xref: /sqlite-3.40.0/src/where.c (revision f2fcd075)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 
21 /*
22 ** Trace output macros
23 */
24 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
25 int sqlite3WhereTrace = 0;
26 #endif
27 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
28 # define WHERETRACE(X)  if(sqlite3WhereTrace) sqlite3DebugPrintf X
29 #else
30 # define WHERETRACE(X)
31 #endif
32 
33 /* Forward reference
34 */
35 typedef struct WhereClause WhereClause;
36 typedef struct WhereMaskSet WhereMaskSet;
37 typedef struct WhereOrInfo WhereOrInfo;
38 typedef struct WhereAndInfo WhereAndInfo;
39 typedef struct WhereCost WhereCost;
40 
41 /*
42 ** The query generator uses an array of instances of this structure to
43 ** help it analyze the subexpressions of the WHERE clause.  Each WHERE
44 ** clause subexpression is separated from the others by AND operators,
45 ** usually, or sometimes subexpressions separated by OR.
46 **
47 ** All WhereTerms are collected into a single WhereClause structure.
48 ** The following identity holds:
49 **
50 **        WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
51 **
52 ** When a term is of the form:
53 **
54 **              X <op> <expr>
55 **
56 ** where X is a column name and <op> is one of certain operators,
57 ** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the
58 ** cursor number and column number for X.  WhereTerm.eOperator records
59 ** the <op> using a bitmask encoding defined by WO_xxx below.  The
60 ** use of a bitmask encoding for the operator allows us to search
61 ** quickly for terms that match any of several different operators.
62 **
63 ** A WhereTerm might also be two or more subterms connected by OR:
64 **
65 **         (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
66 **
67 ** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR
68 ** and the WhereTerm.u.pOrInfo field points to auxiliary information that
69 ** is collected about the
70 **
71 ** If a term in the WHERE clause does not match either of the two previous
72 ** categories, then eOperator==0.  The WhereTerm.pExpr field is still set
73 ** to the original subexpression content and wtFlags is set up appropriately
74 ** but no other fields in the WhereTerm object are meaningful.
75 **
76 ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
77 ** but they do so indirectly.  A single WhereMaskSet structure translates
78 ** cursor number into bits and the translated bit is stored in the prereq
79 ** fields.  The translation is used in order to maximize the number of
80 ** bits that will fit in a Bitmask.  The VDBE cursor numbers might be
81 ** spread out over the non-negative integers.  For example, the cursor
82 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The WhereMaskSet
83 ** translates these sparse cursor numbers into consecutive integers
84 ** beginning with 0 in order to make the best possible use of the available
85 ** bits in the Bitmask.  So, in the example above, the cursor numbers
86 ** would be mapped into integers 0 through 7.
87 **
88 ** The number of terms in a join is limited by the number of bits
89 ** in prereqRight and prereqAll.  The default is 64 bits, hence SQLite
90 ** is only able to process joins with 64 or fewer tables.
91 */
92 typedef struct WhereTerm WhereTerm;
93 struct WhereTerm {
94   Expr *pExpr;            /* Pointer to the subexpression that is this term */
95   int iParent;            /* Disable pWC->a[iParent] when this term disabled */
96   int leftCursor;         /* Cursor number of X in "X <op> <expr>" */
97   union {
98     int leftColumn;         /* Column number of X in "X <op> <expr>" */
99     WhereOrInfo *pOrInfo;   /* Extra information if eOperator==WO_OR */
100     WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */
101   } u;
102   u16 eOperator;          /* A WO_xx value describing <op> */
103   u8 wtFlags;             /* TERM_xxx bit flags.  See below */
104   u8 nChild;              /* Number of children that must disable us */
105   WhereClause *pWC;       /* The clause this term is part of */
106   Bitmask prereqRight;    /* Bitmask of tables used by pExpr->pRight */
107   Bitmask prereqAll;      /* Bitmask of tables referenced by pExpr */
108 };
109 
110 /*
111 ** Allowed values of WhereTerm.wtFlags
112 */
113 #define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(db, pExpr) */
114 #define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
115 #define TERM_CODED      0x04   /* This term is already coded */
116 #define TERM_COPIED     0x08   /* Has a child */
117 #define TERM_ORINFO     0x10   /* Need to free the WhereTerm.u.pOrInfo object */
118 #define TERM_ANDINFO    0x20   /* Need to free the WhereTerm.u.pAndInfo obj */
119 #define TERM_OR_OK      0x40   /* Used during OR-clause processing */
120 
121 /*
122 ** An instance of the following structure holds all information about a
123 ** WHERE clause.  Mostly this is a container for one or more WhereTerms.
124 */
125 struct WhereClause {
126   Parse *pParse;           /* The parser context */
127   WhereMaskSet *pMaskSet;  /* Mapping of table cursor numbers to bitmasks */
128   Bitmask vmask;           /* Bitmask identifying virtual table cursors */
129   u8 op;                   /* Split operator.  TK_AND or TK_OR */
130   int nTerm;               /* Number of terms */
131   int nSlot;               /* Number of entries in a[] */
132   WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
133 #if defined(SQLITE_SMALL_STACK)
134   WhereTerm aStatic[1];    /* Initial static space for a[] */
135 #else
136   WhereTerm aStatic[8];    /* Initial static space for a[] */
137 #endif
138 };
139 
140 /*
141 ** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to
142 ** a dynamically allocated instance of the following structure.
143 */
144 struct WhereOrInfo {
145   WhereClause wc;          /* Decomposition into subterms */
146   Bitmask indexable;       /* Bitmask of all indexable tables in the clause */
147 };
148 
149 /*
150 ** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to
151 ** a dynamically allocated instance of the following structure.
152 */
153 struct WhereAndInfo {
154   WhereClause wc;          /* The subexpression broken out */
155 };
156 
157 /*
158 ** An instance of the following structure keeps track of a mapping
159 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
160 **
161 ** The VDBE cursor numbers are small integers contained in
162 ** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE
163 ** clause, the cursor numbers might not begin with 0 and they might
164 ** contain gaps in the numbering sequence.  But we want to make maximum
165 ** use of the bits in our bitmasks.  This structure provides a mapping
166 ** from the sparse cursor numbers into consecutive integers beginning
167 ** with 0.
168 **
169 ** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
170 ** corresponds VDBE cursor number B.  The A-th bit of a bitmask is 1<<A.
171 **
172 ** For example, if the WHERE clause expression used these VDBE
173 ** cursors:  4, 5, 8, 29, 57, 73.  Then the  WhereMaskSet structure
174 ** would map those cursor numbers into bits 0 through 5.
175 **
176 ** Note that the mapping is not necessarily ordered.  In the example
177 ** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0,
178 ** 57->5, 73->4.  Or one of 719 other combinations might be used. It
179 ** does not really matter.  What is important is that sparse cursor
180 ** numbers all get mapped into bit numbers that begin with 0 and contain
181 ** no gaps.
182 */
183 struct WhereMaskSet {
184   int n;                        /* Number of assigned cursor values */
185   int ix[BMS];                  /* Cursor assigned to each bit */
186 };
187 
188 /*
189 ** A WhereCost object records a lookup strategy and the estimated
190 ** cost of pursuing that strategy.
191 */
192 struct WhereCost {
193   WherePlan plan;    /* The lookup strategy */
194   double rCost;      /* Overall cost of pursuing this search strategy */
195   double nRow;       /* Estimated number of output rows */
196   Bitmask used;      /* Bitmask of cursors used by this plan */
197 };
198 
199 /*
200 ** Bitmasks for the operators that indices are able to exploit.  An
201 ** OR-ed combination of these values can be used when searching for
202 ** terms in the where clause.
203 */
204 #define WO_IN     0x001
205 #define WO_EQ     0x002
206 #define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
207 #define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
208 #define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
209 #define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
210 #define WO_MATCH  0x040
211 #define WO_ISNULL 0x080
212 #define WO_OR     0x100       /* Two or more OR-connected terms */
213 #define WO_AND    0x200       /* Two or more AND-connected terms */
214 
215 #define WO_ALL    0xfff       /* Mask of all possible WO_* values */
216 #define WO_SINGLE 0x0ff       /* Mask of all non-compound WO_* values */
217 
218 /*
219 ** Value for wsFlags returned by bestIndex() and stored in
220 ** WhereLevel.wsFlags.  These flags determine which search
221 ** strategies are appropriate.
222 **
223 ** The least significant 12 bits is reserved as a mask for WO_ values above.
224 ** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
225 ** But if the table is the right table of a left join, WhereLevel.wsFlags
226 ** is set to WO_IN|WO_EQ.  The WhereLevel.wsFlags field can then be used as
227 ** the "op" parameter to findTerm when we are resolving equality constraints.
228 ** ISNULL constraints will then not be used on the right table of a left
229 ** join.  Tickets #2177 and #2189.
230 */
231 #define WHERE_ROWID_EQ     0x00001000  /* rowid=EXPR or rowid IN (...) */
232 #define WHERE_ROWID_RANGE  0x00002000  /* rowid<EXPR and/or rowid>EXPR */
233 #define WHERE_COLUMN_EQ    0x00010000  /* x=EXPR or x IN (...) or x IS NULL */
234 #define WHERE_COLUMN_RANGE 0x00020000  /* x<EXPR and/or x>EXPR */
235 #define WHERE_COLUMN_IN    0x00040000  /* x IN (...) */
236 #define WHERE_COLUMN_NULL  0x00080000  /* x IS NULL */
237 #define WHERE_INDEXED      0x000f0000  /* Anything that uses an index */
238 #define WHERE_NOT_FULLSCAN 0x000f3000  /* Does not do a full table scan */
239 #define WHERE_IN_ABLE      0x000f1000  /* Able to support an IN operator */
240 #define WHERE_TOP_LIMIT    0x00100000  /* x<EXPR or x<=EXPR constraint */
241 #define WHERE_BTM_LIMIT    0x00200000  /* x>EXPR or x>=EXPR constraint */
242 #define WHERE_IDX_ONLY     0x00800000  /* Use index only - omit table */
243 #define WHERE_ORDERBY      0x01000000  /* Output will appear in correct order */
244 #define WHERE_REVERSE      0x02000000  /* Scan in reverse order */
245 #define WHERE_UNIQUE       0x04000000  /* Selects no more than one row */
246 #define WHERE_VIRTUALTABLE 0x08000000  /* Use virtual-table processing */
247 #define WHERE_MULTI_OR     0x10000000  /* OR using multiple indices */
248 #define WHERE_TEMP_INDEX   0x20000000  /* Uses an ephemeral index */
249 
250 /*
251 ** Initialize a preallocated WhereClause structure.
252 */
253 static void whereClauseInit(
254   WhereClause *pWC,        /* The WhereClause to be initialized */
255   Parse *pParse,           /* The parsing context */
256   WhereMaskSet *pMaskSet   /* Mapping from table cursor numbers to bitmasks */
257 ){
258   pWC->pParse = pParse;
259   pWC->pMaskSet = pMaskSet;
260   pWC->nTerm = 0;
261   pWC->nSlot = ArraySize(pWC->aStatic);
262   pWC->a = pWC->aStatic;
263   pWC->vmask = 0;
264 }
265 
266 /* Forward reference */
267 static void whereClauseClear(WhereClause*);
268 
269 /*
270 ** Deallocate all memory associated with a WhereOrInfo object.
271 */
272 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
273   whereClauseClear(&p->wc);
274   sqlite3DbFree(db, p);
275 }
276 
277 /*
278 ** Deallocate all memory associated with a WhereAndInfo object.
279 */
280 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
281   whereClauseClear(&p->wc);
282   sqlite3DbFree(db, p);
283 }
284 
285 /*
286 ** Deallocate a WhereClause structure.  The WhereClause structure
287 ** itself is not freed.  This routine is the inverse of whereClauseInit().
288 */
289 static void whereClauseClear(WhereClause *pWC){
290   int i;
291   WhereTerm *a;
292   sqlite3 *db = pWC->pParse->db;
293   for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
294     if( a->wtFlags & TERM_DYNAMIC ){
295       sqlite3ExprDelete(db, a->pExpr);
296     }
297     if( a->wtFlags & TERM_ORINFO ){
298       whereOrInfoDelete(db, a->u.pOrInfo);
299     }else if( a->wtFlags & TERM_ANDINFO ){
300       whereAndInfoDelete(db, a->u.pAndInfo);
301     }
302   }
303   if( pWC->a!=pWC->aStatic ){
304     sqlite3DbFree(db, pWC->a);
305   }
306 }
307 
308 /*
309 ** Add a single new WhereTerm entry to the WhereClause object pWC.
310 ** The new WhereTerm object is constructed from Expr p and with wtFlags.
311 ** The index in pWC->a[] of the new WhereTerm is returned on success.
312 ** 0 is returned if the new WhereTerm could not be added due to a memory
313 ** allocation error.  The memory allocation failure will be recorded in
314 ** the db->mallocFailed flag so that higher-level functions can detect it.
315 **
316 ** This routine will increase the size of the pWC->a[] array as necessary.
317 **
318 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
319 ** for freeing the expression p is assumed by the WhereClause object pWC.
320 ** This is true even if this routine fails to allocate a new WhereTerm.
321 **
322 ** WARNING:  This routine might reallocate the space used to store
323 ** WhereTerms.  All pointers to WhereTerms should be invalidated after
324 ** calling this routine.  Such pointers may be reinitialized by referencing
325 ** the pWC->a[] array.
326 */
327 static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
328   WhereTerm *pTerm;
329   int idx;
330   testcase( wtFlags & TERM_VIRTUAL );  /* EV: R-00211-15100 */
331   if( pWC->nTerm>=pWC->nSlot ){
332     WhereTerm *pOld = pWC->a;
333     sqlite3 *db = pWC->pParse->db;
334     pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
335     if( pWC->a==0 ){
336       if( wtFlags & TERM_DYNAMIC ){
337         sqlite3ExprDelete(db, p);
338       }
339       pWC->a = pOld;
340       return 0;
341     }
342     memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
343     if( pOld!=pWC->aStatic ){
344       sqlite3DbFree(db, pOld);
345     }
346     pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
347   }
348   pTerm = &pWC->a[idx = pWC->nTerm++];
349   pTerm->pExpr = p;
350   pTerm->wtFlags = wtFlags;
351   pTerm->pWC = pWC;
352   pTerm->iParent = -1;
353   return idx;
354 }
355 
356 /*
357 ** This routine identifies subexpressions in the WHERE clause where
358 ** each subexpression is separated by the AND operator or some other
359 ** operator specified in the op parameter.  The WhereClause structure
360 ** is filled with pointers to subexpressions.  For example:
361 **
362 **    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
363 **           \________/     \_______________/     \________________/
364 **            slot[0]            slot[1]               slot[2]
365 **
366 ** The original WHERE clause in pExpr is unaltered.  All this routine
367 ** does is make slot[] entries point to substructure within pExpr.
368 **
369 ** In the previous sentence and in the diagram, "slot[]" refers to
370 ** the WhereClause.a[] array.  The slot[] array grows as needed to contain
371 ** all terms of the WHERE clause.
372 */
373 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
374   pWC->op = (u8)op;
375   if( pExpr==0 ) return;
376   if( pExpr->op!=op ){
377     whereClauseInsert(pWC, pExpr, 0);
378   }else{
379     whereSplit(pWC, pExpr->pLeft, op);
380     whereSplit(pWC, pExpr->pRight, op);
381   }
382 }
383 
384 /*
385 ** Initialize an expression mask set (a WhereMaskSet object)
386 */
387 #define initMaskSet(P)  memset(P, 0, sizeof(*P))
388 
389 /*
390 ** Return the bitmask for the given cursor number.  Return 0 if
391 ** iCursor is not in the set.
392 */
393 static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){
394   int i;
395   assert( pMaskSet->n<=sizeof(Bitmask)*8 );
396   for(i=0; i<pMaskSet->n; i++){
397     if( pMaskSet->ix[i]==iCursor ){
398       return ((Bitmask)1)<<i;
399     }
400   }
401   return 0;
402 }
403 
404 /*
405 ** Create a new mask for cursor iCursor.
406 **
407 ** There is one cursor per table in the FROM clause.  The number of
408 ** tables in the FROM clause is limited by a test early in the
409 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
410 ** array will never overflow.
411 */
412 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
413   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
414   pMaskSet->ix[pMaskSet->n++] = iCursor;
415 }
416 
417 /*
418 ** This routine walks (recursively) an expression tree and generates
419 ** a bitmask indicating which tables are used in that expression
420 ** tree.
421 **
422 ** In order for this routine to work, the calling function must have
423 ** previously invoked sqlite3ResolveExprNames() on the expression.  See
424 ** the header comment on that routine for additional information.
425 ** The sqlite3ResolveExprNames() routines looks for column names and
426 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
427 ** the VDBE cursor number of the table.  This routine just has to
428 ** translate the cursor numbers into bitmask values and OR all
429 ** the bitmasks together.
430 */
431 static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
432 static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
433 static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
434   Bitmask mask = 0;
435   if( p==0 ) return 0;
436   if( p->op==TK_COLUMN ){
437     mask = getMask(pMaskSet, p->iTable);
438     return mask;
439   }
440   mask = exprTableUsage(pMaskSet, p->pRight);
441   mask |= exprTableUsage(pMaskSet, p->pLeft);
442   if( ExprHasProperty(p, EP_xIsSelect) ){
443     mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect);
444   }else{
445     mask |= exprListTableUsage(pMaskSet, p->x.pList);
446   }
447   return mask;
448 }
449 static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){
450   int i;
451   Bitmask mask = 0;
452   if( pList ){
453     for(i=0; i<pList->nExpr; i++){
454       mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
455     }
456   }
457   return mask;
458 }
459 static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){
460   Bitmask mask = 0;
461   while( pS ){
462     mask |= exprListTableUsage(pMaskSet, pS->pEList);
463     mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
464     mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
465     mask |= exprTableUsage(pMaskSet, pS->pWhere);
466     mask |= exprTableUsage(pMaskSet, pS->pHaving);
467     pS = pS->pPrior;
468   }
469   return mask;
470 }
471 
472 /*
473 ** Return TRUE if the given operator is one of the operators that is
474 ** allowed for an indexable WHERE clause term.  The allowed operators are
475 ** "=", "<", ">", "<=", ">=", and "IN".
476 **
477 ** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be
478 ** of one of the following forms: column = expression column > expression
479 ** column >= expression column < expression column <= expression
480 ** expression = column expression > column expression >= column
481 ** expression < column expression <= column column IN
482 ** (expression-list) column IN (subquery) column IS NULL
483 */
484 static int allowedOp(int op){
485   assert( TK_GT>TK_EQ && TK_GT<TK_GE );
486   assert( TK_LT>TK_EQ && TK_LT<TK_GE );
487   assert( TK_LE>TK_EQ && TK_LE<TK_GE );
488   assert( TK_GE==TK_EQ+4 );
489   return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
490 }
491 
492 /*
493 ** Swap two objects of type TYPE.
494 */
495 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
496 
497 /*
498 ** Commute a comparison operator.  Expressions of the form "X op Y"
499 ** are converted into "Y op X".
500 **
501 ** If a collation sequence is associated with either the left or right
502 ** side of the comparison, it remains associated with the same side after
503 ** the commutation. So "Y collate NOCASE op X" becomes
504 ** "X collate NOCASE op Y". This is because any collation sequence on
505 ** the left hand side of a comparison overrides any collation sequence
506 ** attached to the right. For the same reason the EP_ExpCollate flag
507 ** is not commuted.
508 */
509 static void exprCommute(Parse *pParse, Expr *pExpr){
510   u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
511   u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
512   assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
513   pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight);
514   pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
515   SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
516   pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
517   pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
518   SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
519   if( pExpr->op>=TK_GT ){
520     assert( TK_LT==TK_GT+2 );
521     assert( TK_GE==TK_LE+2 );
522     assert( TK_GT>TK_EQ );
523     assert( TK_GT<TK_LE );
524     assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
525     pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
526   }
527 }
528 
529 /*
530 ** Translate from TK_xx operator to WO_xx bitmask.
531 */
532 static u16 operatorMask(int op){
533   u16 c;
534   assert( allowedOp(op) );
535   if( op==TK_IN ){
536     c = WO_IN;
537   }else if( op==TK_ISNULL ){
538     c = WO_ISNULL;
539   }else{
540     assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
541     c = (u16)(WO_EQ<<(op-TK_EQ));
542   }
543   assert( op!=TK_ISNULL || c==WO_ISNULL );
544   assert( op!=TK_IN || c==WO_IN );
545   assert( op!=TK_EQ || c==WO_EQ );
546   assert( op!=TK_LT || c==WO_LT );
547   assert( op!=TK_LE || c==WO_LE );
548   assert( op!=TK_GT || c==WO_GT );
549   assert( op!=TK_GE || c==WO_GE );
550   return c;
551 }
552 
553 /*
554 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
555 ** where X is a reference to the iColumn of table iCur and <op> is one of
556 ** the WO_xx operator codes specified by the op parameter.
557 ** Return a pointer to the term.  Return 0 if not found.
558 */
559 static WhereTerm *findTerm(
560   WhereClause *pWC,     /* The WHERE clause to be searched */
561   int iCur,             /* Cursor number of LHS */
562   int iColumn,          /* Column number of LHS */
563   Bitmask notReady,     /* RHS must not overlap with this mask */
564   u32 op,               /* Mask of WO_xx values describing operator */
565   Index *pIdx           /* Must be compatible with this index, if not NULL */
566 ){
567   WhereTerm *pTerm;
568   int k;
569   assert( iCur>=0 );
570   op &= WO_ALL;
571   for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
572     if( pTerm->leftCursor==iCur
573        && (pTerm->prereqRight & notReady)==0
574        && pTerm->u.leftColumn==iColumn
575        && (pTerm->eOperator & op)!=0
576     ){
577       if( pIdx && pTerm->eOperator!=WO_ISNULL ){
578         Expr *pX = pTerm->pExpr;
579         CollSeq *pColl;
580         char idxaff;
581         int j;
582         Parse *pParse = pWC->pParse;
583 
584         idxaff = pIdx->pTable->aCol[iColumn].affinity;
585         if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
586 
587         /* Figure out the collation sequence required from an index for
588         ** it to be useful for optimising expression pX. Store this
589         ** value in variable pColl.
590         */
591         assert(pX->pLeft);
592         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
593         assert(pColl || pParse->nErr);
594 
595         for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
596           if( NEVER(j>=pIdx->nColumn) ) return 0;
597         }
598         if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
599       }
600       return pTerm;
601     }
602   }
603   return 0;
604 }
605 
606 /* Forward reference */
607 static void exprAnalyze(SrcList*, WhereClause*, int);
608 
609 /*
610 ** Call exprAnalyze on all terms in a WHERE clause.
611 **
612 **
613 */
614 static void exprAnalyzeAll(
615   SrcList *pTabList,       /* the FROM clause */
616   WhereClause *pWC         /* the WHERE clause to be analyzed */
617 ){
618   int i;
619   for(i=pWC->nTerm-1; i>=0; i--){
620     exprAnalyze(pTabList, pWC, i);
621   }
622 }
623 
624 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
625 /*
626 ** Check to see if the given expression is a LIKE or GLOB operator that
627 ** can be optimized using inequality constraints.  Return TRUE if it is
628 ** so and false if not.
629 **
630 ** In order for the operator to be optimizible, the RHS must be a string
631 ** literal that does not begin with a wildcard.
632 */
633 static int isLikeOrGlob(
634   Parse *pParse,    /* Parsing and code generating context */
635   Expr *pExpr,      /* Test this expression */
636   Expr **ppPrefix,  /* Pointer to TK_STRING expression with pattern prefix */
637   int *pisComplete, /* True if the only wildcard is % in the last character */
638   int *pnoCase      /* True if uppercase is equivalent to lowercase */
639 ){
640   const char *z = 0;         /* String on RHS of LIKE operator */
641   Expr *pRight, *pLeft;      /* Right and left size of LIKE operator */
642   ExprList *pList;           /* List of operands to the LIKE operator */
643   int c;                     /* One character in z[] */
644   int cnt;                   /* Number of non-wildcard prefix characters */
645   char wc[3];                /* Wildcard characters */
646   sqlite3 *db = pParse->db;  /* Database connection */
647   sqlite3_value *pVal = 0;
648   int op;                    /* Opcode of pRight */
649 
650   if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
651     return 0;
652   }
653 #ifdef SQLITE_EBCDIC
654   if( *pnoCase ) return 0;
655 #endif
656   pList = pExpr->x.pList;
657   pLeft = pList->a[1].pExpr;
658   if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ){
659     /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must
660     ** be the name of an indexed column with TEXT affinity. */
661     return 0;
662   }
663   assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */
664 
665   pRight = pList->a[0].pExpr;
666   op = pRight->op;
667   if( op==TK_REGISTER ){
668     op = pRight->op2;
669   }
670   if( op==TK_VARIABLE ){
671     Vdbe *pReprepare = pParse->pReprepare;
672     int iCol = pRight->iColumn;
673     pVal = sqlite3VdbeGetValue(pReprepare, iCol, SQLITE_AFF_NONE);
674     if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
675       z = (char *)sqlite3_value_text(pVal);
676     }
677     sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); /* IMP: R-23257-02778 */
678     assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
679   }else if( op==TK_STRING ){
680     z = pRight->u.zToken;
681   }
682   if( z ){
683     cnt = 0;
684     while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
685       cnt++;
686     }
687     if( cnt!=0 && 255!=(u8)z[cnt-1] ){
688       Expr *pPrefix;
689       *pisComplete = c==wc[0] && z[cnt+1]==0;
690       pPrefix = sqlite3Expr(db, TK_STRING, z);
691       if( pPrefix ) pPrefix->u.zToken[cnt] = 0;
692       *ppPrefix = pPrefix;
693       if( op==TK_VARIABLE ){
694         Vdbe *v = pParse->pVdbe;
695         sqlite3VdbeSetVarmask(v, pRight->iColumn); /* IMP: R-23257-02778 */
696         if( *pisComplete && pRight->u.zToken[1] ){
697           /* If the rhs of the LIKE expression is a variable, and the current
698           ** value of the variable means there is no need to invoke the LIKE
699           ** function, then no OP_Variable will be added to the program.
700           ** This causes problems for the sqlite3_bind_parameter_name()
701           ** API. To workaround them, add a dummy OP_Variable here.
702           */
703           int r1 = sqlite3GetTempReg(pParse);
704           sqlite3ExprCodeTarget(pParse, pRight, r1);
705           sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
706           sqlite3ReleaseTempReg(pParse, r1);
707         }
708       }
709     }else{
710       z = 0;
711     }
712   }
713 
714   sqlite3ValueFree(pVal);
715   return (z!=0);
716 }
717 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
718 
719 
720 #ifndef SQLITE_OMIT_VIRTUALTABLE
721 /*
722 ** Check to see if the given expression is of the form
723 **
724 **         column MATCH expr
725 **
726 ** If it is then return TRUE.  If not, return FALSE.
727 */
728 static int isMatchOfColumn(
729   Expr *pExpr      /* Test this expression */
730 ){
731   ExprList *pList;
732 
733   if( pExpr->op!=TK_FUNCTION ){
734     return 0;
735   }
736   if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){
737     return 0;
738   }
739   pList = pExpr->x.pList;
740   if( pList->nExpr!=2 ){
741     return 0;
742   }
743   if( pList->a[1].pExpr->op != TK_COLUMN ){
744     return 0;
745   }
746   return 1;
747 }
748 #endif /* SQLITE_OMIT_VIRTUALTABLE */
749 
750 /*
751 ** If the pBase expression originated in the ON or USING clause of
752 ** a join, then transfer the appropriate markings over to derived.
753 */
754 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
755   pDerived->flags |= pBase->flags & EP_FromJoin;
756   pDerived->iRightJoinTable = pBase->iRightJoinTable;
757 }
758 
759 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
760 /*
761 ** Analyze a term that consists of two or more OR-connected
762 ** subterms.  So in:
763 **
764 **     ... WHERE  (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
765 **                          ^^^^^^^^^^^^^^^^^^^^
766 **
767 ** This routine analyzes terms such as the middle term in the above example.
768 ** A WhereOrTerm object is computed and attached to the term under
769 ** analysis, regardless of the outcome of the analysis.  Hence:
770 **
771 **     WhereTerm.wtFlags   |=  TERM_ORINFO
772 **     WhereTerm.u.pOrInfo  =  a dynamically allocated WhereOrTerm object
773 **
774 ** The term being analyzed must have two or more of OR-connected subterms.
775 ** A single subterm might be a set of AND-connected sub-subterms.
776 ** Examples of terms under analysis:
777 **
778 **     (A)     t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
779 **     (B)     x=expr1 OR expr2=x OR x=expr3
780 **     (C)     t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
781 **     (D)     x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
782 **     (E)     (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
783 **
784 ** CASE 1:
785 **
786 ** If all subterms are of the form T.C=expr for some single column of C
787 ** a single table T (as shown in example B above) then create a new virtual
788 ** term that is an equivalent IN expression.  In other words, if the term
789 ** being analyzed is:
790 **
791 **      x = expr1  OR  expr2 = x  OR  x = expr3
792 **
793 ** then create a new virtual term like this:
794 **
795 **      x IN (expr1,expr2,expr3)
796 **
797 ** CASE 2:
798 **
799 ** If all subterms are indexable by a single table T, then set
800 **
801 **     WhereTerm.eOperator              =  WO_OR
802 **     WhereTerm.u.pOrInfo->indexable  |=  the cursor number for table T
803 **
804 ** A subterm is "indexable" if it is of the form
805 ** "T.C <op> <expr>" where C is any column of table T and
806 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
807 ** A subterm is also indexable if it is an AND of two or more
808 ** subsubterms at least one of which is indexable.  Indexable AND
809 ** subterms have their eOperator set to WO_AND and they have
810 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
811 **
812 ** From another point of view, "indexable" means that the subterm could
813 ** potentially be used with an index if an appropriate index exists.
814 ** This analysis does not consider whether or not the index exists; that
815 ** is something the bestIndex() routine will determine.  This analysis
816 ** only looks at whether subterms appropriate for indexing exist.
817 **
818 ** All examples A through E above all satisfy case 2.  But if a term
819 ** also statisfies case 1 (such as B) we know that the optimizer will
820 ** always prefer case 1, so in that case we pretend that case 2 is not
821 ** satisfied.
822 **
823 ** It might be the case that multiple tables are indexable.  For example,
824 ** (E) above is indexable on tables P, Q, and R.
825 **
826 ** Terms that satisfy case 2 are candidates for lookup by using
827 ** separate indices to find rowids for each subterm and composing
828 ** the union of all rowids using a RowSet object.  This is similar
829 ** to "bitmap indices" in other database engines.
830 **
831 ** OTHERWISE:
832 **
833 ** If neither case 1 nor case 2 apply, then leave the eOperator set to
834 ** zero.  This term is not useful for search.
835 */
836 static void exprAnalyzeOrTerm(
837   SrcList *pSrc,            /* the FROM clause */
838   WhereClause *pWC,         /* the complete WHERE clause */
839   int idxTerm               /* Index of the OR-term to be analyzed */
840 ){
841   Parse *pParse = pWC->pParse;            /* Parser context */
842   sqlite3 *db = pParse->db;               /* Database connection */
843   WhereTerm *pTerm = &pWC->a[idxTerm];    /* The term to be analyzed */
844   Expr *pExpr = pTerm->pExpr;             /* The expression of the term */
845   WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */
846   int i;                                  /* Loop counters */
847   WhereClause *pOrWc;       /* Breakup of pTerm into subterms */
848   WhereTerm *pOrTerm;       /* A Sub-term within the pOrWc */
849   WhereOrInfo *pOrInfo;     /* Additional information associated with pTerm */
850   Bitmask chngToIN;         /* Tables that might satisfy case 1 */
851   Bitmask indexable;        /* Tables that are indexable, satisfying case 2 */
852 
853   /*
854   ** Break the OR clause into its separate subterms.  The subterms are
855   ** stored in a WhereClause structure containing within the WhereOrInfo
856   ** object that is attached to the original OR clause term.
857   */
858   assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
859   assert( pExpr->op==TK_OR );
860   pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
861   if( pOrInfo==0 ) return;
862   pTerm->wtFlags |= TERM_ORINFO;
863   pOrWc = &pOrInfo->wc;
864   whereClauseInit(pOrWc, pWC->pParse, pMaskSet);
865   whereSplit(pOrWc, pExpr, TK_OR);
866   exprAnalyzeAll(pSrc, pOrWc);
867   if( db->mallocFailed ) return;
868   assert( pOrWc->nTerm>=2 );
869 
870   /*
871   ** Compute the set of tables that might satisfy cases 1 or 2.
872   */
873   indexable = ~(Bitmask)0;
874   chngToIN = ~(pWC->vmask);
875   for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
876     if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
877       WhereAndInfo *pAndInfo;
878       assert( pOrTerm->eOperator==0 );
879       assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
880       chngToIN = 0;
881       pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
882       if( pAndInfo ){
883         WhereClause *pAndWC;
884         WhereTerm *pAndTerm;
885         int j;
886         Bitmask b = 0;
887         pOrTerm->u.pAndInfo = pAndInfo;
888         pOrTerm->wtFlags |= TERM_ANDINFO;
889         pOrTerm->eOperator = WO_AND;
890         pAndWC = &pAndInfo->wc;
891         whereClauseInit(pAndWC, pWC->pParse, pMaskSet);
892         whereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
893         exprAnalyzeAll(pSrc, pAndWC);
894         testcase( db->mallocFailed );
895         if( !db->mallocFailed ){
896           for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
897             assert( pAndTerm->pExpr );
898             if( allowedOp(pAndTerm->pExpr->op) ){
899               b |= getMask(pMaskSet, pAndTerm->leftCursor);
900             }
901           }
902         }
903         indexable &= b;
904       }
905     }else if( pOrTerm->wtFlags & TERM_COPIED ){
906       /* Skip this term for now.  We revisit it when we process the
907       ** corresponding TERM_VIRTUAL term */
908     }else{
909       Bitmask b;
910       b = getMask(pMaskSet, pOrTerm->leftCursor);
911       if( pOrTerm->wtFlags & TERM_VIRTUAL ){
912         WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
913         b |= getMask(pMaskSet, pOther->leftCursor);
914       }
915       indexable &= b;
916       if( pOrTerm->eOperator!=WO_EQ ){
917         chngToIN = 0;
918       }else{
919         chngToIN &= b;
920       }
921     }
922   }
923 
924   /*
925   ** Record the set of tables that satisfy case 2.  The set might be
926   ** empty.
927   */
928   pOrInfo->indexable = indexable;
929   pTerm->eOperator = indexable==0 ? 0 : WO_OR;
930 
931   /*
932   ** chngToIN holds a set of tables that *might* satisfy case 1.  But
933   ** we have to do some additional checking to see if case 1 really
934   ** is satisfied.
935   **
936   ** chngToIN will hold either 0, 1, or 2 bits.  The 0-bit case means
937   ** that there is no possibility of transforming the OR clause into an
938   ** IN operator because one or more terms in the OR clause contain
939   ** something other than == on a column in the single table.  The 1-bit
940   ** case means that every term of the OR clause is of the form
941   ** "table.column=expr" for some single table.  The one bit that is set
942   ** will correspond to the common table.  We still need to check to make
943   ** sure the same column is used on all terms.  The 2-bit case is when
944   ** the all terms are of the form "table1.column=table2.column".  It
945   ** might be possible to form an IN operator with either table1.column
946   ** or table2.column as the LHS if either is common to every term of
947   ** the OR clause.
948   **
949   ** Note that terms of the form "table.column1=table.column2" (the
950   ** same table on both sizes of the ==) cannot be optimized.
951   */
952   if( chngToIN ){
953     int okToChngToIN = 0;     /* True if the conversion to IN is valid */
954     int iColumn = -1;         /* Column index on lhs of IN operator */
955     int iCursor = -1;         /* Table cursor common to all terms */
956     int j = 0;                /* Loop counter */
957 
958     /* Search for a table and column that appears on one side or the
959     ** other of the == operator in every subterm.  That table and column
960     ** will be recorded in iCursor and iColumn.  There might not be any
961     ** such table and column.  Set okToChngToIN if an appropriate table
962     ** and column is found but leave okToChngToIN false if not found.
963     */
964     for(j=0; j<2 && !okToChngToIN; j++){
965       pOrTerm = pOrWc->a;
966       for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
967         assert( pOrTerm->eOperator==WO_EQ );
968         pOrTerm->wtFlags &= ~TERM_OR_OK;
969         if( pOrTerm->leftCursor==iCursor ){
970           /* This is the 2-bit case and we are on the second iteration and
971           ** current term is from the first iteration.  So skip this term. */
972           assert( j==1 );
973           continue;
974         }
975         if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){
976           /* This term must be of the form t1.a==t2.b where t2 is in the
977           ** chngToIN set but t1 is not.  This term will be either preceeded
978           ** or follwed by an inverted copy (t2.b==t1.a).  Skip this term
979           ** and use its inversion. */
980           testcase( pOrTerm->wtFlags & TERM_COPIED );
981           testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
982           assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
983           continue;
984         }
985         iColumn = pOrTerm->u.leftColumn;
986         iCursor = pOrTerm->leftCursor;
987         break;
988       }
989       if( i<0 ){
990         /* No candidate table+column was found.  This can only occur
991         ** on the second iteration */
992         assert( j==1 );
993         assert( (chngToIN&(chngToIN-1))==0 );
994         assert( chngToIN==getMask(pMaskSet, iCursor) );
995         break;
996       }
997       testcase( j==1 );
998 
999       /* We have found a candidate table and column.  Check to see if that
1000       ** table and column is common to every term in the OR clause */
1001       okToChngToIN = 1;
1002       for(; i>=0 && okToChngToIN; i--, pOrTerm++){
1003         assert( pOrTerm->eOperator==WO_EQ );
1004         if( pOrTerm->leftCursor!=iCursor ){
1005           pOrTerm->wtFlags &= ~TERM_OR_OK;
1006         }else if( pOrTerm->u.leftColumn!=iColumn ){
1007           okToChngToIN = 0;
1008         }else{
1009           int affLeft, affRight;
1010           /* If the right-hand side is also a column, then the affinities
1011           ** of both right and left sides must be such that no type
1012           ** conversions are required on the right.  (Ticket #2249)
1013           */
1014           affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
1015           affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
1016           if( affRight!=0 && affRight!=affLeft ){
1017             okToChngToIN = 0;
1018           }else{
1019             pOrTerm->wtFlags |= TERM_OR_OK;
1020           }
1021         }
1022       }
1023     }
1024 
1025     /* At this point, okToChngToIN is true if original pTerm satisfies
1026     ** case 1.  In that case, construct a new virtual term that is
1027     ** pTerm converted into an IN operator.
1028     **
1029     ** EV: R-00211-15100
1030     */
1031     if( okToChngToIN ){
1032       Expr *pDup;            /* A transient duplicate expression */
1033       ExprList *pList = 0;   /* The RHS of the IN operator */
1034       Expr *pLeft = 0;       /* The LHS of the IN operator */
1035       Expr *pNew;            /* The complete IN operator */
1036 
1037       for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
1038         if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
1039         assert( pOrTerm->eOperator==WO_EQ );
1040         assert( pOrTerm->leftCursor==iCursor );
1041         assert( pOrTerm->u.leftColumn==iColumn );
1042         pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
1043         pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup);
1044         pLeft = pOrTerm->pExpr->pLeft;
1045       }
1046       assert( pLeft!=0 );
1047       pDup = sqlite3ExprDup(db, pLeft, 0);
1048       pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
1049       if( pNew ){
1050         int idxNew;
1051         transferJoinMarkings(pNew, pExpr);
1052         assert( !ExprHasProperty(pNew, EP_xIsSelect) );
1053         pNew->x.pList = pList;
1054         idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
1055         testcase( idxNew==0 );
1056         exprAnalyze(pSrc, pWC, idxNew);
1057         pTerm = &pWC->a[idxTerm];
1058         pWC->a[idxNew].iParent = idxTerm;
1059         pTerm->nChild = 1;
1060       }else{
1061         sqlite3ExprListDelete(db, pList);
1062       }
1063       pTerm->eOperator = 0;  /* case 1 trumps case 2 */
1064     }
1065   }
1066 }
1067 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
1068 
1069 
1070 /*
1071 ** The input to this routine is an WhereTerm structure with only the
1072 ** "pExpr" field filled in.  The job of this routine is to analyze the
1073 ** subexpression and populate all the other fields of the WhereTerm
1074 ** structure.
1075 **
1076 ** If the expression is of the form "<expr> <op> X" it gets commuted
1077 ** to the standard form of "X <op> <expr>".
1078 **
1079 ** If the expression is of the form "X <op> Y" where both X and Y are
1080 ** columns, then the original expression is unchanged and a new virtual
1081 ** term of the form "Y <op> X" is added to the WHERE clause and
1082 ** analyzed separately.  The original term is marked with TERM_COPIED
1083 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr
1084 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
1085 ** is a commuted copy of a prior term.)  The original term has nChild=1
1086 ** and the copy has idxParent set to the index of the original term.
1087 */
1088 static void exprAnalyze(
1089   SrcList *pSrc,            /* the FROM clause */
1090   WhereClause *pWC,         /* the WHERE clause */
1091   int idxTerm               /* Index of the term to be analyzed */
1092 ){
1093   WhereTerm *pTerm;                /* The term to be analyzed */
1094   WhereMaskSet *pMaskSet;          /* Set of table index masks */
1095   Expr *pExpr;                     /* The expression to be analyzed */
1096   Bitmask prereqLeft;              /* Prerequesites of the pExpr->pLeft */
1097   Bitmask prereqAll;               /* Prerequesites of pExpr */
1098   Bitmask extraRight = 0;          /* Extra dependencies on LEFT JOIN */
1099   Expr *pStr1 = 0;                 /* RHS of LIKE/GLOB operator */
1100   int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */
1101   int noCase = 0;                  /* LIKE/GLOB distinguishes case */
1102   int op;                          /* Top-level operator.  pExpr->op */
1103   Parse *pParse = pWC->pParse;     /* Parsing context */
1104   sqlite3 *db = pParse->db;        /* Database connection */
1105 
1106   if( db->mallocFailed ){
1107     return;
1108   }
1109   pTerm = &pWC->a[idxTerm];
1110   pMaskSet = pWC->pMaskSet;
1111   pExpr = pTerm->pExpr;
1112   prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
1113   op = pExpr->op;
1114   if( op==TK_IN ){
1115     assert( pExpr->pRight==0 );
1116     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1117       pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect);
1118     }else{
1119       pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList);
1120     }
1121   }else if( op==TK_ISNULL ){
1122     pTerm->prereqRight = 0;
1123   }else{
1124     pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
1125   }
1126   prereqAll = exprTableUsage(pMaskSet, pExpr);
1127   if( ExprHasProperty(pExpr, EP_FromJoin) ){
1128     Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
1129     prereqAll |= x;
1130     extraRight = x-1;  /* ON clause terms may not be used with an index
1131                        ** on left table of a LEFT JOIN.  Ticket #3015 */
1132   }
1133   pTerm->prereqAll = prereqAll;
1134   pTerm->leftCursor = -1;
1135   pTerm->iParent = -1;
1136   pTerm->eOperator = 0;
1137   if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
1138     Expr *pLeft = pExpr->pLeft;
1139     Expr *pRight = pExpr->pRight;
1140     if( pLeft->op==TK_COLUMN ){
1141       pTerm->leftCursor = pLeft->iTable;
1142       pTerm->u.leftColumn = pLeft->iColumn;
1143       pTerm->eOperator = operatorMask(op);
1144     }
1145     if( pRight && pRight->op==TK_COLUMN ){
1146       WhereTerm *pNew;
1147       Expr *pDup;
1148       if( pTerm->leftCursor>=0 ){
1149         int idxNew;
1150         pDup = sqlite3ExprDup(db, pExpr, 0);
1151         if( db->mallocFailed ){
1152           sqlite3ExprDelete(db, pDup);
1153           return;
1154         }
1155         idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
1156         if( idxNew==0 ) return;
1157         pNew = &pWC->a[idxNew];
1158         pNew->iParent = idxTerm;
1159         pTerm = &pWC->a[idxTerm];
1160         pTerm->nChild = 1;
1161         pTerm->wtFlags |= TERM_COPIED;
1162       }else{
1163         pDup = pExpr;
1164         pNew = pTerm;
1165       }
1166       exprCommute(pParse, pDup);
1167       pLeft = pDup->pLeft;
1168       pNew->leftCursor = pLeft->iTable;
1169       pNew->u.leftColumn = pLeft->iColumn;
1170       testcase( (prereqLeft | extraRight) != prereqLeft );
1171       pNew->prereqRight = prereqLeft | extraRight;
1172       pNew->prereqAll = prereqAll;
1173       pNew->eOperator = operatorMask(pDup->op);
1174     }
1175   }
1176 
1177 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
1178   /* If a term is the BETWEEN operator, create two new virtual terms
1179   ** that define the range that the BETWEEN implements.  For example:
1180   **
1181   **      a BETWEEN b AND c
1182   **
1183   ** is converted into:
1184   **
1185   **      (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
1186   **
1187   ** The two new terms are added onto the end of the WhereClause object.
1188   ** The new terms are "dynamic" and are children of the original BETWEEN
1189   ** term.  That means that if the BETWEEN term is coded, the children are
1190   ** skipped.  Or, if the children are satisfied by an index, the original
1191   ** BETWEEN term is skipped.
1192   */
1193   else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
1194     ExprList *pList = pExpr->x.pList;
1195     int i;
1196     static const u8 ops[] = {TK_GE, TK_LE};
1197     assert( pList!=0 );
1198     assert( pList->nExpr==2 );
1199     for(i=0; i<2; i++){
1200       Expr *pNewExpr;
1201       int idxNew;
1202       pNewExpr = sqlite3PExpr(pParse, ops[i],
1203                              sqlite3ExprDup(db, pExpr->pLeft, 0),
1204                              sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
1205       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1206       testcase( idxNew==0 );
1207       exprAnalyze(pSrc, pWC, idxNew);
1208       pTerm = &pWC->a[idxTerm];
1209       pWC->a[idxNew].iParent = idxTerm;
1210     }
1211     pTerm->nChild = 2;
1212   }
1213 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
1214 
1215 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
1216   /* Analyze a term that is composed of two or more subterms connected by
1217   ** an OR operator.
1218   */
1219   else if( pExpr->op==TK_OR ){
1220     assert( pWC->op==TK_AND );
1221     exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
1222     pTerm = &pWC->a[idxTerm];
1223   }
1224 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1225 
1226 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
1227   /* Add constraints to reduce the search space on a LIKE or GLOB
1228   ** operator.
1229   **
1230   ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
1231   **
1232   **          x>='abc' AND x<'abd' AND x LIKE 'abc%'
1233   **
1234   ** The last character of the prefix "abc" is incremented to form the
1235   ** termination condition "abd".
1236   */
1237   if( pWC->op==TK_AND
1238    && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
1239   ){
1240     Expr *pLeft;       /* LHS of LIKE/GLOB operator */
1241     Expr *pStr2;       /* Copy of pStr1 - RHS of LIKE/GLOB operator */
1242     Expr *pNewExpr1;
1243     Expr *pNewExpr2;
1244     int idxNew1;
1245     int idxNew2;
1246     CollSeq *pColl;    /* Collating sequence to use */
1247 
1248     pLeft = pExpr->x.pList->a[1].pExpr;
1249     pStr2 = sqlite3ExprDup(db, pStr1, 0);
1250     if( !db->mallocFailed ){
1251       u8 c, *pC;       /* Last character before the first wildcard */
1252       pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
1253       c = *pC;
1254       if( noCase ){
1255         /* The point is to increment the last character before the first
1256         ** wildcard.  But if we increment '@', that will push it into the
1257         ** alphabetic range where case conversions will mess up the
1258         ** inequality.  To avoid this, make sure to also run the full
1259         ** LIKE on all candidate expressions by clearing the isComplete flag
1260         */
1261         if( c=='A'-1 ) isComplete = 0;   /* EV: R-64339-08207 */
1262 
1263 
1264         c = sqlite3UpperToLower[c];
1265       }
1266       *pC = c + 1;
1267     }
1268     pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, noCase ? "NOCASE" : "BINARY",0);
1269     pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
1270                      sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl),
1271                      pStr1, 0);
1272     idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
1273     testcase( idxNew1==0 );
1274     exprAnalyze(pSrc, pWC, idxNew1);
1275     pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
1276                      sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl),
1277                      pStr2, 0);
1278     idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
1279     testcase( idxNew2==0 );
1280     exprAnalyze(pSrc, pWC, idxNew2);
1281     pTerm = &pWC->a[idxTerm];
1282     if( isComplete ){
1283       pWC->a[idxNew1].iParent = idxTerm;
1284       pWC->a[idxNew2].iParent = idxTerm;
1285       pTerm->nChild = 2;
1286     }
1287   }
1288 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
1289 
1290 #ifndef SQLITE_OMIT_VIRTUALTABLE
1291   /* Add a WO_MATCH auxiliary term to the constraint set if the
1292   ** current expression is of the form:  column MATCH expr.
1293   ** This information is used by the xBestIndex methods of
1294   ** virtual tables.  The native query optimizer does not attempt
1295   ** to do anything with MATCH functions.
1296   */
1297   if( isMatchOfColumn(pExpr) ){
1298     int idxNew;
1299     Expr *pRight, *pLeft;
1300     WhereTerm *pNewTerm;
1301     Bitmask prereqColumn, prereqExpr;
1302 
1303     pRight = pExpr->x.pList->a[0].pExpr;
1304     pLeft = pExpr->x.pList->a[1].pExpr;
1305     prereqExpr = exprTableUsage(pMaskSet, pRight);
1306     prereqColumn = exprTableUsage(pMaskSet, pLeft);
1307     if( (prereqExpr & prereqColumn)==0 ){
1308       Expr *pNewExpr;
1309       pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
1310                               0, sqlite3ExprDup(db, pRight, 0), 0);
1311       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1312       testcase( idxNew==0 );
1313       pNewTerm = &pWC->a[idxNew];
1314       pNewTerm->prereqRight = prereqExpr;
1315       pNewTerm->leftCursor = pLeft->iTable;
1316       pNewTerm->u.leftColumn = pLeft->iColumn;
1317       pNewTerm->eOperator = WO_MATCH;
1318       pNewTerm->iParent = idxTerm;
1319       pTerm = &pWC->a[idxTerm];
1320       pTerm->nChild = 1;
1321       pTerm->wtFlags |= TERM_COPIED;
1322       pNewTerm->prereqAll = pTerm->prereqAll;
1323     }
1324   }
1325 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1326 
1327   /* Prevent ON clause terms of a LEFT JOIN from being used to drive
1328   ** an index for tables to the left of the join.
1329   */
1330   pTerm->prereqRight |= extraRight;
1331 }
1332 
1333 /*
1334 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain
1335 ** a reference to any table other than the iBase table.
1336 */
1337 static int referencesOtherTables(
1338   ExprList *pList,          /* Search expressions in ths list */
1339   WhereMaskSet *pMaskSet,   /* Mapping from tables to bitmaps */
1340   int iFirst,               /* Be searching with the iFirst-th expression */
1341   int iBase                 /* Ignore references to this table */
1342 ){
1343   Bitmask allowed = ~getMask(pMaskSet, iBase);
1344   while( iFirst<pList->nExpr ){
1345     if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
1346       return 1;
1347     }
1348   }
1349   return 0;
1350 }
1351 
1352 
1353 /*
1354 ** This routine decides if pIdx can be used to satisfy the ORDER BY
1355 ** clause.  If it can, it returns 1.  If pIdx cannot satisfy the
1356 ** ORDER BY clause, this routine returns 0.
1357 **
1358 ** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
1359 ** left-most table in the FROM clause of that same SELECT statement and
1360 ** the table has a cursor number of "base".  pIdx is an index on pTab.
1361 **
1362 ** nEqCol is the number of columns of pIdx that are used as equality
1363 ** constraints.  Any of these columns may be missing from the ORDER BY
1364 ** clause and the match can still be a success.
1365 **
1366 ** All terms of the ORDER BY that match against the index must be either
1367 ** ASC or DESC.  (Terms of the ORDER BY clause past the end of a UNIQUE
1368 ** index do not need to satisfy this constraint.)  The *pbRev value is
1369 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
1370 ** the ORDER BY clause is all ASC.
1371 */
1372 static int isSortingIndex(
1373   Parse *pParse,          /* Parsing context */
1374   WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */
1375   Index *pIdx,            /* The index we are testing */
1376   int base,               /* Cursor number for the table to be sorted */
1377   ExprList *pOrderBy,     /* The ORDER BY clause */
1378   int nEqCol,             /* Number of index columns with == constraints */
1379   int *pbRev              /* Set to 1 if ORDER BY is DESC */
1380 ){
1381   int i, j;                       /* Loop counters */
1382   int sortOrder = 0;              /* XOR of index and ORDER BY sort direction */
1383   int nTerm;                      /* Number of ORDER BY terms */
1384   struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */
1385   sqlite3 *db = pParse->db;
1386 
1387   assert( pOrderBy!=0 );
1388   nTerm = pOrderBy->nExpr;
1389   assert( nTerm>0 );
1390 
1391   /* Argument pIdx must either point to a 'real' named index structure,
1392   ** or an index structure allocated on the stack by bestBtreeIndex() to
1393   ** represent the rowid index that is part of every table.  */
1394   assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) );
1395 
1396   /* Match terms of the ORDER BY clause against columns of
1397   ** the index.
1398   **
1399   ** Note that indices have pIdx->nColumn regular columns plus
1400   ** one additional column containing the rowid.  The rowid column
1401   ** of the index is also allowed to match against the ORDER BY
1402   ** clause.
1403   */
1404   for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
1405     Expr *pExpr;       /* The expression of the ORDER BY pTerm */
1406     CollSeq *pColl;    /* The collating sequence of pExpr */
1407     int termSortOrder; /* Sort order for this term */
1408     int iColumn;       /* The i-th column of the index.  -1 for rowid */
1409     int iSortOrder;    /* 1 for DESC, 0 for ASC on the i-th index term */
1410     const char *zColl; /* Name of the collating sequence for i-th index term */
1411 
1412     pExpr = pTerm->pExpr;
1413     if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
1414       /* Can not use an index sort on anything that is not a column in the
1415       ** left-most table of the FROM clause */
1416       break;
1417     }
1418     pColl = sqlite3ExprCollSeq(pParse, pExpr);
1419     if( !pColl ){
1420       pColl = db->pDfltColl;
1421     }
1422     if( pIdx->zName && i<pIdx->nColumn ){
1423       iColumn = pIdx->aiColumn[i];
1424       if( iColumn==pIdx->pTable->iPKey ){
1425         iColumn = -1;
1426       }
1427       iSortOrder = pIdx->aSortOrder[i];
1428       zColl = pIdx->azColl[i];
1429     }else{
1430       iColumn = -1;
1431       iSortOrder = 0;
1432       zColl = pColl->zName;
1433     }
1434     if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
1435       /* Term j of the ORDER BY clause does not match column i of the index */
1436       if( i<nEqCol ){
1437         /* If an index column that is constrained by == fails to match an
1438         ** ORDER BY term, that is OK.  Just ignore that column of the index
1439         */
1440         continue;
1441       }else if( i==pIdx->nColumn ){
1442         /* Index column i is the rowid.  All other terms match. */
1443         break;
1444       }else{
1445         /* If an index column fails to match and is not constrained by ==
1446         ** then the index cannot satisfy the ORDER BY constraint.
1447         */
1448         return 0;
1449       }
1450     }
1451     assert( pIdx->aSortOrder!=0 || iColumn==-1 );
1452     assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
1453     assert( iSortOrder==0 || iSortOrder==1 );
1454     termSortOrder = iSortOrder ^ pTerm->sortOrder;
1455     if( i>nEqCol ){
1456       if( termSortOrder!=sortOrder ){
1457         /* Indices can only be used if all ORDER BY terms past the
1458         ** equality constraints are all either DESC or ASC. */
1459         return 0;
1460       }
1461     }else{
1462       sortOrder = termSortOrder;
1463     }
1464     j++;
1465     pTerm++;
1466     if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
1467       /* If the indexed column is the primary key and everything matches
1468       ** so far and none of the ORDER BY terms to the right reference other
1469       ** tables in the join, then we are assured that the index can be used
1470       ** to sort because the primary key is unique and so none of the other
1471       ** columns will make any difference
1472       */
1473       j = nTerm;
1474     }
1475   }
1476 
1477   *pbRev = sortOrder!=0;
1478   if( j>=nTerm ){
1479     /* All terms of the ORDER BY clause are covered by this index so
1480     ** this index can be used for sorting. */
1481     return 1;
1482   }
1483   if( pIdx->onError!=OE_None && i==pIdx->nColumn
1484       && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
1485     /* All terms of this index match some prefix of the ORDER BY clause
1486     ** and the index is UNIQUE and no terms on the tail of the ORDER BY
1487     ** clause reference other tables in a join.  If this is all true then
1488     ** the order by clause is superfluous. */
1489     return 1;
1490   }
1491   return 0;
1492 }
1493 
1494 /*
1495 ** Prepare a crude estimate of the logarithm of the input value.
1496 ** The results need not be exact.  This is only used for estimating
1497 ** the total cost of performing operations with O(logN) or O(NlogN)
1498 ** complexity.  Because N is just a guess, it is no great tragedy if
1499 ** logN is a little off.
1500 */
1501 static double estLog(double N){
1502   double logN = 1;
1503   double x = 10;
1504   while( N>x ){
1505     logN += 1;
1506     x *= 10;
1507   }
1508   return logN;
1509 }
1510 
1511 /*
1512 ** Two routines for printing the content of an sqlite3_index_info
1513 ** structure.  Used for testing and debugging only.  If neither
1514 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
1515 ** are no-ops.
1516 */
1517 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
1518 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
1519   int i;
1520   if( !sqlite3WhereTrace ) return;
1521   for(i=0; i<p->nConstraint; i++){
1522     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
1523        i,
1524        p->aConstraint[i].iColumn,
1525        p->aConstraint[i].iTermOffset,
1526        p->aConstraint[i].op,
1527        p->aConstraint[i].usable);
1528   }
1529   for(i=0; i<p->nOrderBy; i++){
1530     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
1531        i,
1532        p->aOrderBy[i].iColumn,
1533        p->aOrderBy[i].desc);
1534   }
1535 }
1536 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
1537   int i;
1538   if( !sqlite3WhereTrace ) return;
1539   for(i=0; i<p->nConstraint; i++){
1540     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
1541        i,
1542        p->aConstraintUsage[i].argvIndex,
1543        p->aConstraintUsage[i].omit);
1544   }
1545   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
1546   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
1547   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
1548   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
1549 }
1550 #else
1551 #define TRACE_IDX_INPUTS(A)
1552 #define TRACE_IDX_OUTPUTS(A)
1553 #endif
1554 
1555 /*
1556 ** Required because bestIndex() is called by bestOrClauseIndex()
1557 */
1558 static void bestIndex(
1559     Parse*, WhereClause*, struct SrcList_item*, Bitmask, ExprList*, WhereCost*);
1560 
1561 /*
1562 ** This routine attempts to find an scanning strategy that can be used
1563 ** to optimize an 'OR' expression that is part of a WHERE clause.
1564 **
1565 ** The table associated with FROM clause term pSrc may be either a
1566 ** regular B-Tree table or a virtual table.
1567 */
1568 static void bestOrClauseIndex(
1569   Parse *pParse,              /* The parsing context */
1570   WhereClause *pWC,           /* The WHERE clause */
1571   struct SrcList_item *pSrc,  /* The FROM clause term to search */
1572   Bitmask notReady,           /* Mask of cursors that are not available */
1573   ExprList *pOrderBy,         /* The ORDER BY clause */
1574   WhereCost *pCost            /* Lowest cost query plan */
1575 ){
1576 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1577   const int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
1578   const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur);  /* Bitmask for pSrc */
1579   WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm];        /* End of pWC->a[] */
1580   WhereTerm *pTerm;                 /* A single term of the WHERE clause */
1581 
1582   /* No OR-clause optimization allowed if the NOT INDEXED clause is used */
1583   if( pSrc->notIndexed ){
1584     return;
1585   }
1586 
1587   /* Search the WHERE clause terms for a usable WO_OR term. */
1588   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
1589     if( pTerm->eOperator==WO_OR
1590      && ((pTerm->prereqAll & ~maskSrc) & notReady)==0
1591      && (pTerm->u.pOrInfo->indexable & maskSrc)!=0
1592     ){
1593       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
1594       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
1595       WhereTerm *pOrTerm;
1596       int flags = WHERE_MULTI_OR;
1597       double rTotal = 0;
1598       double nRow = 0;
1599       Bitmask used = 0;
1600 
1601       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
1602         WhereCost sTermCost;
1603         WHERETRACE(("... Multi-index OR testing for term %d of %d....\n",
1604           (pOrTerm - pOrWC->a), (pTerm - pWC->a)
1605         ));
1606         if( pOrTerm->eOperator==WO_AND ){
1607           WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc;
1608           bestIndex(pParse, pAndWC, pSrc, notReady, 0, &sTermCost);
1609         }else if( pOrTerm->leftCursor==iCur ){
1610           WhereClause tempWC;
1611           tempWC.pParse = pWC->pParse;
1612           tempWC.pMaskSet = pWC->pMaskSet;
1613           tempWC.op = TK_AND;
1614           tempWC.a = pOrTerm;
1615           tempWC.nTerm = 1;
1616           bestIndex(pParse, &tempWC, pSrc, notReady, 0, &sTermCost);
1617         }else{
1618           continue;
1619         }
1620         rTotal += sTermCost.rCost;
1621         nRow += sTermCost.nRow;
1622         used |= sTermCost.used;
1623         if( rTotal>=pCost->rCost ) break;
1624       }
1625 
1626       /* If there is an ORDER BY clause, increase the scan cost to account
1627       ** for the cost of the sort. */
1628       if( pOrderBy!=0 ){
1629         WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n",
1630                     rTotal, rTotal+nRow*estLog(nRow)));
1631         rTotal += nRow*estLog(nRow);
1632       }
1633 
1634       /* If the cost of scanning using this OR term for optimization is
1635       ** less than the current cost stored in pCost, replace the contents
1636       ** of pCost. */
1637       WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow));
1638       if( rTotal<pCost->rCost ){
1639         pCost->rCost = rTotal;
1640         pCost->nRow = nRow;
1641         pCost->used = used;
1642         pCost->plan.wsFlags = flags;
1643         pCost->plan.u.pTerm = pTerm;
1644       }
1645     }
1646   }
1647 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1648 }
1649 
1650 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
1651 /*
1652 ** Return TRUE if the WHERE clause term pTerm is of a form where it
1653 ** could be used with an index to access pSrc, assuming an appropriate
1654 ** index existed.
1655 */
1656 static int termCanDriveIndex(
1657   WhereTerm *pTerm,              /* WHERE clause term to check */
1658   struct SrcList_item *pSrc,     /* Table we are trying to access */
1659   Bitmask notReady               /* Tables in outer loops of the join */
1660 ){
1661   char aff;
1662   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
1663   if( pTerm->eOperator!=WO_EQ ) return 0;
1664   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
1665   aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
1666   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
1667   return 1;
1668 }
1669 #endif
1670 
1671 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
1672 /*
1673 ** If the query plan for pSrc specified in pCost is a full table scan
1674 ** and indexing is allows (if there is no NOT INDEXED clause) and it
1675 ** possible to construct a transient index that would perform better
1676 ** than a full table scan even when the cost of constructing the index
1677 ** is taken into account, then alter the query plan to use the
1678 ** transient index.
1679 */
1680 static void bestAutomaticIndex(
1681   Parse *pParse,              /* The parsing context */
1682   WhereClause *pWC,           /* The WHERE clause */
1683   struct SrcList_item *pSrc,  /* The FROM clause term to search */
1684   Bitmask notReady,           /* Mask of cursors that are not available */
1685   WhereCost *pCost            /* Lowest cost query plan */
1686 ){
1687   double nTableRow;           /* Rows in the input table */
1688   double logN;                /* log(nTableRow) */
1689   double costTempIdx;         /* per-query cost of the transient index */
1690   WhereTerm *pTerm;           /* A single term of the WHERE clause */
1691   WhereTerm *pWCEnd;          /* End of pWC->a[] */
1692   Table *pTable;              /* Table tht might be indexed */
1693 
1694   if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){
1695     /* Automatic indices are disabled at run-time */
1696     return;
1697   }
1698   if( (pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)!=0 ){
1699     /* We already have some kind of index in use for this query. */
1700     return;
1701   }
1702   if( pSrc->notIndexed ){
1703     /* The NOT INDEXED clause appears in the SQL. */
1704     return;
1705   }
1706 
1707   assert( pParse->nQueryLoop >= (double)1 );
1708   pTable = pSrc->pTab;
1709   nTableRow = pTable->pIndex ? pTable->pIndex->aiRowEst[0] : 1000000;
1710   logN = estLog(nTableRow);
1711   costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1);
1712   if( costTempIdx>=pCost->rCost ){
1713     /* The cost of creating the transient table would be greater than
1714     ** doing the full table scan */
1715     return;
1716   }
1717 
1718   /* Search for any equality comparison term */
1719   pWCEnd = &pWC->a[pWC->nTerm];
1720   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
1721     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
1722       WHERETRACE(("auto-index reduces cost from %.2f to %.2f\n",
1723                     pCost->rCost, costTempIdx));
1724       pCost->rCost = costTempIdx;
1725       pCost->nRow = logN + 1;
1726       pCost->plan.wsFlags = WHERE_TEMP_INDEX;
1727       pCost->used = pTerm->prereqRight;
1728       break;
1729     }
1730   }
1731 }
1732 #else
1733 # define bestAutomaticIndex(A,B,C,D,E)  /* no-op */
1734 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
1735 
1736 
1737 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
1738 /*
1739 ** Generate code to construct the Index object for an automatic index
1740 ** and to set up the WhereLevel object pLevel so that the code generator
1741 ** makes use of the automatic index.
1742 */
1743 static void constructAutomaticIndex(
1744   Parse *pParse,              /* The parsing context */
1745   WhereClause *pWC,           /* The WHERE clause */
1746   struct SrcList_item *pSrc,  /* The FROM clause term to get the next index */
1747   Bitmask notReady,           /* Mask of cursors that are not available */
1748   WhereLevel *pLevel          /* Write new index here */
1749 ){
1750   int nColumn;                /* Number of columns in the constructed index */
1751   WhereTerm *pTerm;           /* A single term of the WHERE clause */
1752   WhereTerm *pWCEnd;          /* End of pWC->a[] */
1753   int nByte;                  /* Byte of memory needed for pIdx */
1754   Index *pIdx;                /* Object describing the transient index */
1755   Vdbe *v;                    /* Prepared statement under construction */
1756   int regIsInit;              /* Register set by initialization */
1757   int addrInit;               /* Address of the initialization bypass jump */
1758   Table *pTable;              /* The table being indexed */
1759   KeyInfo *pKeyinfo;          /* Key information for the index */
1760   int addrTop;                /* Top of the index fill loop */
1761   int regRecord;              /* Register holding an index record */
1762   int n;                      /* Column counter */
1763   int i;                      /* Loop counter */
1764   int mxBitCol;               /* Maximum column in pSrc->colUsed */
1765   CollSeq *pColl;             /* Collating sequence to on a column */
1766   Bitmask idxCols;            /* Bitmap of columns used for indexing */
1767   Bitmask extraCols;          /* Bitmap of additional columns */
1768 
1769   /* Generate code to skip over the creation and initialization of the
1770   ** transient index on 2nd and subsequent iterations of the loop. */
1771   v = pParse->pVdbe;
1772   assert( v!=0 );
1773   regIsInit = ++pParse->nMem;
1774   addrInit = sqlite3VdbeAddOp1(v, OP_If, regIsInit);
1775   sqlite3VdbeAddOp2(v, OP_Integer, 1, regIsInit);
1776 
1777   /* Count the number of columns that will be added to the index
1778   ** and used to match WHERE clause constraints */
1779   nColumn = 0;
1780   pTable = pSrc->pTab;
1781   pWCEnd = &pWC->a[pWC->nTerm];
1782   idxCols = 0;
1783   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
1784     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
1785       int iCol = pTerm->u.leftColumn;
1786       Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;
1787       testcase( iCol==BMS );
1788       testcase( iCol==BMS-1 );
1789       if( (idxCols & cMask)==0 ){
1790         nColumn++;
1791         idxCols |= cMask;
1792       }
1793     }
1794   }
1795   assert( nColumn>0 );
1796   pLevel->plan.nEq = nColumn;
1797 
1798   /* Count the number of additional columns needed to create a
1799   ** covering index.  A "covering index" is an index that contains all
1800   ** columns that are needed by the query.  With a covering index, the
1801   ** original table never needs to be accessed.  Automatic indices must
1802   ** be a covering index because the index will not be updated if the
1803   ** original table changes and the index and table cannot both be used
1804   ** if they go out of sync.
1805   */
1806   extraCols = pSrc->colUsed & (~idxCols | (((Bitmask)1)<<(BMS-1)));
1807   mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol;
1808   testcase( pTable->nCol==BMS-1 );
1809   testcase( pTable->nCol==BMS-2 );
1810   for(i=0; i<mxBitCol; i++){
1811     if( extraCols & (((Bitmask)1)<<i) ) nColumn++;
1812   }
1813   if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
1814     nColumn += pTable->nCol - BMS + 1;
1815   }
1816   pLevel->plan.wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WO_EQ;
1817 
1818   /* Construct the Index object to describe this index */
1819   nByte = sizeof(Index);
1820   nByte += nColumn*sizeof(int);     /* Index.aiColumn */
1821   nByte += nColumn*sizeof(char*);   /* Index.azColl */
1822   nByte += nColumn;                 /* Index.aSortOrder */
1823   pIdx = sqlite3DbMallocZero(pParse->db, nByte);
1824   if( pIdx==0 ) return;
1825   pLevel->plan.u.pIdx = pIdx;
1826   pIdx->azColl = (char**)&pIdx[1];
1827   pIdx->aiColumn = (int*)&pIdx->azColl[nColumn];
1828   pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn];
1829   pIdx->zName = "auto-index";
1830   pIdx->nColumn = nColumn;
1831   pIdx->pTable = pTable;
1832   n = 0;
1833   idxCols = 0;
1834   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
1835     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
1836       int iCol = pTerm->u.leftColumn;
1837       Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;
1838       if( (idxCols & cMask)==0 ){
1839         Expr *pX = pTerm->pExpr;
1840         idxCols |= cMask;
1841         pIdx->aiColumn[n] = pTerm->u.leftColumn;
1842         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
1843         pIdx->azColl[n] = pColl->zName;
1844         n++;
1845       }
1846     }
1847   }
1848   assert( (u32)n==pLevel->plan.nEq );
1849 
1850   /* Add additional columns needed to make the automatic index into
1851   ** a covering index */
1852   for(i=0; i<mxBitCol; i++){
1853     if( extraCols & (((Bitmask)1)<<i) ){
1854       pIdx->aiColumn[n] = i;
1855       pIdx->azColl[n] = "BINARY";
1856       n++;
1857     }
1858   }
1859   if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
1860     for(i=BMS-1; i<pTable->nCol; i++){
1861       pIdx->aiColumn[n] = i;
1862       pIdx->azColl[n] = "BINARY";
1863       n++;
1864     }
1865   }
1866   assert( n==nColumn );
1867 
1868   /* Create the automatic index */
1869   pKeyinfo = sqlite3IndexKeyinfo(pParse, pIdx);
1870   assert( pLevel->iIdxCur>=0 );
1871   sqlite3VdbeAddOp4(v, OP_OpenAutoindex, pLevel->iIdxCur, nColumn+1, 0,
1872                     (char*)pKeyinfo, P4_KEYINFO_HANDOFF);
1873   VdbeComment((v, "for %s", pTable->zName));
1874 
1875   /* Fill the automatic index with content */
1876   addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur);
1877   regRecord = sqlite3GetTempReg(pParse);
1878   sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 1);
1879   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
1880   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1881   sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
1882   sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
1883   sqlite3VdbeJumpHere(v, addrTop);
1884   sqlite3ReleaseTempReg(pParse, regRecord);
1885 
1886   /* Jump here when skipping the initialization */
1887   sqlite3VdbeJumpHere(v, addrInit);
1888 }
1889 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
1890 
1891 #ifndef SQLITE_OMIT_VIRTUALTABLE
1892 /*
1893 ** Allocate and populate an sqlite3_index_info structure. It is the
1894 ** responsibility of the caller to eventually release the structure
1895 ** by passing the pointer returned by this function to sqlite3_free().
1896 */
1897 static sqlite3_index_info *allocateIndexInfo(
1898   Parse *pParse,
1899   WhereClause *pWC,
1900   struct SrcList_item *pSrc,
1901   ExprList *pOrderBy
1902 ){
1903   int i, j;
1904   int nTerm;
1905   struct sqlite3_index_constraint *pIdxCons;
1906   struct sqlite3_index_orderby *pIdxOrderBy;
1907   struct sqlite3_index_constraint_usage *pUsage;
1908   WhereTerm *pTerm;
1909   int nOrderBy;
1910   sqlite3_index_info *pIdxInfo;
1911 
1912   WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName));
1913 
1914   /* Count the number of possible WHERE clause constraints referring
1915   ** to this virtual table */
1916   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1917     if( pTerm->leftCursor != pSrc->iCursor ) continue;
1918     assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
1919     testcase( pTerm->eOperator==WO_IN );
1920     testcase( pTerm->eOperator==WO_ISNULL );
1921     if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
1922     nTerm++;
1923   }
1924 
1925   /* If the ORDER BY clause contains only columns in the current
1926   ** virtual table then allocate space for the aOrderBy part of
1927   ** the sqlite3_index_info structure.
1928   */
1929   nOrderBy = 0;
1930   if( pOrderBy ){
1931     for(i=0; i<pOrderBy->nExpr; i++){
1932       Expr *pExpr = pOrderBy->a[i].pExpr;
1933       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
1934     }
1935     if( i==pOrderBy->nExpr ){
1936       nOrderBy = pOrderBy->nExpr;
1937     }
1938   }
1939 
1940   /* Allocate the sqlite3_index_info structure
1941   */
1942   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1943                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1944                            + sizeof(*pIdxOrderBy)*nOrderBy );
1945   if( pIdxInfo==0 ){
1946     sqlite3ErrorMsg(pParse, "out of memory");
1947     /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1948     return 0;
1949   }
1950 
1951   /* Initialize the structure.  The sqlite3_index_info structure contains
1952   ** many fields that are declared "const" to prevent xBestIndex from
1953   ** changing them.  We have to do some funky casting in order to
1954   ** initialize those fields.
1955   */
1956   pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
1957   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1958   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1959   *(int*)&pIdxInfo->nConstraint = nTerm;
1960   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
1961   *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
1962   *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
1963   *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
1964                                                                    pUsage;
1965 
1966   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1967     if( pTerm->leftCursor != pSrc->iCursor ) continue;
1968     assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
1969     testcase( pTerm->eOperator==WO_IN );
1970     testcase( pTerm->eOperator==WO_ISNULL );
1971     if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
1972     pIdxCons[j].iColumn = pTerm->u.leftColumn;
1973     pIdxCons[j].iTermOffset = i;
1974     pIdxCons[j].op = (u8)pTerm->eOperator;
1975     /* The direct assignment in the previous line is possible only because
1976     ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1977     ** following asserts verify this fact. */
1978     assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1979     assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1980     assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1981     assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1982     assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1983     assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
1984     assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
1985     j++;
1986   }
1987   for(i=0; i<nOrderBy; i++){
1988     Expr *pExpr = pOrderBy->a[i].pExpr;
1989     pIdxOrderBy[i].iColumn = pExpr->iColumn;
1990     pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
1991   }
1992 
1993   return pIdxInfo;
1994 }
1995 
1996 /*
1997 ** The table object reference passed as the second argument to this function
1998 ** must represent a virtual table. This function invokes the xBestIndex()
1999 ** method of the virtual table with the sqlite3_index_info pointer passed
2000 ** as the argument.
2001 **
2002 ** If an error occurs, pParse is populated with an error message and a
2003 ** non-zero value is returned. Otherwise, 0 is returned and the output
2004 ** part of the sqlite3_index_info structure is left populated.
2005 **
2006 ** Whether or not an error is returned, it is the responsibility of the
2007 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
2008 ** that this is required.
2009 */
2010 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
2011   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
2012   int i;
2013   int rc;
2014 
2015   WHERETRACE(("xBestIndex for %s\n", pTab->zName));
2016   TRACE_IDX_INPUTS(p);
2017   rc = pVtab->pModule->xBestIndex(pVtab, p);
2018   TRACE_IDX_OUTPUTS(p);
2019 
2020   if( rc!=SQLITE_OK ){
2021     if( rc==SQLITE_NOMEM ){
2022       pParse->db->mallocFailed = 1;
2023     }else if( !pVtab->zErrMsg ){
2024       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
2025     }else{
2026       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
2027     }
2028   }
2029   sqlite3_free(pVtab->zErrMsg);
2030   pVtab->zErrMsg = 0;
2031 
2032   for(i=0; i<p->nConstraint; i++){
2033     if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
2034       sqlite3ErrorMsg(pParse,
2035           "table %s: xBestIndex returned an invalid plan", pTab->zName);
2036     }
2037   }
2038 
2039   return pParse->nErr;
2040 }
2041 
2042 
2043 /*
2044 ** Compute the best index for a virtual table.
2045 **
2046 ** The best index is computed by the xBestIndex method of the virtual
2047 ** table module.  This routine is really just a wrapper that sets up
2048 ** the sqlite3_index_info structure that is used to communicate with
2049 ** xBestIndex.
2050 **
2051 ** In a join, this routine might be called multiple times for the
2052 ** same virtual table.  The sqlite3_index_info structure is created
2053 ** and initialized on the first invocation and reused on all subsequent
2054 ** invocations.  The sqlite3_index_info structure is also used when
2055 ** code is generated to access the virtual table.  The whereInfoDelete()
2056 ** routine takes care of freeing the sqlite3_index_info structure after
2057 ** everybody has finished with it.
2058 */
2059 static void bestVirtualIndex(
2060   Parse *pParse,                  /* The parsing context */
2061   WhereClause *pWC,               /* The WHERE clause */
2062   struct SrcList_item *pSrc,      /* The FROM clause term to search */
2063   Bitmask notReady,               /* Mask of cursors that are not available */
2064   ExprList *pOrderBy,             /* The order by clause */
2065   WhereCost *pCost,               /* Lowest cost query plan */
2066   sqlite3_index_info **ppIdxInfo  /* Index information passed to xBestIndex */
2067 ){
2068   Table *pTab = pSrc->pTab;
2069   sqlite3_index_info *pIdxInfo;
2070   struct sqlite3_index_constraint *pIdxCons;
2071   struct sqlite3_index_constraint_usage *pUsage;
2072   WhereTerm *pTerm;
2073   int i, j;
2074   int nOrderBy;
2075   double rCost;
2076 
2077   /* Make sure wsFlags is initialized to some sane value. Otherwise, if the
2078   ** malloc in allocateIndexInfo() fails and this function returns leaving
2079   ** wsFlags in an uninitialized state, the caller may behave unpredictably.
2080   */
2081   memset(pCost, 0, sizeof(*pCost));
2082   pCost->plan.wsFlags = WHERE_VIRTUALTABLE;
2083 
2084   /* If the sqlite3_index_info structure has not been previously
2085   ** allocated and initialized, then allocate and initialize it now.
2086   */
2087   pIdxInfo = *ppIdxInfo;
2088   if( pIdxInfo==0 ){
2089     *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy);
2090   }
2091   if( pIdxInfo==0 ){
2092     return;
2093   }
2094 
2095   /* At this point, the sqlite3_index_info structure that pIdxInfo points
2096   ** to will have been initialized, either during the current invocation or
2097   ** during some prior invocation.  Now we just have to customize the
2098   ** details of pIdxInfo for the current invocation and pass it to
2099   ** xBestIndex.
2100   */
2101 
2102   /* The module name must be defined. Also, by this point there must
2103   ** be a pointer to an sqlite3_vtab structure. Otherwise
2104   ** sqlite3ViewGetColumnNames() would have picked up the error.
2105   */
2106   assert( pTab->azModuleArg && pTab->azModuleArg[0] );
2107   assert( sqlite3GetVTable(pParse->db, pTab) );
2108 
2109   /* Set the aConstraint[].usable fields and initialize all
2110   ** output variables to zero.
2111   **
2112   ** aConstraint[].usable is true for constraints where the right-hand
2113   ** side contains only references to tables to the left of the current
2114   ** table.  In other words, if the constraint is of the form:
2115   **
2116   **           column = expr
2117   **
2118   ** and we are evaluating a join, then the constraint on column is
2119   ** only valid if all tables referenced in expr occur to the left
2120   ** of the table containing column.
2121   **
2122   ** The aConstraints[] array contains entries for all constraints
2123   ** on the current table.  That way we only have to compute it once
2124   ** even though we might try to pick the best index multiple times.
2125   ** For each attempt at picking an index, the order of tables in the
2126   ** join might be different so we have to recompute the usable flag
2127   ** each time.
2128   */
2129   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
2130   pUsage = pIdxInfo->aConstraintUsage;
2131   for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
2132     j = pIdxCons->iTermOffset;
2133     pTerm = &pWC->a[j];
2134     pIdxCons->usable = (pTerm->prereqRight&notReady) ? 0 : 1;
2135   }
2136   memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
2137   if( pIdxInfo->needToFreeIdxStr ){
2138     sqlite3_free(pIdxInfo->idxStr);
2139   }
2140   pIdxInfo->idxStr = 0;
2141   pIdxInfo->idxNum = 0;
2142   pIdxInfo->needToFreeIdxStr = 0;
2143   pIdxInfo->orderByConsumed = 0;
2144   /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
2145   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
2146   nOrderBy = pIdxInfo->nOrderBy;
2147   if( !pOrderBy ){
2148     pIdxInfo->nOrderBy = 0;
2149   }
2150 
2151   if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
2152     return;
2153   }
2154 
2155   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
2156   for(i=0; i<pIdxInfo->nConstraint; i++){
2157     if( pUsage[i].argvIndex>0 ){
2158       pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight;
2159     }
2160   }
2161 
2162   /* If there is an ORDER BY clause, and the selected virtual table index
2163   ** does not satisfy it, increase the cost of the scan accordingly. This
2164   ** matches the processing for non-virtual tables in bestBtreeIndex().
2165   */
2166   rCost = pIdxInfo->estimatedCost;
2167   if( pOrderBy && pIdxInfo->orderByConsumed==0 ){
2168     rCost += estLog(rCost)*rCost;
2169   }
2170 
2171   /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
2172   ** inital value of lowestCost in this loop. If it is, then the
2173   ** (cost<lowestCost) test below will never be true.
2174   **
2175   ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT
2176   ** is defined.
2177   */
2178   if( (SQLITE_BIG_DBL/((double)2))<rCost ){
2179     pCost->rCost = (SQLITE_BIG_DBL/((double)2));
2180   }else{
2181     pCost->rCost = rCost;
2182   }
2183   pCost->plan.u.pVtabIdx = pIdxInfo;
2184   if( pIdxInfo->orderByConsumed ){
2185     pCost->plan.wsFlags |= WHERE_ORDERBY;
2186   }
2187   pCost->plan.nEq = 0;
2188   pIdxInfo->nOrderBy = nOrderBy;
2189 
2190   /* Try to find a more efficient access pattern by using multiple indexes
2191   ** to optimize an OR expression within the WHERE clause.
2192   */
2193   bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
2194 }
2195 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2196 
2197 /*
2198 ** Argument pIdx is a pointer to an index structure that has an array of
2199 ** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column
2200 ** stored in Index.aSample. The domain of values stored in said column
2201 ** may be thought of as divided into (SQLITE_INDEX_SAMPLES+1) regions.
2202 ** Region 0 contains all values smaller than the first sample value. Region
2203 ** 1 contains values larger than or equal to the value of the first sample,
2204 ** but smaller than the value of the second. And so on.
2205 **
2206 ** If successful, this function determines which of the regions value
2207 ** pVal lies in, sets *piRegion to the region index (a value between 0
2208 ** and SQLITE_INDEX_SAMPLES+1, inclusive) and returns SQLITE_OK.
2209 ** Or, if an OOM occurs while converting text values between encodings,
2210 ** SQLITE_NOMEM is returned and *piRegion is undefined.
2211 */
2212 #ifdef SQLITE_ENABLE_STAT2
2213 static int whereRangeRegion(
2214   Parse *pParse,              /* Database connection */
2215   Index *pIdx,                /* Index to consider domain of */
2216   sqlite3_value *pVal,        /* Value to consider */
2217   int *piRegion               /* OUT: Region of domain in which value lies */
2218 ){
2219   if( ALWAYS(pVal) ){
2220     IndexSample *aSample = pIdx->aSample;
2221     int i = 0;
2222     int eType = sqlite3_value_type(pVal);
2223 
2224     if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
2225       double r = sqlite3_value_double(pVal);
2226       for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
2227         if( aSample[i].eType==SQLITE_NULL ) continue;
2228         if( aSample[i].eType>=SQLITE_TEXT || aSample[i].u.r>r ) break;
2229       }
2230     }else{
2231       sqlite3 *db = pParse->db;
2232       CollSeq *pColl;
2233       const u8 *z;
2234       int n;
2235 
2236       /* pVal comes from sqlite3ValueFromExpr() so the type cannot be NULL */
2237       assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
2238 
2239       if( eType==SQLITE_BLOB ){
2240         z = (const u8 *)sqlite3_value_blob(pVal);
2241         pColl = db->pDfltColl;
2242         assert( pColl->enc==SQLITE_UTF8 );
2243       }else{
2244         pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl);
2245         if( pColl==0 ){
2246           sqlite3ErrorMsg(pParse, "no such collation sequence: %s",
2247                           *pIdx->azColl);
2248           return SQLITE_ERROR;
2249         }
2250         z = (const u8 *)sqlite3ValueText(pVal, pColl->enc);
2251         if( !z ){
2252           return SQLITE_NOMEM;
2253         }
2254         assert( z && pColl && pColl->xCmp );
2255       }
2256       n = sqlite3ValueBytes(pVal, pColl->enc);
2257 
2258       for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
2259         int r;
2260         int eSampletype = aSample[i].eType;
2261         if( eSampletype==SQLITE_NULL || eSampletype<eType ) continue;
2262         if( (eSampletype!=eType) ) break;
2263 #ifndef SQLITE_OMIT_UTF16
2264         if( pColl->enc!=SQLITE_UTF8 ){
2265           int nSample;
2266           char *zSample = sqlite3Utf8to16(
2267               db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample
2268           );
2269           if( !zSample ){
2270             assert( db->mallocFailed );
2271             return SQLITE_NOMEM;
2272           }
2273           r = pColl->xCmp(pColl->pUser, nSample, zSample, n, z);
2274           sqlite3DbFree(db, zSample);
2275         }else
2276 #endif
2277         {
2278           r = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z);
2279         }
2280         if( r>0 ) break;
2281       }
2282     }
2283 
2284     assert( i>=0 && i<=SQLITE_INDEX_SAMPLES );
2285     *piRegion = i;
2286   }
2287   return SQLITE_OK;
2288 }
2289 #endif   /* #ifdef SQLITE_ENABLE_STAT2 */
2290 
2291 /*
2292 ** If expression pExpr represents a literal value, set *pp to point to
2293 ** an sqlite3_value structure containing the same value, with affinity
2294 ** aff applied to it, before returning. It is the responsibility of the
2295 ** caller to eventually release this structure by passing it to
2296 ** sqlite3ValueFree().
2297 **
2298 ** If the current parse is a recompile (sqlite3Reprepare()) and pExpr
2299 ** is an SQL variable that currently has a non-NULL value bound to it,
2300 ** create an sqlite3_value structure containing this value, again with
2301 ** affinity aff applied to it, instead.
2302 **
2303 ** If neither of the above apply, set *pp to NULL.
2304 **
2305 ** If an error occurs, return an error code. Otherwise, SQLITE_OK.
2306 */
2307 #ifdef SQLITE_ENABLE_STAT2
2308 static int valueFromExpr(
2309   Parse *pParse,
2310   Expr *pExpr,
2311   u8 aff,
2312   sqlite3_value **pp
2313 ){
2314   /* The evalConstExpr() function will have already converted any TK_VARIABLE
2315   ** expression involved in an comparison into a TK_REGISTER. */
2316   assert( pExpr->op!=TK_VARIABLE );
2317   if( pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE ){
2318     int iVar = pExpr->iColumn;
2319     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); /* IMP: R-23257-02778 */
2320     *pp = sqlite3VdbeGetValue(pParse->pReprepare, iVar, aff);
2321     return SQLITE_OK;
2322   }
2323   return sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, aff, pp);
2324 }
2325 #endif
2326 
2327 /*
2328 ** This function is used to estimate the number of rows that will be visited
2329 ** by scanning an index for a range of values. The range may have an upper
2330 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
2331 ** and lower bounds are represented by pLower and pUpper respectively. For
2332 ** example, assuming that index p is on t1(a):
2333 **
2334 **   ... FROM t1 WHERE a > ? AND a < ? ...
2335 **                    |_____|   |_____|
2336 **                       |         |
2337 **                     pLower    pUpper
2338 **
2339 ** If either of the upper or lower bound is not present, then NULL is passed in
2340 ** place of the corresponding WhereTerm.
2341 **
2342 ** The nEq parameter is passed the index of the index column subject to the
2343 ** range constraint. Or, equivalently, the number of equality constraints
2344 ** optimized by the proposed index scan. For example, assuming index p is
2345 ** on t1(a, b), and the SQL query is:
2346 **
2347 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
2348 **
2349 ** then nEq should be passed the value 1 (as the range restricted column,
2350 ** b, is the second left-most column of the index). Or, if the query is:
2351 **
2352 **   ... FROM t1 WHERE a > ? AND a < ? ...
2353 **
2354 ** then nEq should be passed 0.
2355 **
2356 ** The returned value is an integer between 1 and 100, inclusive. A return
2357 ** value of 1 indicates that the proposed range scan is expected to visit
2358 ** approximately 1/100th (1%) of the rows selected by the nEq equality
2359 ** constraints (if any). A return value of 100 indicates that it is expected
2360 ** that the range scan will visit every row (100%) selected by the equality
2361 ** constraints.
2362 **
2363 ** In the absence of sqlite_stat2 ANALYZE data, each range inequality
2364 ** reduces the search space by 2/3rds.  Hence a single constraint (x>?)
2365 ** results in a return of 33 and a range constraint (x>? AND x<?) results
2366 ** in a return of 11.
2367 */
2368 static int whereRangeScanEst(
2369   Parse *pParse,       /* Parsing & code generating context */
2370   Index *p,            /* The index containing the range-compared column; "x" */
2371   int nEq,             /* index into p->aCol[] of the range-compared column */
2372   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
2373   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
2374   int *piEst           /* OUT: Return value */
2375 ){
2376   int rc = SQLITE_OK;
2377 
2378 #ifdef SQLITE_ENABLE_STAT2
2379 
2380   if( nEq==0 && p->aSample ){
2381     sqlite3_value *pLowerVal = 0;
2382     sqlite3_value *pUpperVal = 0;
2383     int iEst;
2384     int iLower = 0;
2385     int iUpper = SQLITE_INDEX_SAMPLES;
2386     u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;
2387 
2388     if( pLower ){
2389       Expr *pExpr = pLower->pExpr->pRight;
2390       rc = valueFromExpr(pParse, pExpr, aff, &pLowerVal);
2391     }
2392     if( rc==SQLITE_OK && pUpper ){
2393       Expr *pExpr = pUpper->pExpr->pRight;
2394       rc = valueFromExpr(pParse, pExpr, aff, &pUpperVal);
2395     }
2396 
2397     if( rc!=SQLITE_OK || (pLowerVal==0 && pUpperVal==0) ){
2398       sqlite3ValueFree(pLowerVal);
2399       sqlite3ValueFree(pUpperVal);
2400       goto range_est_fallback;
2401     }else if( pLowerVal==0 ){
2402       rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper);
2403       if( pLower ) iLower = iUpper/2;
2404     }else if( pUpperVal==0 ){
2405       rc = whereRangeRegion(pParse, p, pLowerVal, &iLower);
2406       if( pUpper ) iUpper = (iLower + SQLITE_INDEX_SAMPLES + 1)/2;
2407     }else{
2408       rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper);
2409       if( rc==SQLITE_OK ){
2410         rc = whereRangeRegion(pParse, p, pLowerVal, &iLower);
2411       }
2412     }
2413 
2414     iEst = iUpper - iLower;
2415     testcase( iEst==SQLITE_INDEX_SAMPLES );
2416     assert( iEst<=SQLITE_INDEX_SAMPLES );
2417     if( iEst<1 ){
2418       iEst = 1;
2419     }
2420 
2421     sqlite3ValueFree(pLowerVal);
2422     sqlite3ValueFree(pUpperVal);
2423     *piEst = (iEst * 100)/SQLITE_INDEX_SAMPLES;
2424     return rc;
2425   }
2426 range_est_fallback:
2427 #else
2428   UNUSED_PARAMETER(pParse);
2429   UNUSED_PARAMETER(p);
2430   UNUSED_PARAMETER(nEq);
2431 #endif
2432   assert( pLower || pUpper );
2433   if( pLower && pUpper ){
2434     *piEst = 11;
2435   }else{
2436     *piEst = 33;
2437   }
2438   return rc;
2439 }
2440 
2441 
2442 /*
2443 ** Find the query plan for accessing a particular table.  Write the
2444 ** best query plan and its cost into the WhereCost object supplied as the
2445 ** last parameter.
2446 **
2447 ** The lowest cost plan wins.  The cost is an estimate of the amount of
2448 ** CPU and disk I/O need to process the request using the selected plan.
2449 ** Factors that influence cost include:
2450 **
2451 **    *  The estimated number of rows that will be retrieved.  (The
2452 **       fewer the better.)
2453 **
2454 **    *  Whether or not sorting must occur.
2455 **
2456 **    *  Whether or not there must be separate lookups in the
2457 **       index and in the main table.
2458 **
2459 ** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in
2460 ** the SQL statement, then this function only considers plans using the
2461 ** named index. If no such plan is found, then the returned cost is
2462 ** SQLITE_BIG_DBL. If a plan is found that uses the named index,
2463 ** then the cost is calculated in the usual way.
2464 **
2465 ** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table
2466 ** in the SELECT statement, then no indexes are considered. However, the
2467 ** selected plan may still take advantage of the tables built-in rowid
2468 ** index.
2469 */
2470 static void bestBtreeIndex(
2471   Parse *pParse,              /* The parsing context */
2472   WhereClause *pWC,           /* The WHERE clause */
2473   struct SrcList_item *pSrc,  /* The FROM clause term to search */
2474   Bitmask notReady,           /* Mask of cursors that are not available */
2475   ExprList *pOrderBy,         /* The ORDER BY clause */
2476   WhereCost *pCost            /* Lowest cost query plan */
2477 ){
2478   int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
2479   Index *pProbe;              /* An index we are evaluating */
2480   Index *pIdx;                /* Copy of pProbe, or zero for IPK index */
2481   int eqTermMask;             /* Current mask of valid equality operators */
2482   int idxEqTermMask;          /* Index mask of valid equality operators */
2483   Index sPk;                  /* A fake index object for the primary key */
2484   unsigned int aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */
2485   int aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
2486   int wsFlagMask;             /* Allowed flags in pCost->plan.wsFlag */
2487 
2488   /* Initialize the cost to a worst-case value */
2489   memset(pCost, 0, sizeof(*pCost));
2490   pCost->rCost = SQLITE_BIG_DBL;
2491 
2492   /* If the pSrc table is the right table of a LEFT JOIN then we may not
2493   ** use an index to satisfy IS NULL constraints on that table.  This is
2494   ** because columns might end up being NULL if the table does not match -
2495   ** a circumstance which the index cannot help us discover.  Ticket #2177.
2496   */
2497   if( pSrc->jointype & JT_LEFT ){
2498     idxEqTermMask = WO_EQ|WO_IN;
2499   }else{
2500     idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL;
2501   }
2502 
2503   if( pSrc->pIndex ){
2504     /* An INDEXED BY clause specifies a particular index to use */
2505     pIdx = pProbe = pSrc->pIndex;
2506     wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
2507     eqTermMask = idxEqTermMask;
2508   }else{
2509     /* There is no INDEXED BY clause.  Create a fake Index object to
2510     ** represent the primary key */
2511     Index *pFirst;                /* Any other index on the table */
2512     memset(&sPk, 0, sizeof(Index));
2513     sPk.nColumn = 1;
2514     sPk.aiColumn = &aiColumnPk;
2515     sPk.aiRowEst = aiRowEstPk;
2516     aiRowEstPk[1] = 1;
2517     sPk.onError = OE_Replace;
2518     sPk.pTable = pSrc->pTab;
2519     pFirst = pSrc->pTab->pIndex;
2520     if( pSrc->notIndexed==0 ){
2521       sPk.pNext = pFirst;
2522     }
2523     /* The aiRowEstPk[0] is an estimate of the total number of rows in the
2524     ** table.  Get this information from the ANALYZE information if it is
2525     ** available.  If not available, assume the table 1 million rows in size.
2526     */
2527     if( pFirst ){
2528       assert( pFirst->aiRowEst!=0 ); /* Allocated together with pFirst */
2529       aiRowEstPk[0] = pFirst->aiRowEst[0];
2530     }else{
2531       aiRowEstPk[0] = 1000000;
2532     }
2533     pProbe = &sPk;
2534     wsFlagMask = ~(
2535         WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE
2536     );
2537     eqTermMask = WO_EQ|WO_IN;
2538     pIdx = 0;
2539   }
2540 
2541   /* Loop over all indices looking for the best one to use
2542   */
2543   for(; pProbe; pIdx=pProbe=pProbe->pNext){
2544     const unsigned int * const aiRowEst = pProbe->aiRowEst;
2545     double cost;                /* Cost of using pProbe */
2546     double nRow;                /* Estimated number of rows in result set */
2547     int rev;                    /* True to scan in reverse order */
2548     int wsFlags = 0;
2549     Bitmask used = 0;
2550 
2551     /* The following variables are populated based on the properties of
2552     ** scan being evaluated. They are then used to determine the expected
2553     ** cost and number of rows returned.
2554     **
2555     **  nEq:
2556     **    Number of equality terms that can be implemented using the index.
2557     **
2558     **  nInMul:
2559     **    The "in-multiplier". This is an estimate of how many seek operations
2560     **    SQLite must perform on the index in question. For example, if the
2561     **    WHERE clause is:
2562     **
2563     **      WHERE a IN (1, 2, 3) AND b IN (4, 5, 6)
2564     **
2565     **    SQLite must perform 9 lookups on an index on (a, b), so nInMul is
2566     **    set to 9. Given the same schema and either of the following WHERE
2567     **    clauses:
2568     **
2569     **      WHERE a =  1
2570     **      WHERE a >= 2
2571     **
2572     **    nInMul is set to 1.
2573     **
2574     **    If there exists a WHERE term of the form "x IN (SELECT ...)", then
2575     **    the sub-select is assumed to return 25 rows for the purposes of
2576     **    determining nInMul.
2577     **
2578     **  bInEst:
2579     **    Set to true if there was at least one "x IN (SELECT ...)" term used
2580     **    in determining the value of nInMul.
2581     **
2582     **  estBound:
2583     **    An estimate on the amount of the table that must be searched.  A
2584     **    value of 100 means the entire table is searched.  Range constraints
2585     **    might reduce this to a value less than 100 to indicate that only
2586     **    a fraction of the table needs searching.  In the absence of
2587     **    sqlite_stat2 ANALYZE data, a single inequality reduces the search
2588     **    space to 1/3rd its original size.  So an x>? constraint reduces
2589     **    estBound to 33.  Two constraints (x>? AND x<?) reduce estBound to 11.
2590     **
2591     **  bSort:
2592     **    Boolean. True if there is an ORDER BY clause that will require an
2593     **    external sort (i.e. scanning the index being evaluated will not
2594     **    correctly order records).
2595     **
2596     **  bLookup:
2597     **    Boolean. True if for each index entry visited a lookup on the
2598     **    corresponding table b-tree is required. This is always false
2599     **    for the rowid index. For other indexes, it is true unless all the
2600     **    columns of the table used by the SELECT statement are present in
2601     **    the index (such an index is sometimes described as a covering index).
2602     **    For example, given the index on (a, b), the second of the following
2603     **    two queries requires table b-tree lookups, but the first does not.
2604     **
2605     **             SELECT a, b    FROM tbl WHERE a = 1;
2606     **             SELECT a, b, c FROM tbl WHERE a = 1;
2607     */
2608     int nEq;
2609     int bInEst = 0;
2610     int nInMul = 1;
2611     int estBound = 100;
2612     int nBound = 0;             /* Number of range constraints seen */
2613     int bSort = 0;
2614     int bLookup = 0;
2615     WhereTerm *pTerm;           /* A single term of the WHERE clause */
2616 
2617     /* Determine the values of nEq and nInMul */
2618     for(nEq=0; nEq<pProbe->nColumn; nEq++){
2619       int j = pProbe->aiColumn[nEq];
2620       pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx);
2621       if( pTerm==0 ) break;
2622       wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ);
2623       if( pTerm->eOperator & WO_IN ){
2624         Expr *pExpr = pTerm->pExpr;
2625         wsFlags |= WHERE_COLUMN_IN;
2626         if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2627           nInMul *= 25;
2628           bInEst = 1;
2629         }else if( ALWAYS(pExpr->x.pList) ){
2630           nInMul *= pExpr->x.pList->nExpr + 1;
2631         }
2632       }else if( pTerm->eOperator & WO_ISNULL ){
2633         wsFlags |= WHERE_COLUMN_NULL;
2634       }
2635       used |= pTerm->prereqRight;
2636     }
2637 
2638     /* Determine the value of estBound. */
2639     if( nEq<pProbe->nColumn ){
2640       int j = pProbe->aiColumn[nEq];
2641       if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
2642         WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx);
2643         WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx);
2644         whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &estBound);
2645         if( pTop ){
2646           nBound = 1;
2647           wsFlags |= WHERE_TOP_LIMIT;
2648           used |= pTop->prereqRight;
2649         }
2650         if( pBtm ){
2651           nBound++;
2652           wsFlags |= WHERE_BTM_LIMIT;
2653           used |= pBtm->prereqRight;
2654         }
2655         wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE);
2656       }
2657     }else if( pProbe->onError!=OE_None ){
2658       testcase( wsFlags & WHERE_COLUMN_IN );
2659       testcase( wsFlags & WHERE_COLUMN_NULL );
2660       if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
2661         wsFlags |= WHERE_UNIQUE;
2662       }
2663     }
2664 
2665     /* If there is an ORDER BY clause and the index being considered will
2666     ** naturally scan rows in the required order, set the appropriate flags
2667     ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index
2668     ** will scan rows in a different order, set the bSort variable.  */
2669     if( pOrderBy ){
2670       if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0
2671         && isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev)
2672       ){
2673         wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY;
2674         wsFlags |= (rev ? WHERE_REVERSE : 0);
2675       }else{
2676         bSort = 1;
2677       }
2678     }
2679 
2680     /* If currently calculating the cost of using an index (not the IPK
2681     ** index), determine if all required column data may be obtained without
2682     ** using the main table (i.e. if the index is a covering
2683     ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
2684     ** wsFlags. Otherwise, set the bLookup variable to true.  */
2685     if( pIdx && wsFlags ){
2686       Bitmask m = pSrc->colUsed;
2687       int j;
2688       for(j=0; j<pIdx->nColumn; j++){
2689         int x = pIdx->aiColumn[j];
2690         if( x<BMS-1 ){
2691           m &= ~(((Bitmask)1)<<x);
2692         }
2693       }
2694       if( m==0 ){
2695         wsFlags |= WHERE_IDX_ONLY;
2696       }else{
2697         bLookup = 1;
2698       }
2699     }
2700 
2701     /*
2702     ** Estimate the number of rows of output.  For an IN operator,
2703     ** do not let the estimate exceed half the rows in the table.
2704     */
2705     nRow = (double)(aiRowEst[nEq] * nInMul);
2706     if( bInEst && nRow*2>aiRowEst[0] ){
2707       nRow = aiRowEst[0]/2;
2708       nInMul = (int)(nRow / aiRowEst[nEq]);
2709     }
2710 
2711     /* Assume constant cost to access a row and logarithmic cost to
2712     ** do a binary search.  Hence, the initial cost is the number of output
2713     ** rows plus log2(table-size) times the number of binary searches.
2714     */
2715     cost = nRow + nInMul*estLog(aiRowEst[0]);
2716 
2717     /* Adjust the number of rows and the cost downward to reflect rows
2718     ** that are excluded by range constraints.
2719     */
2720     nRow = (nRow * (double)estBound) / (double)100;
2721     cost = (cost * (double)estBound) / (double)100;
2722 
2723     /* Add in the estimated cost of sorting the result
2724     */
2725     if( bSort ){
2726       cost += cost*estLog(cost);
2727     }
2728 
2729     /* If all information can be taken directly from the index, we avoid
2730     ** doing table lookups.  This reduces the cost by half.  (Not really -
2731     ** this needs to be fixed.)
2732     */
2733     if( pIdx && bLookup==0 ){
2734       cost /= (double)2;
2735     }
2736     /**** Cost of using this index has now been computed ****/
2737 
2738     /* If there are additional constraints on this table that cannot
2739     ** be used with the current index, but which might lower the number
2740     ** of output rows, adjust the nRow value accordingly.  This only
2741     ** matters if the current index is the least costly, so do not bother
2742     ** with this step if we already know this index will not be chosen.
2743     ** Also, never reduce the output row count below 2 using this step.
2744     **
2745     ** Do not reduce the output row count if pSrc is the only table that
2746     ** is notReady; if notReady is a power of two.  This will be the case
2747     ** when the main sqlite3WhereBegin() loop is scanning for a table with
2748     ** and "optimal" index, and on such a scan the output row count
2749     ** reduction is not valid because it does not update the "pCost->used"
2750     ** bitmap.  The notReady bitmap will also be a power of two when we
2751     ** are scanning for the last table in a 64-way join.  We are willing
2752     ** to bypass this optimization in that corner case.
2753     */
2754     if( nRow>2 && cost<=pCost->rCost && (notReady & (notReady-1))!=0 ){
2755       int k;                       /* Loop counter */
2756       int nSkipEq = nEq;           /* Number of == constraints to skip */
2757       int nSkipRange = nBound;     /* Number of < constraints to skip */
2758       Bitmask thisTab;             /* Bitmap for pSrc */
2759 
2760       thisTab = getMask(pWC->pMaskSet, iCur);
2761       for(pTerm=pWC->a, k=pWC->nTerm; nRow>2 && k; k--, pTerm++){
2762         if( pTerm->wtFlags & TERM_VIRTUAL ) continue;
2763         if( (pTerm->prereqAll & notReady)!=thisTab ) continue;
2764         if( pTerm->eOperator & (WO_EQ|WO_IN|WO_ISNULL) ){
2765           if( nSkipEq ){
2766             /* Ignore the first nEq equality matches since the index
2767             ** has already accounted for these */
2768             nSkipEq--;
2769           }else{
2770             /* Assume each additional equality match reduces the result
2771             ** set size by a factor of 10 */
2772             nRow /= 10;
2773           }
2774         }else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){
2775           if( nSkipRange ){
2776             /* Ignore the first nBound range constraints since the index
2777             ** has already accounted for these */
2778             nSkipRange--;
2779           }else{
2780             /* Assume each additional range constraint reduces the result
2781             ** set size by a factor of 3 */
2782             nRow /= 3;
2783           }
2784         }else{
2785           /* Any other expression lowers the output row count by half */
2786           nRow /= 2;
2787         }
2788       }
2789       if( nRow<2 ) nRow = 2;
2790     }
2791 
2792 
2793     WHERETRACE((
2794       "%s(%s): nEq=%d nInMul=%d estBound=%d bSort=%d bLookup=%d wsFlags=0x%x\n"
2795       "         notReady=0x%llx nRow=%.2f cost=%.2f used=0x%llx\n",
2796       pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"),
2797       nEq, nInMul, estBound, bSort, bLookup, wsFlags,
2798       notReady, nRow, cost, used
2799     ));
2800 
2801     /* If this index is the best we have seen so far, then record this
2802     ** index and its cost in the pCost structure.
2803     */
2804     if( (!pIdx || wsFlags)
2805      && (cost<pCost->rCost || (cost<=pCost->rCost && nRow<pCost->nRow))
2806     ){
2807       pCost->rCost = cost;
2808       pCost->nRow = nRow;
2809       pCost->used = used;
2810       pCost->plan.wsFlags = (wsFlags&wsFlagMask);
2811       pCost->plan.nEq = nEq;
2812       pCost->plan.u.pIdx = pIdx;
2813     }
2814 
2815     /* If there was an INDEXED BY clause, then only that one index is
2816     ** considered. */
2817     if( pSrc->pIndex ) break;
2818 
2819     /* Reset masks for the next index in the loop */
2820     wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
2821     eqTermMask = idxEqTermMask;
2822   }
2823 
2824   /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag
2825   ** is set, then reverse the order that the index will be scanned
2826   ** in. This is used for application testing, to help find cases
2827   ** where application behaviour depends on the (undefined) order that
2828   ** SQLite outputs rows in in the absence of an ORDER BY clause.  */
2829   if( !pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){
2830     pCost->plan.wsFlags |= WHERE_REVERSE;
2831   }
2832 
2833   assert( pOrderBy || (pCost->plan.wsFlags&WHERE_ORDERBY)==0 );
2834   assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 );
2835   assert( pSrc->pIndex==0
2836        || pCost->plan.u.pIdx==0
2837        || pCost->plan.u.pIdx==pSrc->pIndex
2838   );
2839 
2840   WHERETRACE(("best index is: %s\n",
2841     ((pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ? "none" :
2842          pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk")
2843   ));
2844 
2845   bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
2846   bestAutomaticIndex(pParse, pWC, pSrc, notReady, pCost);
2847   pCost->plan.wsFlags |= eqTermMask;
2848 }
2849 
2850 /*
2851 ** Find the query plan for accessing table pSrc->pTab. Write the
2852 ** best query plan and its cost into the WhereCost object supplied
2853 ** as the last parameter. This function may calculate the cost of
2854 ** both real and virtual table scans.
2855 */
2856 static void bestIndex(
2857   Parse *pParse,              /* The parsing context */
2858   WhereClause *pWC,           /* The WHERE clause */
2859   struct SrcList_item *pSrc,  /* The FROM clause term to search */
2860   Bitmask notReady,           /* Mask of cursors that are not available */
2861   ExprList *pOrderBy,         /* The ORDER BY clause */
2862   WhereCost *pCost            /* Lowest cost query plan */
2863 ){
2864 #ifndef SQLITE_OMIT_VIRTUALTABLE
2865   if( IsVirtual(pSrc->pTab) ){
2866     sqlite3_index_info *p = 0;
2867     bestVirtualIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost, &p);
2868     if( p->needToFreeIdxStr ){
2869       sqlite3_free(p->idxStr);
2870     }
2871     sqlite3DbFree(pParse->db, p);
2872   }else
2873 #endif
2874   {
2875     bestBtreeIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
2876   }
2877 }
2878 
2879 /*
2880 ** Disable a term in the WHERE clause.  Except, do not disable the term
2881 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
2882 ** or USING clause of that join.
2883 **
2884 ** Consider the term t2.z='ok' in the following queries:
2885 **
2886 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
2887 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
2888 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
2889 **
2890 ** The t2.z='ok' is disabled in the in (2) because it originates
2891 ** in the ON clause.  The term is disabled in (3) because it is not part
2892 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
2893 **
2894 ** IMPLEMENTATION-OF: R-24597-58655 No tests are done for terms that are
2895 ** completely satisfied by indices.
2896 **
2897 ** Disabling a term causes that term to not be tested in the inner loop
2898 ** of the join.  Disabling is an optimization.  When terms are satisfied
2899 ** by indices, we disable them to prevent redundant tests in the inner
2900 ** loop.  We would get the correct results if nothing were ever disabled,
2901 ** but joins might run a little slower.  The trick is to disable as much
2902 ** as we can without disabling too much.  If we disabled in (1), we'd get
2903 ** the wrong answer.  See ticket #813.
2904 */
2905 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
2906   if( pTerm
2907       && (pTerm->wtFlags & TERM_CODED)==0
2908       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
2909   ){
2910     pTerm->wtFlags |= TERM_CODED;
2911     if( pTerm->iParent>=0 ){
2912       WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
2913       if( (--pOther->nChild)==0 ){
2914         disableTerm(pLevel, pOther);
2915       }
2916     }
2917   }
2918 }
2919 
2920 /*
2921 ** Code an OP_Affinity opcode to apply the column affinity string zAff
2922 ** to the n registers starting at base.
2923 **
2924 ** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the
2925 ** beginning and end of zAff are ignored.  If all entries in zAff are
2926 ** SQLITE_AFF_NONE, then no code gets generated.
2927 **
2928 ** This routine makes its own copy of zAff so that the caller is free
2929 ** to modify zAff after this routine returns.
2930 */
2931 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
2932   Vdbe *v = pParse->pVdbe;
2933   if( zAff==0 ){
2934     assert( pParse->db->mallocFailed );
2935     return;
2936   }
2937   assert( v!=0 );
2938 
2939   /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning
2940   ** and end of the affinity string.
2941   */
2942   while( n>0 && zAff[0]==SQLITE_AFF_NONE ){
2943     n--;
2944     base++;
2945     zAff++;
2946   }
2947   while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){
2948     n--;
2949   }
2950 
2951   /* Code the OP_Affinity opcode if there is anything left to do. */
2952   if( n>0 ){
2953     sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
2954     sqlite3VdbeChangeP4(v, -1, zAff, n);
2955     sqlite3ExprCacheAffinityChange(pParse, base, n);
2956   }
2957 }
2958 
2959 
2960 /*
2961 ** Generate code for a single equality term of the WHERE clause.  An equality
2962 ** term can be either X=expr or X IN (...).   pTerm is the term to be
2963 ** coded.
2964 **
2965 ** The current value for the constraint is left in register iReg.
2966 **
2967 ** For a constraint of the form X=expr, the expression is evaluated and its
2968 ** result is left on the stack.  For constraints of the form X IN (...)
2969 ** this routine sets up a loop that will iterate over all values of X.
2970 */
2971 static int codeEqualityTerm(
2972   Parse *pParse,      /* The parsing context */
2973   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
2974   WhereLevel *pLevel, /* When level of the FROM clause we are working on */
2975   int iTarget         /* Attempt to leave results in this register */
2976 ){
2977   Expr *pX = pTerm->pExpr;
2978   Vdbe *v = pParse->pVdbe;
2979   int iReg;                  /* Register holding results */
2980 
2981   assert( iTarget>0 );
2982   if( pX->op==TK_EQ ){
2983     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
2984   }else if( pX->op==TK_ISNULL ){
2985     iReg = iTarget;
2986     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
2987 #ifndef SQLITE_OMIT_SUBQUERY
2988   }else{
2989     int eType;
2990     int iTab;
2991     struct InLoop *pIn;
2992 
2993     assert( pX->op==TK_IN );
2994     iReg = iTarget;
2995     eType = sqlite3FindInIndex(pParse, pX, 0);
2996     iTab = pX->iTable;
2997     sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
2998     assert( pLevel->plan.wsFlags & WHERE_IN_ABLE );
2999     if( pLevel->u.in.nIn==0 ){
3000       pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
3001     }
3002     pLevel->u.in.nIn++;
3003     pLevel->u.in.aInLoop =
3004        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
3005                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
3006     pIn = pLevel->u.in.aInLoop;
3007     if( pIn ){
3008       pIn += pLevel->u.in.nIn - 1;
3009       pIn->iCur = iTab;
3010       if( eType==IN_INDEX_ROWID ){
3011         pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
3012       }else{
3013         pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
3014       }
3015       sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
3016     }else{
3017       pLevel->u.in.nIn = 0;
3018     }
3019 #endif
3020   }
3021   disableTerm(pLevel, pTerm);
3022   return iReg;
3023 }
3024 
3025 /*
3026 ** Generate code that will evaluate all == and IN constraints for an
3027 ** index.
3028 **
3029 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
3030 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
3031 ** The index has as many as three equality constraints, but in this
3032 ** example, the third "c" value is an inequality.  So only two
3033 ** constraints are coded.  This routine will generate code to evaluate
3034 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
3035 ** in consecutive registers and the index of the first register is returned.
3036 **
3037 ** In the example above nEq==2.  But this subroutine works for any value
3038 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
3039 ** The only thing it does is allocate the pLevel->iMem memory cell and
3040 ** compute the affinity string.
3041 **
3042 ** This routine always allocates at least one memory cell and returns
3043 ** the index of that memory cell. The code that
3044 ** calls this routine will use that memory cell to store the termination
3045 ** key value of the loop.  If one or more IN operators appear, then
3046 ** this routine allocates an additional nEq memory cells for internal
3047 ** use.
3048 **
3049 ** Before returning, *pzAff is set to point to a buffer containing a
3050 ** copy of the column affinity string of the index allocated using
3051 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
3052 ** with equality constraints that use NONE affinity are set to
3053 ** SQLITE_AFF_NONE. This is to deal with SQL such as the following:
3054 **
3055 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
3056 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
3057 **
3058 ** In the example above, the index on t1(a) has TEXT affinity. But since
3059 ** the right hand side of the equality constraint (t2.b) has NONE affinity,
3060 ** no conversion should be attempted before using a t2.b value as part of
3061 ** a key to search the index. Hence the first byte in the returned affinity
3062 ** string in this example would be set to SQLITE_AFF_NONE.
3063 */
3064 static int codeAllEqualityTerms(
3065   Parse *pParse,        /* Parsing context */
3066   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
3067   WhereClause *pWC,     /* The WHERE clause */
3068   Bitmask notReady,     /* Which parts of FROM have not yet been coded */
3069   int nExtraReg,        /* Number of extra registers to allocate */
3070   char **pzAff          /* OUT: Set to point to affinity string */
3071 ){
3072   int nEq = pLevel->plan.nEq;   /* The number of == or IN constraints to code */
3073   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
3074   Index *pIdx;                  /* The index being used for this loop */
3075   int iCur = pLevel->iTabCur;   /* The cursor of the table */
3076   WhereTerm *pTerm;             /* A single constraint term */
3077   int j;                        /* Loop counter */
3078   int regBase;                  /* Base register */
3079   int nReg;                     /* Number of registers to allocate */
3080   char *zAff;                   /* Affinity string to return */
3081 
3082   /* This module is only called on query plans that use an index. */
3083   assert( pLevel->plan.wsFlags & WHERE_INDEXED );
3084   pIdx = pLevel->plan.u.pIdx;
3085 
3086   /* Figure out how many memory cells we will need then allocate them.
3087   */
3088   regBase = pParse->nMem + 1;
3089   nReg = pLevel->plan.nEq + nExtraReg;
3090   pParse->nMem += nReg;
3091 
3092   zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
3093   if( !zAff ){
3094     pParse->db->mallocFailed = 1;
3095   }
3096 
3097   /* Evaluate the equality constraints
3098   */
3099   assert( pIdx->nColumn>=nEq );
3100   for(j=0; j<nEq; j++){
3101     int r1;
3102     int k = pIdx->aiColumn[j];
3103     pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx);
3104     if( NEVER(pTerm==0) ) break;
3105     /* The following true for indices with redundant columns.
3106     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
3107     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
3108     testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
3109     r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
3110     if( r1!=regBase+j ){
3111       if( nReg==1 ){
3112         sqlite3ReleaseTempReg(pParse, regBase);
3113         regBase = r1;
3114       }else{
3115         sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
3116       }
3117     }
3118     testcase( pTerm->eOperator & WO_ISNULL );
3119     testcase( pTerm->eOperator & WO_IN );
3120     if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
3121       Expr *pRight = pTerm->pExpr->pRight;
3122       sqlite3ExprCodeIsNullJump(v, pRight, regBase+j, pLevel->addrBrk);
3123       if( zAff ){
3124         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){
3125           zAff[j] = SQLITE_AFF_NONE;
3126         }
3127         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
3128           zAff[j] = SQLITE_AFF_NONE;
3129         }
3130       }
3131     }
3132   }
3133   *pzAff = zAff;
3134   return regBase;
3135 }
3136 
3137 /*
3138 ** Generate code for the start of the iLevel-th loop in the WHERE clause
3139 ** implementation described by pWInfo.
3140 */
3141 static Bitmask codeOneLoopStart(
3142   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
3143   int iLevel,          /* Which level of pWInfo->a[] should be coded */
3144   u16 wctrlFlags,      /* One of the WHERE_* flags defined in sqliteInt.h */
3145   Bitmask notReady     /* Which tables are currently available */
3146 ){
3147   int j, k;            /* Loop counters */
3148   int iCur;            /* The VDBE cursor for the table */
3149   int addrNxt;         /* Where to jump to continue with the next IN case */
3150   int omitTable;       /* True if we use the index only */
3151   int bRev;            /* True if we need to scan in reverse order */
3152   WhereLevel *pLevel;  /* The where level to be coded */
3153   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
3154   WhereTerm *pTerm;               /* A WHERE clause term */
3155   Parse *pParse;                  /* Parsing context */
3156   Vdbe *v;                        /* The prepared stmt under constructions */
3157   struct SrcList_item *pTabItem;  /* FROM clause term being coded */
3158   int addrBrk;                    /* Jump here to break out of the loop */
3159   int addrCont;                   /* Jump here to continue with next cycle */
3160   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
3161   int iReleaseReg = 0;      /* Temp register to free before returning */
3162 
3163   pParse = pWInfo->pParse;
3164   v = pParse->pVdbe;
3165   pWC = pWInfo->pWC;
3166   pLevel = &pWInfo->a[iLevel];
3167   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
3168   iCur = pTabItem->iCursor;
3169   bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;
3170   omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0
3171            && (wctrlFlags & WHERE_FORCE_TABLE)==0;
3172 
3173   /* Create labels for the "break" and "continue" instructions
3174   ** for the current loop.  Jump to addrBrk to break out of a loop.
3175   ** Jump to cont to go immediately to the next iteration of the
3176   ** loop.
3177   **
3178   ** When there is an IN operator, we also have a "addrNxt" label that
3179   ** means to continue with the next IN value combination.  When
3180   ** there are no IN operators in the constraints, the "addrNxt" label
3181   ** is the same as "addrBrk".
3182   */
3183   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
3184   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
3185 
3186   /* If this is the right table of a LEFT OUTER JOIN, allocate and
3187   ** initialize a memory cell that records if this table matches any
3188   ** row of the left table of the join.
3189   */
3190   if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
3191     pLevel->iLeftJoin = ++pParse->nMem;
3192     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
3193     VdbeComment((v, "init LEFT JOIN no-match flag"));
3194   }
3195 
3196 #ifndef SQLITE_OMIT_VIRTUALTABLE
3197   if(  (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
3198     /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
3199     **          to access the data.
3200     */
3201     int iReg;   /* P3 Value for OP_VFilter */
3202     sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
3203     int nConstraint = pVtabIdx->nConstraint;
3204     struct sqlite3_index_constraint_usage *aUsage =
3205                                                 pVtabIdx->aConstraintUsage;
3206     const struct sqlite3_index_constraint *aConstraint =
3207                                                 pVtabIdx->aConstraint;
3208 
3209     sqlite3ExprCachePush(pParse);
3210     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
3211     for(j=1; j<=nConstraint; j++){
3212       for(k=0; k<nConstraint; k++){
3213         if( aUsage[k].argvIndex==j ){
3214           int iTerm = aConstraint[k].iTermOffset;
3215           sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1);
3216           break;
3217         }
3218       }
3219       if( k==nConstraint ) break;
3220     }
3221     sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg);
3222     sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
3223     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr,
3224                       pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
3225     pVtabIdx->needToFreeIdxStr = 0;
3226     for(j=0; j<nConstraint; j++){
3227       if( aUsage[j].omit ){
3228         int iTerm = aConstraint[j].iTermOffset;
3229         disableTerm(pLevel, &pWC->a[iTerm]);
3230       }
3231     }
3232     pLevel->op = OP_VNext;
3233     pLevel->p1 = iCur;
3234     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
3235     sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
3236     sqlite3ExprCachePop(pParse, 1);
3237   }else
3238 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3239 
3240   if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){
3241     /* Case 1:  We can directly reference a single row using an
3242     **          equality comparison against the ROWID field.  Or
3243     **          we reference multiple rows using a "rowid IN (...)"
3244     **          construct.
3245     */
3246     iReleaseReg = sqlite3GetTempReg(pParse);
3247     pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
3248     assert( pTerm!=0 );
3249     assert( pTerm->pExpr!=0 );
3250     assert( pTerm->leftCursor==iCur );
3251     assert( omitTable==0 );
3252     testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
3253     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg);
3254     addrNxt = pLevel->addrNxt;
3255     sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
3256     sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
3257     sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
3258     VdbeComment((v, "pk"));
3259     pLevel->op = OP_Noop;
3260   }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){
3261     /* Case 2:  We have an inequality comparison against the ROWID field.
3262     */
3263     int testOp = OP_Noop;
3264     int start;
3265     int memEndValue = 0;
3266     WhereTerm *pStart, *pEnd;
3267 
3268     assert( omitTable==0 );
3269     pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0);
3270     pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0);
3271     if( bRev ){
3272       pTerm = pStart;
3273       pStart = pEnd;
3274       pEnd = pTerm;
3275     }
3276     if( pStart ){
3277       Expr *pX;             /* The expression that defines the start bound */
3278       int r1, rTemp;        /* Registers for holding the start boundary */
3279 
3280       /* The following constant maps TK_xx codes into corresponding
3281       ** seek opcodes.  It depends on a particular ordering of TK_xx
3282       */
3283       const u8 aMoveOp[] = {
3284            /* TK_GT */  OP_SeekGt,
3285            /* TK_LE */  OP_SeekLe,
3286            /* TK_LT */  OP_SeekLt,
3287            /* TK_GE */  OP_SeekGe
3288       };
3289       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
3290       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
3291       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
3292 
3293       testcase( pStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
3294       pX = pStart->pExpr;
3295       assert( pX!=0 );
3296       assert( pStart->leftCursor==iCur );
3297       r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
3298       sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
3299       VdbeComment((v, "pk"));
3300       sqlite3ExprCacheAffinityChange(pParse, r1, 1);
3301       sqlite3ReleaseTempReg(pParse, rTemp);
3302       disableTerm(pLevel, pStart);
3303     }else{
3304       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
3305     }
3306     if( pEnd ){
3307       Expr *pX;
3308       pX = pEnd->pExpr;
3309       assert( pX!=0 );
3310       assert( pEnd->leftCursor==iCur );
3311       testcase( pEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
3312       memEndValue = ++pParse->nMem;
3313       sqlite3ExprCode(pParse, pX->pRight, memEndValue);
3314       if( pX->op==TK_LT || pX->op==TK_GT ){
3315         testOp = bRev ? OP_Le : OP_Ge;
3316       }else{
3317         testOp = bRev ? OP_Lt : OP_Gt;
3318       }
3319       disableTerm(pLevel, pEnd);
3320     }
3321     start = sqlite3VdbeCurrentAddr(v);
3322     pLevel->op = bRev ? OP_Prev : OP_Next;
3323     pLevel->p1 = iCur;
3324     pLevel->p2 = start;
3325     if( pStart==0 && pEnd==0 ){
3326       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
3327     }else{
3328       assert( pLevel->p5==0 );
3329     }
3330     if( testOp!=OP_Noop ){
3331       iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
3332       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
3333       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
3334       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
3335       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
3336     }
3337   }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
3338     /* Case 3: A scan using an index.
3339     **
3340     **         The WHERE clause may contain zero or more equality
3341     **         terms ("==" or "IN" operators) that refer to the N
3342     **         left-most columns of the index. It may also contain
3343     **         inequality constraints (>, <, >= or <=) on the indexed
3344     **         column that immediately follows the N equalities. Only
3345     **         the right-most column can be an inequality - the rest must
3346     **         use the "==" and "IN" operators. For example, if the
3347     **         index is on (x,y,z), then the following clauses are all
3348     **         optimized:
3349     **
3350     **            x=5
3351     **            x=5 AND y=10
3352     **            x=5 AND y<10
3353     **            x=5 AND y>5 AND y<10
3354     **            x=5 AND y=5 AND z<=10
3355     **
3356     **         The z<10 term of the following cannot be used, only
3357     **         the x=5 term:
3358     **
3359     **            x=5 AND z<10
3360     **
3361     **         N may be zero if there are inequality constraints.
3362     **         If there are no inequality constraints, then N is at
3363     **         least one.
3364     **
3365     **         This case is also used when there are no WHERE clause
3366     **         constraints but an index is selected anyway, in order
3367     **         to force the output order to conform to an ORDER BY.
3368     */
3369     static const u8 aStartOp[] = {
3370       0,
3371       0,
3372       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
3373       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
3374       OP_SeekGt,           /* 4: (start_constraints  && !startEq && !bRev) */
3375       OP_SeekLt,           /* 5: (start_constraints  && !startEq &&  bRev) */
3376       OP_SeekGe,           /* 6: (start_constraints  &&  startEq && !bRev) */
3377       OP_SeekLe            /* 7: (start_constraints  &&  startEq &&  bRev) */
3378     };
3379     static const u8 aEndOp[] = {
3380       OP_Noop,             /* 0: (!end_constraints) */
3381       OP_IdxGE,            /* 1: (end_constraints && !bRev) */
3382       OP_IdxLT             /* 2: (end_constraints && bRev) */
3383     };
3384     int nEq = pLevel->plan.nEq;  /* Number of == or IN terms */
3385     int isMinQuery = 0;          /* If this is an optimized SELECT min(x).. */
3386     int regBase;                 /* Base register holding constraint values */
3387     int r1;                      /* Temp register */
3388     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
3389     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
3390     int startEq;                 /* True if range start uses ==, >= or <= */
3391     int endEq;                   /* True if range end uses ==, >= or <= */
3392     int start_constraints;       /* Start of range is constrained */
3393     int nConstraint;             /* Number of constraint terms */
3394     Index *pIdx;                 /* The index we will be using */
3395     int iIdxCur;                 /* The VDBE cursor for the index */
3396     int nExtraReg = 0;           /* Number of extra registers needed */
3397     int op;                      /* Instruction opcode */
3398     char *zStartAff;             /* Affinity for start of range constraint */
3399     char *zEndAff;               /* Affinity for end of range constraint */
3400 
3401     pIdx = pLevel->plan.u.pIdx;
3402     iIdxCur = pLevel->iIdxCur;
3403     k = pIdx->aiColumn[nEq];     /* Column for inequality constraints */
3404 
3405     /* If this loop satisfies a sort order (pOrderBy) request that
3406     ** was passed to this function to implement a "SELECT min(x) ..."
3407     ** query, then the caller will only allow the loop to run for
3408     ** a single iteration. This means that the first row returned
3409     ** should not have a NULL value stored in 'x'. If column 'x' is
3410     ** the first one after the nEq equality constraints in the index,
3411     ** this requires some special handling.
3412     */
3413     if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0
3414      && (pLevel->plan.wsFlags&WHERE_ORDERBY)
3415      && (pIdx->nColumn>nEq)
3416     ){
3417       /* assert( pOrderBy->nExpr==1 ); */
3418       /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */
3419       isMinQuery = 1;
3420       nExtraReg = 1;
3421     }
3422 
3423     /* Find any inequality constraint terms for the start and end
3424     ** of the range.
3425     */
3426     if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){
3427       pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
3428       nExtraReg = 1;
3429     }
3430     if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){
3431       pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
3432       nExtraReg = 1;
3433     }
3434 
3435     /* Generate code to evaluate all constraint terms using == or IN
3436     ** and store the values of those terms in an array of registers
3437     ** starting at regBase.
3438     */
3439     regBase = codeAllEqualityTerms(
3440         pParse, pLevel, pWC, notReady, nExtraReg, &zStartAff
3441     );
3442     zEndAff = sqlite3DbStrDup(pParse->db, zStartAff);
3443     addrNxt = pLevel->addrNxt;
3444 
3445     /* If we are doing a reverse order scan on an ascending index, or
3446     ** a forward order scan on a descending index, interchange the
3447     ** start and end terms (pRangeStart and pRangeEnd).
3448     */
3449     if( nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){
3450       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
3451     }
3452 
3453     testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
3454     testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
3455     testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
3456     testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
3457     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
3458     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
3459     start_constraints = pRangeStart || nEq>0;
3460 
3461     /* Seek the index cursor to the start of the range. */
3462     nConstraint = nEq;
3463     if( pRangeStart ){
3464       Expr *pRight = pRangeStart->pExpr->pRight;
3465       sqlite3ExprCode(pParse, pRight, regBase+nEq);
3466       sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
3467       if( zStartAff ){
3468         if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){
3469           /* Since the comparison is to be performed with no conversions
3470           ** applied to the operands, set the affinity to apply to pRight to
3471           ** SQLITE_AFF_NONE.  */
3472           zStartAff[nEq] = SQLITE_AFF_NONE;
3473         }
3474         if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
3475           zStartAff[nEq] = SQLITE_AFF_NONE;
3476         }
3477       }
3478       nConstraint++;
3479       testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
3480     }else if( isMinQuery ){
3481       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
3482       nConstraint++;
3483       startEq = 0;
3484       start_constraints = 1;
3485     }
3486     codeApplyAffinity(pParse, regBase, nConstraint, zStartAff);
3487     op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
3488     assert( op!=0 );
3489     testcase( op==OP_Rewind );
3490     testcase( op==OP_Last );
3491     testcase( op==OP_SeekGt );
3492     testcase( op==OP_SeekGe );
3493     testcase( op==OP_SeekLe );
3494     testcase( op==OP_SeekLt );
3495     sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
3496 
3497     /* Load the value for the inequality constraint at the end of the
3498     ** range (if any).
3499     */
3500     nConstraint = nEq;
3501     if( pRangeEnd ){
3502       Expr *pRight = pRangeEnd->pExpr->pRight;
3503       sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
3504       sqlite3ExprCode(pParse, pRight, regBase+nEq);
3505       sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
3506       if( zEndAff ){
3507         if( sqlite3CompareAffinity(pRight, zEndAff[nEq])==SQLITE_AFF_NONE){
3508           /* Since the comparison is to be performed with no conversions
3509           ** applied to the operands, set the affinity to apply to pRight to
3510           ** SQLITE_AFF_NONE.  */
3511           zEndAff[nEq] = SQLITE_AFF_NONE;
3512         }
3513         if( sqlite3ExprNeedsNoAffinityChange(pRight, zEndAff[nEq]) ){
3514           zEndAff[nEq] = SQLITE_AFF_NONE;
3515         }
3516       }
3517       codeApplyAffinity(pParse, regBase, nEq+1, zEndAff);
3518       nConstraint++;
3519       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
3520     }
3521     sqlite3DbFree(pParse->db, zStartAff);
3522     sqlite3DbFree(pParse->db, zEndAff);
3523 
3524     /* Top of the loop body */
3525     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
3526 
3527     /* Check if the index cursor is past the end of the range. */
3528     op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
3529     testcase( op==OP_Noop );
3530     testcase( op==OP_IdxGE );
3531     testcase( op==OP_IdxLT );
3532     if( op!=OP_Noop ){
3533       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
3534       sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0);
3535     }
3536 
3537     /* If there are inequality constraints, check that the value
3538     ** of the table column that the inequality contrains is not NULL.
3539     ** If it is, jump to the next iteration of the loop.
3540     */
3541     r1 = sqlite3GetTempReg(pParse);
3542     testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT );
3543     testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT );
3544     if( pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){
3545       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
3546       sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont);
3547     }
3548     sqlite3ReleaseTempReg(pParse, r1);
3549 
3550     /* Seek the table cursor, if required */
3551     disableTerm(pLevel, pRangeStart);
3552     disableTerm(pLevel, pRangeEnd);
3553     if( !omitTable ){
3554       iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
3555       sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
3556       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
3557       sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg);  /* Deferred seek */
3558     }
3559 
3560     /* Record the instruction used to terminate the loop. Disable
3561     ** WHERE clause terms made redundant by the index range scan.
3562     */
3563     pLevel->op = bRev ? OP_Prev : OP_Next;
3564     pLevel->p1 = iIdxCur;
3565   }else
3566 
3567 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
3568   if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
3569     /* Case 4:  Two or more separately indexed terms connected by OR
3570     **
3571     ** Example:
3572     **
3573     **   CREATE TABLE t1(a,b,c,d);
3574     **   CREATE INDEX i1 ON t1(a);
3575     **   CREATE INDEX i2 ON t1(b);
3576     **   CREATE INDEX i3 ON t1(c);
3577     **
3578     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
3579     **
3580     ** In the example, there are three indexed terms connected by OR.
3581     ** The top of the loop looks like this:
3582     **
3583     **          Null       1                # Zero the rowset in reg 1
3584     **
3585     ** Then, for each indexed term, the following. The arguments to
3586     ** RowSetTest are such that the rowid of the current row is inserted
3587     ** into the RowSet. If it is already present, control skips the
3588     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
3589     **
3590     **        sqlite3WhereBegin(<term>)
3591     **          RowSetTest                  # Insert rowid into rowset
3592     **          Gosub      2 A
3593     **        sqlite3WhereEnd()
3594     **
3595     ** Following the above, code to terminate the loop. Label A, the target
3596     ** of the Gosub above, jumps to the instruction right after the Goto.
3597     **
3598     **          Null       1                # Zero the rowset in reg 1
3599     **          Goto       B                # The loop is finished.
3600     **
3601     **       A: <loop body>                 # Return data, whatever.
3602     **
3603     **          Return     2                # Jump back to the Gosub
3604     **
3605     **       B: <after the loop>
3606     **
3607     */
3608     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
3609     WhereTerm *pFinal;     /* Final subterm within the OR-clause. */
3610     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
3611 
3612     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
3613     int regRowset = 0;                        /* Register for RowSet object */
3614     int regRowid = 0;                         /* Register holding rowid */
3615     int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
3616     int iRetInit;                             /* Address of regReturn init */
3617     int untestedTerms = 0;             /* Some terms not completely tested */
3618     int ii;
3619 
3620     pTerm = pLevel->plan.u.pTerm;
3621     assert( pTerm!=0 );
3622     assert( pTerm->eOperator==WO_OR );
3623     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
3624     pOrWc = &pTerm->u.pOrInfo->wc;
3625     pFinal = &pOrWc->a[pOrWc->nTerm-1];
3626     pLevel->op = OP_Return;
3627     pLevel->p1 = regReturn;
3628 
3629     /* Set up a new SrcList ni pOrTab containing the table being scanned
3630     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
3631     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
3632     */
3633     if( pWInfo->nLevel>1 ){
3634       int nNotReady;                 /* The number of notReady tables */
3635       struct SrcList_item *origSrc;     /* Original list of tables */
3636       nNotReady = pWInfo->nLevel - iLevel - 1;
3637       pOrTab = sqlite3StackAllocRaw(pParse->db,
3638                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
3639       if( pOrTab==0 ) return notReady;
3640       pOrTab->nAlloc = (i16)(nNotReady + 1);
3641       pOrTab->nSrc = pOrTab->nAlloc;
3642       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
3643       origSrc = pWInfo->pTabList->a;
3644       for(k=1; k<=nNotReady; k++){
3645         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
3646       }
3647     }else{
3648       pOrTab = pWInfo->pTabList;
3649     }
3650 
3651     /* Initialize the rowset register to contain NULL. An SQL NULL is
3652     ** equivalent to an empty rowset.
3653     **
3654     ** Also initialize regReturn to contain the address of the instruction
3655     ** immediately following the OP_Return at the bottom of the loop. This
3656     ** is required in a few obscure LEFT JOIN cases where control jumps
3657     ** over the top of the loop into the body of it. In this case the
3658     ** correct response for the end-of-loop code (the OP_Return) is to
3659     ** fall through to the next instruction, just as an OP_Next does if
3660     ** called on an uninitialized cursor.
3661     */
3662     if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
3663       regRowset = ++pParse->nMem;
3664       regRowid = ++pParse->nMem;
3665       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
3666     }
3667     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
3668 
3669     for(ii=0; ii<pOrWc->nTerm; ii++){
3670       WhereTerm *pOrTerm = &pOrWc->a[ii];
3671       if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
3672         WhereInfo *pSubWInfo;          /* Info for single OR-term scan */
3673         /* Loop through table entries that match term pOrTerm. */
3674         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrTerm->pExpr, 0,
3675                         WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE |
3676                         WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY);
3677         if( pSubWInfo ){
3678           if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
3679             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
3680             int r;
3681             r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur,
3682                                          regRowid);
3683             sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset,
3684                                  sqlite3VdbeCurrentAddr(v)+2, r, iSet);
3685           }
3686           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
3687 
3688           /* The pSubWInfo->untestedTerms flag means that this OR term
3689           ** contained one or more AND term from a notReady table.  The
3690           ** terms from the notReady table could not be tested and will
3691           ** need to be tested later.
3692           */
3693           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
3694 
3695           /* Finish the loop through table entries that match term pOrTerm. */
3696           sqlite3WhereEnd(pSubWInfo);
3697         }
3698       }
3699     }
3700     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
3701     sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
3702     sqlite3VdbeResolveLabel(v, iLoopBody);
3703 
3704     if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab);
3705     if( !untestedTerms ) disableTerm(pLevel, pTerm);
3706   }else
3707 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
3708 
3709   {
3710     /* Case 5:  There is no usable index.  We must do a complete
3711     **          scan of the entire table.
3712     */
3713     static const u8 aStep[] = { OP_Next, OP_Prev };
3714     static const u8 aStart[] = { OP_Rewind, OP_Last };
3715     assert( bRev==0 || bRev==1 );
3716     assert( omitTable==0 );
3717     pLevel->op = aStep[bRev];
3718     pLevel->p1 = iCur;
3719     pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
3720     pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
3721   }
3722   notReady &= ~getMask(pWC->pMaskSet, iCur);
3723 
3724   /* Insert code to test every subexpression that can be completely
3725   ** computed using the current set of tables.
3726   **
3727   ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through
3728   ** the use of indices become tests that are evaluated against each row of
3729   ** the relevant input tables.
3730   */
3731   k = 0;
3732   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
3733     Expr *pE;
3734     testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */
3735     testcase( pTerm->wtFlags & TERM_CODED );
3736     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
3737     if( (pTerm->prereqAll & notReady)!=0 ){
3738       testcase( pWInfo->untestedTerms==0
3739                && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
3740       pWInfo->untestedTerms = 1;
3741       continue;
3742     }
3743     pE = pTerm->pExpr;
3744     assert( pE!=0 );
3745     if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
3746       continue;
3747     }
3748     sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
3749     k = 1;
3750     pTerm->wtFlags |= TERM_CODED;
3751   }
3752 
3753   /* For a LEFT OUTER JOIN, generate code that will record the fact that
3754   ** at least one row of the right table has matched the left table.
3755   */
3756   if( pLevel->iLeftJoin ){
3757     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
3758     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
3759     VdbeComment((v, "record LEFT JOIN hit"));
3760     sqlite3ExprCacheClear(pParse);
3761     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
3762       testcase( pTerm->wtFlags & TERM_VIRTUAL );  /* IMP: R-30575-11662 */
3763       testcase( pTerm->wtFlags & TERM_CODED );
3764       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
3765       if( (pTerm->prereqAll & notReady)!=0 ){
3766         assert( pWInfo->untestedTerms );
3767         continue;
3768       }
3769       assert( pTerm->pExpr );
3770       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
3771       pTerm->wtFlags |= TERM_CODED;
3772     }
3773   }
3774   sqlite3ReleaseTempReg(pParse, iReleaseReg);
3775 
3776   return notReady;
3777 }
3778 
3779 #if defined(SQLITE_TEST)
3780 /*
3781 ** The following variable holds a text description of query plan generated
3782 ** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin
3783 ** overwrites the previous.  This information is used for testing and
3784 ** analysis only.
3785 */
3786 char sqlite3_query_plan[BMS*2*40];  /* Text of the join */
3787 static int nQPlan = 0;              /* Next free slow in _query_plan[] */
3788 
3789 #endif /* SQLITE_TEST */
3790 
3791 
3792 /*
3793 ** Free a WhereInfo structure
3794 */
3795 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
3796   if( ALWAYS(pWInfo) ){
3797     int i;
3798     for(i=0; i<pWInfo->nLevel; i++){
3799       sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
3800       if( pInfo ){
3801         /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */
3802         if( pInfo->needToFreeIdxStr ){
3803           sqlite3_free(pInfo->idxStr);
3804         }
3805         sqlite3DbFree(db, pInfo);
3806       }
3807       if( pWInfo->a[i].plan.wsFlags & WHERE_TEMP_INDEX ){
3808         Index *pIdx = pWInfo->a[i].plan.u.pIdx;
3809         if( pIdx ){
3810           sqlite3DbFree(db, pIdx->zColAff);
3811           sqlite3DbFree(db, pIdx);
3812         }
3813       }
3814     }
3815     whereClauseClear(pWInfo->pWC);
3816     sqlite3DbFree(db, pWInfo);
3817   }
3818 }
3819 
3820 
3821 /*
3822 ** Generate the beginning of the loop used for WHERE clause processing.
3823 ** The return value is a pointer to an opaque structure that contains
3824 ** information needed to terminate the loop.  Later, the calling routine
3825 ** should invoke sqlite3WhereEnd() with the return value of this function
3826 ** in order to complete the WHERE clause processing.
3827 **
3828 ** If an error occurs, this routine returns NULL.
3829 **
3830 ** The basic idea is to do a nested loop, one loop for each table in
3831 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
3832 ** same as a SELECT with only a single table in the FROM clause.)  For
3833 ** example, if the SQL is this:
3834 **
3835 **       SELECT * FROM t1, t2, t3 WHERE ...;
3836 **
3837 ** Then the code generated is conceptually like the following:
3838 **
3839 **      foreach row1 in t1 do       \    Code generated
3840 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
3841 **          foreach row3 in t3 do   /
3842 **            ...
3843 **          end                     \    Code generated
3844 **        end                        |-- by sqlite3WhereEnd()
3845 **      end                         /
3846 **
3847 ** Note that the loops might not be nested in the order in which they
3848 ** appear in the FROM clause if a different order is better able to make
3849 ** use of indices.  Note also that when the IN operator appears in
3850 ** the WHERE clause, it might result in additional nested loops for
3851 ** scanning through all values on the right-hand side of the IN.
3852 **
3853 ** There are Btree cursors associated with each table.  t1 uses cursor
3854 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
3855 ** And so forth.  This routine generates code to open those VDBE cursors
3856 ** and sqlite3WhereEnd() generates the code to close them.
3857 **
3858 ** The code that sqlite3WhereBegin() generates leaves the cursors named
3859 ** in pTabList pointing at their appropriate entries.  The [...] code
3860 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
3861 ** data from the various tables of the loop.
3862 **
3863 ** If the WHERE clause is empty, the foreach loops must each scan their
3864 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
3865 ** the tables have indices and there are terms in the WHERE clause that
3866 ** refer to those indices, a complete table scan can be avoided and the
3867 ** code will run much faster.  Most of the work of this routine is checking
3868 ** to see if there are indices that can be used to speed up the loop.
3869 **
3870 ** Terms of the WHERE clause are also used to limit which rows actually
3871 ** make it to the "..." in the middle of the loop.  After each "foreach",
3872 ** terms of the WHERE clause that use only terms in that loop and outer
3873 ** loops are evaluated and if false a jump is made around all subsequent
3874 ** inner loops (or around the "..." if the test occurs within the inner-
3875 ** most loop)
3876 **
3877 ** OUTER JOINS
3878 **
3879 ** An outer join of tables t1 and t2 is conceptally coded as follows:
3880 **
3881 **    foreach row1 in t1 do
3882 **      flag = 0
3883 **      foreach row2 in t2 do
3884 **        start:
3885 **          ...
3886 **          flag = 1
3887 **      end
3888 **      if flag==0 then
3889 **        move the row2 cursor to a null row
3890 **        goto start
3891 **      fi
3892 **    end
3893 **
3894 ** ORDER BY CLAUSE PROCESSING
3895 **
3896 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
3897 ** if there is one.  If there is no ORDER BY clause or if this routine
3898 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
3899 **
3900 ** If an index can be used so that the natural output order of the table
3901 ** scan is correct for the ORDER BY clause, then that index is used and
3902 ** *ppOrderBy is set to NULL.  This is an optimization that prevents an
3903 ** unnecessary sort of the result set if an index appropriate for the
3904 ** ORDER BY clause already exists.
3905 **
3906 ** If the where clause loops cannot be arranged to provide the correct
3907 ** output order, then the *ppOrderBy is unchanged.
3908 */
3909 WhereInfo *sqlite3WhereBegin(
3910   Parse *pParse,        /* The parser context */
3911   SrcList *pTabList,    /* A list of all tables to be scanned */
3912   Expr *pWhere,         /* The WHERE clause */
3913   ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
3914   u16 wctrlFlags        /* One of the WHERE_* flags defined in sqliteInt.h */
3915 ){
3916   int i;                     /* Loop counter */
3917   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
3918   int nTabList;              /* Number of elements in pTabList */
3919   WhereInfo *pWInfo;         /* Will become the return value of this function */
3920   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
3921   Bitmask notReady;          /* Cursors that are not yet positioned */
3922   WhereMaskSet *pMaskSet;    /* The expression mask set */
3923   WhereClause *pWC;               /* Decomposition of the WHERE clause */
3924   struct SrcList_item *pTabItem;  /* A single entry from pTabList */
3925   WhereLevel *pLevel;             /* A single level in the pWInfo list */
3926   int iFrom;                      /* First unused FROM clause element */
3927   int andFlags;              /* AND-ed combination of all pWC->a[].wtFlags */
3928   sqlite3 *db;               /* Database connection */
3929 
3930   /* The number of tables in the FROM clause is limited by the number of
3931   ** bits in a Bitmask
3932   */
3933   testcase( pTabList->nSrc==BMS );
3934   if( pTabList->nSrc>BMS ){
3935     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
3936     return 0;
3937   }
3938 
3939   /* This function normally generates a nested loop for all tables in
3940   ** pTabList.  But if the WHERE_ONETABLE_ONLY flag is set, then we should
3941   ** only generate code for the first table in pTabList and assume that
3942   ** any cursors associated with subsequent tables are uninitialized.
3943   */
3944   nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc;
3945 
3946   /* Allocate and initialize the WhereInfo structure that will become the
3947   ** return value. A single allocation is used to store the WhereInfo
3948   ** struct, the contents of WhereInfo.a[], the WhereClause structure
3949   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
3950   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
3951   ** some architectures. Hence the ROUND8() below.
3952   */
3953   db = pParse->db;
3954   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
3955   pWInfo = sqlite3DbMallocZero(db,
3956       nByteWInfo +
3957       sizeof(WhereClause) +
3958       sizeof(WhereMaskSet)
3959   );
3960   if( db->mallocFailed ){
3961     sqlite3DbFree(db, pWInfo);
3962     pWInfo = 0;
3963     goto whereBeginError;
3964   }
3965   pWInfo->nLevel = nTabList;
3966   pWInfo->pParse = pParse;
3967   pWInfo->pTabList = pTabList;
3968   pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
3969   pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo];
3970   pWInfo->wctrlFlags = wctrlFlags;
3971   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
3972   pMaskSet = (WhereMaskSet*)&pWC[1];
3973 
3974   /* Split the WHERE clause into separate subexpressions where each
3975   ** subexpression is separated by an AND operator.
3976   */
3977   initMaskSet(pMaskSet);
3978   whereClauseInit(pWC, pParse, pMaskSet);
3979   sqlite3ExprCodeConstants(pParse, pWhere);
3980   whereSplit(pWC, pWhere, TK_AND);   /* IMP: R-15842-53296 */
3981 
3982   /* Special case: a WHERE clause that is constant.  Evaluate the
3983   ** expression and either jump over all of the code or fall thru.
3984   */
3985   if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
3986     sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
3987     pWhere = 0;
3988   }
3989 
3990   /* Assign a bit from the bitmask to every term in the FROM clause.
3991   **
3992   ** When assigning bitmask values to FROM clause cursors, it must be
3993   ** the case that if X is the bitmask for the N-th FROM clause term then
3994   ** the bitmask for all FROM clause terms to the left of the N-th term
3995   ** is (X-1).   An expression from the ON clause of a LEFT JOIN can use
3996   ** its Expr.iRightJoinTable value to find the bitmask of the right table
3997   ** of the join.  Subtracting one from the right table bitmask gives a
3998   ** bitmask for all tables to the left of the join.  Knowing the bitmask
3999   ** for all tables to the left of a left join is important.  Ticket #3015.
4000   **
4001   ** Configure the WhereClause.vmask variable so that bits that correspond
4002   ** to virtual table cursors are set. This is used to selectively disable
4003   ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful
4004   ** with virtual tables.
4005   **
4006   ** Note that bitmasks are created for all pTabList->nSrc tables in
4007   ** pTabList, not just the first nTabList tables.  nTabList is normally
4008   ** equal to pTabList->nSrc but might be shortened to 1 if the
4009   ** WHERE_ONETABLE_ONLY flag is set.
4010   */
4011   assert( pWC->vmask==0 && pMaskSet->n==0 );
4012   for(i=0; i<pTabList->nSrc; i++){
4013     createMask(pMaskSet, pTabList->a[i].iCursor);
4014 #ifndef SQLITE_OMIT_VIRTUALTABLE
4015     if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){
4016       pWC->vmask |= ((Bitmask)1 << i);
4017     }
4018 #endif
4019   }
4020 #ifndef NDEBUG
4021   {
4022     Bitmask toTheLeft = 0;
4023     for(i=0; i<pTabList->nSrc; i++){
4024       Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor);
4025       assert( (m-1)==toTheLeft );
4026       toTheLeft |= m;
4027     }
4028   }
4029 #endif
4030 
4031   /* Analyze all of the subexpressions.  Note that exprAnalyze() might
4032   ** add new virtual terms onto the end of the WHERE clause.  We do not
4033   ** want to analyze these virtual terms, so start analyzing at the end
4034   ** and work forward so that the added virtual terms are never processed.
4035   */
4036   exprAnalyzeAll(pTabList, pWC);
4037   if( db->mallocFailed ){
4038     goto whereBeginError;
4039   }
4040 
4041   /* Chose the best index to use for each table in the FROM clause.
4042   **
4043   ** This loop fills in the following fields:
4044   **
4045   **   pWInfo->a[].pIdx      The index to use for this level of the loop.
4046   **   pWInfo->a[].wsFlags   WHERE_xxx flags associated with pIdx
4047   **   pWInfo->a[].nEq       The number of == and IN constraints
4048   **   pWInfo->a[].iFrom     Which term of the FROM clause is being coded
4049   **   pWInfo->a[].iTabCur   The VDBE cursor for the database table
4050   **   pWInfo->a[].iIdxCur   The VDBE cursor for the index
4051   **   pWInfo->a[].pTerm     When wsFlags==WO_OR, the OR-clause term
4052   **
4053   ** This loop also figures out the nesting order of tables in the FROM
4054   ** clause.
4055   */
4056   notReady = ~(Bitmask)0;
4057   pTabItem = pTabList->a;
4058   pLevel = pWInfo->a;
4059   andFlags = ~0;
4060   WHERETRACE(("*** Optimizer Start ***\n"));
4061   for(i=iFrom=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
4062     WhereCost bestPlan;         /* Most efficient plan seen so far */
4063     Index *pIdx;                /* Index for FROM table at pTabItem */
4064     int j;                      /* For looping over FROM tables */
4065     int bestJ = -1;             /* The value of j */
4066     Bitmask m;                  /* Bitmask value for j or bestJ */
4067     int isOptimal;              /* Iterator for optimal/non-optimal search */
4068     int nUnconstrained;         /* Number tables without INDEXED BY */
4069     Bitmask notIndexed;         /* Mask of tables that cannot use an index */
4070 
4071     memset(&bestPlan, 0, sizeof(bestPlan));
4072     bestPlan.rCost = SQLITE_BIG_DBL;
4073 
4074     /* Loop through the remaining entries in the FROM clause to find the
4075     ** next nested loop. The loop tests all FROM clause entries
4076     ** either once or twice.
4077     **
4078     ** The first test is always performed if there are two or more entries
4079     ** remaining and never performed if there is only one FROM clause entry
4080     ** to choose from.  The first test looks for an "optimal" scan.  In
4081     ** this context an optimal scan is one that uses the same strategy
4082     ** for the given FROM clause entry as would be selected if the entry
4083     ** were used as the innermost nested loop.  In other words, a table
4084     ** is chosen such that the cost of running that table cannot be reduced
4085     ** by waiting for other tables to run first.  This "optimal" test works
4086     ** by first assuming that the FROM clause is on the inner loop and finding
4087     ** its query plan, then checking to see if that query plan uses any
4088     ** other FROM clause terms that are notReady.  If no notReady terms are
4089     ** used then the "optimal" query plan works.
4090     **
4091     ** The second loop iteration is only performed if no optimal scan
4092     ** strategies were found by the first loop. This 2nd iteration is used to
4093     ** search for the lowest cost scan overall.
4094     **
4095     ** Previous versions of SQLite performed only the second iteration -
4096     ** the next outermost loop was always that with the lowest overall
4097     ** cost. However, this meant that SQLite could select the wrong plan
4098     ** for scripts such as the following:
4099     **
4100     **   CREATE TABLE t1(a, b);
4101     **   CREATE TABLE t2(c, d);
4102     **   SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
4103     **
4104     ** The best strategy is to iterate through table t1 first. However it
4105     ** is not possible to determine this with a simple greedy algorithm.
4106     ** However, since the cost of a linear scan through table t2 is the same
4107     ** as the cost of a linear scan through table t1, a simple greedy
4108     ** algorithm may choose to use t2 for the outer loop, which is a much
4109     ** costlier approach.
4110     */
4111     nUnconstrained = 0;
4112     notIndexed = 0;
4113     for(isOptimal=(iFrom<nTabList-1); isOptimal>=0; isOptimal--){
4114       Bitmask mask;             /* Mask of tables not yet ready */
4115       for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){
4116         int doNotReorder;    /* True if this table should not be reordered */
4117         WhereCost sCost;     /* Cost information from best[Virtual]Index() */
4118         ExprList *pOrderBy;  /* ORDER BY clause for index to optimize */
4119 
4120         doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
4121         if( j!=iFrom && doNotReorder ) break;
4122         m = getMask(pMaskSet, pTabItem->iCursor);
4123         if( (m & notReady)==0 ){
4124           if( j==iFrom ) iFrom++;
4125           continue;
4126         }
4127         mask = (isOptimal ? m : notReady);
4128         pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0);
4129         if( pTabItem->pIndex==0 ) nUnconstrained++;
4130 
4131         assert( pTabItem->pTab );
4132 #ifndef SQLITE_OMIT_VIRTUALTABLE
4133         if( IsVirtual(pTabItem->pTab) ){
4134           sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo;
4135           bestVirtualIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost, pp);
4136         }else
4137 #endif
4138         {
4139           bestBtreeIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost);
4140         }
4141         assert( isOptimal || (sCost.used&notReady)==0 );
4142 
4143         /* If an INDEXED BY clause is present, then the plan must use that
4144         ** index if it uses any index at all */
4145         assert( pTabItem->pIndex==0
4146                   || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0
4147                   || sCost.plan.u.pIdx==pTabItem->pIndex );
4148 
4149         if( isOptimal && (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){
4150           notIndexed |= m;
4151         }
4152 
4153         /* Conditions under which this table becomes the best so far:
4154         **
4155         **   (1) The table must not depend on other tables that have not
4156         **       yet run.
4157         **
4158         **   (2) A full-table-scan plan cannot supercede another plan unless
4159         **       it is an "optimal" plan as defined above.
4160         **
4161         **   (3) All tables have an INDEXED BY clause or this table lacks an
4162         **       INDEXED BY clause or this table uses the specific
4163         **       index specified by its INDEXED BY clause.  This rule ensures
4164         **       that a best-so-far is always selected even if an impossible
4165         **       combination of INDEXED BY clauses are given.  The error
4166         **       will be detected and relayed back to the application later.
4167         **       The NEVER() comes about because rule (2) above prevents
4168         **       An indexable full-table-scan from reaching rule (3).
4169         **
4170         **   (4) The plan cost must be lower than prior plans or else the
4171         **       cost must be the same and the number of rows must be lower.
4172         */
4173         if( (sCost.used&notReady)==0                       /* (1) */
4174             && (bestJ<0 || (notIndexed&m)!=0               /* (2) */
4175                 || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0)
4176             && (nUnconstrained==0 || pTabItem->pIndex==0   /* (3) */
4177                 || NEVER((sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0))
4178             && (bestJ<0 || sCost.rCost<bestPlan.rCost      /* (4) */
4179                 || (sCost.rCost<=bestPlan.rCost && sCost.nRow<bestPlan.nRow))
4180         ){
4181           WHERETRACE(("... best so far with cost=%g and nRow=%g\n",
4182                       sCost.rCost, sCost.nRow));
4183           bestPlan = sCost;
4184           bestJ = j;
4185         }
4186         if( doNotReorder ) break;
4187       }
4188     }
4189     assert( bestJ>=0 );
4190     assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
4191     WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ,
4192            pLevel-pWInfo->a));
4193     if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){
4194       *ppOrderBy = 0;
4195     }
4196     andFlags &= bestPlan.plan.wsFlags;
4197     pLevel->plan = bestPlan.plan;
4198     testcase( bestPlan.plan.wsFlags & WHERE_INDEXED );
4199     testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX );
4200     if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){
4201       pLevel->iIdxCur = pParse->nTab++;
4202     }else{
4203       pLevel->iIdxCur = -1;
4204     }
4205     notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor);
4206     pLevel->iFrom = (u8)bestJ;
4207     if( bestPlan.nRow>=(double)1 ) pParse->nQueryLoop *= bestPlan.nRow;
4208 
4209     /* Check that if the table scanned by this loop iteration had an
4210     ** INDEXED BY clause attached to it, that the named index is being
4211     ** used for the scan. If not, then query compilation has failed.
4212     ** Return an error.
4213     */
4214     pIdx = pTabList->a[bestJ].pIndex;
4215     if( pIdx ){
4216       if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){
4217         sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName);
4218         goto whereBeginError;
4219       }else{
4220         /* If an INDEXED BY clause is used, the bestIndex() function is
4221         ** guaranteed to find the index specified in the INDEXED BY clause
4222         ** if it find an index at all. */
4223         assert( bestPlan.plan.u.pIdx==pIdx );
4224       }
4225     }
4226   }
4227   WHERETRACE(("*** Optimizer Finished ***\n"));
4228   if( pParse->nErr || db->mallocFailed ){
4229     goto whereBeginError;
4230   }
4231 
4232   /* If the total query only selects a single row, then the ORDER BY
4233   ** clause is irrelevant.
4234   */
4235   if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
4236     *ppOrderBy = 0;
4237   }
4238 
4239   /* If the caller is an UPDATE or DELETE statement that is requesting
4240   ** to use a one-pass algorithm, determine if this is appropriate.
4241   ** The one-pass algorithm only works if the WHERE clause constraints
4242   ** the statement to update a single row.
4243   */
4244   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
4245   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){
4246     pWInfo->okOnePass = 1;
4247     pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY;
4248   }
4249 
4250   /* Open all tables in the pTabList and any indices selected for
4251   ** searching those tables.
4252   */
4253   sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
4254   notReady = ~(Bitmask)0;
4255   for(i=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
4256     Table *pTab;     /* Table to open */
4257     int iDb;         /* Index of database containing table/index */
4258 
4259 #ifndef SQLITE_OMIT_EXPLAIN
4260     if( pParse->explain==2 ){
4261       char *zMsg;
4262       struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
4263       zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName);
4264       if( pItem->zAlias ){
4265         zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
4266       }
4267       if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){
4268         zMsg = sqlite3MAppendf(db, zMsg, "%s WITH AUTOMATIC INDEX", zMsg);
4269       }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
4270         zMsg = sqlite3MAppendf(db, zMsg, "%s WITH INDEX %s",
4271            zMsg, pLevel->plan.u.pIdx->zName);
4272       }else if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
4273         zMsg = sqlite3MAppendf(db, zMsg, "%s VIA MULTI-INDEX UNION", zMsg);
4274       }else if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
4275         zMsg = sqlite3MAppendf(db, zMsg, "%s USING PRIMARY KEY", zMsg);
4276       }
4277 #ifndef SQLITE_OMIT_VIRTUALTABLE
4278       else if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
4279         sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
4280         zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
4281                     pVtabIdx->idxNum, pVtabIdx->idxStr);
4282       }
4283 #endif
4284       if( pLevel->plan.wsFlags & WHERE_ORDERBY ){
4285         zMsg = sqlite3MAppendf(db, zMsg, "%s ORDER BY", zMsg);
4286       }
4287       sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC);
4288     }
4289 #endif /* SQLITE_OMIT_EXPLAIN */
4290     pTabItem = &pTabList->a[pLevel->iFrom];
4291     pTab = pTabItem->pTab;
4292     pLevel->iTabCur = pTabItem->iCursor;
4293     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4294     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
4295       /* Do nothing */
4296     }else
4297 #ifndef SQLITE_OMIT_VIRTUALTABLE
4298     if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
4299       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
4300       int iCur = pTabItem->iCursor;
4301       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
4302     }else
4303 #endif
4304     if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
4305          && (wctrlFlags & WHERE_OMIT_OPEN)==0 ){
4306       int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
4307       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
4308       testcase( pTab->nCol==BMS-1 );
4309       testcase( pTab->nCol==BMS );
4310       if( !pWInfo->okOnePass && pTab->nCol<BMS ){
4311         Bitmask b = pTabItem->colUsed;
4312         int n = 0;
4313         for(; b; b=b>>1, n++){}
4314         sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1,
4315                             SQLITE_INT_TO_PTR(n), P4_INT32);
4316         assert( n<=pTab->nCol );
4317       }
4318     }else{
4319       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4320     }
4321 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
4322     if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){
4323       constructAutomaticIndex(pParse, pWC, pTabItem, notReady, pLevel);
4324     }else
4325 #endif
4326     if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
4327       Index *pIx = pLevel->plan.u.pIdx;
4328       KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
4329       int iIdxCur = pLevel->iIdxCur;
4330       assert( pIx->pSchema==pTab->pSchema );
4331       assert( iIdxCur>=0 );
4332       sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
4333                         (char*)pKey, P4_KEYINFO_HANDOFF);
4334       VdbeComment((v, "%s", pIx->zName));
4335     }
4336     sqlite3CodeVerifySchema(pParse, iDb);
4337     notReady &= ~getMask(pWC->pMaskSet, pTabItem->iCursor);
4338   }
4339   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
4340   if( db->mallocFailed ) goto whereBeginError;
4341 
4342   /* Generate the code to do the search.  Each iteration of the for
4343   ** loop below generates code for a single nested loop of the VM
4344   ** program.
4345   */
4346   notReady = ~(Bitmask)0;
4347   for(i=0; i<nTabList; i++){
4348     notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady);
4349     pWInfo->iContinue = pWInfo->a[i].addrCont;
4350   }
4351 
4352 #ifdef SQLITE_TEST  /* For testing and debugging use only */
4353   /* Record in the query plan information about the current table
4354   ** and the index used to access it (if any).  If the table itself
4355   ** is not used, its name is just '{}'.  If no index is used
4356   ** the index is listed as "{}".  If the primary key is used the
4357   ** index name is '*'.
4358   */
4359   for(i=0; i<nTabList; i++){
4360     char *z;
4361     int n;
4362     pLevel = &pWInfo->a[i];
4363     pTabItem = &pTabList->a[pLevel->iFrom];
4364     z = pTabItem->zAlias;
4365     if( z==0 ) z = pTabItem->pTab->zName;
4366     n = sqlite3Strlen30(z);
4367     if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
4368       if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){
4369         memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
4370         nQPlan += 2;
4371       }else{
4372         memcpy(&sqlite3_query_plan[nQPlan], z, n);
4373         nQPlan += n;
4374       }
4375       sqlite3_query_plan[nQPlan++] = ' ';
4376     }
4377     testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ );
4378     testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE );
4379     if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
4380       memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
4381       nQPlan += 2;
4382     }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
4383       n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName);
4384       if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
4385         memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n);
4386         nQPlan += n;
4387         sqlite3_query_plan[nQPlan++] = ' ';
4388       }
4389     }else{
4390       memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
4391       nQPlan += 3;
4392     }
4393   }
4394   while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
4395     sqlite3_query_plan[--nQPlan] = 0;
4396   }
4397   sqlite3_query_plan[nQPlan] = 0;
4398   nQPlan = 0;
4399 #endif /* SQLITE_TEST // Testing and debugging use only */
4400 
4401   /* Record the continuation address in the WhereInfo structure.  Then
4402   ** clean up and return.
4403   */
4404   return pWInfo;
4405 
4406   /* Jump here if malloc fails */
4407 whereBeginError:
4408   if( pWInfo ){
4409     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4410     whereInfoFree(db, pWInfo);
4411   }
4412   return 0;
4413 }
4414 
4415 /*
4416 ** Generate the end of the WHERE loop.  See comments on
4417 ** sqlite3WhereBegin() for additional information.
4418 */
4419 void sqlite3WhereEnd(WhereInfo *pWInfo){
4420   Parse *pParse = pWInfo->pParse;
4421   Vdbe *v = pParse->pVdbe;
4422   int i;
4423   WhereLevel *pLevel;
4424   SrcList *pTabList = pWInfo->pTabList;
4425   sqlite3 *db = pParse->db;
4426 
4427   /* Generate loop termination code.
4428   */
4429   sqlite3ExprCacheClear(pParse);
4430   for(i=pWInfo->nLevel-1; i>=0; i--){
4431     pLevel = &pWInfo->a[i];
4432     sqlite3VdbeResolveLabel(v, pLevel->addrCont);
4433     if( pLevel->op!=OP_Noop ){
4434       sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
4435       sqlite3VdbeChangeP5(v, pLevel->p5);
4436     }
4437     if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
4438       struct InLoop *pIn;
4439       int j;
4440       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
4441       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
4442         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
4443         sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop);
4444         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
4445       }
4446       sqlite3DbFree(db, pLevel->u.in.aInLoop);
4447     }
4448     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
4449     if( pLevel->iLeftJoin ){
4450       int addr;
4451       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
4452       assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
4453            || (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 );
4454       if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){
4455         sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
4456       }
4457       if( pLevel->iIdxCur>=0 ){
4458         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
4459       }
4460       if( pLevel->op==OP_Return ){
4461         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
4462       }else{
4463         sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst);
4464       }
4465       sqlite3VdbeJumpHere(v, addr);
4466     }
4467   }
4468 
4469   /* The "break" point is here, just past the end of the outer loop.
4470   ** Set it.
4471   */
4472   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
4473 
4474   /* Close all of the cursors that were opened by sqlite3WhereBegin.
4475   */
4476   assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc );
4477   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
4478     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
4479     Table *pTab = pTabItem->pTab;
4480     assert( pTab!=0 );
4481     if( (pTab->tabFlags & TF_Ephemeral)==0
4482      && pTab->pSelect==0
4483      && (pWInfo->wctrlFlags & WHERE_OMIT_CLOSE)==0
4484     ){
4485       int ws = pLevel->plan.wsFlags;
4486       if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){
4487         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
4488       }
4489       if( (ws & WHERE_INDEXED)!=0 && (ws & WHERE_TEMP_INDEX)==0 ){
4490         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
4491       }
4492     }
4493 
4494     /* If this scan uses an index, make code substitutions to read data
4495     ** from the index in preference to the table. Sometimes, this means
4496     ** the table need never be read from. This is a performance boost,
4497     ** as the vdbe level waits until the table is read before actually
4498     ** seeking the table cursor to the record corresponding to the current
4499     ** position in the index.
4500     **
4501     ** Calls to the code generator in between sqlite3WhereBegin and
4502     ** sqlite3WhereEnd will have created code that references the table
4503     ** directly.  This loop scans all that code looking for opcodes
4504     ** that reference the table and converts them into opcodes that
4505     ** reference the index.
4506     */
4507     if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && !db->mallocFailed){
4508       int k, j, last;
4509       VdbeOp *pOp;
4510       Index *pIdx = pLevel->plan.u.pIdx;
4511 
4512       assert( pIdx!=0 );
4513       pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
4514       last = sqlite3VdbeCurrentAddr(v);
4515       for(k=pWInfo->iTop; k<last; k++, pOp++){
4516         if( pOp->p1!=pLevel->iTabCur ) continue;
4517         if( pOp->opcode==OP_Column ){
4518           for(j=0; j<pIdx->nColumn; j++){
4519             if( pOp->p2==pIdx->aiColumn[j] ){
4520               pOp->p2 = j;
4521               pOp->p1 = pLevel->iIdxCur;
4522               break;
4523             }
4524           }
4525           assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
4526                || j<pIdx->nColumn );
4527         }else if( pOp->opcode==OP_Rowid ){
4528           pOp->p1 = pLevel->iIdxCur;
4529           pOp->opcode = OP_IdxRowid;
4530         }
4531       }
4532     }
4533   }
4534 
4535   /* Final cleanup
4536   */
4537   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4538   whereInfoFree(db, pWInfo);
4539   return;
4540 }
4541