xref: /sqlite-3.40.0/src/where.c (revision f71a243a)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /*
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly.  The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
26 **
27 ** This object is not an API and can be changed from one release to the
28 ** next.  As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
30 */
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33   WhereClause *pWC;   /* The Where clause being analyzed */
34   Parse *pParse;      /* The parsing context */
35 };
36 
37 /* Forward declaration of methods */
38 static int whereLoopResize(sqlite3*, WhereLoop*, int);
39 
40 /* Test variable that can be set to enable WHERE tracing */
41 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
42 /***/ int sqlite3WhereTrace = 0;
43 #endif
44 
45 
46 /*
47 ** Return the estimated number of output rows from a WHERE clause
48 */
49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
50   return pWInfo->nRowOut;
51 }
52 
53 /*
54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
55 ** WHERE clause returns outputs for DISTINCT processing.
56 */
57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
58   return pWInfo->eDistinct;
59 }
60 
61 /*
62 ** Return TRUE if the WHERE clause returns rows in ORDER BY order.
63 ** Return FALSE if the output needs to be sorted.
64 */
65 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
66   return pWInfo->nOBSat;
67 }
68 
69 /*
70 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
71 ** to emit rows in increasing order, and if the last row emitted by the
72 ** inner-most loop did not fit within the sorter, then we can skip all
73 ** subsequent rows for the current iteration of the inner loop (because they
74 ** will not fit in the sorter either) and continue with the second inner
75 ** loop - the loop immediately outside the inner-most.
76 **
77 ** When a row does not fit in the sorter (because the sorter already
78 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
79 ** label returned by this function.
80 **
81 ** If the ORDER BY LIMIT optimization applies, the jump destination should
82 ** be the continuation for the second-inner-most loop.  If the ORDER BY
83 ** LIMIT optimization does not apply, then the jump destination should
84 ** be the continuation for the inner-most loop.
85 **
86 ** It is always safe for this routine to return the continuation of the
87 ** inner-most loop, in the sense that a correct answer will result.
88 ** Returning the continuation the second inner loop is an optimization
89 ** that might make the code run a little faster, but should not change
90 ** the final answer.
91 */
92 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
93   WhereLevel *pInner;
94   if( !pWInfo->bOrderedInnerLoop ){
95     /* The ORDER BY LIMIT optimization does not apply.  Jump to the
96     ** continuation of the inner-most loop. */
97     return pWInfo->iContinue;
98   }
99   pInner = &pWInfo->a[pWInfo->nLevel-1];
100   assert( pInner->addrNxt!=0 );
101   return pInner->addrNxt;
102 }
103 
104 /*
105 ** Return the VDBE address or label to jump to in order to continue
106 ** immediately with the next row of a WHERE clause.
107 */
108 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
109   assert( pWInfo->iContinue!=0 );
110   return pWInfo->iContinue;
111 }
112 
113 /*
114 ** Return the VDBE address or label to jump to in order to break
115 ** out of a WHERE loop.
116 */
117 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
118   return pWInfo->iBreak;
119 }
120 
121 /*
122 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
123 ** operate directly on the rowis returned by a WHERE clause.  Return
124 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
125 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
126 ** optimization can be used on multiple
127 **
128 ** If the ONEPASS optimization is used (if this routine returns true)
129 ** then also write the indices of open cursors used by ONEPASS
130 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
131 ** table and iaCur[1] gets the cursor used by an auxiliary index.
132 ** Either value may be -1, indicating that cursor is not used.
133 ** Any cursors returned will have been opened for writing.
134 **
135 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
136 ** unable to use the ONEPASS optimization.
137 */
138 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
139   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
140 #ifdef WHERETRACE_ENABLED
141   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
142     sqlite3DebugPrintf("%s cursors: %d %d\n",
143          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
144          aiCur[0], aiCur[1]);
145   }
146 #endif
147   return pWInfo->eOnePass;
148 }
149 
150 /*
151 ** Move the content of pSrc into pDest
152 */
153 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
154   pDest->n = pSrc->n;
155   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
156 }
157 
158 /*
159 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
160 **
161 ** The new entry might overwrite an existing entry, or it might be
162 ** appended, or it might be discarded.  Do whatever is the right thing
163 ** so that pSet keeps the N_OR_COST best entries seen so far.
164 */
165 static int whereOrInsert(
166   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
167   Bitmask prereq,        /* Prerequisites of the new entry */
168   LogEst rRun,           /* Run-cost of the new entry */
169   LogEst nOut            /* Number of outputs for the new entry */
170 ){
171   u16 i;
172   WhereOrCost *p;
173   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
174     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
175       goto whereOrInsert_done;
176     }
177     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
178       return 0;
179     }
180   }
181   if( pSet->n<N_OR_COST ){
182     p = &pSet->a[pSet->n++];
183     p->nOut = nOut;
184   }else{
185     p = pSet->a;
186     for(i=1; i<pSet->n; i++){
187       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
188     }
189     if( p->rRun<=rRun ) return 0;
190   }
191 whereOrInsert_done:
192   p->prereq = prereq;
193   p->rRun = rRun;
194   if( p->nOut>nOut ) p->nOut = nOut;
195   return 1;
196 }
197 
198 /*
199 ** Return the bitmask for the given cursor number.  Return 0 if
200 ** iCursor is not in the set.
201 */
202 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
203   int i;
204   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
205   for(i=0; i<pMaskSet->n; i++){
206     if( pMaskSet->ix[i]==iCursor ){
207       return MASKBIT(i);
208     }
209   }
210   return 0;
211 }
212 
213 /*
214 ** Create a new mask for cursor iCursor.
215 **
216 ** There is one cursor per table in the FROM clause.  The number of
217 ** tables in the FROM clause is limited by a test early in the
218 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
219 ** array will never overflow.
220 */
221 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
222   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
223   pMaskSet->ix[pMaskSet->n++] = iCursor;
224 }
225 
226 /*
227 ** Advance to the next WhereTerm that matches according to the criteria
228 ** established when the pScan object was initialized by whereScanInit().
229 ** Return NULL if there are no more matching WhereTerms.
230 */
231 static WhereTerm *whereScanNext(WhereScan *pScan){
232   int iCur;            /* The cursor on the LHS of the term */
233   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
234   Expr *pX;            /* An expression being tested */
235   WhereClause *pWC;    /* Shorthand for pScan->pWC */
236   WhereTerm *pTerm;    /* The term being tested */
237   int k = pScan->k;    /* Where to start scanning */
238 
239   assert( pScan->iEquiv<=pScan->nEquiv );
240   pWC = pScan->pWC;
241   while(1){
242     iColumn = pScan->aiColumn[pScan->iEquiv-1];
243     iCur = pScan->aiCur[pScan->iEquiv-1];
244     assert( pWC!=0 );
245     do{
246       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
247         if( pTerm->leftCursor==iCur
248          && pTerm->u.leftColumn==iColumn
249          && (iColumn!=XN_EXPR
250              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
251                                        pScan->pIdxExpr,iCur)==0)
252          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
253         ){
254           if( (pTerm->eOperator & WO_EQUIV)!=0
255            && pScan->nEquiv<ArraySize(pScan->aiCur)
256            && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN
257           ){
258             int j;
259             for(j=0; j<pScan->nEquiv; j++){
260               if( pScan->aiCur[j]==pX->iTable
261                && pScan->aiColumn[j]==pX->iColumn ){
262                   break;
263               }
264             }
265             if( j==pScan->nEquiv ){
266               pScan->aiCur[j] = pX->iTable;
267               pScan->aiColumn[j] = pX->iColumn;
268               pScan->nEquiv++;
269             }
270           }
271           if( (pTerm->eOperator & pScan->opMask)!=0 ){
272             /* Verify the affinity and collating sequence match */
273             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
274               CollSeq *pColl;
275               Parse *pParse = pWC->pWInfo->pParse;
276               pX = pTerm->pExpr;
277               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
278                 continue;
279               }
280               assert(pX->pLeft);
281               pColl = sqlite3BinaryCompareCollSeq(pParse,
282                                                   pX->pLeft, pX->pRight);
283               if( pColl==0 ) pColl = pParse->db->pDfltColl;
284               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
285                 continue;
286               }
287             }
288             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
289              && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
290              && pX->iTable==pScan->aiCur[0]
291              && pX->iColumn==pScan->aiColumn[0]
292             ){
293               testcase( pTerm->eOperator & WO_IS );
294               continue;
295             }
296             pScan->pWC = pWC;
297             pScan->k = k+1;
298             return pTerm;
299           }
300         }
301       }
302       pWC = pWC->pOuter;
303       k = 0;
304     }while( pWC!=0 );
305     if( pScan->iEquiv>=pScan->nEquiv ) break;
306     pWC = pScan->pOrigWC;
307     k = 0;
308     pScan->iEquiv++;
309   }
310   return 0;
311 }
312 
313 /*
314 ** This is whereScanInit() for the case of an index on an expression.
315 ** It is factored out into a separate tail-recursion subroutine so that
316 ** the normal whereScanInit() routine, which is a high-runner, does not
317 ** need to push registers onto the stack as part of its prologue.
318 */
319 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
320   pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
321   return whereScanNext(pScan);
322 }
323 
324 /*
325 ** Initialize a WHERE clause scanner object.  Return a pointer to the
326 ** first match.  Return NULL if there are no matches.
327 **
328 ** The scanner will be searching the WHERE clause pWC.  It will look
329 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
330 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
331 ** must be one of the indexes of table iCur.
332 **
333 ** The <op> must be one of the operators described by opMask.
334 **
335 ** If the search is for X and the WHERE clause contains terms of the
336 ** form X=Y then this routine might also return terms of the form
337 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
338 ** but is enough to handle most commonly occurring SQL statements.
339 **
340 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
341 ** index pIdx.
342 */
343 static WhereTerm *whereScanInit(
344   WhereScan *pScan,       /* The WhereScan object being initialized */
345   WhereClause *pWC,       /* The WHERE clause to be scanned */
346   int iCur,               /* Cursor to scan for */
347   int iColumn,            /* Column to scan for */
348   u32 opMask,             /* Operator(s) to scan for */
349   Index *pIdx             /* Must be compatible with this index */
350 ){
351   pScan->pOrigWC = pWC;
352   pScan->pWC = pWC;
353   pScan->pIdxExpr = 0;
354   pScan->idxaff = 0;
355   pScan->zCollName = 0;
356   pScan->opMask = opMask;
357   pScan->k = 0;
358   pScan->aiCur[0] = iCur;
359   pScan->nEquiv = 1;
360   pScan->iEquiv = 1;
361   if( pIdx ){
362     int j = iColumn;
363     iColumn = pIdx->aiColumn[j];
364     if( iColumn==XN_EXPR ){
365       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
366       pScan->zCollName = pIdx->azColl[j];
367       pScan->aiColumn[0] = XN_EXPR;
368       return whereScanInitIndexExpr(pScan);
369     }else if( iColumn==pIdx->pTable->iPKey ){
370       iColumn = XN_ROWID;
371     }else if( iColumn>=0 ){
372       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
373       pScan->zCollName = pIdx->azColl[j];
374     }
375   }else if( iColumn==XN_EXPR ){
376     return 0;
377   }
378   pScan->aiColumn[0] = iColumn;
379   return whereScanNext(pScan);
380 }
381 
382 /*
383 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
384 ** where X is a reference to the iColumn of table iCur or of index pIdx
385 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
386 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
387 **
388 ** If pIdx!=0 then it must be one of the indexes of table iCur.
389 ** Search for terms matching the iColumn-th column of pIdx
390 ** rather than the iColumn-th column of table iCur.
391 **
392 ** The term returned might by Y=<expr> if there is another constraint in
393 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
394 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
395 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
396 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
397 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
398 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
399 **
400 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
401 ** then try for the one with no dependencies on <expr> - in other words where
402 ** <expr> is a constant expression of some kind.  Only return entries of
403 ** the form "X <op> Y" where Y is a column in another table if no terms of
404 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
405 ** exist, try to return a term that does not use WO_EQUIV.
406 */
407 WhereTerm *sqlite3WhereFindTerm(
408   WhereClause *pWC,     /* The WHERE clause to be searched */
409   int iCur,             /* Cursor number of LHS */
410   int iColumn,          /* Column number of LHS */
411   Bitmask notReady,     /* RHS must not overlap with this mask */
412   u32 op,               /* Mask of WO_xx values describing operator */
413   Index *pIdx           /* Must be compatible with this index, if not NULL */
414 ){
415   WhereTerm *pResult = 0;
416   WhereTerm *p;
417   WhereScan scan;
418 
419   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
420   op &= WO_EQ|WO_IS;
421   while( p ){
422     if( (p->prereqRight & notReady)==0 ){
423       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
424         testcase( p->eOperator & WO_IS );
425         return p;
426       }
427       if( pResult==0 ) pResult = p;
428     }
429     p = whereScanNext(&scan);
430   }
431   return pResult;
432 }
433 
434 /*
435 ** This function searches pList for an entry that matches the iCol-th column
436 ** of index pIdx.
437 **
438 ** If such an expression is found, its index in pList->a[] is returned. If
439 ** no expression is found, -1 is returned.
440 */
441 static int findIndexCol(
442   Parse *pParse,                  /* Parse context */
443   ExprList *pList,                /* Expression list to search */
444   int iBase,                      /* Cursor for table associated with pIdx */
445   Index *pIdx,                    /* Index to match column of */
446   int iCol                        /* Column of index to match */
447 ){
448   int i;
449   const char *zColl = pIdx->azColl[iCol];
450 
451   for(i=0; i<pList->nExpr; i++){
452     Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr);
453     if( p->op==TK_COLUMN
454      && p->iColumn==pIdx->aiColumn[iCol]
455      && p->iTable==iBase
456     ){
457       CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
458       if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
459         return i;
460       }
461     }
462   }
463 
464   return -1;
465 }
466 
467 /*
468 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
469 */
470 static int indexColumnNotNull(Index *pIdx, int iCol){
471   int j;
472   assert( pIdx!=0 );
473   assert( iCol>=0 && iCol<pIdx->nColumn );
474   j = pIdx->aiColumn[iCol];
475   if( j>=0 ){
476     return pIdx->pTable->aCol[j].notNull;
477   }else if( j==(-1) ){
478     return 1;
479   }else{
480     assert( j==(-2) );
481     return 0;  /* Assume an indexed expression can always yield a NULL */
482 
483   }
484 }
485 
486 /*
487 ** Return true if the DISTINCT expression-list passed as the third argument
488 ** is redundant.
489 **
490 ** A DISTINCT list is redundant if any subset of the columns in the
491 ** DISTINCT list are collectively unique and individually non-null.
492 */
493 static int isDistinctRedundant(
494   Parse *pParse,            /* Parsing context */
495   SrcList *pTabList,        /* The FROM clause */
496   WhereClause *pWC,         /* The WHERE clause */
497   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
498 ){
499   Table *pTab;
500   Index *pIdx;
501   int i;
502   int iBase;
503 
504   /* If there is more than one table or sub-select in the FROM clause of
505   ** this query, then it will not be possible to show that the DISTINCT
506   ** clause is redundant. */
507   if( pTabList->nSrc!=1 ) return 0;
508   iBase = pTabList->a[0].iCursor;
509   pTab = pTabList->a[0].pTab;
510 
511   /* If any of the expressions is an IPK column on table iBase, then return
512   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
513   ** current SELECT is a correlated sub-query.
514   */
515   for(i=0; i<pDistinct->nExpr; i++){
516     Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr);
517     if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
518   }
519 
520   /* Loop through all indices on the table, checking each to see if it makes
521   ** the DISTINCT qualifier redundant. It does so if:
522   **
523   **   1. The index is itself UNIQUE, and
524   **
525   **   2. All of the columns in the index are either part of the pDistinct
526   **      list, or else the WHERE clause contains a term of the form "col=X",
527   **      where X is a constant value. The collation sequences of the
528   **      comparison and select-list expressions must match those of the index.
529   **
530   **   3. All of those index columns for which the WHERE clause does not
531   **      contain a "col=X" term are subject to a NOT NULL constraint.
532   */
533   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
534     if( !IsUniqueIndex(pIdx) ) continue;
535     for(i=0; i<pIdx->nKeyCol; i++){
536       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
537         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
538         if( indexColumnNotNull(pIdx, i)==0 ) break;
539       }
540     }
541     if( i==pIdx->nKeyCol ){
542       /* This index implies that the DISTINCT qualifier is redundant. */
543       return 1;
544     }
545   }
546 
547   return 0;
548 }
549 
550 
551 /*
552 ** Estimate the logarithm of the input value to base 2.
553 */
554 static LogEst estLog(LogEst N){
555   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
556 }
557 
558 /*
559 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
560 **
561 ** This routine runs over generated VDBE code and translates OP_Column
562 ** opcodes into OP_Copy when the table is being accessed via co-routine
563 ** instead of via table lookup.
564 **
565 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
566 ** cursor iTabCur are transformed into OP_Sequence opcode for the
567 ** iAutoidxCur cursor, in order to generate unique rowids for the
568 ** automatic index being generated.
569 */
570 static void translateColumnToCopy(
571   Parse *pParse,      /* Parsing context */
572   int iStart,         /* Translate from this opcode to the end */
573   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
574   int iRegister,      /* The first column is in this register */
575   int iAutoidxCur     /* If non-zero, cursor of autoindex being generated */
576 ){
577   Vdbe *v = pParse->pVdbe;
578   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
579   int iEnd = sqlite3VdbeCurrentAddr(v);
580   if( pParse->db->mallocFailed ) return;
581   for(; iStart<iEnd; iStart++, pOp++){
582     if( pOp->p1!=iTabCur ) continue;
583     if( pOp->opcode==OP_Column ){
584       pOp->opcode = OP_Copy;
585       pOp->p1 = pOp->p2 + iRegister;
586       pOp->p2 = pOp->p3;
587       pOp->p3 = 0;
588     }else if( pOp->opcode==OP_Rowid ){
589       if( iAutoidxCur ){
590         pOp->opcode = OP_Sequence;
591         pOp->p1 = iAutoidxCur;
592       }else{
593         pOp->opcode = OP_Null;
594         pOp->p1 = 0;
595         pOp->p3 = 0;
596       }
597     }
598   }
599 }
600 
601 /*
602 ** Two routines for printing the content of an sqlite3_index_info
603 ** structure.  Used for testing and debugging only.  If neither
604 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
605 ** are no-ops.
606 */
607 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
608 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
609   int i;
610   if( !sqlite3WhereTrace ) return;
611   for(i=0; i<p->nConstraint; i++){
612     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
613        i,
614        p->aConstraint[i].iColumn,
615        p->aConstraint[i].iTermOffset,
616        p->aConstraint[i].op,
617        p->aConstraint[i].usable);
618   }
619   for(i=0; i<p->nOrderBy; i++){
620     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
621        i,
622        p->aOrderBy[i].iColumn,
623        p->aOrderBy[i].desc);
624   }
625 }
626 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
627   int i;
628   if( !sqlite3WhereTrace ) return;
629   for(i=0; i<p->nConstraint; i++){
630     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
631        i,
632        p->aConstraintUsage[i].argvIndex,
633        p->aConstraintUsage[i].omit);
634   }
635   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
636   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
637   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
638   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
639   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
640 }
641 #else
642 #define TRACE_IDX_INPUTS(A)
643 #define TRACE_IDX_OUTPUTS(A)
644 #endif
645 
646 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
647 /*
648 ** Return TRUE if the WHERE clause term pTerm is of a form where it
649 ** could be used with an index to access pSrc, assuming an appropriate
650 ** index existed.
651 */
652 static int termCanDriveIndex(
653   WhereTerm *pTerm,              /* WHERE clause term to check */
654   struct SrcList_item *pSrc,     /* Table we are trying to access */
655   Bitmask notReady               /* Tables in outer loops of the join */
656 ){
657   char aff;
658   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
659   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
660   if( (pSrc->fg.jointype & JT_LEFT)
661    && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
662    && (pTerm->eOperator & WO_IS)
663   ){
664     /* Cannot use an IS term from the WHERE clause as an index driver for
665     ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
666     ** the ON clause.  */
667     return 0;
668   }
669   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
670   if( pTerm->u.leftColumn<0 ) return 0;
671   aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
672   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
673   testcase( pTerm->pExpr->op==TK_IS );
674   return 1;
675 }
676 #endif
677 
678 
679 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
680 /*
681 ** Generate code to construct the Index object for an automatic index
682 ** and to set up the WhereLevel object pLevel so that the code generator
683 ** makes use of the automatic index.
684 */
685 static void constructAutomaticIndex(
686   Parse *pParse,              /* The parsing context */
687   WhereClause *pWC,           /* The WHERE clause */
688   struct SrcList_item *pSrc,  /* The FROM clause term to get the next index */
689   Bitmask notReady,           /* Mask of cursors that are not available */
690   WhereLevel *pLevel          /* Write new index here */
691 ){
692   int nKeyCol;                /* Number of columns in the constructed index */
693   WhereTerm *pTerm;           /* A single term of the WHERE clause */
694   WhereTerm *pWCEnd;          /* End of pWC->a[] */
695   Index *pIdx;                /* Object describing the transient index */
696   Vdbe *v;                    /* Prepared statement under construction */
697   int addrInit;               /* Address of the initialization bypass jump */
698   Table *pTable;              /* The table being indexed */
699   int addrTop;                /* Top of the index fill loop */
700   int regRecord;              /* Register holding an index record */
701   int n;                      /* Column counter */
702   int i;                      /* Loop counter */
703   int mxBitCol;               /* Maximum column in pSrc->colUsed */
704   CollSeq *pColl;             /* Collating sequence to on a column */
705   WhereLoop *pLoop;           /* The Loop object */
706   char *zNotUsed;             /* Extra space on the end of pIdx */
707   Bitmask idxCols;            /* Bitmap of columns used for indexing */
708   Bitmask extraCols;          /* Bitmap of additional columns */
709   u8 sentWarning = 0;         /* True if a warnning has been issued */
710   Expr *pPartial = 0;         /* Partial Index Expression */
711   int iContinue = 0;          /* Jump here to skip excluded rows */
712   struct SrcList_item *pTabItem;  /* FROM clause term being indexed */
713   int addrCounter = 0;        /* Address where integer counter is initialized */
714   int regBase;                /* Array of registers where record is assembled */
715 
716   /* Generate code to skip over the creation and initialization of the
717   ** transient index on 2nd and subsequent iterations of the loop. */
718   v = pParse->pVdbe;
719   assert( v!=0 );
720   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
721 
722   /* Count the number of columns that will be added to the index
723   ** and used to match WHERE clause constraints */
724   nKeyCol = 0;
725   pTable = pSrc->pTab;
726   pWCEnd = &pWC->a[pWC->nTerm];
727   pLoop = pLevel->pWLoop;
728   idxCols = 0;
729   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
730     Expr *pExpr = pTerm->pExpr;
731     assert( !ExprHasProperty(pExpr, EP_FromJoin)    /* prereq always non-zero */
732          || pExpr->iRightJoinTable!=pSrc->iCursor   /*   for the right-hand   */
733          || pLoop->prereq!=0 );                     /*   table of a LEFT JOIN */
734     if( pLoop->prereq==0
735      && (pTerm->wtFlags & TERM_VIRTUAL)==0
736      && !ExprHasProperty(pExpr, EP_FromJoin)
737      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
738       pPartial = sqlite3ExprAnd(pParse, pPartial,
739                                 sqlite3ExprDup(pParse->db, pExpr, 0));
740     }
741     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
742       int iCol = pTerm->u.leftColumn;
743       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
744       testcase( iCol==BMS );
745       testcase( iCol==BMS-1 );
746       if( !sentWarning ){
747         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
748             "automatic index on %s(%s)", pTable->zName,
749             pTable->aCol[iCol].zName);
750         sentWarning = 1;
751       }
752       if( (idxCols & cMask)==0 ){
753         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
754           goto end_auto_index_create;
755         }
756         pLoop->aLTerm[nKeyCol++] = pTerm;
757         idxCols |= cMask;
758       }
759     }
760   }
761   assert( nKeyCol>0 );
762   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
763   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
764                      | WHERE_AUTO_INDEX;
765 
766   /* Count the number of additional columns needed to create a
767   ** covering index.  A "covering index" is an index that contains all
768   ** columns that are needed by the query.  With a covering index, the
769   ** original table never needs to be accessed.  Automatic indices must
770   ** be a covering index because the index will not be updated if the
771   ** original table changes and the index and table cannot both be used
772   ** if they go out of sync.
773   */
774   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
775   mxBitCol = MIN(BMS-1,pTable->nCol);
776   testcase( pTable->nCol==BMS-1 );
777   testcase( pTable->nCol==BMS-2 );
778   for(i=0; i<mxBitCol; i++){
779     if( extraCols & MASKBIT(i) ) nKeyCol++;
780   }
781   if( pSrc->colUsed & MASKBIT(BMS-1) ){
782     nKeyCol += pTable->nCol - BMS + 1;
783   }
784 
785   /* Construct the Index object to describe this index */
786   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
787   if( pIdx==0 ) goto end_auto_index_create;
788   pLoop->u.btree.pIndex = pIdx;
789   pIdx->zName = "auto-index";
790   pIdx->pTable = pTable;
791   n = 0;
792   idxCols = 0;
793   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
794     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
795       int iCol = pTerm->u.leftColumn;
796       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
797       testcase( iCol==BMS-1 );
798       testcase( iCol==BMS );
799       if( (idxCols & cMask)==0 ){
800         Expr *pX = pTerm->pExpr;
801         idxCols |= cMask;
802         pIdx->aiColumn[n] = pTerm->u.leftColumn;
803         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
804         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
805         n++;
806       }
807     }
808   }
809   assert( (u32)n==pLoop->u.btree.nEq );
810 
811   /* Add additional columns needed to make the automatic index into
812   ** a covering index */
813   for(i=0; i<mxBitCol; i++){
814     if( extraCols & MASKBIT(i) ){
815       pIdx->aiColumn[n] = i;
816       pIdx->azColl[n] = sqlite3StrBINARY;
817       n++;
818     }
819   }
820   if( pSrc->colUsed & MASKBIT(BMS-1) ){
821     for(i=BMS-1; i<pTable->nCol; i++){
822       pIdx->aiColumn[n] = i;
823       pIdx->azColl[n] = sqlite3StrBINARY;
824       n++;
825     }
826   }
827   assert( n==nKeyCol );
828   pIdx->aiColumn[n] = XN_ROWID;
829   pIdx->azColl[n] = sqlite3StrBINARY;
830 
831   /* Create the automatic index */
832   assert( pLevel->iIdxCur>=0 );
833   pLevel->iIdxCur = pParse->nTab++;
834   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
835   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
836   VdbeComment((v, "for %s", pTable->zName));
837 
838   /* Fill the automatic index with content */
839   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
840   if( pTabItem->fg.viaCoroutine ){
841     int regYield = pTabItem->regReturn;
842     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
843     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
844     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
845     VdbeCoverage(v);
846     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
847   }else{
848     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
849   }
850   if( pPartial ){
851     iContinue = sqlite3VdbeMakeLabel(pParse);
852     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
853     pLoop->wsFlags |= WHERE_PARTIALIDX;
854   }
855   regRecord = sqlite3GetTempReg(pParse);
856   regBase = sqlite3GenerateIndexKey(
857       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
858   );
859   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
860   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
861   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
862   if( pTabItem->fg.viaCoroutine ){
863     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
864     testcase( pParse->db->mallocFailed );
865     assert( pLevel->iIdxCur>0 );
866     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
867                           pTabItem->regResult, pLevel->iIdxCur);
868     sqlite3VdbeGoto(v, addrTop);
869     pTabItem->fg.viaCoroutine = 0;
870   }else{
871     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
872   }
873   sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
874   sqlite3VdbeJumpHere(v, addrTop);
875   sqlite3ReleaseTempReg(pParse, regRecord);
876 
877   /* Jump here when skipping the initialization */
878   sqlite3VdbeJumpHere(v, addrInit);
879 
880 end_auto_index_create:
881   sqlite3ExprDelete(pParse->db, pPartial);
882 }
883 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
884 
885 #ifndef SQLITE_OMIT_VIRTUALTABLE
886 /*
887 ** Allocate and populate an sqlite3_index_info structure. It is the
888 ** responsibility of the caller to eventually release the structure
889 ** by passing the pointer returned by this function to sqlite3_free().
890 */
891 static sqlite3_index_info *allocateIndexInfo(
892   Parse *pParse,                  /* The parsing context */
893   WhereClause *pWC,               /* The WHERE clause being analyzed */
894   Bitmask mUnusable,              /* Ignore terms with these prereqs */
895   struct SrcList_item *pSrc,      /* The FROM clause term that is the vtab */
896   ExprList *pOrderBy,             /* The ORDER BY clause */
897   u16 *pmNoOmit                   /* Mask of terms not to omit */
898 ){
899   int i, j;
900   int nTerm;
901   struct sqlite3_index_constraint *pIdxCons;
902   struct sqlite3_index_orderby *pIdxOrderBy;
903   struct sqlite3_index_constraint_usage *pUsage;
904   struct HiddenIndexInfo *pHidden;
905   WhereTerm *pTerm;
906   int nOrderBy;
907   sqlite3_index_info *pIdxInfo;
908   u16 mNoOmit = 0;
909 
910   /* Count the number of possible WHERE clause constraints referring
911   ** to this virtual table */
912   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
913     if( pTerm->leftCursor != pSrc->iCursor ) continue;
914     if( pTerm->prereqRight & mUnusable ) continue;
915     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
916     testcase( pTerm->eOperator & WO_IN );
917     testcase( pTerm->eOperator & WO_ISNULL );
918     testcase( pTerm->eOperator & WO_IS );
919     testcase( pTerm->eOperator & WO_ALL );
920     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
921     if( pTerm->wtFlags & TERM_VNULL ) continue;
922     assert( pTerm->u.leftColumn>=(-1) );
923     nTerm++;
924   }
925 
926   /* If the ORDER BY clause contains only columns in the current
927   ** virtual table then allocate space for the aOrderBy part of
928   ** the sqlite3_index_info structure.
929   */
930   nOrderBy = 0;
931   if( pOrderBy ){
932     int n = pOrderBy->nExpr;
933     for(i=0; i<n; i++){
934       Expr *pExpr = pOrderBy->a[i].pExpr;
935       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
936     }
937     if( i==n){
938       nOrderBy = n;
939     }
940   }
941 
942   /* Allocate the sqlite3_index_info structure
943   */
944   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
945                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
946                            + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) );
947   if( pIdxInfo==0 ){
948     sqlite3ErrorMsg(pParse, "out of memory");
949     return 0;
950   }
951 
952   /* Initialize the structure.  The sqlite3_index_info structure contains
953   ** many fields that are declared "const" to prevent xBestIndex from
954   ** changing them.  We have to do some funky casting in order to
955   ** initialize those fields.
956   */
957   pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
958   pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1];
959   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
960   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
961   *(int*)&pIdxInfo->nConstraint = nTerm;
962   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
963   *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
964   *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
965   *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
966                                                                    pUsage;
967 
968   pHidden->pWC = pWC;
969   pHidden->pParse = pParse;
970   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
971     u16 op;
972     if( pTerm->leftCursor != pSrc->iCursor ) continue;
973     if( pTerm->prereqRight & mUnusable ) continue;
974     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
975     testcase( pTerm->eOperator & WO_IN );
976     testcase( pTerm->eOperator & WO_IS );
977     testcase( pTerm->eOperator & WO_ISNULL );
978     testcase( pTerm->eOperator & WO_ALL );
979     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
980     if( pTerm->wtFlags & TERM_VNULL ) continue;
981     if( (pSrc->fg.jointype & JT_LEFT)!=0
982      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
983      && (pTerm->eOperator & (WO_IS|WO_ISNULL))
984     ){
985       /* An "IS" term in the WHERE clause where the virtual table is the rhs
986       ** of a LEFT JOIN. Do not pass this term to the virtual table
987       ** implementation, as this can lead to incorrect results from SQL such
988       ** as:
989       **
990       **   "LEFT JOIN vtab WHERE vtab.col IS NULL"  */
991       testcase( pTerm->eOperator & WO_ISNULL );
992       testcase( pTerm->eOperator & WO_IS );
993       continue;
994     }
995     assert( pTerm->u.leftColumn>=(-1) );
996     pIdxCons[j].iColumn = pTerm->u.leftColumn;
997     pIdxCons[j].iTermOffset = i;
998     op = pTerm->eOperator & WO_ALL;
999     if( op==WO_IN ) op = WO_EQ;
1000     if( op==WO_AUX ){
1001       pIdxCons[j].op = pTerm->eMatchOp;
1002     }else if( op & (WO_ISNULL|WO_IS) ){
1003       if( op==WO_ISNULL ){
1004         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
1005       }else{
1006         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
1007       }
1008     }else{
1009       pIdxCons[j].op = (u8)op;
1010       /* The direct assignment in the previous line is possible only because
1011       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1012       ** following asserts verify this fact. */
1013       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1014       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1015       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1016       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1017       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1018       assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1019 
1020       if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1021        && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1022       ){
1023         if( i<16 ) mNoOmit |= (1 << i);
1024         if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1025         if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1026       }
1027     }
1028 
1029     j++;
1030   }
1031   for(i=0; i<nOrderBy; i++){
1032     Expr *pExpr = pOrderBy->a[i].pExpr;
1033     pIdxOrderBy[i].iColumn = pExpr->iColumn;
1034     pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
1035   }
1036 
1037   *pmNoOmit = mNoOmit;
1038   return pIdxInfo;
1039 }
1040 
1041 /*
1042 ** The table object reference passed as the second argument to this function
1043 ** must represent a virtual table. This function invokes the xBestIndex()
1044 ** method of the virtual table with the sqlite3_index_info object that
1045 ** comes in as the 3rd argument to this function.
1046 **
1047 ** If an error occurs, pParse is populated with an error message and an
1048 ** appropriate error code is returned.  A return of SQLITE_CONSTRAINT from
1049 ** xBestIndex is not considered an error.  SQLITE_CONSTRAINT indicates that
1050 ** the current configuration of "unusable" flags in sqlite3_index_info can
1051 ** not result in a valid plan.
1052 **
1053 ** Whether or not an error is returned, it is the responsibility of the
1054 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1055 ** that this is required.
1056 */
1057 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1058   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1059   int rc;
1060 
1061   TRACE_IDX_INPUTS(p);
1062   rc = pVtab->pModule->xBestIndex(pVtab, p);
1063   TRACE_IDX_OUTPUTS(p);
1064 
1065   if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1066     if( rc==SQLITE_NOMEM ){
1067       sqlite3OomFault(pParse->db);
1068     }else if( !pVtab->zErrMsg ){
1069       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1070     }else{
1071       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1072     }
1073   }
1074   sqlite3_free(pVtab->zErrMsg);
1075   pVtab->zErrMsg = 0;
1076   return rc;
1077 }
1078 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1079 
1080 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1081 /*
1082 ** Estimate the location of a particular key among all keys in an
1083 ** index.  Store the results in aStat as follows:
1084 **
1085 **    aStat[0]      Est. number of rows less than pRec
1086 **    aStat[1]      Est. number of rows equal to pRec
1087 **
1088 ** Return the index of the sample that is the smallest sample that
1089 ** is greater than or equal to pRec. Note that this index is not an index
1090 ** into the aSample[] array - it is an index into a virtual set of samples
1091 ** based on the contents of aSample[] and the number of fields in record
1092 ** pRec.
1093 */
1094 static int whereKeyStats(
1095   Parse *pParse,              /* Database connection */
1096   Index *pIdx,                /* Index to consider domain of */
1097   UnpackedRecord *pRec,       /* Vector of values to consider */
1098   int roundUp,                /* Round up if true.  Round down if false */
1099   tRowcnt *aStat              /* OUT: stats written here */
1100 ){
1101   IndexSample *aSample = pIdx->aSample;
1102   int iCol;                   /* Index of required stats in anEq[] etc. */
1103   int i;                      /* Index of first sample >= pRec */
1104   int iSample;                /* Smallest sample larger than or equal to pRec */
1105   int iMin = 0;               /* Smallest sample not yet tested */
1106   int iTest;                  /* Next sample to test */
1107   int res;                    /* Result of comparison operation */
1108   int nField;                 /* Number of fields in pRec */
1109   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1110 
1111 #ifndef SQLITE_DEBUG
1112   UNUSED_PARAMETER( pParse );
1113 #endif
1114   assert( pRec!=0 );
1115   assert( pIdx->nSample>0 );
1116   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1117 
1118   /* Do a binary search to find the first sample greater than or equal
1119   ** to pRec. If pRec contains a single field, the set of samples to search
1120   ** is simply the aSample[] array. If the samples in aSample[] contain more
1121   ** than one fields, all fields following the first are ignored.
1122   **
1123   ** If pRec contains N fields, where N is more than one, then as well as the
1124   ** samples in aSample[] (truncated to N fields), the search also has to
1125   ** consider prefixes of those samples. For example, if the set of samples
1126   ** in aSample is:
1127   **
1128   **     aSample[0] = (a, 5)
1129   **     aSample[1] = (a, 10)
1130   **     aSample[2] = (b, 5)
1131   **     aSample[3] = (c, 100)
1132   **     aSample[4] = (c, 105)
1133   **
1134   ** Then the search space should ideally be the samples above and the
1135   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1136   ** the code actually searches this set:
1137   **
1138   **     0: (a)
1139   **     1: (a, 5)
1140   **     2: (a, 10)
1141   **     3: (a, 10)
1142   **     4: (b)
1143   **     5: (b, 5)
1144   **     6: (c)
1145   **     7: (c, 100)
1146   **     8: (c, 105)
1147   **     9: (c, 105)
1148   **
1149   ** For each sample in the aSample[] array, N samples are present in the
1150   ** effective sample array. In the above, samples 0 and 1 are based on
1151   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1152   **
1153   ** Often, sample i of each block of N effective samples has (i+1) fields.
1154   ** Except, each sample may be extended to ensure that it is greater than or
1155   ** equal to the previous sample in the array. For example, in the above,
1156   ** sample 2 is the first sample of a block of N samples, so at first it
1157   ** appears that it should be 1 field in size. However, that would make it
1158   ** smaller than sample 1, so the binary search would not work. As a result,
1159   ** it is extended to two fields. The duplicates that this creates do not
1160   ** cause any problems.
1161   */
1162   nField = pRec->nField;
1163   iCol = 0;
1164   iSample = pIdx->nSample * nField;
1165   do{
1166     int iSamp;                    /* Index in aSample[] of test sample */
1167     int n;                        /* Number of fields in test sample */
1168 
1169     iTest = (iMin+iSample)/2;
1170     iSamp = iTest / nField;
1171     if( iSamp>0 ){
1172       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1173       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1174       ** fields that is greater than the previous effective sample.  */
1175       for(n=(iTest % nField) + 1; n<nField; n++){
1176         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1177       }
1178     }else{
1179       n = iTest + 1;
1180     }
1181 
1182     pRec->nField = n;
1183     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1184     if( res<0 ){
1185       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1186       iMin = iTest+1;
1187     }else if( res==0 && n<nField ){
1188       iLower = aSample[iSamp].anLt[n-1];
1189       iMin = iTest+1;
1190       res = -1;
1191     }else{
1192       iSample = iTest;
1193       iCol = n-1;
1194     }
1195   }while( res && iMin<iSample );
1196   i = iSample / nField;
1197 
1198 #ifdef SQLITE_DEBUG
1199   /* The following assert statements check that the binary search code
1200   ** above found the right answer. This block serves no purpose other
1201   ** than to invoke the asserts.  */
1202   if( pParse->db->mallocFailed==0 ){
1203     if( res==0 ){
1204       /* If (res==0) is true, then pRec must be equal to sample i. */
1205       assert( i<pIdx->nSample );
1206       assert( iCol==nField-1 );
1207       pRec->nField = nField;
1208       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1209            || pParse->db->mallocFailed
1210       );
1211     }else{
1212       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1213       ** all samples in the aSample[] array, pRec must be smaller than the
1214       ** (iCol+1) field prefix of sample i.  */
1215       assert( i<=pIdx->nSample && i>=0 );
1216       pRec->nField = iCol+1;
1217       assert( i==pIdx->nSample
1218            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1219            || pParse->db->mallocFailed );
1220 
1221       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1222       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1223       ** be greater than or equal to the (iCol) field prefix of sample i.
1224       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1225       if( iCol>0 ){
1226         pRec->nField = iCol;
1227         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1228              || pParse->db->mallocFailed );
1229       }
1230       if( i>0 ){
1231         pRec->nField = nField;
1232         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1233              || pParse->db->mallocFailed );
1234       }
1235     }
1236   }
1237 #endif /* ifdef SQLITE_DEBUG */
1238 
1239   if( res==0 ){
1240     /* Record pRec is equal to sample i */
1241     assert( iCol==nField-1 );
1242     aStat[0] = aSample[i].anLt[iCol];
1243     aStat[1] = aSample[i].anEq[iCol];
1244   }else{
1245     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1246     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1247     ** is larger than all samples in the array. */
1248     tRowcnt iUpper, iGap;
1249     if( i>=pIdx->nSample ){
1250       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1251     }else{
1252       iUpper = aSample[i].anLt[iCol];
1253     }
1254 
1255     if( iLower>=iUpper ){
1256       iGap = 0;
1257     }else{
1258       iGap = iUpper - iLower;
1259     }
1260     if( roundUp ){
1261       iGap = (iGap*2)/3;
1262     }else{
1263       iGap = iGap/3;
1264     }
1265     aStat[0] = iLower + iGap;
1266     aStat[1] = pIdx->aAvgEq[nField-1];
1267   }
1268 
1269   /* Restore the pRec->nField value before returning.  */
1270   pRec->nField = nField;
1271   return i;
1272 }
1273 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1274 
1275 /*
1276 ** If it is not NULL, pTerm is a term that provides an upper or lower
1277 ** bound on a range scan. Without considering pTerm, it is estimated
1278 ** that the scan will visit nNew rows. This function returns the number
1279 ** estimated to be visited after taking pTerm into account.
1280 **
1281 ** If the user explicitly specified a likelihood() value for this term,
1282 ** then the return value is the likelihood multiplied by the number of
1283 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1284 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1285 */
1286 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1287   LogEst nRet = nNew;
1288   if( pTerm ){
1289     if( pTerm->truthProb<=0 ){
1290       nRet += pTerm->truthProb;
1291     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1292       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1293     }
1294   }
1295   return nRet;
1296 }
1297 
1298 
1299 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1300 /*
1301 ** Return the affinity for a single column of an index.
1302 */
1303 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1304   assert( iCol>=0 && iCol<pIdx->nColumn );
1305   if( !pIdx->zColAff ){
1306     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1307   }
1308   return pIdx->zColAff[iCol];
1309 }
1310 #endif
1311 
1312 
1313 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1314 /*
1315 ** This function is called to estimate the number of rows visited by a
1316 ** range-scan on a skip-scan index. For example:
1317 **
1318 **   CREATE INDEX i1 ON t1(a, b, c);
1319 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1320 **
1321 ** Value pLoop->nOut is currently set to the estimated number of rows
1322 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1323 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1324 ** on the stat4 data for the index. this scan will be peformed multiple
1325 ** times (once for each (a,b) combination that matches a=?) is dealt with
1326 ** by the caller.
1327 **
1328 ** It does this by scanning through all stat4 samples, comparing values
1329 ** extracted from pLower and pUpper with the corresponding column in each
1330 ** sample. If L and U are the number of samples found to be less than or
1331 ** equal to the values extracted from pLower and pUpper respectively, and
1332 ** N is the total number of samples, the pLoop->nOut value is adjusted
1333 ** as follows:
1334 **
1335 **   nOut = nOut * ( min(U - L, 1) / N )
1336 **
1337 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1338 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1339 ** U is set to N.
1340 **
1341 ** Normally, this function sets *pbDone to 1 before returning. However,
1342 ** if no value can be extracted from either pLower or pUpper (and so the
1343 ** estimate of the number of rows delivered remains unchanged), *pbDone
1344 ** is left as is.
1345 **
1346 ** If an error occurs, an SQLite error code is returned. Otherwise,
1347 ** SQLITE_OK.
1348 */
1349 static int whereRangeSkipScanEst(
1350   Parse *pParse,       /* Parsing & code generating context */
1351   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1352   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1353   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1354   int *pbDone          /* Set to true if at least one expr. value extracted */
1355 ){
1356   Index *p = pLoop->u.btree.pIndex;
1357   int nEq = pLoop->u.btree.nEq;
1358   sqlite3 *db = pParse->db;
1359   int nLower = -1;
1360   int nUpper = p->nSample+1;
1361   int rc = SQLITE_OK;
1362   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1363   CollSeq *pColl;
1364 
1365   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1366   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1367   sqlite3_value *pVal = 0;        /* Value extracted from record */
1368 
1369   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1370   if( pLower ){
1371     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1372     nLower = 0;
1373   }
1374   if( pUpper && rc==SQLITE_OK ){
1375     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1376     nUpper = p2 ? 0 : p->nSample;
1377   }
1378 
1379   if( p1 || p2 ){
1380     int i;
1381     int nDiff;
1382     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1383       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1384       if( rc==SQLITE_OK && p1 ){
1385         int res = sqlite3MemCompare(p1, pVal, pColl);
1386         if( res>=0 ) nLower++;
1387       }
1388       if( rc==SQLITE_OK && p2 ){
1389         int res = sqlite3MemCompare(p2, pVal, pColl);
1390         if( res>=0 ) nUpper++;
1391       }
1392     }
1393     nDiff = (nUpper - nLower);
1394     if( nDiff<=0 ) nDiff = 1;
1395 
1396     /* If there is both an upper and lower bound specified, and the
1397     ** comparisons indicate that they are close together, use the fallback
1398     ** method (assume that the scan visits 1/64 of the rows) for estimating
1399     ** the number of rows visited. Otherwise, estimate the number of rows
1400     ** using the method described in the header comment for this function. */
1401     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1402       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1403       pLoop->nOut -= nAdjust;
1404       *pbDone = 1;
1405       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1406                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1407     }
1408 
1409   }else{
1410     assert( *pbDone==0 );
1411   }
1412 
1413   sqlite3ValueFree(p1);
1414   sqlite3ValueFree(p2);
1415   sqlite3ValueFree(pVal);
1416 
1417   return rc;
1418 }
1419 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1420 
1421 /*
1422 ** This function is used to estimate the number of rows that will be visited
1423 ** by scanning an index for a range of values. The range may have an upper
1424 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1425 ** and lower bounds are represented by pLower and pUpper respectively. For
1426 ** example, assuming that index p is on t1(a):
1427 **
1428 **   ... FROM t1 WHERE a > ? AND a < ? ...
1429 **                    |_____|   |_____|
1430 **                       |         |
1431 **                     pLower    pUpper
1432 **
1433 ** If either of the upper or lower bound is not present, then NULL is passed in
1434 ** place of the corresponding WhereTerm.
1435 **
1436 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1437 ** column subject to the range constraint. Or, equivalently, the number of
1438 ** equality constraints optimized by the proposed index scan. For example,
1439 ** assuming index p is on t1(a, b), and the SQL query is:
1440 **
1441 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1442 **
1443 ** then nEq is set to 1 (as the range restricted column, b, is the second
1444 ** left-most column of the index). Or, if the query is:
1445 **
1446 **   ... FROM t1 WHERE a > ? AND a < ? ...
1447 **
1448 ** then nEq is set to 0.
1449 **
1450 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1451 ** number of rows that the index scan is expected to visit without
1452 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1453 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1454 ** to account for the range constraints pLower and pUpper.
1455 **
1456 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1457 ** used, a single range inequality reduces the search space by a factor of 4.
1458 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1459 ** rows visited by a factor of 64.
1460 */
1461 static int whereRangeScanEst(
1462   Parse *pParse,       /* Parsing & code generating context */
1463   WhereLoopBuilder *pBuilder,
1464   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1465   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1466   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1467 ){
1468   int rc = SQLITE_OK;
1469   int nOut = pLoop->nOut;
1470   LogEst nNew;
1471 
1472 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1473   Index *p = pLoop->u.btree.pIndex;
1474   int nEq = pLoop->u.btree.nEq;
1475 
1476   if( p->nSample>0 && nEq<p->nSampleCol
1477    && OptimizationEnabled(pParse->db, SQLITE_Stat34)
1478   ){
1479     if( nEq==pBuilder->nRecValid ){
1480       UnpackedRecord *pRec = pBuilder->pRec;
1481       tRowcnt a[2];
1482       int nBtm = pLoop->u.btree.nBtm;
1483       int nTop = pLoop->u.btree.nTop;
1484 
1485       /* Variable iLower will be set to the estimate of the number of rows in
1486       ** the index that are less than the lower bound of the range query. The
1487       ** lower bound being the concatenation of $P and $L, where $P is the
1488       ** key-prefix formed by the nEq values matched against the nEq left-most
1489       ** columns of the index, and $L is the value in pLower.
1490       **
1491       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1492       ** is not a simple variable or literal value), the lower bound of the
1493       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1494       ** if $L is available, whereKeyStats() is called for both ($P) and
1495       ** ($P:$L) and the larger of the two returned values is used.
1496       **
1497       ** Similarly, iUpper is to be set to the estimate of the number of rows
1498       ** less than the upper bound of the range query. Where the upper bound
1499       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1500       ** of iUpper are requested of whereKeyStats() and the smaller used.
1501       **
1502       ** The number of rows between the two bounds is then just iUpper-iLower.
1503       */
1504       tRowcnt iLower;     /* Rows less than the lower bound */
1505       tRowcnt iUpper;     /* Rows less than the upper bound */
1506       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1507       int iUprIdx = -1;   /* aSample[] for the upper bound */
1508 
1509       if( pRec ){
1510         testcase( pRec->nField!=pBuilder->nRecValid );
1511         pRec->nField = pBuilder->nRecValid;
1512       }
1513       /* Determine iLower and iUpper using ($P) only. */
1514       if( nEq==0 ){
1515         iLower = 0;
1516         iUpper = p->nRowEst0;
1517       }else{
1518         /* Note: this call could be optimized away - since the same values must
1519         ** have been requested when testing key $P in whereEqualScanEst().  */
1520         whereKeyStats(pParse, p, pRec, 0, a);
1521         iLower = a[0];
1522         iUpper = a[0] + a[1];
1523       }
1524 
1525       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1526       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1527       assert( p->aSortOrder!=0 );
1528       if( p->aSortOrder[nEq] ){
1529         /* The roles of pLower and pUpper are swapped for a DESC index */
1530         SWAP(WhereTerm*, pLower, pUpper);
1531         SWAP(int, nBtm, nTop);
1532       }
1533 
1534       /* If possible, improve on the iLower estimate using ($P:$L). */
1535       if( pLower ){
1536         int n;                    /* Values extracted from pExpr */
1537         Expr *pExpr = pLower->pExpr->pRight;
1538         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1539         if( rc==SQLITE_OK && n ){
1540           tRowcnt iNew;
1541           u16 mask = WO_GT|WO_LE;
1542           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1543           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1544           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1545           if( iNew>iLower ) iLower = iNew;
1546           nOut--;
1547           pLower = 0;
1548         }
1549       }
1550 
1551       /* If possible, improve on the iUpper estimate using ($P:$U). */
1552       if( pUpper ){
1553         int n;                    /* Values extracted from pExpr */
1554         Expr *pExpr = pUpper->pExpr->pRight;
1555         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1556         if( rc==SQLITE_OK && n ){
1557           tRowcnt iNew;
1558           u16 mask = WO_GT|WO_LE;
1559           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1560           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1561           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1562           if( iNew<iUpper ) iUpper = iNew;
1563           nOut--;
1564           pUpper = 0;
1565         }
1566       }
1567 
1568       pBuilder->pRec = pRec;
1569       if( rc==SQLITE_OK ){
1570         if( iUpper>iLower ){
1571           nNew = sqlite3LogEst(iUpper - iLower);
1572           /* TUNING:  If both iUpper and iLower are derived from the same
1573           ** sample, then assume they are 4x more selective.  This brings
1574           ** the estimated selectivity more in line with what it would be
1575           ** if estimated without the use of STAT3/4 tables. */
1576           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1577         }else{
1578           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1579         }
1580         if( nNew<nOut ){
1581           nOut = nNew;
1582         }
1583         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1584                            (u32)iLower, (u32)iUpper, nOut));
1585       }
1586     }else{
1587       int bDone = 0;
1588       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1589       if( bDone ) return rc;
1590     }
1591   }
1592 #else
1593   UNUSED_PARAMETER(pParse);
1594   UNUSED_PARAMETER(pBuilder);
1595   assert( pLower || pUpper );
1596 #endif
1597   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1598   nNew = whereRangeAdjust(pLower, nOut);
1599   nNew = whereRangeAdjust(pUpper, nNew);
1600 
1601   /* TUNING: If there is both an upper and lower limit and neither limit
1602   ** has an application-defined likelihood(), assume the range is
1603   ** reduced by an additional 75%. This means that, by default, an open-ended
1604   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1605   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1606   ** match 1/64 of the index. */
1607   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1608     nNew -= 20;
1609   }
1610 
1611   nOut -= (pLower!=0) + (pUpper!=0);
1612   if( nNew<10 ) nNew = 10;
1613   if( nNew<nOut ) nOut = nNew;
1614 #if defined(WHERETRACE_ENABLED)
1615   if( pLoop->nOut>nOut ){
1616     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1617                     pLoop->nOut, nOut));
1618   }
1619 #endif
1620   pLoop->nOut = (LogEst)nOut;
1621   return rc;
1622 }
1623 
1624 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1625 /*
1626 ** Estimate the number of rows that will be returned based on
1627 ** an equality constraint x=VALUE and where that VALUE occurs in
1628 ** the histogram data.  This only works when x is the left-most
1629 ** column of an index and sqlite_stat3 histogram data is available
1630 ** for that index.  When pExpr==NULL that means the constraint is
1631 ** "x IS NULL" instead of "x=VALUE".
1632 **
1633 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1634 ** If unable to make an estimate, leave *pnRow unchanged and return
1635 ** non-zero.
1636 **
1637 ** This routine can fail if it is unable to load a collating sequence
1638 ** required for string comparison, or if unable to allocate memory
1639 ** for a UTF conversion required for comparison.  The error is stored
1640 ** in the pParse structure.
1641 */
1642 static int whereEqualScanEst(
1643   Parse *pParse,       /* Parsing & code generating context */
1644   WhereLoopBuilder *pBuilder,
1645   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1646   tRowcnt *pnRow       /* Write the revised row estimate here */
1647 ){
1648   Index *p = pBuilder->pNew->u.btree.pIndex;
1649   int nEq = pBuilder->pNew->u.btree.nEq;
1650   UnpackedRecord *pRec = pBuilder->pRec;
1651   int rc;                   /* Subfunction return code */
1652   tRowcnt a[2];             /* Statistics */
1653   int bOk;
1654 
1655   assert( nEq>=1 );
1656   assert( nEq<=p->nColumn );
1657   assert( p->aSample!=0 );
1658   assert( p->nSample>0 );
1659   assert( pBuilder->nRecValid<nEq );
1660 
1661   /* If values are not available for all fields of the index to the left
1662   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1663   if( pBuilder->nRecValid<(nEq-1) ){
1664     return SQLITE_NOTFOUND;
1665   }
1666 
1667   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1668   ** below would return the same value.  */
1669   if( nEq>=p->nColumn ){
1670     *pnRow = 1;
1671     return SQLITE_OK;
1672   }
1673 
1674   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1675   pBuilder->pRec = pRec;
1676   if( rc!=SQLITE_OK ) return rc;
1677   if( bOk==0 ) return SQLITE_NOTFOUND;
1678   pBuilder->nRecValid = nEq;
1679 
1680   whereKeyStats(pParse, p, pRec, 0, a);
1681   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1682                    p->zName, nEq-1, (int)a[1]));
1683   *pnRow = a[1];
1684 
1685   return rc;
1686 }
1687 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1688 
1689 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1690 /*
1691 ** Estimate the number of rows that will be returned based on
1692 ** an IN constraint where the right-hand side of the IN operator
1693 ** is a list of values.  Example:
1694 **
1695 **        WHERE x IN (1,2,3,4)
1696 **
1697 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1698 ** If unable to make an estimate, leave *pnRow unchanged and return
1699 ** non-zero.
1700 **
1701 ** This routine can fail if it is unable to load a collating sequence
1702 ** required for string comparison, or if unable to allocate memory
1703 ** for a UTF conversion required for comparison.  The error is stored
1704 ** in the pParse structure.
1705 */
1706 static int whereInScanEst(
1707   Parse *pParse,       /* Parsing & code generating context */
1708   WhereLoopBuilder *pBuilder,
1709   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1710   tRowcnt *pnRow       /* Write the revised row estimate here */
1711 ){
1712   Index *p = pBuilder->pNew->u.btree.pIndex;
1713   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1714   int nRecValid = pBuilder->nRecValid;
1715   int rc = SQLITE_OK;     /* Subfunction return code */
1716   tRowcnt nEst;           /* Number of rows for a single term */
1717   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
1718   int i;                  /* Loop counter */
1719 
1720   assert( p->aSample!=0 );
1721   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1722     nEst = nRow0;
1723     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1724     nRowEst += nEst;
1725     pBuilder->nRecValid = nRecValid;
1726   }
1727 
1728   if( rc==SQLITE_OK ){
1729     if( nRowEst > nRow0 ) nRowEst = nRow0;
1730     *pnRow = nRowEst;
1731     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1732   }
1733   assert( pBuilder->nRecValid==nRecValid );
1734   return rc;
1735 }
1736 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1737 
1738 
1739 #ifdef WHERETRACE_ENABLED
1740 /*
1741 ** Print the content of a WhereTerm object
1742 */
1743 static void whereTermPrint(WhereTerm *pTerm, int iTerm){
1744   if( pTerm==0 ){
1745     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1746   }else{
1747     char zType[4];
1748     char zLeft[50];
1749     memcpy(zType, "...", 4);
1750     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1751     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
1752     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1753     if( pTerm->eOperator & WO_SINGLE ){
1754       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1755                        pTerm->leftCursor, pTerm->u.leftColumn);
1756     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1757       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld",
1758                        pTerm->u.pOrInfo->indexable);
1759     }else{
1760       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1761     }
1762     sqlite3DebugPrintf(
1763        "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x",
1764        iTerm, pTerm, zType, zLeft, pTerm->truthProb,
1765        pTerm->eOperator, pTerm->wtFlags);
1766     if( pTerm->iField ){
1767       sqlite3DebugPrintf(" iField=%d\n", pTerm->iField);
1768     }else{
1769       sqlite3DebugPrintf("\n");
1770     }
1771     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1772   }
1773 }
1774 #endif
1775 
1776 #ifdef WHERETRACE_ENABLED
1777 /*
1778 ** Show the complete content of a WhereClause
1779 */
1780 void sqlite3WhereClausePrint(WhereClause *pWC){
1781   int i;
1782   for(i=0; i<pWC->nTerm; i++){
1783     whereTermPrint(&pWC->a[i], i);
1784   }
1785 }
1786 #endif
1787 
1788 #ifdef WHERETRACE_ENABLED
1789 /*
1790 ** Print a WhereLoop object for debugging purposes
1791 */
1792 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
1793   WhereInfo *pWInfo = pWC->pWInfo;
1794   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1795   struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
1796   Table *pTab = pItem->pTab;
1797   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1798   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1799                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1800   sqlite3DebugPrintf(" %12s",
1801                      pItem->zAlias ? pItem->zAlias : pTab->zName);
1802   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1803     const char *zName;
1804     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1805       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1806         int i = sqlite3Strlen30(zName) - 1;
1807         while( zName[i]!='_' ) i--;
1808         zName += i;
1809       }
1810       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1811     }else{
1812       sqlite3DebugPrintf("%20s","");
1813     }
1814   }else{
1815     char *z;
1816     if( p->u.vtab.idxStr ){
1817       z = sqlite3_mprintf("(%d,\"%s\",%x)",
1818                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1819     }else{
1820       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1821     }
1822     sqlite3DebugPrintf(" %-19s", z);
1823     sqlite3_free(z);
1824   }
1825   if( p->wsFlags & WHERE_SKIPSCAN ){
1826     sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1827   }else{
1828     sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1829   }
1830   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1831   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1832     int i;
1833     for(i=0; i<p->nLTerm; i++){
1834       whereTermPrint(p->aLTerm[i], i);
1835     }
1836   }
1837 }
1838 #endif
1839 
1840 /*
1841 ** Convert bulk memory into a valid WhereLoop that can be passed
1842 ** to whereLoopClear harmlessly.
1843 */
1844 static void whereLoopInit(WhereLoop *p){
1845   p->aLTerm = p->aLTermSpace;
1846   p->nLTerm = 0;
1847   p->nLSlot = ArraySize(p->aLTermSpace);
1848   p->wsFlags = 0;
1849 }
1850 
1851 /*
1852 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
1853 */
1854 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1855   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1856     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1857       sqlite3_free(p->u.vtab.idxStr);
1858       p->u.vtab.needFree = 0;
1859       p->u.vtab.idxStr = 0;
1860     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1861       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1862       sqlite3DbFreeNN(db, p->u.btree.pIndex);
1863       p->u.btree.pIndex = 0;
1864     }
1865   }
1866 }
1867 
1868 /*
1869 ** Deallocate internal memory used by a WhereLoop object
1870 */
1871 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1872   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1873   whereLoopClearUnion(db, p);
1874   whereLoopInit(p);
1875 }
1876 
1877 /*
1878 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1879 */
1880 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1881   WhereTerm **paNew;
1882   if( p->nLSlot>=n ) return SQLITE_OK;
1883   n = (n+7)&~7;
1884   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1885   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1886   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1887   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1888   p->aLTerm = paNew;
1889   p->nLSlot = n;
1890   return SQLITE_OK;
1891 }
1892 
1893 /*
1894 ** Transfer content from the second pLoop into the first.
1895 */
1896 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1897   whereLoopClearUnion(db, pTo);
1898   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1899     memset(&pTo->u, 0, sizeof(pTo->u));
1900     return SQLITE_NOMEM_BKPT;
1901   }
1902   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1903   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1904   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1905     pFrom->u.vtab.needFree = 0;
1906   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1907     pFrom->u.btree.pIndex = 0;
1908   }
1909   return SQLITE_OK;
1910 }
1911 
1912 /*
1913 ** Delete a WhereLoop object
1914 */
1915 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1916   whereLoopClear(db, p);
1917   sqlite3DbFreeNN(db, p);
1918 }
1919 
1920 /*
1921 ** Free a WhereInfo structure
1922 */
1923 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1924   int i;
1925   assert( pWInfo!=0 );
1926   for(i=0; i<pWInfo->nLevel; i++){
1927     WhereLevel *pLevel = &pWInfo->a[i];
1928     if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1929       sqlite3DbFree(db, pLevel->u.in.aInLoop);
1930     }
1931   }
1932   sqlite3WhereClauseClear(&pWInfo->sWC);
1933   while( pWInfo->pLoops ){
1934     WhereLoop *p = pWInfo->pLoops;
1935     pWInfo->pLoops = p->pNextLoop;
1936     whereLoopDelete(db, p);
1937   }
1938   sqlite3DbFreeNN(db, pWInfo);
1939 }
1940 
1941 /*
1942 ** Return TRUE if all of the following are true:
1943 **
1944 **   (1)  X has the same or lower cost that Y
1945 **   (2)  X uses fewer WHERE clause terms than Y
1946 **   (3)  Every WHERE clause term used by X is also used by Y
1947 **   (4)  X skips at least as many columns as Y
1948 **   (5)  If X is a covering index, than Y is too
1949 **
1950 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
1951 ** If X is a proper subset of Y then Y is a better choice and ought
1952 ** to have a lower cost.  This routine returns TRUE when that cost
1953 ** relationship is inverted and needs to be adjusted.  Constraint (4)
1954 ** was added because if X uses skip-scan less than Y it still might
1955 ** deserve a lower cost even if it is a proper subset of Y.  Constraint (5)
1956 ** was added because a covering index probably deserves to have a lower cost
1957 ** than a non-covering index even if it is a proper subset.
1958 */
1959 static int whereLoopCheaperProperSubset(
1960   const WhereLoop *pX,       /* First WhereLoop to compare */
1961   const WhereLoop *pY        /* Compare against this WhereLoop */
1962 ){
1963   int i, j;
1964   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
1965     return 0; /* X is not a subset of Y */
1966   }
1967   if( pY->nSkip > pX->nSkip ) return 0;
1968   if( pX->rRun >= pY->rRun ){
1969     if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
1970     if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
1971   }
1972   for(i=pX->nLTerm-1; i>=0; i--){
1973     if( pX->aLTerm[i]==0 ) continue;
1974     for(j=pY->nLTerm-1; j>=0; j--){
1975       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
1976     }
1977     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
1978   }
1979   if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
1980    && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
1981     return 0;  /* Constraint (5) */
1982   }
1983   return 1;  /* All conditions meet */
1984 }
1985 
1986 /*
1987 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
1988 ** that:
1989 **
1990 **   (1) pTemplate costs less than any other WhereLoops that are a proper
1991 **       subset of pTemplate
1992 **
1993 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
1994 **       is a proper subset.
1995 **
1996 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
1997 ** WHERE clause terms than Y and that every WHERE clause term used by X is
1998 ** also used by Y.
1999 */
2000 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
2001   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
2002   for(; p; p=p->pNextLoop){
2003     if( p->iTab!=pTemplate->iTab ) continue;
2004     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
2005     if( whereLoopCheaperProperSubset(p, pTemplate) ){
2006       /* Adjust pTemplate cost downward so that it is cheaper than its
2007       ** subset p. */
2008       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2009                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
2010       pTemplate->rRun = p->rRun;
2011       pTemplate->nOut = p->nOut - 1;
2012     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2013       /* Adjust pTemplate cost upward so that it is costlier than p since
2014       ** pTemplate is a proper subset of p */
2015       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2016                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
2017       pTemplate->rRun = p->rRun;
2018       pTemplate->nOut = p->nOut + 1;
2019     }
2020   }
2021 }
2022 
2023 /*
2024 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2025 ** replaced by pTemplate.
2026 **
2027 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2028 ** In other words if pTemplate ought to be dropped from further consideration.
2029 **
2030 ** If pX is a WhereLoop that pTemplate can replace, then return the
2031 ** link that points to pX.
2032 **
2033 ** If pTemplate cannot replace any existing element of the list but needs
2034 ** to be added to the list as a new entry, then return a pointer to the
2035 ** tail of the list.
2036 */
2037 static WhereLoop **whereLoopFindLesser(
2038   WhereLoop **ppPrev,
2039   const WhereLoop *pTemplate
2040 ){
2041   WhereLoop *p;
2042   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2043     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2044       /* If either the iTab or iSortIdx values for two WhereLoop are different
2045       ** then those WhereLoops need to be considered separately.  Neither is
2046       ** a candidate to replace the other. */
2047       continue;
2048     }
2049     /* In the current implementation, the rSetup value is either zero
2050     ** or the cost of building an automatic index (NlogN) and the NlogN
2051     ** is the same for compatible WhereLoops. */
2052     assert( p->rSetup==0 || pTemplate->rSetup==0
2053                  || p->rSetup==pTemplate->rSetup );
2054 
2055     /* whereLoopAddBtree() always generates and inserts the automatic index
2056     ** case first.  Hence compatible candidate WhereLoops never have a larger
2057     ** rSetup. Call this SETUP-INVARIANT */
2058     assert( p->rSetup>=pTemplate->rSetup );
2059 
2060     /* Any loop using an appliation-defined index (or PRIMARY KEY or
2061     ** UNIQUE constraint) with one or more == constraints is better
2062     ** than an automatic index. Unless it is a skip-scan. */
2063     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2064      && (pTemplate->nSkip)==0
2065      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2066      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2067      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2068     ){
2069       break;
2070     }
2071 
2072     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2073     ** discarded.  WhereLoop p is better if:
2074     **   (1)  p has no more dependencies than pTemplate, and
2075     **   (2)  p has an equal or lower cost than pTemplate
2076     */
2077     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2078      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2079      && p->rRun<=pTemplate->rRun                      /* (2b) */
2080      && p->nOut<=pTemplate->nOut                      /* (2c) */
2081     ){
2082       return 0;  /* Discard pTemplate */
2083     }
2084 
2085     /* If pTemplate is always better than p, then cause p to be overwritten
2086     ** with pTemplate.  pTemplate is better than p if:
2087     **   (1)  pTemplate has no more dependences than p, and
2088     **   (2)  pTemplate has an equal or lower cost than p.
2089     */
2090     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2091      && p->rRun>=pTemplate->rRun                             /* (2a) */
2092      && p->nOut>=pTemplate->nOut                             /* (2b) */
2093     ){
2094       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2095       break;   /* Cause p to be overwritten by pTemplate */
2096     }
2097   }
2098   return ppPrev;
2099 }
2100 
2101 /*
2102 ** Insert or replace a WhereLoop entry using the template supplied.
2103 **
2104 ** An existing WhereLoop entry might be overwritten if the new template
2105 ** is better and has fewer dependencies.  Or the template will be ignored
2106 ** and no insert will occur if an existing WhereLoop is faster and has
2107 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2108 ** added based on the template.
2109 **
2110 ** If pBuilder->pOrSet is not NULL then we care about only the
2111 ** prerequisites and rRun and nOut costs of the N best loops.  That
2112 ** information is gathered in the pBuilder->pOrSet object.  This special
2113 ** processing mode is used only for OR clause processing.
2114 **
2115 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2116 ** still might overwrite similar loops with the new template if the
2117 ** new template is better.  Loops may be overwritten if the following
2118 ** conditions are met:
2119 **
2120 **    (1)  They have the same iTab.
2121 **    (2)  They have the same iSortIdx.
2122 **    (3)  The template has same or fewer dependencies than the current loop
2123 **    (4)  The template has the same or lower cost than the current loop
2124 */
2125 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2126   WhereLoop **ppPrev, *p;
2127   WhereInfo *pWInfo = pBuilder->pWInfo;
2128   sqlite3 *db = pWInfo->pParse->db;
2129   int rc;
2130 
2131   /* Stop the search once we hit the query planner search limit */
2132   if( pBuilder->iPlanLimit==0 ){
2133     WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2134     if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2135     return SQLITE_DONE;
2136   }
2137   pBuilder->iPlanLimit--;
2138 
2139   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2140   ** and prereqs.
2141   */
2142   if( pBuilder->pOrSet!=0 ){
2143     if( pTemplate->nLTerm ){
2144 #if WHERETRACE_ENABLED
2145       u16 n = pBuilder->pOrSet->n;
2146       int x =
2147 #endif
2148       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2149                                     pTemplate->nOut);
2150 #if WHERETRACE_ENABLED /* 0x8 */
2151       if( sqlite3WhereTrace & 0x8 ){
2152         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2153         whereLoopPrint(pTemplate, pBuilder->pWC);
2154       }
2155 #endif
2156     }
2157     return SQLITE_OK;
2158   }
2159 
2160   /* Look for an existing WhereLoop to replace with pTemplate
2161   */
2162   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2163   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2164 
2165   if( ppPrev==0 ){
2166     /* There already exists a WhereLoop on the list that is better
2167     ** than pTemplate, so just ignore pTemplate */
2168 #if WHERETRACE_ENABLED /* 0x8 */
2169     if( sqlite3WhereTrace & 0x8 ){
2170       sqlite3DebugPrintf("   skip: ");
2171       whereLoopPrint(pTemplate, pBuilder->pWC);
2172     }
2173 #endif
2174     return SQLITE_OK;
2175   }else{
2176     p = *ppPrev;
2177   }
2178 
2179   /* If we reach this point it means that either p[] should be overwritten
2180   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2181   ** WhereLoop and insert it.
2182   */
2183 #if WHERETRACE_ENABLED /* 0x8 */
2184   if( sqlite3WhereTrace & 0x8 ){
2185     if( p!=0 ){
2186       sqlite3DebugPrintf("replace: ");
2187       whereLoopPrint(p, pBuilder->pWC);
2188       sqlite3DebugPrintf("   with: ");
2189     }else{
2190       sqlite3DebugPrintf("    add: ");
2191     }
2192     whereLoopPrint(pTemplate, pBuilder->pWC);
2193   }
2194 #endif
2195   if( p==0 ){
2196     /* Allocate a new WhereLoop to add to the end of the list */
2197     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2198     if( p==0 ) return SQLITE_NOMEM_BKPT;
2199     whereLoopInit(p);
2200     p->pNextLoop = 0;
2201   }else{
2202     /* We will be overwriting WhereLoop p[].  But before we do, first
2203     ** go through the rest of the list and delete any other entries besides
2204     ** p[] that are also supplated by pTemplate */
2205     WhereLoop **ppTail = &p->pNextLoop;
2206     WhereLoop *pToDel;
2207     while( *ppTail ){
2208       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2209       if( ppTail==0 ) break;
2210       pToDel = *ppTail;
2211       if( pToDel==0 ) break;
2212       *ppTail = pToDel->pNextLoop;
2213 #if WHERETRACE_ENABLED /* 0x8 */
2214       if( sqlite3WhereTrace & 0x8 ){
2215         sqlite3DebugPrintf(" delete: ");
2216         whereLoopPrint(pToDel, pBuilder->pWC);
2217       }
2218 #endif
2219       whereLoopDelete(db, pToDel);
2220     }
2221   }
2222   rc = whereLoopXfer(db, p, pTemplate);
2223   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2224     Index *pIndex = p->u.btree.pIndex;
2225     if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
2226       p->u.btree.pIndex = 0;
2227     }
2228   }
2229   return rc;
2230 }
2231 
2232 /*
2233 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2234 ** WHERE clause that reference the loop but which are not used by an
2235 ** index.
2236 *
2237 ** For every WHERE clause term that is not used by the index
2238 ** and which has a truth probability assigned by one of the likelihood(),
2239 ** likely(), or unlikely() SQL functions, reduce the estimated number
2240 ** of output rows by the probability specified.
2241 **
2242 ** TUNING:  For every WHERE clause term that is not used by the index
2243 ** and which does not have an assigned truth probability, heuristics
2244 ** described below are used to try to estimate the truth probability.
2245 ** TODO --> Perhaps this is something that could be improved by better
2246 ** table statistics.
2247 **
2248 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2249 ** value corresponds to -1 in LogEst notation, so this means decrement
2250 ** the WhereLoop.nOut field for every such WHERE clause term.
2251 **
2252 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2253 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2254 ** final output row estimate is no greater than 1/4 of the total number
2255 ** of rows in the table.  In other words, assume that x==EXPR will filter
2256 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2257 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2258 ** on the "x" column and so in that case only cap the output row estimate
2259 ** at 1/2 instead of 1/4.
2260 */
2261 static void whereLoopOutputAdjust(
2262   WhereClause *pWC,      /* The WHERE clause */
2263   WhereLoop *pLoop,      /* The loop to adjust downward */
2264   LogEst nRow            /* Number of rows in the entire table */
2265 ){
2266   WhereTerm *pTerm, *pX;
2267   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2268   int i, j, k;
2269   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2270 
2271   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2272   for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2273     assert( pTerm!=0 );
2274     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2275     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2276     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2277     for(j=pLoop->nLTerm-1; j>=0; j--){
2278       pX = pLoop->aLTerm[j];
2279       if( pX==0 ) continue;
2280       if( pX==pTerm ) break;
2281       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2282     }
2283     if( j<0 ){
2284       if( pTerm->truthProb<=0 ){
2285         /* If a truth probability is specified using the likelihood() hints,
2286         ** then use the probability provided by the application. */
2287         pLoop->nOut += pTerm->truthProb;
2288       }else{
2289         /* In the absence of explicit truth probabilities, use heuristics to
2290         ** guess a reasonable truth probability. */
2291         pLoop->nOut--;
2292         if( pTerm->eOperator&(WO_EQ|WO_IS) ){
2293           Expr *pRight = pTerm->pExpr->pRight;
2294           testcase( pTerm->pExpr->op==TK_IS );
2295           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2296             k = 10;
2297           }else{
2298             k = 20;
2299           }
2300           if( iReduce<k ) iReduce = k;
2301         }
2302       }
2303     }
2304   }
2305   if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;
2306 }
2307 
2308 /*
2309 ** Term pTerm is a vector range comparison operation. The first comparison
2310 ** in the vector can be optimized using column nEq of the index. This
2311 ** function returns the total number of vector elements that can be used
2312 ** as part of the range comparison.
2313 **
2314 ** For example, if the query is:
2315 **
2316 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2317 **
2318 ** and the index:
2319 **
2320 **   CREATE INDEX ... ON (a, b, c, d, e)
2321 **
2322 ** then this function would be invoked with nEq=1. The value returned in
2323 ** this case is 3.
2324 */
2325 static int whereRangeVectorLen(
2326   Parse *pParse,       /* Parsing context */
2327   int iCur,            /* Cursor open on pIdx */
2328   Index *pIdx,         /* The index to be used for a inequality constraint */
2329   int nEq,             /* Number of prior equality constraints on same index */
2330   WhereTerm *pTerm     /* The vector inequality constraint */
2331 ){
2332   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2333   int i;
2334 
2335   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2336   for(i=1; i<nCmp; i++){
2337     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2338     ** of the index. If not, exit the loop.  */
2339     char aff;                     /* Comparison affinity */
2340     char idxaff = 0;              /* Indexed columns affinity */
2341     CollSeq *pColl;               /* Comparison collation sequence */
2342     Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2343     Expr *pRhs = pTerm->pExpr->pRight;
2344     if( pRhs->flags & EP_xIsSelect ){
2345       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2346     }else{
2347       pRhs = pRhs->x.pList->a[i].pExpr;
2348     }
2349 
2350     /* Check that the LHS of the comparison is a column reference to
2351     ** the right column of the right source table. And that the sort
2352     ** order of the index column is the same as the sort order of the
2353     ** leftmost index column.  */
2354     if( pLhs->op!=TK_COLUMN
2355      || pLhs->iTable!=iCur
2356      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2357      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2358     ){
2359       break;
2360     }
2361 
2362     testcase( pLhs->iColumn==XN_ROWID );
2363     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2364     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2365     if( aff!=idxaff ) break;
2366 
2367     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2368     if( pColl==0 ) break;
2369     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2370   }
2371   return i;
2372 }
2373 
2374 /*
2375 ** Adjust the cost C by the costMult facter T.  This only occurs if
2376 ** compiled with -DSQLITE_ENABLE_COSTMULT
2377 */
2378 #ifdef SQLITE_ENABLE_COSTMULT
2379 # define ApplyCostMultiplier(C,T)  C += T
2380 #else
2381 # define ApplyCostMultiplier(C,T)
2382 #endif
2383 
2384 /*
2385 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2386 ** index pIndex. Try to match one more.
2387 **
2388 ** When this function is called, pBuilder->pNew->nOut contains the
2389 ** number of rows expected to be visited by filtering using the nEq
2390 ** terms only. If it is modified, this value is restored before this
2391 ** function returns.
2392 **
2393 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2394 ** a fake index used for the INTEGER PRIMARY KEY.
2395 */
2396 static int whereLoopAddBtreeIndex(
2397   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2398   struct SrcList_item *pSrc,      /* FROM clause term being analyzed */
2399   Index *pProbe,                  /* An index on pSrc */
2400   LogEst nInMul                   /* log(Number of iterations due to IN) */
2401 ){
2402   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2403   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2404   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2405   WhereLoop *pNew;                /* Template WhereLoop under construction */
2406   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2407   int opMask;                     /* Valid operators for constraints */
2408   WhereScan scan;                 /* Iterator for WHERE terms */
2409   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2410   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2411   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2412   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2413   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2414   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2415   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2416   LogEst saved_nOut;              /* Original value of pNew->nOut */
2417   int rc = SQLITE_OK;             /* Return code */
2418   LogEst rSize;                   /* Number of rows in the table */
2419   LogEst rLogSize;                /* Logarithm of table size */
2420   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2421 
2422   pNew = pBuilder->pNew;
2423   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2424   WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d\n",
2425                      pProbe->pTable->zName,pProbe->zName, pNew->u.btree.nEq));
2426 
2427   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2428   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2429   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2430     opMask = WO_LT|WO_LE;
2431   }else{
2432     assert( pNew->u.btree.nBtm==0 );
2433     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2434   }
2435   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2436 
2437   assert( pNew->u.btree.nEq<pProbe->nColumn );
2438 
2439   saved_nEq = pNew->u.btree.nEq;
2440   saved_nBtm = pNew->u.btree.nBtm;
2441   saved_nTop = pNew->u.btree.nTop;
2442   saved_nSkip = pNew->nSkip;
2443   saved_nLTerm = pNew->nLTerm;
2444   saved_wsFlags = pNew->wsFlags;
2445   saved_prereq = pNew->prereq;
2446   saved_nOut = pNew->nOut;
2447   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2448                         opMask, pProbe);
2449   pNew->rSetup = 0;
2450   rSize = pProbe->aiRowLogEst[0];
2451   rLogSize = estLog(rSize);
2452   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2453     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2454     LogEst rCostIdx;
2455     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2456     int nIn = 0;
2457 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2458     int nRecValid = pBuilder->nRecValid;
2459 #endif
2460     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2461      && indexColumnNotNull(pProbe, saved_nEq)
2462     ){
2463       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2464     }
2465     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2466 
2467     /* Do not allow the upper bound of a LIKE optimization range constraint
2468     ** to mix with a lower range bound from some other source */
2469     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2470 
2471     /* Do not allow constraints from the WHERE clause to be used by the
2472     ** right table of a LEFT JOIN.  Only constraints in the ON clause are
2473     ** allowed */
2474     if( (pSrc->fg.jointype & JT_LEFT)!=0
2475      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2476     ){
2477       continue;
2478     }
2479 
2480     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2481       pBuilder->bldFlags |= SQLITE_BLDF_UNIQUE;
2482     }else{
2483       pBuilder->bldFlags |= SQLITE_BLDF_INDEXED;
2484     }
2485     pNew->wsFlags = saved_wsFlags;
2486     pNew->u.btree.nEq = saved_nEq;
2487     pNew->u.btree.nBtm = saved_nBtm;
2488     pNew->u.btree.nTop = saved_nTop;
2489     pNew->nLTerm = saved_nLTerm;
2490     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2491     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2492     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2493 
2494     assert( nInMul==0
2495         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2496         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2497         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2498     );
2499 
2500     if( eOp & WO_IN ){
2501       Expr *pExpr = pTerm->pExpr;
2502       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2503         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2504         int i;
2505         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2506 
2507         /* The expression may actually be of the form (x, y) IN (SELECT...).
2508         ** In this case there is a separate term for each of (x) and (y).
2509         ** However, the nIn multiplier should only be applied once, not once
2510         ** for each such term. The following loop checks that pTerm is the
2511         ** first such term in use, and sets nIn back to 0 if it is not. */
2512         for(i=0; i<pNew->nLTerm-1; i++){
2513           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2514         }
2515       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2516         /* "x IN (value, value, ...)" */
2517         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2518         assert( nIn>0 );  /* RHS always has 2 or more terms...  The parser
2519                           ** changes "x IN (?)" into "x=?". */
2520       }
2521       if( pProbe->hasStat1 ){
2522         LogEst M, logK, safetyMargin;
2523         /* Let:
2524         **   N = the total number of rows in the table
2525         **   K = the number of entries on the RHS of the IN operator
2526         **   M = the number of rows in the table that match terms to the
2527         **       to the left in the same index.  If the IN operator is on
2528         **       the left-most index column, M==N.
2529         **
2530         ** Given the definitions above, it is better to omit the IN operator
2531         ** from the index lookup and instead do a scan of the M elements,
2532         ** testing each scanned row against the IN operator separately, if:
2533         **
2534         **        M*log(K) < K*log(N)
2535         **
2536         ** Our estimates for M, K, and N might be inaccurate, so we build in
2537         ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2538         ** with the index, as using an index has better worst-case behavior.
2539         ** If we do not have real sqlite_stat1 data, always prefer to use
2540         ** the index.
2541         */
2542         M = pProbe->aiRowLogEst[saved_nEq];
2543         logK = estLog(nIn);
2544         safetyMargin = 10;  /* TUNING: extra weight for indexed IN */
2545         if( M + logK + safetyMargin < nIn + rLogSize ){
2546           WHERETRACE(0x40,
2547             ("Scan preferred over IN operator on column %d of \"%s\" (%d<%d)\n",
2548              saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2549           continue;
2550         }else{
2551           WHERETRACE(0x40,
2552             ("IN operator preferred on column %d of \"%s\" (%d>=%d)\n",
2553              saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2554         }
2555       }
2556       pNew->wsFlags |= WHERE_COLUMN_IN;
2557     }else if( eOp & (WO_EQ|WO_IS) ){
2558       int iCol = pProbe->aiColumn[saved_nEq];
2559       pNew->wsFlags |= WHERE_COLUMN_EQ;
2560       assert( saved_nEq==pNew->u.btree.nEq );
2561       if( iCol==XN_ROWID
2562        || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2563       ){
2564         if( iCol==XN_ROWID || pProbe->uniqNotNull
2565          || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2566         ){
2567           pNew->wsFlags |= WHERE_ONEROW;
2568         }else{
2569           pNew->wsFlags |= WHERE_UNQ_WANTED;
2570         }
2571       }
2572     }else if( eOp & WO_ISNULL ){
2573       pNew->wsFlags |= WHERE_COLUMN_NULL;
2574     }else if( eOp & (WO_GT|WO_GE) ){
2575       testcase( eOp & WO_GT );
2576       testcase( eOp & WO_GE );
2577       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2578       pNew->u.btree.nBtm = whereRangeVectorLen(
2579           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2580       );
2581       pBtm = pTerm;
2582       pTop = 0;
2583       if( pTerm->wtFlags & TERM_LIKEOPT ){
2584         /* Range contraints that come from the LIKE optimization are
2585         ** always used in pairs. */
2586         pTop = &pTerm[1];
2587         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2588         assert( pTop->wtFlags & TERM_LIKEOPT );
2589         assert( pTop->eOperator==WO_LT );
2590         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2591         pNew->aLTerm[pNew->nLTerm++] = pTop;
2592         pNew->wsFlags |= WHERE_TOP_LIMIT;
2593         pNew->u.btree.nTop = 1;
2594       }
2595     }else{
2596       assert( eOp & (WO_LT|WO_LE) );
2597       testcase( eOp & WO_LT );
2598       testcase( eOp & WO_LE );
2599       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2600       pNew->u.btree.nTop = whereRangeVectorLen(
2601           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2602       );
2603       pTop = pTerm;
2604       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2605                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2606     }
2607 
2608     /* At this point pNew->nOut is set to the number of rows expected to
2609     ** be visited by the index scan before considering term pTerm, or the
2610     ** values of nIn and nInMul. In other words, assuming that all
2611     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2612     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2613     assert( pNew->nOut==saved_nOut );
2614     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2615       /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4
2616       ** data, using some other estimate.  */
2617       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2618     }else{
2619       int nEq = ++pNew->u.btree.nEq;
2620       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2621 
2622       assert( pNew->nOut==saved_nOut );
2623       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2624         assert( (eOp & WO_IN) || nIn==0 );
2625         testcase( eOp & WO_IN );
2626         pNew->nOut += pTerm->truthProb;
2627         pNew->nOut -= nIn;
2628       }else{
2629 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2630         tRowcnt nOut = 0;
2631         if( nInMul==0
2632          && pProbe->nSample
2633          && pNew->u.btree.nEq<=pProbe->nSampleCol
2634          && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2635          && OptimizationEnabled(db, SQLITE_Stat34)
2636         ){
2637           Expr *pExpr = pTerm->pExpr;
2638           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2639             testcase( eOp & WO_EQ );
2640             testcase( eOp & WO_IS );
2641             testcase( eOp & WO_ISNULL );
2642             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2643           }else{
2644             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2645           }
2646           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2647           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2648           if( nOut ){
2649             pNew->nOut = sqlite3LogEst(nOut);
2650             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2651             pNew->nOut -= nIn;
2652           }
2653         }
2654         if( nOut==0 )
2655 #endif
2656         {
2657           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2658           if( eOp & WO_ISNULL ){
2659             /* TUNING: If there is no likelihood() value, assume that a
2660             ** "col IS NULL" expression matches twice as many rows
2661             ** as (col=?). */
2662             pNew->nOut += 10;
2663           }
2664         }
2665       }
2666     }
2667 
2668     /* Set rCostIdx to the cost of visiting selected rows in index. Add
2669     ** it to pNew->rRun, which is currently set to the cost of the index
2670     ** seek only. Then, if this is a non-covering index, add the cost of
2671     ** visiting the rows in the main table.  */
2672     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2673     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2674     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2675       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2676     }
2677     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2678 
2679     nOutUnadjusted = pNew->nOut;
2680     pNew->rRun += nInMul + nIn;
2681     pNew->nOut += nInMul + nIn;
2682     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2683     rc = whereLoopInsert(pBuilder, pNew);
2684 
2685     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2686       pNew->nOut = saved_nOut;
2687     }else{
2688       pNew->nOut = nOutUnadjusted;
2689     }
2690 
2691     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2692      && pNew->u.btree.nEq<pProbe->nColumn
2693     ){
2694       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2695     }
2696     pNew->nOut = saved_nOut;
2697 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2698     pBuilder->nRecValid = nRecValid;
2699 #endif
2700   }
2701   pNew->prereq = saved_prereq;
2702   pNew->u.btree.nEq = saved_nEq;
2703   pNew->u.btree.nBtm = saved_nBtm;
2704   pNew->u.btree.nTop = saved_nTop;
2705   pNew->nSkip = saved_nSkip;
2706   pNew->wsFlags = saved_wsFlags;
2707   pNew->nOut = saved_nOut;
2708   pNew->nLTerm = saved_nLTerm;
2709 
2710   /* Consider using a skip-scan if there are no WHERE clause constraints
2711   ** available for the left-most terms of the index, and if the average
2712   ** number of repeats in the left-most terms is at least 18.
2713   **
2714   ** The magic number 18 is selected on the basis that scanning 17 rows
2715   ** is almost always quicker than an index seek (even though if the index
2716   ** contains fewer than 2^17 rows we assume otherwise in other parts of
2717   ** the code). And, even if it is not, it should not be too much slower.
2718   ** On the other hand, the extra seeks could end up being significantly
2719   ** more expensive.  */
2720   assert( 42==sqlite3LogEst(18) );
2721   if( saved_nEq==saved_nSkip
2722    && saved_nEq+1<pProbe->nKeyCol
2723    && pProbe->noSkipScan==0
2724    && OptimizationEnabled(db, SQLITE_SkipScan)
2725    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
2726    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2727   ){
2728     LogEst nIter;
2729     pNew->u.btree.nEq++;
2730     pNew->nSkip++;
2731     pNew->aLTerm[pNew->nLTerm++] = 0;
2732     pNew->wsFlags |= WHERE_SKIPSCAN;
2733     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2734     pNew->nOut -= nIter;
2735     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
2736     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2737     nIter += 5;
2738     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2739     pNew->nOut = saved_nOut;
2740     pNew->u.btree.nEq = saved_nEq;
2741     pNew->nSkip = saved_nSkip;
2742     pNew->wsFlags = saved_wsFlags;
2743   }
2744 
2745   WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
2746                       pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
2747   return rc;
2748 }
2749 
2750 /*
2751 ** Return True if it is possible that pIndex might be useful in
2752 ** implementing the ORDER BY clause in pBuilder.
2753 **
2754 ** Return False if pBuilder does not contain an ORDER BY clause or
2755 ** if there is no way for pIndex to be useful in implementing that
2756 ** ORDER BY clause.
2757 */
2758 static int indexMightHelpWithOrderBy(
2759   WhereLoopBuilder *pBuilder,
2760   Index *pIndex,
2761   int iCursor
2762 ){
2763   ExprList *pOB;
2764   ExprList *aColExpr;
2765   int ii, jj;
2766 
2767   if( pIndex->bUnordered ) return 0;
2768   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2769   for(ii=0; ii<pOB->nExpr; ii++){
2770     Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
2771     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2772       if( pExpr->iColumn<0 ) return 1;
2773       for(jj=0; jj<pIndex->nKeyCol; jj++){
2774         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2775       }
2776     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2777       for(jj=0; jj<pIndex->nKeyCol; jj++){
2778         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2779         if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2780           return 1;
2781         }
2782       }
2783     }
2784   }
2785   return 0;
2786 }
2787 
2788 /* Check to see if a partial index with pPartIndexWhere can be used
2789 ** in the current query.  Return true if it can be and false if not.
2790 */
2791 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){
2792   int i;
2793   WhereTerm *pTerm;
2794   Parse *pParse = pWC->pWInfo->pParse;
2795   while( pWhere->op==TK_AND ){
2796     if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0;
2797     pWhere = pWhere->pRight;
2798   }
2799   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
2800   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2801     Expr *pExpr = pTerm->pExpr;
2802     if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2803      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
2804     ){
2805       return 1;
2806     }
2807   }
2808   return 0;
2809 }
2810 
2811 /*
2812 ** Add all WhereLoop objects for a single table of the join where the table
2813 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
2814 ** a b-tree table, not a virtual table.
2815 **
2816 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2817 ** are calculated as follows:
2818 **
2819 ** For a full scan, assuming the table (or index) contains nRow rows:
2820 **
2821 **     cost = nRow * 3.0                    // full-table scan
2822 **     cost = nRow * K                      // scan of covering index
2823 **     cost = nRow * (K+3.0)                // scan of non-covering index
2824 **
2825 ** where K is a value between 1.1 and 3.0 set based on the relative
2826 ** estimated average size of the index and table records.
2827 **
2828 ** For an index scan, where nVisit is the number of index rows visited
2829 ** by the scan, and nSeek is the number of seek operations required on
2830 ** the index b-tree:
2831 **
2832 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
2833 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
2834 **
2835 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2836 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2837 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2838 **
2839 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2840 ** of uncertainty.  For this reason, scoring is designed to pick plans that
2841 ** "do the least harm" if the estimates are inaccurate.  For example, a
2842 ** log(nRow) factor is omitted from a non-covering index scan in order to
2843 ** bias the scoring in favor of using an index, since the worst-case
2844 ** performance of using an index is far better than the worst-case performance
2845 ** of a full table scan.
2846 */
2847 static int whereLoopAddBtree(
2848   WhereLoopBuilder *pBuilder, /* WHERE clause information */
2849   Bitmask mPrereq             /* Extra prerequesites for using this table */
2850 ){
2851   WhereInfo *pWInfo;          /* WHERE analysis context */
2852   Index *pProbe;              /* An index we are evaluating */
2853   Index sPk;                  /* A fake index object for the primary key */
2854   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
2855   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
2856   SrcList *pTabList;          /* The FROM clause */
2857   struct SrcList_item *pSrc;  /* The FROM clause btree term to add */
2858   WhereLoop *pNew;            /* Template WhereLoop object */
2859   int rc = SQLITE_OK;         /* Return code */
2860   int iSortIdx = 1;           /* Index number */
2861   int b;                      /* A boolean value */
2862   LogEst rSize;               /* number of rows in the table */
2863   LogEst rLogSize;            /* Logarithm of the number of rows in the table */
2864   WhereClause *pWC;           /* The parsed WHERE clause */
2865   Table *pTab;                /* Table being queried */
2866 
2867   pNew = pBuilder->pNew;
2868   pWInfo = pBuilder->pWInfo;
2869   pTabList = pWInfo->pTabList;
2870   pSrc = pTabList->a + pNew->iTab;
2871   pTab = pSrc->pTab;
2872   pWC = pBuilder->pWC;
2873   assert( !IsVirtual(pSrc->pTab) );
2874 
2875   if( pSrc->pIBIndex ){
2876     /* An INDEXED BY clause specifies a particular index to use */
2877     pProbe = pSrc->pIBIndex;
2878   }else if( !HasRowid(pTab) ){
2879     pProbe = pTab->pIndex;
2880   }else{
2881     /* There is no INDEXED BY clause.  Create a fake Index object in local
2882     ** variable sPk to represent the rowid primary key index.  Make this
2883     ** fake index the first in a chain of Index objects with all of the real
2884     ** indices to follow */
2885     Index *pFirst;                  /* First of real indices on the table */
2886     memset(&sPk, 0, sizeof(Index));
2887     sPk.nKeyCol = 1;
2888     sPk.nColumn = 1;
2889     sPk.aiColumn = &aiColumnPk;
2890     sPk.aiRowLogEst = aiRowEstPk;
2891     sPk.onError = OE_Replace;
2892     sPk.pTable = pTab;
2893     sPk.szIdxRow = pTab->szTabRow;
2894     sPk.idxType = SQLITE_IDXTYPE_IPK;
2895     aiRowEstPk[0] = pTab->nRowLogEst;
2896     aiRowEstPk[1] = 0;
2897     pFirst = pSrc->pTab->pIndex;
2898     if( pSrc->fg.notIndexed==0 ){
2899       /* The real indices of the table are only considered if the
2900       ** NOT INDEXED qualifier is omitted from the FROM clause */
2901       sPk.pNext = pFirst;
2902     }
2903     pProbe = &sPk;
2904   }
2905   rSize = pTab->nRowLogEst;
2906   rLogSize = estLog(rSize);
2907 
2908 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
2909   /* Automatic indexes */
2910   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
2911    && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
2912    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
2913    && pSrc->pIBIndex==0      /* Has no INDEXED BY clause */
2914    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
2915    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
2916    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
2917    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
2918   ){
2919     /* Generate auto-index WhereLoops */
2920     WhereTerm *pTerm;
2921     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
2922     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
2923       if( pTerm->prereqRight & pNew->maskSelf ) continue;
2924       if( termCanDriveIndex(pTerm, pSrc, 0) ){
2925         pNew->u.btree.nEq = 1;
2926         pNew->nSkip = 0;
2927         pNew->u.btree.pIndex = 0;
2928         pNew->nLTerm = 1;
2929         pNew->aLTerm[0] = pTerm;
2930         /* TUNING: One-time cost for computing the automatic index is
2931         ** estimated to be X*N*log2(N) where N is the number of rows in
2932         ** the table being indexed and where X is 7 (LogEst=28) for normal
2933         ** tables or 0.5 (LogEst=-10) for views and subqueries.  The value
2934         ** of X is smaller for views and subqueries so that the query planner
2935         ** will be more aggressive about generating automatic indexes for
2936         ** those objects, since there is no opportunity to add schema
2937         ** indexes on subqueries and views. */
2938         pNew->rSetup = rLogSize + rSize;
2939         if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
2940           pNew->rSetup += 28;
2941         }else{
2942           pNew->rSetup -= 10;
2943         }
2944         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
2945         if( pNew->rSetup<0 ) pNew->rSetup = 0;
2946         /* TUNING: Each index lookup yields 20 rows in the table.  This
2947         ** is more than the usual guess of 10 rows, since we have no way
2948         ** of knowing how selective the index will ultimately be.  It would
2949         ** not be unreasonable to make this value much larger. */
2950         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
2951         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
2952         pNew->wsFlags = WHERE_AUTO_INDEX;
2953         pNew->prereq = mPrereq | pTerm->prereqRight;
2954         rc = whereLoopInsert(pBuilder, pNew);
2955       }
2956     }
2957   }
2958 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
2959 
2960   /* Loop over all indices. If there was an INDEXED BY clause, then only
2961   ** consider index pProbe.  */
2962   for(; rc==SQLITE_OK && pProbe;
2963       pProbe=(pSrc->pIBIndex ? 0 : pProbe->pNext), iSortIdx++
2964   ){
2965     if( pProbe->pPartIdxWhere!=0
2966      && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){
2967       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
2968       continue;  /* Partial index inappropriate for this query */
2969     }
2970     if( pProbe->bNoQuery ) continue;
2971     rSize = pProbe->aiRowLogEst[0];
2972     pNew->u.btree.nEq = 0;
2973     pNew->u.btree.nBtm = 0;
2974     pNew->u.btree.nTop = 0;
2975     pNew->nSkip = 0;
2976     pNew->nLTerm = 0;
2977     pNew->iSortIdx = 0;
2978     pNew->rSetup = 0;
2979     pNew->prereq = mPrereq;
2980     pNew->nOut = rSize;
2981     pNew->u.btree.pIndex = pProbe;
2982     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
2983     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
2984     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
2985     if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
2986       /* Integer primary key index */
2987       pNew->wsFlags = WHERE_IPK;
2988 
2989       /* Full table scan */
2990       pNew->iSortIdx = b ? iSortIdx : 0;
2991       /* TUNING: Cost of full table scan is (N*3.0). */
2992       pNew->rRun = rSize + 16;
2993       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
2994       whereLoopOutputAdjust(pWC, pNew, rSize);
2995       rc = whereLoopInsert(pBuilder, pNew);
2996       pNew->nOut = rSize;
2997       if( rc ) break;
2998     }else{
2999       Bitmask m;
3000       if( pProbe->isCovering ){
3001         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
3002         m = 0;
3003       }else{
3004         m = pSrc->colUsed & pProbe->colNotIdxed;
3005         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
3006       }
3007 
3008       /* Full scan via index */
3009       if( b
3010        || !HasRowid(pTab)
3011        || pProbe->pPartIdxWhere!=0
3012        || ( m==0
3013          && pProbe->bUnordered==0
3014          && (pProbe->szIdxRow<pTab->szTabRow)
3015          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3016          && sqlite3GlobalConfig.bUseCis
3017          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3018           )
3019       ){
3020         pNew->iSortIdx = b ? iSortIdx : 0;
3021 
3022         /* The cost of visiting the index rows is N*K, where K is
3023         ** between 1.1 and 3.0, depending on the relative sizes of the
3024         ** index and table rows. */
3025         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3026         if( m!=0 ){
3027           /* If this is a non-covering index scan, add in the cost of
3028           ** doing table lookups.  The cost will be 3x the number of
3029           ** lookups.  Take into account WHERE clause terms that can be
3030           ** satisfied using just the index, and that do not require a
3031           ** table lookup. */
3032           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
3033           int ii;
3034           int iCur = pSrc->iCursor;
3035           WhereClause *pWC2 = &pWInfo->sWC;
3036           for(ii=0; ii<pWC2->nTerm; ii++){
3037             WhereTerm *pTerm = &pWC2->a[ii];
3038             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3039               break;
3040             }
3041             /* pTerm can be evaluated using just the index.  So reduce
3042             ** the expected number of table lookups accordingly */
3043             if( pTerm->truthProb<=0 ){
3044               nLookup += pTerm->truthProb;
3045             }else{
3046               nLookup--;
3047               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3048             }
3049           }
3050 
3051           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3052         }
3053         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3054         whereLoopOutputAdjust(pWC, pNew, rSize);
3055         rc = whereLoopInsert(pBuilder, pNew);
3056         pNew->nOut = rSize;
3057         if( rc ) break;
3058       }
3059     }
3060 
3061     pBuilder->bldFlags = 0;
3062     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3063     if( pBuilder->bldFlags==SQLITE_BLDF_INDEXED ){
3064       /* If a non-unique index is used, or if a prefix of the key for
3065       ** unique index is used (making the index functionally non-unique)
3066       ** then the sqlite_stat1 data becomes important for scoring the
3067       ** plan */
3068       pTab->tabFlags |= TF_StatsUsed;
3069     }
3070 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
3071     sqlite3Stat4ProbeFree(pBuilder->pRec);
3072     pBuilder->nRecValid = 0;
3073     pBuilder->pRec = 0;
3074 #endif
3075   }
3076   return rc;
3077 }
3078 
3079 #ifndef SQLITE_OMIT_VIRTUALTABLE
3080 
3081 /*
3082 ** Argument pIdxInfo is already populated with all constraints that may
3083 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3084 ** function marks a subset of those constraints usable, invokes the
3085 ** xBestIndex method and adds the returned plan to pBuilder.
3086 **
3087 ** A constraint is marked usable if:
3088 **
3089 **   * Argument mUsable indicates that its prerequisites are available, and
3090 **
3091 **   * It is not one of the operators specified in the mExclude mask passed
3092 **     as the fourth argument (which in practice is either WO_IN or 0).
3093 **
3094 ** Argument mPrereq is a mask of tables that must be scanned before the
3095 ** virtual table in question. These are added to the plans prerequisites
3096 ** before it is added to pBuilder.
3097 **
3098 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3099 ** uses one or more WO_IN terms, or false otherwise.
3100 */
3101 static int whereLoopAddVirtualOne(
3102   WhereLoopBuilder *pBuilder,
3103   Bitmask mPrereq,                /* Mask of tables that must be used. */
3104   Bitmask mUsable,                /* Mask of usable tables */
3105   u16 mExclude,                   /* Exclude terms using these operators */
3106   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3107   u16 mNoOmit,                    /* Do not omit these constraints */
3108   int *pbIn                       /* OUT: True if plan uses an IN(...) op */
3109 ){
3110   WhereClause *pWC = pBuilder->pWC;
3111   struct sqlite3_index_constraint *pIdxCons;
3112   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3113   int i;
3114   int mxTerm;
3115   int rc = SQLITE_OK;
3116   WhereLoop *pNew = pBuilder->pNew;
3117   Parse *pParse = pBuilder->pWInfo->pParse;
3118   struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3119   int nConstraint = pIdxInfo->nConstraint;
3120 
3121   assert( (mUsable & mPrereq)==mPrereq );
3122   *pbIn = 0;
3123   pNew->prereq = mPrereq;
3124 
3125   /* Set the usable flag on the subset of constraints identified by
3126   ** arguments mUsable and mExclude. */
3127   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3128   for(i=0; i<nConstraint; i++, pIdxCons++){
3129     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3130     pIdxCons->usable = 0;
3131     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3132      && (pTerm->eOperator & mExclude)==0
3133     ){
3134       pIdxCons->usable = 1;
3135     }
3136   }
3137 
3138   /* Initialize the output fields of the sqlite3_index_info structure */
3139   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3140   assert( pIdxInfo->needToFreeIdxStr==0 );
3141   pIdxInfo->idxStr = 0;
3142   pIdxInfo->idxNum = 0;
3143   pIdxInfo->orderByConsumed = 0;
3144   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3145   pIdxInfo->estimatedRows = 25;
3146   pIdxInfo->idxFlags = 0;
3147   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3148 
3149   /* Invoke the virtual table xBestIndex() method */
3150   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3151   if( rc ){
3152     if( rc==SQLITE_CONSTRAINT ){
3153       /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3154       ** that the particular combination of parameters provided is unusable.
3155       ** Make no entries in the loop table.
3156       */
3157       WHERETRACE(0xffff, ("  ^^^^--- non-viable plan rejected!\n"));
3158       return SQLITE_OK;
3159     }
3160     return rc;
3161   }
3162 
3163   mxTerm = -1;
3164   assert( pNew->nLSlot>=nConstraint );
3165   for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3166   pNew->u.vtab.omitMask = 0;
3167   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3168   for(i=0; i<nConstraint; i++, pIdxCons++){
3169     int iTerm;
3170     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3171       WhereTerm *pTerm;
3172       int j = pIdxCons->iTermOffset;
3173       if( iTerm>=nConstraint
3174        || j<0
3175        || j>=pWC->nTerm
3176        || pNew->aLTerm[iTerm]!=0
3177        || pIdxCons->usable==0
3178       ){
3179         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3180         testcase( pIdxInfo->needToFreeIdxStr );
3181         return SQLITE_ERROR;
3182       }
3183       testcase( iTerm==nConstraint-1 );
3184       testcase( j==0 );
3185       testcase( j==pWC->nTerm-1 );
3186       pTerm = &pWC->a[j];
3187       pNew->prereq |= pTerm->prereqRight;
3188       assert( iTerm<pNew->nLSlot );
3189       pNew->aLTerm[iTerm] = pTerm;
3190       if( iTerm>mxTerm ) mxTerm = iTerm;
3191       testcase( iTerm==15 );
3192       testcase( iTerm==16 );
3193       if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm;
3194       if( (pTerm->eOperator & WO_IN)!=0 ){
3195         /* A virtual table that is constrained by an IN clause may not
3196         ** consume the ORDER BY clause because (1) the order of IN terms
3197         ** is not necessarily related to the order of output terms and
3198         ** (2) Multiple outputs from a single IN value will not merge
3199         ** together.  */
3200         pIdxInfo->orderByConsumed = 0;
3201         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3202         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3203       }
3204     }
3205   }
3206   pNew->u.vtab.omitMask &= ~mNoOmit;
3207 
3208   pNew->nLTerm = mxTerm+1;
3209   for(i=0; i<=mxTerm; i++){
3210     if( pNew->aLTerm[i]==0 ){
3211       /* The non-zero argvIdx values must be contiguous.  Raise an
3212       ** error if they are not */
3213       sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3214       testcase( pIdxInfo->needToFreeIdxStr );
3215       return SQLITE_ERROR;
3216     }
3217   }
3218   assert( pNew->nLTerm<=pNew->nLSlot );
3219   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3220   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3221   pIdxInfo->needToFreeIdxStr = 0;
3222   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3223   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3224       pIdxInfo->nOrderBy : 0);
3225   pNew->rSetup = 0;
3226   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3227   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3228 
3229   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3230   ** that the scan will visit at most one row. Clear it otherwise. */
3231   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3232     pNew->wsFlags |= WHERE_ONEROW;
3233   }else{
3234     pNew->wsFlags &= ~WHERE_ONEROW;
3235   }
3236   rc = whereLoopInsert(pBuilder, pNew);
3237   if( pNew->u.vtab.needFree ){
3238     sqlite3_free(pNew->u.vtab.idxStr);
3239     pNew->u.vtab.needFree = 0;
3240   }
3241   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3242                       *pbIn, (sqlite3_uint64)mPrereq,
3243                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3244 
3245   return rc;
3246 }
3247 
3248 /*
3249 ** If this function is invoked from within an xBestIndex() callback, it
3250 ** returns a pointer to a buffer containing the name of the collation
3251 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint
3252 ** array. Or, if iCons is out of range or there is no active xBestIndex
3253 ** call, return NULL.
3254 */
3255 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3256   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3257   const char *zRet = 0;
3258   if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3259     CollSeq *pC = 0;
3260     int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3261     Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3262     if( pX->pLeft ){
3263       pC = sqlite3BinaryCompareCollSeq(pHidden->pParse, pX->pLeft, pX->pRight);
3264     }
3265     zRet = (pC ? pC->zName : sqlite3StrBINARY);
3266   }
3267   return zRet;
3268 }
3269 
3270 /*
3271 ** Add all WhereLoop objects for a table of the join identified by
3272 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3273 **
3274 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3275 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3276 ** entries that occur before the virtual table in the FROM clause and are
3277 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3278 ** mUnusable mask contains all FROM clause entries that occur after the
3279 ** virtual table and are separated from it by at least one LEFT or
3280 ** CROSS JOIN.
3281 **
3282 ** For example, if the query were:
3283 **
3284 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3285 **
3286 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3287 **
3288 ** All the tables in mPrereq must be scanned before the current virtual
3289 ** table. So any terms for which all prerequisites are satisfied by
3290 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3291 ** Conversely, all tables in mUnusable must be scanned after the current
3292 ** virtual table, so any terms for which the prerequisites overlap with
3293 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3294 */
3295 static int whereLoopAddVirtual(
3296   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3297   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3298   Bitmask mUnusable            /* Tables that must be scanned after this one */
3299 ){
3300   int rc = SQLITE_OK;          /* Return code */
3301   WhereInfo *pWInfo;           /* WHERE analysis context */
3302   Parse *pParse;               /* The parsing context */
3303   WhereClause *pWC;            /* The WHERE clause */
3304   struct SrcList_item *pSrc;   /* The FROM clause term to search */
3305   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3306   int nConstraint;             /* Number of constraints in p */
3307   int bIn;                     /* True if plan uses IN(...) operator */
3308   WhereLoop *pNew;
3309   Bitmask mBest;               /* Tables used by best possible plan */
3310   u16 mNoOmit;
3311 
3312   assert( (mPrereq & mUnusable)==0 );
3313   pWInfo = pBuilder->pWInfo;
3314   pParse = pWInfo->pParse;
3315   pWC = pBuilder->pWC;
3316   pNew = pBuilder->pNew;
3317   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3318   assert( IsVirtual(pSrc->pTab) );
3319   p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3320       &mNoOmit);
3321   if( p==0 ) return SQLITE_NOMEM_BKPT;
3322   pNew->rSetup = 0;
3323   pNew->wsFlags = WHERE_VIRTUALTABLE;
3324   pNew->nLTerm = 0;
3325   pNew->u.vtab.needFree = 0;
3326   nConstraint = p->nConstraint;
3327   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3328     sqlite3DbFree(pParse->db, p);
3329     return SQLITE_NOMEM_BKPT;
3330   }
3331 
3332   /* First call xBestIndex() with all constraints usable. */
3333   WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3334   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3335   rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3336 
3337   /* If the call to xBestIndex() with all terms enabled produced a plan
3338   ** that does not require any source tables (IOW: a plan with mBest==0)
3339   ** and does not use an IN(...) operator, then there is no point in making
3340   ** any further calls to xBestIndex() since they will all return the same
3341   ** result (if the xBestIndex() implementation is sane). */
3342   if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
3343     int seenZero = 0;             /* True if a plan with no prereqs seen */
3344     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3345     Bitmask mPrev = 0;
3346     Bitmask mBestNoIn = 0;
3347 
3348     /* If the plan produced by the earlier call uses an IN(...) term, call
3349     ** xBestIndex again, this time with IN(...) terms disabled. */
3350     if( bIn ){
3351       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3352       rc = whereLoopAddVirtualOne(
3353           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3354       assert( bIn==0 );
3355       mBestNoIn = pNew->prereq & ~mPrereq;
3356       if( mBestNoIn==0 ){
3357         seenZero = 1;
3358         seenZeroNoIN = 1;
3359       }
3360     }
3361 
3362     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3363     ** in the set of terms that apply to the current virtual table.  */
3364     while( rc==SQLITE_OK ){
3365       int i;
3366       Bitmask mNext = ALLBITS;
3367       assert( mNext>0 );
3368       for(i=0; i<nConstraint; i++){
3369         Bitmask mThis = (
3370             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3371         );
3372         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3373       }
3374       mPrev = mNext;
3375       if( mNext==ALLBITS ) break;
3376       if( mNext==mBest || mNext==mBestNoIn ) continue;
3377       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
3378                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3379       rc = whereLoopAddVirtualOne(
3380           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3381       if( pNew->prereq==mPrereq ){
3382         seenZero = 1;
3383         if( bIn==0 ) seenZeroNoIN = 1;
3384       }
3385     }
3386 
3387     /* If the calls to xBestIndex() in the above loop did not find a plan
3388     ** that requires no source tables at all (i.e. one guaranteed to be
3389     ** usable), make a call here with all source tables disabled */
3390     if( rc==SQLITE_OK && seenZero==0 ){
3391       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
3392       rc = whereLoopAddVirtualOne(
3393           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3394       if( bIn==0 ) seenZeroNoIN = 1;
3395     }
3396 
3397     /* If the calls to xBestIndex() have so far failed to find a plan
3398     ** that requires no source tables at all and does not use an IN(...)
3399     ** operator, make a final call to obtain one here.  */
3400     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3401       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
3402       rc = whereLoopAddVirtualOne(
3403           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3404     }
3405   }
3406 
3407   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3408   sqlite3DbFreeNN(pParse->db, p);
3409   WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
3410   return rc;
3411 }
3412 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3413 
3414 /*
3415 ** Add WhereLoop entries to handle OR terms.  This works for either
3416 ** btrees or virtual tables.
3417 */
3418 static int whereLoopAddOr(
3419   WhereLoopBuilder *pBuilder,
3420   Bitmask mPrereq,
3421   Bitmask mUnusable
3422 ){
3423   WhereInfo *pWInfo = pBuilder->pWInfo;
3424   WhereClause *pWC;
3425   WhereLoop *pNew;
3426   WhereTerm *pTerm, *pWCEnd;
3427   int rc = SQLITE_OK;
3428   int iCur;
3429   WhereClause tempWC;
3430   WhereLoopBuilder sSubBuild;
3431   WhereOrSet sSum, sCur;
3432   struct SrcList_item *pItem;
3433 
3434   pWC = pBuilder->pWC;
3435   pWCEnd = pWC->a + pWC->nTerm;
3436   pNew = pBuilder->pNew;
3437   memset(&sSum, 0, sizeof(sSum));
3438   pItem = pWInfo->pTabList->a + pNew->iTab;
3439   iCur = pItem->iCursor;
3440 
3441   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3442     if( (pTerm->eOperator & WO_OR)!=0
3443      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3444     ){
3445       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3446       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3447       WhereTerm *pOrTerm;
3448       int once = 1;
3449       int i, j;
3450 
3451       sSubBuild = *pBuilder;
3452       sSubBuild.pOrderBy = 0;
3453       sSubBuild.pOrSet = &sCur;
3454 
3455       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3456       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3457         if( (pOrTerm->eOperator & WO_AND)!=0 ){
3458           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3459         }else if( pOrTerm->leftCursor==iCur ){
3460           tempWC.pWInfo = pWC->pWInfo;
3461           tempWC.pOuter = pWC;
3462           tempWC.op = TK_AND;
3463           tempWC.nTerm = 1;
3464           tempWC.a = pOrTerm;
3465           sSubBuild.pWC = &tempWC;
3466         }else{
3467           continue;
3468         }
3469         sCur.n = 0;
3470 #ifdef WHERETRACE_ENABLED
3471         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3472                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3473         if( sqlite3WhereTrace & 0x400 ){
3474           sqlite3WhereClausePrint(sSubBuild.pWC);
3475         }
3476 #endif
3477 #ifndef SQLITE_OMIT_VIRTUALTABLE
3478         if( IsVirtual(pItem->pTab) ){
3479           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3480         }else
3481 #endif
3482         {
3483           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3484         }
3485         if( rc==SQLITE_OK ){
3486           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3487         }
3488         assert( rc==SQLITE_OK || sCur.n==0 );
3489         if( sCur.n==0 ){
3490           sSum.n = 0;
3491           break;
3492         }else if( once ){
3493           whereOrMove(&sSum, &sCur);
3494           once = 0;
3495         }else{
3496           WhereOrSet sPrev;
3497           whereOrMove(&sPrev, &sSum);
3498           sSum.n = 0;
3499           for(i=0; i<sPrev.n; i++){
3500             for(j=0; j<sCur.n; j++){
3501               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3502                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3503                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3504             }
3505           }
3506         }
3507       }
3508       pNew->nLTerm = 1;
3509       pNew->aLTerm[0] = pTerm;
3510       pNew->wsFlags = WHERE_MULTI_OR;
3511       pNew->rSetup = 0;
3512       pNew->iSortIdx = 0;
3513       memset(&pNew->u, 0, sizeof(pNew->u));
3514       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3515         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3516         ** of all sub-scans required by the OR-scan. However, due to rounding
3517         ** errors, it may be that the cost of the OR-scan is equal to its
3518         ** most expensive sub-scan. Add the smallest possible penalty
3519         ** (equivalent to multiplying the cost by 1.07) to ensure that
3520         ** this does not happen. Otherwise, for WHERE clauses such as the
3521         ** following where there is an index on "y":
3522         **
3523         **     WHERE likelihood(x=?, 0.99) OR y=?
3524         **
3525         ** the planner may elect to "OR" together a full-table scan and an
3526         ** index lookup. And other similarly odd results.  */
3527         pNew->rRun = sSum.a[i].rRun + 1;
3528         pNew->nOut = sSum.a[i].nOut;
3529         pNew->prereq = sSum.a[i].prereq;
3530         rc = whereLoopInsert(pBuilder, pNew);
3531       }
3532       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3533     }
3534   }
3535   return rc;
3536 }
3537 
3538 /*
3539 ** Add all WhereLoop objects for all tables
3540 */
3541 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3542   WhereInfo *pWInfo = pBuilder->pWInfo;
3543   Bitmask mPrereq = 0;
3544   Bitmask mPrior = 0;
3545   int iTab;
3546   SrcList *pTabList = pWInfo->pTabList;
3547   struct SrcList_item *pItem;
3548   struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel];
3549   sqlite3 *db = pWInfo->pParse->db;
3550   int rc = SQLITE_OK;
3551   WhereLoop *pNew;
3552   u8 priorJointype = 0;
3553 
3554   /* Loop over the tables in the join, from left to right */
3555   pNew = pBuilder->pNew;
3556   whereLoopInit(pNew);
3557   pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
3558   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3559     Bitmask mUnusable = 0;
3560     pNew->iTab = iTab;
3561     pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
3562     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3563     if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){
3564       /* This condition is true when pItem is the FROM clause term on the
3565       ** right-hand-side of a LEFT or CROSS JOIN.  */
3566       mPrereq = mPrior;
3567     }
3568     priorJointype = pItem->fg.jointype;
3569 #ifndef SQLITE_OMIT_VIRTUALTABLE
3570     if( IsVirtual(pItem->pTab) ){
3571       struct SrcList_item *p;
3572       for(p=&pItem[1]; p<pEnd; p++){
3573         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3574           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3575         }
3576       }
3577       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3578     }else
3579 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3580     {
3581       rc = whereLoopAddBtree(pBuilder, mPrereq);
3582     }
3583     if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
3584       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3585     }
3586     mPrior |= pNew->maskSelf;
3587     if( rc || db->mallocFailed ){
3588       if( rc==SQLITE_DONE ){
3589         /* We hit the query planner search limit set by iPlanLimit */
3590         sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
3591         rc = SQLITE_OK;
3592       }else{
3593         break;
3594       }
3595     }
3596   }
3597 
3598   whereLoopClear(db, pNew);
3599   return rc;
3600 }
3601 
3602 /*
3603 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
3604 ** parameters) to see if it outputs rows in the requested ORDER BY
3605 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
3606 **
3607 **   N>0:   N terms of the ORDER BY clause are satisfied
3608 **   N==0:  No terms of the ORDER BY clause are satisfied
3609 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
3610 **
3611 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3612 ** strict.  With GROUP BY and DISTINCT the only requirement is that
3613 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
3614 ** and DISTINCT do not require rows to appear in any particular order as long
3615 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
3616 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
3617 ** pOrderBy terms must be matched in strict left-to-right order.
3618 */
3619 static i8 wherePathSatisfiesOrderBy(
3620   WhereInfo *pWInfo,    /* The WHERE clause */
3621   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
3622   WherePath *pPath,     /* The WherePath to check */
3623   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3624   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
3625   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
3626   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
3627 ){
3628   u8 revSet;            /* True if rev is known */
3629   u8 rev;               /* Composite sort order */
3630   u8 revIdx;            /* Index sort order */
3631   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
3632   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
3633   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
3634   u16 eqOpMask;         /* Allowed equality operators */
3635   u16 nKeyCol;          /* Number of key columns in pIndex */
3636   u16 nColumn;          /* Total number of ordered columns in the index */
3637   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
3638   int iLoop;            /* Index of WhereLoop in pPath being processed */
3639   int i, j;             /* Loop counters */
3640   int iCur;             /* Cursor number for current WhereLoop */
3641   int iColumn;          /* A column number within table iCur */
3642   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3643   WhereTerm *pTerm;     /* A single term of the WHERE clause */
3644   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
3645   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
3646   Index *pIndex;        /* The index associated with pLoop */
3647   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
3648   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
3649   Bitmask obDone;       /* Mask of all ORDER BY terms */
3650   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
3651   Bitmask ready;              /* Mask of inner loops */
3652 
3653   /*
3654   ** We say the WhereLoop is "one-row" if it generates no more than one
3655   ** row of output.  A WhereLoop is one-row if all of the following are true:
3656   **  (a) All index columns match with WHERE_COLUMN_EQ.
3657   **  (b) The index is unique
3658   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3659   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3660   **
3661   ** We say the WhereLoop is "order-distinct" if the set of columns from
3662   ** that WhereLoop that are in the ORDER BY clause are different for every
3663   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
3664   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
3665   ** is not order-distinct. To be order-distinct is not quite the same as being
3666   ** UNIQUE since a UNIQUE column or index can have multiple rows that
3667   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3668   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3669   **
3670   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3671   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3672   ** automatically order-distinct.
3673   */
3674 
3675   assert( pOrderBy!=0 );
3676   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3677 
3678   nOrderBy = pOrderBy->nExpr;
3679   testcase( nOrderBy==BMS-1 );
3680   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
3681   isOrderDistinct = 1;
3682   obDone = MASKBIT(nOrderBy)-1;
3683   orderDistinctMask = 0;
3684   ready = 0;
3685   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3686   if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN;
3687   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3688     if( iLoop>0 ) ready |= pLoop->maskSelf;
3689     if( iLoop<nLoop ){
3690       pLoop = pPath->aLoop[iLoop];
3691       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3692     }else{
3693       pLoop = pLast;
3694     }
3695     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3696       if( pLoop->u.vtab.isOrdered ) obSat = obDone;
3697       break;
3698     }else{
3699       pLoop->u.btree.nIdxCol = 0;
3700     }
3701     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3702 
3703     /* Mark off any ORDER BY term X that is a column in the table of
3704     ** the current loop for which there is term in the WHERE
3705     ** clause of the form X IS NULL or X=? that reference only outer
3706     ** loops.
3707     */
3708     for(i=0; i<nOrderBy; i++){
3709       if( MASKBIT(i) & obSat ) continue;
3710       pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3711       if( pOBExpr->op!=TK_COLUMN ) continue;
3712       if( pOBExpr->iTable!=iCur ) continue;
3713       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3714                        ~ready, eqOpMask, 0);
3715       if( pTerm==0 ) continue;
3716       if( pTerm->eOperator==WO_IN ){
3717         /* IN terms are only valid for sorting in the ORDER BY LIMIT
3718         ** optimization, and then only if they are actually used
3719         ** by the query plan */
3720         assert( wctrlFlags & WHERE_ORDERBY_LIMIT );
3721         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3722         if( j>=pLoop->nLTerm ) continue;
3723       }
3724       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3725         if( sqlite3ExprCollSeqMatch(pWInfo->pParse,
3726                   pOrderBy->a[i].pExpr, pTerm->pExpr)==0 ){
3727           continue;
3728         }
3729         testcase( pTerm->pExpr->op==TK_IS );
3730       }
3731       obSat |= MASKBIT(i);
3732     }
3733 
3734     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3735       if( pLoop->wsFlags & WHERE_IPK ){
3736         pIndex = 0;
3737         nKeyCol = 0;
3738         nColumn = 1;
3739       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3740         return 0;
3741       }else{
3742         nKeyCol = pIndex->nKeyCol;
3743         nColumn = pIndex->nColumn;
3744         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3745         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3746                           || !HasRowid(pIndex->pTable));
3747         isOrderDistinct = IsUniqueIndex(pIndex);
3748       }
3749 
3750       /* Loop through all columns of the index and deal with the ones
3751       ** that are not constrained by == or IN.
3752       */
3753       rev = revSet = 0;
3754       distinctColumns = 0;
3755       for(j=0; j<nColumn; j++){
3756         u8 bOnce = 1; /* True to run the ORDER BY search loop */
3757 
3758         assert( j>=pLoop->u.btree.nEq
3759             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3760         );
3761         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3762           u16 eOp = pLoop->aLTerm[j]->eOperator;
3763 
3764           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
3765           ** doing WHERE_ORDERBY_LIMIT processing).
3766           **
3767           ** If the current term is a column of an ((?,?) IN (SELECT...))
3768           ** expression for which the SELECT returns more than one column,
3769           ** check that it is the only column used by this loop. Otherwise,
3770           ** if it is one of two or more, none of the columns can be
3771           ** considered to match an ORDER BY term.  */
3772           if( (eOp & eqOpMask)!=0 ){
3773             if( eOp & WO_ISNULL ){
3774               testcase( isOrderDistinct );
3775               isOrderDistinct = 0;
3776             }
3777             continue;
3778           }else if( ALWAYS(eOp & WO_IN) ){
3779             /* ALWAYS() justification: eOp is an equality operator due to the
3780             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
3781             ** than WO_IN is captured by the previous "if".  So this one
3782             ** always has to be WO_IN. */
3783             Expr *pX = pLoop->aLTerm[j]->pExpr;
3784             for(i=j+1; i<pLoop->u.btree.nEq; i++){
3785               if( pLoop->aLTerm[i]->pExpr==pX ){
3786                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3787                 bOnce = 0;
3788                 break;
3789               }
3790             }
3791           }
3792         }
3793 
3794         /* Get the column number in the table (iColumn) and sort order
3795         ** (revIdx) for the j-th column of the index.
3796         */
3797         if( pIndex ){
3798           iColumn = pIndex->aiColumn[j];
3799           revIdx = pIndex->aSortOrder[j];
3800           if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
3801         }else{
3802           iColumn = XN_ROWID;
3803           revIdx = 0;
3804         }
3805 
3806         /* An unconstrained column that might be NULL means that this
3807         ** WhereLoop is not well-ordered
3808         */
3809         if( isOrderDistinct
3810          && iColumn>=0
3811          && j>=pLoop->u.btree.nEq
3812          && pIndex->pTable->aCol[iColumn].notNull==0
3813         ){
3814           isOrderDistinct = 0;
3815         }
3816 
3817         /* Find the ORDER BY term that corresponds to the j-th column
3818         ** of the index and mark that ORDER BY term off
3819         */
3820         isMatch = 0;
3821         for(i=0; bOnce && i<nOrderBy; i++){
3822           if( MASKBIT(i) & obSat ) continue;
3823           pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3824           testcase( wctrlFlags & WHERE_GROUPBY );
3825           testcase( wctrlFlags & WHERE_DISTINCTBY );
3826           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
3827           if( iColumn>=XN_ROWID ){
3828             if( pOBExpr->op!=TK_COLUMN ) continue;
3829             if( pOBExpr->iTable!=iCur ) continue;
3830             if( pOBExpr->iColumn!=iColumn ) continue;
3831           }else{
3832             Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
3833             if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
3834               continue;
3835             }
3836           }
3837           if( iColumn!=XN_ROWID ){
3838             pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3839             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
3840           }
3841           pLoop->u.btree.nIdxCol = j+1;
3842           isMatch = 1;
3843           break;
3844         }
3845         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
3846           /* Make sure the sort order is compatible in an ORDER BY clause.
3847           ** Sort order is irrelevant for a GROUP BY clause. */
3848           if( revSet ){
3849             if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0;
3850           }else{
3851             rev = revIdx ^ pOrderBy->a[i].sortOrder;
3852             if( rev ) *pRevMask |= MASKBIT(iLoop);
3853             revSet = 1;
3854           }
3855         }
3856         if( isMatch ){
3857           if( iColumn==XN_ROWID ){
3858             testcase( distinctColumns==0 );
3859             distinctColumns = 1;
3860           }
3861           obSat |= MASKBIT(i);
3862         }else{
3863           /* No match found */
3864           if( j==0 || j<nKeyCol ){
3865             testcase( isOrderDistinct!=0 );
3866             isOrderDistinct = 0;
3867           }
3868           break;
3869         }
3870       } /* end Loop over all index columns */
3871       if( distinctColumns ){
3872         testcase( isOrderDistinct==0 );
3873         isOrderDistinct = 1;
3874       }
3875     } /* end-if not one-row */
3876 
3877     /* Mark off any other ORDER BY terms that reference pLoop */
3878     if( isOrderDistinct ){
3879       orderDistinctMask |= pLoop->maskSelf;
3880       for(i=0; i<nOrderBy; i++){
3881         Expr *p;
3882         Bitmask mTerm;
3883         if( MASKBIT(i) & obSat ) continue;
3884         p = pOrderBy->a[i].pExpr;
3885         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
3886         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
3887         if( (mTerm&~orderDistinctMask)==0 ){
3888           obSat |= MASKBIT(i);
3889         }
3890       }
3891     }
3892   } /* End the loop over all WhereLoops from outer-most down to inner-most */
3893   if( obSat==obDone ) return (i8)nOrderBy;
3894   if( !isOrderDistinct ){
3895     for(i=nOrderBy-1; i>0; i--){
3896       Bitmask m = MASKBIT(i) - 1;
3897       if( (obSat&m)==m ) return i;
3898     }
3899     return 0;
3900   }
3901   return -1;
3902 }
3903 
3904 
3905 /*
3906 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
3907 ** the planner assumes that the specified pOrderBy list is actually a GROUP
3908 ** BY clause - and so any order that groups rows as required satisfies the
3909 ** request.
3910 **
3911 ** Normally, in this case it is not possible for the caller to determine
3912 ** whether or not the rows are really being delivered in sorted order, or
3913 ** just in some other order that provides the required grouping. However,
3914 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
3915 ** this function may be called on the returned WhereInfo object. It returns
3916 ** true if the rows really will be sorted in the specified order, or false
3917 ** otherwise.
3918 **
3919 ** For example, assuming:
3920 **
3921 **   CREATE INDEX i1 ON t1(x, Y);
3922 **
3923 ** then
3924 **
3925 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
3926 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
3927 */
3928 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
3929   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
3930   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
3931   return pWInfo->sorted;
3932 }
3933 
3934 #ifdef WHERETRACE_ENABLED
3935 /* For debugging use only: */
3936 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
3937   static char zName[65];
3938   int i;
3939   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
3940   if( pLast ) zName[i++] = pLast->cId;
3941   zName[i] = 0;
3942   return zName;
3943 }
3944 #endif
3945 
3946 /*
3947 ** Return the cost of sorting nRow rows, assuming that the keys have
3948 ** nOrderby columns and that the first nSorted columns are already in
3949 ** order.
3950 */
3951 static LogEst whereSortingCost(
3952   WhereInfo *pWInfo,
3953   LogEst nRow,
3954   int nOrderBy,
3955   int nSorted
3956 ){
3957   /* TUNING: Estimated cost of a full external sort, where N is
3958   ** the number of rows to sort is:
3959   **
3960   **   cost = (3.0 * N * log(N)).
3961   **
3962   ** Or, if the order-by clause has X terms but only the last Y
3963   ** terms are out of order, then block-sorting will reduce the
3964   ** sorting cost to:
3965   **
3966   **   cost = (3.0 * N * log(N)) * (Y/X)
3967   **
3968   ** The (Y/X) term is implemented using stack variable rScale
3969   ** below.  */
3970   LogEst rScale, rSortCost;
3971   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
3972   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
3973   rSortCost = nRow + rScale + 16;
3974 
3975   /* Multiple by log(M) where M is the number of output rows.
3976   ** Use the LIMIT for M if it is smaller */
3977   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
3978     nRow = pWInfo->iLimit;
3979   }
3980   rSortCost += estLog(nRow);
3981   return rSortCost;
3982 }
3983 
3984 /*
3985 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
3986 ** attempts to find the lowest cost path that visits each WhereLoop
3987 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
3988 **
3989 ** Assume that the total number of output rows that will need to be sorted
3990 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
3991 ** costs if nRowEst==0.
3992 **
3993 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
3994 ** error occurs.
3995 */
3996 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
3997   int mxChoice;             /* Maximum number of simultaneous paths tracked */
3998   int nLoop;                /* Number of terms in the join */
3999   Parse *pParse;            /* Parsing context */
4000   sqlite3 *db;              /* The database connection */
4001   int iLoop;                /* Loop counter over the terms of the join */
4002   int ii, jj;               /* Loop counters */
4003   int mxI = 0;              /* Index of next entry to replace */
4004   int nOrderBy;             /* Number of ORDER BY clause terms */
4005   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
4006   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
4007   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
4008   WherePath *aFrom;         /* All nFrom paths at the previous level */
4009   WherePath *aTo;           /* The nTo best paths at the current level */
4010   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
4011   WherePath *pTo;           /* An element of aTo[] that we are working on */
4012   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
4013   WhereLoop **pX;           /* Used to divy up the pSpace memory */
4014   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
4015   char *pSpace;             /* Temporary memory used by this routine */
4016   int nSpace;               /* Bytes of space allocated at pSpace */
4017 
4018   pParse = pWInfo->pParse;
4019   db = pParse->db;
4020   nLoop = pWInfo->nLevel;
4021   /* TUNING: For simple queries, only the best path is tracked.
4022   ** For 2-way joins, the 5 best paths are followed.
4023   ** For joins of 3 or more tables, track the 10 best paths */
4024   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4025   assert( nLoop<=pWInfo->pTabList->nSrc );
4026   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
4027 
4028   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4029   ** case the purpose of this call is to estimate the number of rows returned
4030   ** by the overall query. Once this estimate has been obtained, the caller
4031   ** will invoke this function a second time, passing the estimate as the
4032   ** nRowEst parameter.  */
4033   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4034     nOrderBy = 0;
4035   }else{
4036     nOrderBy = pWInfo->pOrderBy->nExpr;
4037   }
4038 
4039   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4040   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4041   nSpace += sizeof(LogEst) * nOrderBy;
4042   pSpace = sqlite3DbMallocRawNN(db, nSpace);
4043   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4044   aTo = (WherePath*)pSpace;
4045   aFrom = aTo+mxChoice;
4046   memset(aFrom, 0, sizeof(aFrom[0]));
4047   pX = (WhereLoop**)(aFrom+mxChoice);
4048   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4049     pFrom->aLoop = pX;
4050   }
4051   if( nOrderBy ){
4052     /* If there is an ORDER BY clause and it is not being ignored, set up
4053     ** space for the aSortCost[] array. Each element of the aSortCost array
4054     ** is either zero - meaning it has not yet been initialized - or the
4055     ** cost of sorting nRowEst rows of data where the first X terms of
4056     ** the ORDER BY clause are already in order, where X is the array
4057     ** index.  */
4058     aSortCost = (LogEst*)pX;
4059     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4060   }
4061   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4062   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4063 
4064   /* Seed the search with a single WherePath containing zero WhereLoops.
4065   **
4066   ** TUNING: Do not let the number of iterations go above 28.  If the cost
4067   ** of computing an automatic index is not paid back within the first 28
4068   ** rows, then do not use the automatic index. */
4069   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
4070   nFrom = 1;
4071   assert( aFrom[0].isOrdered==0 );
4072   if( nOrderBy ){
4073     /* If nLoop is zero, then there are no FROM terms in the query. Since
4074     ** in this case the query may return a maximum of one row, the results
4075     ** are already in the requested order. Set isOrdered to nOrderBy to
4076     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4077     ** -1, indicating that the result set may or may not be ordered,
4078     ** depending on the loops added to the current plan.  */
4079     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4080   }
4081 
4082   /* Compute successively longer WherePaths using the previous generation
4083   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
4084   ** best paths at each generation */
4085   for(iLoop=0; iLoop<nLoop; iLoop++){
4086     nTo = 0;
4087     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4088       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4089         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
4090         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
4091         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
4092         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
4093         Bitmask maskNew;                  /* Mask of src visited by (..) */
4094         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
4095 
4096         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4097         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4098         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4099           /* Do not use an automatic index if the this loop is expected
4100           ** to run less than 1.25 times.  It is tempting to also exclude
4101           ** automatic index usage on an outer loop, but sometimes an automatic
4102           ** index is useful in the outer loop of a correlated subquery. */
4103           assert( 10==sqlite3LogEst(2) );
4104           continue;
4105         }
4106 
4107         /* At this point, pWLoop is a candidate to be the next loop.
4108         ** Compute its cost */
4109         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4110         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4111         nOut = pFrom->nRow + pWLoop->nOut;
4112         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4113         if( isOrdered<0 ){
4114           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4115                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4116                        iLoop, pWLoop, &revMask);
4117         }else{
4118           revMask = pFrom->revLoop;
4119         }
4120         if( isOrdered>=0 && isOrdered<nOrderBy ){
4121           if( aSortCost[isOrdered]==0 ){
4122             aSortCost[isOrdered] = whereSortingCost(
4123                 pWInfo, nRowEst, nOrderBy, isOrdered
4124             );
4125           }
4126           /* TUNING:  Add a small extra penalty (5) to sorting as an
4127           ** extra encouragment to the query planner to select a plan
4128           ** where the rows emerge in the correct order without any sorting
4129           ** required. */
4130           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4131 
4132           WHERETRACE(0x002,
4133               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4134                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4135                rUnsorted, rCost));
4136         }else{
4137           rCost = rUnsorted;
4138           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
4139         }
4140 
4141         /* Check to see if pWLoop should be added to the set of
4142         ** mxChoice best-so-far paths.
4143         **
4144         ** First look for an existing path among best-so-far paths
4145         ** that covers the same set of loops and has the same isOrdered
4146         ** setting as the current path candidate.
4147         **
4148         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4149         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4150         ** of legal values for isOrdered, -1..64.
4151         */
4152         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4153           if( pTo->maskLoop==maskNew
4154            && ((pTo->isOrdered^isOrdered)&0x80)==0
4155           ){
4156             testcase( jj==nTo-1 );
4157             break;
4158           }
4159         }
4160         if( jj>=nTo ){
4161           /* None of the existing best-so-far paths match the candidate. */
4162           if( nTo>=mxChoice
4163            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4164           ){
4165             /* The current candidate is no better than any of the mxChoice
4166             ** paths currently in the best-so-far buffer.  So discard
4167             ** this candidate as not viable. */
4168 #ifdef WHERETRACE_ENABLED /* 0x4 */
4169             if( sqlite3WhereTrace&0x4 ){
4170               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4171                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4172                   isOrdered>=0 ? isOrdered+'0' : '?');
4173             }
4174 #endif
4175             continue;
4176           }
4177           /* If we reach this points it means that the new candidate path
4178           ** needs to be added to the set of best-so-far paths. */
4179           if( nTo<mxChoice ){
4180             /* Increase the size of the aTo set by one */
4181             jj = nTo++;
4182           }else{
4183             /* New path replaces the prior worst to keep count below mxChoice */
4184             jj = mxI;
4185           }
4186           pTo = &aTo[jj];
4187 #ifdef WHERETRACE_ENABLED /* 0x4 */
4188           if( sqlite3WhereTrace&0x4 ){
4189             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4190                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4191                 isOrdered>=0 ? isOrdered+'0' : '?');
4192           }
4193 #endif
4194         }else{
4195           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4196           ** same set of loops and has the same isOrdered setting as the
4197           ** candidate path.  Check to see if the candidate should replace
4198           ** pTo or if the candidate should be skipped.
4199           **
4200           ** The conditional is an expanded vector comparison equivalent to:
4201           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4202           */
4203           if( pTo->rCost<rCost
4204            || (pTo->rCost==rCost
4205                && (pTo->nRow<nOut
4206                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4207                   )
4208               )
4209           ){
4210 #ifdef WHERETRACE_ENABLED /* 0x4 */
4211             if( sqlite3WhereTrace&0x4 ){
4212               sqlite3DebugPrintf(
4213                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4214                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4215                   isOrdered>=0 ? isOrdered+'0' : '?');
4216               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4217                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4218                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4219             }
4220 #endif
4221             /* Discard the candidate path from further consideration */
4222             testcase( pTo->rCost==rCost );
4223             continue;
4224           }
4225           testcase( pTo->rCost==rCost+1 );
4226           /* Control reaches here if the candidate path is better than the
4227           ** pTo path.  Replace pTo with the candidate. */
4228 #ifdef WHERETRACE_ENABLED /* 0x4 */
4229           if( sqlite3WhereTrace&0x4 ){
4230             sqlite3DebugPrintf(
4231                 "Update %s cost=%-3d,%3d,%3d order=%c",
4232                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4233                 isOrdered>=0 ? isOrdered+'0' : '?');
4234             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4235                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4236                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4237           }
4238 #endif
4239         }
4240         /* pWLoop is a winner.  Add it to the set of best so far */
4241         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4242         pTo->revLoop = revMask;
4243         pTo->nRow = nOut;
4244         pTo->rCost = rCost;
4245         pTo->rUnsorted = rUnsorted;
4246         pTo->isOrdered = isOrdered;
4247         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4248         pTo->aLoop[iLoop] = pWLoop;
4249         if( nTo>=mxChoice ){
4250           mxI = 0;
4251           mxCost = aTo[0].rCost;
4252           mxUnsorted = aTo[0].nRow;
4253           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4254             if( pTo->rCost>mxCost
4255              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4256             ){
4257               mxCost = pTo->rCost;
4258               mxUnsorted = pTo->rUnsorted;
4259               mxI = jj;
4260             }
4261           }
4262         }
4263       }
4264     }
4265 
4266 #ifdef WHERETRACE_ENABLED  /* >=2 */
4267     if( sqlite3WhereTrace & 0x02 ){
4268       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4269       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4270         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4271            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4272            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4273         if( pTo->isOrdered>0 ){
4274           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4275         }else{
4276           sqlite3DebugPrintf("\n");
4277         }
4278       }
4279     }
4280 #endif
4281 
4282     /* Swap the roles of aFrom and aTo for the next generation */
4283     pFrom = aTo;
4284     aTo = aFrom;
4285     aFrom = pFrom;
4286     nFrom = nTo;
4287   }
4288 
4289   if( nFrom==0 ){
4290     sqlite3ErrorMsg(pParse, "no query solution");
4291     sqlite3DbFreeNN(db, pSpace);
4292     return SQLITE_ERROR;
4293   }
4294 
4295   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4296   pFrom = aFrom;
4297   for(ii=1; ii<nFrom; ii++){
4298     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4299   }
4300   assert( pWInfo->nLevel==nLoop );
4301   /* Load the lowest cost path into pWInfo */
4302   for(iLoop=0; iLoop<nLoop; iLoop++){
4303     WhereLevel *pLevel = pWInfo->a + iLoop;
4304     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4305     pLevel->iFrom = pWLoop->iTab;
4306     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4307   }
4308   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4309    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4310    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4311    && nRowEst
4312   ){
4313     Bitmask notUsed;
4314     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4315                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4316     if( rc==pWInfo->pResultSet->nExpr ){
4317       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4318     }
4319   }
4320   pWInfo->bOrderedInnerLoop = 0;
4321   if( pWInfo->pOrderBy ){
4322     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4323       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4324         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4325       }
4326     }else{
4327       pWInfo->nOBSat = pFrom->isOrdered;
4328       pWInfo->revMask = pFrom->revLoop;
4329       if( pWInfo->nOBSat<=0 ){
4330         pWInfo->nOBSat = 0;
4331         if( nLoop>0 ){
4332           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4333           if( (wsFlags & WHERE_ONEROW)==0
4334            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4335           ){
4336             Bitmask m = 0;
4337             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4338                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4339             testcase( wsFlags & WHERE_IPK );
4340             testcase( wsFlags & WHERE_COLUMN_IN );
4341             if( rc==pWInfo->pOrderBy->nExpr ){
4342               pWInfo->bOrderedInnerLoop = 1;
4343               pWInfo->revMask = m;
4344             }
4345           }
4346         }
4347       }
4348     }
4349     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4350         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4351     ){
4352       Bitmask revMask = 0;
4353       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4354           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4355       );
4356       assert( pWInfo->sorted==0 );
4357       if( nOrder==pWInfo->pOrderBy->nExpr ){
4358         pWInfo->sorted = 1;
4359         pWInfo->revMask = revMask;
4360       }
4361     }
4362   }
4363 
4364 
4365   pWInfo->nRowOut = pFrom->nRow;
4366 
4367   /* Free temporary memory and return success */
4368   sqlite3DbFreeNN(db, pSpace);
4369   return SQLITE_OK;
4370 }
4371 
4372 /*
4373 ** Most queries use only a single table (they are not joins) and have
4374 ** simple == constraints against indexed fields.  This routine attempts
4375 ** to plan those simple cases using much less ceremony than the
4376 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4377 ** times for the common case.
4378 **
4379 ** Return non-zero on success, if this query can be handled by this
4380 ** no-frills query planner.  Return zero if this query needs the
4381 ** general-purpose query planner.
4382 */
4383 static int whereShortCut(WhereLoopBuilder *pBuilder){
4384   WhereInfo *pWInfo;
4385   struct SrcList_item *pItem;
4386   WhereClause *pWC;
4387   WhereTerm *pTerm;
4388   WhereLoop *pLoop;
4389   int iCur;
4390   int j;
4391   Table *pTab;
4392   Index *pIdx;
4393 
4394   pWInfo = pBuilder->pWInfo;
4395   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4396   assert( pWInfo->pTabList->nSrc>=1 );
4397   pItem = pWInfo->pTabList->a;
4398   pTab = pItem->pTab;
4399   if( IsVirtual(pTab) ) return 0;
4400   if( pItem->fg.isIndexedBy ) return 0;
4401   iCur = pItem->iCursor;
4402   pWC = &pWInfo->sWC;
4403   pLoop = pBuilder->pNew;
4404   pLoop->wsFlags = 0;
4405   pLoop->nSkip = 0;
4406   pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
4407   if( pTerm ){
4408     testcase( pTerm->eOperator & WO_IS );
4409     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4410     pLoop->aLTerm[0] = pTerm;
4411     pLoop->nLTerm = 1;
4412     pLoop->u.btree.nEq = 1;
4413     /* TUNING: Cost of a rowid lookup is 10 */
4414     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
4415   }else{
4416     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4417       int opMask;
4418       assert( pLoop->aLTermSpace==pLoop->aLTerm );
4419       if( !IsUniqueIndex(pIdx)
4420        || pIdx->pPartIdxWhere!=0
4421        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4422       ) continue;
4423       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4424       for(j=0; j<pIdx->nKeyCol; j++){
4425         pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
4426         if( pTerm==0 ) break;
4427         testcase( pTerm->eOperator & WO_IS );
4428         pLoop->aLTerm[j] = pTerm;
4429       }
4430       if( j!=pIdx->nKeyCol ) continue;
4431       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4432       if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
4433         pLoop->wsFlags |= WHERE_IDX_ONLY;
4434       }
4435       pLoop->nLTerm = j;
4436       pLoop->u.btree.nEq = j;
4437       pLoop->u.btree.pIndex = pIdx;
4438       /* TUNING: Cost of a unique index lookup is 15 */
4439       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
4440       break;
4441     }
4442   }
4443   if( pLoop->wsFlags ){
4444     pLoop->nOut = (LogEst)1;
4445     pWInfo->a[0].pWLoop = pLoop;
4446     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
4447     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4448     pWInfo->a[0].iTabCur = iCur;
4449     pWInfo->nRowOut = 1;
4450     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
4451     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4452       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4453     }
4454 #ifdef SQLITE_DEBUG
4455     pLoop->cId = '0';
4456 #endif
4457     return 1;
4458   }
4459   return 0;
4460 }
4461 
4462 /*
4463 ** Helper function for exprIsDeterministic().
4464 */
4465 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
4466   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
4467     pWalker->eCode = 0;
4468     return WRC_Abort;
4469   }
4470   return WRC_Continue;
4471 }
4472 
4473 /*
4474 ** Return true if the expression contains no non-deterministic SQL
4475 ** functions. Do not consider non-deterministic SQL functions that are
4476 ** part of sub-select statements.
4477 */
4478 static int exprIsDeterministic(Expr *p){
4479   Walker w;
4480   memset(&w, 0, sizeof(w));
4481   w.eCode = 1;
4482   w.xExprCallback = exprNodeIsDeterministic;
4483   w.xSelectCallback = sqlite3SelectWalkFail;
4484   sqlite3WalkExpr(&w, p);
4485   return w.eCode;
4486 }
4487 
4488 /*
4489 ** Generate the beginning of the loop used for WHERE clause processing.
4490 ** The return value is a pointer to an opaque structure that contains
4491 ** information needed to terminate the loop.  Later, the calling routine
4492 ** should invoke sqlite3WhereEnd() with the return value of this function
4493 ** in order to complete the WHERE clause processing.
4494 **
4495 ** If an error occurs, this routine returns NULL.
4496 **
4497 ** The basic idea is to do a nested loop, one loop for each table in
4498 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
4499 ** same as a SELECT with only a single table in the FROM clause.)  For
4500 ** example, if the SQL is this:
4501 **
4502 **       SELECT * FROM t1, t2, t3 WHERE ...;
4503 **
4504 ** Then the code generated is conceptually like the following:
4505 **
4506 **      foreach row1 in t1 do       \    Code generated
4507 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
4508 **          foreach row3 in t3 do   /
4509 **            ...
4510 **          end                     \    Code generated
4511 **        end                        |-- by sqlite3WhereEnd()
4512 **      end                         /
4513 **
4514 ** Note that the loops might not be nested in the order in which they
4515 ** appear in the FROM clause if a different order is better able to make
4516 ** use of indices.  Note also that when the IN operator appears in
4517 ** the WHERE clause, it might result in additional nested loops for
4518 ** scanning through all values on the right-hand side of the IN.
4519 **
4520 ** There are Btree cursors associated with each table.  t1 uses cursor
4521 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
4522 ** And so forth.  This routine generates code to open those VDBE cursors
4523 ** and sqlite3WhereEnd() generates the code to close them.
4524 **
4525 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4526 ** in pTabList pointing at their appropriate entries.  The [...] code
4527 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4528 ** data from the various tables of the loop.
4529 **
4530 ** If the WHERE clause is empty, the foreach loops must each scan their
4531 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
4532 ** the tables have indices and there are terms in the WHERE clause that
4533 ** refer to those indices, a complete table scan can be avoided and the
4534 ** code will run much faster.  Most of the work of this routine is checking
4535 ** to see if there are indices that can be used to speed up the loop.
4536 **
4537 ** Terms of the WHERE clause are also used to limit which rows actually
4538 ** make it to the "..." in the middle of the loop.  After each "foreach",
4539 ** terms of the WHERE clause that use only terms in that loop and outer
4540 ** loops are evaluated and if false a jump is made around all subsequent
4541 ** inner loops (or around the "..." if the test occurs within the inner-
4542 ** most loop)
4543 **
4544 ** OUTER JOINS
4545 **
4546 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4547 **
4548 **    foreach row1 in t1 do
4549 **      flag = 0
4550 **      foreach row2 in t2 do
4551 **        start:
4552 **          ...
4553 **          flag = 1
4554 **      end
4555 **      if flag==0 then
4556 **        move the row2 cursor to a null row
4557 **        goto start
4558 **      fi
4559 **    end
4560 **
4561 ** ORDER BY CLAUSE PROCESSING
4562 **
4563 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4564 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4565 ** if there is one.  If there is no ORDER BY clause or if this routine
4566 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4567 **
4568 ** The iIdxCur parameter is the cursor number of an index.  If
4569 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4570 ** to use for OR clause processing.  The WHERE clause should use this
4571 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4572 ** the first cursor in an array of cursors for all indices.  iIdxCur should
4573 ** be used to compute the appropriate cursor depending on which index is
4574 ** used.
4575 */
4576 WhereInfo *sqlite3WhereBegin(
4577   Parse *pParse,          /* The parser context */
4578   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
4579   Expr *pWhere,           /* The WHERE clause */
4580   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
4581   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
4582   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
4583   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4584                           ** If WHERE_USE_LIMIT, then the limit amount */
4585 ){
4586   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
4587   int nTabList;              /* Number of elements in pTabList */
4588   WhereInfo *pWInfo;         /* Will become the return value of this function */
4589   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
4590   Bitmask notReady;          /* Cursors that are not yet positioned */
4591   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
4592   WhereMaskSet *pMaskSet;    /* The expression mask set */
4593   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
4594   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
4595   int ii;                    /* Loop counter */
4596   sqlite3 *db;               /* Database connection */
4597   int rc;                    /* Return code */
4598   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
4599 
4600   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4601         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4602      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4603   ));
4604 
4605   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4606   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4607             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4608 
4609   /* Variable initialization */
4610   db = pParse->db;
4611   memset(&sWLB, 0, sizeof(sWLB));
4612 
4613   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4614   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4615   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4616   sWLB.pOrderBy = pOrderBy;
4617 
4618   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4619   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4620   if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4621     wctrlFlags &= ~WHERE_WANT_DISTINCT;
4622   }
4623 
4624   /* The number of tables in the FROM clause is limited by the number of
4625   ** bits in a Bitmask
4626   */
4627   testcase( pTabList->nSrc==BMS );
4628   if( pTabList->nSrc>BMS ){
4629     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4630     return 0;
4631   }
4632 
4633   /* This function normally generates a nested loop for all tables in
4634   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4635   ** only generate code for the first table in pTabList and assume that
4636   ** any cursors associated with subsequent tables are uninitialized.
4637   */
4638   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4639 
4640   /* Allocate and initialize the WhereInfo structure that will become the
4641   ** return value. A single allocation is used to store the WhereInfo
4642   ** struct, the contents of WhereInfo.a[], the WhereClause structure
4643   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4644   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4645   ** some architectures. Hence the ROUND8() below.
4646   */
4647   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4648   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4649   if( db->mallocFailed ){
4650     sqlite3DbFree(db, pWInfo);
4651     pWInfo = 0;
4652     goto whereBeginError;
4653   }
4654   pWInfo->pParse = pParse;
4655   pWInfo->pTabList = pTabList;
4656   pWInfo->pOrderBy = pOrderBy;
4657   pWInfo->pWhere = pWhere;
4658   pWInfo->pResultSet = pResultSet;
4659   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4660   pWInfo->nLevel = nTabList;
4661   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
4662   pWInfo->wctrlFlags = wctrlFlags;
4663   pWInfo->iLimit = iAuxArg;
4664   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4665   memset(&pWInfo->nOBSat, 0,
4666          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4667   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4668   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
4669   pMaskSet = &pWInfo->sMaskSet;
4670   sWLB.pWInfo = pWInfo;
4671   sWLB.pWC = &pWInfo->sWC;
4672   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4673   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4674   whereLoopInit(sWLB.pNew);
4675 #ifdef SQLITE_DEBUG
4676   sWLB.pNew->cId = '*';
4677 #endif
4678 
4679   /* Split the WHERE clause into separate subexpressions where each
4680   ** subexpression is separated by an AND operator.
4681   */
4682   initMaskSet(pMaskSet);
4683   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4684   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4685 
4686   /* Special case: No FROM clause
4687   */
4688   if( nTabList==0 ){
4689     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4690     if( wctrlFlags & WHERE_WANT_DISTINCT ){
4691       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4692     }
4693     ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
4694   }else{
4695     /* Assign a bit from the bitmask to every term in the FROM clause.
4696     **
4697     ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4698     **
4699     ** The rule of the previous sentence ensures thta if X is the bitmask for
4700     ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4701     ** Knowing the bitmask for all tables to the left of a left join is
4702     ** important.  Ticket #3015.
4703     **
4704     ** Note that bitmasks are created for all pTabList->nSrc tables in
4705     ** pTabList, not just the first nTabList tables.  nTabList is normally
4706     ** equal to pTabList->nSrc but might be shortened to 1 if the
4707     ** WHERE_OR_SUBCLAUSE flag is set.
4708     */
4709     ii = 0;
4710     do{
4711       createMask(pMaskSet, pTabList->a[ii].iCursor);
4712       sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4713     }while( (++ii)<pTabList->nSrc );
4714   #ifdef SQLITE_DEBUG
4715     {
4716       Bitmask mx = 0;
4717       for(ii=0; ii<pTabList->nSrc; ii++){
4718         Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4719         assert( m>=mx );
4720         mx = m;
4721       }
4722     }
4723   #endif
4724   }
4725 
4726   /* Analyze all of the subexpressions. */
4727   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4728   if( db->mallocFailed ) goto whereBeginError;
4729 
4730   /* Special case: WHERE terms that do not refer to any tables in the join
4731   ** (constant expressions). Evaluate each such term, and jump over all the
4732   ** generated code if the result is not true.
4733   **
4734   ** Do not do this if the expression contains non-deterministic functions
4735   ** that are not within a sub-select. This is not strictly required, but
4736   ** preserves SQLite's legacy behaviour in the following two cases:
4737   **
4738   **   FROM ... WHERE random()>0;           -- eval random() once per row
4739   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
4740   */
4741   for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4742     WhereTerm *pT = &sWLB.pWC->a[ii];
4743     if( pT->wtFlags & TERM_VIRTUAL ) continue;
4744     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
4745       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
4746       pT->wtFlags |= TERM_CODED;
4747     }
4748   }
4749 
4750   if( wctrlFlags & WHERE_WANT_DISTINCT ){
4751     if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
4752       /* The DISTINCT marking is pointless.  Ignore it. */
4753       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4754     }else if( pOrderBy==0 ){
4755       /* Try to ORDER BY the result set to make distinct processing easier */
4756       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4757       pWInfo->pOrderBy = pResultSet;
4758     }
4759   }
4760 
4761   /* Construct the WhereLoop objects */
4762 #if defined(WHERETRACE_ENABLED)
4763   if( sqlite3WhereTrace & 0xffff ){
4764     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
4765     if( wctrlFlags & WHERE_USE_LIMIT ){
4766       sqlite3DebugPrintf(", limit: %d", iAuxArg);
4767     }
4768     sqlite3DebugPrintf(")\n");
4769   }
4770   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
4771     sqlite3WhereClausePrint(sWLB.pWC);
4772   }
4773 #endif
4774 
4775   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
4776     rc = whereLoopAddAll(&sWLB);
4777     if( rc ) goto whereBeginError;
4778 
4779 #ifdef WHERETRACE_ENABLED
4780     if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
4781       WhereLoop *p;
4782       int i;
4783       static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4784                                              "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4785       for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4786         p->cId = zLabel[i%(sizeof(zLabel)-1)];
4787         whereLoopPrint(p, sWLB.pWC);
4788       }
4789     }
4790 #endif
4791 
4792     wherePathSolver(pWInfo, 0);
4793     if( db->mallocFailed ) goto whereBeginError;
4794     if( pWInfo->pOrderBy ){
4795        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
4796        if( db->mallocFailed ) goto whereBeginError;
4797     }
4798   }
4799   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
4800      pWInfo->revMask = ALLBITS;
4801   }
4802   if( pParse->nErr || NEVER(db->mallocFailed) ){
4803     goto whereBeginError;
4804   }
4805 #ifdef WHERETRACE_ENABLED
4806   if( sqlite3WhereTrace ){
4807     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
4808     if( pWInfo->nOBSat>0 ){
4809       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
4810     }
4811     switch( pWInfo->eDistinct ){
4812       case WHERE_DISTINCT_UNIQUE: {
4813         sqlite3DebugPrintf("  DISTINCT=unique");
4814         break;
4815       }
4816       case WHERE_DISTINCT_ORDERED: {
4817         sqlite3DebugPrintf("  DISTINCT=ordered");
4818         break;
4819       }
4820       case WHERE_DISTINCT_UNORDERED: {
4821         sqlite3DebugPrintf("  DISTINCT=unordered");
4822         break;
4823       }
4824     }
4825     sqlite3DebugPrintf("\n");
4826     for(ii=0; ii<pWInfo->nLevel; ii++){
4827       whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
4828     }
4829   }
4830 #endif
4831 
4832   /* Attempt to omit tables from the join that do not affect the result.
4833   ** For a table to not affect the result, the following must be true:
4834   **
4835   **   1) The query must not be an aggregate.
4836   **   2) The table must be the RHS of a LEFT JOIN.
4837   **   3) Either the query must be DISTINCT, or else the ON or USING clause
4838   **      must contain a constraint that limits the scan of the table to
4839   **      at most a single row.
4840   **   4) The table must not be referenced by any part of the query apart
4841   **      from its own USING or ON clause.
4842   **
4843   ** For example, given:
4844   **
4845   **     CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
4846   **     CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
4847   **     CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
4848   **
4849   ** then table t2 can be omitted from the following:
4850   **
4851   **     SELECT v1, v3 FROM t1
4852   **       LEFT JOIN t2 USING (t1.ipk=t2.ipk)
4853   **       LEFT JOIN t3 USING (t1.ipk=t3.ipk)
4854   **
4855   ** or from:
4856   **
4857   **     SELECT DISTINCT v1, v3 FROM t1
4858   **       LEFT JOIN t2
4859   **       LEFT JOIN t3 USING (t1.ipk=t3.ipk)
4860   */
4861   notReady = ~(Bitmask)0;
4862   if( pWInfo->nLevel>=2
4863    && pResultSet!=0               /* guarantees condition (1) above */
4864    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
4865   ){
4866     int i;
4867     Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
4868     if( sWLB.pOrderBy ){
4869       tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
4870     }
4871     for(i=pWInfo->nLevel-1; i>=1; i--){
4872       WhereTerm *pTerm, *pEnd;
4873       struct SrcList_item *pItem;
4874       pLoop = pWInfo->a[i].pWLoop;
4875       pItem = &pWInfo->pTabList->a[pLoop->iTab];
4876       if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
4877       if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
4878        && (pLoop->wsFlags & WHERE_ONEROW)==0
4879       ){
4880         continue;
4881       }
4882       if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
4883       pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
4884       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
4885         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
4886           if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
4887            || pTerm->pExpr->iRightJoinTable!=pItem->iCursor
4888           ){
4889             break;
4890           }
4891         }
4892       }
4893       if( pTerm<pEnd ) continue;
4894       WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
4895       notReady &= ~pLoop->maskSelf;
4896       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
4897         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
4898           pTerm->wtFlags |= TERM_CODED;
4899         }
4900       }
4901       if( i!=pWInfo->nLevel-1 ){
4902         int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
4903         memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
4904       }
4905       pWInfo->nLevel--;
4906       nTabList--;
4907     }
4908   }
4909   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
4910   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
4911 
4912   /* If the caller is an UPDATE or DELETE statement that is requesting
4913   ** to use a one-pass algorithm, determine if this is appropriate.
4914   **
4915   ** A one-pass approach can be used if the caller has requested one
4916   ** and either (a) the scan visits at most one row or (b) each
4917   ** of the following are true:
4918   **
4919   **   * the caller has indicated that a one-pass approach can be used
4920   **     with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
4921   **   * the table is not a virtual table, and
4922   **   * either the scan does not use the OR optimization or the caller
4923   **     is a DELETE operation (WHERE_DUPLICATES_OK is only specified
4924   **     for DELETE).
4925   **
4926   ** The last qualification is because an UPDATE statement uses
4927   ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
4928   ** use a one-pass approach, and this is not set accurately for scans
4929   ** that use the OR optimization.
4930   */
4931   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
4932   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
4933     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
4934     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
4935     assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
4936     if( bOnerow || (
4937         0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
4938      && !IsVirtual(pTabList->a[0].pTab)
4939      && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
4940     )){
4941       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
4942       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
4943         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
4944           bFordelete = OPFLAG_FORDELETE;
4945         }
4946         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
4947       }
4948     }
4949   }
4950 
4951   /* Open all tables in the pTabList and any indices selected for
4952   ** searching those tables.
4953   */
4954   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
4955     Table *pTab;     /* Table to open */
4956     int iDb;         /* Index of database containing table/index */
4957     struct SrcList_item *pTabItem;
4958 
4959     pTabItem = &pTabList->a[pLevel->iFrom];
4960     pTab = pTabItem->pTab;
4961     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4962     pLoop = pLevel->pWLoop;
4963     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
4964       /* Do nothing */
4965     }else
4966 #ifndef SQLITE_OMIT_VIRTUALTABLE
4967     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
4968       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
4969       int iCur = pTabItem->iCursor;
4970       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
4971     }else if( IsVirtual(pTab) ){
4972       /* noop */
4973     }else
4974 #endif
4975     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
4976          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
4977       int op = OP_OpenRead;
4978       if( pWInfo->eOnePass!=ONEPASS_OFF ){
4979         op = OP_OpenWrite;
4980         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
4981       };
4982       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
4983       assert( pTabItem->iCursor==pLevel->iTabCur );
4984       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
4985       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
4986       if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){
4987         Bitmask b = pTabItem->colUsed;
4988         int n = 0;
4989         for(; b; b=b>>1, n++){}
4990         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
4991         assert( n<=pTab->nCol );
4992       }
4993 #ifdef SQLITE_ENABLE_CURSOR_HINTS
4994       if( pLoop->u.btree.pIndex!=0 ){
4995         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
4996       }else
4997 #endif
4998       {
4999         sqlite3VdbeChangeP5(v, bFordelete);
5000       }
5001 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5002       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
5003                             (const u8*)&pTabItem->colUsed, P4_INT64);
5004 #endif
5005     }else{
5006       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5007     }
5008     if( pLoop->wsFlags & WHERE_INDEXED ){
5009       Index *pIx = pLoop->u.btree.pIndex;
5010       int iIndexCur;
5011       int op = OP_OpenRead;
5012       /* iAuxArg is always set to a positive value if ONEPASS is possible */
5013       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
5014       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
5015        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5016       ){
5017         /* This is one term of an OR-optimization using the PRIMARY KEY of a
5018         ** WITHOUT ROWID table.  No need for a separate index */
5019         iIndexCur = pLevel->iTabCur;
5020         op = 0;
5021       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5022         Index *pJ = pTabItem->pTab->pIndex;
5023         iIndexCur = iAuxArg;
5024         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5025         while( ALWAYS(pJ) && pJ!=pIx ){
5026           iIndexCur++;
5027           pJ = pJ->pNext;
5028         }
5029         op = OP_OpenWrite;
5030         pWInfo->aiCurOnePass[1] = iIndexCur;
5031       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5032         iIndexCur = iAuxArg;
5033         op = OP_ReopenIdx;
5034       }else{
5035         iIndexCur = pParse->nTab++;
5036       }
5037       pLevel->iIdxCur = iIndexCur;
5038       assert( pIx->pSchema==pTab->pSchema );
5039       assert( iIndexCur>=0 );
5040       if( op ){
5041         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5042         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5043         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
5044          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
5045          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
5046          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
5047         ){
5048           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */
5049         }
5050         VdbeComment((v, "%s", pIx->zName));
5051 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5052         {
5053           u64 colUsed = 0;
5054           int ii, jj;
5055           for(ii=0; ii<pIx->nColumn; ii++){
5056             jj = pIx->aiColumn[ii];
5057             if( jj<0 ) continue;
5058             if( jj>63 ) jj = 63;
5059             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
5060             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
5061           }
5062           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
5063                                 (u8*)&colUsed, P4_INT64);
5064         }
5065 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5066       }
5067     }
5068     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
5069   }
5070   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
5071   if( db->mallocFailed ) goto whereBeginError;
5072 
5073   /* Generate the code to do the search.  Each iteration of the for
5074   ** loop below generates code for a single nested loop of the VM
5075   ** program.
5076   */
5077   for(ii=0; ii<nTabList; ii++){
5078     int addrExplain;
5079     int wsFlags;
5080     pLevel = &pWInfo->a[ii];
5081     wsFlags = pLevel->pWLoop->wsFlags;
5082 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5083     if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
5084       constructAutomaticIndex(pParse, &pWInfo->sWC,
5085                 &pTabList->a[pLevel->iFrom], notReady, pLevel);
5086       if( db->mallocFailed ) goto whereBeginError;
5087     }
5088 #endif
5089     addrExplain = sqlite3WhereExplainOneScan(
5090         pParse, pTabList, pLevel, wctrlFlags
5091     );
5092     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
5093     notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
5094     pWInfo->iContinue = pLevel->addrCont;
5095     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
5096       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
5097     }
5098   }
5099 
5100   /* Done. */
5101   VdbeModuleComment((v, "Begin WHERE-core"));
5102   return pWInfo;
5103 
5104   /* Jump here if malloc fails */
5105 whereBeginError:
5106   if( pWInfo ){
5107     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5108     whereInfoFree(db, pWInfo);
5109   }
5110   return 0;
5111 }
5112 
5113 /*
5114 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
5115 ** index rather than the main table.  In SQLITE_DEBUG mode, we want
5116 ** to trace those changes if PRAGMA vdbe_addoptrace=on.  This routine
5117 ** does that.
5118 */
5119 #ifndef SQLITE_DEBUG
5120 # define OpcodeRewriteTrace(D,K,P) /* no-op */
5121 #else
5122 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
5123   static void sqlite3WhereOpcodeRewriteTrace(
5124     sqlite3 *db,
5125     int pc,
5126     VdbeOp *pOp
5127   ){
5128     if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
5129     sqlite3VdbePrintOp(0, pc, pOp);
5130   }
5131 #endif
5132 
5133 /*
5134 ** Generate the end of the WHERE loop.  See comments on
5135 ** sqlite3WhereBegin() for additional information.
5136 */
5137 void sqlite3WhereEnd(WhereInfo *pWInfo){
5138   Parse *pParse = pWInfo->pParse;
5139   Vdbe *v = pParse->pVdbe;
5140   int i;
5141   WhereLevel *pLevel;
5142   WhereLoop *pLoop;
5143   SrcList *pTabList = pWInfo->pTabList;
5144   sqlite3 *db = pParse->db;
5145 
5146   /* Generate loop termination code.
5147   */
5148   VdbeModuleComment((v, "End WHERE-core"));
5149   for(i=pWInfo->nLevel-1; i>=0; i--){
5150     int addr;
5151     pLevel = &pWInfo->a[i];
5152     pLoop = pLevel->pWLoop;
5153     if( pLevel->op!=OP_Noop ){
5154 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5155       int addrSeek = 0;
5156       Index *pIdx;
5157       int n;
5158       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
5159        && i==pWInfo->nLevel-1  /* Ticket [ef9318757b152e3] 2017-10-21 */
5160        && (pLoop->wsFlags & WHERE_INDEXED)!=0
5161        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
5162        && (n = pLoop->u.btree.nIdxCol)>0
5163        && pIdx->aiRowLogEst[n]>=36
5164       ){
5165         int r1 = pParse->nMem+1;
5166         int j, op;
5167         for(j=0; j<n; j++){
5168           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
5169         }
5170         pParse->nMem += n+1;
5171         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
5172         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
5173         VdbeCoverageIf(v, op==OP_SeekLT);
5174         VdbeCoverageIf(v, op==OP_SeekGT);
5175         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
5176       }
5177 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
5178       /* The common case: Advance to the next row */
5179       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5180       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
5181       sqlite3VdbeChangeP5(v, pLevel->p5);
5182       VdbeCoverage(v);
5183       VdbeCoverageIf(v, pLevel->op==OP_Next);
5184       VdbeCoverageIf(v, pLevel->op==OP_Prev);
5185       VdbeCoverageIf(v, pLevel->op==OP_VNext);
5186 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5187       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
5188 #endif
5189     }else{
5190       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5191     }
5192     if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
5193       struct InLoop *pIn;
5194       int j;
5195       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
5196       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
5197         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5198         if( pIn->eEndLoopOp!=OP_Noop ){
5199           if( pIn->nPrefix ){
5200             assert( pLoop->wsFlags & WHERE_IN_EARLYOUT );
5201             sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
5202                               sqlite3VdbeCurrentAddr(v)+2,
5203                               pIn->iBase, pIn->nPrefix);
5204             VdbeCoverage(v);
5205           }
5206           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
5207           VdbeCoverage(v);
5208           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
5209           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
5210         }
5211         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
5212       }
5213     }
5214     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
5215     if( pLevel->addrSkip ){
5216       sqlite3VdbeGoto(v, pLevel->addrSkip);
5217       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
5218       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
5219       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
5220     }
5221 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
5222     if( pLevel->addrLikeRep ){
5223       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
5224                         pLevel->addrLikeRep);
5225       VdbeCoverage(v);
5226     }
5227 #endif
5228     if( pLevel->iLeftJoin ){
5229       int ws = pLoop->wsFlags;
5230       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
5231       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
5232       if( (ws & WHERE_IDX_ONLY)==0 ){
5233         assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
5234         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
5235       }
5236       if( (ws & WHERE_INDEXED)
5237        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx)
5238       ){
5239         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
5240       }
5241       if( pLevel->op==OP_Return ){
5242         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
5243       }else{
5244         sqlite3VdbeGoto(v, pLevel->addrFirst);
5245       }
5246       sqlite3VdbeJumpHere(v, addr);
5247     }
5248     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
5249                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
5250   }
5251 
5252   /* The "break" point is here, just past the end of the outer loop.
5253   ** Set it.
5254   */
5255   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
5256 
5257   assert( pWInfo->nLevel<=pTabList->nSrc );
5258   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
5259     int k, last;
5260     VdbeOp *pOp;
5261     Index *pIdx = 0;
5262     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
5263     Table *pTab = pTabItem->pTab;
5264     assert( pTab!=0 );
5265     pLoop = pLevel->pWLoop;
5266 
5267     /* For a co-routine, change all OP_Column references to the table of
5268     ** the co-routine into OP_Copy of result contained in a register.
5269     ** OP_Rowid becomes OP_Null.
5270     */
5271     if( pTabItem->fg.viaCoroutine ){
5272       testcase( pParse->db->mallocFailed );
5273       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
5274                             pTabItem->regResult, 0);
5275       continue;
5276     }
5277 
5278 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE
5279     /* Close all of the cursors that were opened by sqlite3WhereBegin.
5280     ** Except, do not close cursors that will be reused by the OR optimization
5281     ** (WHERE_OR_SUBCLAUSE).  And do not close the OP_OpenWrite cursors
5282     ** created for the ONEPASS optimization.
5283     */
5284     if( (pTab->tabFlags & TF_Ephemeral)==0
5285      && pTab->pSelect==0
5286      && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5287     ){
5288       int ws = pLoop->wsFlags;
5289       if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){
5290         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
5291       }
5292       if( (ws & WHERE_INDEXED)!=0
5293        && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0
5294        && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
5295       ){
5296         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
5297       }
5298     }
5299 #endif
5300 
5301     /* If this scan uses an index, make VDBE code substitutions to read data
5302     ** from the index instead of from the table where possible.  In some cases
5303     ** this optimization prevents the table from ever being read, which can
5304     ** yield a significant performance boost.
5305     **
5306     ** Calls to the code generator in between sqlite3WhereBegin and
5307     ** sqlite3WhereEnd will have created code that references the table
5308     ** directly.  This loop scans all that code looking for opcodes
5309     ** that reference the table and converts them into opcodes that
5310     ** reference the index.
5311     */
5312     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
5313       pIdx = pLoop->u.btree.pIndex;
5314     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
5315       pIdx = pLevel->u.pCovidx;
5316     }
5317     if( pIdx
5318      && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable))
5319      && !db->mallocFailed
5320     ){
5321       last = sqlite3VdbeCurrentAddr(v);
5322       k = pLevel->addrBody;
5323 #ifdef SQLITE_DEBUG
5324       if( db->flags & SQLITE_VdbeAddopTrace ){
5325         printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
5326       }
5327 #endif
5328       pOp = sqlite3VdbeGetOp(v, k);
5329       for(; k<last; k++, pOp++){
5330         if( pOp->p1!=pLevel->iTabCur ) continue;
5331         if( pOp->opcode==OP_Column
5332 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
5333          || pOp->opcode==OP_Offset
5334 #endif
5335         ){
5336           int x = pOp->p2;
5337           assert( pIdx->pTable==pTab );
5338           if( !HasRowid(pTab) ){
5339             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5340             x = pPk->aiColumn[x];
5341             assert( x>=0 );
5342           }
5343           x = sqlite3ColumnOfIndex(pIdx, x);
5344           if( x>=0 ){
5345             pOp->p2 = x;
5346             pOp->p1 = pLevel->iIdxCur;
5347             OpcodeRewriteTrace(db, k, pOp);
5348           }
5349           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
5350               || pWInfo->eOnePass );
5351         }else if( pOp->opcode==OP_Rowid ){
5352           pOp->p1 = pLevel->iIdxCur;
5353           pOp->opcode = OP_IdxRowid;
5354           OpcodeRewriteTrace(db, k, pOp);
5355         }else if( pOp->opcode==OP_IfNullRow ){
5356           pOp->p1 = pLevel->iIdxCur;
5357           OpcodeRewriteTrace(db, k, pOp);
5358         }
5359       }
5360 #ifdef SQLITE_DEBUG
5361       if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
5362 #endif
5363     }
5364   }
5365 
5366   /* Final cleanup
5367   */
5368   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5369   whereInfoFree(db, pWInfo);
5370   return;
5371 }
5372