xref: /sqlite-3.40.0/src/where.c (revision e99cb2da)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /*
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly.  The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
26 **
27 ** This object is not an API and can be changed from one release to the
28 ** next.  As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
30 */
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33   WhereClause *pWC;   /* The Where clause being analyzed */
34   Parse *pParse;      /* The parsing context */
35 };
36 
37 /* Forward declaration of methods */
38 static int whereLoopResize(sqlite3*, WhereLoop*, int);
39 
40 /* Test variable that can be set to enable WHERE tracing */
41 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
42 /***/ int sqlite3WhereTrace = 0;
43 #endif
44 
45 
46 /*
47 ** Return the estimated number of output rows from a WHERE clause
48 */
49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
50   return pWInfo->nRowOut;
51 }
52 
53 /*
54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
55 ** WHERE clause returns outputs for DISTINCT processing.
56 */
57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
58   return pWInfo->eDistinct;
59 }
60 
61 /*
62 ** Return TRUE if the WHERE clause returns rows in ORDER BY order.
63 ** Return FALSE if the output needs to be sorted.
64 */
65 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
66   return pWInfo->nOBSat;
67 }
68 
69 /*
70 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
71 ** to emit rows in increasing order, and if the last row emitted by the
72 ** inner-most loop did not fit within the sorter, then we can skip all
73 ** subsequent rows for the current iteration of the inner loop (because they
74 ** will not fit in the sorter either) and continue with the second inner
75 ** loop - the loop immediately outside the inner-most.
76 **
77 ** When a row does not fit in the sorter (because the sorter already
78 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
79 ** label returned by this function.
80 **
81 ** If the ORDER BY LIMIT optimization applies, the jump destination should
82 ** be the continuation for the second-inner-most loop.  If the ORDER BY
83 ** LIMIT optimization does not apply, then the jump destination should
84 ** be the continuation for the inner-most loop.
85 **
86 ** It is always safe for this routine to return the continuation of the
87 ** inner-most loop, in the sense that a correct answer will result.
88 ** Returning the continuation the second inner loop is an optimization
89 ** that might make the code run a little faster, but should not change
90 ** the final answer.
91 */
92 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
93   WhereLevel *pInner;
94   if( !pWInfo->bOrderedInnerLoop ){
95     /* The ORDER BY LIMIT optimization does not apply.  Jump to the
96     ** continuation of the inner-most loop. */
97     return pWInfo->iContinue;
98   }
99   pInner = &pWInfo->a[pWInfo->nLevel-1];
100   assert( pInner->addrNxt!=0 );
101   return pInner->addrNxt;
102 }
103 
104 /*
105 ** Return the VDBE address or label to jump to in order to continue
106 ** immediately with the next row of a WHERE clause.
107 */
108 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
109   assert( pWInfo->iContinue!=0 );
110   return pWInfo->iContinue;
111 }
112 
113 /*
114 ** Return the VDBE address or label to jump to in order to break
115 ** out of a WHERE loop.
116 */
117 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
118   return pWInfo->iBreak;
119 }
120 
121 /*
122 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
123 ** operate directly on the rowis returned by a WHERE clause.  Return
124 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
125 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
126 ** optimization can be used on multiple
127 **
128 ** If the ONEPASS optimization is used (if this routine returns true)
129 ** then also write the indices of open cursors used by ONEPASS
130 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
131 ** table and iaCur[1] gets the cursor used by an auxiliary index.
132 ** Either value may be -1, indicating that cursor is not used.
133 ** Any cursors returned will have been opened for writing.
134 **
135 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
136 ** unable to use the ONEPASS optimization.
137 */
138 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
139   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
140 #ifdef WHERETRACE_ENABLED
141   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
142     sqlite3DebugPrintf("%s cursors: %d %d\n",
143          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
144          aiCur[0], aiCur[1]);
145   }
146 #endif
147   return pWInfo->eOnePass;
148 }
149 
150 /*
151 ** Move the content of pSrc into pDest
152 */
153 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
154   pDest->n = pSrc->n;
155   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
156 }
157 
158 /*
159 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
160 **
161 ** The new entry might overwrite an existing entry, or it might be
162 ** appended, or it might be discarded.  Do whatever is the right thing
163 ** so that pSet keeps the N_OR_COST best entries seen so far.
164 */
165 static int whereOrInsert(
166   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
167   Bitmask prereq,        /* Prerequisites of the new entry */
168   LogEst rRun,           /* Run-cost of the new entry */
169   LogEst nOut            /* Number of outputs for the new entry */
170 ){
171   u16 i;
172   WhereOrCost *p;
173   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
174     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
175       goto whereOrInsert_done;
176     }
177     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
178       return 0;
179     }
180   }
181   if( pSet->n<N_OR_COST ){
182     p = &pSet->a[pSet->n++];
183     p->nOut = nOut;
184   }else{
185     p = pSet->a;
186     for(i=1; i<pSet->n; i++){
187       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
188     }
189     if( p->rRun<=rRun ) return 0;
190   }
191 whereOrInsert_done:
192   p->prereq = prereq;
193   p->rRun = rRun;
194   if( p->nOut>nOut ) p->nOut = nOut;
195   return 1;
196 }
197 
198 /*
199 ** Return the bitmask for the given cursor number.  Return 0 if
200 ** iCursor is not in the set.
201 */
202 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
203   int i;
204   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
205   for(i=0; i<pMaskSet->n; i++){
206     if( pMaskSet->ix[i]==iCursor ){
207       return MASKBIT(i);
208     }
209   }
210   return 0;
211 }
212 
213 /*
214 ** Create a new mask for cursor iCursor.
215 **
216 ** There is one cursor per table in the FROM clause.  The number of
217 ** tables in the FROM clause is limited by a test early in the
218 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
219 ** array will never overflow.
220 */
221 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
222   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
223   pMaskSet->ix[pMaskSet->n++] = iCursor;
224 }
225 
226 /*
227 ** Advance to the next WhereTerm that matches according to the criteria
228 ** established when the pScan object was initialized by whereScanInit().
229 ** Return NULL if there are no more matching WhereTerms.
230 */
231 static WhereTerm *whereScanNext(WhereScan *pScan){
232   int iCur;            /* The cursor on the LHS of the term */
233   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
234   Expr *pX;            /* An expression being tested */
235   WhereClause *pWC;    /* Shorthand for pScan->pWC */
236   WhereTerm *pTerm;    /* The term being tested */
237   int k = pScan->k;    /* Where to start scanning */
238 
239   assert( pScan->iEquiv<=pScan->nEquiv );
240   pWC = pScan->pWC;
241   while(1){
242     iColumn = pScan->aiColumn[pScan->iEquiv-1];
243     iCur = pScan->aiCur[pScan->iEquiv-1];
244     assert( pWC!=0 );
245     do{
246       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
247         if( pTerm->leftCursor==iCur
248          && pTerm->u.leftColumn==iColumn
249          && (iColumn!=XN_EXPR
250              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
251                                        pScan->pIdxExpr,iCur)==0)
252          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
253         ){
254           if( (pTerm->eOperator & WO_EQUIV)!=0
255            && pScan->nEquiv<ArraySize(pScan->aiCur)
256            && (pX = sqlite3ExprSkipCollateAndLikely(pTerm->pExpr->pRight))->op
257                ==TK_COLUMN
258           ){
259             int j;
260             for(j=0; j<pScan->nEquiv; j++){
261               if( pScan->aiCur[j]==pX->iTable
262                && pScan->aiColumn[j]==pX->iColumn ){
263                   break;
264               }
265             }
266             if( j==pScan->nEquiv ){
267               pScan->aiCur[j] = pX->iTable;
268               pScan->aiColumn[j] = pX->iColumn;
269               pScan->nEquiv++;
270             }
271           }
272           if( (pTerm->eOperator & pScan->opMask)!=0 ){
273             /* Verify the affinity and collating sequence match */
274             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
275               CollSeq *pColl;
276               Parse *pParse = pWC->pWInfo->pParse;
277               pX = pTerm->pExpr;
278               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
279                 continue;
280               }
281               assert(pX->pLeft);
282               pColl = sqlite3ExprCompareCollSeq(pParse, pX);
283               if( pColl==0 ) pColl = pParse->db->pDfltColl;
284               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
285                 continue;
286               }
287             }
288             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
289              && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
290              && pX->iTable==pScan->aiCur[0]
291              && pX->iColumn==pScan->aiColumn[0]
292             ){
293               testcase( pTerm->eOperator & WO_IS );
294               continue;
295             }
296             pScan->pWC = pWC;
297             pScan->k = k+1;
298             return pTerm;
299           }
300         }
301       }
302       pWC = pWC->pOuter;
303       k = 0;
304     }while( pWC!=0 );
305     if( pScan->iEquiv>=pScan->nEquiv ) break;
306     pWC = pScan->pOrigWC;
307     k = 0;
308     pScan->iEquiv++;
309   }
310   return 0;
311 }
312 
313 /*
314 ** This is whereScanInit() for the case of an index on an expression.
315 ** It is factored out into a separate tail-recursion subroutine so that
316 ** the normal whereScanInit() routine, which is a high-runner, does not
317 ** need to push registers onto the stack as part of its prologue.
318 */
319 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
320   pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
321   return whereScanNext(pScan);
322 }
323 
324 /*
325 ** Initialize a WHERE clause scanner object.  Return a pointer to the
326 ** first match.  Return NULL if there are no matches.
327 **
328 ** The scanner will be searching the WHERE clause pWC.  It will look
329 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
330 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
331 ** must be one of the indexes of table iCur.
332 **
333 ** The <op> must be one of the operators described by opMask.
334 **
335 ** If the search is for X and the WHERE clause contains terms of the
336 ** form X=Y then this routine might also return terms of the form
337 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
338 ** but is enough to handle most commonly occurring SQL statements.
339 **
340 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
341 ** index pIdx.
342 */
343 static WhereTerm *whereScanInit(
344   WhereScan *pScan,       /* The WhereScan object being initialized */
345   WhereClause *pWC,       /* The WHERE clause to be scanned */
346   int iCur,               /* Cursor to scan for */
347   int iColumn,            /* Column to scan for */
348   u32 opMask,             /* Operator(s) to scan for */
349   Index *pIdx             /* Must be compatible with this index */
350 ){
351   pScan->pOrigWC = pWC;
352   pScan->pWC = pWC;
353   pScan->pIdxExpr = 0;
354   pScan->idxaff = 0;
355   pScan->zCollName = 0;
356   pScan->opMask = opMask;
357   pScan->k = 0;
358   pScan->aiCur[0] = iCur;
359   pScan->nEquiv = 1;
360   pScan->iEquiv = 1;
361   if( pIdx ){
362     int j = iColumn;
363     iColumn = pIdx->aiColumn[j];
364     if( iColumn==XN_EXPR ){
365       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
366       pScan->zCollName = pIdx->azColl[j];
367       pScan->aiColumn[0] = XN_EXPR;
368       return whereScanInitIndexExpr(pScan);
369     }else if( iColumn==pIdx->pTable->iPKey ){
370       iColumn = XN_ROWID;
371     }else if( iColumn>=0 ){
372       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
373       pScan->zCollName = pIdx->azColl[j];
374     }
375   }else if( iColumn==XN_EXPR ){
376     return 0;
377   }
378   pScan->aiColumn[0] = iColumn;
379   return whereScanNext(pScan);
380 }
381 
382 /*
383 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
384 ** where X is a reference to the iColumn of table iCur or of index pIdx
385 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
386 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
387 **
388 ** If pIdx!=0 then it must be one of the indexes of table iCur.
389 ** Search for terms matching the iColumn-th column of pIdx
390 ** rather than the iColumn-th column of table iCur.
391 **
392 ** The term returned might by Y=<expr> if there is another constraint in
393 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
394 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
395 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
396 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
397 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
398 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
399 **
400 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
401 ** then try for the one with no dependencies on <expr> - in other words where
402 ** <expr> is a constant expression of some kind.  Only return entries of
403 ** the form "X <op> Y" where Y is a column in another table if no terms of
404 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
405 ** exist, try to return a term that does not use WO_EQUIV.
406 */
407 WhereTerm *sqlite3WhereFindTerm(
408   WhereClause *pWC,     /* The WHERE clause to be searched */
409   int iCur,             /* Cursor number of LHS */
410   int iColumn,          /* Column number of LHS */
411   Bitmask notReady,     /* RHS must not overlap with this mask */
412   u32 op,               /* Mask of WO_xx values describing operator */
413   Index *pIdx           /* Must be compatible with this index, if not NULL */
414 ){
415   WhereTerm *pResult = 0;
416   WhereTerm *p;
417   WhereScan scan;
418 
419   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
420   op &= WO_EQ|WO_IS;
421   while( p ){
422     if( (p->prereqRight & notReady)==0 ){
423       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
424         testcase( p->eOperator & WO_IS );
425         return p;
426       }
427       if( pResult==0 ) pResult = p;
428     }
429     p = whereScanNext(&scan);
430   }
431   return pResult;
432 }
433 
434 /*
435 ** This function searches pList for an entry that matches the iCol-th column
436 ** of index pIdx.
437 **
438 ** If such an expression is found, its index in pList->a[] is returned. If
439 ** no expression is found, -1 is returned.
440 */
441 static int findIndexCol(
442   Parse *pParse,                  /* Parse context */
443   ExprList *pList,                /* Expression list to search */
444   int iBase,                      /* Cursor for table associated with pIdx */
445   Index *pIdx,                    /* Index to match column of */
446   int iCol                        /* Column of index to match */
447 ){
448   int i;
449   const char *zColl = pIdx->azColl[iCol];
450 
451   for(i=0; i<pList->nExpr; i++){
452     Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
453     if( p->op==TK_COLUMN
454      && p->iColumn==pIdx->aiColumn[iCol]
455      && p->iTable==iBase
456     ){
457       CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
458       if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
459         return i;
460       }
461     }
462   }
463 
464   return -1;
465 }
466 
467 /*
468 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
469 */
470 static int indexColumnNotNull(Index *pIdx, int iCol){
471   int j;
472   assert( pIdx!=0 );
473   assert( iCol>=0 && iCol<pIdx->nColumn );
474   j = pIdx->aiColumn[iCol];
475   if( j>=0 ){
476     return pIdx->pTable->aCol[j].notNull;
477   }else if( j==(-1) ){
478     return 1;
479   }else{
480     assert( j==(-2) );
481     return 0;  /* Assume an indexed expression can always yield a NULL */
482 
483   }
484 }
485 
486 /*
487 ** Return true if the DISTINCT expression-list passed as the third argument
488 ** is redundant.
489 **
490 ** A DISTINCT list is redundant if any subset of the columns in the
491 ** DISTINCT list are collectively unique and individually non-null.
492 */
493 static int isDistinctRedundant(
494   Parse *pParse,            /* Parsing context */
495   SrcList *pTabList,        /* The FROM clause */
496   WhereClause *pWC,         /* The WHERE clause */
497   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
498 ){
499   Table *pTab;
500   Index *pIdx;
501   int i;
502   int iBase;
503 
504   /* If there is more than one table or sub-select in the FROM clause of
505   ** this query, then it will not be possible to show that the DISTINCT
506   ** clause is redundant. */
507   if( pTabList->nSrc!=1 ) return 0;
508   iBase = pTabList->a[0].iCursor;
509   pTab = pTabList->a[0].pTab;
510 
511   /* If any of the expressions is an IPK column on table iBase, then return
512   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
513   ** current SELECT is a correlated sub-query.
514   */
515   for(i=0; i<pDistinct->nExpr; i++){
516     Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
517     if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
518   }
519 
520   /* Loop through all indices on the table, checking each to see if it makes
521   ** the DISTINCT qualifier redundant. It does so if:
522   **
523   **   1. The index is itself UNIQUE, and
524   **
525   **   2. All of the columns in the index are either part of the pDistinct
526   **      list, or else the WHERE clause contains a term of the form "col=X",
527   **      where X is a constant value. The collation sequences of the
528   **      comparison and select-list expressions must match those of the index.
529   **
530   **   3. All of those index columns for which the WHERE clause does not
531   **      contain a "col=X" term are subject to a NOT NULL constraint.
532   */
533   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
534     if( !IsUniqueIndex(pIdx) ) continue;
535     for(i=0; i<pIdx->nKeyCol; i++){
536       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
537         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
538         if( indexColumnNotNull(pIdx, i)==0 ) break;
539       }
540     }
541     if( i==pIdx->nKeyCol ){
542       /* This index implies that the DISTINCT qualifier is redundant. */
543       return 1;
544     }
545   }
546 
547   return 0;
548 }
549 
550 
551 /*
552 ** Estimate the logarithm of the input value to base 2.
553 */
554 static LogEst estLog(LogEst N){
555   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
556 }
557 
558 /*
559 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
560 **
561 ** This routine runs over generated VDBE code and translates OP_Column
562 ** opcodes into OP_Copy when the table is being accessed via co-routine
563 ** instead of via table lookup.
564 **
565 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
566 ** cursor iTabCur are transformed into OP_Sequence opcode for the
567 ** iAutoidxCur cursor, in order to generate unique rowids for the
568 ** automatic index being generated.
569 */
570 static void translateColumnToCopy(
571   Parse *pParse,      /* Parsing context */
572   int iStart,         /* Translate from this opcode to the end */
573   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
574   int iRegister,      /* The first column is in this register */
575   int iAutoidxCur     /* If non-zero, cursor of autoindex being generated */
576 ){
577   Vdbe *v = pParse->pVdbe;
578   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
579   int iEnd = sqlite3VdbeCurrentAddr(v);
580   if( pParse->db->mallocFailed ) return;
581   for(; iStart<iEnd; iStart++, pOp++){
582     if( pOp->p1!=iTabCur ) continue;
583     if( pOp->opcode==OP_Column ){
584       pOp->opcode = OP_Copy;
585       pOp->p1 = pOp->p2 + iRegister;
586       pOp->p2 = pOp->p3;
587       pOp->p3 = 0;
588     }else if( pOp->opcode==OP_Rowid ){
589       if( iAutoidxCur ){
590         pOp->opcode = OP_Sequence;
591         pOp->p1 = iAutoidxCur;
592       }else{
593         pOp->opcode = OP_Null;
594         pOp->p1 = 0;
595         pOp->p3 = 0;
596       }
597     }
598   }
599 }
600 
601 /*
602 ** Two routines for printing the content of an sqlite3_index_info
603 ** structure.  Used for testing and debugging only.  If neither
604 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
605 ** are no-ops.
606 */
607 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
608 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
609   int i;
610   if( !sqlite3WhereTrace ) return;
611   for(i=0; i<p->nConstraint; i++){
612     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
613        i,
614        p->aConstraint[i].iColumn,
615        p->aConstraint[i].iTermOffset,
616        p->aConstraint[i].op,
617        p->aConstraint[i].usable);
618   }
619   for(i=0; i<p->nOrderBy; i++){
620     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
621        i,
622        p->aOrderBy[i].iColumn,
623        p->aOrderBy[i].desc);
624   }
625 }
626 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
627   int i;
628   if( !sqlite3WhereTrace ) return;
629   for(i=0; i<p->nConstraint; i++){
630     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
631        i,
632        p->aConstraintUsage[i].argvIndex,
633        p->aConstraintUsage[i].omit);
634   }
635   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
636   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
637   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
638   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
639   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
640 }
641 #else
642 #define TRACE_IDX_INPUTS(A)
643 #define TRACE_IDX_OUTPUTS(A)
644 #endif
645 
646 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
647 /*
648 ** Return TRUE if the WHERE clause term pTerm is of a form where it
649 ** could be used with an index to access pSrc, assuming an appropriate
650 ** index existed.
651 */
652 static int termCanDriveIndex(
653   WhereTerm *pTerm,              /* WHERE clause term to check */
654   struct SrcList_item *pSrc,     /* Table we are trying to access */
655   Bitmask notReady               /* Tables in outer loops of the join */
656 ){
657   char aff;
658   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
659   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
660   if( (pSrc->fg.jointype & JT_LEFT)
661    && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
662    && (pTerm->eOperator & WO_IS)
663   ){
664     /* Cannot use an IS term from the WHERE clause as an index driver for
665     ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
666     ** the ON clause.  */
667     return 0;
668   }
669   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
670   if( pTerm->u.leftColumn<0 ) return 0;
671   aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
672   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
673   testcase( pTerm->pExpr->op==TK_IS );
674   return 1;
675 }
676 #endif
677 
678 
679 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
680 /*
681 ** Generate code to construct the Index object for an automatic index
682 ** and to set up the WhereLevel object pLevel so that the code generator
683 ** makes use of the automatic index.
684 */
685 static void constructAutomaticIndex(
686   Parse *pParse,              /* The parsing context */
687   WhereClause *pWC,           /* The WHERE clause */
688   struct SrcList_item *pSrc,  /* The FROM clause term to get the next index */
689   Bitmask notReady,           /* Mask of cursors that are not available */
690   WhereLevel *pLevel          /* Write new index here */
691 ){
692   int nKeyCol;                /* Number of columns in the constructed index */
693   WhereTerm *pTerm;           /* A single term of the WHERE clause */
694   WhereTerm *pWCEnd;          /* End of pWC->a[] */
695   Index *pIdx;                /* Object describing the transient index */
696   Vdbe *v;                    /* Prepared statement under construction */
697   int addrInit;               /* Address of the initialization bypass jump */
698   Table *pTable;              /* The table being indexed */
699   int addrTop;                /* Top of the index fill loop */
700   int regRecord;              /* Register holding an index record */
701   int n;                      /* Column counter */
702   int i;                      /* Loop counter */
703   int mxBitCol;               /* Maximum column in pSrc->colUsed */
704   CollSeq *pColl;             /* Collating sequence to on a column */
705   WhereLoop *pLoop;           /* The Loop object */
706   char *zNotUsed;             /* Extra space on the end of pIdx */
707   Bitmask idxCols;            /* Bitmap of columns used for indexing */
708   Bitmask extraCols;          /* Bitmap of additional columns */
709   u8 sentWarning = 0;         /* True if a warnning has been issued */
710   Expr *pPartial = 0;         /* Partial Index Expression */
711   int iContinue = 0;          /* Jump here to skip excluded rows */
712   struct SrcList_item *pTabItem;  /* FROM clause term being indexed */
713   int addrCounter = 0;        /* Address where integer counter is initialized */
714   int regBase;                /* Array of registers where record is assembled */
715 
716   /* Generate code to skip over the creation and initialization of the
717   ** transient index on 2nd and subsequent iterations of the loop. */
718   v = pParse->pVdbe;
719   assert( v!=0 );
720   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
721 
722   /* Count the number of columns that will be added to the index
723   ** and used to match WHERE clause constraints */
724   nKeyCol = 0;
725   pTable = pSrc->pTab;
726   pWCEnd = &pWC->a[pWC->nTerm];
727   pLoop = pLevel->pWLoop;
728   idxCols = 0;
729   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
730     Expr *pExpr = pTerm->pExpr;
731     assert( !ExprHasProperty(pExpr, EP_FromJoin)    /* prereq always non-zero */
732          || pExpr->iRightJoinTable!=pSrc->iCursor   /*   for the right-hand   */
733          || pLoop->prereq!=0 );                     /*   table of a LEFT JOIN */
734     if( pLoop->prereq==0
735      && (pTerm->wtFlags & TERM_VIRTUAL)==0
736      && !ExprHasProperty(pExpr, EP_FromJoin)
737      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
738       pPartial = sqlite3ExprAnd(pParse, pPartial,
739                                 sqlite3ExprDup(pParse->db, pExpr, 0));
740     }
741     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
742       int iCol = pTerm->u.leftColumn;
743       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
744       testcase( iCol==BMS );
745       testcase( iCol==BMS-1 );
746       if( !sentWarning ){
747         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
748             "automatic index on %s(%s)", pTable->zName,
749             pTable->aCol[iCol].zName);
750         sentWarning = 1;
751       }
752       if( (idxCols & cMask)==0 ){
753         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
754           goto end_auto_index_create;
755         }
756         pLoop->aLTerm[nKeyCol++] = pTerm;
757         idxCols |= cMask;
758       }
759     }
760   }
761   assert( nKeyCol>0 );
762   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
763   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
764                      | WHERE_AUTO_INDEX;
765 
766   /* Count the number of additional columns needed to create a
767   ** covering index.  A "covering index" is an index that contains all
768   ** columns that are needed by the query.  With a covering index, the
769   ** original table never needs to be accessed.  Automatic indices must
770   ** be a covering index because the index will not be updated if the
771   ** original table changes and the index and table cannot both be used
772   ** if they go out of sync.
773   */
774   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
775   mxBitCol = MIN(BMS-1,pTable->nCol);
776   testcase( pTable->nCol==BMS-1 );
777   testcase( pTable->nCol==BMS-2 );
778   for(i=0; i<mxBitCol; i++){
779     if( extraCols & MASKBIT(i) ) nKeyCol++;
780   }
781   if( pSrc->colUsed & MASKBIT(BMS-1) ){
782     nKeyCol += pTable->nCol - BMS + 1;
783   }
784 
785   /* Construct the Index object to describe this index */
786   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
787   if( pIdx==0 ) goto end_auto_index_create;
788   pLoop->u.btree.pIndex = pIdx;
789   pIdx->zName = "auto-index";
790   pIdx->pTable = pTable;
791   n = 0;
792   idxCols = 0;
793   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
794     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
795       int iCol = pTerm->u.leftColumn;
796       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
797       testcase( iCol==BMS-1 );
798       testcase( iCol==BMS );
799       if( (idxCols & cMask)==0 ){
800         Expr *pX = pTerm->pExpr;
801         idxCols |= cMask;
802         pIdx->aiColumn[n] = pTerm->u.leftColumn;
803         pColl = sqlite3ExprCompareCollSeq(pParse, pX);
804         pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : sqlite3StrBINARY;
805         n++;
806       }
807     }
808   }
809   assert( (u32)n==pLoop->u.btree.nEq );
810 
811   /* Add additional columns needed to make the automatic index into
812   ** a covering index */
813   for(i=0; i<mxBitCol; i++){
814     if( extraCols & MASKBIT(i) ){
815       pIdx->aiColumn[n] = i;
816       pIdx->azColl[n] = sqlite3StrBINARY;
817       n++;
818     }
819   }
820   if( pSrc->colUsed & MASKBIT(BMS-1) ){
821     for(i=BMS-1; i<pTable->nCol; i++){
822       pIdx->aiColumn[n] = i;
823       pIdx->azColl[n] = sqlite3StrBINARY;
824       n++;
825     }
826   }
827   assert( n==nKeyCol );
828   pIdx->aiColumn[n] = XN_ROWID;
829   pIdx->azColl[n] = sqlite3StrBINARY;
830 
831   /* Create the automatic index */
832   assert( pLevel->iIdxCur>=0 );
833   pLevel->iIdxCur = pParse->nTab++;
834   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
835   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
836   VdbeComment((v, "for %s", pTable->zName));
837 
838   /* Fill the automatic index with content */
839   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
840   if( pTabItem->fg.viaCoroutine ){
841     int regYield = pTabItem->regReturn;
842     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
843     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
844     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
845     VdbeCoverage(v);
846     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
847   }else{
848     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
849   }
850   if( pPartial ){
851     iContinue = sqlite3VdbeMakeLabel(pParse);
852     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
853     pLoop->wsFlags |= WHERE_PARTIALIDX;
854   }
855   regRecord = sqlite3GetTempReg(pParse);
856   regBase = sqlite3GenerateIndexKey(
857       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
858   );
859   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
860   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
861   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
862   if( pTabItem->fg.viaCoroutine ){
863     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
864     testcase( pParse->db->mallocFailed );
865     assert( pLevel->iIdxCur>0 );
866     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
867                           pTabItem->regResult, pLevel->iIdxCur);
868     sqlite3VdbeGoto(v, addrTop);
869     pTabItem->fg.viaCoroutine = 0;
870   }else{
871     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
872   }
873   sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
874   sqlite3VdbeJumpHere(v, addrTop);
875   sqlite3ReleaseTempReg(pParse, regRecord);
876 
877   /* Jump here when skipping the initialization */
878   sqlite3VdbeJumpHere(v, addrInit);
879 
880 end_auto_index_create:
881   sqlite3ExprDelete(pParse->db, pPartial);
882 }
883 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
884 
885 #ifndef SQLITE_OMIT_VIRTUALTABLE
886 /*
887 ** Allocate and populate an sqlite3_index_info structure. It is the
888 ** responsibility of the caller to eventually release the structure
889 ** by passing the pointer returned by this function to sqlite3_free().
890 */
891 static sqlite3_index_info *allocateIndexInfo(
892   Parse *pParse,                  /* The parsing context */
893   WhereClause *pWC,               /* The WHERE clause being analyzed */
894   Bitmask mUnusable,              /* Ignore terms with these prereqs */
895   struct SrcList_item *pSrc,      /* The FROM clause term that is the vtab */
896   ExprList *pOrderBy,             /* The ORDER BY clause */
897   u16 *pmNoOmit                   /* Mask of terms not to omit */
898 ){
899   int i, j;
900   int nTerm;
901   struct sqlite3_index_constraint *pIdxCons;
902   struct sqlite3_index_orderby *pIdxOrderBy;
903   struct sqlite3_index_constraint_usage *pUsage;
904   struct HiddenIndexInfo *pHidden;
905   WhereTerm *pTerm;
906   int nOrderBy;
907   sqlite3_index_info *pIdxInfo;
908   u16 mNoOmit = 0;
909 
910   /* Count the number of possible WHERE clause constraints referring
911   ** to this virtual table */
912   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
913     if( pTerm->leftCursor != pSrc->iCursor ) continue;
914     if( pTerm->prereqRight & mUnusable ) continue;
915     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
916     testcase( pTerm->eOperator & WO_IN );
917     testcase( pTerm->eOperator & WO_ISNULL );
918     testcase( pTerm->eOperator & WO_IS );
919     testcase( pTerm->eOperator & WO_ALL );
920     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
921     if( pTerm->wtFlags & TERM_VNULL ) continue;
922     assert( pTerm->u.leftColumn>=(-1) );
923     nTerm++;
924   }
925 
926   /* If the ORDER BY clause contains only columns in the current
927   ** virtual table then allocate space for the aOrderBy part of
928   ** the sqlite3_index_info structure.
929   */
930   nOrderBy = 0;
931   if( pOrderBy ){
932     int n = pOrderBy->nExpr;
933     for(i=0; i<n; i++){
934       Expr *pExpr = pOrderBy->a[i].pExpr;
935       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
936       if( pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL ) break;
937     }
938     if( i==n){
939       nOrderBy = n;
940     }
941   }
942 
943   /* Allocate the sqlite3_index_info structure
944   */
945   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
946                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
947                            + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) );
948   if( pIdxInfo==0 ){
949     sqlite3ErrorMsg(pParse, "out of memory");
950     return 0;
951   }
952 
953   /* Initialize the structure.  The sqlite3_index_info structure contains
954   ** many fields that are declared "const" to prevent xBestIndex from
955   ** changing them.  We have to do some funky casting in order to
956   ** initialize those fields.
957   */
958   pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
959   pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1];
960   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
961   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
962   *(int*)&pIdxInfo->nConstraint = nTerm;
963   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
964   *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
965   *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
966   *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
967                                                                    pUsage;
968 
969   pHidden->pWC = pWC;
970   pHidden->pParse = pParse;
971   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
972     u16 op;
973     if( pTerm->leftCursor != pSrc->iCursor ) continue;
974     if( pTerm->prereqRight & mUnusable ) continue;
975     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
976     testcase( pTerm->eOperator & WO_IN );
977     testcase( pTerm->eOperator & WO_IS );
978     testcase( pTerm->eOperator & WO_ISNULL );
979     testcase( pTerm->eOperator & WO_ALL );
980     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
981     if( pTerm->wtFlags & TERM_VNULL ) continue;
982 
983     /* tag-20191211-002: WHERE-clause constraints are not useful to the
984     ** right-hand table of a LEFT JOIN.  See tag-20191211-001 for the
985     ** equivalent restriction for ordinary tables. */
986     if( (pSrc->fg.jointype & JT_LEFT)!=0
987      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
988     ){
989       continue;
990     }
991     assert( pTerm->u.leftColumn>=(-1) );
992     pIdxCons[j].iColumn = pTerm->u.leftColumn;
993     pIdxCons[j].iTermOffset = i;
994     op = pTerm->eOperator & WO_ALL;
995     if( op==WO_IN ) op = WO_EQ;
996     if( op==WO_AUX ){
997       pIdxCons[j].op = pTerm->eMatchOp;
998     }else if( op & (WO_ISNULL|WO_IS) ){
999       if( op==WO_ISNULL ){
1000         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
1001       }else{
1002         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
1003       }
1004     }else{
1005       pIdxCons[j].op = (u8)op;
1006       /* The direct assignment in the previous line is possible only because
1007       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1008       ** following asserts verify this fact. */
1009       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1010       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1011       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1012       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1013       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1014       assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1015 
1016       if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1017        && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1018       ){
1019         testcase( j!=i );
1020         if( j<16 ) mNoOmit |= (1 << j);
1021         if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1022         if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1023       }
1024     }
1025 
1026     j++;
1027   }
1028   for(i=0; i<nOrderBy; i++){
1029     Expr *pExpr = pOrderBy->a[i].pExpr;
1030     pIdxOrderBy[i].iColumn = pExpr->iColumn;
1031     pIdxOrderBy[i].desc = pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC;
1032   }
1033 
1034   *pmNoOmit = mNoOmit;
1035   return pIdxInfo;
1036 }
1037 
1038 /*
1039 ** The table object reference passed as the second argument to this function
1040 ** must represent a virtual table. This function invokes the xBestIndex()
1041 ** method of the virtual table with the sqlite3_index_info object that
1042 ** comes in as the 3rd argument to this function.
1043 **
1044 ** If an error occurs, pParse is populated with an error message and an
1045 ** appropriate error code is returned.  A return of SQLITE_CONSTRAINT from
1046 ** xBestIndex is not considered an error.  SQLITE_CONSTRAINT indicates that
1047 ** the current configuration of "unusable" flags in sqlite3_index_info can
1048 ** not result in a valid plan.
1049 **
1050 ** Whether or not an error is returned, it is the responsibility of the
1051 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1052 ** that this is required.
1053 */
1054 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1055   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1056   int rc;
1057 
1058   TRACE_IDX_INPUTS(p);
1059   rc = pVtab->pModule->xBestIndex(pVtab, p);
1060   TRACE_IDX_OUTPUTS(p);
1061 
1062   if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1063     if( rc==SQLITE_NOMEM ){
1064       sqlite3OomFault(pParse->db);
1065     }else if( !pVtab->zErrMsg ){
1066       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1067     }else{
1068       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1069     }
1070   }
1071   sqlite3_free(pVtab->zErrMsg);
1072   pVtab->zErrMsg = 0;
1073   return rc;
1074 }
1075 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1076 
1077 #ifdef SQLITE_ENABLE_STAT4
1078 /*
1079 ** Estimate the location of a particular key among all keys in an
1080 ** index.  Store the results in aStat as follows:
1081 **
1082 **    aStat[0]      Est. number of rows less than pRec
1083 **    aStat[1]      Est. number of rows equal to pRec
1084 **
1085 ** Return the index of the sample that is the smallest sample that
1086 ** is greater than or equal to pRec. Note that this index is not an index
1087 ** into the aSample[] array - it is an index into a virtual set of samples
1088 ** based on the contents of aSample[] and the number of fields in record
1089 ** pRec.
1090 */
1091 static int whereKeyStats(
1092   Parse *pParse,              /* Database connection */
1093   Index *pIdx,                /* Index to consider domain of */
1094   UnpackedRecord *pRec,       /* Vector of values to consider */
1095   int roundUp,                /* Round up if true.  Round down if false */
1096   tRowcnt *aStat              /* OUT: stats written here */
1097 ){
1098   IndexSample *aSample = pIdx->aSample;
1099   int iCol;                   /* Index of required stats in anEq[] etc. */
1100   int i;                      /* Index of first sample >= pRec */
1101   int iSample;                /* Smallest sample larger than or equal to pRec */
1102   int iMin = 0;               /* Smallest sample not yet tested */
1103   int iTest;                  /* Next sample to test */
1104   int res;                    /* Result of comparison operation */
1105   int nField;                 /* Number of fields in pRec */
1106   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1107 
1108 #ifndef SQLITE_DEBUG
1109   UNUSED_PARAMETER( pParse );
1110 #endif
1111   assert( pRec!=0 );
1112   assert( pIdx->nSample>0 );
1113   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1114 
1115   /* Do a binary search to find the first sample greater than or equal
1116   ** to pRec. If pRec contains a single field, the set of samples to search
1117   ** is simply the aSample[] array. If the samples in aSample[] contain more
1118   ** than one fields, all fields following the first are ignored.
1119   **
1120   ** If pRec contains N fields, where N is more than one, then as well as the
1121   ** samples in aSample[] (truncated to N fields), the search also has to
1122   ** consider prefixes of those samples. For example, if the set of samples
1123   ** in aSample is:
1124   **
1125   **     aSample[0] = (a, 5)
1126   **     aSample[1] = (a, 10)
1127   **     aSample[2] = (b, 5)
1128   **     aSample[3] = (c, 100)
1129   **     aSample[4] = (c, 105)
1130   **
1131   ** Then the search space should ideally be the samples above and the
1132   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1133   ** the code actually searches this set:
1134   **
1135   **     0: (a)
1136   **     1: (a, 5)
1137   **     2: (a, 10)
1138   **     3: (a, 10)
1139   **     4: (b)
1140   **     5: (b, 5)
1141   **     6: (c)
1142   **     7: (c, 100)
1143   **     8: (c, 105)
1144   **     9: (c, 105)
1145   **
1146   ** For each sample in the aSample[] array, N samples are present in the
1147   ** effective sample array. In the above, samples 0 and 1 are based on
1148   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1149   **
1150   ** Often, sample i of each block of N effective samples has (i+1) fields.
1151   ** Except, each sample may be extended to ensure that it is greater than or
1152   ** equal to the previous sample in the array. For example, in the above,
1153   ** sample 2 is the first sample of a block of N samples, so at first it
1154   ** appears that it should be 1 field in size. However, that would make it
1155   ** smaller than sample 1, so the binary search would not work. As a result,
1156   ** it is extended to two fields. The duplicates that this creates do not
1157   ** cause any problems.
1158   */
1159   nField = pRec->nField;
1160   iCol = 0;
1161   iSample = pIdx->nSample * nField;
1162   do{
1163     int iSamp;                    /* Index in aSample[] of test sample */
1164     int n;                        /* Number of fields in test sample */
1165 
1166     iTest = (iMin+iSample)/2;
1167     iSamp = iTest / nField;
1168     if( iSamp>0 ){
1169       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1170       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1171       ** fields that is greater than the previous effective sample.  */
1172       for(n=(iTest % nField) + 1; n<nField; n++){
1173         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1174       }
1175     }else{
1176       n = iTest + 1;
1177     }
1178 
1179     pRec->nField = n;
1180     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1181     if( res<0 ){
1182       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1183       iMin = iTest+1;
1184     }else if( res==0 && n<nField ){
1185       iLower = aSample[iSamp].anLt[n-1];
1186       iMin = iTest+1;
1187       res = -1;
1188     }else{
1189       iSample = iTest;
1190       iCol = n-1;
1191     }
1192   }while( res && iMin<iSample );
1193   i = iSample / nField;
1194 
1195 #ifdef SQLITE_DEBUG
1196   /* The following assert statements check that the binary search code
1197   ** above found the right answer. This block serves no purpose other
1198   ** than to invoke the asserts.  */
1199   if( pParse->db->mallocFailed==0 ){
1200     if( res==0 ){
1201       /* If (res==0) is true, then pRec must be equal to sample i. */
1202       assert( i<pIdx->nSample );
1203       assert( iCol==nField-1 );
1204       pRec->nField = nField;
1205       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1206            || pParse->db->mallocFailed
1207       );
1208     }else{
1209       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1210       ** all samples in the aSample[] array, pRec must be smaller than the
1211       ** (iCol+1) field prefix of sample i.  */
1212       assert( i<=pIdx->nSample && i>=0 );
1213       pRec->nField = iCol+1;
1214       assert( i==pIdx->nSample
1215            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1216            || pParse->db->mallocFailed );
1217 
1218       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1219       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1220       ** be greater than or equal to the (iCol) field prefix of sample i.
1221       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1222       if( iCol>0 ){
1223         pRec->nField = iCol;
1224         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1225              || pParse->db->mallocFailed );
1226       }
1227       if( i>0 ){
1228         pRec->nField = nField;
1229         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1230              || pParse->db->mallocFailed );
1231       }
1232     }
1233   }
1234 #endif /* ifdef SQLITE_DEBUG */
1235 
1236   if( res==0 ){
1237     /* Record pRec is equal to sample i */
1238     assert( iCol==nField-1 );
1239     aStat[0] = aSample[i].anLt[iCol];
1240     aStat[1] = aSample[i].anEq[iCol];
1241   }else{
1242     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1243     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1244     ** is larger than all samples in the array. */
1245     tRowcnt iUpper, iGap;
1246     if( i>=pIdx->nSample ){
1247       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1248     }else{
1249       iUpper = aSample[i].anLt[iCol];
1250     }
1251 
1252     if( iLower>=iUpper ){
1253       iGap = 0;
1254     }else{
1255       iGap = iUpper - iLower;
1256     }
1257     if( roundUp ){
1258       iGap = (iGap*2)/3;
1259     }else{
1260       iGap = iGap/3;
1261     }
1262     aStat[0] = iLower + iGap;
1263     aStat[1] = pIdx->aAvgEq[nField-1];
1264   }
1265 
1266   /* Restore the pRec->nField value before returning.  */
1267   pRec->nField = nField;
1268   return i;
1269 }
1270 #endif /* SQLITE_ENABLE_STAT4 */
1271 
1272 /*
1273 ** If it is not NULL, pTerm is a term that provides an upper or lower
1274 ** bound on a range scan. Without considering pTerm, it is estimated
1275 ** that the scan will visit nNew rows. This function returns the number
1276 ** estimated to be visited after taking pTerm into account.
1277 **
1278 ** If the user explicitly specified a likelihood() value for this term,
1279 ** then the return value is the likelihood multiplied by the number of
1280 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1281 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1282 */
1283 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1284   LogEst nRet = nNew;
1285   if( pTerm ){
1286     if( pTerm->truthProb<=0 ){
1287       nRet += pTerm->truthProb;
1288     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1289       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1290     }
1291   }
1292   return nRet;
1293 }
1294 
1295 
1296 #ifdef SQLITE_ENABLE_STAT4
1297 /*
1298 ** Return the affinity for a single column of an index.
1299 */
1300 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1301   assert( iCol>=0 && iCol<pIdx->nColumn );
1302   if( !pIdx->zColAff ){
1303     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1304   }
1305   assert( pIdx->zColAff[iCol]!=0 );
1306   return pIdx->zColAff[iCol];
1307 }
1308 #endif
1309 
1310 
1311 #ifdef SQLITE_ENABLE_STAT4
1312 /*
1313 ** This function is called to estimate the number of rows visited by a
1314 ** range-scan on a skip-scan index. For example:
1315 **
1316 **   CREATE INDEX i1 ON t1(a, b, c);
1317 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1318 **
1319 ** Value pLoop->nOut is currently set to the estimated number of rows
1320 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1321 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1322 ** on the stat4 data for the index. this scan will be peformed multiple
1323 ** times (once for each (a,b) combination that matches a=?) is dealt with
1324 ** by the caller.
1325 **
1326 ** It does this by scanning through all stat4 samples, comparing values
1327 ** extracted from pLower and pUpper with the corresponding column in each
1328 ** sample. If L and U are the number of samples found to be less than or
1329 ** equal to the values extracted from pLower and pUpper respectively, and
1330 ** N is the total number of samples, the pLoop->nOut value is adjusted
1331 ** as follows:
1332 **
1333 **   nOut = nOut * ( min(U - L, 1) / N )
1334 **
1335 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1336 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1337 ** U is set to N.
1338 **
1339 ** Normally, this function sets *pbDone to 1 before returning. However,
1340 ** if no value can be extracted from either pLower or pUpper (and so the
1341 ** estimate of the number of rows delivered remains unchanged), *pbDone
1342 ** is left as is.
1343 **
1344 ** If an error occurs, an SQLite error code is returned. Otherwise,
1345 ** SQLITE_OK.
1346 */
1347 static int whereRangeSkipScanEst(
1348   Parse *pParse,       /* Parsing & code generating context */
1349   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1350   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1351   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1352   int *pbDone          /* Set to true if at least one expr. value extracted */
1353 ){
1354   Index *p = pLoop->u.btree.pIndex;
1355   int nEq = pLoop->u.btree.nEq;
1356   sqlite3 *db = pParse->db;
1357   int nLower = -1;
1358   int nUpper = p->nSample+1;
1359   int rc = SQLITE_OK;
1360   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1361   CollSeq *pColl;
1362 
1363   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1364   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1365   sqlite3_value *pVal = 0;        /* Value extracted from record */
1366 
1367   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1368   if( pLower ){
1369     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1370     nLower = 0;
1371   }
1372   if( pUpper && rc==SQLITE_OK ){
1373     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1374     nUpper = p2 ? 0 : p->nSample;
1375   }
1376 
1377   if( p1 || p2 ){
1378     int i;
1379     int nDiff;
1380     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1381       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1382       if( rc==SQLITE_OK && p1 ){
1383         int res = sqlite3MemCompare(p1, pVal, pColl);
1384         if( res>=0 ) nLower++;
1385       }
1386       if( rc==SQLITE_OK && p2 ){
1387         int res = sqlite3MemCompare(p2, pVal, pColl);
1388         if( res>=0 ) nUpper++;
1389       }
1390     }
1391     nDiff = (nUpper - nLower);
1392     if( nDiff<=0 ) nDiff = 1;
1393 
1394     /* If there is both an upper and lower bound specified, and the
1395     ** comparisons indicate that they are close together, use the fallback
1396     ** method (assume that the scan visits 1/64 of the rows) for estimating
1397     ** the number of rows visited. Otherwise, estimate the number of rows
1398     ** using the method described in the header comment for this function. */
1399     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1400       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1401       pLoop->nOut -= nAdjust;
1402       *pbDone = 1;
1403       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1404                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1405     }
1406 
1407   }else{
1408     assert( *pbDone==0 );
1409   }
1410 
1411   sqlite3ValueFree(p1);
1412   sqlite3ValueFree(p2);
1413   sqlite3ValueFree(pVal);
1414 
1415   return rc;
1416 }
1417 #endif /* SQLITE_ENABLE_STAT4 */
1418 
1419 /*
1420 ** This function is used to estimate the number of rows that will be visited
1421 ** by scanning an index for a range of values. The range may have an upper
1422 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1423 ** and lower bounds are represented by pLower and pUpper respectively. For
1424 ** example, assuming that index p is on t1(a):
1425 **
1426 **   ... FROM t1 WHERE a > ? AND a < ? ...
1427 **                    |_____|   |_____|
1428 **                       |         |
1429 **                     pLower    pUpper
1430 **
1431 ** If either of the upper or lower bound is not present, then NULL is passed in
1432 ** place of the corresponding WhereTerm.
1433 **
1434 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1435 ** column subject to the range constraint. Or, equivalently, the number of
1436 ** equality constraints optimized by the proposed index scan. For example,
1437 ** assuming index p is on t1(a, b), and the SQL query is:
1438 **
1439 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1440 **
1441 ** then nEq is set to 1 (as the range restricted column, b, is the second
1442 ** left-most column of the index). Or, if the query is:
1443 **
1444 **   ... FROM t1 WHERE a > ? AND a < ? ...
1445 **
1446 ** then nEq is set to 0.
1447 **
1448 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1449 ** number of rows that the index scan is expected to visit without
1450 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1451 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1452 ** to account for the range constraints pLower and pUpper.
1453 **
1454 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1455 ** used, a single range inequality reduces the search space by a factor of 4.
1456 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1457 ** rows visited by a factor of 64.
1458 */
1459 static int whereRangeScanEst(
1460   Parse *pParse,       /* Parsing & code generating context */
1461   WhereLoopBuilder *pBuilder,
1462   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1463   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1464   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1465 ){
1466   int rc = SQLITE_OK;
1467   int nOut = pLoop->nOut;
1468   LogEst nNew;
1469 
1470 #ifdef SQLITE_ENABLE_STAT4
1471   Index *p = pLoop->u.btree.pIndex;
1472   int nEq = pLoop->u.btree.nEq;
1473 
1474   if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
1475    && OptimizationEnabled(pParse->db, SQLITE_Stat4)
1476   ){
1477     if( nEq==pBuilder->nRecValid ){
1478       UnpackedRecord *pRec = pBuilder->pRec;
1479       tRowcnt a[2];
1480       int nBtm = pLoop->u.btree.nBtm;
1481       int nTop = pLoop->u.btree.nTop;
1482 
1483       /* Variable iLower will be set to the estimate of the number of rows in
1484       ** the index that are less than the lower bound of the range query. The
1485       ** lower bound being the concatenation of $P and $L, where $P is the
1486       ** key-prefix formed by the nEq values matched against the nEq left-most
1487       ** columns of the index, and $L is the value in pLower.
1488       **
1489       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1490       ** is not a simple variable or literal value), the lower bound of the
1491       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1492       ** if $L is available, whereKeyStats() is called for both ($P) and
1493       ** ($P:$L) and the larger of the two returned values is used.
1494       **
1495       ** Similarly, iUpper is to be set to the estimate of the number of rows
1496       ** less than the upper bound of the range query. Where the upper bound
1497       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1498       ** of iUpper are requested of whereKeyStats() and the smaller used.
1499       **
1500       ** The number of rows between the two bounds is then just iUpper-iLower.
1501       */
1502       tRowcnt iLower;     /* Rows less than the lower bound */
1503       tRowcnt iUpper;     /* Rows less than the upper bound */
1504       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1505       int iUprIdx = -1;   /* aSample[] for the upper bound */
1506 
1507       if( pRec ){
1508         testcase( pRec->nField!=pBuilder->nRecValid );
1509         pRec->nField = pBuilder->nRecValid;
1510       }
1511       /* Determine iLower and iUpper using ($P) only. */
1512       if( nEq==0 ){
1513         iLower = 0;
1514         iUpper = p->nRowEst0;
1515       }else{
1516         /* Note: this call could be optimized away - since the same values must
1517         ** have been requested when testing key $P in whereEqualScanEst().  */
1518         whereKeyStats(pParse, p, pRec, 0, a);
1519         iLower = a[0];
1520         iUpper = a[0] + a[1];
1521       }
1522 
1523       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1524       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1525       assert( p->aSortOrder!=0 );
1526       if( p->aSortOrder[nEq] ){
1527         /* The roles of pLower and pUpper are swapped for a DESC index */
1528         SWAP(WhereTerm*, pLower, pUpper);
1529         SWAP(int, nBtm, nTop);
1530       }
1531 
1532       /* If possible, improve on the iLower estimate using ($P:$L). */
1533       if( pLower ){
1534         int n;                    /* Values extracted from pExpr */
1535         Expr *pExpr = pLower->pExpr->pRight;
1536         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1537         if( rc==SQLITE_OK && n ){
1538           tRowcnt iNew;
1539           u16 mask = WO_GT|WO_LE;
1540           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1541           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1542           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1543           if( iNew>iLower ) iLower = iNew;
1544           nOut--;
1545           pLower = 0;
1546         }
1547       }
1548 
1549       /* If possible, improve on the iUpper estimate using ($P:$U). */
1550       if( pUpper ){
1551         int n;                    /* Values extracted from pExpr */
1552         Expr *pExpr = pUpper->pExpr->pRight;
1553         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1554         if( rc==SQLITE_OK && n ){
1555           tRowcnt iNew;
1556           u16 mask = WO_GT|WO_LE;
1557           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1558           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1559           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1560           if( iNew<iUpper ) iUpper = iNew;
1561           nOut--;
1562           pUpper = 0;
1563         }
1564       }
1565 
1566       pBuilder->pRec = pRec;
1567       if( rc==SQLITE_OK ){
1568         if( iUpper>iLower ){
1569           nNew = sqlite3LogEst(iUpper - iLower);
1570           /* TUNING:  If both iUpper and iLower are derived from the same
1571           ** sample, then assume they are 4x more selective.  This brings
1572           ** the estimated selectivity more in line with what it would be
1573           ** if estimated without the use of STAT4 tables. */
1574           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1575         }else{
1576           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1577         }
1578         if( nNew<nOut ){
1579           nOut = nNew;
1580         }
1581         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1582                            (u32)iLower, (u32)iUpper, nOut));
1583       }
1584     }else{
1585       int bDone = 0;
1586       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1587       if( bDone ) return rc;
1588     }
1589   }
1590 #else
1591   UNUSED_PARAMETER(pParse);
1592   UNUSED_PARAMETER(pBuilder);
1593   assert( pLower || pUpper );
1594 #endif
1595   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1596   nNew = whereRangeAdjust(pLower, nOut);
1597   nNew = whereRangeAdjust(pUpper, nNew);
1598 
1599   /* TUNING: If there is both an upper and lower limit and neither limit
1600   ** has an application-defined likelihood(), assume the range is
1601   ** reduced by an additional 75%. This means that, by default, an open-ended
1602   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1603   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1604   ** match 1/64 of the index. */
1605   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1606     nNew -= 20;
1607   }
1608 
1609   nOut -= (pLower!=0) + (pUpper!=0);
1610   if( nNew<10 ) nNew = 10;
1611   if( nNew<nOut ) nOut = nNew;
1612 #if defined(WHERETRACE_ENABLED)
1613   if( pLoop->nOut>nOut ){
1614     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1615                     pLoop->nOut, nOut));
1616   }
1617 #endif
1618   pLoop->nOut = (LogEst)nOut;
1619   return rc;
1620 }
1621 
1622 #ifdef SQLITE_ENABLE_STAT4
1623 /*
1624 ** Estimate the number of rows that will be returned based on
1625 ** an equality constraint x=VALUE and where that VALUE occurs in
1626 ** the histogram data.  This only works when x is the left-most
1627 ** column of an index and sqlite_stat4 histogram data is available
1628 ** for that index.  When pExpr==NULL that means the constraint is
1629 ** "x IS NULL" instead of "x=VALUE".
1630 **
1631 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1632 ** If unable to make an estimate, leave *pnRow unchanged and return
1633 ** non-zero.
1634 **
1635 ** This routine can fail if it is unable to load a collating sequence
1636 ** required for string comparison, or if unable to allocate memory
1637 ** for a UTF conversion required for comparison.  The error is stored
1638 ** in the pParse structure.
1639 */
1640 static int whereEqualScanEst(
1641   Parse *pParse,       /* Parsing & code generating context */
1642   WhereLoopBuilder *pBuilder,
1643   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1644   tRowcnt *pnRow       /* Write the revised row estimate here */
1645 ){
1646   Index *p = pBuilder->pNew->u.btree.pIndex;
1647   int nEq = pBuilder->pNew->u.btree.nEq;
1648   UnpackedRecord *pRec = pBuilder->pRec;
1649   int rc;                   /* Subfunction return code */
1650   tRowcnt a[2];             /* Statistics */
1651   int bOk;
1652 
1653   assert( nEq>=1 );
1654   assert( nEq<=p->nColumn );
1655   assert( p->aSample!=0 );
1656   assert( p->nSample>0 );
1657   assert( pBuilder->nRecValid<nEq );
1658 
1659   /* If values are not available for all fields of the index to the left
1660   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1661   if( pBuilder->nRecValid<(nEq-1) ){
1662     return SQLITE_NOTFOUND;
1663   }
1664 
1665   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1666   ** below would return the same value.  */
1667   if( nEq>=p->nColumn ){
1668     *pnRow = 1;
1669     return SQLITE_OK;
1670   }
1671 
1672   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1673   pBuilder->pRec = pRec;
1674   if( rc!=SQLITE_OK ) return rc;
1675   if( bOk==0 ) return SQLITE_NOTFOUND;
1676   pBuilder->nRecValid = nEq;
1677 
1678   whereKeyStats(pParse, p, pRec, 0, a);
1679   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1680                    p->zName, nEq-1, (int)a[1]));
1681   *pnRow = a[1];
1682 
1683   return rc;
1684 }
1685 #endif /* SQLITE_ENABLE_STAT4 */
1686 
1687 #ifdef SQLITE_ENABLE_STAT4
1688 /*
1689 ** Estimate the number of rows that will be returned based on
1690 ** an IN constraint where the right-hand side of the IN operator
1691 ** is a list of values.  Example:
1692 **
1693 **        WHERE x IN (1,2,3,4)
1694 **
1695 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1696 ** If unable to make an estimate, leave *pnRow unchanged and return
1697 ** non-zero.
1698 **
1699 ** This routine can fail if it is unable to load a collating sequence
1700 ** required for string comparison, or if unable to allocate memory
1701 ** for a UTF conversion required for comparison.  The error is stored
1702 ** in the pParse structure.
1703 */
1704 static int whereInScanEst(
1705   Parse *pParse,       /* Parsing & code generating context */
1706   WhereLoopBuilder *pBuilder,
1707   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1708   tRowcnt *pnRow       /* Write the revised row estimate here */
1709 ){
1710   Index *p = pBuilder->pNew->u.btree.pIndex;
1711   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1712   int nRecValid = pBuilder->nRecValid;
1713   int rc = SQLITE_OK;     /* Subfunction return code */
1714   tRowcnt nEst;           /* Number of rows for a single term */
1715   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
1716   int i;                  /* Loop counter */
1717 
1718   assert( p->aSample!=0 );
1719   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1720     nEst = nRow0;
1721     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1722     nRowEst += nEst;
1723     pBuilder->nRecValid = nRecValid;
1724   }
1725 
1726   if( rc==SQLITE_OK ){
1727     if( nRowEst > nRow0 ) nRowEst = nRow0;
1728     *pnRow = nRowEst;
1729     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1730   }
1731   assert( pBuilder->nRecValid==nRecValid );
1732   return rc;
1733 }
1734 #endif /* SQLITE_ENABLE_STAT4 */
1735 
1736 
1737 #ifdef WHERETRACE_ENABLED
1738 /*
1739 ** Print the content of a WhereTerm object
1740 */
1741 static void whereTermPrint(WhereTerm *pTerm, int iTerm){
1742   if( pTerm==0 ){
1743     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1744   }else{
1745     char zType[4];
1746     char zLeft[50];
1747     memcpy(zType, "...", 4);
1748     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1749     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
1750     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1751     if( pTerm->eOperator & WO_SINGLE ){
1752       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1753                        pTerm->leftCursor, pTerm->u.leftColumn);
1754     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1755       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld",
1756                        pTerm->u.pOrInfo->indexable);
1757     }else{
1758       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1759     }
1760     sqlite3DebugPrintf(
1761        "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x",
1762        iTerm, pTerm, zType, zLeft, pTerm->truthProb,
1763        pTerm->eOperator, pTerm->wtFlags);
1764     if( pTerm->iField ){
1765       sqlite3DebugPrintf(" iField=%d\n", pTerm->iField);
1766     }else{
1767       sqlite3DebugPrintf("\n");
1768     }
1769     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1770   }
1771 }
1772 #endif
1773 
1774 #ifdef WHERETRACE_ENABLED
1775 /*
1776 ** Show the complete content of a WhereClause
1777 */
1778 void sqlite3WhereClausePrint(WhereClause *pWC){
1779   int i;
1780   for(i=0; i<pWC->nTerm; i++){
1781     whereTermPrint(&pWC->a[i], i);
1782   }
1783 }
1784 #endif
1785 
1786 #ifdef WHERETRACE_ENABLED
1787 /*
1788 ** Print a WhereLoop object for debugging purposes
1789 */
1790 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
1791   WhereInfo *pWInfo = pWC->pWInfo;
1792   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1793   struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
1794   Table *pTab = pItem->pTab;
1795   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1796   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1797                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1798   sqlite3DebugPrintf(" %12s",
1799                      pItem->zAlias ? pItem->zAlias : pTab->zName);
1800   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1801     const char *zName;
1802     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1803       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1804         int i = sqlite3Strlen30(zName) - 1;
1805         while( zName[i]!='_' ) i--;
1806         zName += i;
1807       }
1808       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1809     }else{
1810       sqlite3DebugPrintf("%20s","");
1811     }
1812   }else{
1813     char *z;
1814     if( p->u.vtab.idxStr ){
1815       z = sqlite3_mprintf("(%d,\"%s\",%#x)",
1816                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1817     }else{
1818       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1819     }
1820     sqlite3DebugPrintf(" %-19s", z);
1821     sqlite3_free(z);
1822   }
1823   if( p->wsFlags & WHERE_SKIPSCAN ){
1824     sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1825   }else{
1826     sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1827   }
1828   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1829   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1830     int i;
1831     for(i=0; i<p->nLTerm; i++){
1832       whereTermPrint(p->aLTerm[i], i);
1833     }
1834   }
1835 }
1836 #endif
1837 
1838 /*
1839 ** Convert bulk memory into a valid WhereLoop that can be passed
1840 ** to whereLoopClear harmlessly.
1841 */
1842 static void whereLoopInit(WhereLoop *p){
1843   p->aLTerm = p->aLTermSpace;
1844   p->nLTerm = 0;
1845   p->nLSlot = ArraySize(p->aLTermSpace);
1846   p->wsFlags = 0;
1847 }
1848 
1849 /*
1850 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
1851 */
1852 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1853   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1854     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1855       sqlite3_free(p->u.vtab.idxStr);
1856       p->u.vtab.needFree = 0;
1857       p->u.vtab.idxStr = 0;
1858     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1859       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1860       sqlite3DbFreeNN(db, p->u.btree.pIndex);
1861       p->u.btree.pIndex = 0;
1862     }
1863   }
1864 }
1865 
1866 /*
1867 ** Deallocate internal memory used by a WhereLoop object
1868 */
1869 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1870   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1871   whereLoopClearUnion(db, p);
1872   whereLoopInit(p);
1873 }
1874 
1875 /*
1876 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1877 */
1878 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1879   WhereTerm **paNew;
1880   if( p->nLSlot>=n ) return SQLITE_OK;
1881   n = (n+7)&~7;
1882   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1883   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1884   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1885   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1886   p->aLTerm = paNew;
1887   p->nLSlot = n;
1888   return SQLITE_OK;
1889 }
1890 
1891 /*
1892 ** Transfer content from the second pLoop into the first.
1893 */
1894 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1895   whereLoopClearUnion(db, pTo);
1896   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1897     memset(&pTo->u, 0, sizeof(pTo->u));
1898     return SQLITE_NOMEM_BKPT;
1899   }
1900   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1901   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1902   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1903     pFrom->u.vtab.needFree = 0;
1904   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1905     pFrom->u.btree.pIndex = 0;
1906   }
1907   return SQLITE_OK;
1908 }
1909 
1910 /*
1911 ** Delete a WhereLoop object
1912 */
1913 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1914   whereLoopClear(db, p);
1915   sqlite3DbFreeNN(db, p);
1916 }
1917 
1918 /*
1919 ** Free a WhereInfo structure
1920 */
1921 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1922   int i;
1923   assert( pWInfo!=0 );
1924   for(i=0; i<pWInfo->nLevel; i++){
1925     WhereLevel *pLevel = &pWInfo->a[i];
1926     if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1927       sqlite3DbFree(db, pLevel->u.in.aInLoop);
1928     }
1929   }
1930   sqlite3WhereClauseClear(&pWInfo->sWC);
1931   while( pWInfo->pLoops ){
1932     WhereLoop *p = pWInfo->pLoops;
1933     pWInfo->pLoops = p->pNextLoop;
1934     whereLoopDelete(db, p);
1935   }
1936   sqlite3DbFreeNN(db, pWInfo);
1937 }
1938 
1939 /*
1940 ** Return TRUE if all of the following are true:
1941 **
1942 **   (1)  X has the same or lower cost that Y
1943 **   (2)  X uses fewer WHERE clause terms than Y
1944 **   (3)  Every WHERE clause term used by X is also used by Y
1945 **   (4)  X skips at least as many columns as Y
1946 **   (5)  If X is a covering index, than Y is too
1947 **
1948 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
1949 ** If X is a proper subset of Y then Y is a better choice and ought
1950 ** to have a lower cost.  This routine returns TRUE when that cost
1951 ** relationship is inverted and needs to be adjusted.  Constraint (4)
1952 ** was added because if X uses skip-scan less than Y it still might
1953 ** deserve a lower cost even if it is a proper subset of Y.  Constraint (5)
1954 ** was added because a covering index probably deserves to have a lower cost
1955 ** than a non-covering index even if it is a proper subset.
1956 */
1957 static int whereLoopCheaperProperSubset(
1958   const WhereLoop *pX,       /* First WhereLoop to compare */
1959   const WhereLoop *pY        /* Compare against this WhereLoop */
1960 ){
1961   int i, j;
1962   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
1963     return 0; /* X is not a subset of Y */
1964   }
1965   if( pY->nSkip > pX->nSkip ) return 0;
1966   if( pX->rRun >= pY->rRun ){
1967     if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
1968     if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
1969   }
1970   for(i=pX->nLTerm-1; i>=0; i--){
1971     if( pX->aLTerm[i]==0 ) continue;
1972     for(j=pY->nLTerm-1; j>=0; j--){
1973       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
1974     }
1975     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
1976   }
1977   if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
1978    && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
1979     return 0;  /* Constraint (5) */
1980   }
1981   return 1;  /* All conditions meet */
1982 }
1983 
1984 /*
1985 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
1986 ** that:
1987 **
1988 **   (1) pTemplate costs less than any other WhereLoops that are a proper
1989 **       subset of pTemplate
1990 **
1991 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
1992 **       is a proper subset.
1993 **
1994 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
1995 ** WHERE clause terms than Y and that every WHERE clause term used by X is
1996 ** also used by Y.
1997 */
1998 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
1999   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
2000   for(; p; p=p->pNextLoop){
2001     if( p->iTab!=pTemplate->iTab ) continue;
2002     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
2003     if( whereLoopCheaperProperSubset(p, pTemplate) ){
2004       /* Adjust pTemplate cost downward so that it is cheaper than its
2005       ** subset p. */
2006       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2007                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
2008       pTemplate->rRun = p->rRun;
2009       pTemplate->nOut = p->nOut - 1;
2010     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2011       /* Adjust pTemplate cost upward so that it is costlier than p since
2012       ** pTemplate is a proper subset of p */
2013       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2014                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
2015       pTemplate->rRun = p->rRun;
2016       pTemplate->nOut = p->nOut + 1;
2017     }
2018   }
2019 }
2020 
2021 /*
2022 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2023 ** replaced by pTemplate.
2024 **
2025 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2026 ** In other words if pTemplate ought to be dropped from further consideration.
2027 **
2028 ** If pX is a WhereLoop that pTemplate can replace, then return the
2029 ** link that points to pX.
2030 **
2031 ** If pTemplate cannot replace any existing element of the list but needs
2032 ** to be added to the list as a new entry, then return a pointer to the
2033 ** tail of the list.
2034 */
2035 static WhereLoop **whereLoopFindLesser(
2036   WhereLoop **ppPrev,
2037   const WhereLoop *pTemplate
2038 ){
2039   WhereLoop *p;
2040   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2041     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2042       /* If either the iTab or iSortIdx values for two WhereLoop are different
2043       ** then those WhereLoops need to be considered separately.  Neither is
2044       ** a candidate to replace the other. */
2045       continue;
2046     }
2047     /* In the current implementation, the rSetup value is either zero
2048     ** or the cost of building an automatic index (NlogN) and the NlogN
2049     ** is the same for compatible WhereLoops. */
2050     assert( p->rSetup==0 || pTemplate->rSetup==0
2051                  || p->rSetup==pTemplate->rSetup );
2052 
2053     /* whereLoopAddBtree() always generates and inserts the automatic index
2054     ** case first.  Hence compatible candidate WhereLoops never have a larger
2055     ** rSetup. Call this SETUP-INVARIANT */
2056     assert( p->rSetup>=pTemplate->rSetup );
2057 
2058     /* Any loop using an appliation-defined index (or PRIMARY KEY or
2059     ** UNIQUE constraint) with one or more == constraints is better
2060     ** than an automatic index. Unless it is a skip-scan. */
2061     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2062      && (pTemplate->nSkip)==0
2063      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2064      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2065      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2066     ){
2067       break;
2068     }
2069 
2070     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2071     ** discarded.  WhereLoop p is better if:
2072     **   (1)  p has no more dependencies than pTemplate, and
2073     **   (2)  p has an equal or lower cost than pTemplate
2074     */
2075     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2076      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2077      && p->rRun<=pTemplate->rRun                      /* (2b) */
2078      && p->nOut<=pTemplate->nOut                      /* (2c) */
2079     ){
2080       return 0;  /* Discard pTemplate */
2081     }
2082 
2083     /* If pTemplate is always better than p, then cause p to be overwritten
2084     ** with pTemplate.  pTemplate is better than p if:
2085     **   (1)  pTemplate has no more dependences than p, and
2086     **   (2)  pTemplate has an equal or lower cost than p.
2087     */
2088     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2089      && p->rRun>=pTemplate->rRun                             /* (2a) */
2090      && p->nOut>=pTemplate->nOut                             /* (2b) */
2091     ){
2092       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2093       break;   /* Cause p to be overwritten by pTemplate */
2094     }
2095   }
2096   return ppPrev;
2097 }
2098 
2099 /*
2100 ** Insert or replace a WhereLoop entry using the template supplied.
2101 **
2102 ** An existing WhereLoop entry might be overwritten if the new template
2103 ** is better and has fewer dependencies.  Or the template will be ignored
2104 ** and no insert will occur if an existing WhereLoop is faster and has
2105 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2106 ** added based on the template.
2107 **
2108 ** If pBuilder->pOrSet is not NULL then we care about only the
2109 ** prerequisites and rRun and nOut costs of the N best loops.  That
2110 ** information is gathered in the pBuilder->pOrSet object.  This special
2111 ** processing mode is used only for OR clause processing.
2112 **
2113 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2114 ** still might overwrite similar loops with the new template if the
2115 ** new template is better.  Loops may be overwritten if the following
2116 ** conditions are met:
2117 **
2118 **    (1)  They have the same iTab.
2119 **    (2)  They have the same iSortIdx.
2120 **    (3)  The template has same or fewer dependencies than the current loop
2121 **    (4)  The template has the same or lower cost than the current loop
2122 */
2123 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2124   WhereLoop **ppPrev, *p;
2125   WhereInfo *pWInfo = pBuilder->pWInfo;
2126   sqlite3 *db = pWInfo->pParse->db;
2127   int rc;
2128 
2129   /* Stop the search once we hit the query planner search limit */
2130   if( pBuilder->iPlanLimit==0 ){
2131     WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2132     if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2133     return SQLITE_DONE;
2134   }
2135   pBuilder->iPlanLimit--;
2136 
2137   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2138   ** and prereqs.
2139   */
2140   if( pBuilder->pOrSet!=0 ){
2141     if( pTemplate->nLTerm ){
2142 #if WHERETRACE_ENABLED
2143       u16 n = pBuilder->pOrSet->n;
2144       int x =
2145 #endif
2146       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2147                                     pTemplate->nOut);
2148 #if WHERETRACE_ENABLED /* 0x8 */
2149       if( sqlite3WhereTrace & 0x8 ){
2150         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2151         whereLoopPrint(pTemplate, pBuilder->pWC);
2152       }
2153 #endif
2154     }
2155     return SQLITE_OK;
2156   }
2157 
2158   /* Look for an existing WhereLoop to replace with pTemplate
2159   */
2160   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2161   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2162 
2163   if( ppPrev==0 ){
2164     /* There already exists a WhereLoop on the list that is better
2165     ** than pTemplate, so just ignore pTemplate */
2166 #if WHERETRACE_ENABLED /* 0x8 */
2167     if( sqlite3WhereTrace & 0x8 ){
2168       sqlite3DebugPrintf("   skip: ");
2169       whereLoopPrint(pTemplate, pBuilder->pWC);
2170     }
2171 #endif
2172     return SQLITE_OK;
2173   }else{
2174     p = *ppPrev;
2175   }
2176 
2177   /* If we reach this point it means that either p[] should be overwritten
2178   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2179   ** WhereLoop and insert it.
2180   */
2181 #if WHERETRACE_ENABLED /* 0x8 */
2182   if( sqlite3WhereTrace & 0x8 ){
2183     if( p!=0 ){
2184       sqlite3DebugPrintf("replace: ");
2185       whereLoopPrint(p, pBuilder->pWC);
2186       sqlite3DebugPrintf("   with: ");
2187     }else{
2188       sqlite3DebugPrintf("    add: ");
2189     }
2190     whereLoopPrint(pTemplate, pBuilder->pWC);
2191   }
2192 #endif
2193   if( p==0 ){
2194     /* Allocate a new WhereLoop to add to the end of the list */
2195     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2196     if( p==0 ) return SQLITE_NOMEM_BKPT;
2197     whereLoopInit(p);
2198     p->pNextLoop = 0;
2199   }else{
2200     /* We will be overwriting WhereLoop p[].  But before we do, first
2201     ** go through the rest of the list and delete any other entries besides
2202     ** p[] that are also supplated by pTemplate */
2203     WhereLoop **ppTail = &p->pNextLoop;
2204     WhereLoop *pToDel;
2205     while( *ppTail ){
2206       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2207       if( ppTail==0 ) break;
2208       pToDel = *ppTail;
2209       if( pToDel==0 ) break;
2210       *ppTail = pToDel->pNextLoop;
2211 #if WHERETRACE_ENABLED /* 0x8 */
2212       if( sqlite3WhereTrace & 0x8 ){
2213         sqlite3DebugPrintf(" delete: ");
2214         whereLoopPrint(pToDel, pBuilder->pWC);
2215       }
2216 #endif
2217       whereLoopDelete(db, pToDel);
2218     }
2219   }
2220   rc = whereLoopXfer(db, p, pTemplate);
2221   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2222     Index *pIndex = p->u.btree.pIndex;
2223     if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
2224       p->u.btree.pIndex = 0;
2225     }
2226   }
2227   return rc;
2228 }
2229 
2230 /*
2231 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2232 ** WHERE clause that reference the loop but which are not used by an
2233 ** index.
2234 *
2235 ** For every WHERE clause term that is not used by the index
2236 ** and which has a truth probability assigned by one of the likelihood(),
2237 ** likely(), or unlikely() SQL functions, reduce the estimated number
2238 ** of output rows by the probability specified.
2239 **
2240 ** TUNING:  For every WHERE clause term that is not used by the index
2241 ** and which does not have an assigned truth probability, heuristics
2242 ** described below are used to try to estimate the truth probability.
2243 ** TODO --> Perhaps this is something that could be improved by better
2244 ** table statistics.
2245 **
2246 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2247 ** value corresponds to -1 in LogEst notation, so this means decrement
2248 ** the WhereLoop.nOut field for every such WHERE clause term.
2249 **
2250 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2251 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2252 ** final output row estimate is no greater than 1/4 of the total number
2253 ** of rows in the table.  In other words, assume that x==EXPR will filter
2254 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2255 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2256 ** on the "x" column and so in that case only cap the output row estimate
2257 ** at 1/2 instead of 1/4.
2258 */
2259 static void whereLoopOutputAdjust(
2260   WhereClause *pWC,      /* The WHERE clause */
2261   WhereLoop *pLoop,      /* The loop to adjust downward */
2262   LogEst nRow            /* Number of rows in the entire table */
2263 ){
2264   WhereTerm *pTerm, *pX;
2265   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2266   int i, j;
2267   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2268 
2269   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2270   for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2271     assert( pTerm!=0 );
2272     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2273     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2274     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2275     for(j=pLoop->nLTerm-1; j>=0; j--){
2276       pX = pLoop->aLTerm[j];
2277       if( pX==0 ) continue;
2278       if( pX==pTerm ) break;
2279       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2280     }
2281     if( j<0 ){
2282       if( pTerm->truthProb<=0 ){
2283         /* If a truth probability is specified using the likelihood() hints,
2284         ** then use the probability provided by the application. */
2285         pLoop->nOut += pTerm->truthProb;
2286       }else{
2287         /* In the absence of explicit truth probabilities, use heuristics to
2288         ** guess a reasonable truth probability. */
2289         pLoop->nOut--;
2290         if( pTerm->eOperator&(WO_EQ|WO_IS) ){
2291           Expr *pRight = pTerm->pExpr->pRight;
2292           int k = 0;
2293           testcase( pTerm->pExpr->op==TK_IS );
2294           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2295             k = 10;
2296           }else{
2297             k = 20;
2298           }
2299           if( iReduce<k ) iReduce = k;
2300         }
2301       }
2302     }
2303   }
2304   if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;
2305 }
2306 
2307 /*
2308 ** Term pTerm is a vector range comparison operation. The first comparison
2309 ** in the vector can be optimized using column nEq of the index. This
2310 ** function returns the total number of vector elements that can be used
2311 ** as part of the range comparison.
2312 **
2313 ** For example, if the query is:
2314 **
2315 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2316 **
2317 ** and the index:
2318 **
2319 **   CREATE INDEX ... ON (a, b, c, d, e)
2320 **
2321 ** then this function would be invoked with nEq=1. The value returned in
2322 ** this case is 3.
2323 */
2324 static int whereRangeVectorLen(
2325   Parse *pParse,       /* Parsing context */
2326   int iCur,            /* Cursor open on pIdx */
2327   Index *pIdx,         /* The index to be used for a inequality constraint */
2328   int nEq,             /* Number of prior equality constraints on same index */
2329   WhereTerm *pTerm     /* The vector inequality constraint */
2330 ){
2331   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2332   int i;
2333 
2334   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2335   for(i=1; i<nCmp; i++){
2336     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2337     ** of the index. If not, exit the loop.  */
2338     char aff;                     /* Comparison affinity */
2339     char idxaff = 0;              /* Indexed columns affinity */
2340     CollSeq *pColl;               /* Comparison collation sequence */
2341     Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2342     Expr *pRhs = pTerm->pExpr->pRight;
2343     if( pRhs->flags & EP_xIsSelect ){
2344       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2345     }else{
2346       pRhs = pRhs->x.pList->a[i].pExpr;
2347     }
2348 
2349     /* Check that the LHS of the comparison is a column reference to
2350     ** the right column of the right source table. And that the sort
2351     ** order of the index column is the same as the sort order of the
2352     ** leftmost index column.  */
2353     if( pLhs->op!=TK_COLUMN
2354      || pLhs->iTable!=iCur
2355      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2356      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2357     ){
2358       break;
2359     }
2360 
2361     testcase( pLhs->iColumn==XN_ROWID );
2362     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2363     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2364     if( aff!=idxaff ) break;
2365 
2366     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2367     if( pColl==0 ) break;
2368     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2369   }
2370   return i;
2371 }
2372 
2373 /*
2374 ** Adjust the cost C by the costMult facter T.  This only occurs if
2375 ** compiled with -DSQLITE_ENABLE_COSTMULT
2376 */
2377 #ifdef SQLITE_ENABLE_COSTMULT
2378 # define ApplyCostMultiplier(C,T)  C += T
2379 #else
2380 # define ApplyCostMultiplier(C,T)
2381 #endif
2382 
2383 /*
2384 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2385 ** index pIndex. Try to match one more.
2386 **
2387 ** When this function is called, pBuilder->pNew->nOut contains the
2388 ** number of rows expected to be visited by filtering using the nEq
2389 ** terms only. If it is modified, this value is restored before this
2390 ** function returns.
2391 **
2392 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2393 ** a fake index used for the INTEGER PRIMARY KEY.
2394 */
2395 static int whereLoopAddBtreeIndex(
2396   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2397   struct SrcList_item *pSrc,      /* FROM clause term being analyzed */
2398   Index *pProbe,                  /* An index on pSrc */
2399   LogEst nInMul                   /* log(Number of iterations due to IN) */
2400 ){
2401   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2402   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2403   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2404   WhereLoop *pNew;                /* Template WhereLoop under construction */
2405   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2406   int opMask;                     /* Valid operators for constraints */
2407   WhereScan scan;                 /* Iterator for WHERE terms */
2408   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2409   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2410   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2411   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2412   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2413   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2414   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2415   LogEst saved_nOut;              /* Original value of pNew->nOut */
2416   int rc = SQLITE_OK;             /* Return code */
2417   LogEst rSize;                   /* Number of rows in the table */
2418   LogEst rLogSize;                /* Logarithm of table size */
2419   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2420 
2421   pNew = pBuilder->pNew;
2422   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2423   WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d\n",
2424                      pProbe->pTable->zName,pProbe->zName, pNew->u.btree.nEq));
2425 
2426   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2427   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2428   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2429     opMask = WO_LT|WO_LE;
2430   }else{
2431     assert( pNew->u.btree.nBtm==0 );
2432     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2433   }
2434   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2435 
2436   assert( pNew->u.btree.nEq<pProbe->nColumn );
2437 
2438   saved_nEq = pNew->u.btree.nEq;
2439   saved_nBtm = pNew->u.btree.nBtm;
2440   saved_nTop = pNew->u.btree.nTop;
2441   saved_nSkip = pNew->nSkip;
2442   saved_nLTerm = pNew->nLTerm;
2443   saved_wsFlags = pNew->wsFlags;
2444   saved_prereq = pNew->prereq;
2445   saved_nOut = pNew->nOut;
2446   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2447                         opMask, pProbe);
2448   pNew->rSetup = 0;
2449   rSize = pProbe->aiRowLogEst[0];
2450   rLogSize = estLog(rSize);
2451   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2452     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2453     LogEst rCostIdx;
2454     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2455     int nIn = 0;
2456 #ifdef SQLITE_ENABLE_STAT4
2457     int nRecValid = pBuilder->nRecValid;
2458 #endif
2459     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2460      && indexColumnNotNull(pProbe, saved_nEq)
2461     ){
2462       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2463     }
2464     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2465 
2466     /* Do not allow the upper bound of a LIKE optimization range constraint
2467     ** to mix with a lower range bound from some other source */
2468     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2469 
2470     /* tag-20191211-001:  Do not allow constraints from the WHERE clause to
2471     ** be used by the right table of a LEFT JOIN.  Only constraints in the
2472     ** ON clause are allowed.  See tag-20191211-002 for the vtab equivalent. */
2473     if( (pSrc->fg.jointype & JT_LEFT)!=0
2474      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2475     ){
2476       continue;
2477     }
2478 
2479     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2480       pBuilder->bldFlags |= SQLITE_BLDF_UNIQUE;
2481     }else{
2482       pBuilder->bldFlags |= SQLITE_BLDF_INDEXED;
2483     }
2484     pNew->wsFlags = saved_wsFlags;
2485     pNew->u.btree.nEq = saved_nEq;
2486     pNew->u.btree.nBtm = saved_nBtm;
2487     pNew->u.btree.nTop = saved_nTop;
2488     pNew->nLTerm = saved_nLTerm;
2489     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2490     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2491     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2492 
2493     assert( nInMul==0
2494         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2495         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2496         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2497     );
2498 
2499     if( eOp & WO_IN ){
2500       Expr *pExpr = pTerm->pExpr;
2501       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2502         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2503         int i;
2504         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2505 
2506         /* The expression may actually be of the form (x, y) IN (SELECT...).
2507         ** In this case there is a separate term for each of (x) and (y).
2508         ** However, the nIn multiplier should only be applied once, not once
2509         ** for each such term. The following loop checks that pTerm is the
2510         ** first such term in use, and sets nIn back to 0 if it is not. */
2511         for(i=0; i<pNew->nLTerm-1; i++){
2512           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2513         }
2514       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2515         /* "x IN (value, value, ...)" */
2516         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2517       }
2518       if( pProbe->hasStat1 ){
2519         LogEst M, logK, safetyMargin;
2520         /* Let:
2521         **   N = the total number of rows in the table
2522         **   K = the number of entries on the RHS of the IN operator
2523         **   M = the number of rows in the table that match terms to the
2524         **       to the left in the same index.  If the IN operator is on
2525         **       the left-most index column, M==N.
2526         **
2527         ** Given the definitions above, it is better to omit the IN operator
2528         ** from the index lookup and instead do a scan of the M elements,
2529         ** testing each scanned row against the IN operator separately, if:
2530         **
2531         **        M*log(K) < K*log(N)
2532         **
2533         ** Our estimates for M, K, and N might be inaccurate, so we build in
2534         ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2535         ** with the index, as using an index has better worst-case behavior.
2536         ** If we do not have real sqlite_stat1 data, always prefer to use
2537         ** the index.
2538         */
2539         M = pProbe->aiRowLogEst[saved_nEq];
2540         logK = estLog(nIn);
2541         safetyMargin = 10;  /* TUNING: extra weight for indexed IN */
2542         if( M + logK + safetyMargin < nIn + rLogSize ){
2543           WHERETRACE(0x40,
2544             ("Scan preferred over IN operator on column %d of \"%s\" (%d<%d)\n",
2545              saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2546           continue;
2547         }else{
2548           WHERETRACE(0x40,
2549             ("IN operator preferred on column %d of \"%s\" (%d>=%d)\n",
2550              saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2551         }
2552       }
2553       pNew->wsFlags |= WHERE_COLUMN_IN;
2554     }else if( eOp & (WO_EQ|WO_IS) ){
2555       int iCol = pProbe->aiColumn[saved_nEq];
2556       pNew->wsFlags |= WHERE_COLUMN_EQ;
2557       assert( saved_nEq==pNew->u.btree.nEq );
2558       if( iCol==XN_ROWID
2559        || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2560       ){
2561         if( iCol==XN_ROWID || pProbe->uniqNotNull
2562          || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2563         ){
2564           pNew->wsFlags |= WHERE_ONEROW;
2565         }else{
2566           pNew->wsFlags |= WHERE_UNQ_WANTED;
2567         }
2568       }
2569     }else if( eOp & WO_ISNULL ){
2570       pNew->wsFlags |= WHERE_COLUMN_NULL;
2571     }else if( eOp & (WO_GT|WO_GE) ){
2572       testcase( eOp & WO_GT );
2573       testcase( eOp & WO_GE );
2574       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2575       pNew->u.btree.nBtm = whereRangeVectorLen(
2576           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2577       );
2578       pBtm = pTerm;
2579       pTop = 0;
2580       if( pTerm->wtFlags & TERM_LIKEOPT ){
2581         /* Range contraints that come from the LIKE optimization are
2582         ** always used in pairs. */
2583         pTop = &pTerm[1];
2584         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2585         assert( pTop->wtFlags & TERM_LIKEOPT );
2586         assert( pTop->eOperator==WO_LT );
2587         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2588         pNew->aLTerm[pNew->nLTerm++] = pTop;
2589         pNew->wsFlags |= WHERE_TOP_LIMIT;
2590         pNew->u.btree.nTop = 1;
2591       }
2592     }else{
2593       assert( eOp & (WO_LT|WO_LE) );
2594       testcase( eOp & WO_LT );
2595       testcase( eOp & WO_LE );
2596       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2597       pNew->u.btree.nTop = whereRangeVectorLen(
2598           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2599       );
2600       pTop = pTerm;
2601       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2602                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2603     }
2604 
2605     /* At this point pNew->nOut is set to the number of rows expected to
2606     ** be visited by the index scan before considering term pTerm, or the
2607     ** values of nIn and nInMul. In other words, assuming that all
2608     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2609     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2610     assert( pNew->nOut==saved_nOut );
2611     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2612       /* Adjust nOut using stat4 data. Or, if there is no stat4
2613       ** data, using some other estimate.  */
2614       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2615     }else{
2616       int nEq = ++pNew->u.btree.nEq;
2617       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2618 
2619       assert( pNew->nOut==saved_nOut );
2620       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2621         assert( (eOp & WO_IN) || nIn==0 );
2622         testcase( eOp & WO_IN );
2623         pNew->nOut += pTerm->truthProb;
2624         pNew->nOut -= nIn;
2625       }else{
2626 #ifdef SQLITE_ENABLE_STAT4
2627         tRowcnt nOut = 0;
2628         if( nInMul==0
2629          && pProbe->nSample
2630          && pNew->u.btree.nEq<=pProbe->nSampleCol
2631          && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2632          && OptimizationEnabled(db, SQLITE_Stat4)
2633         ){
2634           Expr *pExpr = pTerm->pExpr;
2635           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2636             testcase( eOp & WO_EQ );
2637             testcase( eOp & WO_IS );
2638             testcase( eOp & WO_ISNULL );
2639             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2640           }else{
2641             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2642           }
2643           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2644           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2645           if( nOut ){
2646             pNew->nOut = sqlite3LogEst(nOut);
2647             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2648             pNew->nOut -= nIn;
2649           }
2650         }
2651         if( nOut==0 )
2652 #endif
2653         {
2654           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2655           if( eOp & WO_ISNULL ){
2656             /* TUNING: If there is no likelihood() value, assume that a
2657             ** "col IS NULL" expression matches twice as many rows
2658             ** as (col=?). */
2659             pNew->nOut += 10;
2660           }
2661         }
2662       }
2663     }
2664 
2665     /* Set rCostIdx to the cost of visiting selected rows in index. Add
2666     ** it to pNew->rRun, which is currently set to the cost of the index
2667     ** seek only. Then, if this is a non-covering index, add the cost of
2668     ** visiting the rows in the main table.  */
2669     assert( pSrc->pTab->szTabRow>0 );
2670     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2671     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2672     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2673       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2674     }
2675     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2676 
2677     nOutUnadjusted = pNew->nOut;
2678     pNew->rRun += nInMul + nIn;
2679     pNew->nOut += nInMul + nIn;
2680     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2681     rc = whereLoopInsert(pBuilder, pNew);
2682 
2683     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2684       pNew->nOut = saved_nOut;
2685     }else{
2686       pNew->nOut = nOutUnadjusted;
2687     }
2688 
2689     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2690      && pNew->u.btree.nEq<pProbe->nColumn
2691     ){
2692       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2693     }
2694     pNew->nOut = saved_nOut;
2695 #ifdef SQLITE_ENABLE_STAT4
2696     pBuilder->nRecValid = nRecValid;
2697 #endif
2698   }
2699   pNew->prereq = saved_prereq;
2700   pNew->u.btree.nEq = saved_nEq;
2701   pNew->u.btree.nBtm = saved_nBtm;
2702   pNew->u.btree.nTop = saved_nTop;
2703   pNew->nSkip = saved_nSkip;
2704   pNew->wsFlags = saved_wsFlags;
2705   pNew->nOut = saved_nOut;
2706   pNew->nLTerm = saved_nLTerm;
2707 
2708   /* Consider using a skip-scan if there are no WHERE clause constraints
2709   ** available for the left-most terms of the index, and if the average
2710   ** number of repeats in the left-most terms is at least 18.
2711   **
2712   ** The magic number 18 is selected on the basis that scanning 17 rows
2713   ** is almost always quicker than an index seek (even though if the index
2714   ** contains fewer than 2^17 rows we assume otherwise in other parts of
2715   ** the code). And, even if it is not, it should not be too much slower.
2716   ** On the other hand, the extra seeks could end up being significantly
2717   ** more expensive.  */
2718   assert( 42==sqlite3LogEst(18) );
2719   if( saved_nEq==saved_nSkip
2720    && saved_nEq+1<pProbe->nKeyCol
2721    && pProbe->noSkipScan==0
2722    && OptimizationEnabled(db, SQLITE_SkipScan)
2723    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
2724    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2725   ){
2726     LogEst nIter;
2727     pNew->u.btree.nEq++;
2728     pNew->nSkip++;
2729     pNew->aLTerm[pNew->nLTerm++] = 0;
2730     pNew->wsFlags |= WHERE_SKIPSCAN;
2731     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2732     pNew->nOut -= nIter;
2733     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
2734     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2735     nIter += 5;
2736     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2737     pNew->nOut = saved_nOut;
2738     pNew->u.btree.nEq = saved_nEq;
2739     pNew->nSkip = saved_nSkip;
2740     pNew->wsFlags = saved_wsFlags;
2741   }
2742 
2743   WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
2744                       pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
2745   return rc;
2746 }
2747 
2748 /*
2749 ** Return True if it is possible that pIndex might be useful in
2750 ** implementing the ORDER BY clause in pBuilder.
2751 **
2752 ** Return False if pBuilder does not contain an ORDER BY clause or
2753 ** if there is no way for pIndex to be useful in implementing that
2754 ** ORDER BY clause.
2755 */
2756 static int indexMightHelpWithOrderBy(
2757   WhereLoopBuilder *pBuilder,
2758   Index *pIndex,
2759   int iCursor
2760 ){
2761   ExprList *pOB;
2762   ExprList *aColExpr;
2763   int ii, jj;
2764 
2765   if( pIndex->bUnordered ) return 0;
2766   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2767   for(ii=0; ii<pOB->nExpr; ii++){
2768     Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
2769     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2770       if( pExpr->iColumn<0 ) return 1;
2771       for(jj=0; jj<pIndex->nKeyCol; jj++){
2772         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2773       }
2774     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2775       for(jj=0; jj<pIndex->nKeyCol; jj++){
2776         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2777         if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2778           return 1;
2779         }
2780       }
2781     }
2782   }
2783   return 0;
2784 }
2785 
2786 /* Check to see if a partial index with pPartIndexWhere can be used
2787 ** in the current query.  Return true if it can be and false if not.
2788 */
2789 static int whereUsablePartialIndex(
2790   int iTab,             /* The table for which we want an index */
2791   int isLeft,           /* True if iTab is the right table of a LEFT JOIN */
2792   WhereClause *pWC,     /* The WHERE clause of the query */
2793   Expr *pWhere          /* The WHERE clause from the partial index */
2794 ){
2795   int i;
2796   WhereTerm *pTerm;
2797   Parse *pParse = pWC->pWInfo->pParse;
2798   while( pWhere->op==TK_AND ){
2799     if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0;
2800     pWhere = pWhere->pRight;
2801   }
2802   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
2803   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2804     Expr *pExpr;
2805     pExpr = pTerm->pExpr;
2806     if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2807      && (isLeft==0 || ExprHasProperty(pExpr, EP_FromJoin))
2808      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
2809     ){
2810       return 1;
2811     }
2812   }
2813   return 0;
2814 }
2815 
2816 /*
2817 ** Add all WhereLoop objects for a single table of the join where the table
2818 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
2819 ** a b-tree table, not a virtual table.
2820 **
2821 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2822 ** are calculated as follows:
2823 **
2824 ** For a full scan, assuming the table (or index) contains nRow rows:
2825 **
2826 **     cost = nRow * 3.0                    // full-table scan
2827 **     cost = nRow * K                      // scan of covering index
2828 **     cost = nRow * (K+3.0)                // scan of non-covering index
2829 **
2830 ** where K is a value between 1.1 and 3.0 set based on the relative
2831 ** estimated average size of the index and table records.
2832 **
2833 ** For an index scan, where nVisit is the number of index rows visited
2834 ** by the scan, and nSeek is the number of seek operations required on
2835 ** the index b-tree:
2836 **
2837 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
2838 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
2839 **
2840 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2841 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2842 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2843 **
2844 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2845 ** of uncertainty.  For this reason, scoring is designed to pick plans that
2846 ** "do the least harm" if the estimates are inaccurate.  For example, a
2847 ** log(nRow) factor is omitted from a non-covering index scan in order to
2848 ** bias the scoring in favor of using an index, since the worst-case
2849 ** performance of using an index is far better than the worst-case performance
2850 ** of a full table scan.
2851 */
2852 static int whereLoopAddBtree(
2853   WhereLoopBuilder *pBuilder, /* WHERE clause information */
2854   Bitmask mPrereq             /* Extra prerequesites for using this table */
2855 ){
2856   WhereInfo *pWInfo;          /* WHERE analysis context */
2857   Index *pProbe;              /* An index we are evaluating */
2858   Index sPk;                  /* A fake index object for the primary key */
2859   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
2860   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
2861   SrcList *pTabList;          /* The FROM clause */
2862   struct SrcList_item *pSrc;  /* The FROM clause btree term to add */
2863   WhereLoop *pNew;            /* Template WhereLoop object */
2864   int rc = SQLITE_OK;         /* Return code */
2865   int iSortIdx = 1;           /* Index number */
2866   int b;                      /* A boolean value */
2867   LogEst rSize;               /* number of rows in the table */
2868   LogEst rLogSize;            /* Logarithm of the number of rows in the table */
2869   WhereClause *pWC;           /* The parsed WHERE clause */
2870   Table *pTab;                /* Table being queried */
2871 
2872   pNew = pBuilder->pNew;
2873   pWInfo = pBuilder->pWInfo;
2874   pTabList = pWInfo->pTabList;
2875   pSrc = pTabList->a + pNew->iTab;
2876   pTab = pSrc->pTab;
2877   pWC = pBuilder->pWC;
2878   assert( !IsVirtual(pSrc->pTab) );
2879 
2880   if( pSrc->pIBIndex ){
2881     /* An INDEXED BY clause specifies a particular index to use */
2882     pProbe = pSrc->pIBIndex;
2883   }else if( !HasRowid(pTab) ){
2884     pProbe = pTab->pIndex;
2885   }else{
2886     /* There is no INDEXED BY clause.  Create a fake Index object in local
2887     ** variable sPk to represent the rowid primary key index.  Make this
2888     ** fake index the first in a chain of Index objects with all of the real
2889     ** indices to follow */
2890     Index *pFirst;                  /* First of real indices on the table */
2891     memset(&sPk, 0, sizeof(Index));
2892     sPk.nKeyCol = 1;
2893     sPk.nColumn = 1;
2894     sPk.aiColumn = &aiColumnPk;
2895     sPk.aiRowLogEst = aiRowEstPk;
2896     sPk.onError = OE_Replace;
2897     sPk.pTable = pTab;
2898     sPk.szIdxRow = pTab->szTabRow;
2899     sPk.idxType = SQLITE_IDXTYPE_IPK;
2900     aiRowEstPk[0] = pTab->nRowLogEst;
2901     aiRowEstPk[1] = 0;
2902     pFirst = pSrc->pTab->pIndex;
2903     if( pSrc->fg.notIndexed==0 ){
2904       /* The real indices of the table are only considered if the
2905       ** NOT INDEXED qualifier is omitted from the FROM clause */
2906       sPk.pNext = pFirst;
2907     }
2908     pProbe = &sPk;
2909   }
2910   rSize = pTab->nRowLogEst;
2911   rLogSize = estLog(rSize);
2912 
2913 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
2914   /* Automatic indexes */
2915   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
2916    && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
2917    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
2918    && pSrc->pIBIndex==0      /* Has no INDEXED BY clause */
2919    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
2920    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
2921    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
2922    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
2923   ){
2924     /* Generate auto-index WhereLoops */
2925     WhereTerm *pTerm;
2926     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
2927     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
2928       if( pTerm->prereqRight & pNew->maskSelf ) continue;
2929       if( termCanDriveIndex(pTerm, pSrc, 0) ){
2930         pNew->u.btree.nEq = 1;
2931         pNew->nSkip = 0;
2932         pNew->u.btree.pIndex = 0;
2933         pNew->nLTerm = 1;
2934         pNew->aLTerm[0] = pTerm;
2935         /* TUNING: One-time cost for computing the automatic index is
2936         ** estimated to be X*N*log2(N) where N is the number of rows in
2937         ** the table being indexed and where X is 7 (LogEst=28) for normal
2938         ** tables or 0.5 (LogEst=-10) for views and subqueries.  The value
2939         ** of X is smaller for views and subqueries so that the query planner
2940         ** will be more aggressive about generating automatic indexes for
2941         ** those objects, since there is no opportunity to add schema
2942         ** indexes on subqueries and views. */
2943         pNew->rSetup = rLogSize + rSize;
2944         if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
2945           pNew->rSetup += 28;
2946         }else{
2947           pNew->rSetup -= 10;
2948         }
2949         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
2950         if( pNew->rSetup<0 ) pNew->rSetup = 0;
2951         /* TUNING: Each index lookup yields 20 rows in the table.  This
2952         ** is more than the usual guess of 10 rows, since we have no way
2953         ** of knowing how selective the index will ultimately be.  It would
2954         ** not be unreasonable to make this value much larger. */
2955         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
2956         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
2957         pNew->wsFlags = WHERE_AUTO_INDEX;
2958         pNew->prereq = mPrereq | pTerm->prereqRight;
2959         rc = whereLoopInsert(pBuilder, pNew);
2960       }
2961     }
2962   }
2963 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
2964 
2965   /* Loop over all indices. If there was an INDEXED BY clause, then only
2966   ** consider index pProbe.  */
2967   for(; rc==SQLITE_OK && pProbe;
2968       pProbe=(pSrc->pIBIndex ? 0 : pProbe->pNext), iSortIdx++
2969   ){
2970     int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0;
2971     if( pProbe->pPartIdxWhere!=0
2972      && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC,
2973                                  pProbe->pPartIdxWhere)
2974     ){
2975       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
2976       continue;  /* Partial index inappropriate for this query */
2977     }
2978     if( pProbe->bNoQuery ) continue;
2979     rSize = pProbe->aiRowLogEst[0];
2980     pNew->u.btree.nEq = 0;
2981     pNew->u.btree.nBtm = 0;
2982     pNew->u.btree.nTop = 0;
2983     pNew->nSkip = 0;
2984     pNew->nLTerm = 0;
2985     pNew->iSortIdx = 0;
2986     pNew->rSetup = 0;
2987     pNew->prereq = mPrereq;
2988     pNew->nOut = rSize;
2989     pNew->u.btree.pIndex = pProbe;
2990     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
2991     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
2992     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
2993     if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
2994       /* Integer primary key index */
2995       pNew->wsFlags = WHERE_IPK;
2996 
2997       /* Full table scan */
2998       pNew->iSortIdx = b ? iSortIdx : 0;
2999       /* TUNING: Cost of full table scan is (N*3.0). */
3000       pNew->rRun = rSize + 16;
3001       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3002       whereLoopOutputAdjust(pWC, pNew, rSize);
3003       rc = whereLoopInsert(pBuilder, pNew);
3004       pNew->nOut = rSize;
3005       if( rc ) break;
3006     }else{
3007       Bitmask m;
3008       if( pProbe->isCovering ){
3009         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
3010         m = 0;
3011       }else{
3012         m = pSrc->colUsed & pProbe->colNotIdxed;
3013         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
3014       }
3015 
3016       /* Full scan via index */
3017       if( b
3018        || !HasRowid(pTab)
3019        || pProbe->pPartIdxWhere!=0
3020        || ( m==0
3021          && pProbe->bUnordered==0
3022          && (pProbe->szIdxRow<pTab->szTabRow)
3023          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3024          && sqlite3GlobalConfig.bUseCis
3025          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3026           )
3027       ){
3028         pNew->iSortIdx = b ? iSortIdx : 0;
3029 
3030         /* The cost of visiting the index rows is N*K, where K is
3031         ** between 1.1 and 3.0, depending on the relative sizes of the
3032         ** index and table rows. */
3033         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3034         if( m!=0 ){
3035           /* If this is a non-covering index scan, add in the cost of
3036           ** doing table lookups.  The cost will be 3x the number of
3037           ** lookups.  Take into account WHERE clause terms that can be
3038           ** satisfied using just the index, and that do not require a
3039           ** table lookup. */
3040           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
3041           int ii;
3042           int iCur = pSrc->iCursor;
3043           WhereClause *pWC2 = &pWInfo->sWC;
3044           for(ii=0; ii<pWC2->nTerm; ii++){
3045             WhereTerm *pTerm = &pWC2->a[ii];
3046             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3047               break;
3048             }
3049             /* pTerm can be evaluated using just the index.  So reduce
3050             ** the expected number of table lookups accordingly */
3051             if( pTerm->truthProb<=0 ){
3052               nLookup += pTerm->truthProb;
3053             }else{
3054               nLookup--;
3055               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3056             }
3057           }
3058 
3059           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3060         }
3061         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3062         whereLoopOutputAdjust(pWC, pNew, rSize);
3063         rc = whereLoopInsert(pBuilder, pNew);
3064         pNew->nOut = rSize;
3065         if( rc ) break;
3066       }
3067     }
3068 
3069     pBuilder->bldFlags = 0;
3070     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3071     if( pBuilder->bldFlags==SQLITE_BLDF_INDEXED ){
3072       /* If a non-unique index is used, or if a prefix of the key for
3073       ** unique index is used (making the index functionally non-unique)
3074       ** then the sqlite_stat1 data becomes important for scoring the
3075       ** plan */
3076       pTab->tabFlags |= TF_StatsUsed;
3077     }
3078 #ifdef SQLITE_ENABLE_STAT4
3079     sqlite3Stat4ProbeFree(pBuilder->pRec);
3080     pBuilder->nRecValid = 0;
3081     pBuilder->pRec = 0;
3082 #endif
3083   }
3084   return rc;
3085 }
3086 
3087 #ifndef SQLITE_OMIT_VIRTUALTABLE
3088 
3089 /*
3090 ** Argument pIdxInfo is already populated with all constraints that may
3091 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3092 ** function marks a subset of those constraints usable, invokes the
3093 ** xBestIndex method and adds the returned plan to pBuilder.
3094 **
3095 ** A constraint is marked usable if:
3096 **
3097 **   * Argument mUsable indicates that its prerequisites are available, and
3098 **
3099 **   * It is not one of the operators specified in the mExclude mask passed
3100 **     as the fourth argument (which in practice is either WO_IN or 0).
3101 **
3102 ** Argument mPrereq is a mask of tables that must be scanned before the
3103 ** virtual table in question. These are added to the plans prerequisites
3104 ** before it is added to pBuilder.
3105 **
3106 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3107 ** uses one or more WO_IN terms, or false otherwise.
3108 */
3109 static int whereLoopAddVirtualOne(
3110   WhereLoopBuilder *pBuilder,
3111   Bitmask mPrereq,                /* Mask of tables that must be used. */
3112   Bitmask mUsable,                /* Mask of usable tables */
3113   u16 mExclude,                   /* Exclude terms using these operators */
3114   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3115   u16 mNoOmit,                    /* Do not omit these constraints */
3116   int *pbIn                       /* OUT: True if plan uses an IN(...) op */
3117 ){
3118   WhereClause *pWC = pBuilder->pWC;
3119   struct sqlite3_index_constraint *pIdxCons;
3120   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3121   int i;
3122   int mxTerm;
3123   int rc = SQLITE_OK;
3124   WhereLoop *pNew = pBuilder->pNew;
3125   Parse *pParse = pBuilder->pWInfo->pParse;
3126   struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3127   int nConstraint = pIdxInfo->nConstraint;
3128 
3129   assert( (mUsable & mPrereq)==mPrereq );
3130   *pbIn = 0;
3131   pNew->prereq = mPrereq;
3132 
3133   /* Set the usable flag on the subset of constraints identified by
3134   ** arguments mUsable and mExclude. */
3135   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3136   for(i=0; i<nConstraint; i++, pIdxCons++){
3137     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3138     pIdxCons->usable = 0;
3139     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3140      && (pTerm->eOperator & mExclude)==0
3141     ){
3142       pIdxCons->usable = 1;
3143     }
3144   }
3145 
3146   /* Initialize the output fields of the sqlite3_index_info structure */
3147   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3148   assert( pIdxInfo->needToFreeIdxStr==0 );
3149   pIdxInfo->idxStr = 0;
3150   pIdxInfo->idxNum = 0;
3151   pIdxInfo->orderByConsumed = 0;
3152   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3153   pIdxInfo->estimatedRows = 25;
3154   pIdxInfo->idxFlags = 0;
3155   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3156 
3157   /* Invoke the virtual table xBestIndex() method */
3158   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3159   if( rc ){
3160     if( rc==SQLITE_CONSTRAINT ){
3161       /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3162       ** that the particular combination of parameters provided is unusable.
3163       ** Make no entries in the loop table.
3164       */
3165       WHERETRACE(0xffff, ("  ^^^^--- non-viable plan rejected!\n"));
3166       return SQLITE_OK;
3167     }
3168     return rc;
3169   }
3170 
3171   mxTerm = -1;
3172   assert( pNew->nLSlot>=nConstraint );
3173   for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3174   pNew->u.vtab.omitMask = 0;
3175   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3176   for(i=0; i<nConstraint; i++, pIdxCons++){
3177     int iTerm;
3178     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3179       WhereTerm *pTerm;
3180       int j = pIdxCons->iTermOffset;
3181       if( iTerm>=nConstraint
3182        || j<0
3183        || j>=pWC->nTerm
3184        || pNew->aLTerm[iTerm]!=0
3185        || pIdxCons->usable==0
3186       ){
3187         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3188         testcase( pIdxInfo->needToFreeIdxStr );
3189         return SQLITE_ERROR;
3190       }
3191       testcase( iTerm==nConstraint-1 );
3192       testcase( j==0 );
3193       testcase( j==pWC->nTerm-1 );
3194       pTerm = &pWC->a[j];
3195       pNew->prereq |= pTerm->prereqRight;
3196       assert( iTerm<pNew->nLSlot );
3197       pNew->aLTerm[iTerm] = pTerm;
3198       if( iTerm>mxTerm ) mxTerm = iTerm;
3199       testcase( iTerm==15 );
3200       testcase( iTerm==16 );
3201       if( pUsage[i].omit ){
3202         if( i<16 && ((1<<i)&mNoOmit)==0 ){
3203           testcase( i!=iTerm );
3204           pNew->u.vtab.omitMask |= 1<<iTerm;
3205         }else{
3206           testcase( i!=iTerm );
3207         }
3208       }
3209       if( (pTerm->eOperator & WO_IN)!=0 ){
3210         /* A virtual table that is constrained by an IN clause may not
3211         ** consume the ORDER BY clause because (1) the order of IN terms
3212         ** is not necessarily related to the order of output terms and
3213         ** (2) Multiple outputs from a single IN value will not merge
3214         ** together.  */
3215         pIdxInfo->orderByConsumed = 0;
3216         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3217         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3218       }
3219     }
3220   }
3221 
3222   pNew->nLTerm = mxTerm+1;
3223   for(i=0; i<=mxTerm; i++){
3224     if( pNew->aLTerm[i]==0 ){
3225       /* The non-zero argvIdx values must be contiguous.  Raise an
3226       ** error if they are not */
3227       sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3228       testcase( pIdxInfo->needToFreeIdxStr );
3229       return SQLITE_ERROR;
3230     }
3231   }
3232   assert( pNew->nLTerm<=pNew->nLSlot );
3233   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3234   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3235   pIdxInfo->needToFreeIdxStr = 0;
3236   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3237   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3238       pIdxInfo->nOrderBy : 0);
3239   pNew->rSetup = 0;
3240   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3241   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3242 
3243   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3244   ** that the scan will visit at most one row. Clear it otherwise. */
3245   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3246     pNew->wsFlags |= WHERE_ONEROW;
3247   }else{
3248     pNew->wsFlags &= ~WHERE_ONEROW;
3249   }
3250   rc = whereLoopInsert(pBuilder, pNew);
3251   if( pNew->u.vtab.needFree ){
3252     sqlite3_free(pNew->u.vtab.idxStr);
3253     pNew->u.vtab.needFree = 0;
3254   }
3255   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3256                       *pbIn, (sqlite3_uint64)mPrereq,
3257                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3258 
3259   return rc;
3260 }
3261 
3262 /*
3263 ** If this function is invoked from within an xBestIndex() callback, it
3264 ** returns a pointer to a buffer containing the name of the collation
3265 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint
3266 ** array. Or, if iCons is out of range or there is no active xBestIndex
3267 ** call, return NULL.
3268 */
3269 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3270   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3271   const char *zRet = 0;
3272   if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3273     CollSeq *pC = 0;
3274     int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3275     Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3276     if( pX->pLeft ){
3277       pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
3278     }
3279     zRet = (pC ? pC->zName : sqlite3StrBINARY);
3280   }
3281   return zRet;
3282 }
3283 
3284 /*
3285 ** Add all WhereLoop objects for a table of the join identified by
3286 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3287 **
3288 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3289 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3290 ** entries that occur before the virtual table in the FROM clause and are
3291 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3292 ** mUnusable mask contains all FROM clause entries that occur after the
3293 ** virtual table and are separated from it by at least one LEFT or
3294 ** CROSS JOIN.
3295 **
3296 ** For example, if the query were:
3297 **
3298 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3299 **
3300 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3301 **
3302 ** All the tables in mPrereq must be scanned before the current virtual
3303 ** table. So any terms for which all prerequisites are satisfied by
3304 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3305 ** Conversely, all tables in mUnusable must be scanned after the current
3306 ** virtual table, so any terms for which the prerequisites overlap with
3307 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3308 */
3309 static int whereLoopAddVirtual(
3310   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3311   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3312   Bitmask mUnusable            /* Tables that must be scanned after this one */
3313 ){
3314   int rc = SQLITE_OK;          /* Return code */
3315   WhereInfo *pWInfo;           /* WHERE analysis context */
3316   Parse *pParse;               /* The parsing context */
3317   WhereClause *pWC;            /* The WHERE clause */
3318   struct SrcList_item *pSrc;   /* The FROM clause term to search */
3319   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3320   int nConstraint;             /* Number of constraints in p */
3321   int bIn;                     /* True if plan uses IN(...) operator */
3322   WhereLoop *pNew;
3323   Bitmask mBest;               /* Tables used by best possible plan */
3324   u16 mNoOmit;
3325 
3326   assert( (mPrereq & mUnusable)==0 );
3327   pWInfo = pBuilder->pWInfo;
3328   pParse = pWInfo->pParse;
3329   pWC = pBuilder->pWC;
3330   pNew = pBuilder->pNew;
3331   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3332   assert( IsVirtual(pSrc->pTab) );
3333   p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3334       &mNoOmit);
3335   if( p==0 ) return SQLITE_NOMEM_BKPT;
3336   pNew->rSetup = 0;
3337   pNew->wsFlags = WHERE_VIRTUALTABLE;
3338   pNew->nLTerm = 0;
3339   pNew->u.vtab.needFree = 0;
3340   nConstraint = p->nConstraint;
3341   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3342     sqlite3DbFree(pParse->db, p);
3343     return SQLITE_NOMEM_BKPT;
3344   }
3345 
3346   /* First call xBestIndex() with all constraints usable. */
3347   WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3348   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3349   rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3350 
3351   /* If the call to xBestIndex() with all terms enabled produced a plan
3352   ** that does not require any source tables (IOW: a plan with mBest==0)
3353   ** and does not use an IN(...) operator, then there is no point in making
3354   ** any further calls to xBestIndex() since they will all return the same
3355   ** result (if the xBestIndex() implementation is sane). */
3356   if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
3357     int seenZero = 0;             /* True if a plan with no prereqs seen */
3358     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3359     Bitmask mPrev = 0;
3360     Bitmask mBestNoIn = 0;
3361 
3362     /* If the plan produced by the earlier call uses an IN(...) term, call
3363     ** xBestIndex again, this time with IN(...) terms disabled. */
3364     if( bIn ){
3365       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3366       rc = whereLoopAddVirtualOne(
3367           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3368       assert( bIn==0 );
3369       mBestNoIn = pNew->prereq & ~mPrereq;
3370       if( mBestNoIn==0 ){
3371         seenZero = 1;
3372         seenZeroNoIN = 1;
3373       }
3374     }
3375 
3376     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3377     ** in the set of terms that apply to the current virtual table.  */
3378     while( rc==SQLITE_OK ){
3379       int i;
3380       Bitmask mNext = ALLBITS;
3381       assert( mNext>0 );
3382       for(i=0; i<nConstraint; i++){
3383         Bitmask mThis = (
3384             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3385         );
3386         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3387       }
3388       mPrev = mNext;
3389       if( mNext==ALLBITS ) break;
3390       if( mNext==mBest || mNext==mBestNoIn ) continue;
3391       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
3392                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3393       rc = whereLoopAddVirtualOne(
3394           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3395       if( pNew->prereq==mPrereq ){
3396         seenZero = 1;
3397         if( bIn==0 ) seenZeroNoIN = 1;
3398       }
3399     }
3400 
3401     /* If the calls to xBestIndex() in the above loop did not find a plan
3402     ** that requires no source tables at all (i.e. one guaranteed to be
3403     ** usable), make a call here with all source tables disabled */
3404     if( rc==SQLITE_OK && seenZero==0 ){
3405       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
3406       rc = whereLoopAddVirtualOne(
3407           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3408       if( bIn==0 ) seenZeroNoIN = 1;
3409     }
3410 
3411     /* If the calls to xBestIndex() have so far failed to find a plan
3412     ** that requires no source tables at all and does not use an IN(...)
3413     ** operator, make a final call to obtain one here.  */
3414     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3415       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
3416       rc = whereLoopAddVirtualOne(
3417           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3418     }
3419   }
3420 
3421   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3422   sqlite3DbFreeNN(pParse->db, p);
3423   WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
3424   return rc;
3425 }
3426 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3427 
3428 /*
3429 ** Add WhereLoop entries to handle OR terms.  This works for either
3430 ** btrees or virtual tables.
3431 */
3432 static int whereLoopAddOr(
3433   WhereLoopBuilder *pBuilder,
3434   Bitmask mPrereq,
3435   Bitmask mUnusable
3436 ){
3437   WhereInfo *pWInfo = pBuilder->pWInfo;
3438   WhereClause *pWC;
3439   WhereLoop *pNew;
3440   WhereTerm *pTerm, *pWCEnd;
3441   int rc = SQLITE_OK;
3442   int iCur;
3443   WhereClause tempWC;
3444   WhereLoopBuilder sSubBuild;
3445   WhereOrSet sSum, sCur;
3446   struct SrcList_item *pItem;
3447 
3448   pWC = pBuilder->pWC;
3449   pWCEnd = pWC->a + pWC->nTerm;
3450   pNew = pBuilder->pNew;
3451   memset(&sSum, 0, sizeof(sSum));
3452   pItem = pWInfo->pTabList->a + pNew->iTab;
3453   iCur = pItem->iCursor;
3454 
3455   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3456     if( (pTerm->eOperator & WO_OR)!=0
3457      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3458     ){
3459       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3460       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3461       WhereTerm *pOrTerm;
3462       int once = 1;
3463       int i, j;
3464 
3465       sSubBuild = *pBuilder;
3466       sSubBuild.pOrderBy = 0;
3467       sSubBuild.pOrSet = &sCur;
3468 
3469       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3470       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3471         if( (pOrTerm->eOperator & WO_AND)!=0 ){
3472           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3473         }else if( pOrTerm->leftCursor==iCur ){
3474           tempWC.pWInfo = pWC->pWInfo;
3475           tempWC.pOuter = pWC;
3476           tempWC.op = TK_AND;
3477           tempWC.nTerm = 1;
3478           tempWC.a = pOrTerm;
3479           sSubBuild.pWC = &tempWC;
3480         }else{
3481           continue;
3482         }
3483         sCur.n = 0;
3484 #ifdef WHERETRACE_ENABLED
3485         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3486                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3487         if( sqlite3WhereTrace & 0x400 ){
3488           sqlite3WhereClausePrint(sSubBuild.pWC);
3489         }
3490 #endif
3491 #ifndef SQLITE_OMIT_VIRTUALTABLE
3492         if( IsVirtual(pItem->pTab) ){
3493           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3494         }else
3495 #endif
3496         {
3497           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3498         }
3499         if( rc==SQLITE_OK ){
3500           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3501         }
3502         assert( rc==SQLITE_OK || sCur.n==0 );
3503         if( sCur.n==0 ){
3504           sSum.n = 0;
3505           break;
3506         }else if( once ){
3507           whereOrMove(&sSum, &sCur);
3508           once = 0;
3509         }else{
3510           WhereOrSet sPrev;
3511           whereOrMove(&sPrev, &sSum);
3512           sSum.n = 0;
3513           for(i=0; i<sPrev.n; i++){
3514             for(j=0; j<sCur.n; j++){
3515               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3516                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3517                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3518             }
3519           }
3520         }
3521       }
3522       pNew->nLTerm = 1;
3523       pNew->aLTerm[0] = pTerm;
3524       pNew->wsFlags = WHERE_MULTI_OR;
3525       pNew->rSetup = 0;
3526       pNew->iSortIdx = 0;
3527       memset(&pNew->u, 0, sizeof(pNew->u));
3528       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3529         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3530         ** of all sub-scans required by the OR-scan. However, due to rounding
3531         ** errors, it may be that the cost of the OR-scan is equal to its
3532         ** most expensive sub-scan. Add the smallest possible penalty
3533         ** (equivalent to multiplying the cost by 1.07) to ensure that
3534         ** this does not happen. Otherwise, for WHERE clauses such as the
3535         ** following where there is an index on "y":
3536         **
3537         **     WHERE likelihood(x=?, 0.99) OR y=?
3538         **
3539         ** the planner may elect to "OR" together a full-table scan and an
3540         ** index lookup. And other similarly odd results.  */
3541         pNew->rRun = sSum.a[i].rRun + 1;
3542         pNew->nOut = sSum.a[i].nOut;
3543         pNew->prereq = sSum.a[i].prereq;
3544         rc = whereLoopInsert(pBuilder, pNew);
3545       }
3546       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3547     }
3548   }
3549   return rc;
3550 }
3551 
3552 /*
3553 ** Add all WhereLoop objects for all tables
3554 */
3555 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3556   WhereInfo *pWInfo = pBuilder->pWInfo;
3557   Bitmask mPrereq = 0;
3558   Bitmask mPrior = 0;
3559   int iTab;
3560   SrcList *pTabList = pWInfo->pTabList;
3561   struct SrcList_item *pItem;
3562   struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel];
3563   sqlite3 *db = pWInfo->pParse->db;
3564   int rc = SQLITE_OK;
3565   WhereLoop *pNew;
3566   u8 priorJointype = 0;
3567 
3568   /* Loop over the tables in the join, from left to right */
3569   pNew = pBuilder->pNew;
3570   whereLoopInit(pNew);
3571   pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
3572   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3573     Bitmask mUnusable = 0;
3574     pNew->iTab = iTab;
3575     pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
3576     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3577     if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){
3578       /* This condition is true when pItem is the FROM clause term on the
3579       ** right-hand-side of a LEFT or CROSS JOIN.  */
3580       mPrereq = mPrior;
3581     }
3582     priorJointype = pItem->fg.jointype;
3583 #ifndef SQLITE_OMIT_VIRTUALTABLE
3584     if( IsVirtual(pItem->pTab) ){
3585       struct SrcList_item *p;
3586       for(p=&pItem[1]; p<pEnd; p++){
3587         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3588           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3589         }
3590       }
3591       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3592     }else
3593 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3594     {
3595       rc = whereLoopAddBtree(pBuilder, mPrereq);
3596     }
3597     if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
3598       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3599     }
3600     mPrior |= pNew->maskSelf;
3601     if( rc || db->mallocFailed ){
3602       if( rc==SQLITE_DONE ){
3603         /* We hit the query planner search limit set by iPlanLimit */
3604         sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
3605         rc = SQLITE_OK;
3606       }else{
3607         break;
3608       }
3609     }
3610   }
3611 
3612   whereLoopClear(db, pNew);
3613   return rc;
3614 }
3615 
3616 /*
3617 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
3618 ** parameters) to see if it outputs rows in the requested ORDER BY
3619 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
3620 **
3621 **   N>0:   N terms of the ORDER BY clause are satisfied
3622 **   N==0:  No terms of the ORDER BY clause are satisfied
3623 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
3624 **
3625 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3626 ** strict.  With GROUP BY and DISTINCT the only requirement is that
3627 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
3628 ** and DISTINCT do not require rows to appear in any particular order as long
3629 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
3630 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
3631 ** pOrderBy terms must be matched in strict left-to-right order.
3632 */
3633 static i8 wherePathSatisfiesOrderBy(
3634   WhereInfo *pWInfo,    /* The WHERE clause */
3635   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
3636   WherePath *pPath,     /* The WherePath to check */
3637   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3638   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
3639   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
3640   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
3641 ){
3642   u8 revSet;            /* True if rev is known */
3643   u8 rev;               /* Composite sort order */
3644   u8 revIdx;            /* Index sort order */
3645   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
3646   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
3647   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
3648   u16 eqOpMask;         /* Allowed equality operators */
3649   u16 nKeyCol;          /* Number of key columns in pIndex */
3650   u16 nColumn;          /* Total number of ordered columns in the index */
3651   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
3652   int iLoop;            /* Index of WhereLoop in pPath being processed */
3653   int i, j;             /* Loop counters */
3654   int iCur;             /* Cursor number for current WhereLoop */
3655   int iColumn;          /* A column number within table iCur */
3656   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3657   WhereTerm *pTerm;     /* A single term of the WHERE clause */
3658   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
3659   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
3660   Index *pIndex;        /* The index associated with pLoop */
3661   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
3662   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
3663   Bitmask obDone;       /* Mask of all ORDER BY terms */
3664   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
3665   Bitmask ready;              /* Mask of inner loops */
3666 
3667   /*
3668   ** We say the WhereLoop is "one-row" if it generates no more than one
3669   ** row of output.  A WhereLoop is one-row if all of the following are true:
3670   **  (a) All index columns match with WHERE_COLUMN_EQ.
3671   **  (b) The index is unique
3672   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3673   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3674   **
3675   ** We say the WhereLoop is "order-distinct" if the set of columns from
3676   ** that WhereLoop that are in the ORDER BY clause are different for every
3677   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
3678   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
3679   ** is not order-distinct. To be order-distinct is not quite the same as being
3680   ** UNIQUE since a UNIQUE column or index can have multiple rows that
3681   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3682   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3683   **
3684   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3685   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3686   ** automatically order-distinct.
3687   */
3688 
3689   assert( pOrderBy!=0 );
3690   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3691 
3692   nOrderBy = pOrderBy->nExpr;
3693   testcase( nOrderBy==BMS-1 );
3694   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
3695   isOrderDistinct = 1;
3696   obDone = MASKBIT(nOrderBy)-1;
3697   orderDistinctMask = 0;
3698   ready = 0;
3699   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3700   if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN;
3701   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3702     if( iLoop>0 ) ready |= pLoop->maskSelf;
3703     if( iLoop<nLoop ){
3704       pLoop = pPath->aLoop[iLoop];
3705       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3706     }else{
3707       pLoop = pLast;
3708     }
3709     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3710       if( pLoop->u.vtab.isOrdered && (wctrlFlags & WHERE_DISTINCTBY)==0 ){
3711         obSat = obDone;
3712       }
3713       break;
3714     }else if( wctrlFlags & WHERE_DISTINCTBY ){
3715       pLoop->u.btree.nDistinctCol = 0;
3716     }
3717     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3718 
3719     /* Mark off any ORDER BY term X that is a column in the table of
3720     ** the current loop for which there is term in the WHERE
3721     ** clause of the form X IS NULL or X=? that reference only outer
3722     ** loops.
3723     */
3724     for(i=0; i<nOrderBy; i++){
3725       if( MASKBIT(i) & obSat ) continue;
3726       pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
3727       if( pOBExpr->op!=TK_COLUMN ) continue;
3728       if( pOBExpr->iTable!=iCur ) continue;
3729       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3730                        ~ready, eqOpMask, 0);
3731       if( pTerm==0 ) continue;
3732       if( pTerm->eOperator==WO_IN ){
3733         /* IN terms are only valid for sorting in the ORDER BY LIMIT
3734         ** optimization, and then only if they are actually used
3735         ** by the query plan */
3736         assert( wctrlFlags & WHERE_ORDERBY_LIMIT );
3737         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3738         if( j>=pLoop->nLTerm ) continue;
3739       }
3740       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3741         if( sqlite3ExprCollSeqMatch(pWInfo->pParse,
3742                   pOrderBy->a[i].pExpr, pTerm->pExpr)==0 ){
3743           continue;
3744         }
3745         testcase( pTerm->pExpr->op==TK_IS );
3746       }
3747       obSat |= MASKBIT(i);
3748     }
3749 
3750     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3751       if( pLoop->wsFlags & WHERE_IPK ){
3752         pIndex = 0;
3753         nKeyCol = 0;
3754         nColumn = 1;
3755       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3756         return 0;
3757       }else{
3758         nKeyCol = pIndex->nKeyCol;
3759         nColumn = pIndex->nColumn;
3760         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3761         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3762                           || !HasRowid(pIndex->pTable));
3763         isOrderDistinct = IsUniqueIndex(pIndex)
3764                           && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
3765       }
3766 
3767       /* Loop through all columns of the index and deal with the ones
3768       ** that are not constrained by == or IN.
3769       */
3770       rev = revSet = 0;
3771       distinctColumns = 0;
3772       for(j=0; j<nColumn; j++){
3773         u8 bOnce = 1; /* True to run the ORDER BY search loop */
3774 
3775         assert( j>=pLoop->u.btree.nEq
3776             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3777         );
3778         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3779           u16 eOp = pLoop->aLTerm[j]->eOperator;
3780 
3781           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
3782           ** doing WHERE_ORDERBY_LIMIT processing).  Except, IS and ISNULL
3783           ** terms imply that the index is not UNIQUE NOT NULL in which case
3784           ** the loop need to be marked as not order-distinct because it can
3785           ** have repeated NULL rows.
3786           **
3787           ** If the current term is a column of an ((?,?) IN (SELECT...))
3788           ** expression for which the SELECT returns more than one column,
3789           ** check that it is the only column used by this loop. Otherwise,
3790           ** if it is one of two or more, none of the columns can be
3791           ** considered to match an ORDER BY term.
3792           */
3793           if( (eOp & eqOpMask)!=0 ){
3794             if( eOp & (WO_ISNULL|WO_IS) ){
3795               testcase( eOp & WO_ISNULL );
3796               testcase( eOp & WO_IS );
3797               testcase( isOrderDistinct );
3798               isOrderDistinct = 0;
3799             }
3800             continue;
3801           }else if( ALWAYS(eOp & WO_IN) ){
3802             /* ALWAYS() justification: eOp is an equality operator due to the
3803             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
3804             ** than WO_IN is captured by the previous "if".  So this one
3805             ** always has to be WO_IN. */
3806             Expr *pX = pLoop->aLTerm[j]->pExpr;
3807             for(i=j+1; i<pLoop->u.btree.nEq; i++){
3808               if( pLoop->aLTerm[i]->pExpr==pX ){
3809                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3810                 bOnce = 0;
3811                 break;
3812               }
3813             }
3814           }
3815         }
3816 
3817         /* Get the column number in the table (iColumn) and sort order
3818         ** (revIdx) for the j-th column of the index.
3819         */
3820         if( pIndex ){
3821           iColumn = pIndex->aiColumn[j];
3822           revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
3823           if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
3824         }else{
3825           iColumn = XN_ROWID;
3826           revIdx = 0;
3827         }
3828 
3829         /* An unconstrained column that might be NULL means that this
3830         ** WhereLoop is not well-ordered
3831         */
3832         if( isOrderDistinct
3833          && iColumn>=0
3834          && j>=pLoop->u.btree.nEq
3835          && pIndex->pTable->aCol[iColumn].notNull==0
3836         ){
3837           isOrderDistinct = 0;
3838         }
3839 
3840         /* Find the ORDER BY term that corresponds to the j-th column
3841         ** of the index and mark that ORDER BY term off
3842         */
3843         isMatch = 0;
3844         for(i=0; bOnce && i<nOrderBy; i++){
3845           if( MASKBIT(i) & obSat ) continue;
3846           pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
3847           testcase( wctrlFlags & WHERE_GROUPBY );
3848           testcase( wctrlFlags & WHERE_DISTINCTBY );
3849           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
3850           if( iColumn>=XN_ROWID ){
3851             if( pOBExpr->op!=TK_COLUMN ) continue;
3852             if( pOBExpr->iTable!=iCur ) continue;
3853             if( pOBExpr->iColumn!=iColumn ) continue;
3854           }else{
3855             Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
3856             if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
3857               continue;
3858             }
3859           }
3860           if( iColumn!=XN_ROWID ){
3861             pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3862             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
3863           }
3864           if( wctrlFlags & WHERE_DISTINCTBY ){
3865             pLoop->u.btree.nDistinctCol = j+1;
3866           }
3867           isMatch = 1;
3868           break;
3869         }
3870         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
3871           /* Make sure the sort order is compatible in an ORDER BY clause.
3872           ** Sort order is irrelevant for a GROUP BY clause. */
3873           if( revSet ){
3874             if( (rev ^ revIdx)!=(pOrderBy->a[i].sortFlags&KEYINFO_ORDER_DESC) ){
3875               isMatch = 0;
3876             }
3877           }else{
3878             rev = revIdx ^ (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC);
3879             if( rev ) *pRevMask |= MASKBIT(iLoop);
3880             revSet = 1;
3881           }
3882         }
3883         if( isMatch && (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL) ){
3884           if( j==pLoop->u.btree.nEq ){
3885             pLoop->wsFlags |= WHERE_BIGNULL_SORT;
3886           }else{
3887             isMatch = 0;
3888           }
3889         }
3890         if( isMatch ){
3891           if( iColumn==XN_ROWID ){
3892             testcase( distinctColumns==0 );
3893             distinctColumns = 1;
3894           }
3895           obSat |= MASKBIT(i);
3896         }else{
3897           /* No match found */
3898           if( j==0 || j<nKeyCol ){
3899             testcase( isOrderDistinct!=0 );
3900             isOrderDistinct = 0;
3901           }
3902           break;
3903         }
3904       } /* end Loop over all index columns */
3905       if( distinctColumns ){
3906         testcase( isOrderDistinct==0 );
3907         isOrderDistinct = 1;
3908       }
3909     } /* end-if not one-row */
3910 
3911     /* Mark off any other ORDER BY terms that reference pLoop */
3912     if( isOrderDistinct ){
3913       orderDistinctMask |= pLoop->maskSelf;
3914       for(i=0; i<nOrderBy; i++){
3915         Expr *p;
3916         Bitmask mTerm;
3917         if( MASKBIT(i) & obSat ) continue;
3918         p = pOrderBy->a[i].pExpr;
3919         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
3920         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
3921         if( (mTerm&~orderDistinctMask)==0 ){
3922           obSat |= MASKBIT(i);
3923         }
3924       }
3925     }
3926   } /* End the loop over all WhereLoops from outer-most down to inner-most */
3927   if( obSat==obDone ) return (i8)nOrderBy;
3928   if( !isOrderDistinct ){
3929     for(i=nOrderBy-1; i>0; i--){
3930       Bitmask m = MASKBIT(i) - 1;
3931       if( (obSat&m)==m ) return i;
3932     }
3933     return 0;
3934   }
3935   return -1;
3936 }
3937 
3938 
3939 /*
3940 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
3941 ** the planner assumes that the specified pOrderBy list is actually a GROUP
3942 ** BY clause - and so any order that groups rows as required satisfies the
3943 ** request.
3944 **
3945 ** Normally, in this case it is not possible for the caller to determine
3946 ** whether or not the rows are really being delivered in sorted order, or
3947 ** just in some other order that provides the required grouping. However,
3948 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
3949 ** this function may be called on the returned WhereInfo object. It returns
3950 ** true if the rows really will be sorted in the specified order, or false
3951 ** otherwise.
3952 **
3953 ** For example, assuming:
3954 **
3955 **   CREATE INDEX i1 ON t1(x, Y);
3956 **
3957 ** then
3958 **
3959 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
3960 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
3961 */
3962 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
3963   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
3964   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
3965   return pWInfo->sorted;
3966 }
3967 
3968 #ifdef WHERETRACE_ENABLED
3969 /* For debugging use only: */
3970 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
3971   static char zName[65];
3972   int i;
3973   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
3974   if( pLast ) zName[i++] = pLast->cId;
3975   zName[i] = 0;
3976   return zName;
3977 }
3978 #endif
3979 
3980 /*
3981 ** Return the cost of sorting nRow rows, assuming that the keys have
3982 ** nOrderby columns and that the first nSorted columns are already in
3983 ** order.
3984 */
3985 static LogEst whereSortingCost(
3986   WhereInfo *pWInfo,
3987   LogEst nRow,
3988   int nOrderBy,
3989   int nSorted
3990 ){
3991   /* TUNING: Estimated cost of a full external sort, where N is
3992   ** the number of rows to sort is:
3993   **
3994   **   cost = (3.0 * N * log(N)).
3995   **
3996   ** Or, if the order-by clause has X terms but only the last Y
3997   ** terms are out of order, then block-sorting will reduce the
3998   ** sorting cost to:
3999   **
4000   **   cost = (3.0 * N * log(N)) * (Y/X)
4001   **
4002   ** The (Y/X) term is implemented using stack variable rScale
4003   ** below.  */
4004   LogEst rScale, rSortCost;
4005   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
4006   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
4007   rSortCost = nRow + rScale + 16;
4008 
4009   /* Multiple by log(M) where M is the number of output rows.
4010   ** Use the LIMIT for M if it is smaller */
4011   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
4012     nRow = pWInfo->iLimit;
4013   }
4014   rSortCost += estLog(nRow);
4015   return rSortCost;
4016 }
4017 
4018 /*
4019 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4020 ** attempts to find the lowest cost path that visits each WhereLoop
4021 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
4022 **
4023 ** Assume that the total number of output rows that will need to be sorted
4024 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
4025 ** costs if nRowEst==0.
4026 **
4027 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4028 ** error occurs.
4029 */
4030 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
4031   int mxChoice;             /* Maximum number of simultaneous paths tracked */
4032   int nLoop;                /* Number of terms in the join */
4033   Parse *pParse;            /* Parsing context */
4034   sqlite3 *db;              /* The database connection */
4035   int iLoop;                /* Loop counter over the terms of the join */
4036   int ii, jj;               /* Loop counters */
4037   int mxI = 0;              /* Index of next entry to replace */
4038   int nOrderBy;             /* Number of ORDER BY clause terms */
4039   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
4040   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
4041   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
4042   WherePath *aFrom;         /* All nFrom paths at the previous level */
4043   WherePath *aTo;           /* The nTo best paths at the current level */
4044   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
4045   WherePath *pTo;           /* An element of aTo[] that we are working on */
4046   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
4047   WhereLoop **pX;           /* Used to divy up the pSpace memory */
4048   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
4049   char *pSpace;             /* Temporary memory used by this routine */
4050   int nSpace;               /* Bytes of space allocated at pSpace */
4051 
4052   pParse = pWInfo->pParse;
4053   db = pParse->db;
4054   nLoop = pWInfo->nLevel;
4055   /* TUNING: For simple queries, only the best path is tracked.
4056   ** For 2-way joins, the 5 best paths are followed.
4057   ** For joins of 3 or more tables, track the 10 best paths */
4058   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4059   assert( nLoop<=pWInfo->pTabList->nSrc );
4060   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
4061 
4062   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4063   ** case the purpose of this call is to estimate the number of rows returned
4064   ** by the overall query. Once this estimate has been obtained, the caller
4065   ** will invoke this function a second time, passing the estimate as the
4066   ** nRowEst parameter.  */
4067   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4068     nOrderBy = 0;
4069   }else{
4070     nOrderBy = pWInfo->pOrderBy->nExpr;
4071   }
4072 
4073   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4074   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4075   nSpace += sizeof(LogEst) * nOrderBy;
4076   pSpace = sqlite3DbMallocRawNN(db, nSpace);
4077   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4078   aTo = (WherePath*)pSpace;
4079   aFrom = aTo+mxChoice;
4080   memset(aFrom, 0, sizeof(aFrom[0]));
4081   pX = (WhereLoop**)(aFrom+mxChoice);
4082   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4083     pFrom->aLoop = pX;
4084   }
4085   if( nOrderBy ){
4086     /* If there is an ORDER BY clause and it is not being ignored, set up
4087     ** space for the aSortCost[] array. Each element of the aSortCost array
4088     ** is either zero - meaning it has not yet been initialized - or the
4089     ** cost of sorting nRowEst rows of data where the first X terms of
4090     ** the ORDER BY clause are already in order, where X is the array
4091     ** index.  */
4092     aSortCost = (LogEst*)pX;
4093     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4094   }
4095   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4096   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4097 
4098   /* Seed the search with a single WherePath containing zero WhereLoops.
4099   **
4100   ** TUNING: Do not let the number of iterations go above 28.  If the cost
4101   ** of computing an automatic index is not paid back within the first 28
4102   ** rows, then do not use the automatic index. */
4103   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
4104   nFrom = 1;
4105   assert( aFrom[0].isOrdered==0 );
4106   if( nOrderBy ){
4107     /* If nLoop is zero, then there are no FROM terms in the query. Since
4108     ** in this case the query may return a maximum of one row, the results
4109     ** are already in the requested order. Set isOrdered to nOrderBy to
4110     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4111     ** -1, indicating that the result set may or may not be ordered,
4112     ** depending on the loops added to the current plan.  */
4113     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4114   }
4115 
4116   /* Compute successively longer WherePaths using the previous generation
4117   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
4118   ** best paths at each generation */
4119   for(iLoop=0; iLoop<nLoop; iLoop++){
4120     nTo = 0;
4121     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4122       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4123         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
4124         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
4125         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
4126         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
4127         Bitmask maskNew;                  /* Mask of src visited by (..) */
4128         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
4129 
4130         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4131         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4132         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4133           /* Do not use an automatic index if the this loop is expected
4134           ** to run less than 1.25 times.  It is tempting to also exclude
4135           ** automatic index usage on an outer loop, but sometimes an automatic
4136           ** index is useful in the outer loop of a correlated subquery. */
4137           assert( 10==sqlite3LogEst(2) );
4138           continue;
4139         }
4140 
4141         /* At this point, pWLoop is a candidate to be the next loop.
4142         ** Compute its cost */
4143         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4144         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4145         nOut = pFrom->nRow + pWLoop->nOut;
4146         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4147         if( isOrdered<0 ){
4148           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4149                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4150                        iLoop, pWLoop, &revMask);
4151         }else{
4152           revMask = pFrom->revLoop;
4153         }
4154         if( isOrdered>=0 && isOrdered<nOrderBy ){
4155           if( aSortCost[isOrdered]==0 ){
4156             aSortCost[isOrdered] = whereSortingCost(
4157                 pWInfo, nRowEst, nOrderBy, isOrdered
4158             );
4159           }
4160           /* TUNING:  Add a small extra penalty (5) to sorting as an
4161           ** extra encouragment to the query planner to select a plan
4162           ** where the rows emerge in the correct order without any sorting
4163           ** required. */
4164           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4165 
4166           WHERETRACE(0x002,
4167               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4168                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4169                rUnsorted, rCost));
4170         }else{
4171           rCost = rUnsorted;
4172           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
4173         }
4174 
4175         /* Check to see if pWLoop should be added to the set of
4176         ** mxChoice best-so-far paths.
4177         **
4178         ** First look for an existing path among best-so-far paths
4179         ** that covers the same set of loops and has the same isOrdered
4180         ** setting as the current path candidate.
4181         **
4182         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4183         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4184         ** of legal values for isOrdered, -1..64.
4185         */
4186         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4187           if( pTo->maskLoop==maskNew
4188            && ((pTo->isOrdered^isOrdered)&0x80)==0
4189           ){
4190             testcase( jj==nTo-1 );
4191             break;
4192           }
4193         }
4194         if( jj>=nTo ){
4195           /* None of the existing best-so-far paths match the candidate. */
4196           if( nTo>=mxChoice
4197            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4198           ){
4199             /* The current candidate is no better than any of the mxChoice
4200             ** paths currently in the best-so-far buffer.  So discard
4201             ** this candidate as not viable. */
4202 #ifdef WHERETRACE_ENABLED /* 0x4 */
4203             if( sqlite3WhereTrace&0x4 ){
4204               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4205                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4206                   isOrdered>=0 ? isOrdered+'0' : '?');
4207             }
4208 #endif
4209             continue;
4210           }
4211           /* If we reach this points it means that the new candidate path
4212           ** needs to be added to the set of best-so-far paths. */
4213           if( nTo<mxChoice ){
4214             /* Increase the size of the aTo set by one */
4215             jj = nTo++;
4216           }else{
4217             /* New path replaces the prior worst to keep count below mxChoice */
4218             jj = mxI;
4219           }
4220           pTo = &aTo[jj];
4221 #ifdef WHERETRACE_ENABLED /* 0x4 */
4222           if( sqlite3WhereTrace&0x4 ){
4223             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4224                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4225                 isOrdered>=0 ? isOrdered+'0' : '?');
4226           }
4227 #endif
4228         }else{
4229           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4230           ** same set of loops and has the same isOrdered setting as the
4231           ** candidate path.  Check to see if the candidate should replace
4232           ** pTo or if the candidate should be skipped.
4233           **
4234           ** The conditional is an expanded vector comparison equivalent to:
4235           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4236           */
4237           if( pTo->rCost<rCost
4238            || (pTo->rCost==rCost
4239                && (pTo->nRow<nOut
4240                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4241                   )
4242               )
4243           ){
4244 #ifdef WHERETRACE_ENABLED /* 0x4 */
4245             if( sqlite3WhereTrace&0x4 ){
4246               sqlite3DebugPrintf(
4247                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4248                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4249                   isOrdered>=0 ? isOrdered+'0' : '?');
4250               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4251                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4252                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4253             }
4254 #endif
4255             /* Discard the candidate path from further consideration */
4256             testcase( pTo->rCost==rCost );
4257             continue;
4258           }
4259           testcase( pTo->rCost==rCost+1 );
4260           /* Control reaches here if the candidate path is better than the
4261           ** pTo path.  Replace pTo with the candidate. */
4262 #ifdef WHERETRACE_ENABLED /* 0x4 */
4263           if( sqlite3WhereTrace&0x4 ){
4264             sqlite3DebugPrintf(
4265                 "Update %s cost=%-3d,%3d,%3d order=%c",
4266                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4267                 isOrdered>=0 ? isOrdered+'0' : '?');
4268             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4269                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4270                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4271           }
4272 #endif
4273         }
4274         /* pWLoop is a winner.  Add it to the set of best so far */
4275         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4276         pTo->revLoop = revMask;
4277         pTo->nRow = nOut;
4278         pTo->rCost = rCost;
4279         pTo->rUnsorted = rUnsorted;
4280         pTo->isOrdered = isOrdered;
4281         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4282         pTo->aLoop[iLoop] = pWLoop;
4283         if( nTo>=mxChoice ){
4284           mxI = 0;
4285           mxCost = aTo[0].rCost;
4286           mxUnsorted = aTo[0].nRow;
4287           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4288             if( pTo->rCost>mxCost
4289              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4290             ){
4291               mxCost = pTo->rCost;
4292               mxUnsorted = pTo->rUnsorted;
4293               mxI = jj;
4294             }
4295           }
4296         }
4297       }
4298     }
4299 
4300 #ifdef WHERETRACE_ENABLED  /* >=2 */
4301     if( sqlite3WhereTrace & 0x02 ){
4302       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4303       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4304         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4305            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4306            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4307         if( pTo->isOrdered>0 ){
4308           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4309         }else{
4310           sqlite3DebugPrintf("\n");
4311         }
4312       }
4313     }
4314 #endif
4315 
4316     /* Swap the roles of aFrom and aTo for the next generation */
4317     pFrom = aTo;
4318     aTo = aFrom;
4319     aFrom = pFrom;
4320     nFrom = nTo;
4321   }
4322 
4323   if( nFrom==0 ){
4324     sqlite3ErrorMsg(pParse, "no query solution");
4325     sqlite3DbFreeNN(db, pSpace);
4326     return SQLITE_ERROR;
4327   }
4328 
4329   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4330   pFrom = aFrom;
4331   for(ii=1; ii<nFrom; ii++){
4332     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4333   }
4334   assert( pWInfo->nLevel==nLoop );
4335   /* Load the lowest cost path into pWInfo */
4336   for(iLoop=0; iLoop<nLoop; iLoop++){
4337     WhereLevel *pLevel = pWInfo->a + iLoop;
4338     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4339     pLevel->iFrom = pWLoop->iTab;
4340     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4341   }
4342   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4343    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4344    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4345    && nRowEst
4346   ){
4347     Bitmask notUsed;
4348     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4349                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4350     if( rc==pWInfo->pResultSet->nExpr ){
4351       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4352     }
4353   }
4354   pWInfo->bOrderedInnerLoop = 0;
4355   if( pWInfo->pOrderBy ){
4356     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4357       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4358         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4359       }
4360     }else{
4361       pWInfo->nOBSat = pFrom->isOrdered;
4362       pWInfo->revMask = pFrom->revLoop;
4363       if( pWInfo->nOBSat<=0 ){
4364         pWInfo->nOBSat = 0;
4365         if( nLoop>0 ){
4366           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4367           if( (wsFlags & WHERE_ONEROW)==0
4368            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4369           ){
4370             Bitmask m = 0;
4371             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4372                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4373             testcase( wsFlags & WHERE_IPK );
4374             testcase( wsFlags & WHERE_COLUMN_IN );
4375             if( rc==pWInfo->pOrderBy->nExpr ){
4376               pWInfo->bOrderedInnerLoop = 1;
4377               pWInfo->revMask = m;
4378             }
4379           }
4380         }
4381       }
4382     }
4383     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4384         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4385     ){
4386       Bitmask revMask = 0;
4387       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4388           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4389       );
4390       assert( pWInfo->sorted==0 );
4391       if( nOrder==pWInfo->pOrderBy->nExpr ){
4392         pWInfo->sorted = 1;
4393         pWInfo->revMask = revMask;
4394       }
4395     }
4396   }
4397 
4398 
4399   pWInfo->nRowOut = pFrom->nRow;
4400 
4401   /* Free temporary memory and return success */
4402   sqlite3DbFreeNN(db, pSpace);
4403   return SQLITE_OK;
4404 }
4405 
4406 /*
4407 ** Most queries use only a single table (they are not joins) and have
4408 ** simple == constraints against indexed fields.  This routine attempts
4409 ** to plan those simple cases using much less ceremony than the
4410 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4411 ** times for the common case.
4412 **
4413 ** Return non-zero on success, if this query can be handled by this
4414 ** no-frills query planner.  Return zero if this query needs the
4415 ** general-purpose query planner.
4416 */
4417 static int whereShortCut(WhereLoopBuilder *pBuilder){
4418   WhereInfo *pWInfo;
4419   struct SrcList_item *pItem;
4420   WhereClause *pWC;
4421   WhereTerm *pTerm;
4422   WhereLoop *pLoop;
4423   int iCur;
4424   int j;
4425   Table *pTab;
4426   Index *pIdx;
4427 
4428   pWInfo = pBuilder->pWInfo;
4429   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4430   assert( pWInfo->pTabList->nSrc>=1 );
4431   pItem = pWInfo->pTabList->a;
4432   pTab = pItem->pTab;
4433   if( IsVirtual(pTab) ) return 0;
4434   if( pItem->fg.isIndexedBy ) return 0;
4435   iCur = pItem->iCursor;
4436   pWC = &pWInfo->sWC;
4437   pLoop = pBuilder->pNew;
4438   pLoop->wsFlags = 0;
4439   pLoop->nSkip = 0;
4440   pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
4441   if( pTerm ){
4442     testcase( pTerm->eOperator & WO_IS );
4443     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4444     pLoop->aLTerm[0] = pTerm;
4445     pLoop->nLTerm = 1;
4446     pLoop->u.btree.nEq = 1;
4447     /* TUNING: Cost of a rowid lookup is 10 */
4448     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
4449   }else{
4450     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4451       int opMask;
4452       assert( pLoop->aLTermSpace==pLoop->aLTerm );
4453       if( !IsUniqueIndex(pIdx)
4454        || pIdx->pPartIdxWhere!=0
4455        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4456       ) continue;
4457       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4458       for(j=0; j<pIdx->nKeyCol; j++){
4459         pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
4460         if( pTerm==0 ) break;
4461         testcase( pTerm->eOperator & WO_IS );
4462         pLoop->aLTerm[j] = pTerm;
4463       }
4464       if( j!=pIdx->nKeyCol ) continue;
4465       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4466       if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
4467         pLoop->wsFlags |= WHERE_IDX_ONLY;
4468       }
4469       pLoop->nLTerm = j;
4470       pLoop->u.btree.nEq = j;
4471       pLoop->u.btree.pIndex = pIdx;
4472       /* TUNING: Cost of a unique index lookup is 15 */
4473       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
4474       break;
4475     }
4476   }
4477   if( pLoop->wsFlags ){
4478     pLoop->nOut = (LogEst)1;
4479     pWInfo->a[0].pWLoop = pLoop;
4480     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
4481     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4482     pWInfo->a[0].iTabCur = iCur;
4483     pWInfo->nRowOut = 1;
4484     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
4485     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4486       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4487     }
4488 #ifdef SQLITE_DEBUG
4489     pLoop->cId = '0';
4490 #endif
4491     return 1;
4492   }
4493   return 0;
4494 }
4495 
4496 /*
4497 ** Helper function for exprIsDeterministic().
4498 */
4499 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
4500   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
4501     pWalker->eCode = 0;
4502     return WRC_Abort;
4503   }
4504   return WRC_Continue;
4505 }
4506 
4507 /*
4508 ** Return true if the expression contains no non-deterministic SQL
4509 ** functions. Do not consider non-deterministic SQL functions that are
4510 ** part of sub-select statements.
4511 */
4512 static int exprIsDeterministic(Expr *p){
4513   Walker w;
4514   memset(&w, 0, sizeof(w));
4515   w.eCode = 1;
4516   w.xExprCallback = exprNodeIsDeterministic;
4517   w.xSelectCallback = sqlite3SelectWalkFail;
4518   sqlite3WalkExpr(&w, p);
4519   return w.eCode;
4520 }
4521 
4522 /*
4523 ** Generate the beginning of the loop used for WHERE clause processing.
4524 ** The return value is a pointer to an opaque structure that contains
4525 ** information needed to terminate the loop.  Later, the calling routine
4526 ** should invoke sqlite3WhereEnd() with the return value of this function
4527 ** in order to complete the WHERE clause processing.
4528 **
4529 ** If an error occurs, this routine returns NULL.
4530 **
4531 ** The basic idea is to do a nested loop, one loop for each table in
4532 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
4533 ** same as a SELECT with only a single table in the FROM clause.)  For
4534 ** example, if the SQL is this:
4535 **
4536 **       SELECT * FROM t1, t2, t3 WHERE ...;
4537 **
4538 ** Then the code generated is conceptually like the following:
4539 **
4540 **      foreach row1 in t1 do       \    Code generated
4541 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
4542 **          foreach row3 in t3 do   /
4543 **            ...
4544 **          end                     \    Code generated
4545 **        end                        |-- by sqlite3WhereEnd()
4546 **      end                         /
4547 **
4548 ** Note that the loops might not be nested in the order in which they
4549 ** appear in the FROM clause if a different order is better able to make
4550 ** use of indices.  Note also that when the IN operator appears in
4551 ** the WHERE clause, it might result in additional nested loops for
4552 ** scanning through all values on the right-hand side of the IN.
4553 **
4554 ** There are Btree cursors associated with each table.  t1 uses cursor
4555 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
4556 ** And so forth.  This routine generates code to open those VDBE cursors
4557 ** and sqlite3WhereEnd() generates the code to close them.
4558 **
4559 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4560 ** in pTabList pointing at their appropriate entries.  The [...] code
4561 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4562 ** data from the various tables of the loop.
4563 **
4564 ** If the WHERE clause is empty, the foreach loops must each scan their
4565 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
4566 ** the tables have indices and there are terms in the WHERE clause that
4567 ** refer to those indices, a complete table scan can be avoided and the
4568 ** code will run much faster.  Most of the work of this routine is checking
4569 ** to see if there are indices that can be used to speed up the loop.
4570 **
4571 ** Terms of the WHERE clause are also used to limit which rows actually
4572 ** make it to the "..." in the middle of the loop.  After each "foreach",
4573 ** terms of the WHERE clause that use only terms in that loop and outer
4574 ** loops are evaluated and if false a jump is made around all subsequent
4575 ** inner loops (or around the "..." if the test occurs within the inner-
4576 ** most loop)
4577 **
4578 ** OUTER JOINS
4579 **
4580 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4581 **
4582 **    foreach row1 in t1 do
4583 **      flag = 0
4584 **      foreach row2 in t2 do
4585 **        start:
4586 **          ...
4587 **          flag = 1
4588 **      end
4589 **      if flag==0 then
4590 **        move the row2 cursor to a null row
4591 **        goto start
4592 **      fi
4593 **    end
4594 **
4595 ** ORDER BY CLAUSE PROCESSING
4596 **
4597 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4598 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4599 ** if there is one.  If there is no ORDER BY clause or if this routine
4600 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4601 **
4602 ** The iIdxCur parameter is the cursor number of an index.  If
4603 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4604 ** to use for OR clause processing.  The WHERE clause should use this
4605 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4606 ** the first cursor in an array of cursors for all indices.  iIdxCur should
4607 ** be used to compute the appropriate cursor depending on which index is
4608 ** used.
4609 */
4610 WhereInfo *sqlite3WhereBegin(
4611   Parse *pParse,          /* The parser context */
4612   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
4613   Expr *pWhere,           /* The WHERE clause */
4614   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
4615   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
4616   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
4617   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4618                           ** If WHERE_USE_LIMIT, then the limit amount */
4619 ){
4620   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
4621   int nTabList;              /* Number of elements in pTabList */
4622   WhereInfo *pWInfo;         /* Will become the return value of this function */
4623   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
4624   Bitmask notReady;          /* Cursors that are not yet positioned */
4625   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
4626   WhereMaskSet *pMaskSet;    /* The expression mask set */
4627   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
4628   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
4629   int ii;                    /* Loop counter */
4630   sqlite3 *db;               /* Database connection */
4631   int rc;                    /* Return code */
4632   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
4633 
4634   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4635         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4636      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4637   ));
4638 
4639   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4640   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4641             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4642 
4643   /* Variable initialization */
4644   db = pParse->db;
4645   memset(&sWLB, 0, sizeof(sWLB));
4646 
4647   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4648   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4649   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4650   sWLB.pOrderBy = pOrderBy;
4651 
4652   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4653   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4654   if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4655     wctrlFlags &= ~WHERE_WANT_DISTINCT;
4656   }
4657 
4658   /* The number of tables in the FROM clause is limited by the number of
4659   ** bits in a Bitmask
4660   */
4661   testcase( pTabList->nSrc==BMS );
4662   if( pTabList->nSrc>BMS ){
4663     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4664     return 0;
4665   }
4666 
4667   /* This function normally generates a nested loop for all tables in
4668   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4669   ** only generate code for the first table in pTabList and assume that
4670   ** any cursors associated with subsequent tables are uninitialized.
4671   */
4672   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4673 
4674   /* Allocate and initialize the WhereInfo structure that will become the
4675   ** return value. A single allocation is used to store the WhereInfo
4676   ** struct, the contents of WhereInfo.a[], the WhereClause structure
4677   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4678   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4679   ** some architectures. Hence the ROUND8() below.
4680   */
4681   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4682   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4683   if( db->mallocFailed ){
4684     sqlite3DbFree(db, pWInfo);
4685     pWInfo = 0;
4686     goto whereBeginError;
4687   }
4688   pWInfo->pParse = pParse;
4689   pWInfo->pTabList = pTabList;
4690   pWInfo->pOrderBy = pOrderBy;
4691   pWInfo->pWhere = pWhere;
4692   pWInfo->pResultSet = pResultSet;
4693   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4694   pWInfo->nLevel = nTabList;
4695   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
4696   pWInfo->wctrlFlags = wctrlFlags;
4697   pWInfo->iLimit = iAuxArg;
4698   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4699   memset(&pWInfo->nOBSat, 0,
4700          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4701   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4702   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
4703   pMaskSet = &pWInfo->sMaskSet;
4704   sWLB.pWInfo = pWInfo;
4705   sWLB.pWC = &pWInfo->sWC;
4706   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4707   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4708   whereLoopInit(sWLB.pNew);
4709 #ifdef SQLITE_DEBUG
4710   sWLB.pNew->cId = '*';
4711 #endif
4712 
4713   /* Split the WHERE clause into separate subexpressions where each
4714   ** subexpression is separated by an AND operator.
4715   */
4716   initMaskSet(pMaskSet);
4717   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4718   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4719 
4720   /* Special case: No FROM clause
4721   */
4722   if( nTabList==0 ){
4723     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4724     if( wctrlFlags & WHERE_WANT_DISTINCT ){
4725       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4726     }
4727     ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
4728   }else{
4729     /* Assign a bit from the bitmask to every term in the FROM clause.
4730     **
4731     ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4732     **
4733     ** The rule of the previous sentence ensures thta if X is the bitmask for
4734     ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4735     ** Knowing the bitmask for all tables to the left of a left join is
4736     ** important.  Ticket #3015.
4737     **
4738     ** Note that bitmasks are created for all pTabList->nSrc tables in
4739     ** pTabList, not just the first nTabList tables.  nTabList is normally
4740     ** equal to pTabList->nSrc but might be shortened to 1 if the
4741     ** WHERE_OR_SUBCLAUSE flag is set.
4742     */
4743     ii = 0;
4744     do{
4745       createMask(pMaskSet, pTabList->a[ii].iCursor);
4746       sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4747     }while( (++ii)<pTabList->nSrc );
4748   #ifdef SQLITE_DEBUG
4749     {
4750       Bitmask mx = 0;
4751       for(ii=0; ii<pTabList->nSrc; ii++){
4752         Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4753         assert( m>=mx );
4754         mx = m;
4755       }
4756     }
4757   #endif
4758   }
4759 
4760   /* Analyze all of the subexpressions. */
4761   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4762   if( db->mallocFailed ) goto whereBeginError;
4763 
4764   /* Special case: WHERE terms that do not refer to any tables in the join
4765   ** (constant expressions). Evaluate each such term, and jump over all the
4766   ** generated code if the result is not true.
4767   **
4768   ** Do not do this if the expression contains non-deterministic functions
4769   ** that are not within a sub-select. This is not strictly required, but
4770   ** preserves SQLite's legacy behaviour in the following two cases:
4771   **
4772   **   FROM ... WHERE random()>0;           -- eval random() once per row
4773   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
4774   */
4775   for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4776     WhereTerm *pT = &sWLB.pWC->a[ii];
4777     if( pT->wtFlags & TERM_VIRTUAL ) continue;
4778     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
4779       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
4780       pT->wtFlags |= TERM_CODED;
4781     }
4782   }
4783 
4784   if( wctrlFlags & WHERE_WANT_DISTINCT ){
4785     if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
4786       /* The DISTINCT marking is pointless.  Ignore it. */
4787       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4788     }else if( pOrderBy==0 ){
4789       /* Try to ORDER BY the result set to make distinct processing easier */
4790       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4791       pWInfo->pOrderBy = pResultSet;
4792     }
4793   }
4794 
4795   /* Construct the WhereLoop objects */
4796 #if defined(WHERETRACE_ENABLED)
4797   if( sqlite3WhereTrace & 0xffff ){
4798     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
4799     if( wctrlFlags & WHERE_USE_LIMIT ){
4800       sqlite3DebugPrintf(", limit: %d", iAuxArg);
4801     }
4802     sqlite3DebugPrintf(")\n");
4803     if( sqlite3WhereTrace & 0x100 ){
4804       Select sSelect;
4805       memset(&sSelect, 0, sizeof(sSelect));
4806       sSelect.selFlags = SF_WhereBegin;
4807       sSelect.pSrc = pTabList;
4808       sSelect.pWhere = pWhere;
4809       sSelect.pOrderBy = pOrderBy;
4810       sSelect.pEList = pResultSet;
4811       sqlite3TreeViewSelect(0, &sSelect, 0);
4812     }
4813   }
4814   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
4815     sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
4816     sqlite3WhereClausePrint(sWLB.pWC);
4817   }
4818 #endif
4819 
4820   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
4821     rc = whereLoopAddAll(&sWLB);
4822     if( rc ) goto whereBeginError;
4823 
4824 #ifdef WHERETRACE_ENABLED
4825     if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
4826       WhereLoop *p;
4827       int i;
4828       static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4829                                              "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4830       for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4831         p->cId = zLabel[i%(sizeof(zLabel)-1)];
4832         whereLoopPrint(p, sWLB.pWC);
4833       }
4834     }
4835 #endif
4836 
4837     wherePathSolver(pWInfo, 0);
4838     if( db->mallocFailed ) goto whereBeginError;
4839     if( pWInfo->pOrderBy ){
4840        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
4841        if( db->mallocFailed ) goto whereBeginError;
4842     }
4843   }
4844   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
4845      pWInfo->revMask = ALLBITS;
4846   }
4847   if( pParse->nErr || NEVER(db->mallocFailed) ){
4848     goto whereBeginError;
4849   }
4850 #ifdef WHERETRACE_ENABLED
4851   if( sqlite3WhereTrace ){
4852     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
4853     if( pWInfo->nOBSat>0 ){
4854       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
4855     }
4856     switch( pWInfo->eDistinct ){
4857       case WHERE_DISTINCT_UNIQUE: {
4858         sqlite3DebugPrintf("  DISTINCT=unique");
4859         break;
4860       }
4861       case WHERE_DISTINCT_ORDERED: {
4862         sqlite3DebugPrintf("  DISTINCT=ordered");
4863         break;
4864       }
4865       case WHERE_DISTINCT_UNORDERED: {
4866         sqlite3DebugPrintf("  DISTINCT=unordered");
4867         break;
4868       }
4869     }
4870     sqlite3DebugPrintf("\n");
4871     for(ii=0; ii<pWInfo->nLevel; ii++){
4872       whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
4873     }
4874   }
4875 #endif
4876 
4877   /* Attempt to omit tables from the join that do not affect the result.
4878   ** For a table to not affect the result, the following must be true:
4879   **
4880   **   1) The query must not be an aggregate.
4881   **   2) The table must be the RHS of a LEFT JOIN.
4882   **   3) Either the query must be DISTINCT, or else the ON or USING clause
4883   **      must contain a constraint that limits the scan of the table to
4884   **      at most a single row.
4885   **   4) The table must not be referenced by any part of the query apart
4886   **      from its own USING or ON clause.
4887   **
4888   ** For example, given:
4889   **
4890   **     CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
4891   **     CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
4892   **     CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
4893   **
4894   ** then table t2 can be omitted from the following:
4895   **
4896   **     SELECT v1, v3 FROM t1
4897   **       LEFT JOIN t2 USING (t1.ipk=t2.ipk)
4898   **       LEFT JOIN t3 USING (t1.ipk=t3.ipk)
4899   **
4900   ** or from:
4901   **
4902   **     SELECT DISTINCT v1, v3 FROM t1
4903   **       LEFT JOIN t2
4904   **       LEFT JOIN t3 USING (t1.ipk=t3.ipk)
4905   */
4906   notReady = ~(Bitmask)0;
4907   if( pWInfo->nLevel>=2
4908    && pResultSet!=0               /* guarantees condition (1) above */
4909    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
4910   ){
4911     int i;
4912     Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
4913     if( sWLB.pOrderBy ){
4914       tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
4915     }
4916     for(i=pWInfo->nLevel-1; i>=1; i--){
4917       WhereTerm *pTerm, *pEnd;
4918       struct SrcList_item *pItem;
4919       pLoop = pWInfo->a[i].pWLoop;
4920       pItem = &pWInfo->pTabList->a[pLoop->iTab];
4921       if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
4922       if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
4923        && (pLoop->wsFlags & WHERE_ONEROW)==0
4924       ){
4925         continue;
4926       }
4927       if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
4928       pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
4929       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
4930         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
4931           if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
4932            || pTerm->pExpr->iRightJoinTable!=pItem->iCursor
4933           ){
4934             break;
4935           }
4936         }
4937       }
4938       if( pTerm<pEnd ) continue;
4939       WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
4940       notReady &= ~pLoop->maskSelf;
4941       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
4942         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
4943           pTerm->wtFlags |= TERM_CODED;
4944         }
4945       }
4946       if( i!=pWInfo->nLevel-1 ){
4947         int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
4948         memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
4949       }
4950       pWInfo->nLevel--;
4951       nTabList--;
4952     }
4953   }
4954 #if defined(WHERETRACE_ENABLED)
4955   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
4956     sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
4957     sqlite3WhereClausePrint(sWLB.pWC);
4958   }
4959   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
4960 #endif
4961   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
4962 
4963   /* If the caller is an UPDATE or DELETE statement that is requesting
4964   ** to use a one-pass algorithm, determine if this is appropriate.
4965   **
4966   ** A one-pass approach can be used if the caller has requested one
4967   ** and either (a) the scan visits at most one row or (b) each
4968   ** of the following are true:
4969   **
4970   **   * the caller has indicated that a one-pass approach can be used
4971   **     with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
4972   **   * the table is not a virtual table, and
4973   **   * either the scan does not use the OR optimization or the caller
4974   **     is a DELETE operation (WHERE_DUPLICATES_OK is only specified
4975   **     for DELETE).
4976   **
4977   ** The last qualification is because an UPDATE statement uses
4978   ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
4979   ** use a one-pass approach, and this is not set accurately for scans
4980   ** that use the OR optimization.
4981   */
4982   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
4983   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
4984     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
4985     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
4986     assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
4987     if( bOnerow || (
4988         0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
4989      && !IsVirtual(pTabList->a[0].pTab)
4990      && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
4991     )){
4992       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
4993       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
4994         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
4995           bFordelete = OPFLAG_FORDELETE;
4996         }
4997         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
4998       }
4999     }
5000   }
5001 
5002   /* Open all tables in the pTabList and any indices selected for
5003   ** searching those tables.
5004   */
5005   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
5006     Table *pTab;     /* Table to open */
5007     int iDb;         /* Index of database containing table/index */
5008     struct SrcList_item *pTabItem;
5009 
5010     pTabItem = &pTabList->a[pLevel->iFrom];
5011     pTab = pTabItem->pTab;
5012     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5013     pLoop = pLevel->pWLoop;
5014     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
5015       /* Do nothing */
5016     }else
5017 #ifndef SQLITE_OMIT_VIRTUALTABLE
5018     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
5019       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
5020       int iCur = pTabItem->iCursor;
5021       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
5022     }else if( IsVirtual(pTab) ){
5023       /* noop */
5024     }else
5025 #endif
5026     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
5027          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
5028       int op = OP_OpenRead;
5029       if( pWInfo->eOnePass!=ONEPASS_OFF ){
5030         op = OP_OpenWrite;
5031         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
5032       };
5033       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
5034       assert( pTabItem->iCursor==pLevel->iTabCur );
5035       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
5036       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
5037       if( pWInfo->eOnePass==ONEPASS_OFF
5038        && pTab->nCol<BMS
5039        && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
5040       ){
5041         /* If we know that only a prefix of the record will be used,
5042         ** it is advantageous to reduce the "column count" field in
5043         ** the P4 operand of the OP_OpenRead/Write opcode. */
5044         Bitmask b = pTabItem->colUsed;
5045         int n = 0;
5046         for(; b; b=b>>1, n++){}
5047         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
5048         assert( n<=pTab->nCol );
5049       }
5050 #ifdef SQLITE_ENABLE_CURSOR_HINTS
5051       if( pLoop->u.btree.pIndex!=0 ){
5052         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
5053       }else
5054 #endif
5055       {
5056         sqlite3VdbeChangeP5(v, bFordelete);
5057       }
5058 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5059       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
5060                             (const u8*)&pTabItem->colUsed, P4_INT64);
5061 #endif
5062     }else{
5063       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5064     }
5065     if( pLoop->wsFlags & WHERE_INDEXED ){
5066       Index *pIx = pLoop->u.btree.pIndex;
5067       int iIndexCur;
5068       int op = OP_OpenRead;
5069       /* iAuxArg is always set to a positive value if ONEPASS is possible */
5070       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
5071       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
5072        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5073       ){
5074         /* This is one term of an OR-optimization using the PRIMARY KEY of a
5075         ** WITHOUT ROWID table.  No need for a separate index */
5076         iIndexCur = pLevel->iTabCur;
5077         op = 0;
5078       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5079         Index *pJ = pTabItem->pTab->pIndex;
5080         iIndexCur = iAuxArg;
5081         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5082         while( ALWAYS(pJ) && pJ!=pIx ){
5083           iIndexCur++;
5084           pJ = pJ->pNext;
5085         }
5086         op = OP_OpenWrite;
5087         pWInfo->aiCurOnePass[1] = iIndexCur;
5088       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5089         iIndexCur = iAuxArg;
5090         op = OP_ReopenIdx;
5091       }else{
5092         iIndexCur = pParse->nTab++;
5093       }
5094       pLevel->iIdxCur = iIndexCur;
5095       assert( pIx->pSchema==pTab->pSchema );
5096       assert( iIndexCur>=0 );
5097       if( op ){
5098         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5099         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5100         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
5101          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
5102          && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
5103          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
5104          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
5105         ){
5106           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */
5107         }
5108         VdbeComment((v, "%s", pIx->zName));
5109 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5110         {
5111           u64 colUsed = 0;
5112           int ii, jj;
5113           for(ii=0; ii<pIx->nColumn; ii++){
5114             jj = pIx->aiColumn[ii];
5115             if( jj<0 ) continue;
5116             if( jj>63 ) jj = 63;
5117             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
5118             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
5119           }
5120           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
5121                                 (u8*)&colUsed, P4_INT64);
5122         }
5123 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5124       }
5125     }
5126     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
5127   }
5128   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
5129   if( db->mallocFailed ) goto whereBeginError;
5130 
5131   /* Generate the code to do the search.  Each iteration of the for
5132   ** loop below generates code for a single nested loop of the VM
5133   ** program.
5134   */
5135   for(ii=0; ii<nTabList; ii++){
5136     int addrExplain;
5137     int wsFlags;
5138     pLevel = &pWInfo->a[ii];
5139     wsFlags = pLevel->pWLoop->wsFlags;
5140 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5141     if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
5142       constructAutomaticIndex(pParse, &pWInfo->sWC,
5143                 &pTabList->a[pLevel->iFrom], notReady, pLevel);
5144       if( db->mallocFailed ) goto whereBeginError;
5145     }
5146 #endif
5147     addrExplain = sqlite3WhereExplainOneScan(
5148         pParse, pTabList, pLevel, wctrlFlags
5149     );
5150     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
5151     notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
5152     pWInfo->iContinue = pLevel->addrCont;
5153     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
5154       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
5155     }
5156   }
5157 
5158   /* Done. */
5159   VdbeModuleComment((v, "Begin WHERE-core"));
5160   return pWInfo;
5161 
5162   /* Jump here if malloc fails */
5163 whereBeginError:
5164   if( pWInfo ){
5165     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5166     whereInfoFree(db, pWInfo);
5167   }
5168   return 0;
5169 }
5170 
5171 /*
5172 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
5173 ** index rather than the main table.  In SQLITE_DEBUG mode, we want
5174 ** to trace those changes if PRAGMA vdbe_addoptrace=on.  This routine
5175 ** does that.
5176 */
5177 #ifndef SQLITE_DEBUG
5178 # define OpcodeRewriteTrace(D,K,P) /* no-op */
5179 #else
5180 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
5181   static void sqlite3WhereOpcodeRewriteTrace(
5182     sqlite3 *db,
5183     int pc,
5184     VdbeOp *pOp
5185   ){
5186     if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
5187     sqlite3VdbePrintOp(0, pc, pOp);
5188   }
5189 #endif
5190 
5191 /*
5192 ** Generate the end of the WHERE loop.  See comments on
5193 ** sqlite3WhereBegin() for additional information.
5194 */
5195 void sqlite3WhereEnd(WhereInfo *pWInfo){
5196   Parse *pParse = pWInfo->pParse;
5197   Vdbe *v = pParse->pVdbe;
5198   int i;
5199   WhereLevel *pLevel;
5200   WhereLoop *pLoop;
5201   SrcList *pTabList = pWInfo->pTabList;
5202   sqlite3 *db = pParse->db;
5203 
5204   /* Generate loop termination code.
5205   */
5206   VdbeModuleComment((v, "End WHERE-core"));
5207   for(i=pWInfo->nLevel-1; i>=0; i--){
5208     int addr;
5209     pLevel = &pWInfo->a[i];
5210     pLoop = pLevel->pWLoop;
5211     if( pLevel->op!=OP_Noop ){
5212 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5213       int addrSeek = 0;
5214       Index *pIdx;
5215       int n;
5216       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
5217        && i==pWInfo->nLevel-1  /* Ticket [ef9318757b152e3] 2017-10-21 */
5218        && (pLoop->wsFlags & WHERE_INDEXED)!=0
5219        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
5220        && (n = pLoop->u.btree.nDistinctCol)>0
5221        && pIdx->aiRowLogEst[n]>=36
5222       ){
5223         int r1 = pParse->nMem+1;
5224         int j, op;
5225         for(j=0; j<n; j++){
5226           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
5227         }
5228         pParse->nMem += n+1;
5229         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
5230         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
5231         VdbeCoverageIf(v, op==OP_SeekLT);
5232         VdbeCoverageIf(v, op==OP_SeekGT);
5233         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
5234       }
5235 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
5236       /* The common case: Advance to the next row */
5237       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5238       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
5239       sqlite3VdbeChangeP5(v, pLevel->p5);
5240       VdbeCoverage(v);
5241       VdbeCoverageIf(v, pLevel->op==OP_Next);
5242       VdbeCoverageIf(v, pLevel->op==OP_Prev);
5243       VdbeCoverageIf(v, pLevel->op==OP_VNext);
5244       if( pLevel->regBignull ){
5245         sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
5246         sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
5247         VdbeCoverage(v);
5248       }
5249 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5250       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
5251 #endif
5252     }else{
5253       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5254     }
5255     if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
5256       struct InLoop *pIn;
5257       int j;
5258       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
5259       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
5260         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5261         if( pIn->eEndLoopOp!=OP_Noop ){
5262           if( pIn->nPrefix ){
5263             assert( pLoop->wsFlags & WHERE_IN_EARLYOUT );
5264             sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
5265                               sqlite3VdbeCurrentAddr(v)+2,
5266                               pIn->iBase, pIn->nPrefix);
5267             VdbeCoverage(v);
5268           }
5269           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
5270           VdbeCoverage(v);
5271           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
5272           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
5273         }
5274         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
5275       }
5276     }
5277     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
5278     if( pLevel->addrSkip ){
5279       sqlite3VdbeGoto(v, pLevel->addrSkip);
5280       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
5281       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
5282       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
5283     }
5284 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
5285     if( pLevel->addrLikeRep ){
5286       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
5287                         pLevel->addrLikeRep);
5288       VdbeCoverage(v);
5289     }
5290 #endif
5291     if( pLevel->iLeftJoin ){
5292       int ws = pLoop->wsFlags;
5293       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
5294       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
5295       if( (ws & WHERE_IDX_ONLY)==0 ){
5296         assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
5297         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
5298       }
5299       if( (ws & WHERE_INDEXED)
5300        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx)
5301       ){
5302         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
5303       }
5304       if( pLevel->op==OP_Return ){
5305         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
5306       }else{
5307         sqlite3VdbeGoto(v, pLevel->addrFirst);
5308       }
5309       sqlite3VdbeJumpHere(v, addr);
5310     }
5311     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
5312                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
5313   }
5314 
5315   /* The "break" point is here, just past the end of the outer loop.
5316   ** Set it.
5317   */
5318   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
5319 
5320   assert( pWInfo->nLevel<=pTabList->nSrc );
5321   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
5322     int k, last;
5323     VdbeOp *pOp;
5324     Index *pIdx = 0;
5325     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
5326     Table *pTab = pTabItem->pTab;
5327     assert( pTab!=0 );
5328     pLoop = pLevel->pWLoop;
5329 
5330     /* For a co-routine, change all OP_Column references to the table of
5331     ** the co-routine into OP_Copy of result contained in a register.
5332     ** OP_Rowid becomes OP_Null.
5333     */
5334     if( pTabItem->fg.viaCoroutine ){
5335       testcase( pParse->db->mallocFailed );
5336       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
5337                             pTabItem->regResult, 0);
5338       continue;
5339     }
5340 
5341 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE
5342     /* Close all of the cursors that were opened by sqlite3WhereBegin.
5343     ** Except, do not close cursors that will be reused by the OR optimization
5344     ** (WHERE_OR_SUBCLAUSE).  And do not close the OP_OpenWrite cursors
5345     ** created for the ONEPASS optimization.
5346     */
5347     if( (pTab->tabFlags & TF_Ephemeral)==0
5348      && pTab->pSelect==0
5349      && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5350     ){
5351       int ws = pLoop->wsFlags;
5352       if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){
5353         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
5354       }
5355       if( (ws & WHERE_INDEXED)!=0
5356        && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0
5357        && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
5358       ){
5359         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
5360       }
5361     }
5362 #endif
5363 
5364     /* If this scan uses an index, make VDBE code substitutions to read data
5365     ** from the index instead of from the table where possible.  In some cases
5366     ** this optimization prevents the table from ever being read, which can
5367     ** yield a significant performance boost.
5368     **
5369     ** Calls to the code generator in between sqlite3WhereBegin and
5370     ** sqlite3WhereEnd will have created code that references the table
5371     ** directly.  This loop scans all that code looking for opcodes
5372     ** that reference the table and converts them into opcodes that
5373     ** reference the index.
5374     */
5375     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
5376       pIdx = pLoop->u.btree.pIndex;
5377     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
5378       pIdx = pLevel->u.pCovidx;
5379     }
5380     if( pIdx
5381      && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable))
5382      && !db->mallocFailed
5383     ){
5384       last = sqlite3VdbeCurrentAddr(v);
5385       k = pLevel->addrBody;
5386 #ifdef SQLITE_DEBUG
5387       if( db->flags & SQLITE_VdbeAddopTrace ){
5388         printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
5389       }
5390 #endif
5391       pOp = sqlite3VdbeGetOp(v, k);
5392       for(; k<last; k++, pOp++){
5393         if( pOp->p1!=pLevel->iTabCur ) continue;
5394         if( pOp->opcode==OP_Column
5395 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
5396          || pOp->opcode==OP_Offset
5397 #endif
5398         ){
5399           int x = pOp->p2;
5400           assert( pIdx->pTable==pTab );
5401           if( !HasRowid(pTab) ){
5402             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5403             x = pPk->aiColumn[x];
5404             assert( x>=0 );
5405           }else{
5406             testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
5407             x = sqlite3StorageColumnToTable(pTab,x);
5408           }
5409           x = sqlite3TableColumnToIndex(pIdx, x);
5410           if( x>=0 ){
5411             pOp->p2 = x;
5412             pOp->p1 = pLevel->iIdxCur;
5413             OpcodeRewriteTrace(db, k, pOp);
5414           }
5415           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
5416               || pWInfo->eOnePass );
5417         }else if( pOp->opcode==OP_Rowid ){
5418           pOp->p1 = pLevel->iIdxCur;
5419           pOp->opcode = OP_IdxRowid;
5420           OpcodeRewriteTrace(db, k, pOp);
5421         }else if( pOp->opcode==OP_IfNullRow ){
5422           pOp->p1 = pLevel->iIdxCur;
5423           OpcodeRewriteTrace(db, k, pOp);
5424         }
5425       }
5426 #ifdef SQLITE_DEBUG
5427       if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
5428 #endif
5429     }
5430   }
5431 
5432   /* Final cleanup
5433   */
5434   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5435   whereInfoFree(db, pWInfo);
5436   return;
5437 }
5438