not require a
3520           ** table lookup. */
3521           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
3522           int ii;
3523           int iCur = pSrc->iCursor;
3524           WhereClause *pWC2 = &pWInfo->sWC;
3525           for(ii=0; ii<pWC2->nTerm; ii++){
3526             WhereTerm *pTerm = &pWC2->a[ii];
3527             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3528               break;
3529             }
3530             /* pTerm can be evaluated using just the index.  So reduce
3531             ** the expected number of table lookups accordingly */
3532             if( pTerm->truthProb<=0 ){
3533               nLookup += pTerm->truthProb;
3534             }else{
3535               nLookup--;
3536               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3537             }
3538           }
3539 
3540           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3541         }
3542         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3543         whereLoopOutputAdjust(pWC, pNew, rSize);
3544         if( (pSrc->fg.jointype & JT_RIGHT)!=0 && pProbe->aColExpr ){
3545           /* Do not do an SCAN of a index-on-expression in a RIGHT JOIN
3546           ** because the cursor used to access the index might not be
3547           ** positioned to the correct row during the right-join no-match
3548           ** loop. */
3549         }else{
3550           rc = whereLoopInsert(pBuilder, pNew);
3551         }
3552         pNew->nOut = rSize;
3553         if( rc ) break;
3554       }
3555     }
3556 
3557     pBuilder->bldFlags1 = 0;
3558     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3559     if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
3560       /* If a non-unique index is used, or if a prefix of the key for
3561       ** unique index is used (making the index functionally non-unique)
3562       ** then the sqlite_stat1 data becomes important for scoring the
3563       ** plan */
3564       pTab->tabFlags |= TF_StatsUsed;
3565     }
3566 #ifdef SQLITE_ENABLE_STAT4
3567     sqlite3Stat4ProbeFree(pBuilder->pRec);
3568     pBuilder->nRecValid = 0;
3569     pBuilder->pRec = 0;
3570 #endif
3571   }
3572   return rc;
3573 }
3574 
3575 #ifndef SQLITE_OMIT_VIRTUALTABLE
3576 
3577 /*
3578 ** Return true if pTerm is a virtual table LIMIT or OFFSET term.
3579 */
3580 static int isLimitTerm(WhereTerm *pTerm){
3581   assert( pTerm->eOperator==WO_AUX || pTerm->eMatchOp==0 );
3582   return pTerm->eMatchOp>=SQLITE_INDEX_CONSTRAINT_LIMIT
3583       && pTerm->eMatchOp<=SQLITE_INDEX_CONSTRAINT_OFFSET;
3584 }
3585 
3586 /*
3587 ** Argument pIdxInfo is already populated with all constraints that may
3588 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3589 ** function marks a subset of those constraints usable, invokes the
3590 ** xBestIndex method and adds the returned plan to pBuilder.
3591 **
3592 ** A constraint is marked usable if:
3593 **
3594 **   * Argument mUsable indicates that its prerequisites are available, and
3595 **
3596 **   * It is not one of the operators specified in the mExclude mask passed
3597 **     as the fourth argument (which in practice is either WO_IN or 0).
3598 **
3599 ** Argument mPrereq is a mask of tables that must be scanned before the
3600 ** virtual table in question. These are added to the plans prerequisites
3601 ** before it is added to pBuilder.
3602 **
3603 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3604 ** uses one or more WO_IN terms, or false otherwise.
3605 */
3606 static int whereLoopAddVirtualOne(
3607   WhereLoopBuilder *pBuilder,
3608   Bitmask mPrereq,                /* Mask of tables that must be used. */
3609   Bitmask mUsable,                /* Mask of usable tables */
3610   u16 mExclude,                   /* Exclude terms using these operators */
3611   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3612   u16 mNoOmit,                    /* Do not omit these constraints */
3613   int *pbIn,                      /* OUT: True if plan uses an IN(...) op */
3614   int *pbRetryLimit               /* OUT: Retry without LIMIT/OFFSET */
3615 ){
3616   WhereClause *pWC = pBuilder->pWC;
3617   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3618   struct sqlite3_index_constraint *pIdxCons;
3619   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3620   int i;
3621   int mxTerm;
3622   int rc = SQLITE_OK;
3623   WhereLoop *pNew = pBuilder->pNew;
3624   Parse *pParse = pBuilder->pWInfo->pParse;
3625   SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3626   int nConstraint = pIdxInfo->nConstraint;
3627 
3628   assert( (mUsable & mPrereq)==mPrereq );
3629   *pbIn = 0;
3630   pNew->prereq = mPrereq;
3631 
3632   /* Set the usable flag on the subset of constraints identified by
3633   ** arguments mUsable and mExclude. */
3634   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3635   for(i=0; i<nConstraint; i++, pIdxCons++){
3636     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3637     pIdxCons->usable = 0;
3638     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3639      && (pTerm->eOperator & mExclude)==0
3640      && (pbRetryLimit || !isLimitTerm(pTerm))
3641     ){
3642       pIdxCons->usable = 1;
3643     }
3644   }
3645 
3646   /* Initialize the output fields of the sqlite3_index_info structure */
3647   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3648   assert( pIdxInfo->needToFreeIdxStr==0 );
3649   pIdxInfo->idxStr = 0;
3650   pIdxInfo->idxNum = 0;
3651   pIdxInfo->orderByConsumed = 0;
3652   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3653   pIdxInfo->estimatedRows = 25;
3654   pIdxInfo->idxFlags = 0;
3655   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3656   pHidden->mHandleIn = 0;
3657 
3658   /* Invoke the virtual table xBestIndex() method */
3659   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3660   if( rc ){
3661     if( rc==SQLITE_CONSTRAINT ){
3662       /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3663       ** that the particular combination of parameters provided is unusable.
3664       ** Make no entries in the loop table.
3665       */
3666       WHERETRACE(0xffff, ("  ^^^^--- non-viable plan rejected!\n"));
3667       return SQLITE_OK;
3668     }
3669     return rc;
3670   }
3671 
3672   mxTerm = -1;
3673   assert( pNew->nLSlot>=nConstraint );
3674   memset(pNew->aLTerm, 0, sizeof(pNew->aLTerm[0])*nConstraint );
3675   memset(&pNew->u.vtab, 0, sizeof(pNew->u.vtab));
3676   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3677   for(i=0; i<nConstraint; i++, pIdxCons++){
3678     int iTerm;
3679     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3680       WhereTerm *pTerm;
3681       int j = pIdxCons->iTermOffset;
3682       if( iTerm>=nConstraint
3683        || j<0
3684        || j>=pWC->nTerm
3685        || pNew->aLTerm[iTerm]!=0
3686        || pIdxCons->usable==0
3687       ){
3688         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3689         testcase( pIdxInfo->needToFreeIdxStr );
3690         return SQLITE_ERROR;
3691       }
3692       testcase( iTerm==nConstraint-1 );
3693       testcase( j==0 );
3694       testcase( j==pWC->nTerm-1 );
3695       pTerm = &pWC->a[j];
3696       pNew->prereq |= pTerm->prereqRight;
3697       assert( iTerm<pNew->nLSlot );
3698       pNew->aLTerm[iTerm] = pTerm;
3699       if( iTerm>mxTerm ) mxTerm = iTerm;
3700       testcase( iTerm==15 );
3701       testcase( iTerm==16 );
3702       if( pUsage[i].omit ){
3703         if( i<16 && ((1<<i)&mNoOmit)==0 ){
3704           testcase( i!=iTerm );
3705           pNew->u.vtab.omitMask |= 1<<iTerm;
3706         }else{
3707           testcase( i!=iTerm );
3708         }
3709         if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET ){
3710           pNew->u.vtab.bOmitOffset = 1;
3711         }
3712       }
3713       if( SMASKBIT32(i) & pHidden->mHandleIn ){
3714         pNew->u.vtab.mHandleIn |= MASKBIT32(iTerm);
3715       }else if( (pTerm->eOperator & WO_IN)!=0 ){
3716         /* A virtual table that is constrained by an IN clause may not
3717         ** consume the ORDER BY clause because (1) the order of IN terms
3718         ** is not necessarily related to the order of output terms and
3719         ** (2) Multiple outputs from a single IN value will not merge
3720         ** together.  */
3721         pIdxInfo->orderByConsumed = 0;
3722         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3723         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3724       }
3725 
3726       assert( pbRetryLimit || !isLimitTerm(pTerm) );
3727       if( isLimitTerm(pTerm) && *pbIn ){
3728         /* If there is an IN(...) term handled as an == (separate call to
3729         ** xFilter for each value on the RHS of the IN) and a LIMIT or
3730         ** OFFSET term handled as well, the plan is unusable. Set output
3731         ** variable *pbRetryLimit to true to tell the caller to retry with
3732         ** LIMIT and OFFSET disabled. */
3733         if( pIdxInfo->needToFreeIdxStr ){
3734           sqlite3_free(pIdxInfo->idxStr);
3735           pIdxInfo->idxStr = 0;
3736           pIdxInfo->needToFreeIdxStr = 0;
3737         }
3738         *pbRetryLimit = 1;
3739         return SQLITE_OK;
3740       }
3741     }
3742   }
3743 
3744   pNew->nLTerm = mxTerm+1;
3745   for(i=0; i<=mxTerm; i++){
3746     if( pNew->aLTerm[i]==0 ){
3747       /* The non-zero argvIdx values must be contiguous.  Raise an
3748       ** error if they are not */
3749       sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3750       testcase( pIdxInfo->needToFreeIdxStr );
3751       return SQLITE_ERROR;
3752     }
3753   }
3754   assert( pNew->nLTerm<=pNew->nLSlot );
3755   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3756   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3757   pIdxInfo->needToFreeIdxStr = 0;
3758   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3759   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3760       pIdxInfo->nOrderBy : 0);
3761   pNew->rSetup = 0;
3762   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3763   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3764 
3765   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3766   ** that the scan will visit at most one row. Clear it otherwise. */
3767   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3768     pNew->wsFlags |= WHERE_ONEROW;
3769   }else{
3770     pNew->wsFlags &= ~WHERE_ONEROW;
3771   }
3772   rc = whereLoopInsert(pBuilder, pNew);
3773   if( pNew->u.vtab.needFree ){
3774     sqlite3_free(pNew->u.vtab.idxStr);
3775     pNew->u.vtab.needFree = 0;
3776   }
3777   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3778                       *pbIn, (sqlite3_uint64)mPrereq,
3779                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3780 
3781   return rc;
3782 }
3783 
3784 /*
3785 ** Return the collating sequence for a constraint passed into xBestIndex.
3786 **
3787 ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex.
3788 ** This routine depends on there being a HiddenIndexInfo structure immediately
3789 ** following the sqlite3_index_info structure.
3790 **
3791 ** Return a pointer to the collation name:
3792 **
3793 **    1. If there is an explicit COLLATE operator on the constaint, return it.
3794 **
3795 **    2. Else, if the column has an alternative collation, return that.
3796 **
3797 **    3. Otherwise, return "BINARY".
3798 */
3799 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3800   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3801   const char *zRet = 0;
3802   if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3803     CollSeq *pC = 0;
3804     int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3805     Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3806     if( pX->pLeft ){
3807       pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
3808     }
3809     zRet = (pC ? pC->zName : sqlite3StrBINARY);
3810   }
3811   return zRet;
3812 }
3813 
3814 /*
3815 ** Return true if constraint iCons is really an IN(...) constraint, or
3816 ** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0)
3817 ** or clear (if bHandle==0) the flag to handle it using an iterator.
3818 */
3819 int sqlite3_vtab_in(sqlite3_index_info *pIdxInfo, int iCons, int bHandle){
3820   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3821   u32 m = SMASKBIT32(iCons);
3822   if( m & pHidden->mIn ){
3823     if( bHandle==0 ){
3824       pHidden->mHandleIn &= ~m;
3825     }else if( bHandle>0 ){
3826       pHidden->mHandleIn |= m;
3827     }
3828     return 1;
3829   }
3830   return 0;
3831 }
3832 
3833 /*
3834 ** This interface is callable from within the xBestIndex callback only.
3835 **
3836 ** If possible, set (*ppVal) to point to an object containing the value
3837 ** on the right-hand-side of constraint iCons.
3838 */
3839 int sqlite3_vtab_rhs_value(
3840   sqlite3_index_info *pIdxInfo,   /* Copy of first argument to xBestIndex */
3841   int iCons,                      /* Constraint for which RHS is wanted */
3842   sqlite3_value **ppVal           /* Write value extracted here */
3843 ){
3844   HiddenIndexInfo *pH = (HiddenIndexInfo*)&pIdxInfo[1];
3845   sqlite3_value *pVal = 0;
3846   int rc = SQLITE_OK;
3847   if( iCons<0 || iCons>=pIdxInfo->nConstraint ){
3848     rc = SQLITE_MISUSE; /* EV: R-30545-25046 */
3849   }else{
3850     if( pH->aRhs[iCons]==0 ){
3851       WhereTerm *pTerm = &pH->pWC->a[pIdxInfo->aConstraint[iCons].iTermOffset];
3852       rc = sqlite3ValueFromExpr(
3853           pH->pParse->db, pTerm->pExpr->pRight, ENC(pH->pParse->db),
3854           SQLITE_AFF_BLOB, &pH->aRhs[iCons]
3855       );
3856       testcase( rc!=SQLITE_OK );
3857     }
3858     pVal = pH->aRhs[iCons];
3859   }
3860   *ppVal = pVal;
3861 
3862   if( rc==SQLITE_OK && pVal==0 ){  /* IMP: R-19933-32160 */
3863     rc = SQLITE_NOTFOUND;          /* IMP: R-36424-56542 */
3864   }
3865 
3866   return rc;
3867 }
3868 
3869 /*
3870 ** Return true if ORDER BY clause may be handled as DISTINCT.
3871 */
3872 int sqlite3_vtab_distinct(sqlite3_index_info *pIdxInfo){
3873   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3874   assert( pHidden->eDistinct>=0 && pHidden->eDistinct<=3 );
3875   return pHidden->eDistinct;
3876 }
3877 
3878 #if (defined(SQLITE_ENABLE_DBPAGE_VTAB) || defined(SQLITE_TEST)) \
3879     && !defined(SQLITE_OMIT_VIRTUALTABLE)
3880 /*
3881 ** Cause the prepared statement that is associated with a call to
3882 ** xBestIndex to potentiall use all schemas.  If the statement being
3883 ** prepared is read-only, then just start read transactions on all
3884 ** schemas.  But if this is a write operation, start writes on all
3885 ** schemas.
3886 **
3887 ** This is used by the (built-in) sqlite_dbpage virtual table.
3888 */
3889 void sqlite3VtabUsesAllSchemas(sqlite3_index_info *pIdxInfo){
3890   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3891   Parse *pParse = pHidden->pParse;
3892   int nDb = pParse->db->nDb;
3893   int i;
3894   for(i=0; i<nDb; i++){
3895     sqlite3CodeVerifySchema(pParse, i);
3896   }
3897   if( pParse->writeMask ){
3898     for(i=0; i<nDb; i++){
3899       sqlite3BeginWriteOperation(pParse, 0, i);
3900     }
3901   }
3902 }
3903 #endif
3904 
3905 /*
3906 ** Add all WhereLoop objects for a table of the join identified by
3907 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3908 **
3909 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3910 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3911 ** entries that occur before the virtual table in the FROM clause and are
3912 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3913 ** mUnusable mask contains all FROM clause entries that occur after the
3914 ** virtual table and are separated from it by at least one LEFT or
3915 ** CROSS JOIN.
3916 **
3917 ** For example, if the query were:
3918 **
3919 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3920 **
3921 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3922 **
3923 ** All the tables in mPrereq must be scanned before the current virtual
3924 ** table. So any terms for which all prerequisites are satisfied by
3925 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3926 ** Conversely, all tables in mUnusable must be scanned after the current
3927 ** virtual table, so any terms for which the prerequisites overlap with
3928 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3929 */
3930 static int whereLoopAddVirtual(
3931   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3932   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3933   Bitmask mUnusable            /* Tables that must be scanned after this one */
3934 ){
3935   int rc = SQLITE_OK;          /* Return code */
3936   WhereInfo *pWInfo;           /* WHERE analysis context */
3937   Parse *pParse;               /* The parsing context */
3938   WhereClause *pWC;            /* The WHERE clause */
3939   SrcItem *pSrc;               /* The FROM clause term to search */
3940   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3941   int nConstraint;             /* Number of constraints in p */
3942   int bIn;                     /* True if plan uses IN(...) operator */
3943   WhereLoop *pNew;
3944   Bitmask mBest;               /* Tables used by best possible plan */
3945   u16 mNoOmit;
3946   int bRetry = 0;              /* True to retry with LIMIT/OFFSET disabled */
3947 
3948   assert( (mPrereq & mUnusable)==0 );
3949   pWInfo = pBuilder->pWInfo;
3950   pParse = pWInfo->pParse;
3951   pWC = pBuilder->pWC;
3952   pNew = pBuilder->pNew;
3953   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3954   assert( IsVirtual(pSrc->pTab) );
3955   p = allocateIndexInfo(pWInfo, pWC, mUnusable, pSrc, &mNoOmit);
3956   if( p==0 ) return SQLITE_NOMEM_BKPT;
3957   pNew->rSetup = 0;
3958   pNew->wsFlags = WHERE_VIRTUALTABLE;
3959   pNew->nLTerm = 0;
3960   pNew->u.vtab.needFree = 0;
3961   nConstraint = p->nConstraint;
3962   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3963     freeIndexInfo(pParse->db, p);
3964     return SQLITE_NOMEM_BKPT;
3965   }
3966 
3967   /* First call xBestIndex() with all constraints usable. */
3968   WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3969   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3970   rc = whereLoopAddVirtualOne(
3971       pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, &bRetry
3972   );
3973   if( bRetry ){
3974     assert( rc==SQLITE_OK );
3975     rc = whereLoopAddVirtualOne(
3976         pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, 0
3977     );
3978   }
3979 
3980   /* If the call to xBestIndex() with all terms enabled produced a plan
3981   ** that does not require any source tables (IOW: a plan with mBest==0)
3982   ** and does not use an IN(...) operator, then there is no point in making
3983   ** any further calls to xBestIndex() since they will all return the same
3984   ** result (if the xBestIndex() implementation is sane). */
3985   if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
3986     int seenZero = 0;             /* True if a plan with no prereqs seen */
3987     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3988     Bitmask mPrev = 0;
3989     Bitmask mBestNoIn = 0;
3990 
3991     /* If the plan produced by the earlier call uses an IN(...) term, call
3992     ** xBestIndex again, this time with IN(...) terms disabled. */
3993     if( bIn ){
3994       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3995       rc = whereLoopAddVirtualOne(
3996           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn, 0);
3997       assert( bIn==0 );
3998       mBestNoIn = pNew->prereq & ~mPrereq;
3999       if( mBestNoIn==0 ){
4000         seenZero = 1;
4001         seenZeroNoIN = 1;
4002       }
4003     }
4004 
4005     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
4006     ** in the set of terms that apply to the current virtual table.  */
4007     while( rc==SQLITE_OK ){
4008       int i;
4009       Bitmask mNext = ALLBITS;
4010       assert( mNext>0 );
4011       for(i=0; i<nConstraint; i++){
4012         Bitmask mThis = (
4013             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
4014         );
4015         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
4016       }
4017       mPrev = mNext;
4018       if( mNext==ALLBITS ) break;
4019       if( mNext==mBest || mNext==mBestNoIn ) continue;
4020       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
4021                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
4022       rc = whereLoopAddVirtualOne(
4023           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn, 0);
4024       if( pNew->prereq==mPrereq ){
4025         seenZero = 1;
4026         if( bIn==0 ) seenZeroNoIN = 1;
4027       }
4028     }
4029 
4030     /* If the calls to xBestIndex() in the above loop did not find a plan
4031     ** that requires no source tables at all (i.e. one guaranteed to be
4032     ** usable), make a call here with all source tables disabled */
4033     if( rc==SQLITE_OK && seenZero==0 ){
4034       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
4035       rc = whereLoopAddVirtualOne(
4036           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn, 0);
4037       if( bIn==0 ) seenZeroNoIN = 1;
4038     }
4039 
4040     /* If the calls to xBestIndex() have so far failed to find a plan
4041     ** that requires no source tables at all and does not use an IN(...)
4042     ** operator, make a final call to obtain one here.  */
4043     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
4044       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
4045       rc = whereLoopAddVirtualOne(
4046           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn, 0);
4047     }
4048   }
4049 
4050   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
4051   freeIndexInfo(pParse->db, p);
4052   WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
4053   return rc;
4054 }
4055 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4056 
4057 /*
4058 ** Add WhereLoop entries to handle OR terms.  This works for either
4059 ** btrees or virtual tables.
4060 */
4061 static int whereLoopAddOr(
4062   WhereLoopBuilder *pBuilder,
4063   Bitmask mPrereq,
4064   Bitmask mUnusable
4065 ){
4066   WhereInfo *pWInfo = pBuilder->pWInfo;
4067   WhereClause *pWC;
4068   WhereLoop *pNew;
4069   WhereTerm *pTerm, *pWCEnd;
4070   int rc = SQLITE_OK;
4071   int iCur;
4072   WhereClause tempWC;
4073   WhereLoopBuilder sSubBuild;
4074   WhereOrSet sSum, sCur;
4075   SrcItem *pItem;
4076 
4077   pWC = pBuilder->pWC;
4078   pWCEnd = pWC->a + pWC->nTerm;
4079   pNew = pBuilder->pNew;
4080   memset(&sSum, 0, sizeof(sSum));
4081   pItem = pWInfo->pTabList->a + pNew->iTab;
4082   iCur = pItem->iCursor;
4083 
4084   /* The multi-index OR optimization does not work for RIGHT and FULL JOIN */
4085   if( pItem->fg.jointype & JT_RIGHT ) return SQLITE_OK;
4086 
4087   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
4088     if( (pTerm->eOperator & WO_OR)!=0
4089      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
4090     ){
4091       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
4092       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
4093       WhereTerm *pOrTerm;
4094       int once = 1;
4095       int i, j;
4096 
4097       sSubBuild = *pBuilder;
4098       sSubBuild.pOrSet = &sCur;
4099 
4100       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
4101       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
4102         if( (pOrTerm->eOperator & WO_AND)!=0 ){
4103           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
4104         }else if( pOrTerm->leftCursor==iCur ){
4105           tempWC.pWInfo = pWC->pWInfo;
4106           tempWC.pOuter = pWC;
4107           tempWC.op = TK_AND;
4108           tempWC.nTerm = 1;
4109           tempWC.nBase = 1;
4110           tempWC.a = pOrTerm;
4111           sSubBuild.pWC = &tempWC;
4112         }else{
4113           continue;
4114         }
4115         sCur.n = 0;
4116 #ifdef WHERETRACE_ENABLED
4117         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
4118                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
4119         if( sqlite3WhereTrace & 0x400 ){
4120           sqlite3WhereClausePrint(sSubBuild.pWC);
4121         }
4122 #endif
4123 #ifndef SQLITE_OMIT_VIRTUALTABLE
4124         if( IsVirtual(pItem->pTab) ){
4125           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
4126         }else
4127 #endif
4128         {
4129           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
4130         }
4131         if( rc==SQLITE_OK ){
4132           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
4133         }
4134         assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0
4135                 || rc==SQLITE_NOMEM );
4136         testcase( rc==SQLITE_NOMEM && sCur.n>0 );
4137         testcase( rc==SQLITE_DONE );
4138         if( sCur.n==0 ){
4139           sSum.n = 0;
4140           break;
4141         }else if( once ){
4142           whereOrMove(&sSum, &sCur);
4143           once = 0;
4144         }else{
4145           WhereOrSet sPrev;
4146           whereOrMove(&sPrev, &sSum);
4147           sSum.n = 0;
4148           for(i=0; i<sPrev.n; i++){
4149             for(j=0; j<sCur.n; j++){
4150               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
4151                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
4152                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
4153             }
4154           }
4155         }
4156       }
4157       pNew->nLTerm = 1;
4158       pNew->aLTerm[0] = pTerm;
4159       pNew->wsFlags = WHERE_MULTI_OR;
4160       pNew->rSetup = 0;
4161       pNew->iSortIdx = 0;
4162       memset(&pNew->u, 0, sizeof(pNew->u));
4163       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
4164         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
4165         ** of all sub-scans required by the OR-scan. However, due to rounding
4166         ** errors, it may be that the cost of the OR-scan is equal to its
4167         ** most expensive sub-scan. Add the smallest possible penalty
4168         ** (equivalent to multiplying the cost by 1.07) to ensure that
4169         ** this does not happen. Otherwise, for WHERE clauses such as the
4170         ** following where there is an index on "y":
4171         **
4172         **     WHERE likelihood(x=?, 0.99) OR y=?
4173         **
4174         ** the planner may elect to "OR" together a full-table scan and an
4175         ** index lookup. And other similarly odd results.  */
4176         pNew->rRun = sSum.a[i].rRun + 1;
4177         pNew->nOut = sSum.a[i].nOut;
4178         pNew->prereq = sSum.a[i].prereq;
4179         rc = whereLoopInsert(pBuilder, pNew);
4180       }
4181       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
4182     }
4183   }
4184   return rc;
4185 }
4186 
4187 /*
4188 ** Add all WhereLoop objects for all tables
4189 */
4190 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
4191   WhereInfo *pWInfo = pBuilder->pWInfo;
4192   Bitmask mPrereq = 0;
4193   Bitmask mPrior = 0;
4194   int iTab;
4195   SrcList *pTabList = pWInfo->pTabList;
4196   SrcItem *pItem;
4197   SrcItem *pEnd = &pTabList->a[pWInfo->nLevel];
4198   sqlite3 *db = pWInfo->pParse->db;
4199   int rc = SQLITE_OK;
4200   int bFirstPastRJ = 0;
4201   int hasRightJoin = 0;
4202   WhereLoop *pNew;
4203 
4204 
4205   /* Loop over the tables in the join, from left to right */
4206   pNew = pBuilder->pNew;
4207 
4208   /* Verify that pNew has already been initialized */
4209   assert( pNew->nLTerm==0 );
4210   assert( pNew->wsFlags==0 );
4211   assert( pNew->nLSlot>=ArraySize(pNew->aLTermSpace) );
4212   assert( pNew->aLTerm!=0 );
4213 
4214   pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
4215   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
4216     Bitmask mUnusable = 0;
4217     pNew->iTab = iTab;
4218     pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
4219     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
4220     if( bFirstPastRJ
4221      || (pItem->fg.jointype & (JT_OUTER|JT_CROSS|JT_LTORJ))!=0
4222     ){
4223       /* Add prerequisites to prevent reordering of FROM clause terms
4224       ** across CROSS joins and outer joins.  The bFirstPastRJ boolean
4225       ** prevents the right operand of a RIGHT JOIN from being swapped with
4226       ** other elements even further to the right.
4227       **
4228       ** The JT_LTORJ case and the hasRightJoin flag work together to
4229       ** prevent FROM-clause terms from moving from the right side of
4230       ** a LEFT JOIN over to the left side of that join if the LEFT JOIN
4231       ** is itself on the left side of a RIGHT JOIN.
4232       */
4233       if( pItem->fg.jointype & JT_LTORJ ) hasRightJoin = 1;
4234       mPrereq |= mPrior;
4235       bFirstPastRJ = (pItem->fg.jointype & JT_RIGHT)!=0;
4236     }else if( !hasRightJoin ){
4237       mPrereq = 0;
4238     }
4239 #ifndef SQLITE_OMIT_VIRTUALTABLE
4240     if( IsVirtual(pItem->pTab) ){
4241       SrcItem *p;
4242       for(p=&pItem[1]; p<pEnd; p++){
4243         if( mUnusable || (p->fg.jointype & (JT_OUTER|JT_CROSS)) ){
4244           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
4245         }
4246       }
4247       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
4248     }else
4249 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4250     {
4251       rc = whereLoopAddBtree(pBuilder, mPrereq);
4252     }
4253     if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
4254       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
4255     }
4256     mPrior |= pNew->maskSelf;
4257     if( rc || db->mallocFailed ){
4258       if( rc==SQLITE_DONE ){
4259         /* We hit the query planner search limit set by iPlanLimit */
4260         sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
4261         rc = SQLITE_OK;
4262       }else{
4263         break;
4264       }
4265     }
4266   }
4267 
4268   whereLoopClear(db, pNew);
4269   return rc;
4270 }
4271 
4272 /*
4273 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
4274 ** parameters) to see if it outputs rows in the requested ORDER BY
4275 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
4276 **
4277 **   N>0:   N terms of the ORDER BY clause are satisfied
4278 **   N==0:  No terms of the ORDER BY clause are satisfied
4279 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
4280 **
4281 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
4282 ** strict.  With GROUP BY and DISTINCT the only requirement is that
4283 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
4284 ** and DISTINCT do not require rows to appear in any particular order as long
4285 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
4286 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
4287 ** pOrderBy terms must be matched in strict left-to-right order.
4288 */
4289 static i8 wherePathSatisfiesOrderBy(
4290   WhereInfo *pWInfo,    /* The WHERE clause */
4291   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
4292   WherePath *pPath,     /* The WherePath to check */
4293   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
4294   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
4295   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
4296   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
4297 ){
4298   u8 revSet;            /* True if rev is known */
4299   u8 rev;               /* Composite sort order */
4300   u8 revIdx;            /* Index sort order */
4301   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
4302   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
4303   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
4304   u16 eqOpMask;         /* Allowed equality operators */
4305   u16 nKeyCol;          /* Number of key columns in pIndex */
4306   u16 nColumn;          /* Total number of ordered columns in the index */
4307   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
4308   int iLoop;            /* Index of WhereLoop in pPath being processed */
4309   int i, j;             /* Loop counters */
4310   int iCur;             /* Cursor number for current WhereLoop */
4311   int iColumn;          /* A column number within table iCur */
4312   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
4313   WhereTerm *pTerm;     /* A single term of the WHERE clause */
4314   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
4315   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
4316   Index *pIndex;        /* The index associated with pLoop */
4317   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
4318   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
4319   Bitmask obDone;       /* Mask of all ORDER BY terms */
4320   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
4321   Bitmask ready;              /* Mask of inner loops */
4322 
4323   /*
4324   ** We say the WhereLoop is "one-row" if it generates no more than one
4325   ** row of output.  A WhereLoop is one-row if all of the following are true:
4326   **  (a) All index columns match with WHERE_COLUMN_EQ.
4327   **  (b) The index is unique
4328   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
4329   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
4330   **
4331   ** We say the WhereLoop is "order-distinct" if the set of columns from
4332   ** that WhereLoop that are in the ORDER BY clause are different for every
4333   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
4334   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
4335   ** is not order-distinct. To be order-distinct is not quite the same as being
4336   ** UNIQUE since a UNIQUE column or index can have multiple rows that
4337   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
4338   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
4339   **
4340   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
4341   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
4342   ** automatically order-distinct.
4343   */
4344 
4345   assert( pOrderBy!=0 );
4346   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
4347 
4348   nOrderBy = pOrderBy->nExpr;
4349   testcase( nOrderBy==BMS-1 );
4350   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
4351   isOrderDistinct = 1;
4352   obDone = MASKBIT(nOrderBy)-1;
4353   orderDistinctMask = 0;
4354   ready = 0;
4355   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
4356   if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){
4357     eqOpMask |= WO_IN;
4358   }
4359   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
4360     if( iLoop>0 ) ready |= pLoop->maskSelf;
4361     if( iLoop<nLoop ){
4362       pLoop = pPath->aLoop[iLoop];
4363       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
4364     }else{
4365       pLoop = pLast;
4366     }
4367     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
4368       if( pLoop->u.vtab.isOrdered
4369        && ((wctrlFlags&(WHERE_DISTINCTBY|WHERE_SORTBYGROUP))!=WHERE_DISTINCTBY)
4370       ){
4371         obSat = obDone;
4372       }
4373       break;
4374     }else if( wctrlFlags & WHERE_DISTINCTBY ){
4375       pLoop->u.btree.nDistinctCol = 0;
4376     }
4377     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
4378 
4379     /* Mark off any ORDER BY term X that is a column in the table of
4380     ** the current loop for which there is term in the WHERE
4381     ** clause of the form X IS NULL or X=? that reference only outer
4382     ** loops.
4383     */
4384     for(i=0; i<nOrderBy; i++){
4385       if( MASKBIT(i) & obSat ) continue;
4386       pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
4387       if( NEVER(pOBExpr==0) ) continue;
4388       if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
4389       if( pOBExpr->iTable!=iCur ) continue;
4390       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
4391                        ~ready, eqOpMask, 0);
4392       if( pTerm==0 ) continue;
4393       if( pTerm->eOperator==WO_IN ){
4394         /* IN terms are only valid for sorting in the ORDER BY LIMIT
4395         ** optimization, and then only if they are actually used
4396         ** by the query plan */
4397         assert( wctrlFlags &
4398                (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) );
4399         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
4400         if( j>=pLoop->nLTerm ) continue;
4401       }
4402       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
4403         Parse *pParse = pWInfo->pParse;
4404         CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
4405         CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
4406         assert( pColl1 );
4407         if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
4408           continue;
4409         }
4410         testcase( pTerm->pExpr->op==TK_IS );
4411       }
4412       obSat |= MASKBIT(i);
4413     }
4414 
4415     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
4416       if( pLoop->wsFlags & WHERE_IPK ){
4417         pIndex = 0;
4418         nKeyCol = 0;
4419         nColumn = 1;
4420       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
4421         return 0;
4422       }else{
4423         nKeyCol = pIndex->nKeyCol;
4424         nColumn = pIndex->nColumn;
4425         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
4426         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
4427                           || !HasRowid(pIndex->pTable));
4428         /* All relevant terms of the index must also be non-NULL in order
4429         ** for isOrderDistinct to be true.  So the isOrderDistint value
4430         ** computed here might be a false positive.  Corrections will be
4431         ** made at tag-20210426-1 below */
4432         isOrderDistinct = IsUniqueIndex(pIndex)
4433                           && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
4434       }
4435 
4436       /* Loop through all columns of the index and deal with the ones
4437       ** that are not constrained by == or IN.
4438       */
4439       rev = revSet = 0;
4440       distinctColumns = 0;
4441       for(j=0; j<nColumn; j++){
4442         u8 bOnce = 1; /* True to run the ORDER BY search loop */
4443 
4444         assert( j>=pLoop->u.btree.nEq
4445             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
4446         );
4447         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
4448           u16 eOp = pLoop->aLTerm[j]->eOperator;
4449 
4450           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
4451           ** doing WHERE_ORDERBY_LIMIT processing).  Except, IS and ISNULL
4452           ** terms imply that the index is not UNIQUE NOT NULL in which case
4453           ** the loop need to be marked as not order-distinct because it can
4454           ** have repeated NULL rows.
4455           **
4456           ** If the current term is a column of an ((?,?) IN (SELECT...))
4457           ** expression for which the SELECT returns more than one column,
4458           ** check that it is the only column used by this loop. Otherwise,
4459           ** if it is one of two or more, none of the columns can be
4460           ** considered to match an ORDER BY term.
4461           */
4462           if( (eOp & eqOpMask)!=0 ){
4463             if( eOp & (WO_ISNULL|WO_IS) ){
4464               testcase( eOp & WO_ISNULL );
4465               testcase( eOp & WO_IS );
4466               testcase( isOrderDistinct );
4467               isOrderDistinct = 0;
4468             }
4469             continue;
4470           }else if( ALWAYS(eOp & WO_IN) ){
4471             /* ALWAYS() justification: eOp is an equality operator due to the
4472             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
4473             ** than WO_IN is captured by the previous "if".  So this one
4474             ** always has to be WO_IN. */
4475             Expr *pX = pLoop->aLTerm[j]->pExpr;
4476             for(i=j+1; i<pLoop->u.btree.nEq; i++){
4477               if( pLoop->aLTerm[i]->pExpr==pX ){
4478                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
4479                 bOnce = 0;
4480                 break;
4481               }
4482             }
4483           }
4484         }
4485 
4486         /* Get the column number in the table (iColumn) and sort order
4487         ** (revIdx) for the j-th column of the index.
4488         */
4489         if( pIndex ){
4490           iColumn = pIndex->aiColumn[j];
4491           revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
4492           if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
4493         }else{
4494           iColumn = XN_ROWID;
4495           revIdx = 0;
4496         }
4497 
4498         /* An unconstrained column that might be NULL means that this
4499         ** WhereLoop is not well-ordered.  tag-20210426-1
4500         */
4501         if( isOrderDistinct ){
4502           if( iColumn>=0
4503            && j>=pLoop->u.btree.nEq
4504            && pIndex->pTable->aCol[iColumn].notNull==0
4505           ){
4506             isOrderDistinct = 0;
4507           }
4508           if( iColumn==XN_EXPR ){
4509             isOrderDistinct = 0;
4510           }
4511         }
4512 
4513         /* Find the ORDER BY term that corresponds to the j-th column
4514         ** of the index and mark that ORDER BY term off
4515         */
4516         isMatch = 0;
4517         for(i=0; bOnce && i<nOrderBy; i++){
4518           if( MASKBIT(i) & obSat ) continue;
4519           pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
4520           testcase( wctrlFlags & WHERE_GROUPBY );
4521           testcase( wctrlFlags & WHERE_DISTINCTBY );
4522           if( NEVER(pOBExpr==0) ) continue;
4523           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
4524           if( iColumn>=XN_ROWID ){
4525             if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
4526             if( pOBExpr->iTable!=iCur ) continue;
4527             if( pOBExpr->iColumn!=iColumn ) continue;
4528           }else{
4529             Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
4530             if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
4531               continue;
4532             }
4533           }
4534           if( iColumn!=XN_ROWID ){
4535             pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
4536             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
4537           }
4538           if( wctrlFlags & WHERE_DISTINCTBY ){
4539             pLoop->u.btree.nDistinctCol = j+1;
4540           }
4541           isMatch = 1;
4542           break;
4543         }
4544         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
4545           /* Make sure the sort order is compatible in an ORDER BY clause.
4546           ** Sort order is irrelevant for a GROUP BY clause. */
4547           if( revSet ){
4548             if( (rev ^ revIdx)
4549                            != (pOrderBy->a[i].fg.sortFlags&KEYINFO_ORDER_DESC)
4550             ){
4551               isMatch = 0;
4552             }
4553           }else{
4554             rev = revIdx ^ (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC);
4555             if( rev ) *pRevMask |= MASKBIT(iLoop);
4556             revSet = 1;
4557           }
4558         }
4559         if( isMatch && (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL) ){
4560           if( j==pLoop->u.btree.nEq ){
4561             pLoop->wsFlags |= WHERE_BIGNULL_SORT;
4562           }else{
4563             isMatch = 0;
4564           }
4565         }
4566         if( isMatch ){
4567           if( iColumn==XN_ROWID ){
4568             testcase( distinctColumns==0 );
4569             distinctColumns = 1;
4570           }
4571           obSat |= MASKBIT(i);
4572         }else{
4573           /* No match found */
4574           if( j==0 || j<nKeyCol ){
4575             testcase( isOrderDistinct!=0 );
4576             isOrderDistinct = 0;
4577           }
4578           break;
4579         }
4580       } /* end Loop over all index columns */
4581       if( distinctColumns ){
4582         testcase( isOrderDistinct==0 );
4583         isOrderDistinct = 1;
4584       }
4585     } /* end-if not one-row */
4586 
4587     /* Mark off any other ORDER BY terms that reference pLoop */
4588     if( isOrderDistinct ){
4589       orderDistinctMask |= pLoop->maskSelf;
4590       for(i=0; i<nOrderBy; i++){
4591         Expr *p;
4592         Bitmask mTerm;
4593         if( MASKBIT(i) & obSat ) continue;
4594         p = pOrderBy->a[i].pExpr;
4595         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
4596         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
4597         if( (mTerm&~orderDistinctMask)==0 ){
4598           obSat |= MASKBIT(i);
4599         }
4600       }
4601     }
4602   } /* End the loop over all WhereLoops from outer-most down to inner-most */
4603   if( obSat==obDone ) return (i8)nOrderBy;
4604   if( !isOrderDistinct ){
4605     for(i=nOrderBy-1; i>0; i--){
4606       Bitmask m = ALWAYS(i<BMS) ? MASKBIT(i) - 1 : 0;
4607       if( (obSat&m)==m ) return i;
4608     }
4609     return 0;
4610   }
4611   return -1;
4612 }
4613 
4614 
4615 /*
4616 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
4617 ** the planner assumes that the specified pOrderBy list is actually a GROUP
4618 ** BY clause - and so any order that groups rows as required satisfies the
4619 ** request.
4620 **
4621 ** Normally, in this case it is not possible for the caller to determine
4622 ** whether or not the rows are really being delivered in sorted order, or
4623 ** just in some other order that provides the required grouping. However,
4624 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
4625 ** this function may be called on the returned WhereInfo object. It returns
4626 ** true if the rows really will be sorted in the specified order, or false
4627 ** otherwise.
4628 **
4629 ** For example, assuming:
4630 **
4631 **   CREATE INDEX i1 ON t1(x, Y);
4632 **
4633 ** then
4634 **
4635 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
4636 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
4637 */
4638 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
4639   assert( pWInfo->wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY) );
4640   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
4641   return pWInfo->sorted;
4642 }
4643 
4644 #ifdef WHERETRACE_ENABLED
4645 /* For debugging use only: */
4646 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
4647   static char zName[65];
4648   int i;
4649   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
4650   if( pLast ) zName[i++] = pLast->cId;
4651   zName[i] = 0;
4652   return zName;
4653 }
4654 #endif
4655 
4656 /*
4657 ** Return the cost of sorting nRow rows, assuming that the keys have
4658 ** nOrderby columns and that the first nSorted columns are already in
4659 ** order.
4660 */
4661 static LogEst whereSortingCost(
4662   WhereInfo *pWInfo,
4663   LogEst nRow,
4664   int nOrderBy,
4665   int nSorted
4666 ){
4667   /* TUNING: Estimated cost of a full external sort, where N is
4668   ** the number of rows to sort is:
4669   **
4670   **   cost = (3.0 * N * log(N)).
4671   **
4672   ** Or, if the order-by clause has X terms but only the last Y
4673   ** terms are out of order, then block-sorting will reduce the
4674   ** sorting cost to:
4675   **
4676   **   cost = (3.0 * N * log(N)) * (Y/X)
4677   **
4678   ** The (Y/X) term is implemented using stack variable rScale
4679   ** below.
4680   */
4681   LogEst rScale, rSortCost;
4682   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
4683   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
4684   rSortCost = nRow + rScale + 16;
4685 
4686   /* Multiple by log(M) where M is the number of output rows.
4687   ** Use the LIMIT for M if it is smaller.  Or if this sort is for
4688   ** a DISTINCT operator, M will be the number of distinct output
4689   ** rows, so fudge it downwards a bit.
4690   */
4691   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
4692     nRow = pWInfo->iLimit;
4693   }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){
4694     /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
4695     ** reduces the number of output rows by a factor of 2 */
4696     if( nRow>10 ){ nRow -= 10;  assert( 10==sqlite3LogEst(2) ); }
4697   }
4698   rSortCost += estLog(nRow);
4699   return rSortCost;
4700 }
4701 
4702 /*
4703 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4704 ** attempts to find the lowest cost path that visits each WhereLoop
4705 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
4706 **
4707 ** Assume that the total number of output rows that will need to be sorted
4708 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
4709 ** costs if nRowEst==0.
4710 **
4711 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4712 ** error occurs.
4713 */
4714 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
4715   int mxChoice;             /* Maximum number of simultaneous paths tracked */
4716   int nLoop;                /* Number of terms in the join */
4717   Parse *pParse;            /* Parsing context */
4718   sqlite3 *db;              /* The database connection */
4719   int iLoop;                /* Loop counter over the terms of the join */
4720   int ii, jj;               /* Loop counters */
4721   int mxI = 0;              /* Index of next entry to replace */
4722   int nOrderBy;             /* Number of ORDER BY clause terms */
4723   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
4724   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
4725   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
4726   WherePath *aFrom;         /* All nFrom paths at the previous level */
4727   WherePath *aTo;           /* The nTo best paths at the current level */
4728   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
4729   WherePath *pTo;           /* An element of aTo[] that we are working on */
4730   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
4731   WhereLoop **pX;           /* Used to divy up the pSpace memory */
4732   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
4733   char *pSpace;             /* Temporary memory used by this routine */
4734   int nSpace;               /* Bytes of space allocated at pSpace */
4735 
4736   pParse = pWInfo->pParse;
4737   db = pParse->db;
4738   nLoop = pWInfo->nLevel;
4739   /* TUNING: For simple queries, only the best path is tracked.
4740   ** For 2-way joins, the 5 best paths are followed.
4741   ** For joins of 3 or more tables, track the 10 best paths */
4742   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4743   assert( nLoop<=pWInfo->pTabList->nSrc );
4744   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
4745 
4746   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4747   ** case the purpose of this call is to estimate the number of rows returned
4748   ** by the overall query. Once this estimate has been obtained, the caller
4749   ** will invoke this function a second time, passing the estimate as the
4750   ** nRowEst parameter.  */
4751   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4752     nOrderBy = 0;
4753   }else{
4754     nOrderBy = pWInfo->pOrderBy->nExpr;
4755   }
4756 
4757   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4758   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4759   nSpace += sizeof(LogEst) * nOrderBy;
4760   pSpace = sqlite3DbMallocRawNN(db, nSpace);
4761   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4762   aTo = (WherePath*)pSpace;
4763   aFrom = aTo+mxChoice;
4764   memset(aFrom, 0, sizeof(aFrom[0]));
4765   pX = (WhereLoop**)(aFrom+mxChoice);
4766   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4767     pFrom->aLoop = pX;
4768   }
4769   if( nOrderBy ){
4770     /* If there is an ORDER BY clause and it is not being ignored, set up
4771     ** space for the aSortCost[] array. Each element of the aSortCost array
4772     ** is either zero - meaning it has not yet been initialized - or the
4773     ** cost of sorting nRowEst rows of data where the first X terms of
4774     ** the ORDER BY clause are already in order, where X is the array
4775     ** index.  */
4776     aSortCost = (LogEst*)pX;
4777     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4778   }
4779   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4780   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4781 
4782   /* Seed the search with a single WherePath containing zero WhereLoops.
4783   **
4784   ** TUNING: Do not let the number of iterations go above 28.  If the cost
4785   ** of computing an automatic index is not paid back within the first 28
4786   ** rows, then do not use the automatic index. */
4787   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
4788   nFrom = 1;
4789   assert( aFrom[0].isOrdered==0 );
4790   if( nOrderBy ){
4791     /* If nLoop is zero, then there are no FROM terms in the query. Since
4792     ** in this case the query may return a maximum of one row, the results
4793     ** are already in the requested order. Set isOrdered to nOrderBy to
4794     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4795     ** -1, indicating that the result set may or may not be ordered,
4796     ** depending on the loops added to the current plan.  */
4797     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4798   }
4799 
4800   /* Compute successively longer WherePaths using the previous generation
4801   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
4802   ** best paths at each generation */
4803   for(iLoop=0; iLoop<nLoop; iLoop++){
4804     nTo = 0;
4805     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4806       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4807         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
4808         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
4809         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
4810         i8 isOrdered;                     /* isOrdered for (pFrom+pWLoop) */
4811         Bitmask maskNew;                  /* Mask of src visited by (..) */
4812         Bitmask revMask;                  /* Mask of rev-order loops for (..) */
4813 
4814         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4815         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4816         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4817           /* Do not use an automatic index if the this loop is expected
4818           ** to run less than 1.25 times.  It is tempting to also exclude
4819           ** automatic index usage on an outer loop, but sometimes an automatic
4820           ** index is useful in the outer loop of a correlated subquery. */
4821           assert( 10==sqlite3LogEst(2) );
4822           continue;
4823         }
4824 
4825         /* At this point, pWLoop is a candidate to be the next loop.
4826         ** Compute its cost */
4827         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4828         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4829         nOut = pFrom->nRow + pWLoop->nOut;
4830         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4831         isOrdered = pFrom->isOrdered;
4832         if( isOrdered<0 ){
4833           revMask = 0;
4834           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4835                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4836                        iLoop, pWLoop, &revMask);
4837         }else{
4838           revMask = pFrom->revLoop;
4839         }
4840         if( isOrdered>=0 && isOrdered<nOrderBy ){
4841           if( aSortCost[isOrdered]==0 ){
4842             aSortCost[isOrdered] = whereSortingCost(
4843                 pWInfo, nRowEst, nOrderBy, isOrdered
4844             );
4845           }
4846           /* TUNING:  Add a small extra penalty (5) to sorting as an
4847           ** extra encouragment to the query planner to select a plan
4848           ** where the rows emerge in the correct order without any sorting
4849           ** required. */
4850           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4851 
4852           WHERETRACE(0x002,
4853               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4854                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4855                rUnsorted, rCost));
4856         }else{
4857           rCost = rUnsorted;
4858           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
4859         }
4860 
4861         /* TUNING:  A full-scan of a VIEW or subquery in the outer loop
4862         ** is not so bad. */
4863         if( iLoop==0 && (pWLoop->wsFlags & WHERE_VIEWSCAN)!=0 ){
4864           rCost += -10;
4865           nOut += -30;
4866         }
4867 
4868         /* Check to see if pWLoop should be added to the set of
4869         ** mxChoice best-so-far paths.
4870         **
4871         ** First look for an existing path among best-so-far paths
4872         ** that covers the same set of loops and has the same isOrdered
4873         ** setting as the current path candidate.
4874         **
4875         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4876         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4877         ** of legal values for isOrdered, -1..64.
4878         */
4879         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4880           if( pTo->maskLoop==maskNew
4881            && ((pTo->isOrdered^isOrdered)&0x80)==0
4882           ){
4883             testcase( jj==nTo-1 );
4884             break;
4885           }
4886         }
4887         if( jj>=nTo ){
4888           /* None of the existing best-so-far paths match the candidate. */
4889           if( nTo>=mxChoice
4890            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4891           ){
4892             /* The current candidate is no better than any of the mxChoice
4893             ** paths currently in the best-so-far buffer.  So discard
4894             ** this candidate as not viable. */
4895 #ifdef WHERETRACE_ENABLED /* 0x4 */
4896             if( sqlite3WhereTrace&0x4 ){
4897               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4898                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4899                   isOrdered>=0 ? isOrdered+'0' : '?');
4900             }
4901 #endif
4902             continue;
4903           }
4904           /* If we reach this points it means that the new candidate path
4905           ** needs to be added to the set of best-so-far paths. */
4906           if( nTo<mxChoice ){
4907             /* Increase the size of the aTo set by one */
4908             jj = nTo++;
4909           }else{
4910             /* New path replaces the prior worst to keep count below mxChoice */
4911             jj = mxI;
4912           }
4913           pTo = &aTo[jj];
4914 #ifdef WHERETRACE_ENABLED /* 0x4 */
4915           if( sqlite3WhereTrace&0x4 ){
4916             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4917                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4918                 isOrdered>=0 ? isOrdered+'0' : '?');
4919           }
4920 #endif
4921         }else{
4922           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4923           ** same set of loops and has the same isOrdered setting as the
4924           ** candidate path.  Check to see if the candidate should replace
4925           ** pTo or if the candidate should be skipped.
4926           **
4927           ** The conditional is an expanded vector comparison equivalent to:
4928           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4929           */
4930           if( pTo->rCost<rCost
4931            || (pTo->rCost==rCost
4932                && (pTo->nRow<nOut
4933                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4934                   )
4935               )
4936           ){
4937 #ifdef WHERETRACE_ENABLED /* 0x4 */
4938             if( sqlite3WhereTrace&0x4 ){
4939               sqlite3DebugPrintf(
4940                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4941                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4942                   isOrdered>=0 ? isOrdered+'0' : '?');
4943               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4944                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4945                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4946             }
4947 #endif
4948             /* Discard the candidate path from further consideration */
4949             testcase( pTo->rCost==rCost );
4950             continue;
4951           }
4952           testcase( pTo->rCost==rCost+1 );
4953           /* Control reaches here if the candidate path is better than the
4954           ** pTo path.  Replace pTo with the candidate. */
4955 #ifdef WHERETRACE_ENABLED /* 0x4 */
4956           if( sqlite3WhereTrace&0x4 ){
4957             sqlite3DebugPrintf(
4958                 "Update %s cost=%-3d,%3d,%3d order=%c",
4959                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4960                 isOrdered>=0 ? isOrdered+'0' : '?');
4961             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4962                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4963                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4964           }
4965 #endif
4966         }
4967         /* pWLoop is a winner.  Add it to the set of best so far */
4968         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4969         pTo->revLoop = revMask;
4970         pTo->nRow = nOut;
4971         pTo->rCost = rCost;
4972         pTo->rUnsorted = rUnsorted;
4973         pTo->isOrdered = isOrdered;
4974         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4975         pTo->aLoop[iLoop] = pWLoop;
4976         if( nTo>=mxChoice ){
4977           mxI = 0;
4978           mxCost = aTo[0].rCost;
4979           mxUnsorted = aTo[0].nRow;
4980           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4981             if( pTo->rCost>mxCost
4982              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4983             ){
4984               mxCost = pTo->rCost;
4985               mxUnsorted = pTo->rUnsorted;
4986               mxI = jj;
4987             }
4988           }
4989         }
4990       }
4991     }
4992 
4993 #ifdef WHERETRACE_ENABLED  /* >=2 */
4994     if( sqlite3WhereTrace & 0x02 ){
4995       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4996       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4997         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4998            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4999            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
5000         if( pTo->isOrdered>0 ){
5001           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
5002         }else{
5003           sqlite3DebugPrintf("\n");
5004         }
5005       }
5006     }
5007 #endif
5008 
5009     /* Swap the roles of aFrom and aTo for the next generation */
5010     pFrom = aTo;
5011     aTo = aFrom;
5012     aFrom = pFrom;
5013     nFrom = nTo;
5014   }
5015 
5016   if( nFrom==0 ){
5017     sqlite3ErrorMsg(pParse, "no query solution");
5018     sqlite3DbFreeNN(db, pSpace);
5019     return SQLITE_ERROR;
5020   }
5021 
5022   /* Find the lowest cost path.  pFrom will be left pointing to that path */
5023   pFrom = aFrom;
5024   for(ii=1; ii<nFrom; ii++){
5025     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
5026   }
5027   assert( pWInfo->nLevel==nLoop );
5028   /* Load the lowest cost path into pWInfo */
5029   for(iLoop=0; iLoop<nLoop; iLoop++){
5030     WhereLevel *pLevel = pWInfo->a + iLoop;
5031     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
5032     pLevel->iFrom = pWLoop->iTab;
5033     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
5034   }
5035   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
5036    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
5037    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
5038    && nRowEst
5039   ){
5040     Bitmask notUsed;
5041     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
5042                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
5043     if( rc==pWInfo->pResultSet->nExpr ){
5044       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
5045     }
5046   }
5047   pWInfo->bOrderedInnerLoop = 0;
5048   if( pWInfo->pOrderBy ){
5049     pWInfo->nOBSat = pFrom->isOrdered;
5050     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
5051       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
5052         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
5053       }
5054     }else{
5055       pWInfo->revMask = pFrom->revLoop;
5056       if( pWInfo->nOBSat<=0 ){
5057         pWInfo->nOBSat = 0;
5058         if( nLoop>0 ){
5059           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
5060           if( (wsFlags & WHERE_ONEROW)==0
5061            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
5062           ){
5063             Bitmask m = 0;
5064             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
5065                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
5066             testcase( wsFlags & WHERE_IPK );
5067             testcase( wsFlags & WHERE_COLUMN_IN );
5068             if( rc==pWInfo->pOrderBy->nExpr ){
5069               pWInfo->bOrderedInnerLoop = 1;
5070               pWInfo->revMask = m;
5071             }
5072           }
5073         }
5074       }else if( nLoop
5075             && pWInfo->nOBSat==1
5076             && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0
5077             ){
5078         pWInfo->bOrderedInnerLoop = 1;
5079       }
5080     }
5081     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
5082         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
5083     ){
5084       Bitmask revMask = 0;
5085       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
5086           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
5087       );
5088       assert( pWInfo->sorted==0 );
5089       if( nOrder==pWInfo->pOrderBy->nExpr ){
5090         pWInfo->sorted = 1;
5091         pWInfo->revMask = revMask;
5092       }
5093     }
5094   }
5095 
5096 
5097   pWInfo->nRowOut = pFrom->nRow;
5098 
5099   /* Free temporary memory and return success */
5100   assert( db!=0 );
5101   sqlite3DbNNFreeNN(db, pSpace);
5102   return SQLITE_OK;
5103 }
5104 
5105 /*
5106 ** Most queries use only a single table (they are not joins) and have
5107 ** simple == constraints against indexed fields.  This routine attempts
5108 ** to plan those simple cases using much less ceremony than the
5109 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
5110 ** times for the common case.
5111 **
5112 ** Return non-zero on success, if this query can be handled by this
5113 ** no-frills query planner.  Return zero if this query needs the
5114 ** general-purpose query planner.
5115 */
5116 static int whereShortCut(WhereLoopBuilder *pBuilder){
5117   WhereInfo *pWInfo;
5118   SrcItem *pItem;
5119   WhereClause *pWC;
5120   WhereTerm *pTerm;
5121   WhereLoop *pLoop;
5122   int iCur;
5123   int j;
5124   Table *pTab;
5125   Index *pIdx;
5126   WhereScan scan;
5127 
5128   pWInfo = pBuilder->pWInfo;
5129   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
5130   assert( pWInfo->pTabList->nSrc>=1 );
5131   pItem = pWInfo->pTabList->a;
5132   pTab = pItem->pTab;
5133   if( IsVirtual(pTab) ) return 0;
5134   if( pItem->fg.isIndexedBy || pItem->fg.notIndexed ){
5135     testcase( pItem->fg.isIndexedBy );
5136     testcase( pItem->fg.notIndexed );
5137     return 0;
5138   }
5139   iCur = pItem->iCursor;
5140   pWC = &pWInfo->sWC;
5141   pLoop = pBuilder->pNew;
5142   pLoop->wsFlags = 0;
5143   pLoop->nSkip = 0;
5144   pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0);
5145   while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
5146   if( pTerm ){
5147     testcase( pTerm->eOperator & WO_IS );
5148     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
5149     pLoop->aLTerm[0] = pTerm;
5150     pLoop->nLTerm = 1;
5151     pLoop->u.btree.nEq = 1;
5152     /* TUNING: Cost of a rowid lookup is 10 */
5153     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
5154   }else{
5155     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5156       int opMask;
5157       assert( pLoop->aLTermSpace==pLoop->aLTerm );
5158       if( !IsUniqueIndex(pIdx)
5159        || pIdx->pPartIdxWhere!=0
5160        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
5161       ) continue;
5162       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
5163       for(j=0; j<pIdx->nKeyCol; j++){
5164         pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx);
5165         while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
5166         if( pTerm==0 ) break;
5167         testcase( pTerm->eOperator & WO_IS );
5168         pLoop->aLTerm[j] = pTerm;
5169       }
5170       if( j!=pIdx->nKeyCol ) continue;
5171       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
5172       if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
5173         pLoop->wsFlags |= WHERE_IDX_ONLY;
5174       }
5175       pLoop->nLTerm = j;
5176       pLoop->u.btree.nEq = j;
5177       pLoop->u.btree.pIndex = pIdx;
5178       /* TUNING: Cost of a unique index lookup is 15 */
5179       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
5180       break;
5181     }
5182   }
5183   if( pLoop->wsFlags ){
5184     pLoop->nOut = (LogEst)1;
5185     pWInfo->a[0].pWLoop = pLoop;
5186     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
5187     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
5188     pWInfo->a[0].iTabCur = iCur;
5189     pWInfo->nRowOut = 1;
5190     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
5191     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
5192       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5193     }
5194     if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS;
5195 #ifdef SQLITE_DEBUG
5196     pLoop->cId = '0';
5197 #endif
5198 #ifdef WHERETRACE_ENABLED
5199     if( sqlite3WhereTrace ){
5200       sqlite3DebugPrintf("whereShortCut() used to compute solution\n");
5201     }
5202 #endif
5203     return 1;
5204   }
5205   return 0;
5206 }
5207 
5208 /*
5209 ** Helper function for exprIsDeterministic().
5210 */
5211 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
5212   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
5213     pWalker->eCode = 0;
5214     return WRC_Abort;
5215   }
5216   return WRC_Continue;
5217 }
5218 
5219 /*
5220 ** Return true if the expression contains no non-deterministic SQL
5221 ** functions. Do not consider non-deterministic SQL functions that are
5222 ** part of sub-select statements.
5223 */
5224 static int exprIsDeterministic(Expr *p){
5225   Walker w;
5226   memset(&w, 0, sizeof(w));
5227   w.eCode = 1;
5228   w.xExprCallback = exprNodeIsDeterministic;
5229   w.xSelectCallback = sqlite3SelectWalkFail;
5230   sqlite3WalkExpr(&w, p);
5231   return w.eCode;
5232 }
5233 
5234 
5235 #ifdef WHERETRACE_ENABLED
5236 /*
5237 ** Display all WhereLoops in pWInfo
5238 */
5239 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
5240   if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
5241     WhereLoop *p;
5242     int i;
5243     static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
5244                                            "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
5245     for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
5246       p->cId = zLabel[i%(sizeof(zLabel)-1)];
5247       sqlite3WhereLoopPrint(p, pWC);
5248     }
5249   }
5250 }
5251 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
5252 #else
5253 # define WHERETRACE_ALL_LOOPS(W,C)
5254 #endif
5255 
5256 /* Attempt to omit tables from a join that do not affect the result.
5257 ** For a table to not affect the result, the following must be true:
5258 **
5259 **   1) The query must not be an aggregate.
5260 **   2) The table must be the RHS of a LEFT JOIN.
5261 **   3) Either the query must be DISTINCT, or else the ON or USING clause
5262 **      must contain a constraint that limits the scan of the table to
5263 **      at most a single row.
5264 **   4) The table must not be referenced by any part of the query apart
5265 **      from its own USING or ON clause.
5266 **
5267 ** For example, given:
5268 **
5269 **     CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
5270 **     CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
5271 **     CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
5272 **
5273 ** then table t2 can be omitted from the following:
5274 **
5275 **     SELECT v1, v3 FROM t1
5276 **       LEFT JOIN t2 ON (t1.ipk=t2.ipk)
5277 **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5278 **
5279 ** or from:
5280 **
5281 **     SELECT DISTINCT v1, v3 FROM t1
5282 **       LEFT JOIN t2
5283 **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5284 */
5285 static SQLITE_NOINLINE Bitmask whereOmitNoopJoin(
5286   WhereInfo *pWInfo,
5287   Bitmask notReady
5288 ){
5289   int i;
5290   Bitmask tabUsed;
5291 
5292   /* Preconditions checked by the caller */
5293   assert( pWInfo->nLevel>=2 );
5294   assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) );
5295 
5296   /* These two preconditions checked by the caller combine to guarantee
5297   ** condition (1) of the header comment */
5298   assert( pWInfo->pResultSet!=0 );
5299   assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) );
5300 
5301   tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet);
5302   if( pWInfo->pOrderBy ){
5303     tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy);
5304   }
5305   for(i=pWInfo->nLevel-1; i>=1; i--){
5306     WhereTerm *pTerm, *pEnd;
5307     SrcItem *pItem;
5308     WhereLoop *pLoop;
5309     pLoop = pWInfo->a[i].pWLoop;
5310     pItem = &pWInfo->pTabList->a[pLoop->iTab];
5311     if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ) continue;
5312     if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)==0
5313      && (pLoop->wsFlags & WHERE_ONEROW)==0
5314     ){
5315       continue;
5316     }
5317     if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
5318     pEnd = pWInfo->sWC.a + pWInfo->sWC.nTerm;
5319     for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
5320       if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5321         if( !ExprHasProperty(pTerm->pExpr, EP_OuterON)
5322          || pTerm->pExpr->w.iJoin!=pItem->iCursor
5323         ){
5324           break;
5325         }
5326       }
5327     }
5328     if( pTerm<pEnd ) continue;
5329     WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
5330     notReady &= ~pLoop->maskSelf;
5331     for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
5332       if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5333         pTerm->wtFlags |= TERM_CODED;
5334       }
5335     }
5336     if( i!=pWInfo->nLevel-1 ){
5337       int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
5338       memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
5339     }
5340     pWInfo->nLevel--;
5341     assert( pWInfo->nLevel>0 );
5342   }
5343   return notReady;
5344 }
5345 
5346 /*
5347 ** Check to see if there are any SEARCH loops that might benefit from
5348 ** using a Bloom filter.  Consider a Bloom filter if:
5349 **
5350 **   (1)  The SEARCH happens more than N times where N is the number
5351 **        of rows in the table that is being considered for the Bloom
5352 **        filter.
5353 **   (2)  Some searches are expected to find zero rows.  (This is determined
5354 **        by the WHERE_SELFCULL flag on the term.)
5355 **   (3)  Bloom-filter processing is not disabled.  (Checked by the
5356 **        caller.)
5357 **   (4)  The size of the table being searched is known by ANALYZE.
5358 **
5359 ** This block of code merely checks to see if a Bloom filter would be
5360 ** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the
5361 ** WhereLoop.  The implementation of the Bloom filter comes further
5362 ** down where the code for each WhereLoop is generated.
5363 */
5364 static SQLITE_NOINLINE void whereCheckIfBloomFilterIsUseful(
5365   const WhereInfo *pWInfo
5366 ){
5367   int i;
5368   LogEst nSearch;
5369 
5370   assert( pWInfo->nLevel>=2 );
5371   assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) );
5372   nSearch = pWInfo->a[0].pWLoop->nOut;
5373   for(i=1; i<pWInfo->nLevel; i++){
5374     WhereLoop *pLoop = pWInfo->a[i].pWLoop;
5375     const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ);
5376     if( (pLoop->wsFlags & reqFlags)==reqFlags
5377      /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */
5378      && ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0)
5379     ){
5380       SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab];
5381       Table *pTab = pItem->pTab;
5382       pTab->tabFlags |= TF_StatsUsed;
5383       if( nSearch > pTab->nRowLogEst
5384        && (pTab->tabFlags & TF_HasStat1)!=0
5385       ){
5386         testcase( pItem->fg.jointype & JT_LEFT );
5387         pLoop->wsFlags |= WHERE_BLOOMFILTER;
5388         pLoop->wsFlags &= ~WHERE_IDX_ONLY;
5389         WHERETRACE(0xffff, (
5390            "-> use Bloom-filter on loop %c because there are ~%.1e "
5391            "lookups into %s which has only ~%.1e rows\n",
5392            pLoop->cId, (double)sqlite3LogEstToInt(nSearch), pTab->zName,
5393            (double)sqlite3LogEstToInt(pTab->nRowLogEst)));
5394       }
5395     }
5396     nSearch += pLoop->nOut;
5397   }
5398 }
5399 
5400 /*
5401 ** Generate the beginning of the loop used for WHERE clause processing.
5402 ** The return value is a pointer to an opaque structure that contains
5403 ** information needed to terminate the loop.  Later, the calling routine
5404 ** should invoke sqlite3WhereEnd() with the return value of this function
5405 ** in order to complete the WHERE clause processing.
5406 **
5407 ** If an error occurs, this routine returns NULL.
5408 **
5409 ** The basic idea is to do a nested loop, one loop for each table in
5410 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
5411 ** same as a SELECT with only a single table in the FROM clause.)  For
5412 ** example, if the SQL is this:
5413 **
5414 **       SELECT * FROM t1, t2, t3 WHERE ...;
5415 **
5416 ** Then the code generated is conceptually like the following:
5417 **
5418 **      foreach row1 in t1 do       \    Code generated
5419 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
5420 **          foreach row3 in t3 do   /
5421 **            ...
5422 **          end                     \    Code generated
5423 **        end                        |-- by sqlite3WhereEnd()
5424 **      end                         /
5425 **
5426 ** Note that the loops might not be nested in the order in which they
5427 ** appear in the FROM clause if a different order is better able to make
5428 ** use of indices.  Note also that when the IN operator appears in
5429 ** the WHERE clause, it might result in additional nested loops for
5430 ** scanning through all values on the right-hand side of the IN.
5431 **
5432 ** There are Btree cursors associated with each table.  t1 uses cursor
5433 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
5434 ** And so forth.  This routine generates code to open those VDBE cursors
5435 ** and sqlite3WhereEnd() generates the code to close them.
5436 **
5437 ** The code that sqlite3WhereBegin() generates leaves the cursors named
5438 ** in pTabList pointing at their appropriate entries.  The [...] code
5439 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
5440 ** data from the various tables of the loop.
5441 **
5442 ** If the WHERE clause is empty, the foreach loops must each scan their
5443 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
5444 ** the tables have indices and there are terms in the WHERE clause that
5445 ** refer to those indices, a complete table scan can be avoided and the
5446 ** code will run much faster.  Most of the work of this routine is checking
5447 ** to see if there are indices that can be used to speed up the loop.
5448 **
5449 ** Terms of the WHERE clause are also used to limit which rows actually
5450 ** make it to the "..." in the middle of the loop.  After each "foreach",
5451 ** terms of the WHERE clause that use only terms in that loop and outer
5452 ** loops are evaluated and if false a jump is made around all subsequent
5453 ** inner loops (or around the "..." if the test occurs within the inner-
5454 ** most loop)
5455 **
5456 ** OUTER JOINS
5457 **
5458 ** An outer join of tables t1 and t2 is conceptally coded as follows:
5459 **
5460 **    foreach row1 in t1 do
5461 **      flag = 0
5462 **      foreach row2 in t2 do
5463 **        start:
5464 **          ...
5465 **          flag = 1
5466 **      end
5467 **      if flag==0 then
5468 **        move the row2 cursor to a null row
5469 **        goto start
5470 **      fi
5471 **    end
5472 **
5473 ** ORDER BY CLAUSE PROCESSING
5474 **
5475 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
5476 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
5477 ** if there is one.  If there is no ORDER BY clause or if this routine
5478 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
5479 **
5480 ** The iIdxCur parameter is the cursor number of an index.  If
5481 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
5482 ** to use for OR clause processing.  The WHERE clause should use this
5483 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
5484 ** the first cursor in an array of cursors for all indices.  iIdxCur should
5485 ** be used to compute the appropriate cursor depending on which index is
5486 ** used.
5487 */
5488 WhereInfo *sqlite3WhereBegin(
5489   Parse *pParse,          /* The parser context */
5490   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
5491   Expr *pWhere,           /* The WHERE clause */
5492   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
5493   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
5494   Select *pLimit,         /* Use this LIMIT/OFFSET clause, if any */
5495   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
5496   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
5497                           ** If WHERE_USE_LIMIT, then the limit amount */
5498 ){
5499   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
5500   int nTabList;              /* Number of elements in pTabList */
5501   WhereInfo *pWInfo;         /* Will become the return value of this function */
5502   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
5503   Bitmask notReady;          /* Cursors that are not yet positioned */
5504   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
5505   WhereMaskSet *pMaskSet;    /* The expression mask set */
5506   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
5507   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
5508   int ii;                    /* Loop counter */
5509   sqlite3 *db;               /* Database connection */
5510   int rc;                    /* Return code */
5511   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
5512 
5513   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
5514         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
5515      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5516   ));
5517 
5518   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
5519   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5520             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
5521 
5522   /* Variable initialization */
5523   db = pParse->db;
5524   memset(&sWLB, 0, sizeof(sWLB));
5525 
5526   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
5527   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
5528   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
5529 
5530   /* The number of tables in the FROM clause is limited by the number of
5531   ** bits in a Bitmask
5532   */
5533   testcase( pTabList->nSrc==BMS );
5534   if( pTabList->nSrc>BMS ){
5535     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
5536     return 0;
5537   }
5538 
5539   /* This function normally generates a nested loop for all tables in
5540   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
5541   ** only generate code for the first table in pTabList and assume that
5542   ** any cursors associated with subsequent tables are uninitialized.
5543   */
5544   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
5545 
5546   /* Allocate and initialize the WhereInfo structure that will become the
5547   ** return value. A single allocation is used to store the WhereInfo
5548   ** struct, the contents of WhereInfo.a[], the WhereClause structure
5549   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
5550   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
5551   ** some architectures. Hence the ROUND8() below.
5552   */
5553   nByteWInfo = ROUND8P(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
5554   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
5555   if( db->mallocFailed ){
5556     sqlite3DbFree(db, pWInfo);
5557     pWInfo = 0;
5558     goto whereBeginError;
5559   }
5560   pWInfo->pParse = pParse;
5561   pWInfo->pTabList = pTabList;
5562   pWInfo->pOrderBy = pOrderBy;
5563   pWInfo->pWhere = pWhere;
5564   pWInfo->pResultSet = pResultSet;
5565   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
5566   pWInfo->nLevel = nTabList;
5567   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
5568   pWInfo->wctrlFlags = wctrlFlags;
5569   pWInfo->iLimit = iAuxArg;
5570   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
5571 #ifndef SQLITE_OMIT_VIRTUALTABLE
5572   pWInfo->pLimit = pLimit;
5573 #endif
5574   memset(&pWInfo->nOBSat, 0,
5575          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
5576   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
5577   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
5578   pMaskSet = &pWInfo->sMaskSet;
5579   pMaskSet->n = 0;
5580   pMaskSet->ix[0] = -99; /* Initialize ix[0] to a value that can never be
5581                          ** a valid cursor number, to avoid an initial
5582                          ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */
5583   sWLB.pWInfo = pWInfo;
5584   sWLB.pWC = &pWInfo->sWC;
5585   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
5586   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
5587   whereLoopInit(sWLB.pNew);
5588 #ifdef SQLITE_DEBUG
5589   sWLB.pNew->cId = '*';
5590 #endif
5591 
5592   /* Split the WHERE clause into separate subexpressions where each
5593   ** subexpression is separated by an AND operator.
5594   */
5595   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
5596   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
5597 
5598   /* Special case: No FROM clause
5599   */
5600   if( nTabList==0 ){
5601     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
5602     if( (wctrlFlags & WHERE_WANT_DISTINCT)!=0
5603      && OptimizationEnabled(db, SQLITE_DistinctOpt)
5604     ){
5605       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5606     }
5607     ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
5608   }else{
5609     /* Assign a bit from the bitmask to every term in the FROM clause.
5610     **
5611     ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
5612     **
5613     ** The rule of the previous sentence ensures thta if X is the bitmask for
5614     ** a table T, then X-1 is the bitmask for all other tables to the left of T.
5615     ** Knowing the bitmask for all tables to the left of a left join is
5616     ** important.  Ticket #3015.
5617     **
5618     ** Note that bitmasks are created for all pTabList->nSrc tables in
5619     ** pTabList, not just the first nTabList tables.  nTabList is normally
5620     ** equal to pTabList->nSrc but might be shortened to 1 if the
5621     ** WHERE_OR_SUBCLAUSE flag is set.
5622     */
5623     ii = 0;
5624     do{
5625       createMask(pMaskSet, pTabList->a[ii].iCursor);
5626       sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
5627     }while( (++ii)<pTabList->nSrc );
5628   #ifdef SQLITE_DEBUG
5629     {
5630       Bitmask mx = 0;
5631       for(ii=0; ii<pTabList->nSrc; ii++){
5632         Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
5633         assert( m>=mx );
5634         mx = m;
5635       }
5636     }
5637   #endif
5638   }
5639 
5640   /* Analyze all of the subexpressions. */
5641   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
5642   sqlite3WhereAddLimit(&pWInfo->sWC, pLimit);
5643   if( pParse->nErr ) goto whereBeginError;
5644 
5645   /* Special case: WHERE terms that do not refer to any tables in the join
5646   ** (constant expressions). Evaluate each such term, and jump over all the
5647   ** generated code if the result is not true.
5648   **
5649   ** Do not do this if the expression contains non-deterministic functions
5650   ** that are not within a sub-select. This is not strictly required, but
5651   ** preserves SQLite's legacy behaviour in the following two cases:
5652   **
5653   **   FROM ... WHERE random()>0;           -- eval random() once per row
5654   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
5655   */
5656   for(ii=0; ii<sWLB.pWC->nBase; ii++){
5657     WhereTerm *pT = &sWLB.pWC->a[ii];
5658     if( pT->wtFlags & TERM_VIRTUAL ) continue;
5659     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
5660       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
5661       pT->wtFlags |= TERM_CODED;
5662     }
5663   }
5664 
5665   if( wctrlFlags & WHERE_WANT_DISTINCT ){
5666     if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
5667       /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
5668       ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
5669       wctrlFlags &= ~WHERE_WANT_DISTINCT;
5670       pWInfo->wctrlFlags &= ~WHERE_WANT_DISTINCT;
5671     }else if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
5672       /* The DISTINCT marking is pointless.  Ignore it. */
5673       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5674     }else if( pOrderBy==0 ){
5675       /* Try to ORDER BY the result set to make distinct processing easier */
5676       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
5677       pWInfo->pOrderBy = pResultSet;
5678     }
5679   }
5680 
5681   /* Construct the WhereLoop objects */
5682 #if defined(WHERETRACE_ENABLED)
5683   if( sqlite3WhereTrace & 0xffff ){
5684     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
5685     if( wctrlFlags & WHERE_USE_LIMIT ){
5686       sqlite3DebugPrintf(", limit: %d", iAuxArg);
5687     }
5688     sqlite3DebugPrintf(")\n");
5689     if( sqlite3WhereTrace & 0x100 ){
5690       Select sSelect;
5691       memset(&sSelect, 0, sizeof(sSelect));
5692       sSelect.selFlags = SF_WhereBegin;
5693       sSelect.pSrc = pTabList;
5694       sSelect.pWhere = pWhere;
5695       sSelect.pOrderBy = pOrderBy;
5696       sSelect.pEList = pResultSet;
5697       sqlite3TreeViewSelect(0, &sSelect, 0);
5698     }
5699   }
5700   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5701     sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
5702     sqlite3WhereClausePrint(sWLB.pWC);
5703   }
5704 #endif
5705 
5706   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
5707     rc = whereLoopAddAll(&sWLB);
5708     if( rc ) goto whereBeginError;
5709 
5710 #ifdef SQLITE_ENABLE_STAT4
5711     /* If one or more WhereTerm.truthProb values were used in estimating
5712     ** loop parameters, but then those truthProb values were subsequently
5713     ** changed based on STAT4 information while computing subsequent loops,
5714     ** then we need to rerun the whole loop building process so that all
5715     ** loops will be built using the revised truthProb values. */
5716     if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
5717       WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5718       WHERETRACE(0xffff,
5719            ("**** Redo all loop computations due to"
5720             " TERM_HIGHTRUTH changes ****\n"));
5721       while( pWInfo->pLoops ){
5722         WhereLoop *p = pWInfo->pLoops;
5723         pWInfo->pLoops = p->pNextLoop;
5724         whereLoopDelete(db, p);
5725       }
5726       rc = whereLoopAddAll(&sWLB);
5727       if( rc ) goto whereBeginError;
5728     }
5729 #endif
5730     WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5731 
5732     wherePathSolver(pWInfo, 0);
5733     if( db->mallocFailed ) goto whereBeginError;
5734     if( pWInfo->pOrderBy ){
5735        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
5736        if( db->mallocFailed ) goto whereBeginError;
5737     }
5738   }
5739   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
5740      pWInfo->revMask = ALLBITS;
5741   }
5742   if( pParse->nErr ){
5743     goto whereBeginError;
5744   }
5745   assert( db->mallocFailed==0 );
5746 #ifdef WHERETRACE_ENABLED
5747   if( sqlite3WhereTrace ){
5748     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
5749     if( pWInfo->nOBSat>0 ){
5750       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
5751     }
5752     switch( pWInfo->eDistinct ){
5753       case WHERE_DISTINCT_UNIQUE: {
5754         sqlite3DebugPrintf("  DISTINCT=unique");
5755         break;
5756       }
5757       case WHERE_DISTINCT_ORDERED: {
5758         sqlite3DebugPrintf("  DISTINCT=ordered");
5759         break;
5760       }
5761       case WHERE_DISTINCT_UNORDERED: {
5762         sqlite3DebugPrintf("  DISTINCT=unordered");
5763         break;
5764       }
5765     }
5766     sqlite3DebugPrintf("\n");
5767     for(ii=0; ii<pWInfo->nLevel; ii++){
5768       sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
5769     }
5770   }
5771 #endif
5772 
5773   /* Attempt to omit tables from a join that do not affect the result.
5774   ** See the comment on whereOmitNoopJoin() for further information.
5775   **
5776   ** This query optimization is factored out into a separate "no-inline"
5777   ** procedure to keep the sqlite3WhereBegin() procedure from becoming
5778   ** too large.  If sqlite3WhereBegin() becomes too large, that prevents
5779   ** some C-compiler optimizers from in-lining the
5780   ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to
5781   ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons.
5782   */
5783   notReady = ~(Bitmask)0;
5784   if( pWInfo->nLevel>=2
5785    && pResultSet!=0                         /* these two combine to guarantee */
5786    && 0==(wctrlFlags & WHERE_AGG_DISTINCT)  /* condition (1) above */
5787    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
5788   ){
5789     notReady = whereOmitNoopJoin(pWInfo, notReady);
5790     nTabList = pWInfo->nLevel;
5791     assert( nTabList>0 );
5792   }
5793 
5794   /* Check to see if there are any SEARCH loops that might benefit from
5795   ** using a Bloom filter.
5796   */
5797   if( pWInfo->nLevel>=2
5798    && OptimizationEnabled(db, SQLITE_BloomFilter)
5799   ){
5800     whereCheckIfBloomFilterIsUseful(pWInfo);
5801   }
5802 
5803 #if defined(WHERETRACE_ENABLED)
5804   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5805     sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
5806     sqlite3WhereClausePrint(sWLB.pWC);
5807   }
5808   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
5809 #endif
5810   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
5811 
5812   /* If the caller is an UPDATE or DELETE statement that is requesting
5813   ** to use a one-pass algorithm, determine if this is appropriate.
5814   **
5815   ** A one-pass approach can be used if the caller has requested one
5816   ** and either (a) the scan visits at most one row or (b) each
5817   ** of the following are true:
5818   **
5819   **   * the caller has indicated that a one-pass approach can be used
5820   **     with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
5821   **   * the table is not a virtual table, and
5822   **   * either the scan does not use the OR optimization or the caller
5823   **     is a DELETE operation (WHERE_DUPLICATES_OK is only specified
5824   **     for DELETE).
5825   **
5826   ** The last qualification is because an UPDATE statement uses
5827   ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
5828   ** use a one-pass approach, and this is not set accurately for scans
5829   ** that use the OR optimization.
5830   */
5831   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
5832   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
5833     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
5834     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
5835     assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
5836     if( bOnerow || (
5837         0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
5838      && !IsVirtual(pTabList->a[0].pTab)
5839      && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
5840     )){
5841       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
5842       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
5843         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
5844           bFordelete = OPFLAG_FORDELETE;
5845         }
5846         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
5847       }
5848     }
5849   }
5850 
5851   /* Open all tables in the pTabList and any indices selected for
5852   ** searching those tables.
5853   */
5854   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
5855     Table *pTab;     /* Table to open */
5856     int iDb;         /* Index of database containing table/index */
5857     SrcItem *pTabItem;
5858 
5859     pTabItem = &pTabList->a[pLevel->iFrom];
5860     pTab = pTabItem->pTab;
5861     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5862     pLoop = pLevel->pWLoop;
5863     if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){
5864       /* Do nothing */
5865     }else
5866 #ifndef SQLITE_OMIT_VIRTUALTABLE
5867     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
5868       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
5869       int iCur = pTabItem->iCursor;
5870       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
5871     }else if( IsVirtual(pTab) ){
5872       /* noop */
5873     }else
5874 #endif
5875     if( ((pLoop->wsFlags & WHERE_IDX_ONLY)==0
5876          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0)
5877      || (pTabItem->fg.jointype & (JT_LTORJ|JT_RIGHT))!=0
5878     ){
5879       int op = OP_OpenRead;
5880       if( pWInfo->eOnePass!=ONEPASS_OFF ){
5881         op = OP_OpenWrite;
5882         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
5883       };
5884       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
5885       assert( pTabItem->iCursor==pLevel->iTabCur );
5886       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
5887       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
5888       if( pWInfo->eOnePass==ONEPASS_OFF
5889        && pTab->nCol<BMS
5890        && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
5891        && (pLoop->wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))==0
5892       ){
5893         /* If we know that only a prefix of the record will be used,
5894         ** it is advantageous to reduce the "column count" field in
5895         ** the P4 operand of the OP_OpenRead/Write opcode. */
5896         Bitmask b = pTabItem->colUsed;
5897         int n = 0;
5898         for(; b; b=b>>1, n++){}
5899         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
5900         assert( n<=pTab->nCol );
5901       }
5902 #ifdef SQLITE_ENABLE_CURSOR_HINTS
5903       if( pLoop->u.btree.pIndex!=0 ){
5904         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
5905       }else
5906 #endif
5907       {
5908         sqlite3VdbeChangeP5(v, bFordelete);
5909       }
5910 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5911       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
5912                             (const u8*)&pTabItem->colUsed, P4_INT64);
5913 #endif
5914     }else{
5915       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5916     }
5917     if( pLoop->wsFlags & WHERE_INDEXED ){
5918       Index *pIx = pLoop->u.btree.pIndex;
5919       int iIndexCur;
5920       int op = OP_OpenRead;
5921       /* iAuxArg is always set to a positive value if ONEPASS is possible */
5922       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
5923       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
5924        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5925       ){
5926         /* This is one term of an OR-optimization using the PRIMARY KEY of a
5927         ** WITHOUT ROWID table.  No need for a separate index */
5928         iIndexCur = pLevel->iTabCur;
5929         op = 0;
5930       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5931         Index *pJ = pTabItem->pTab->pIndex;
5932         iIndexCur = iAuxArg;
5933         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5934         while( ALWAYS(pJ) && pJ!=pIx ){
5935           iIndexCur++;
5936           pJ = pJ->pNext;
5937         }
5938         op = OP_OpenWrite;
5939         pWInfo->aiCurOnePass[1] = iIndexCur;
5940       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5941         iIndexCur = iAuxArg;
5942         op = OP_ReopenIdx;
5943       }else{
5944         iIndexCur = pParse->nTab++;
5945       }
5946       pLevel->iIdxCur = iIndexCur;
5947       assert( pIx!=0 );
5948       assert( pIx->pSchema==pTab->pSchema );
5949       assert( iIndexCur>=0 );
5950       if( op ){
5951         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5952         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5953         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
5954          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
5955          && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
5956          && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
5957          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
5958          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
5959         ){
5960           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
5961         }
5962         VdbeComment((v, "%s", pIx->zName));
5963 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5964         {
5965           u64 colUsed = 0;
5966           int ii, jj;
5967           for(ii=0; ii<pIx->nColumn; ii++){
5968             jj = pIx->aiColumn[ii];
5969             if( jj<0 ) continue;
5970             if( jj>63 ) jj = 63;
5971             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
5972             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
5973           }
5974           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
5975                                 (u8*)&colUsed, P4_INT64);
5976         }
5977 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5978       }
5979     }
5980     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
5981     if( (pTabItem->fg.jointype & JT_RIGHT)!=0
5982      && (pLevel->pRJ = sqlite3WhereMalloc(pWInfo, sizeof(WhereRightJoin)))!=0
5983     ){
5984       WhereRightJoin *pRJ = pLevel->pRJ;
5985       pRJ->iMatch = pParse->nTab++;
5986       pRJ->regBloom = ++pParse->nMem;
5987       sqlite3VdbeAddOp2(v, OP_Blob, 65536, pRJ->regBloom);
5988       pRJ->regReturn = ++pParse->nMem;
5989       sqlite3VdbeAddOp2(v, OP_Null, 0, pRJ->regReturn);
5990       assert( pTab==pTabItem->pTab );
5991       if( HasRowid(pTab) ){
5992         KeyInfo *pInfo;
5993         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, 1);
5994         pInfo = sqlite3KeyInfoAlloc(pParse->db, 1, 0);
5995         if( pInfo ){
5996           pInfo->aColl[0] = 0;
5997           pInfo->aSortFlags[0] = 0;
5998           sqlite3VdbeAppendP4(v, pInfo, P4_KEYINFO);
5999         }
6000       }else{
6001         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
6002         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, pPk->nKeyCol);
6003         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
6004       }
6005       pLoop->wsFlags &= ~WHERE_IDX_ONLY;
6006       /* The nature of RIGHT JOIN processing is such that it messes up
6007       ** the output order.  So omit any ORDER BY/GROUP BY elimination
6008       ** optimizations.  We need to do an actual sort for RIGHT JOIN. */
6009       pWInfo->nOBSat = 0;
6010       pWInfo->eDistinct = WHERE_DISTINCT_UNORDERED;
6011     }
6012   }
6013   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
6014   if( db->mallocFailed ) goto whereBeginError;
6015 
6016   /* Generate the code to do the search.  Each iteration of the for
6017   ** loop below generates code for a single nested loop of the VM
6018   ** program.
6019   */
6020   for(ii=0; ii<nTabList; ii++){
6021     int addrExplain;
6022     int wsFlags;
6023     SrcItem *pSrc;
6024     if( pParse->nErr ) goto whereBeginError;
6025     pLevel = &pWInfo->a[ii];
6026     wsFlags = pLevel->pWLoop->wsFlags;
6027     pSrc = &pTabList->a[pLevel->iFrom];
6028     if( pSrc->fg.isMaterialized ){
6029       if( pSrc->fg.isCorrelated ){
6030         sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub);
6031       }else{
6032         int iOnce = sqlite3VdbeAddOp0(v, OP_Once);  VdbeCoverage(v);
6033         sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub);
6034         sqlite3VdbeJumpHere(v, iOnce);
6035       }
6036     }
6037     if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){
6038       if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){
6039 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
6040         constructAutomaticIndex(pParse, &pWInfo->sWC,
6041                   &pTabList->a[pLevel->iFrom], notReady, pLevel);
6042 #endif
6043       }else{
6044         sqlite3ConstructBloomFilter(pWInfo, ii, pLevel, notReady);
6045       }
6046       if( db->mallocFailed ) goto whereBeginError;
6047     }
6048     addrExplain = sqlite3WhereExplainOneScan(
6049         pParse, pTabList, pLevel, wctrlFlags
6050     );
6051     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
6052     notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
6053     pWInfo->iContinue = pLevel->addrCont;
6054     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
6055       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
6056     }
6057   }
6058 
6059   /* Done. */
6060   VdbeModuleComment((v, "Begin WHERE-core"));
6061   pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v);
6062   return pWInfo;
6063 
6064   /* Jump here if malloc fails */
6065 whereBeginError:
6066   if( pWInfo ){
6067     testcase( pWInfo->pExprMods!=0 );
6068     whereUndoExprMods(pWInfo);
6069     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
6070     whereInfoFree(db, pWInfo);
6071   }
6072   return 0;
6073 }
6074 
6075 /*
6076 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
6077 ** index rather than the main table.  In SQLITE_DEBUG mode, we want
6078 ** to trace those changes if PRAGMA vdbe_addoptrace=on.  This routine
6079 ** does that.
6080 */
6081 #ifndef SQLITE_DEBUG
6082 # define OpcodeRewriteTrace(D,K,P) /* no-op */
6083 #else
6084 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
6085   static void sqlite3WhereOpcodeRewriteTrace(
6086     sqlite3 *db,
6087     int pc,
6088     VdbeOp *pOp
6089   ){
6090     if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
6091     sqlite3VdbePrintOp(0, pc, pOp);
6092   }
6093 #endif
6094 
6095 #ifdef SQLITE_DEBUG
6096 /*
6097 ** Return true if cursor iCur is opened by instruction k of the
6098 ** bytecode.  Used inside of assert() only.
6099 */
6100 static int cursorIsOpen(Vdbe *v, int iCur, int k){
6101   while( k>=0 ){
6102     VdbeOp *pOp = sqlite3VdbeGetOp(v,k--);
6103     if( pOp->p1!=iCur ) continue;
6104     if( pOp->opcode==OP_Close ) return 0;
6105     if( pOp->opcode==OP_OpenRead ) return 1;
6106     if( pOp->opcode==OP_OpenWrite ) return 1;
6107     if( pOp->opcode==OP_OpenDup ) return 1;
6108     if( pOp->opcode==OP_OpenAutoindex ) return 1;
6109     if( pOp->opcode==OP_OpenEphemeral ) return 1;
6110   }
6111   return 0;
6112 }
6113 #endif /* SQLITE_DEBUG */
6114 
6115 /*
6116 ** Generate the end of the WHERE loop.  See comments on
6117 ** sqlite3WhereBegin() for additional information.
6118 */
6119 void sqlite3WhereEnd(WhereInfo *pWInfo){
6120   Parse *pParse = pWInfo->pParse;
6121   Vdbe *v = pParse->pVdbe;
6122   int i;
6123   WhereLevel *pLevel;
6124   WhereLoop *pLoop;
6125   SrcList *pTabList = pWInfo->pTabList;
6126   sqlite3 *db = pParse->db;
6127   int iEnd = sqlite3VdbeCurrentAddr(v);
6128   int nRJ = 0;
6129 
6130   /* Generate loop termination code.
6131   */
6132   VdbeModuleComment((v, "End WHERE-core"));
6133   for(i=pWInfo->nLevel-1; i>=0; i--){
6134     int addr;
6135     pLevel = &pWInfo->a[i];
6136     if( pLevel->pRJ ){
6137       /* Terminate the subroutine that forms the interior of the loop of
6138       ** the RIGHT JOIN table */
6139       WhereRightJoin *pRJ = pLevel->pRJ;
6140       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
6141       pLevel->addrCont = 0;
6142       pRJ->endSubrtn = sqlite3VdbeCurrentAddr(v);
6143       sqlite3VdbeAddOp3(v, OP_Return, pRJ->regReturn, pRJ->addrSubrtn, 1);
6144       VdbeCoverage(v);
6145       nRJ++;
6146     }
6147     pLoop = pLevel->pWLoop;
6148     if( pLevel->op!=OP_Noop ){
6149 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
6150       int addrSeek = 0;
6151       Index *pIdx;
6152       int n;
6153       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
6154        && i==pWInfo->nLevel-1  /* Ticket [ef9318757b152e3] 2017-10-21 */
6155        && (pLoop->wsFlags & WHERE_INDEXED)!=0
6156        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
6157        && (n = pLoop->u.btree.nDistinctCol)>0
6158        && pIdx->aiRowLogEst[n]>=36
6159       ){
6160         int r1 = pParse->nMem+1;
6161         int j, op;
6162         for(j=0; j<n; j++){
6163           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
6164         }
6165         pParse->nMem += n+1;
6166         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
6167         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
6168         VdbeCoverageIf(v, op==OP_SeekLT);
6169         VdbeCoverageIf(v, op==OP_SeekGT);
6170         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
6171       }
6172 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
6173       /* The common case: Advance to the next row */
6174       if( pLevel->addrCont ) sqlite3VdbeResolveLabel(v, pLevel->addrCont);
6175       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
6176       sqlite3VdbeChangeP5(v, pLevel->p5);
6177       VdbeCoverage(v);
6178       VdbeCoverageIf(v, pLevel->op==OP_Next);
6179       VdbeCoverageIf(v, pLevel->op==OP_Prev);
6180       VdbeCoverageIf(v, pLevel->op==OP_VNext);
6181       if( pLevel->regBignull ){
6182         sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
6183         sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
6184         VdbeCoverage(v);
6185       }
6186 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
6187       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
6188 #endif
6189     }else if( pLevel->addrCont ){
6190       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
6191     }
6192     if( (pLoop->wsFlags & WHERE_IN_ABLE)!=0 && pLevel->u.in.nIn>0 ){
6193       struct InLoop *pIn;
6194       int j;
6195       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
6196       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
6197         assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull
6198                  || pParse->db->mallocFailed );
6199         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
6200         if( pIn->eEndLoopOp!=OP_Noop ){
6201           if( pIn->nPrefix ){
6202             int bEarlyOut =
6203                 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
6204                  && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0;
6205             if( pLevel->iLeftJoin ){
6206               /* For LEFT JOIN queries, cursor pIn->iCur may not have been
6207               ** opened yet. This occurs for WHERE clauses such as
6208               ** "a = ? AND b IN (...)", where the index is on (a, b). If
6209               ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
6210               ** never have been coded, but the body of the loop run to
6211               ** return the null-row. So, if the cursor is not open yet,
6212               ** jump over the OP_Next or OP_Prev instruction about to
6213               ** be coded.  */
6214               sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
6215                   sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut);
6216               VdbeCoverage(v);
6217             }
6218             if( bEarlyOut ){
6219               sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
6220                   sqlite3VdbeCurrentAddr(v)+2,
6221                   pIn->iBase, pIn->nPrefix);
6222               VdbeCoverage(v);
6223               /* Retarget the OP_IsNull against the left operand of IN so
6224               ** it jumps past the OP_IfNoHope.  This is because the
6225               ** OP_IsNull also bypasses the OP_Affinity opcode that is
6226               ** required by OP_IfNoHope. */
6227               sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
6228             }
6229           }
6230           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
6231           VdbeCoverage(v);
6232           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
6233           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
6234         }
6235         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
6236       }
6237     }
6238     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
6239     if( pLevel->pRJ ){
6240       sqlite3VdbeAddOp3(v, OP_Return, pLevel->pRJ->regReturn, 0, 1);
6241       VdbeCoverage(v);
6242     }
6243     if( pLevel->addrSkip ){
6244       sqlite3VdbeGoto(v, pLevel->addrSkip);
6245       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
6246       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
6247       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
6248     }
6249 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
6250     if( pLevel->addrLikeRep ){
6251       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
6252                         pLevel->addrLikeRep);
6253       VdbeCoverage(v);
6254     }
6255 #endif
6256     if( pLevel->iLeftJoin ){
6257       int ws = pLoop->wsFlags;
6258       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
6259       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
6260       if( (ws & WHERE_IDX_ONLY)==0 ){
6261         assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
6262         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
6263       }
6264       if( (ws & WHERE_INDEXED)
6265        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCoveringIdx)
6266       ){
6267         if( ws & WHERE_MULTI_OR ){
6268           Index *pIx = pLevel->u.pCoveringIdx;
6269           int iDb = sqlite3SchemaToIndex(db, pIx->pSchema);
6270           sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb);
6271           sqlite3VdbeSetP4KeyInfo(pParse, pIx);
6272         }
6273         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
6274       }
6275       if( pLevel->op==OP_Return ){
6276         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
6277       }else{
6278         sqlite3VdbeGoto(v, pLevel->addrFirst);
6279       }
6280       sqlite3VdbeJumpHere(v, addr);
6281     }
6282     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
6283                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
6284   }
6285 
6286   assert( pWInfo->nLevel<=pTabList->nSrc );
6287   if( pWInfo->pExprMods ) whereUndoExprMods(pWInfo);
6288   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
6289     int k, last;
6290     VdbeOp *pOp, *pLastOp;
6291     Index *pIdx = 0;
6292     SrcItem *pTabItem = &pTabList->a[pLevel->iFrom];
6293     Table *pTab = pTabItem->pTab;
6294     assert( pTab!=0 );
6295     pLoop = pLevel->pWLoop;
6296 
6297     /* Do RIGHT JOIN processing.  Generate code that will output the
6298     ** unmatched rows of the right operand of the RIGHT JOIN with
6299     ** all of the columns of the left operand set to NULL.
6300     */
6301     if( pLevel->pRJ ){
6302       sqlite3WhereRightJoinLoop(pWInfo, i, pLevel);
6303       continue;
6304     }
6305 
6306     /* For a co-routine, change all OP_Column references to the table of
6307     ** the co-routine into OP_Copy of result contained in a register.
6308     ** OP_Rowid becomes OP_Null.
6309     */
6310     if( pTabItem->fg.viaCoroutine ){
6311       testcase( pParse->db->mallocFailed );
6312       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
6313                             pTabItem->regResult, 0);
6314       continue;
6315     }
6316 
6317     /* If this scan uses an index, make VDBE code substitutions to read data
6318     ** from the index instead of from the table where possible.  In some cases
6319     ** this optimization prevents the table from ever being read, which can
6320     ** yield a significant performance boost.
6321     **
6322     ** Calls to the code generator in between sqlite3WhereBegin and
6323     ** sqlite3WhereEnd will have created code that references the table
6324     ** directly.  This loop scans all that code looking for opcodes
6325     ** that reference the table and converts them into opcodes that
6326     ** reference the index.
6327     */
6328     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
6329       pIdx = pLoop->u.btree.pIndex;
6330     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
6331       pIdx = pLevel->u.pCoveringIdx;
6332     }
6333     if( pIdx
6334      && !db->mallocFailed
6335     ){
6336       if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){
6337         last = iEnd;
6338       }else{
6339         last = pWInfo->iEndWhere;
6340       }
6341       k = pLevel->addrBody + 1;
6342 #ifdef SQLITE_DEBUG
6343       if( db->flags & SQLITE_VdbeAddopTrace ){
6344         printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
6345       }
6346       /* Proof that the "+1" on the k value above is safe */
6347       pOp = sqlite3VdbeGetOp(v, k - 1);
6348       assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur );
6349       assert( pOp->opcode!=OP_Rowid  || pOp->p1!=pLevel->iTabCur );
6350       assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur );
6351 #endif
6352       pOp = sqlite3VdbeGetOp(v, k);
6353       pLastOp = pOp + (last - k);
6354       assert( pOp<=pLastOp );
6355       do{
6356         if( pOp->p1!=pLevel->iTabCur ){
6357           /* no-op */
6358         }else if( pOp->opcode==OP_Column
6359 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6360          || pOp->opcode==OP_Offset
6361 #endif
6362         ){
6363           int x = pOp->p2;
6364           assert( pIdx->pTable==pTab );
6365 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6366           if( pOp->opcode==OP_Offset ){
6367             /* Do not need to translate the column number */
6368           }else
6369 #endif
6370           if( !HasRowid(pTab) ){
6371             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
6372             x = pPk->aiColumn[x];
6373             assert( x>=0 );
6374           }else{
6375             testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
6376             x = sqlite3StorageColumnToTable(pTab,x);
6377           }
6378           x = sqlite3TableColumnToIndex(pIdx, x);
6379           if( x>=0 ){
6380             pOp->p2 = x;
6381             pOp->p1 = pLevel->iIdxCur;
6382             OpcodeRewriteTrace(db, k, pOp);
6383           }else{
6384             /* Unable to translate the table reference into an index
6385             ** reference.  Verify that this is harmless - that the
6386             ** table being referenced really is open.
6387             */
6388 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6389             assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
6390                  || cursorIsOpen(v,pOp->p1,k)
6391                  || pOp->opcode==OP_Offset
6392             );
6393 #else
6394             assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
6395                  || cursorIsOpen(v,pOp->p1,k)
6396             );
6397 #endif
6398           }
6399         }else if( pOp->opcode==OP_Rowid ){
6400           pOp->p1 = pLevel->iIdxCur;
6401           pOp->opcode = OP_IdxRowid;
6402           OpcodeRewriteTrace(db, k, pOp);
6403         }else if( pOp->opcode==OP_IfNullRow ){
6404           pOp->p1 = pLevel->iIdxCur;
6405           OpcodeRewriteTrace(db, k, pOp);
6406         }
6407 #ifdef SQLITE_DEBUG
6408         k++;
6409 #endif
6410       }while( (++pOp)<pLastOp );
6411 #ifdef SQLITE_DEBUG
6412       if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
6413 #endif
6414     }
6415   }
6416 
6417   /* The "break" point is here, just past the end of the outer loop.
6418   ** Set it.
6419   */
6420   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
6421 
6422   /* Final cleanup
6423   */
6424   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
6425   whereInfoFree(db, pWInfo);
6426   pParse->withinRJSubrtn -= nRJ;
6427   return;
6428 }
6429