1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* 23 ** Extra information appended to the end of sqlite3_index_info but not 24 ** visible to the xBestIndex function, at least not directly. The 25 ** sqlite3_vtab_collation() interface knows how to reach it, however. 26 ** 27 ** This object is not an API and can be changed from one release to the 28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation() 29 ** agree on the structure, all will be well. 30 */ 31 typedef struct HiddenIndexInfo HiddenIndexInfo; 32 struct HiddenIndexInfo { 33 WhereClause *pWC; /* The Where clause being analyzed */ 34 Parse *pParse; /* The parsing context */ 35 }; 36 37 /* Forward declaration of methods */ 38 static int whereLoopResize(sqlite3*, WhereLoop*, int); 39 40 /* Test variable that can be set to enable WHERE tracing */ 41 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 42 /***/ int sqlite3WhereTrace = 0; 43 #endif 44 45 46 /* 47 ** Return the estimated number of output rows from a WHERE clause 48 */ 49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 50 return pWInfo->nRowOut; 51 } 52 53 /* 54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 55 ** WHERE clause returns outputs for DISTINCT processing. 56 */ 57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 58 return pWInfo->eDistinct; 59 } 60 61 /* 62 ** Return TRUE if the WHERE clause returns rows in ORDER BY order. 63 ** Return FALSE if the output needs to be sorted. 64 */ 65 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 66 return pWInfo->nOBSat; 67 } 68 69 /* 70 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known 71 ** to emit rows in increasing order, and if the last row emitted by the 72 ** inner-most loop did not fit within the sorter, then we can skip all 73 ** subsequent rows for the current iteration of the inner loop (because they 74 ** will not fit in the sorter either) and continue with the second inner 75 ** loop - the loop immediately outside the inner-most. 76 ** 77 ** When a row does not fit in the sorter (because the sorter already 78 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the 79 ** label returned by this function. 80 ** 81 ** If the ORDER BY LIMIT optimization applies, the jump destination should 82 ** be the continuation for the second-inner-most loop. If the ORDER BY 83 ** LIMIT optimization does not apply, then the jump destination should 84 ** be the continuation for the inner-most loop. 85 ** 86 ** It is always safe for this routine to return the continuation of the 87 ** inner-most loop, in the sense that a correct answer will result. 88 ** Returning the continuation the second inner loop is an optimization 89 ** that might make the code run a little faster, but should not change 90 ** the final answer. 91 */ 92 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){ 93 WhereLevel *pInner; 94 if( !pWInfo->bOrderedInnerLoop ){ 95 /* The ORDER BY LIMIT optimization does not apply. Jump to the 96 ** continuation of the inner-most loop. */ 97 return pWInfo->iContinue; 98 } 99 pInner = &pWInfo->a[pWInfo->nLevel-1]; 100 assert( pInner->addrNxt!=0 ); 101 return pInner->addrNxt; 102 } 103 104 /* 105 ** Return the VDBE address or label to jump to in order to continue 106 ** immediately with the next row of a WHERE clause. 107 */ 108 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 109 assert( pWInfo->iContinue!=0 ); 110 return pWInfo->iContinue; 111 } 112 113 /* 114 ** Return the VDBE address or label to jump to in order to break 115 ** out of a WHERE loop. 116 */ 117 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 118 return pWInfo->iBreak; 119 } 120 121 /* 122 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to 123 ** operate directly on the rowis returned by a WHERE clause. Return 124 ** ONEPASS_SINGLE (1) if the statement can operation directly because only 125 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass 126 ** optimization can be used on multiple 127 ** 128 ** If the ONEPASS optimization is used (if this routine returns true) 129 ** then also write the indices of open cursors used by ONEPASS 130 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 131 ** table and iaCur[1] gets the cursor used by an auxiliary index. 132 ** Either value may be -1, indicating that cursor is not used. 133 ** Any cursors returned will have been opened for writing. 134 ** 135 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 136 ** unable to use the ONEPASS optimization. 137 */ 138 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 139 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 140 #ifdef WHERETRACE_ENABLED 141 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ 142 sqlite3DebugPrintf("%s cursors: %d %d\n", 143 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", 144 aiCur[0], aiCur[1]); 145 } 146 #endif 147 return pWInfo->eOnePass; 148 } 149 150 /* 151 ** Move the content of pSrc into pDest 152 */ 153 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 154 pDest->n = pSrc->n; 155 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 156 } 157 158 /* 159 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 160 ** 161 ** The new entry might overwrite an existing entry, or it might be 162 ** appended, or it might be discarded. Do whatever is the right thing 163 ** so that pSet keeps the N_OR_COST best entries seen so far. 164 */ 165 static int whereOrInsert( 166 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 167 Bitmask prereq, /* Prerequisites of the new entry */ 168 LogEst rRun, /* Run-cost of the new entry */ 169 LogEst nOut /* Number of outputs for the new entry */ 170 ){ 171 u16 i; 172 WhereOrCost *p; 173 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 174 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 175 goto whereOrInsert_done; 176 } 177 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 178 return 0; 179 } 180 } 181 if( pSet->n<N_OR_COST ){ 182 p = &pSet->a[pSet->n++]; 183 p->nOut = nOut; 184 }else{ 185 p = pSet->a; 186 for(i=1; i<pSet->n; i++){ 187 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 188 } 189 if( p->rRun<=rRun ) return 0; 190 } 191 whereOrInsert_done: 192 p->prereq = prereq; 193 p->rRun = rRun; 194 if( p->nOut>nOut ) p->nOut = nOut; 195 return 1; 196 } 197 198 /* 199 ** Return the bitmask for the given cursor number. Return 0 if 200 ** iCursor is not in the set. 201 */ 202 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ 203 int i; 204 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 205 for(i=0; i<pMaskSet->n; i++){ 206 if( pMaskSet->ix[i]==iCursor ){ 207 return MASKBIT(i); 208 } 209 } 210 return 0; 211 } 212 213 /* 214 ** Create a new mask for cursor iCursor. 215 ** 216 ** There is one cursor per table in the FROM clause. The number of 217 ** tables in the FROM clause is limited by a test early in the 218 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 219 ** array will never overflow. 220 */ 221 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 222 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 223 pMaskSet->ix[pMaskSet->n++] = iCursor; 224 } 225 226 /* 227 ** Advance to the next WhereTerm that matches according to the criteria 228 ** established when the pScan object was initialized by whereScanInit(). 229 ** Return NULL if there are no more matching WhereTerms. 230 */ 231 static WhereTerm *whereScanNext(WhereScan *pScan){ 232 int iCur; /* The cursor on the LHS of the term */ 233 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ 234 Expr *pX; /* An expression being tested */ 235 WhereClause *pWC; /* Shorthand for pScan->pWC */ 236 WhereTerm *pTerm; /* The term being tested */ 237 int k = pScan->k; /* Where to start scanning */ 238 239 assert( pScan->iEquiv<=pScan->nEquiv ); 240 pWC = pScan->pWC; 241 while(1){ 242 iColumn = pScan->aiColumn[pScan->iEquiv-1]; 243 iCur = pScan->aiCur[pScan->iEquiv-1]; 244 assert( pWC!=0 ); 245 do{ 246 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 247 if( pTerm->leftCursor==iCur 248 && pTerm->u.leftColumn==iColumn 249 && (iColumn!=XN_EXPR 250 || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft, 251 pScan->pIdxExpr,iCur)==0) 252 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 253 ){ 254 if( (pTerm->eOperator & WO_EQUIV)!=0 255 && pScan->nEquiv<ArraySize(pScan->aiCur) 256 && (pX = sqlite3ExprSkipCollateAndLikely(pTerm->pExpr->pRight))->op 257 ==TK_COLUMN 258 ){ 259 int j; 260 for(j=0; j<pScan->nEquiv; j++){ 261 if( pScan->aiCur[j]==pX->iTable 262 && pScan->aiColumn[j]==pX->iColumn ){ 263 break; 264 } 265 } 266 if( j==pScan->nEquiv ){ 267 pScan->aiCur[j] = pX->iTable; 268 pScan->aiColumn[j] = pX->iColumn; 269 pScan->nEquiv++; 270 } 271 } 272 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 273 /* Verify the affinity and collating sequence match */ 274 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 275 CollSeq *pColl; 276 Parse *pParse = pWC->pWInfo->pParse; 277 pX = pTerm->pExpr; 278 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 279 continue; 280 } 281 assert(pX->pLeft); 282 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 283 if( pColl==0 ) pColl = pParse->db->pDfltColl; 284 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ 285 continue; 286 } 287 } 288 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 289 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN 290 && pX->iTable==pScan->aiCur[0] 291 && pX->iColumn==pScan->aiColumn[0] 292 ){ 293 testcase( pTerm->eOperator & WO_IS ); 294 continue; 295 } 296 pScan->pWC = pWC; 297 pScan->k = k+1; 298 return pTerm; 299 } 300 } 301 } 302 pWC = pWC->pOuter; 303 k = 0; 304 }while( pWC!=0 ); 305 if( pScan->iEquiv>=pScan->nEquiv ) break; 306 pWC = pScan->pOrigWC; 307 k = 0; 308 pScan->iEquiv++; 309 } 310 return 0; 311 } 312 313 /* 314 ** This is whereScanInit() for the case of an index on an expression. 315 ** It is factored out into a separate tail-recursion subroutine so that 316 ** the normal whereScanInit() routine, which is a high-runner, does not 317 ** need to push registers onto the stack as part of its prologue. 318 */ 319 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){ 320 pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr); 321 return whereScanNext(pScan); 322 } 323 324 /* 325 ** Initialize a WHERE clause scanner object. Return a pointer to the 326 ** first match. Return NULL if there are no matches. 327 ** 328 ** The scanner will be searching the WHERE clause pWC. It will look 329 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 330 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx 331 ** must be one of the indexes of table iCur. 332 ** 333 ** The <op> must be one of the operators described by opMask. 334 ** 335 ** If the search is for X and the WHERE clause contains terms of the 336 ** form X=Y then this routine might also return terms of the form 337 ** "Y <op> <expr>". The number of levels of transitivity is limited, 338 ** but is enough to handle most commonly occurring SQL statements. 339 ** 340 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 341 ** index pIdx. 342 */ 343 static WhereTerm *whereScanInit( 344 WhereScan *pScan, /* The WhereScan object being initialized */ 345 WhereClause *pWC, /* The WHERE clause to be scanned */ 346 int iCur, /* Cursor to scan for */ 347 int iColumn, /* Column to scan for */ 348 u32 opMask, /* Operator(s) to scan for */ 349 Index *pIdx /* Must be compatible with this index */ 350 ){ 351 pScan->pOrigWC = pWC; 352 pScan->pWC = pWC; 353 pScan->pIdxExpr = 0; 354 pScan->idxaff = 0; 355 pScan->zCollName = 0; 356 pScan->opMask = opMask; 357 pScan->k = 0; 358 pScan->aiCur[0] = iCur; 359 pScan->nEquiv = 1; 360 pScan->iEquiv = 1; 361 if( pIdx ){ 362 int j = iColumn; 363 iColumn = pIdx->aiColumn[j]; 364 if( iColumn==XN_EXPR ){ 365 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; 366 pScan->zCollName = pIdx->azColl[j]; 367 pScan->aiColumn[0] = XN_EXPR; 368 return whereScanInitIndexExpr(pScan); 369 }else if( iColumn==pIdx->pTable->iPKey ){ 370 iColumn = XN_ROWID; 371 }else if( iColumn>=0 ){ 372 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 373 pScan->zCollName = pIdx->azColl[j]; 374 } 375 }else if( iColumn==XN_EXPR ){ 376 return 0; 377 } 378 pScan->aiColumn[0] = iColumn; 379 return whereScanNext(pScan); 380 } 381 382 /* 383 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 384 ** where X is a reference to the iColumn of table iCur or of index pIdx 385 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by 386 ** the op parameter. Return a pointer to the term. Return 0 if not found. 387 ** 388 ** If pIdx!=0 then it must be one of the indexes of table iCur. 389 ** Search for terms matching the iColumn-th column of pIdx 390 ** rather than the iColumn-th column of table iCur. 391 ** 392 ** The term returned might by Y=<expr> if there is another constraint in 393 ** the WHERE clause that specifies that X=Y. Any such constraints will be 394 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 395 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 396 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 397 ** other equivalent values. Hence a search for X will return <expr> if X=A1 398 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. 399 ** 400 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 401 ** then try for the one with no dependencies on <expr> - in other words where 402 ** <expr> is a constant expression of some kind. Only return entries of 403 ** the form "X <op> Y" where Y is a column in another table if no terms of 404 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 405 ** exist, try to return a term that does not use WO_EQUIV. 406 */ 407 WhereTerm *sqlite3WhereFindTerm( 408 WhereClause *pWC, /* The WHERE clause to be searched */ 409 int iCur, /* Cursor number of LHS */ 410 int iColumn, /* Column number of LHS */ 411 Bitmask notReady, /* RHS must not overlap with this mask */ 412 u32 op, /* Mask of WO_xx values describing operator */ 413 Index *pIdx /* Must be compatible with this index, if not NULL */ 414 ){ 415 WhereTerm *pResult = 0; 416 WhereTerm *p; 417 WhereScan scan; 418 419 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 420 op &= WO_EQ|WO_IS; 421 while( p ){ 422 if( (p->prereqRight & notReady)==0 ){ 423 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ 424 testcase( p->eOperator & WO_IS ); 425 return p; 426 } 427 if( pResult==0 ) pResult = p; 428 } 429 p = whereScanNext(&scan); 430 } 431 return pResult; 432 } 433 434 /* 435 ** This function searches pList for an entry that matches the iCol-th column 436 ** of index pIdx. 437 ** 438 ** If such an expression is found, its index in pList->a[] is returned. If 439 ** no expression is found, -1 is returned. 440 */ 441 static int findIndexCol( 442 Parse *pParse, /* Parse context */ 443 ExprList *pList, /* Expression list to search */ 444 int iBase, /* Cursor for table associated with pIdx */ 445 Index *pIdx, /* Index to match column of */ 446 int iCol /* Column of index to match */ 447 ){ 448 int i; 449 const char *zColl = pIdx->azColl[iCol]; 450 451 for(i=0; i<pList->nExpr; i++){ 452 Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr); 453 if( p->op==TK_COLUMN 454 && p->iColumn==pIdx->aiColumn[iCol] 455 && p->iTable==iBase 456 ){ 457 CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr); 458 if( 0==sqlite3StrICmp(pColl->zName, zColl) ){ 459 return i; 460 } 461 } 462 } 463 464 return -1; 465 } 466 467 /* 468 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL 469 */ 470 static int indexColumnNotNull(Index *pIdx, int iCol){ 471 int j; 472 assert( pIdx!=0 ); 473 assert( iCol>=0 && iCol<pIdx->nColumn ); 474 j = pIdx->aiColumn[iCol]; 475 if( j>=0 ){ 476 return pIdx->pTable->aCol[j].notNull; 477 }else if( j==(-1) ){ 478 return 1; 479 }else{ 480 assert( j==(-2) ); 481 return 0; /* Assume an indexed expression can always yield a NULL */ 482 483 } 484 } 485 486 /* 487 ** Return true if the DISTINCT expression-list passed as the third argument 488 ** is redundant. 489 ** 490 ** A DISTINCT list is redundant if any subset of the columns in the 491 ** DISTINCT list are collectively unique and individually non-null. 492 */ 493 static int isDistinctRedundant( 494 Parse *pParse, /* Parsing context */ 495 SrcList *pTabList, /* The FROM clause */ 496 WhereClause *pWC, /* The WHERE clause */ 497 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 498 ){ 499 Table *pTab; 500 Index *pIdx; 501 int i; 502 int iBase; 503 504 /* If there is more than one table or sub-select in the FROM clause of 505 ** this query, then it will not be possible to show that the DISTINCT 506 ** clause is redundant. */ 507 if( pTabList->nSrc!=1 ) return 0; 508 iBase = pTabList->a[0].iCursor; 509 pTab = pTabList->a[0].pTab; 510 511 /* If any of the expressions is an IPK column on table iBase, then return 512 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 513 ** current SELECT is a correlated sub-query. 514 */ 515 for(i=0; i<pDistinct->nExpr; i++){ 516 Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr); 517 if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; 518 } 519 520 /* Loop through all indices on the table, checking each to see if it makes 521 ** the DISTINCT qualifier redundant. It does so if: 522 ** 523 ** 1. The index is itself UNIQUE, and 524 ** 525 ** 2. All of the columns in the index are either part of the pDistinct 526 ** list, or else the WHERE clause contains a term of the form "col=X", 527 ** where X is a constant value. The collation sequences of the 528 ** comparison and select-list expressions must match those of the index. 529 ** 530 ** 3. All of those index columns for which the WHERE clause does not 531 ** contain a "col=X" term are subject to a NOT NULL constraint. 532 */ 533 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 534 if( !IsUniqueIndex(pIdx) ) continue; 535 for(i=0; i<pIdx->nKeyCol; i++){ 536 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ 537 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; 538 if( indexColumnNotNull(pIdx, i)==0 ) break; 539 } 540 } 541 if( i==pIdx->nKeyCol ){ 542 /* This index implies that the DISTINCT qualifier is redundant. */ 543 return 1; 544 } 545 } 546 547 return 0; 548 } 549 550 551 /* 552 ** Estimate the logarithm of the input value to base 2. 553 */ 554 static LogEst estLog(LogEst N){ 555 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 556 } 557 558 /* 559 ** Convert OP_Column opcodes to OP_Copy in previously generated code. 560 ** 561 ** This routine runs over generated VDBE code and translates OP_Column 562 ** opcodes into OP_Copy when the table is being accessed via co-routine 563 ** instead of via table lookup. 564 ** 565 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on 566 ** cursor iTabCur are transformed into OP_Sequence opcode for the 567 ** iAutoidxCur cursor, in order to generate unique rowids for the 568 ** automatic index being generated. 569 */ 570 static void translateColumnToCopy( 571 Parse *pParse, /* Parsing context */ 572 int iStart, /* Translate from this opcode to the end */ 573 int iTabCur, /* OP_Column/OP_Rowid references to this table */ 574 int iRegister, /* The first column is in this register */ 575 int iAutoidxCur /* If non-zero, cursor of autoindex being generated */ 576 ){ 577 Vdbe *v = pParse->pVdbe; 578 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); 579 int iEnd = sqlite3VdbeCurrentAddr(v); 580 if( pParse->db->mallocFailed ) return; 581 for(; iStart<iEnd; iStart++, pOp++){ 582 if( pOp->p1!=iTabCur ) continue; 583 if( pOp->opcode==OP_Column ){ 584 pOp->opcode = OP_Copy; 585 pOp->p1 = pOp->p2 + iRegister; 586 pOp->p2 = pOp->p3; 587 pOp->p3 = 0; 588 }else if( pOp->opcode==OP_Rowid ){ 589 if( iAutoidxCur ){ 590 pOp->opcode = OP_Sequence; 591 pOp->p1 = iAutoidxCur; 592 }else{ 593 pOp->opcode = OP_Null; 594 pOp->p1 = 0; 595 pOp->p3 = 0; 596 } 597 } 598 } 599 } 600 601 /* 602 ** Two routines for printing the content of an sqlite3_index_info 603 ** structure. Used for testing and debugging only. If neither 604 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 605 ** are no-ops. 606 */ 607 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 608 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 609 int i; 610 if( !sqlite3WhereTrace ) return; 611 for(i=0; i<p->nConstraint; i++){ 612 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 613 i, 614 p->aConstraint[i].iColumn, 615 p->aConstraint[i].iTermOffset, 616 p->aConstraint[i].op, 617 p->aConstraint[i].usable); 618 } 619 for(i=0; i<p->nOrderBy; i++){ 620 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 621 i, 622 p->aOrderBy[i].iColumn, 623 p->aOrderBy[i].desc); 624 } 625 } 626 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 627 int i; 628 if( !sqlite3WhereTrace ) return; 629 for(i=0; i<p->nConstraint; i++){ 630 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 631 i, 632 p->aConstraintUsage[i].argvIndex, 633 p->aConstraintUsage[i].omit); 634 } 635 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 636 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 637 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 638 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 639 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 640 } 641 #else 642 #define TRACE_IDX_INPUTS(A) 643 #define TRACE_IDX_OUTPUTS(A) 644 #endif 645 646 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 647 /* 648 ** Return TRUE if the WHERE clause term pTerm is of a form where it 649 ** could be used with an index to access pSrc, assuming an appropriate 650 ** index existed. 651 */ 652 static int termCanDriveIndex( 653 WhereTerm *pTerm, /* WHERE clause term to check */ 654 struct SrcList_item *pSrc, /* Table we are trying to access */ 655 Bitmask notReady /* Tables in outer loops of the join */ 656 ){ 657 char aff; 658 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 659 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; 660 if( (pSrc->fg.jointype & JT_LEFT) 661 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 662 && (pTerm->eOperator & WO_IS) 663 ){ 664 /* Cannot use an IS term from the WHERE clause as an index driver for 665 ** the RHS of a LEFT JOIN. Such a term can only be used if it is from 666 ** the ON clause. */ 667 return 0; 668 } 669 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 670 if( pTerm->u.leftColumn<0 ) return 0; 671 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; 672 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 673 testcase( pTerm->pExpr->op==TK_IS ); 674 return 1; 675 } 676 #endif 677 678 679 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 680 /* 681 ** Generate code to construct the Index object for an automatic index 682 ** and to set up the WhereLevel object pLevel so that the code generator 683 ** makes use of the automatic index. 684 */ 685 static void constructAutomaticIndex( 686 Parse *pParse, /* The parsing context */ 687 WhereClause *pWC, /* The WHERE clause */ 688 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ 689 Bitmask notReady, /* Mask of cursors that are not available */ 690 WhereLevel *pLevel /* Write new index here */ 691 ){ 692 int nKeyCol; /* Number of columns in the constructed index */ 693 WhereTerm *pTerm; /* A single term of the WHERE clause */ 694 WhereTerm *pWCEnd; /* End of pWC->a[] */ 695 Index *pIdx; /* Object describing the transient index */ 696 Vdbe *v; /* Prepared statement under construction */ 697 int addrInit; /* Address of the initialization bypass jump */ 698 Table *pTable; /* The table being indexed */ 699 int addrTop; /* Top of the index fill loop */ 700 int regRecord; /* Register holding an index record */ 701 int n; /* Column counter */ 702 int i; /* Loop counter */ 703 int mxBitCol; /* Maximum column in pSrc->colUsed */ 704 CollSeq *pColl; /* Collating sequence to on a column */ 705 WhereLoop *pLoop; /* The Loop object */ 706 char *zNotUsed; /* Extra space on the end of pIdx */ 707 Bitmask idxCols; /* Bitmap of columns used for indexing */ 708 Bitmask extraCols; /* Bitmap of additional columns */ 709 u8 sentWarning = 0; /* True if a warnning has been issued */ 710 Expr *pPartial = 0; /* Partial Index Expression */ 711 int iContinue = 0; /* Jump here to skip excluded rows */ 712 struct SrcList_item *pTabItem; /* FROM clause term being indexed */ 713 int addrCounter = 0; /* Address where integer counter is initialized */ 714 int regBase; /* Array of registers where record is assembled */ 715 716 /* Generate code to skip over the creation and initialization of the 717 ** transient index on 2nd and subsequent iterations of the loop. */ 718 v = pParse->pVdbe; 719 assert( v!=0 ); 720 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 721 722 /* Count the number of columns that will be added to the index 723 ** and used to match WHERE clause constraints */ 724 nKeyCol = 0; 725 pTable = pSrc->pTab; 726 pWCEnd = &pWC->a[pWC->nTerm]; 727 pLoop = pLevel->pWLoop; 728 idxCols = 0; 729 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 730 Expr *pExpr = pTerm->pExpr; 731 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */ 732 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */ 733 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */ 734 if( pLoop->prereq==0 735 && (pTerm->wtFlags & TERM_VIRTUAL)==0 736 && !ExprHasProperty(pExpr, EP_FromJoin) 737 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){ 738 pPartial = sqlite3ExprAnd(pParse, pPartial, 739 sqlite3ExprDup(pParse->db, pExpr, 0)); 740 } 741 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 742 int iCol = pTerm->u.leftColumn; 743 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 744 testcase( iCol==BMS ); 745 testcase( iCol==BMS-1 ); 746 if( !sentWarning ){ 747 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 748 "automatic index on %s(%s)", pTable->zName, 749 pTable->aCol[iCol].zName); 750 sentWarning = 1; 751 } 752 if( (idxCols & cMask)==0 ){ 753 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 754 goto end_auto_index_create; 755 } 756 pLoop->aLTerm[nKeyCol++] = pTerm; 757 idxCols |= cMask; 758 } 759 } 760 } 761 assert( nKeyCol>0 ); 762 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 763 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 764 | WHERE_AUTO_INDEX; 765 766 /* Count the number of additional columns needed to create a 767 ** covering index. A "covering index" is an index that contains all 768 ** columns that are needed by the query. With a covering index, the 769 ** original table never needs to be accessed. Automatic indices must 770 ** be a covering index because the index will not be updated if the 771 ** original table changes and the index and table cannot both be used 772 ** if they go out of sync. 773 */ 774 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 775 mxBitCol = MIN(BMS-1,pTable->nCol); 776 testcase( pTable->nCol==BMS-1 ); 777 testcase( pTable->nCol==BMS-2 ); 778 for(i=0; i<mxBitCol; i++){ 779 if( extraCols & MASKBIT(i) ) nKeyCol++; 780 } 781 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 782 nKeyCol += pTable->nCol - BMS + 1; 783 } 784 785 /* Construct the Index object to describe this index */ 786 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 787 if( pIdx==0 ) goto end_auto_index_create; 788 pLoop->u.btree.pIndex = pIdx; 789 pIdx->zName = "auto-index"; 790 pIdx->pTable = pTable; 791 n = 0; 792 idxCols = 0; 793 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 794 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 795 int iCol = pTerm->u.leftColumn; 796 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 797 testcase( iCol==BMS-1 ); 798 testcase( iCol==BMS ); 799 if( (idxCols & cMask)==0 ){ 800 Expr *pX = pTerm->pExpr; 801 idxCols |= cMask; 802 pIdx->aiColumn[n] = pTerm->u.leftColumn; 803 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 804 pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : sqlite3StrBINARY; 805 n++; 806 } 807 } 808 } 809 assert( (u32)n==pLoop->u.btree.nEq ); 810 811 /* Add additional columns needed to make the automatic index into 812 ** a covering index */ 813 for(i=0; i<mxBitCol; i++){ 814 if( extraCols & MASKBIT(i) ){ 815 pIdx->aiColumn[n] = i; 816 pIdx->azColl[n] = sqlite3StrBINARY; 817 n++; 818 } 819 } 820 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 821 for(i=BMS-1; i<pTable->nCol; i++){ 822 pIdx->aiColumn[n] = i; 823 pIdx->azColl[n] = sqlite3StrBINARY; 824 n++; 825 } 826 } 827 assert( n==nKeyCol ); 828 pIdx->aiColumn[n] = XN_ROWID; 829 pIdx->azColl[n] = sqlite3StrBINARY; 830 831 /* Create the automatic index */ 832 assert( pLevel->iIdxCur>=0 ); 833 pLevel->iIdxCur = pParse->nTab++; 834 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 835 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 836 VdbeComment((v, "for %s", pTable->zName)); 837 838 /* Fill the automatic index with content */ 839 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; 840 if( pTabItem->fg.viaCoroutine ){ 841 int regYield = pTabItem->regReturn; 842 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); 843 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 844 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); 845 VdbeCoverage(v); 846 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 847 }else{ 848 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 849 } 850 if( pPartial ){ 851 iContinue = sqlite3VdbeMakeLabel(pParse); 852 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 853 pLoop->wsFlags |= WHERE_PARTIALIDX; 854 } 855 regRecord = sqlite3GetTempReg(pParse); 856 regBase = sqlite3GenerateIndexKey( 857 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 858 ); 859 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 860 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 861 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 862 if( pTabItem->fg.viaCoroutine ){ 863 sqlite3VdbeChangeP2(v, addrCounter, regBase+n); 864 testcase( pParse->db->mallocFailed ); 865 assert( pLevel->iIdxCur>0 ); 866 translateColumnToCopy(pParse, addrTop, pLevel->iTabCur, 867 pTabItem->regResult, pLevel->iIdxCur); 868 sqlite3VdbeGoto(v, addrTop); 869 pTabItem->fg.viaCoroutine = 0; 870 }else{ 871 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 872 } 873 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 874 sqlite3VdbeJumpHere(v, addrTop); 875 sqlite3ReleaseTempReg(pParse, regRecord); 876 877 /* Jump here when skipping the initialization */ 878 sqlite3VdbeJumpHere(v, addrInit); 879 880 end_auto_index_create: 881 sqlite3ExprDelete(pParse->db, pPartial); 882 } 883 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 884 885 #ifndef SQLITE_OMIT_VIRTUALTABLE 886 /* 887 ** Allocate and populate an sqlite3_index_info structure. It is the 888 ** responsibility of the caller to eventually release the structure 889 ** by passing the pointer returned by this function to sqlite3_free(). 890 */ 891 static sqlite3_index_info *allocateIndexInfo( 892 Parse *pParse, /* The parsing context */ 893 WhereClause *pWC, /* The WHERE clause being analyzed */ 894 Bitmask mUnusable, /* Ignore terms with these prereqs */ 895 struct SrcList_item *pSrc, /* The FROM clause term that is the vtab */ 896 ExprList *pOrderBy, /* The ORDER BY clause */ 897 u16 *pmNoOmit /* Mask of terms not to omit */ 898 ){ 899 int i, j; 900 int nTerm; 901 struct sqlite3_index_constraint *pIdxCons; 902 struct sqlite3_index_orderby *pIdxOrderBy; 903 struct sqlite3_index_constraint_usage *pUsage; 904 struct HiddenIndexInfo *pHidden; 905 WhereTerm *pTerm; 906 int nOrderBy; 907 sqlite3_index_info *pIdxInfo; 908 u16 mNoOmit = 0; 909 910 /* Count the number of possible WHERE clause constraints referring 911 ** to this virtual table */ 912 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 913 if( pTerm->leftCursor != pSrc->iCursor ) continue; 914 if( pTerm->prereqRight & mUnusable ) continue; 915 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 916 testcase( pTerm->eOperator & WO_IN ); 917 testcase( pTerm->eOperator & WO_ISNULL ); 918 testcase( pTerm->eOperator & WO_IS ); 919 testcase( pTerm->eOperator & WO_ALL ); 920 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 921 if( pTerm->wtFlags & TERM_VNULL ) continue; 922 assert( pTerm->u.leftColumn>=(-1) ); 923 nTerm++; 924 } 925 926 /* If the ORDER BY clause contains only columns in the current 927 ** virtual table then allocate space for the aOrderBy part of 928 ** the sqlite3_index_info structure. 929 */ 930 nOrderBy = 0; 931 if( pOrderBy ){ 932 int n = pOrderBy->nExpr; 933 for(i=0; i<n; i++){ 934 Expr *pExpr = pOrderBy->a[i].pExpr; 935 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 936 if( pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL ) break; 937 } 938 if( i==n){ 939 nOrderBy = n; 940 } 941 } 942 943 /* Allocate the sqlite3_index_info structure 944 */ 945 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 946 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 947 + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) ); 948 if( pIdxInfo==0 ){ 949 sqlite3ErrorMsg(pParse, "out of memory"); 950 return 0; 951 } 952 953 /* Initialize the structure. The sqlite3_index_info structure contains 954 ** many fields that are declared "const" to prevent xBestIndex from 955 ** changing them. We have to do some funky casting in order to 956 ** initialize those fields. 957 */ 958 pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1]; 959 pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1]; 960 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 961 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 962 *(int*)&pIdxInfo->nConstraint = nTerm; 963 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 964 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 965 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 966 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 967 pUsage; 968 969 pHidden->pWC = pWC; 970 pHidden->pParse = pParse; 971 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 972 u16 op; 973 if( pTerm->leftCursor != pSrc->iCursor ) continue; 974 if( pTerm->prereqRight & mUnusable ) continue; 975 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 976 testcase( pTerm->eOperator & WO_IN ); 977 testcase( pTerm->eOperator & WO_IS ); 978 testcase( pTerm->eOperator & WO_ISNULL ); 979 testcase( pTerm->eOperator & WO_ALL ); 980 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 981 if( pTerm->wtFlags & TERM_VNULL ) continue; 982 983 /* tag-20191211-002: WHERE-clause constraints are not useful to the 984 ** right-hand table of a LEFT JOIN. See tag-20191211-001 for the 985 ** equivalent restriction for ordinary tables. */ 986 if( (pSrc->fg.jointype & JT_LEFT)!=0 987 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 988 ){ 989 continue; 990 } 991 assert( pTerm->u.leftColumn>=(-1) ); 992 pIdxCons[j].iColumn = pTerm->u.leftColumn; 993 pIdxCons[j].iTermOffset = i; 994 op = pTerm->eOperator & WO_ALL; 995 if( op==WO_IN ) op = WO_EQ; 996 if( op==WO_AUX ){ 997 pIdxCons[j].op = pTerm->eMatchOp; 998 }else if( op & (WO_ISNULL|WO_IS) ){ 999 if( op==WO_ISNULL ){ 1000 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL; 1001 }else{ 1002 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS; 1003 } 1004 }else{ 1005 pIdxCons[j].op = (u8)op; 1006 /* The direct assignment in the previous line is possible only because 1007 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1008 ** following asserts verify this fact. */ 1009 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1010 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1011 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1012 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1013 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1014 assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) ); 1015 1016 if( op & (WO_LT|WO_LE|WO_GT|WO_GE) 1017 && sqlite3ExprIsVector(pTerm->pExpr->pRight) 1018 ){ 1019 testcase( j!=i ); 1020 if( j<16 ) mNoOmit |= (1 << j); 1021 if( op==WO_LT ) pIdxCons[j].op = WO_LE; 1022 if( op==WO_GT ) pIdxCons[j].op = WO_GE; 1023 } 1024 } 1025 1026 j++; 1027 } 1028 for(i=0; i<nOrderBy; i++){ 1029 Expr *pExpr = pOrderBy->a[i].pExpr; 1030 pIdxOrderBy[i].iColumn = pExpr->iColumn; 1031 pIdxOrderBy[i].desc = pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC; 1032 } 1033 1034 *pmNoOmit = mNoOmit; 1035 return pIdxInfo; 1036 } 1037 1038 /* 1039 ** The table object reference passed as the second argument to this function 1040 ** must represent a virtual table. This function invokes the xBestIndex() 1041 ** method of the virtual table with the sqlite3_index_info object that 1042 ** comes in as the 3rd argument to this function. 1043 ** 1044 ** If an error occurs, pParse is populated with an error message and an 1045 ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from 1046 ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that 1047 ** the current configuration of "unusable" flags in sqlite3_index_info can 1048 ** not result in a valid plan. 1049 ** 1050 ** Whether or not an error is returned, it is the responsibility of the 1051 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 1052 ** that this is required. 1053 */ 1054 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 1055 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 1056 int rc; 1057 1058 TRACE_IDX_INPUTS(p); 1059 rc = pVtab->pModule->xBestIndex(pVtab, p); 1060 TRACE_IDX_OUTPUTS(p); 1061 1062 if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){ 1063 if( rc==SQLITE_NOMEM ){ 1064 sqlite3OomFault(pParse->db); 1065 }else if( !pVtab->zErrMsg ){ 1066 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1067 }else{ 1068 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 1069 } 1070 } 1071 sqlite3_free(pVtab->zErrMsg); 1072 pVtab->zErrMsg = 0; 1073 return rc; 1074 } 1075 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1076 1077 #ifdef SQLITE_ENABLE_STAT4 1078 /* 1079 ** Estimate the location of a particular key among all keys in an 1080 ** index. Store the results in aStat as follows: 1081 ** 1082 ** aStat[0] Est. number of rows less than pRec 1083 ** aStat[1] Est. number of rows equal to pRec 1084 ** 1085 ** Return the index of the sample that is the smallest sample that 1086 ** is greater than or equal to pRec. Note that this index is not an index 1087 ** into the aSample[] array - it is an index into a virtual set of samples 1088 ** based on the contents of aSample[] and the number of fields in record 1089 ** pRec. 1090 */ 1091 static int whereKeyStats( 1092 Parse *pParse, /* Database connection */ 1093 Index *pIdx, /* Index to consider domain of */ 1094 UnpackedRecord *pRec, /* Vector of values to consider */ 1095 int roundUp, /* Round up if true. Round down if false */ 1096 tRowcnt *aStat /* OUT: stats written here */ 1097 ){ 1098 IndexSample *aSample = pIdx->aSample; 1099 int iCol; /* Index of required stats in anEq[] etc. */ 1100 int i; /* Index of first sample >= pRec */ 1101 int iSample; /* Smallest sample larger than or equal to pRec */ 1102 int iMin = 0; /* Smallest sample not yet tested */ 1103 int iTest; /* Next sample to test */ 1104 int res; /* Result of comparison operation */ 1105 int nField; /* Number of fields in pRec */ 1106 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ 1107 1108 #ifndef SQLITE_DEBUG 1109 UNUSED_PARAMETER( pParse ); 1110 #endif 1111 assert( pRec!=0 ); 1112 assert( pIdx->nSample>0 ); 1113 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol ); 1114 1115 /* Do a binary search to find the first sample greater than or equal 1116 ** to pRec. If pRec contains a single field, the set of samples to search 1117 ** is simply the aSample[] array. If the samples in aSample[] contain more 1118 ** than one fields, all fields following the first are ignored. 1119 ** 1120 ** If pRec contains N fields, where N is more than one, then as well as the 1121 ** samples in aSample[] (truncated to N fields), the search also has to 1122 ** consider prefixes of those samples. For example, if the set of samples 1123 ** in aSample is: 1124 ** 1125 ** aSample[0] = (a, 5) 1126 ** aSample[1] = (a, 10) 1127 ** aSample[2] = (b, 5) 1128 ** aSample[3] = (c, 100) 1129 ** aSample[4] = (c, 105) 1130 ** 1131 ** Then the search space should ideally be the samples above and the 1132 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 1133 ** the code actually searches this set: 1134 ** 1135 ** 0: (a) 1136 ** 1: (a, 5) 1137 ** 2: (a, 10) 1138 ** 3: (a, 10) 1139 ** 4: (b) 1140 ** 5: (b, 5) 1141 ** 6: (c) 1142 ** 7: (c, 100) 1143 ** 8: (c, 105) 1144 ** 9: (c, 105) 1145 ** 1146 ** For each sample in the aSample[] array, N samples are present in the 1147 ** effective sample array. In the above, samples 0 and 1 are based on 1148 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. 1149 ** 1150 ** Often, sample i of each block of N effective samples has (i+1) fields. 1151 ** Except, each sample may be extended to ensure that it is greater than or 1152 ** equal to the previous sample in the array. For example, in the above, 1153 ** sample 2 is the first sample of a block of N samples, so at first it 1154 ** appears that it should be 1 field in size. However, that would make it 1155 ** smaller than sample 1, so the binary search would not work. As a result, 1156 ** it is extended to two fields. The duplicates that this creates do not 1157 ** cause any problems. 1158 */ 1159 nField = pRec->nField; 1160 iCol = 0; 1161 iSample = pIdx->nSample * nField; 1162 do{ 1163 int iSamp; /* Index in aSample[] of test sample */ 1164 int n; /* Number of fields in test sample */ 1165 1166 iTest = (iMin+iSample)/2; 1167 iSamp = iTest / nField; 1168 if( iSamp>0 ){ 1169 /* The proposed effective sample is a prefix of sample aSample[iSamp]. 1170 ** Specifically, the shortest prefix of at least (1 + iTest%nField) 1171 ** fields that is greater than the previous effective sample. */ 1172 for(n=(iTest % nField) + 1; n<nField; n++){ 1173 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; 1174 } 1175 }else{ 1176 n = iTest + 1; 1177 } 1178 1179 pRec->nField = n; 1180 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); 1181 if( res<0 ){ 1182 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; 1183 iMin = iTest+1; 1184 }else if( res==0 && n<nField ){ 1185 iLower = aSample[iSamp].anLt[n-1]; 1186 iMin = iTest+1; 1187 res = -1; 1188 }else{ 1189 iSample = iTest; 1190 iCol = n-1; 1191 } 1192 }while( res && iMin<iSample ); 1193 i = iSample / nField; 1194 1195 #ifdef SQLITE_DEBUG 1196 /* The following assert statements check that the binary search code 1197 ** above found the right answer. This block serves no purpose other 1198 ** than to invoke the asserts. */ 1199 if( pParse->db->mallocFailed==0 ){ 1200 if( res==0 ){ 1201 /* If (res==0) is true, then pRec must be equal to sample i. */ 1202 assert( i<pIdx->nSample ); 1203 assert( iCol==nField-1 ); 1204 pRec->nField = nField; 1205 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 1206 || pParse->db->mallocFailed 1207 ); 1208 }else{ 1209 /* Unless i==pIdx->nSample, indicating that pRec is larger than 1210 ** all samples in the aSample[] array, pRec must be smaller than the 1211 ** (iCol+1) field prefix of sample i. */ 1212 assert( i<=pIdx->nSample && i>=0 ); 1213 pRec->nField = iCol+1; 1214 assert( i==pIdx->nSample 1215 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 1216 || pParse->db->mallocFailed ); 1217 1218 /* if i==0 and iCol==0, then record pRec is smaller than all samples 1219 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must 1220 ** be greater than or equal to the (iCol) field prefix of sample i. 1221 ** If (i>0), then pRec must also be greater than sample (i-1). */ 1222 if( iCol>0 ){ 1223 pRec->nField = iCol; 1224 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 1225 || pParse->db->mallocFailed ); 1226 } 1227 if( i>0 ){ 1228 pRec->nField = nField; 1229 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 1230 || pParse->db->mallocFailed ); 1231 } 1232 } 1233 } 1234 #endif /* ifdef SQLITE_DEBUG */ 1235 1236 if( res==0 ){ 1237 /* Record pRec is equal to sample i */ 1238 assert( iCol==nField-1 ); 1239 aStat[0] = aSample[i].anLt[iCol]; 1240 aStat[1] = aSample[i].anEq[iCol]; 1241 }else{ 1242 /* At this point, the (iCol+1) field prefix of aSample[i] is the first 1243 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec 1244 ** is larger than all samples in the array. */ 1245 tRowcnt iUpper, iGap; 1246 if( i>=pIdx->nSample ){ 1247 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); 1248 }else{ 1249 iUpper = aSample[i].anLt[iCol]; 1250 } 1251 1252 if( iLower>=iUpper ){ 1253 iGap = 0; 1254 }else{ 1255 iGap = iUpper - iLower; 1256 } 1257 if( roundUp ){ 1258 iGap = (iGap*2)/3; 1259 }else{ 1260 iGap = iGap/3; 1261 } 1262 aStat[0] = iLower + iGap; 1263 aStat[1] = pIdx->aAvgEq[nField-1]; 1264 } 1265 1266 /* Restore the pRec->nField value before returning. */ 1267 pRec->nField = nField; 1268 return i; 1269 } 1270 #endif /* SQLITE_ENABLE_STAT4 */ 1271 1272 /* 1273 ** If it is not NULL, pTerm is a term that provides an upper or lower 1274 ** bound on a range scan. Without considering pTerm, it is estimated 1275 ** that the scan will visit nNew rows. This function returns the number 1276 ** estimated to be visited after taking pTerm into account. 1277 ** 1278 ** If the user explicitly specified a likelihood() value for this term, 1279 ** then the return value is the likelihood multiplied by the number of 1280 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 1281 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 1282 */ 1283 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 1284 LogEst nRet = nNew; 1285 if( pTerm ){ 1286 if( pTerm->truthProb<=0 ){ 1287 nRet += pTerm->truthProb; 1288 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 1289 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 1290 } 1291 } 1292 return nRet; 1293 } 1294 1295 1296 #ifdef SQLITE_ENABLE_STAT4 1297 /* 1298 ** Return the affinity for a single column of an index. 1299 */ 1300 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ 1301 assert( iCol>=0 && iCol<pIdx->nColumn ); 1302 if( !pIdx->zColAff ){ 1303 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; 1304 } 1305 assert( pIdx->zColAff[iCol]!=0 ); 1306 return pIdx->zColAff[iCol]; 1307 } 1308 #endif 1309 1310 1311 #ifdef SQLITE_ENABLE_STAT4 1312 /* 1313 ** This function is called to estimate the number of rows visited by a 1314 ** range-scan on a skip-scan index. For example: 1315 ** 1316 ** CREATE INDEX i1 ON t1(a, b, c); 1317 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 1318 ** 1319 ** Value pLoop->nOut is currently set to the estimated number of rows 1320 ** visited for scanning (a=? AND b=?). This function reduces that estimate 1321 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 1322 ** on the stat4 data for the index. this scan will be peformed multiple 1323 ** times (once for each (a,b) combination that matches a=?) is dealt with 1324 ** by the caller. 1325 ** 1326 ** It does this by scanning through all stat4 samples, comparing values 1327 ** extracted from pLower and pUpper with the corresponding column in each 1328 ** sample. If L and U are the number of samples found to be less than or 1329 ** equal to the values extracted from pLower and pUpper respectively, and 1330 ** N is the total number of samples, the pLoop->nOut value is adjusted 1331 ** as follows: 1332 ** 1333 ** nOut = nOut * ( min(U - L, 1) / N ) 1334 ** 1335 ** If pLower is NULL, or a value cannot be extracted from the term, L is 1336 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 1337 ** U is set to N. 1338 ** 1339 ** Normally, this function sets *pbDone to 1 before returning. However, 1340 ** if no value can be extracted from either pLower or pUpper (and so the 1341 ** estimate of the number of rows delivered remains unchanged), *pbDone 1342 ** is left as is. 1343 ** 1344 ** If an error occurs, an SQLite error code is returned. Otherwise, 1345 ** SQLITE_OK. 1346 */ 1347 static int whereRangeSkipScanEst( 1348 Parse *pParse, /* Parsing & code generating context */ 1349 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1350 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1351 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 1352 int *pbDone /* Set to true if at least one expr. value extracted */ 1353 ){ 1354 Index *p = pLoop->u.btree.pIndex; 1355 int nEq = pLoop->u.btree.nEq; 1356 sqlite3 *db = pParse->db; 1357 int nLower = -1; 1358 int nUpper = p->nSample+1; 1359 int rc = SQLITE_OK; 1360 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); 1361 CollSeq *pColl; 1362 1363 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 1364 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 1365 sqlite3_value *pVal = 0; /* Value extracted from record */ 1366 1367 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 1368 if( pLower ){ 1369 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 1370 nLower = 0; 1371 } 1372 if( pUpper && rc==SQLITE_OK ){ 1373 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 1374 nUpper = p2 ? 0 : p->nSample; 1375 } 1376 1377 if( p1 || p2 ){ 1378 int i; 1379 int nDiff; 1380 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 1381 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 1382 if( rc==SQLITE_OK && p1 ){ 1383 int res = sqlite3MemCompare(p1, pVal, pColl); 1384 if( res>=0 ) nLower++; 1385 } 1386 if( rc==SQLITE_OK && p2 ){ 1387 int res = sqlite3MemCompare(p2, pVal, pColl); 1388 if( res>=0 ) nUpper++; 1389 } 1390 } 1391 nDiff = (nUpper - nLower); 1392 if( nDiff<=0 ) nDiff = 1; 1393 1394 /* If there is both an upper and lower bound specified, and the 1395 ** comparisons indicate that they are close together, use the fallback 1396 ** method (assume that the scan visits 1/64 of the rows) for estimating 1397 ** the number of rows visited. Otherwise, estimate the number of rows 1398 ** using the method described in the header comment for this function. */ 1399 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 1400 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 1401 pLoop->nOut -= nAdjust; 1402 *pbDone = 1; 1403 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 1404 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 1405 } 1406 1407 }else{ 1408 assert( *pbDone==0 ); 1409 } 1410 1411 sqlite3ValueFree(p1); 1412 sqlite3ValueFree(p2); 1413 sqlite3ValueFree(pVal); 1414 1415 return rc; 1416 } 1417 #endif /* SQLITE_ENABLE_STAT4 */ 1418 1419 /* 1420 ** This function is used to estimate the number of rows that will be visited 1421 ** by scanning an index for a range of values. The range may have an upper 1422 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 1423 ** and lower bounds are represented by pLower and pUpper respectively. For 1424 ** example, assuming that index p is on t1(a): 1425 ** 1426 ** ... FROM t1 WHERE a > ? AND a < ? ... 1427 ** |_____| |_____| 1428 ** | | 1429 ** pLower pUpper 1430 ** 1431 ** If either of the upper or lower bound is not present, then NULL is passed in 1432 ** place of the corresponding WhereTerm. 1433 ** 1434 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 1435 ** column subject to the range constraint. Or, equivalently, the number of 1436 ** equality constraints optimized by the proposed index scan. For example, 1437 ** assuming index p is on t1(a, b), and the SQL query is: 1438 ** 1439 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 1440 ** 1441 ** then nEq is set to 1 (as the range restricted column, b, is the second 1442 ** left-most column of the index). Or, if the query is: 1443 ** 1444 ** ... FROM t1 WHERE a > ? AND a < ? ... 1445 ** 1446 ** then nEq is set to 0. 1447 ** 1448 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 1449 ** number of rows that the index scan is expected to visit without 1450 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 1451 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 1452 ** to account for the range constraints pLower and pUpper. 1453 ** 1454 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 1455 ** used, a single range inequality reduces the search space by a factor of 4. 1456 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 1457 ** rows visited by a factor of 64. 1458 */ 1459 static int whereRangeScanEst( 1460 Parse *pParse, /* Parsing & code generating context */ 1461 WhereLoopBuilder *pBuilder, 1462 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1463 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1464 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 1465 ){ 1466 int rc = SQLITE_OK; 1467 int nOut = pLoop->nOut; 1468 LogEst nNew; 1469 1470 #ifdef SQLITE_ENABLE_STAT4 1471 Index *p = pLoop->u.btree.pIndex; 1472 int nEq = pLoop->u.btree.nEq; 1473 1474 if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol) 1475 && OptimizationEnabled(pParse->db, SQLITE_Stat4) 1476 ){ 1477 if( nEq==pBuilder->nRecValid ){ 1478 UnpackedRecord *pRec = pBuilder->pRec; 1479 tRowcnt a[2]; 1480 int nBtm = pLoop->u.btree.nBtm; 1481 int nTop = pLoop->u.btree.nTop; 1482 1483 /* Variable iLower will be set to the estimate of the number of rows in 1484 ** the index that are less than the lower bound of the range query. The 1485 ** lower bound being the concatenation of $P and $L, where $P is the 1486 ** key-prefix formed by the nEq values matched against the nEq left-most 1487 ** columns of the index, and $L is the value in pLower. 1488 ** 1489 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 1490 ** is not a simple variable or literal value), the lower bound of the 1491 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 1492 ** if $L is available, whereKeyStats() is called for both ($P) and 1493 ** ($P:$L) and the larger of the two returned values is used. 1494 ** 1495 ** Similarly, iUpper is to be set to the estimate of the number of rows 1496 ** less than the upper bound of the range query. Where the upper bound 1497 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 1498 ** of iUpper are requested of whereKeyStats() and the smaller used. 1499 ** 1500 ** The number of rows between the two bounds is then just iUpper-iLower. 1501 */ 1502 tRowcnt iLower; /* Rows less than the lower bound */ 1503 tRowcnt iUpper; /* Rows less than the upper bound */ 1504 int iLwrIdx = -2; /* aSample[] for the lower bound */ 1505 int iUprIdx = -1; /* aSample[] for the upper bound */ 1506 1507 if( pRec ){ 1508 testcase( pRec->nField!=pBuilder->nRecValid ); 1509 pRec->nField = pBuilder->nRecValid; 1510 } 1511 /* Determine iLower and iUpper using ($P) only. */ 1512 if( nEq==0 ){ 1513 iLower = 0; 1514 iUpper = p->nRowEst0; 1515 }else{ 1516 /* Note: this call could be optimized away - since the same values must 1517 ** have been requested when testing key $P in whereEqualScanEst(). */ 1518 whereKeyStats(pParse, p, pRec, 0, a); 1519 iLower = a[0]; 1520 iUpper = a[0] + a[1]; 1521 } 1522 1523 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 1524 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 1525 assert( p->aSortOrder!=0 ); 1526 if( p->aSortOrder[nEq] ){ 1527 /* The roles of pLower and pUpper are swapped for a DESC index */ 1528 SWAP(WhereTerm*, pLower, pUpper); 1529 SWAP(int, nBtm, nTop); 1530 } 1531 1532 /* If possible, improve on the iLower estimate using ($P:$L). */ 1533 if( pLower ){ 1534 int n; /* Values extracted from pExpr */ 1535 Expr *pExpr = pLower->pExpr->pRight; 1536 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n); 1537 if( rc==SQLITE_OK && n ){ 1538 tRowcnt iNew; 1539 u16 mask = WO_GT|WO_LE; 1540 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1541 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 1542 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0); 1543 if( iNew>iLower ) iLower = iNew; 1544 nOut--; 1545 pLower = 0; 1546 } 1547 } 1548 1549 /* If possible, improve on the iUpper estimate using ($P:$U). */ 1550 if( pUpper ){ 1551 int n; /* Values extracted from pExpr */ 1552 Expr *pExpr = pUpper->pExpr->pRight; 1553 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n); 1554 if( rc==SQLITE_OK && n ){ 1555 tRowcnt iNew; 1556 u16 mask = WO_GT|WO_LE; 1557 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1558 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 1559 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0); 1560 if( iNew<iUpper ) iUpper = iNew; 1561 nOut--; 1562 pUpper = 0; 1563 } 1564 } 1565 1566 pBuilder->pRec = pRec; 1567 if( rc==SQLITE_OK ){ 1568 if( iUpper>iLower ){ 1569 nNew = sqlite3LogEst(iUpper - iLower); 1570 /* TUNING: If both iUpper and iLower are derived from the same 1571 ** sample, then assume they are 4x more selective. This brings 1572 ** the estimated selectivity more in line with what it would be 1573 ** if estimated without the use of STAT4 tables. */ 1574 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); 1575 }else{ 1576 nNew = 10; assert( 10==sqlite3LogEst(2) ); 1577 } 1578 if( nNew<nOut ){ 1579 nOut = nNew; 1580 } 1581 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", 1582 (u32)iLower, (u32)iUpper, nOut)); 1583 } 1584 }else{ 1585 int bDone = 0; 1586 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 1587 if( bDone ) return rc; 1588 } 1589 } 1590 #else 1591 UNUSED_PARAMETER(pParse); 1592 UNUSED_PARAMETER(pBuilder); 1593 assert( pLower || pUpper ); 1594 #endif 1595 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); 1596 nNew = whereRangeAdjust(pLower, nOut); 1597 nNew = whereRangeAdjust(pUpper, nNew); 1598 1599 /* TUNING: If there is both an upper and lower limit and neither limit 1600 ** has an application-defined likelihood(), assume the range is 1601 ** reduced by an additional 75%. This means that, by default, an open-ended 1602 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 1603 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 1604 ** match 1/64 of the index. */ 1605 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 1606 nNew -= 20; 1607 } 1608 1609 nOut -= (pLower!=0) + (pUpper!=0); 1610 if( nNew<10 ) nNew = 10; 1611 if( nNew<nOut ) nOut = nNew; 1612 #if defined(WHERETRACE_ENABLED) 1613 if( pLoop->nOut>nOut ){ 1614 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", 1615 pLoop->nOut, nOut)); 1616 } 1617 #endif 1618 pLoop->nOut = (LogEst)nOut; 1619 return rc; 1620 } 1621 1622 #ifdef SQLITE_ENABLE_STAT4 1623 /* 1624 ** Estimate the number of rows that will be returned based on 1625 ** an equality constraint x=VALUE and where that VALUE occurs in 1626 ** the histogram data. This only works when x is the left-most 1627 ** column of an index and sqlite_stat4 histogram data is available 1628 ** for that index. When pExpr==NULL that means the constraint is 1629 ** "x IS NULL" instead of "x=VALUE". 1630 ** 1631 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1632 ** If unable to make an estimate, leave *pnRow unchanged and return 1633 ** non-zero. 1634 ** 1635 ** This routine can fail if it is unable to load a collating sequence 1636 ** required for string comparison, or if unable to allocate memory 1637 ** for a UTF conversion required for comparison. The error is stored 1638 ** in the pParse structure. 1639 */ 1640 static int whereEqualScanEst( 1641 Parse *pParse, /* Parsing & code generating context */ 1642 WhereLoopBuilder *pBuilder, 1643 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 1644 tRowcnt *pnRow /* Write the revised row estimate here */ 1645 ){ 1646 Index *p = pBuilder->pNew->u.btree.pIndex; 1647 int nEq = pBuilder->pNew->u.btree.nEq; 1648 UnpackedRecord *pRec = pBuilder->pRec; 1649 int rc; /* Subfunction return code */ 1650 tRowcnt a[2]; /* Statistics */ 1651 int bOk; 1652 1653 assert( nEq>=1 ); 1654 assert( nEq<=p->nColumn ); 1655 assert( p->aSample!=0 ); 1656 assert( p->nSample>0 ); 1657 assert( pBuilder->nRecValid<nEq ); 1658 1659 /* If values are not available for all fields of the index to the left 1660 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 1661 if( pBuilder->nRecValid<(nEq-1) ){ 1662 return SQLITE_NOTFOUND; 1663 } 1664 1665 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 1666 ** below would return the same value. */ 1667 if( nEq>=p->nColumn ){ 1668 *pnRow = 1; 1669 return SQLITE_OK; 1670 } 1671 1672 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk); 1673 pBuilder->pRec = pRec; 1674 if( rc!=SQLITE_OK ) return rc; 1675 if( bOk==0 ) return SQLITE_NOTFOUND; 1676 pBuilder->nRecValid = nEq; 1677 1678 whereKeyStats(pParse, p, pRec, 0, a); 1679 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n", 1680 p->zName, nEq-1, (int)a[1])); 1681 *pnRow = a[1]; 1682 1683 return rc; 1684 } 1685 #endif /* SQLITE_ENABLE_STAT4 */ 1686 1687 #ifdef SQLITE_ENABLE_STAT4 1688 /* 1689 ** Estimate the number of rows that will be returned based on 1690 ** an IN constraint where the right-hand side of the IN operator 1691 ** is a list of values. Example: 1692 ** 1693 ** WHERE x IN (1,2,3,4) 1694 ** 1695 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1696 ** If unable to make an estimate, leave *pnRow unchanged and return 1697 ** non-zero. 1698 ** 1699 ** This routine can fail if it is unable to load a collating sequence 1700 ** required for string comparison, or if unable to allocate memory 1701 ** for a UTF conversion required for comparison. The error is stored 1702 ** in the pParse structure. 1703 */ 1704 static int whereInScanEst( 1705 Parse *pParse, /* Parsing & code generating context */ 1706 WhereLoopBuilder *pBuilder, 1707 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 1708 tRowcnt *pnRow /* Write the revised row estimate here */ 1709 ){ 1710 Index *p = pBuilder->pNew->u.btree.pIndex; 1711 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 1712 int nRecValid = pBuilder->nRecValid; 1713 int rc = SQLITE_OK; /* Subfunction return code */ 1714 tRowcnt nEst; /* Number of rows for a single term */ 1715 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 1716 int i; /* Loop counter */ 1717 1718 assert( p->aSample!=0 ); 1719 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 1720 nEst = nRow0; 1721 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 1722 nRowEst += nEst; 1723 pBuilder->nRecValid = nRecValid; 1724 } 1725 1726 if( rc==SQLITE_OK ){ 1727 if( nRowEst > nRow0 ) nRowEst = nRow0; 1728 *pnRow = nRowEst; 1729 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); 1730 } 1731 assert( pBuilder->nRecValid==nRecValid ); 1732 return rc; 1733 } 1734 #endif /* SQLITE_ENABLE_STAT4 */ 1735 1736 1737 #ifdef WHERETRACE_ENABLED 1738 /* 1739 ** Print the content of a WhereTerm object 1740 */ 1741 static void whereTermPrint(WhereTerm *pTerm, int iTerm){ 1742 if( pTerm==0 ){ 1743 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 1744 }else{ 1745 char zType[4]; 1746 char zLeft[50]; 1747 memcpy(zType, "...", 4); 1748 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 1749 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 1750 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; 1751 if( pTerm->eOperator & WO_SINGLE ){ 1752 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}", 1753 pTerm->leftCursor, pTerm->u.leftColumn); 1754 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){ 1755 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld", 1756 pTerm->u.pOrInfo->indexable); 1757 }else{ 1758 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor); 1759 } 1760 sqlite3DebugPrintf( 1761 "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x", 1762 iTerm, pTerm, zType, zLeft, pTerm->truthProb, 1763 pTerm->eOperator, pTerm->wtFlags); 1764 if( pTerm->iField ){ 1765 sqlite3DebugPrintf(" iField=%d\n", pTerm->iField); 1766 }else{ 1767 sqlite3DebugPrintf("\n"); 1768 } 1769 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 1770 } 1771 } 1772 #endif 1773 1774 #ifdef WHERETRACE_ENABLED 1775 /* 1776 ** Show the complete content of a WhereClause 1777 */ 1778 void sqlite3WhereClausePrint(WhereClause *pWC){ 1779 int i; 1780 for(i=0; i<pWC->nTerm; i++){ 1781 whereTermPrint(&pWC->a[i], i); 1782 } 1783 } 1784 #endif 1785 1786 #ifdef WHERETRACE_ENABLED 1787 /* 1788 ** Print a WhereLoop object for debugging purposes 1789 */ 1790 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){ 1791 WhereInfo *pWInfo = pWC->pWInfo; 1792 int nb = 1+(pWInfo->pTabList->nSrc+3)/4; 1793 struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab; 1794 Table *pTab = pItem->pTab; 1795 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1; 1796 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 1797 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll); 1798 sqlite3DebugPrintf(" %12s", 1799 pItem->zAlias ? pItem->zAlias : pTab->zName); 1800 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 1801 const char *zName; 1802 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 1803 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 1804 int i = sqlite3Strlen30(zName) - 1; 1805 while( zName[i]!='_' ) i--; 1806 zName += i; 1807 } 1808 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 1809 }else{ 1810 sqlite3DebugPrintf("%20s",""); 1811 } 1812 }else{ 1813 char *z; 1814 if( p->u.vtab.idxStr ){ 1815 z = sqlite3_mprintf("(%d,\"%s\",%#x)", 1816 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 1817 }else{ 1818 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 1819 } 1820 sqlite3DebugPrintf(" %-19s", z); 1821 sqlite3_free(z); 1822 } 1823 if( p->wsFlags & WHERE_SKIPSCAN ){ 1824 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 1825 }else{ 1826 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); 1827 } 1828 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 1829 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ 1830 int i; 1831 for(i=0; i<p->nLTerm; i++){ 1832 whereTermPrint(p->aLTerm[i], i); 1833 } 1834 } 1835 } 1836 #endif 1837 1838 /* 1839 ** Convert bulk memory into a valid WhereLoop that can be passed 1840 ** to whereLoopClear harmlessly. 1841 */ 1842 static void whereLoopInit(WhereLoop *p){ 1843 p->aLTerm = p->aLTermSpace; 1844 p->nLTerm = 0; 1845 p->nLSlot = ArraySize(p->aLTermSpace); 1846 p->wsFlags = 0; 1847 } 1848 1849 /* 1850 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 1851 */ 1852 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 1853 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 1854 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 1855 sqlite3_free(p->u.vtab.idxStr); 1856 p->u.vtab.needFree = 0; 1857 p->u.vtab.idxStr = 0; 1858 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 1859 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 1860 sqlite3DbFreeNN(db, p->u.btree.pIndex); 1861 p->u.btree.pIndex = 0; 1862 } 1863 } 1864 } 1865 1866 /* 1867 ** Deallocate internal memory used by a WhereLoop object 1868 */ 1869 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 1870 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 1871 whereLoopClearUnion(db, p); 1872 whereLoopInit(p); 1873 } 1874 1875 /* 1876 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 1877 */ 1878 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 1879 WhereTerm **paNew; 1880 if( p->nLSlot>=n ) return SQLITE_OK; 1881 n = (n+7)&~7; 1882 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); 1883 if( paNew==0 ) return SQLITE_NOMEM_BKPT; 1884 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 1885 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 1886 p->aLTerm = paNew; 1887 p->nLSlot = n; 1888 return SQLITE_OK; 1889 } 1890 1891 /* 1892 ** Transfer content from the second pLoop into the first. 1893 */ 1894 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 1895 whereLoopClearUnion(db, pTo); 1896 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ 1897 memset(&pTo->u, 0, sizeof(pTo->u)); 1898 return SQLITE_NOMEM_BKPT; 1899 } 1900 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 1901 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 1902 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 1903 pFrom->u.vtab.needFree = 0; 1904 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 1905 pFrom->u.btree.pIndex = 0; 1906 } 1907 return SQLITE_OK; 1908 } 1909 1910 /* 1911 ** Delete a WhereLoop object 1912 */ 1913 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 1914 whereLoopClear(db, p); 1915 sqlite3DbFreeNN(db, p); 1916 } 1917 1918 /* 1919 ** Free a WhereInfo structure 1920 */ 1921 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 1922 int i; 1923 assert( pWInfo!=0 ); 1924 for(i=0; i<pWInfo->nLevel; i++){ 1925 WhereLevel *pLevel = &pWInfo->a[i]; 1926 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){ 1927 sqlite3DbFree(db, pLevel->u.in.aInLoop); 1928 } 1929 } 1930 sqlite3WhereClauseClear(&pWInfo->sWC); 1931 while( pWInfo->pLoops ){ 1932 WhereLoop *p = pWInfo->pLoops; 1933 pWInfo->pLoops = p->pNextLoop; 1934 whereLoopDelete(db, p); 1935 } 1936 sqlite3DbFreeNN(db, pWInfo); 1937 } 1938 1939 /* 1940 ** Return TRUE if all of the following are true: 1941 ** 1942 ** (1) X has the same or lower cost that Y 1943 ** (2) X uses fewer WHERE clause terms than Y 1944 ** (3) Every WHERE clause term used by X is also used by Y 1945 ** (4) X skips at least as many columns as Y 1946 ** (5) If X is a covering index, than Y is too 1947 ** 1948 ** Conditions (2) and (3) mean that X is a "proper subset" of Y. 1949 ** If X is a proper subset of Y then Y is a better choice and ought 1950 ** to have a lower cost. This routine returns TRUE when that cost 1951 ** relationship is inverted and needs to be adjusted. Constraint (4) 1952 ** was added because if X uses skip-scan less than Y it still might 1953 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5) 1954 ** was added because a covering index probably deserves to have a lower cost 1955 ** than a non-covering index even if it is a proper subset. 1956 */ 1957 static int whereLoopCheaperProperSubset( 1958 const WhereLoop *pX, /* First WhereLoop to compare */ 1959 const WhereLoop *pY /* Compare against this WhereLoop */ 1960 ){ 1961 int i, j; 1962 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 1963 return 0; /* X is not a subset of Y */ 1964 } 1965 if( pY->nSkip > pX->nSkip ) return 0; 1966 if( pX->rRun >= pY->rRun ){ 1967 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */ 1968 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */ 1969 } 1970 for(i=pX->nLTerm-1; i>=0; i--){ 1971 if( pX->aLTerm[i]==0 ) continue; 1972 for(j=pY->nLTerm-1; j>=0; j--){ 1973 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 1974 } 1975 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ 1976 } 1977 if( (pX->wsFlags&WHERE_IDX_ONLY)!=0 1978 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){ 1979 return 0; /* Constraint (5) */ 1980 } 1981 return 1; /* All conditions meet */ 1982 } 1983 1984 /* 1985 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so 1986 ** that: 1987 ** 1988 ** (1) pTemplate costs less than any other WhereLoops that are a proper 1989 ** subset of pTemplate 1990 ** 1991 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 1992 ** is a proper subset. 1993 ** 1994 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 1995 ** WHERE clause terms than Y and that every WHERE clause term used by X is 1996 ** also used by Y. 1997 */ 1998 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 1999 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 2000 for(; p; p=p->pNextLoop){ 2001 if( p->iTab!=pTemplate->iTab ) continue; 2002 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 2003 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 2004 /* Adjust pTemplate cost downward so that it is cheaper than its 2005 ** subset p. */ 2006 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2007 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1)); 2008 pTemplate->rRun = p->rRun; 2009 pTemplate->nOut = p->nOut - 1; 2010 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 2011 /* Adjust pTemplate cost upward so that it is costlier than p since 2012 ** pTemplate is a proper subset of p */ 2013 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2014 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1)); 2015 pTemplate->rRun = p->rRun; 2016 pTemplate->nOut = p->nOut + 1; 2017 } 2018 } 2019 } 2020 2021 /* 2022 ** Search the list of WhereLoops in *ppPrev looking for one that can be 2023 ** replaced by pTemplate. 2024 ** 2025 ** Return NULL if pTemplate does not belong on the WhereLoop list. 2026 ** In other words if pTemplate ought to be dropped from further consideration. 2027 ** 2028 ** If pX is a WhereLoop that pTemplate can replace, then return the 2029 ** link that points to pX. 2030 ** 2031 ** If pTemplate cannot replace any existing element of the list but needs 2032 ** to be added to the list as a new entry, then return a pointer to the 2033 ** tail of the list. 2034 */ 2035 static WhereLoop **whereLoopFindLesser( 2036 WhereLoop **ppPrev, 2037 const WhereLoop *pTemplate 2038 ){ 2039 WhereLoop *p; 2040 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 2041 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 2042 /* If either the iTab or iSortIdx values for two WhereLoop are different 2043 ** then those WhereLoops need to be considered separately. Neither is 2044 ** a candidate to replace the other. */ 2045 continue; 2046 } 2047 /* In the current implementation, the rSetup value is either zero 2048 ** or the cost of building an automatic index (NlogN) and the NlogN 2049 ** is the same for compatible WhereLoops. */ 2050 assert( p->rSetup==0 || pTemplate->rSetup==0 2051 || p->rSetup==pTemplate->rSetup ); 2052 2053 /* whereLoopAddBtree() always generates and inserts the automatic index 2054 ** case first. Hence compatible candidate WhereLoops never have a larger 2055 ** rSetup. Call this SETUP-INVARIANT */ 2056 assert( p->rSetup>=pTemplate->rSetup ); 2057 2058 /* Any loop using an appliation-defined index (or PRIMARY KEY or 2059 ** UNIQUE constraint) with one or more == constraints is better 2060 ** than an automatic index. Unless it is a skip-scan. */ 2061 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 2062 && (pTemplate->nSkip)==0 2063 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 2064 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 2065 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 2066 ){ 2067 break; 2068 } 2069 2070 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 2071 ** discarded. WhereLoop p is better if: 2072 ** (1) p has no more dependencies than pTemplate, and 2073 ** (2) p has an equal or lower cost than pTemplate 2074 */ 2075 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 2076 && p->rSetup<=pTemplate->rSetup /* (2a) */ 2077 && p->rRun<=pTemplate->rRun /* (2b) */ 2078 && p->nOut<=pTemplate->nOut /* (2c) */ 2079 ){ 2080 return 0; /* Discard pTemplate */ 2081 } 2082 2083 /* If pTemplate is always better than p, then cause p to be overwritten 2084 ** with pTemplate. pTemplate is better than p if: 2085 ** (1) pTemplate has no more dependences than p, and 2086 ** (2) pTemplate has an equal or lower cost than p. 2087 */ 2088 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 2089 && p->rRun>=pTemplate->rRun /* (2a) */ 2090 && p->nOut>=pTemplate->nOut /* (2b) */ 2091 ){ 2092 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 2093 break; /* Cause p to be overwritten by pTemplate */ 2094 } 2095 } 2096 return ppPrev; 2097 } 2098 2099 /* 2100 ** Insert or replace a WhereLoop entry using the template supplied. 2101 ** 2102 ** An existing WhereLoop entry might be overwritten if the new template 2103 ** is better and has fewer dependencies. Or the template will be ignored 2104 ** and no insert will occur if an existing WhereLoop is faster and has 2105 ** fewer dependencies than the template. Otherwise a new WhereLoop is 2106 ** added based on the template. 2107 ** 2108 ** If pBuilder->pOrSet is not NULL then we care about only the 2109 ** prerequisites and rRun and nOut costs of the N best loops. That 2110 ** information is gathered in the pBuilder->pOrSet object. This special 2111 ** processing mode is used only for OR clause processing. 2112 ** 2113 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 2114 ** still might overwrite similar loops with the new template if the 2115 ** new template is better. Loops may be overwritten if the following 2116 ** conditions are met: 2117 ** 2118 ** (1) They have the same iTab. 2119 ** (2) They have the same iSortIdx. 2120 ** (3) The template has same or fewer dependencies than the current loop 2121 ** (4) The template has the same or lower cost than the current loop 2122 */ 2123 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 2124 WhereLoop **ppPrev, *p; 2125 WhereInfo *pWInfo = pBuilder->pWInfo; 2126 sqlite3 *db = pWInfo->pParse->db; 2127 int rc; 2128 2129 /* Stop the search once we hit the query planner search limit */ 2130 if( pBuilder->iPlanLimit==0 ){ 2131 WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n")); 2132 if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0; 2133 return SQLITE_DONE; 2134 } 2135 pBuilder->iPlanLimit--; 2136 2137 /* If pBuilder->pOrSet is defined, then only keep track of the costs 2138 ** and prereqs. 2139 */ 2140 if( pBuilder->pOrSet!=0 ){ 2141 if( pTemplate->nLTerm ){ 2142 #if WHERETRACE_ENABLED 2143 u16 n = pBuilder->pOrSet->n; 2144 int x = 2145 #endif 2146 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 2147 pTemplate->nOut); 2148 #if WHERETRACE_ENABLED /* 0x8 */ 2149 if( sqlite3WhereTrace & 0x8 ){ 2150 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 2151 whereLoopPrint(pTemplate, pBuilder->pWC); 2152 } 2153 #endif 2154 } 2155 return SQLITE_OK; 2156 } 2157 2158 /* Look for an existing WhereLoop to replace with pTemplate 2159 */ 2160 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 2161 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 2162 2163 if( ppPrev==0 ){ 2164 /* There already exists a WhereLoop on the list that is better 2165 ** than pTemplate, so just ignore pTemplate */ 2166 #if WHERETRACE_ENABLED /* 0x8 */ 2167 if( sqlite3WhereTrace & 0x8 ){ 2168 sqlite3DebugPrintf(" skip: "); 2169 whereLoopPrint(pTemplate, pBuilder->pWC); 2170 } 2171 #endif 2172 return SQLITE_OK; 2173 }else{ 2174 p = *ppPrev; 2175 } 2176 2177 /* If we reach this point it means that either p[] should be overwritten 2178 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 2179 ** WhereLoop and insert it. 2180 */ 2181 #if WHERETRACE_ENABLED /* 0x8 */ 2182 if( sqlite3WhereTrace & 0x8 ){ 2183 if( p!=0 ){ 2184 sqlite3DebugPrintf("replace: "); 2185 whereLoopPrint(p, pBuilder->pWC); 2186 sqlite3DebugPrintf(" with: "); 2187 }else{ 2188 sqlite3DebugPrintf(" add: "); 2189 } 2190 whereLoopPrint(pTemplate, pBuilder->pWC); 2191 } 2192 #endif 2193 if( p==0 ){ 2194 /* Allocate a new WhereLoop to add to the end of the list */ 2195 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); 2196 if( p==0 ) return SQLITE_NOMEM_BKPT; 2197 whereLoopInit(p); 2198 p->pNextLoop = 0; 2199 }else{ 2200 /* We will be overwriting WhereLoop p[]. But before we do, first 2201 ** go through the rest of the list and delete any other entries besides 2202 ** p[] that are also supplated by pTemplate */ 2203 WhereLoop **ppTail = &p->pNextLoop; 2204 WhereLoop *pToDel; 2205 while( *ppTail ){ 2206 ppTail = whereLoopFindLesser(ppTail, pTemplate); 2207 if( ppTail==0 ) break; 2208 pToDel = *ppTail; 2209 if( pToDel==0 ) break; 2210 *ppTail = pToDel->pNextLoop; 2211 #if WHERETRACE_ENABLED /* 0x8 */ 2212 if( sqlite3WhereTrace & 0x8 ){ 2213 sqlite3DebugPrintf(" delete: "); 2214 whereLoopPrint(pToDel, pBuilder->pWC); 2215 } 2216 #endif 2217 whereLoopDelete(db, pToDel); 2218 } 2219 } 2220 rc = whereLoopXfer(db, p, pTemplate); 2221 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2222 Index *pIndex = p->u.btree.pIndex; 2223 if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){ 2224 p->u.btree.pIndex = 0; 2225 } 2226 } 2227 return rc; 2228 } 2229 2230 /* 2231 ** Adjust the WhereLoop.nOut value downward to account for terms of the 2232 ** WHERE clause that reference the loop but which are not used by an 2233 ** index. 2234 * 2235 ** For every WHERE clause term that is not used by the index 2236 ** and which has a truth probability assigned by one of the likelihood(), 2237 ** likely(), or unlikely() SQL functions, reduce the estimated number 2238 ** of output rows by the probability specified. 2239 ** 2240 ** TUNING: For every WHERE clause term that is not used by the index 2241 ** and which does not have an assigned truth probability, heuristics 2242 ** described below are used to try to estimate the truth probability. 2243 ** TODO --> Perhaps this is something that could be improved by better 2244 ** table statistics. 2245 ** 2246 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 2247 ** value corresponds to -1 in LogEst notation, so this means decrement 2248 ** the WhereLoop.nOut field for every such WHERE clause term. 2249 ** 2250 ** Heuristic 2: If there exists one or more WHERE clause terms of the 2251 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 2252 ** final output row estimate is no greater than 1/4 of the total number 2253 ** of rows in the table. In other words, assume that x==EXPR will filter 2254 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 2255 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 2256 ** on the "x" column and so in that case only cap the output row estimate 2257 ** at 1/2 instead of 1/4. 2258 */ 2259 static void whereLoopOutputAdjust( 2260 WhereClause *pWC, /* The WHERE clause */ 2261 WhereLoop *pLoop, /* The loop to adjust downward */ 2262 LogEst nRow /* Number of rows in the entire table */ 2263 ){ 2264 WhereTerm *pTerm, *pX; 2265 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 2266 int i, j; 2267 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 2268 2269 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2270 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ 2271 assert( pTerm!=0 ); 2272 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; 2273 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 2274 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 2275 for(j=pLoop->nLTerm-1; j>=0; j--){ 2276 pX = pLoop->aLTerm[j]; 2277 if( pX==0 ) continue; 2278 if( pX==pTerm ) break; 2279 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 2280 } 2281 if( j<0 ){ 2282 if( pTerm->truthProb<=0 ){ 2283 /* If a truth probability is specified using the likelihood() hints, 2284 ** then use the probability provided by the application. */ 2285 pLoop->nOut += pTerm->truthProb; 2286 }else{ 2287 /* In the absence of explicit truth probabilities, use heuristics to 2288 ** guess a reasonable truth probability. */ 2289 pLoop->nOut--; 2290 if( pTerm->eOperator&(WO_EQ|WO_IS) ){ 2291 Expr *pRight = pTerm->pExpr->pRight; 2292 int k = 0; 2293 testcase( pTerm->pExpr->op==TK_IS ); 2294 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 2295 k = 10; 2296 }else{ 2297 k = 20; 2298 } 2299 if( iReduce<k ) iReduce = k; 2300 } 2301 } 2302 } 2303 } 2304 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce; 2305 } 2306 2307 /* 2308 ** Term pTerm is a vector range comparison operation. The first comparison 2309 ** in the vector can be optimized using column nEq of the index. This 2310 ** function returns the total number of vector elements that can be used 2311 ** as part of the range comparison. 2312 ** 2313 ** For example, if the query is: 2314 ** 2315 ** WHERE a = ? AND (b, c, d) > (?, ?, ?) 2316 ** 2317 ** and the index: 2318 ** 2319 ** CREATE INDEX ... ON (a, b, c, d, e) 2320 ** 2321 ** then this function would be invoked with nEq=1. The value returned in 2322 ** this case is 3. 2323 */ 2324 static int whereRangeVectorLen( 2325 Parse *pParse, /* Parsing context */ 2326 int iCur, /* Cursor open on pIdx */ 2327 Index *pIdx, /* The index to be used for a inequality constraint */ 2328 int nEq, /* Number of prior equality constraints on same index */ 2329 WhereTerm *pTerm /* The vector inequality constraint */ 2330 ){ 2331 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft); 2332 int i; 2333 2334 nCmp = MIN(nCmp, (pIdx->nColumn - nEq)); 2335 for(i=1; i<nCmp; i++){ 2336 /* Test if comparison i of pTerm is compatible with column (i+nEq) 2337 ** of the index. If not, exit the loop. */ 2338 char aff; /* Comparison affinity */ 2339 char idxaff = 0; /* Indexed columns affinity */ 2340 CollSeq *pColl; /* Comparison collation sequence */ 2341 Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr; 2342 Expr *pRhs = pTerm->pExpr->pRight; 2343 if( pRhs->flags & EP_xIsSelect ){ 2344 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr; 2345 }else{ 2346 pRhs = pRhs->x.pList->a[i].pExpr; 2347 } 2348 2349 /* Check that the LHS of the comparison is a column reference to 2350 ** the right column of the right source table. And that the sort 2351 ** order of the index column is the same as the sort order of the 2352 ** leftmost index column. */ 2353 if( pLhs->op!=TK_COLUMN 2354 || pLhs->iTable!=iCur 2355 || pLhs->iColumn!=pIdx->aiColumn[i+nEq] 2356 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq] 2357 ){ 2358 break; 2359 } 2360 2361 testcase( pLhs->iColumn==XN_ROWID ); 2362 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs)); 2363 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn); 2364 if( aff!=idxaff ) break; 2365 2366 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2367 if( pColl==0 ) break; 2368 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; 2369 } 2370 return i; 2371 } 2372 2373 /* 2374 ** Adjust the cost C by the costMult facter T. This only occurs if 2375 ** compiled with -DSQLITE_ENABLE_COSTMULT 2376 */ 2377 #ifdef SQLITE_ENABLE_COSTMULT 2378 # define ApplyCostMultiplier(C,T) C += T 2379 #else 2380 # define ApplyCostMultiplier(C,T) 2381 #endif 2382 2383 /* 2384 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 2385 ** index pIndex. Try to match one more. 2386 ** 2387 ** When this function is called, pBuilder->pNew->nOut contains the 2388 ** number of rows expected to be visited by filtering using the nEq 2389 ** terms only. If it is modified, this value is restored before this 2390 ** function returns. 2391 ** 2392 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is 2393 ** a fake index used for the INTEGER PRIMARY KEY. 2394 */ 2395 static int whereLoopAddBtreeIndex( 2396 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 2397 struct SrcList_item *pSrc, /* FROM clause term being analyzed */ 2398 Index *pProbe, /* An index on pSrc */ 2399 LogEst nInMul /* log(Number of iterations due to IN) */ 2400 ){ 2401 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ 2402 Parse *pParse = pWInfo->pParse; /* Parsing context */ 2403 sqlite3 *db = pParse->db; /* Database connection malloc context */ 2404 WhereLoop *pNew; /* Template WhereLoop under construction */ 2405 WhereTerm *pTerm; /* A WhereTerm under consideration */ 2406 int opMask; /* Valid operators for constraints */ 2407 WhereScan scan; /* Iterator for WHERE terms */ 2408 Bitmask saved_prereq; /* Original value of pNew->prereq */ 2409 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 2410 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 2411 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */ 2412 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */ 2413 u16 saved_nSkip; /* Original value of pNew->nSkip */ 2414 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 2415 LogEst saved_nOut; /* Original value of pNew->nOut */ 2416 int rc = SQLITE_OK; /* Return code */ 2417 LogEst rSize; /* Number of rows in the table */ 2418 LogEst rLogSize; /* Logarithm of table size */ 2419 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 2420 2421 pNew = pBuilder->pNew; 2422 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 2423 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d\n", 2424 pProbe->pTable->zName,pProbe->zName, pNew->u.btree.nEq)); 2425 2426 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 2427 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 2428 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 2429 opMask = WO_LT|WO_LE; 2430 }else{ 2431 assert( pNew->u.btree.nBtm==0 ); 2432 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; 2433 } 2434 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 2435 2436 assert( pNew->u.btree.nEq<pProbe->nColumn ); 2437 2438 saved_nEq = pNew->u.btree.nEq; 2439 saved_nBtm = pNew->u.btree.nBtm; 2440 saved_nTop = pNew->u.btree.nTop; 2441 saved_nSkip = pNew->nSkip; 2442 saved_nLTerm = pNew->nLTerm; 2443 saved_wsFlags = pNew->wsFlags; 2444 saved_prereq = pNew->prereq; 2445 saved_nOut = pNew->nOut; 2446 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, 2447 opMask, pProbe); 2448 pNew->rSetup = 0; 2449 rSize = pProbe->aiRowLogEst[0]; 2450 rLogSize = estLog(rSize); 2451 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 2452 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 2453 LogEst rCostIdx; 2454 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 2455 int nIn = 0; 2456 #ifdef SQLITE_ENABLE_STAT4 2457 int nRecValid = pBuilder->nRecValid; 2458 #endif 2459 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 2460 && indexColumnNotNull(pProbe, saved_nEq) 2461 ){ 2462 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 2463 } 2464 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2465 2466 /* Do not allow the upper bound of a LIKE optimization range constraint 2467 ** to mix with a lower range bound from some other source */ 2468 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 2469 2470 /* tag-20191211-001: Do not allow constraints from the WHERE clause to 2471 ** be used by the right table of a LEFT JOIN. Only constraints in the 2472 ** ON clause are allowed. See tag-20191211-002 for the vtab equivalent. */ 2473 if( (pSrc->fg.jointype & JT_LEFT)!=0 2474 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 2475 ){ 2476 continue; 2477 } 2478 2479 if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){ 2480 pBuilder->bldFlags |= SQLITE_BLDF_UNIQUE; 2481 }else{ 2482 pBuilder->bldFlags |= SQLITE_BLDF_INDEXED; 2483 } 2484 pNew->wsFlags = saved_wsFlags; 2485 pNew->u.btree.nEq = saved_nEq; 2486 pNew->u.btree.nBtm = saved_nBtm; 2487 pNew->u.btree.nTop = saved_nTop; 2488 pNew->nLTerm = saved_nLTerm; 2489 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2490 pNew->aLTerm[pNew->nLTerm++] = pTerm; 2491 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 2492 2493 assert( nInMul==0 2494 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 2495 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 2496 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 2497 ); 2498 2499 if( eOp & WO_IN ){ 2500 Expr *pExpr = pTerm->pExpr; 2501 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2502 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 2503 int i; 2504 nIn = 46; assert( 46==sqlite3LogEst(25) ); 2505 2506 /* The expression may actually be of the form (x, y) IN (SELECT...). 2507 ** In this case there is a separate term for each of (x) and (y). 2508 ** However, the nIn multiplier should only be applied once, not once 2509 ** for each such term. The following loop checks that pTerm is the 2510 ** first such term in use, and sets nIn back to 0 if it is not. */ 2511 for(i=0; i<pNew->nLTerm-1; i++){ 2512 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0; 2513 } 2514 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2515 /* "x IN (value, value, ...)" */ 2516 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 2517 } 2518 if( pProbe->hasStat1 ){ 2519 LogEst M, logK, safetyMargin; 2520 /* Let: 2521 ** N = the total number of rows in the table 2522 ** K = the number of entries on the RHS of the IN operator 2523 ** M = the number of rows in the table that match terms to the 2524 ** to the left in the same index. If the IN operator is on 2525 ** the left-most index column, M==N. 2526 ** 2527 ** Given the definitions above, it is better to omit the IN operator 2528 ** from the index lookup and instead do a scan of the M elements, 2529 ** testing each scanned row against the IN operator separately, if: 2530 ** 2531 ** M*log(K) < K*log(N) 2532 ** 2533 ** Our estimates for M, K, and N might be inaccurate, so we build in 2534 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator 2535 ** with the index, as using an index has better worst-case behavior. 2536 ** If we do not have real sqlite_stat1 data, always prefer to use 2537 ** the index. 2538 */ 2539 M = pProbe->aiRowLogEst[saved_nEq]; 2540 logK = estLog(nIn); 2541 safetyMargin = 10; /* TUNING: extra weight for indexed IN */ 2542 if( M + logK + safetyMargin < nIn + rLogSize ){ 2543 WHERETRACE(0x40, 2544 ("Scan preferred over IN operator on column %d of \"%s\" (%d<%d)\n", 2545 saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize)); 2546 continue; 2547 }else{ 2548 WHERETRACE(0x40, 2549 ("IN operator preferred on column %d of \"%s\" (%d>=%d)\n", 2550 saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize)); 2551 } 2552 } 2553 pNew->wsFlags |= WHERE_COLUMN_IN; 2554 }else if( eOp & (WO_EQ|WO_IS) ){ 2555 int iCol = pProbe->aiColumn[saved_nEq]; 2556 pNew->wsFlags |= WHERE_COLUMN_EQ; 2557 assert( saved_nEq==pNew->u.btree.nEq ); 2558 if( iCol==XN_ROWID 2559 || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) 2560 ){ 2561 if( iCol==XN_ROWID || pProbe->uniqNotNull 2562 || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ) 2563 ){ 2564 pNew->wsFlags |= WHERE_ONEROW; 2565 }else{ 2566 pNew->wsFlags |= WHERE_UNQ_WANTED; 2567 } 2568 } 2569 }else if( eOp & WO_ISNULL ){ 2570 pNew->wsFlags |= WHERE_COLUMN_NULL; 2571 }else if( eOp & (WO_GT|WO_GE) ){ 2572 testcase( eOp & WO_GT ); 2573 testcase( eOp & WO_GE ); 2574 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 2575 pNew->u.btree.nBtm = whereRangeVectorLen( 2576 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2577 ); 2578 pBtm = pTerm; 2579 pTop = 0; 2580 if( pTerm->wtFlags & TERM_LIKEOPT ){ 2581 /* Range contraints that come from the LIKE optimization are 2582 ** always used in pairs. */ 2583 pTop = &pTerm[1]; 2584 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 2585 assert( pTop->wtFlags & TERM_LIKEOPT ); 2586 assert( pTop->eOperator==WO_LT ); 2587 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2588 pNew->aLTerm[pNew->nLTerm++] = pTop; 2589 pNew->wsFlags |= WHERE_TOP_LIMIT; 2590 pNew->u.btree.nTop = 1; 2591 } 2592 }else{ 2593 assert( eOp & (WO_LT|WO_LE) ); 2594 testcase( eOp & WO_LT ); 2595 testcase( eOp & WO_LE ); 2596 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 2597 pNew->u.btree.nTop = whereRangeVectorLen( 2598 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2599 ); 2600 pTop = pTerm; 2601 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 2602 pNew->aLTerm[pNew->nLTerm-2] : 0; 2603 } 2604 2605 /* At this point pNew->nOut is set to the number of rows expected to 2606 ** be visited by the index scan before considering term pTerm, or the 2607 ** values of nIn and nInMul. In other words, assuming that all 2608 ** "x IN(...)" terms are replaced with "x = ?". This block updates 2609 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 2610 assert( pNew->nOut==saved_nOut ); 2611 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2612 /* Adjust nOut using stat4 data. Or, if there is no stat4 2613 ** data, using some other estimate. */ 2614 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 2615 }else{ 2616 int nEq = ++pNew->u.btree.nEq; 2617 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); 2618 2619 assert( pNew->nOut==saved_nOut ); 2620 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ 2621 assert( (eOp & WO_IN) || nIn==0 ); 2622 testcase( eOp & WO_IN ); 2623 pNew->nOut += pTerm->truthProb; 2624 pNew->nOut -= nIn; 2625 }else{ 2626 #ifdef SQLITE_ENABLE_STAT4 2627 tRowcnt nOut = 0; 2628 if( nInMul==0 2629 && pProbe->nSample 2630 && pNew->u.btree.nEq<=pProbe->nSampleCol 2631 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) 2632 && OptimizationEnabled(db, SQLITE_Stat4) 2633 ){ 2634 Expr *pExpr = pTerm->pExpr; 2635 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ 2636 testcase( eOp & WO_EQ ); 2637 testcase( eOp & WO_IS ); 2638 testcase( eOp & WO_ISNULL ); 2639 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 2640 }else{ 2641 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 2642 } 2643 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 2644 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 2645 if( nOut ){ 2646 pNew->nOut = sqlite3LogEst(nOut); 2647 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 2648 pNew->nOut -= nIn; 2649 } 2650 } 2651 if( nOut==0 ) 2652 #endif 2653 { 2654 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 2655 if( eOp & WO_ISNULL ){ 2656 /* TUNING: If there is no likelihood() value, assume that a 2657 ** "col IS NULL" expression matches twice as many rows 2658 ** as (col=?). */ 2659 pNew->nOut += 10; 2660 } 2661 } 2662 } 2663 } 2664 2665 /* Set rCostIdx to the cost of visiting selected rows in index. Add 2666 ** it to pNew->rRun, which is currently set to the cost of the index 2667 ** seek only. Then, if this is a non-covering index, add the cost of 2668 ** visiting the rows in the main table. */ 2669 assert( pSrc->pTab->szTabRow>0 ); 2670 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 2671 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); 2672 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ 2673 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 2674 } 2675 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 2676 2677 nOutUnadjusted = pNew->nOut; 2678 pNew->rRun += nInMul + nIn; 2679 pNew->nOut += nInMul + nIn; 2680 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 2681 rc = whereLoopInsert(pBuilder, pNew); 2682 2683 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2684 pNew->nOut = saved_nOut; 2685 }else{ 2686 pNew->nOut = nOutUnadjusted; 2687 } 2688 2689 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 2690 && pNew->u.btree.nEq<pProbe->nColumn 2691 ){ 2692 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 2693 } 2694 pNew->nOut = saved_nOut; 2695 #ifdef SQLITE_ENABLE_STAT4 2696 pBuilder->nRecValid = nRecValid; 2697 #endif 2698 } 2699 pNew->prereq = saved_prereq; 2700 pNew->u.btree.nEq = saved_nEq; 2701 pNew->u.btree.nBtm = saved_nBtm; 2702 pNew->u.btree.nTop = saved_nTop; 2703 pNew->nSkip = saved_nSkip; 2704 pNew->wsFlags = saved_wsFlags; 2705 pNew->nOut = saved_nOut; 2706 pNew->nLTerm = saved_nLTerm; 2707 2708 /* Consider using a skip-scan if there are no WHERE clause constraints 2709 ** available for the left-most terms of the index, and if the average 2710 ** number of repeats in the left-most terms is at least 18. 2711 ** 2712 ** The magic number 18 is selected on the basis that scanning 17 rows 2713 ** is almost always quicker than an index seek (even though if the index 2714 ** contains fewer than 2^17 rows we assume otherwise in other parts of 2715 ** the code). And, even if it is not, it should not be too much slower. 2716 ** On the other hand, the extra seeks could end up being significantly 2717 ** more expensive. */ 2718 assert( 42==sqlite3LogEst(18) ); 2719 if( saved_nEq==saved_nSkip 2720 && saved_nEq+1<pProbe->nKeyCol 2721 && pProbe->noSkipScan==0 2722 && OptimizationEnabled(db, SQLITE_SkipScan) 2723 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 2724 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 2725 ){ 2726 LogEst nIter; 2727 pNew->u.btree.nEq++; 2728 pNew->nSkip++; 2729 pNew->aLTerm[pNew->nLTerm++] = 0; 2730 pNew->wsFlags |= WHERE_SKIPSCAN; 2731 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 2732 pNew->nOut -= nIter; 2733 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 2734 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 2735 nIter += 5; 2736 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 2737 pNew->nOut = saved_nOut; 2738 pNew->u.btree.nEq = saved_nEq; 2739 pNew->nSkip = saved_nSkip; 2740 pNew->wsFlags = saved_wsFlags; 2741 } 2742 2743 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n", 2744 pProbe->pTable->zName, pProbe->zName, saved_nEq, rc)); 2745 return rc; 2746 } 2747 2748 /* 2749 ** Return True if it is possible that pIndex might be useful in 2750 ** implementing the ORDER BY clause in pBuilder. 2751 ** 2752 ** Return False if pBuilder does not contain an ORDER BY clause or 2753 ** if there is no way for pIndex to be useful in implementing that 2754 ** ORDER BY clause. 2755 */ 2756 static int indexMightHelpWithOrderBy( 2757 WhereLoopBuilder *pBuilder, 2758 Index *pIndex, 2759 int iCursor 2760 ){ 2761 ExprList *pOB; 2762 ExprList *aColExpr; 2763 int ii, jj; 2764 2765 if( pIndex->bUnordered ) return 0; 2766 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 2767 for(ii=0; ii<pOB->nExpr; ii++){ 2768 Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr); 2769 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ 2770 if( pExpr->iColumn<0 ) return 1; 2771 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2772 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 2773 } 2774 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ 2775 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2776 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; 2777 if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ 2778 return 1; 2779 } 2780 } 2781 } 2782 } 2783 return 0; 2784 } 2785 2786 /* Check to see if a partial index with pPartIndexWhere can be used 2787 ** in the current query. Return true if it can be and false if not. 2788 */ 2789 static int whereUsablePartialIndex( 2790 int iTab, /* The table for which we want an index */ 2791 int isLeft, /* True if iTab is the right table of a LEFT JOIN */ 2792 WhereClause *pWC, /* The WHERE clause of the query */ 2793 Expr *pWhere /* The WHERE clause from the partial index */ 2794 ){ 2795 int i; 2796 WhereTerm *pTerm; 2797 Parse *pParse = pWC->pWInfo->pParse; 2798 while( pWhere->op==TK_AND ){ 2799 if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0; 2800 pWhere = pWhere->pRight; 2801 } 2802 if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0; 2803 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 2804 Expr *pExpr; 2805 pExpr = pTerm->pExpr; 2806 if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab) 2807 && (isLeft==0 || ExprHasProperty(pExpr, EP_FromJoin)) 2808 && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab) 2809 ){ 2810 return 1; 2811 } 2812 } 2813 return 0; 2814 } 2815 2816 /* 2817 ** Add all WhereLoop objects for a single table of the join where the table 2818 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be 2819 ** a b-tree table, not a virtual table. 2820 ** 2821 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 2822 ** are calculated as follows: 2823 ** 2824 ** For a full scan, assuming the table (or index) contains nRow rows: 2825 ** 2826 ** cost = nRow * 3.0 // full-table scan 2827 ** cost = nRow * K // scan of covering index 2828 ** cost = nRow * (K+3.0) // scan of non-covering index 2829 ** 2830 ** where K is a value between 1.1 and 3.0 set based on the relative 2831 ** estimated average size of the index and table records. 2832 ** 2833 ** For an index scan, where nVisit is the number of index rows visited 2834 ** by the scan, and nSeek is the number of seek operations required on 2835 ** the index b-tree: 2836 ** 2837 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 2838 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 2839 ** 2840 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 2841 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 2842 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 2843 ** 2844 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 2845 ** of uncertainty. For this reason, scoring is designed to pick plans that 2846 ** "do the least harm" if the estimates are inaccurate. For example, a 2847 ** log(nRow) factor is omitted from a non-covering index scan in order to 2848 ** bias the scoring in favor of using an index, since the worst-case 2849 ** performance of using an index is far better than the worst-case performance 2850 ** of a full table scan. 2851 */ 2852 static int whereLoopAddBtree( 2853 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 2854 Bitmask mPrereq /* Extra prerequesites for using this table */ 2855 ){ 2856 WhereInfo *pWInfo; /* WHERE analysis context */ 2857 Index *pProbe; /* An index we are evaluating */ 2858 Index sPk; /* A fake index object for the primary key */ 2859 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 2860 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 2861 SrcList *pTabList; /* The FROM clause */ 2862 struct SrcList_item *pSrc; /* The FROM clause btree term to add */ 2863 WhereLoop *pNew; /* Template WhereLoop object */ 2864 int rc = SQLITE_OK; /* Return code */ 2865 int iSortIdx = 1; /* Index number */ 2866 int b; /* A boolean value */ 2867 LogEst rSize; /* number of rows in the table */ 2868 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 2869 WhereClause *pWC; /* The parsed WHERE clause */ 2870 Table *pTab; /* Table being queried */ 2871 2872 pNew = pBuilder->pNew; 2873 pWInfo = pBuilder->pWInfo; 2874 pTabList = pWInfo->pTabList; 2875 pSrc = pTabList->a + pNew->iTab; 2876 pTab = pSrc->pTab; 2877 pWC = pBuilder->pWC; 2878 assert( !IsVirtual(pSrc->pTab) ); 2879 2880 if( pSrc->pIBIndex ){ 2881 /* An INDEXED BY clause specifies a particular index to use */ 2882 pProbe = pSrc->pIBIndex; 2883 }else if( !HasRowid(pTab) ){ 2884 pProbe = pTab->pIndex; 2885 }else{ 2886 /* There is no INDEXED BY clause. Create a fake Index object in local 2887 ** variable sPk to represent the rowid primary key index. Make this 2888 ** fake index the first in a chain of Index objects with all of the real 2889 ** indices to follow */ 2890 Index *pFirst; /* First of real indices on the table */ 2891 memset(&sPk, 0, sizeof(Index)); 2892 sPk.nKeyCol = 1; 2893 sPk.nColumn = 1; 2894 sPk.aiColumn = &aiColumnPk; 2895 sPk.aiRowLogEst = aiRowEstPk; 2896 sPk.onError = OE_Replace; 2897 sPk.pTable = pTab; 2898 sPk.szIdxRow = pTab->szTabRow; 2899 sPk.idxType = SQLITE_IDXTYPE_IPK; 2900 aiRowEstPk[0] = pTab->nRowLogEst; 2901 aiRowEstPk[1] = 0; 2902 pFirst = pSrc->pTab->pIndex; 2903 if( pSrc->fg.notIndexed==0 ){ 2904 /* The real indices of the table are only considered if the 2905 ** NOT INDEXED qualifier is omitted from the FROM clause */ 2906 sPk.pNext = pFirst; 2907 } 2908 pProbe = &sPk; 2909 } 2910 rSize = pTab->nRowLogEst; 2911 rLogSize = estLog(rSize); 2912 2913 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 2914 /* Automatic indexes */ 2915 if( !pBuilder->pOrSet /* Not part of an OR optimization */ 2916 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 2917 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 2918 && pSrc->pIBIndex==0 /* Has no INDEXED BY clause */ 2919 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ 2920 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ 2921 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ 2922 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ 2923 ){ 2924 /* Generate auto-index WhereLoops */ 2925 WhereTerm *pTerm; 2926 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 2927 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 2928 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2929 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 2930 pNew->u.btree.nEq = 1; 2931 pNew->nSkip = 0; 2932 pNew->u.btree.pIndex = 0; 2933 pNew->nLTerm = 1; 2934 pNew->aLTerm[0] = pTerm; 2935 /* TUNING: One-time cost for computing the automatic index is 2936 ** estimated to be X*N*log2(N) where N is the number of rows in 2937 ** the table being indexed and where X is 7 (LogEst=28) for normal 2938 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value 2939 ** of X is smaller for views and subqueries so that the query planner 2940 ** will be more aggressive about generating automatic indexes for 2941 ** those objects, since there is no opportunity to add schema 2942 ** indexes on subqueries and views. */ 2943 pNew->rSetup = rLogSize + rSize; 2944 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){ 2945 pNew->rSetup += 28; 2946 }else{ 2947 pNew->rSetup -= 10; 2948 } 2949 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 2950 if( pNew->rSetup<0 ) pNew->rSetup = 0; 2951 /* TUNING: Each index lookup yields 20 rows in the table. This 2952 ** is more than the usual guess of 10 rows, since we have no way 2953 ** of knowing how selective the index will ultimately be. It would 2954 ** not be unreasonable to make this value much larger. */ 2955 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 2956 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 2957 pNew->wsFlags = WHERE_AUTO_INDEX; 2958 pNew->prereq = mPrereq | pTerm->prereqRight; 2959 rc = whereLoopInsert(pBuilder, pNew); 2960 } 2961 } 2962 } 2963 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 2964 2965 /* Loop over all indices. If there was an INDEXED BY clause, then only 2966 ** consider index pProbe. */ 2967 for(; rc==SQLITE_OK && pProbe; 2968 pProbe=(pSrc->pIBIndex ? 0 : pProbe->pNext), iSortIdx++ 2969 ){ 2970 int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0; 2971 if( pProbe->pPartIdxWhere!=0 2972 && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC, 2973 pProbe->pPartIdxWhere) 2974 ){ 2975 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 2976 continue; /* Partial index inappropriate for this query */ 2977 } 2978 if( pProbe->bNoQuery ) continue; 2979 rSize = pProbe->aiRowLogEst[0]; 2980 pNew->u.btree.nEq = 0; 2981 pNew->u.btree.nBtm = 0; 2982 pNew->u.btree.nTop = 0; 2983 pNew->nSkip = 0; 2984 pNew->nLTerm = 0; 2985 pNew->iSortIdx = 0; 2986 pNew->rSetup = 0; 2987 pNew->prereq = mPrereq; 2988 pNew->nOut = rSize; 2989 pNew->u.btree.pIndex = pProbe; 2990 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 2991 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 2992 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 2993 if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){ 2994 /* Integer primary key index */ 2995 pNew->wsFlags = WHERE_IPK; 2996 2997 /* Full table scan */ 2998 pNew->iSortIdx = b ? iSortIdx : 0; 2999 /* TUNING: Cost of full table scan is (N*3.0). */ 3000 pNew->rRun = rSize + 16; 3001 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3002 whereLoopOutputAdjust(pWC, pNew, rSize); 3003 rc = whereLoopInsert(pBuilder, pNew); 3004 pNew->nOut = rSize; 3005 if( rc ) break; 3006 }else{ 3007 Bitmask m; 3008 if( pProbe->isCovering ){ 3009 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 3010 m = 0; 3011 }else{ 3012 m = pSrc->colUsed & pProbe->colNotIdxed; 3013 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; 3014 } 3015 3016 /* Full scan via index */ 3017 if( b 3018 || !HasRowid(pTab) 3019 || pProbe->pPartIdxWhere!=0 3020 || ( m==0 3021 && pProbe->bUnordered==0 3022 && (pProbe->szIdxRow<pTab->szTabRow) 3023 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 3024 && sqlite3GlobalConfig.bUseCis 3025 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 3026 ) 3027 ){ 3028 pNew->iSortIdx = b ? iSortIdx : 0; 3029 3030 /* The cost of visiting the index rows is N*K, where K is 3031 ** between 1.1 and 3.0, depending on the relative sizes of the 3032 ** index and table rows. */ 3033 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 3034 if( m!=0 ){ 3035 /* If this is a non-covering index scan, add in the cost of 3036 ** doing table lookups. The cost will be 3x the number of 3037 ** lookups. Take into account WHERE clause terms that can be 3038 ** satisfied using just the index, and that do not require a 3039 ** table lookup. */ 3040 LogEst nLookup = rSize + 16; /* Base cost: N*3 */ 3041 int ii; 3042 int iCur = pSrc->iCursor; 3043 WhereClause *pWC2 = &pWInfo->sWC; 3044 for(ii=0; ii<pWC2->nTerm; ii++){ 3045 WhereTerm *pTerm = &pWC2->a[ii]; 3046 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){ 3047 break; 3048 } 3049 /* pTerm can be evaluated using just the index. So reduce 3050 ** the expected number of table lookups accordingly */ 3051 if( pTerm->truthProb<=0 ){ 3052 nLookup += pTerm->truthProb; 3053 }else{ 3054 nLookup--; 3055 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19; 3056 } 3057 } 3058 3059 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup); 3060 } 3061 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3062 whereLoopOutputAdjust(pWC, pNew, rSize); 3063 rc = whereLoopInsert(pBuilder, pNew); 3064 pNew->nOut = rSize; 3065 if( rc ) break; 3066 } 3067 } 3068 3069 pBuilder->bldFlags = 0; 3070 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 3071 if( pBuilder->bldFlags==SQLITE_BLDF_INDEXED ){ 3072 /* If a non-unique index is used, or if a prefix of the key for 3073 ** unique index is used (making the index functionally non-unique) 3074 ** then the sqlite_stat1 data becomes important for scoring the 3075 ** plan */ 3076 pTab->tabFlags |= TF_StatsUsed; 3077 } 3078 #ifdef SQLITE_ENABLE_STAT4 3079 sqlite3Stat4ProbeFree(pBuilder->pRec); 3080 pBuilder->nRecValid = 0; 3081 pBuilder->pRec = 0; 3082 #endif 3083 } 3084 return rc; 3085 } 3086 3087 #ifndef SQLITE_OMIT_VIRTUALTABLE 3088 3089 /* 3090 ** Argument pIdxInfo is already populated with all constraints that may 3091 ** be used by the virtual table identified by pBuilder->pNew->iTab. This 3092 ** function marks a subset of those constraints usable, invokes the 3093 ** xBestIndex method and adds the returned plan to pBuilder. 3094 ** 3095 ** A constraint is marked usable if: 3096 ** 3097 ** * Argument mUsable indicates that its prerequisites are available, and 3098 ** 3099 ** * It is not one of the operators specified in the mExclude mask passed 3100 ** as the fourth argument (which in practice is either WO_IN or 0). 3101 ** 3102 ** Argument mPrereq is a mask of tables that must be scanned before the 3103 ** virtual table in question. These are added to the plans prerequisites 3104 ** before it is added to pBuilder. 3105 ** 3106 ** Output parameter *pbIn is set to true if the plan added to pBuilder 3107 ** uses one or more WO_IN terms, or false otherwise. 3108 */ 3109 static int whereLoopAddVirtualOne( 3110 WhereLoopBuilder *pBuilder, 3111 Bitmask mPrereq, /* Mask of tables that must be used. */ 3112 Bitmask mUsable, /* Mask of usable tables */ 3113 u16 mExclude, /* Exclude terms using these operators */ 3114 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ 3115 u16 mNoOmit, /* Do not omit these constraints */ 3116 int *pbIn /* OUT: True if plan uses an IN(...) op */ 3117 ){ 3118 WhereClause *pWC = pBuilder->pWC; 3119 struct sqlite3_index_constraint *pIdxCons; 3120 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; 3121 int i; 3122 int mxTerm; 3123 int rc = SQLITE_OK; 3124 WhereLoop *pNew = pBuilder->pNew; 3125 Parse *pParse = pBuilder->pWInfo->pParse; 3126 struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; 3127 int nConstraint = pIdxInfo->nConstraint; 3128 3129 assert( (mUsable & mPrereq)==mPrereq ); 3130 *pbIn = 0; 3131 pNew->prereq = mPrereq; 3132 3133 /* Set the usable flag on the subset of constraints identified by 3134 ** arguments mUsable and mExclude. */ 3135 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3136 for(i=0; i<nConstraint; i++, pIdxCons++){ 3137 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset]; 3138 pIdxCons->usable = 0; 3139 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight 3140 && (pTerm->eOperator & mExclude)==0 3141 ){ 3142 pIdxCons->usable = 1; 3143 } 3144 } 3145 3146 /* Initialize the output fields of the sqlite3_index_info structure */ 3147 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); 3148 assert( pIdxInfo->needToFreeIdxStr==0 ); 3149 pIdxInfo->idxStr = 0; 3150 pIdxInfo->idxNum = 0; 3151 pIdxInfo->orderByConsumed = 0; 3152 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 3153 pIdxInfo->estimatedRows = 25; 3154 pIdxInfo->idxFlags = 0; 3155 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; 3156 3157 /* Invoke the virtual table xBestIndex() method */ 3158 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); 3159 if( rc ){ 3160 if( rc==SQLITE_CONSTRAINT ){ 3161 /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means 3162 ** that the particular combination of parameters provided is unusable. 3163 ** Make no entries in the loop table. 3164 */ 3165 WHERETRACE(0xffff, (" ^^^^--- non-viable plan rejected!\n")); 3166 return SQLITE_OK; 3167 } 3168 return rc; 3169 } 3170 3171 mxTerm = -1; 3172 assert( pNew->nLSlot>=nConstraint ); 3173 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; 3174 pNew->u.vtab.omitMask = 0; 3175 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3176 for(i=0; i<nConstraint; i++, pIdxCons++){ 3177 int iTerm; 3178 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 3179 WhereTerm *pTerm; 3180 int j = pIdxCons->iTermOffset; 3181 if( iTerm>=nConstraint 3182 || j<0 3183 || j>=pWC->nTerm 3184 || pNew->aLTerm[iTerm]!=0 3185 || pIdxCons->usable==0 3186 ){ 3187 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3188 testcase( pIdxInfo->needToFreeIdxStr ); 3189 return SQLITE_ERROR; 3190 } 3191 testcase( iTerm==nConstraint-1 ); 3192 testcase( j==0 ); 3193 testcase( j==pWC->nTerm-1 ); 3194 pTerm = &pWC->a[j]; 3195 pNew->prereq |= pTerm->prereqRight; 3196 assert( iTerm<pNew->nLSlot ); 3197 pNew->aLTerm[iTerm] = pTerm; 3198 if( iTerm>mxTerm ) mxTerm = iTerm; 3199 testcase( iTerm==15 ); 3200 testcase( iTerm==16 ); 3201 if( pUsage[i].omit ){ 3202 if( i<16 && ((1<<i)&mNoOmit)==0 ){ 3203 testcase( i!=iTerm ); 3204 pNew->u.vtab.omitMask |= 1<<iTerm; 3205 }else{ 3206 testcase( i!=iTerm ); 3207 } 3208 } 3209 if( (pTerm->eOperator & WO_IN)!=0 ){ 3210 /* A virtual table that is constrained by an IN clause may not 3211 ** consume the ORDER BY clause because (1) the order of IN terms 3212 ** is not necessarily related to the order of output terms and 3213 ** (2) Multiple outputs from a single IN value will not merge 3214 ** together. */ 3215 pIdxInfo->orderByConsumed = 0; 3216 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; 3217 *pbIn = 1; assert( (mExclude & WO_IN)==0 ); 3218 } 3219 } 3220 } 3221 3222 pNew->nLTerm = mxTerm+1; 3223 for(i=0; i<=mxTerm; i++){ 3224 if( pNew->aLTerm[i]==0 ){ 3225 /* The non-zero argvIdx values must be contiguous. Raise an 3226 ** error if they are not */ 3227 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3228 testcase( pIdxInfo->needToFreeIdxStr ); 3229 return SQLITE_ERROR; 3230 } 3231 } 3232 assert( pNew->nLTerm<=pNew->nLSlot ); 3233 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 3234 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 3235 pIdxInfo->needToFreeIdxStr = 0; 3236 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 3237 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 3238 pIdxInfo->nOrderBy : 0); 3239 pNew->rSetup = 0; 3240 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 3241 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 3242 3243 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated 3244 ** that the scan will visit at most one row. Clear it otherwise. */ 3245 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ 3246 pNew->wsFlags |= WHERE_ONEROW; 3247 }else{ 3248 pNew->wsFlags &= ~WHERE_ONEROW; 3249 } 3250 rc = whereLoopInsert(pBuilder, pNew); 3251 if( pNew->u.vtab.needFree ){ 3252 sqlite3_free(pNew->u.vtab.idxStr); 3253 pNew->u.vtab.needFree = 0; 3254 } 3255 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", 3256 *pbIn, (sqlite3_uint64)mPrereq, 3257 (sqlite3_uint64)(pNew->prereq & ~mPrereq))); 3258 3259 return rc; 3260 } 3261 3262 /* 3263 ** If this function is invoked from within an xBestIndex() callback, it 3264 ** returns a pointer to a buffer containing the name of the collation 3265 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint 3266 ** array. Or, if iCons is out of range or there is no active xBestIndex 3267 ** call, return NULL. 3268 */ 3269 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){ 3270 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3271 const char *zRet = 0; 3272 if( iCons>=0 && iCons<pIdxInfo->nConstraint ){ 3273 CollSeq *pC = 0; 3274 int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset; 3275 Expr *pX = pHidden->pWC->a[iTerm].pExpr; 3276 if( pX->pLeft ){ 3277 pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX); 3278 } 3279 zRet = (pC ? pC->zName : sqlite3StrBINARY); 3280 } 3281 return zRet; 3282 } 3283 3284 /* 3285 ** Add all WhereLoop objects for a table of the join identified by 3286 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 3287 ** 3288 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and 3289 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause 3290 ** entries that occur before the virtual table in the FROM clause and are 3291 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the 3292 ** mUnusable mask contains all FROM clause entries that occur after the 3293 ** virtual table and are separated from it by at least one LEFT or 3294 ** CROSS JOIN. 3295 ** 3296 ** For example, if the query were: 3297 ** 3298 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; 3299 ** 3300 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). 3301 ** 3302 ** All the tables in mPrereq must be scanned before the current virtual 3303 ** table. So any terms for which all prerequisites are satisfied by 3304 ** mPrereq may be specified as "usable" in all calls to xBestIndex. 3305 ** Conversely, all tables in mUnusable must be scanned after the current 3306 ** virtual table, so any terms for which the prerequisites overlap with 3307 ** mUnusable should always be configured as "not-usable" for xBestIndex. 3308 */ 3309 static int whereLoopAddVirtual( 3310 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3311 Bitmask mPrereq, /* Tables that must be scanned before this one */ 3312 Bitmask mUnusable /* Tables that must be scanned after this one */ 3313 ){ 3314 int rc = SQLITE_OK; /* Return code */ 3315 WhereInfo *pWInfo; /* WHERE analysis context */ 3316 Parse *pParse; /* The parsing context */ 3317 WhereClause *pWC; /* The WHERE clause */ 3318 struct SrcList_item *pSrc; /* The FROM clause term to search */ 3319 sqlite3_index_info *p; /* Object to pass to xBestIndex() */ 3320 int nConstraint; /* Number of constraints in p */ 3321 int bIn; /* True if plan uses IN(...) operator */ 3322 WhereLoop *pNew; 3323 Bitmask mBest; /* Tables used by best possible plan */ 3324 u16 mNoOmit; 3325 3326 assert( (mPrereq & mUnusable)==0 ); 3327 pWInfo = pBuilder->pWInfo; 3328 pParse = pWInfo->pParse; 3329 pWC = pBuilder->pWC; 3330 pNew = pBuilder->pNew; 3331 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 3332 assert( IsVirtual(pSrc->pTab) ); 3333 p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy, 3334 &mNoOmit); 3335 if( p==0 ) return SQLITE_NOMEM_BKPT; 3336 pNew->rSetup = 0; 3337 pNew->wsFlags = WHERE_VIRTUALTABLE; 3338 pNew->nLTerm = 0; 3339 pNew->u.vtab.needFree = 0; 3340 nConstraint = p->nConstraint; 3341 if( whereLoopResize(pParse->db, pNew, nConstraint) ){ 3342 sqlite3DbFree(pParse->db, p); 3343 return SQLITE_NOMEM_BKPT; 3344 } 3345 3346 /* First call xBestIndex() with all constraints usable. */ 3347 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName)); 3348 WHERETRACE(0x40, (" VirtualOne: all usable\n")); 3349 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn); 3350 3351 /* If the call to xBestIndex() with all terms enabled produced a plan 3352 ** that does not require any source tables (IOW: a plan with mBest==0) 3353 ** and does not use an IN(...) operator, then there is no point in making 3354 ** any further calls to xBestIndex() since they will all return the same 3355 ** result (if the xBestIndex() implementation is sane). */ 3356 if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){ 3357 int seenZero = 0; /* True if a plan with no prereqs seen */ 3358 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ 3359 Bitmask mPrev = 0; 3360 Bitmask mBestNoIn = 0; 3361 3362 /* If the plan produced by the earlier call uses an IN(...) term, call 3363 ** xBestIndex again, this time with IN(...) terms disabled. */ 3364 if( bIn ){ 3365 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n")); 3366 rc = whereLoopAddVirtualOne( 3367 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn); 3368 assert( bIn==0 ); 3369 mBestNoIn = pNew->prereq & ~mPrereq; 3370 if( mBestNoIn==0 ){ 3371 seenZero = 1; 3372 seenZeroNoIN = 1; 3373 } 3374 } 3375 3376 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) 3377 ** in the set of terms that apply to the current virtual table. */ 3378 while( rc==SQLITE_OK ){ 3379 int i; 3380 Bitmask mNext = ALLBITS; 3381 assert( mNext>0 ); 3382 for(i=0; i<nConstraint; i++){ 3383 Bitmask mThis = ( 3384 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq 3385 ); 3386 if( mThis>mPrev && mThis<mNext ) mNext = mThis; 3387 } 3388 mPrev = mNext; 3389 if( mNext==ALLBITS ) break; 3390 if( mNext==mBest || mNext==mBestNoIn ) continue; 3391 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n", 3392 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext)); 3393 rc = whereLoopAddVirtualOne( 3394 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn); 3395 if( pNew->prereq==mPrereq ){ 3396 seenZero = 1; 3397 if( bIn==0 ) seenZeroNoIN = 1; 3398 } 3399 } 3400 3401 /* If the calls to xBestIndex() in the above loop did not find a plan 3402 ** that requires no source tables at all (i.e. one guaranteed to be 3403 ** usable), make a call here with all source tables disabled */ 3404 if( rc==SQLITE_OK && seenZero==0 ){ 3405 WHERETRACE(0x40, (" VirtualOne: all disabled\n")); 3406 rc = whereLoopAddVirtualOne( 3407 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn); 3408 if( bIn==0 ) seenZeroNoIN = 1; 3409 } 3410 3411 /* If the calls to xBestIndex() have so far failed to find a plan 3412 ** that requires no source tables at all and does not use an IN(...) 3413 ** operator, make a final call to obtain one here. */ 3414 if( rc==SQLITE_OK && seenZeroNoIN==0 ){ 3415 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n")); 3416 rc = whereLoopAddVirtualOne( 3417 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn); 3418 } 3419 } 3420 3421 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr); 3422 sqlite3DbFreeNN(pParse->db, p); 3423 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc)); 3424 return rc; 3425 } 3426 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3427 3428 /* 3429 ** Add WhereLoop entries to handle OR terms. This works for either 3430 ** btrees or virtual tables. 3431 */ 3432 static int whereLoopAddOr( 3433 WhereLoopBuilder *pBuilder, 3434 Bitmask mPrereq, 3435 Bitmask mUnusable 3436 ){ 3437 WhereInfo *pWInfo = pBuilder->pWInfo; 3438 WhereClause *pWC; 3439 WhereLoop *pNew; 3440 WhereTerm *pTerm, *pWCEnd; 3441 int rc = SQLITE_OK; 3442 int iCur; 3443 WhereClause tempWC; 3444 WhereLoopBuilder sSubBuild; 3445 WhereOrSet sSum, sCur; 3446 struct SrcList_item *pItem; 3447 3448 pWC = pBuilder->pWC; 3449 pWCEnd = pWC->a + pWC->nTerm; 3450 pNew = pBuilder->pNew; 3451 memset(&sSum, 0, sizeof(sSum)); 3452 pItem = pWInfo->pTabList->a + pNew->iTab; 3453 iCur = pItem->iCursor; 3454 3455 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 3456 if( (pTerm->eOperator & WO_OR)!=0 3457 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 3458 ){ 3459 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 3460 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 3461 WhereTerm *pOrTerm; 3462 int once = 1; 3463 int i, j; 3464 3465 sSubBuild = *pBuilder; 3466 sSubBuild.pOrderBy = 0; 3467 sSubBuild.pOrSet = &sCur; 3468 3469 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); 3470 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 3471 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 3472 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 3473 }else if( pOrTerm->leftCursor==iCur ){ 3474 tempWC.pWInfo = pWC->pWInfo; 3475 tempWC.pOuter = pWC; 3476 tempWC.op = TK_AND; 3477 tempWC.nTerm = 1; 3478 tempWC.a = pOrTerm; 3479 sSubBuild.pWC = &tempWC; 3480 }else{ 3481 continue; 3482 } 3483 sCur.n = 0; 3484 #ifdef WHERETRACE_ENABLED 3485 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 3486 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 3487 if( sqlite3WhereTrace & 0x400 ){ 3488 sqlite3WhereClausePrint(sSubBuild.pWC); 3489 } 3490 #endif 3491 #ifndef SQLITE_OMIT_VIRTUALTABLE 3492 if( IsVirtual(pItem->pTab) ){ 3493 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); 3494 }else 3495 #endif 3496 { 3497 rc = whereLoopAddBtree(&sSubBuild, mPrereq); 3498 } 3499 if( rc==SQLITE_OK ){ 3500 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); 3501 } 3502 assert( rc==SQLITE_OK || sCur.n==0 ); 3503 if( sCur.n==0 ){ 3504 sSum.n = 0; 3505 break; 3506 }else if( once ){ 3507 whereOrMove(&sSum, &sCur); 3508 once = 0; 3509 }else{ 3510 WhereOrSet sPrev; 3511 whereOrMove(&sPrev, &sSum); 3512 sSum.n = 0; 3513 for(i=0; i<sPrev.n; i++){ 3514 for(j=0; j<sCur.n; j++){ 3515 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 3516 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 3517 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 3518 } 3519 } 3520 } 3521 } 3522 pNew->nLTerm = 1; 3523 pNew->aLTerm[0] = pTerm; 3524 pNew->wsFlags = WHERE_MULTI_OR; 3525 pNew->rSetup = 0; 3526 pNew->iSortIdx = 0; 3527 memset(&pNew->u, 0, sizeof(pNew->u)); 3528 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 3529 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 3530 ** of all sub-scans required by the OR-scan. However, due to rounding 3531 ** errors, it may be that the cost of the OR-scan is equal to its 3532 ** most expensive sub-scan. Add the smallest possible penalty 3533 ** (equivalent to multiplying the cost by 1.07) to ensure that 3534 ** this does not happen. Otherwise, for WHERE clauses such as the 3535 ** following where there is an index on "y": 3536 ** 3537 ** WHERE likelihood(x=?, 0.99) OR y=? 3538 ** 3539 ** the planner may elect to "OR" together a full-table scan and an 3540 ** index lookup. And other similarly odd results. */ 3541 pNew->rRun = sSum.a[i].rRun + 1; 3542 pNew->nOut = sSum.a[i].nOut; 3543 pNew->prereq = sSum.a[i].prereq; 3544 rc = whereLoopInsert(pBuilder, pNew); 3545 } 3546 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); 3547 } 3548 } 3549 return rc; 3550 } 3551 3552 /* 3553 ** Add all WhereLoop objects for all tables 3554 */ 3555 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 3556 WhereInfo *pWInfo = pBuilder->pWInfo; 3557 Bitmask mPrereq = 0; 3558 Bitmask mPrior = 0; 3559 int iTab; 3560 SrcList *pTabList = pWInfo->pTabList; 3561 struct SrcList_item *pItem; 3562 struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel]; 3563 sqlite3 *db = pWInfo->pParse->db; 3564 int rc = SQLITE_OK; 3565 WhereLoop *pNew; 3566 u8 priorJointype = 0; 3567 3568 /* Loop over the tables in the join, from left to right */ 3569 pNew = pBuilder->pNew; 3570 whereLoopInit(pNew); 3571 pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT; 3572 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ 3573 Bitmask mUnusable = 0; 3574 pNew->iTab = iTab; 3575 pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR; 3576 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); 3577 if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){ 3578 /* This condition is true when pItem is the FROM clause term on the 3579 ** right-hand-side of a LEFT or CROSS JOIN. */ 3580 mPrereq = mPrior; 3581 } 3582 priorJointype = pItem->fg.jointype; 3583 #ifndef SQLITE_OMIT_VIRTUALTABLE 3584 if( IsVirtual(pItem->pTab) ){ 3585 struct SrcList_item *p; 3586 for(p=&pItem[1]; p<pEnd; p++){ 3587 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){ 3588 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); 3589 } 3590 } 3591 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); 3592 }else 3593 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3594 { 3595 rc = whereLoopAddBtree(pBuilder, mPrereq); 3596 } 3597 if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){ 3598 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); 3599 } 3600 mPrior |= pNew->maskSelf; 3601 if( rc || db->mallocFailed ){ 3602 if( rc==SQLITE_DONE ){ 3603 /* We hit the query planner search limit set by iPlanLimit */ 3604 sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search"); 3605 rc = SQLITE_OK; 3606 }else{ 3607 break; 3608 } 3609 } 3610 } 3611 3612 whereLoopClear(db, pNew); 3613 return rc; 3614 } 3615 3616 /* 3617 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th 3618 ** parameters) to see if it outputs rows in the requested ORDER BY 3619 ** (or GROUP BY) without requiring a separate sort operation. Return N: 3620 ** 3621 ** N>0: N terms of the ORDER BY clause are satisfied 3622 ** N==0: No terms of the ORDER BY clause are satisfied 3623 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 3624 ** 3625 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 3626 ** strict. With GROUP BY and DISTINCT the only requirement is that 3627 ** equivalent rows appear immediately adjacent to one another. GROUP BY 3628 ** and DISTINCT do not require rows to appear in any particular order as long 3629 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 3630 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 3631 ** pOrderBy terms must be matched in strict left-to-right order. 3632 */ 3633 static i8 wherePathSatisfiesOrderBy( 3634 WhereInfo *pWInfo, /* The WHERE clause */ 3635 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 3636 WherePath *pPath, /* The WherePath to check */ 3637 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */ 3638 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 3639 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 3640 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 3641 ){ 3642 u8 revSet; /* True if rev is known */ 3643 u8 rev; /* Composite sort order */ 3644 u8 revIdx; /* Index sort order */ 3645 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 3646 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 3647 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 3648 u16 eqOpMask; /* Allowed equality operators */ 3649 u16 nKeyCol; /* Number of key columns in pIndex */ 3650 u16 nColumn; /* Total number of ordered columns in the index */ 3651 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 3652 int iLoop; /* Index of WhereLoop in pPath being processed */ 3653 int i, j; /* Loop counters */ 3654 int iCur; /* Cursor number for current WhereLoop */ 3655 int iColumn; /* A column number within table iCur */ 3656 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 3657 WhereTerm *pTerm; /* A single term of the WHERE clause */ 3658 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 3659 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 3660 Index *pIndex; /* The index associated with pLoop */ 3661 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 3662 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 3663 Bitmask obDone; /* Mask of all ORDER BY terms */ 3664 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 3665 Bitmask ready; /* Mask of inner loops */ 3666 3667 /* 3668 ** We say the WhereLoop is "one-row" if it generates no more than one 3669 ** row of output. A WhereLoop is one-row if all of the following are true: 3670 ** (a) All index columns match with WHERE_COLUMN_EQ. 3671 ** (b) The index is unique 3672 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 3673 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 3674 ** 3675 ** We say the WhereLoop is "order-distinct" if the set of columns from 3676 ** that WhereLoop that are in the ORDER BY clause are different for every 3677 ** row of the WhereLoop. Every one-row WhereLoop is automatically 3678 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 3679 ** is not order-distinct. To be order-distinct is not quite the same as being 3680 ** UNIQUE since a UNIQUE column or index can have multiple rows that 3681 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 3682 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 3683 ** 3684 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 3685 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 3686 ** automatically order-distinct. 3687 */ 3688 3689 assert( pOrderBy!=0 ); 3690 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 3691 3692 nOrderBy = pOrderBy->nExpr; 3693 testcase( nOrderBy==BMS-1 ); 3694 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 3695 isOrderDistinct = 1; 3696 obDone = MASKBIT(nOrderBy)-1; 3697 orderDistinctMask = 0; 3698 ready = 0; 3699 eqOpMask = WO_EQ | WO_IS | WO_ISNULL; 3700 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN; 3701 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 3702 if( iLoop>0 ) ready |= pLoop->maskSelf; 3703 if( iLoop<nLoop ){ 3704 pLoop = pPath->aLoop[iLoop]; 3705 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue; 3706 }else{ 3707 pLoop = pLast; 3708 } 3709 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 3710 if( pLoop->u.vtab.isOrdered && (wctrlFlags & WHERE_DISTINCTBY)==0 ){ 3711 obSat = obDone; 3712 } 3713 break; 3714 }else if( wctrlFlags & WHERE_DISTINCTBY ){ 3715 pLoop->u.btree.nDistinctCol = 0; 3716 } 3717 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 3718 3719 /* Mark off any ORDER BY term X that is a column in the table of 3720 ** the current loop for which there is term in the WHERE 3721 ** clause of the form X IS NULL or X=? that reference only outer 3722 ** loops. 3723 */ 3724 for(i=0; i<nOrderBy; i++){ 3725 if( MASKBIT(i) & obSat ) continue; 3726 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 3727 if( pOBExpr->op!=TK_COLUMN ) continue; 3728 if( pOBExpr->iTable!=iCur ) continue; 3729 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 3730 ~ready, eqOpMask, 0); 3731 if( pTerm==0 ) continue; 3732 if( pTerm->eOperator==WO_IN ){ 3733 /* IN terms are only valid for sorting in the ORDER BY LIMIT 3734 ** optimization, and then only if they are actually used 3735 ** by the query plan */ 3736 assert( wctrlFlags & WHERE_ORDERBY_LIMIT ); 3737 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){} 3738 if( j>=pLoop->nLTerm ) continue; 3739 } 3740 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ 3741 if( sqlite3ExprCollSeqMatch(pWInfo->pParse, 3742 pOrderBy->a[i].pExpr, pTerm->pExpr)==0 ){ 3743 continue; 3744 } 3745 testcase( pTerm->pExpr->op==TK_IS ); 3746 } 3747 obSat |= MASKBIT(i); 3748 } 3749 3750 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 3751 if( pLoop->wsFlags & WHERE_IPK ){ 3752 pIndex = 0; 3753 nKeyCol = 0; 3754 nColumn = 1; 3755 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 3756 return 0; 3757 }else{ 3758 nKeyCol = pIndex->nKeyCol; 3759 nColumn = pIndex->nColumn; 3760 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 3761 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID 3762 || !HasRowid(pIndex->pTable)); 3763 isOrderDistinct = IsUniqueIndex(pIndex) 3764 && (pLoop->wsFlags & WHERE_SKIPSCAN)==0; 3765 } 3766 3767 /* Loop through all columns of the index and deal with the ones 3768 ** that are not constrained by == or IN. 3769 */ 3770 rev = revSet = 0; 3771 distinctColumns = 0; 3772 for(j=0; j<nColumn; j++){ 3773 u8 bOnce = 1; /* True to run the ORDER BY search loop */ 3774 3775 assert( j>=pLoop->u.btree.nEq 3776 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip) 3777 ); 3778 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){ 3779 u16 eOp = pLoop->aLTerm[j]->eOperator; 3780 3781 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when 3782 ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL 3783 ** terms imply that the index is not UNIQUE NOT NULL in which case 3784 ** the loop need to be marked as not order-distinct because it can 3785 ** have repeated NULL rows. 3786 ** 3787 ** If the current term is a column of an ((?,?) IN (SELECT...)) 3788 ** expression for which the SELECT returns more than one column, 3789 ** check that it is the only column used by this loop. Otherwise, 3790 ** if it is one of two or more, none of the columns can be 3791 ** considered to match an ORDER BY term. 3792 */ 3793 if( (eOp & eqOpMask)!=0 ){ 3794 if( eOp & (WO_ISNULL|WO_IS) ){ 3795 testcase( eOp & WO_ISNULL ); 3796 testcase( eOp & WO_IS ); 3797 testcase( isOrderDistinct ); 3798 isOrderDistinct = 0; 3799 } 3800 continue; 3801 }else if( ALWAYS(eOp & WO_IN) ){ 3802 /* ALWAYS() justification: eOp is an equality operator due to the 3803 ** j<pLoop->u.btree.nEq constraint above. Any equality other 3804 ** than WO_IN is captured by the previous "if". So this one 3805 ** always has to be WO_IN. */ 3806 Expr *pX = pLoop->aLTerm[j]->pExpr; 3807 for(i=j+1; i<pLoop->u.btree.nEq; i++){ 3808 if( pLoop->aLTerm[i]->pExpr==pX ){ 3809 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) ); 3810 bOnce = 0; 3811 break; 3812 } 3813 } 3814 } 3815 } 3816 3817 /* Get the column number in the table (iColumn) and sort order 3818 ** (revIdx) for the j-th column of the index. 3819 */ 3820 if( pIndex ){ 3821 iColumn = pIndex->aiColumn[j]; 3822 revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC; 3823 if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID; 3824 }else{ 3825 iColumn = XN_ROWID; 3826 revIdx = 0; 3827 } 3828 3829 /* An unconstrained column that might be NULL means that this 3830 ** WhereLoop is not well-ordered 3831 */ 3832 if( isOrderDistinct 3833 && iColumn>=0 3834 && j>=pLoop->u.btree.nEq 3835 && pIndex->pTable->aCol[iColumn].notNull==0 3836 ){ 3837 isOrderDistinct = 0; 3838 } 3839 3840 /* Find the ORDER BY term that corresponds to the j-th column 3841 ** of the index and mark that ORDER BY term off 3842 */ 3843 isMatch = 0; 3844 for(i=0; bOnce && i<nOrderBy; i++){ 3845 if( MASKBIT(i) & obSat ) continue; 3846 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 3847 testcase( wctrlFlags & WHERE_GROUPBY ); 3848 testcase( wctrlFlags & WHERE_DISTINCTBY ); 3849 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 3850 if( iColumn>=XN_ROWID ){ 3851 if( pOBExpr->op!=TK_COLUMN ) continue; 3852 if( pOBExpr->iTable!=iCur ) continue; 3853 if( pOBExpr->iColumn!=iColumn ) continue; 3854 }else{ 3855 Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr; 3856 if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){ 3857 continue; 3858 } 3859 } 3860 if( iColumn!=XN_ROWID ){ 3861 pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 3862 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 3863 } 3864 if( wctrlFlags & WHERE_DISTINCTBY ){ 3865 pLoop->u.btree.nDistinctCol = j+1; 3866 } 3867 isMatch = 1; 3868 break; 3869 } 3870 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 3871 /* Make sure the sort order is compatible in an ORDER BY clause. 3872 ** Sort order is irrelevant for a GROUP BY clause. */ 3873 if( revSet ){ 3874 if( (rev ^ revIdx)!=(pOrderBy->a[i].sortFlags&KEYINFO_ORDER_DESC) ){ 3875 isMatch = 0; 3876 } 3877 }else{ 3878 rev = revIdx ^ (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC); 3879 if( rev ) *pRevMask |= MASKBIT(iLoop); 3880 revSet = 1; 3881 } 3882 } 3883 if( isMatch && (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL) ){ 3884 if( j==pLoop->u.btree.nEq ){ 3885 pLoop->wsFlags |= WHERE_BIGNULL_SORT; 3886 }else{ 3887 isMatch = 0; 3888 } 3889 } 3890 if( isMatch ){ 3891 if( iColumn==XN_ROWID ){ 3892 testcase( distinctColumns==0 ); 3893 distinctColumns = 1; 3894 } 3895 obSat |= MASKBIT(i); 3896 }else{ 3897 /* No match found */ 3898 if( j==0 || j<nKeyCol ){ 3899 testcase( isOrderDistinct!=0 ); 3900 isOrderDistinct = 0; 3901 } 3902 break; 3903 } 3904 } /* end Loop over all index columns */ 3905 if( distinctColumns ){ 3906 testcase( isOrderDistinct==0 ); 3907 isOrderDistinct = 1; 3908 } 3909 } /* end-if not one-row */ 3910 3911 /* Mark off any other ORDER BY terms that reference pLoop */ 3912 if( isOrderDistinct ){ 3913 orderDistinctMask |= pLoop->maskSelf; 3914 for(i=0; i<nOrderBy; i++){ 3915 Expr *p; 3916 Bitmask mTerm; 3917 if( MASKBIT(i) & obSat ) continue; 3918 p = pOrderBy->a[i].pExpr; 3919 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); 3920 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; 3921 if( (mTerm&~orderDistinctMask)==0 ){ 3922 obSat |= MASKBIT(i); 3923 } 3924 } 3925 } 3926 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 3927 if( obSat==obDone ) return (i8)nOrderBy; 3928 if( !isOrderDistinct ){ 3929 for(i=nOrderBy-1; i>0; i--){ 3930 Bitmask m = MASKBIT(i) - 1; 3931 if( (obSat&m)==m ) return i; 3932 } 3933 return 0; 3934 } 3935 return -1; 3936 } 3937 3938 3939 /* 3940 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 3941 ** the planner assumes that the specified pOrderBy list is actually a GROUP 3942 ** BY clause - and so any order that groups rows as required satisfies the 3943 ** request. 3944 ** 3945 ** Normally, in this case it is not possible for the caller to determine 3946 ** whether or not the rows are really being delivered in sorted order, or 3947 ** just in some other order that provides the required grouping. However, 3948 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 3949 ** this function may be called on the returned WhereInfo object. It returns 3950 ** true if the rows really will be sorted in the specified order, or false 3951 ** otherwise. 3952 ** 3953 ** For example, assuming: 3954 ** 3955 ** CREATE INDEX i1 ON t1(x, Y); 3956 ** 3957 ** then 3958 ** 3959 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 3960 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 3961 */ 3962 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 3963 assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); 3964 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 3965 return pWInfo->sorted; 3966 } 3967 3968 #ifdef WHERETRACE_ENABLED 3969 /* For debugging use only: */ 3970 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 3971 static char zName[65]; 3972 int i; 3973 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 3974 if( pLast ) zName[i++] = pLast->cId; 3975 zName[i] = 0; 3976 return zName; 3977 } 3978 #endif 3979 3980 /* 3981 ** Return the cost of sorting nRow rows, assuming that the keys have 3982 ** nOrderby columns and that the first nSorted columns are already in 3983 ** order. 3984 */ 3985 static LogEst whereSortingCost( 3986 WhereInfo *pWInfo, 3987 LogEst nRow, 3988 int nOrderBy, 3989 int nSorted 3990 ){ 3991 /* TUNING: Estimated cost of a full external sort, where N is 3992 ** the number of rows to sort is: 3993 ** 3994 ** cost = (3.0 * N * log(N)). 3995 ** 3996 ** Or, if the order-by clause has X terms but only the last Y 3997 ** terms are out of order, then block-sorting will reduce the 3998 ** sorting cost to: 3999 ** 4000 ** cost = (3.0 * N * log(N)) * (Y/X) 4001 ** 4002 ** The (Y/X) term is implemented using stack variable rScale 4003 ** below. */ 4004 LogEst rScale, rSortCost; 4005 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); 4006 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 4007 rSortCost = nRow + rScale + 16; 4008 4009 /* Multiple by log(M) where M is the number of output rows. 4010 ** Use the LIMIT for M if it is smaller */ 4011 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){ 4012 nRow = pWInfo->iLimit; 4013 } 4014 rSortCost += estLog(nRow); 4015 return rSortCost; 4016 } 4017 4018 /* 4019 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 4020 ** attempts to find the lowest cost path that visits each WhereLoop 4021 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 4022 ** 4023 ** Assume that the total number of output rows that will need to be sorted 4024 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 4025 ** costs if nRowEst==0. 4026 ** 4027 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 4028 ** error occurs. 4029 */ 4030 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 4031 int mxChoice; /* Maximum number of simultaneous paths tracked */ 4032 int nLoop; /* Number of terms in the join */ 4033 Parse *pParse; /* Parsing context */ 4034 sqlite3 *db; /* The database connection */ 4035 int iLoop; /* Loop counter over the terms of the join */ 4036 int ii, jj; /* Loop counters */ 4037 int mxI = 0; /* Index of next entry to replace */ 4038 int nOrderBy; /* Number of ORDER BY clause terms */ 4039 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 4040 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 4041 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 4042 WherePath *aFrom; /* All nFrom paths at the previous level */ 4043 WherePath *aTo; /* The nTo best paths at the current level */ 4044 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 4045 WherePath *pTo; /* An element of aTo[] that we are working on */ 4046 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 4047 WhereLoop **pX; /* Used to divy up the pSpace memory */ 4048 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 4049 char *pSpace; /* Temporary memory used by this routine */ 4050 int nSpace; /* Bytes of space allocated at pSpace */ 4051 4052 pParse = pWInfo->pParse; 4053 db = pParse->db; 4054 nLoop = pWInfo->nLevel; 4055 /* TUNING: For simple queries, only the best path is tracked. 4056 ** For 2-way joins, the 5 best paths are followed. 4057 ** For joins of 3 or more tables, track the 10 best paths */ 4058 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 4059 assert( nLoop<=pWInfo->pTabList->nSrc ); 4060 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); 4061 4062 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 4063 ** case the purpose of this call is to estimate the number of rows returned 4064 ** by the overall query. Once this estimate has been obtained, the caller 4065 ** will invoke this function a second time, passing the estimate as the 4066 ** nRowEst parameter. */ 4067 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 4068 nOrderBy = 0; 4069 }else{ 4070 nOrderBy = pWInfo->pOrderBy->nExpr; 4071 } 4072 4073 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 4074 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 4075 nSpace += sizeof(LogEst) * nOrderBy; 4076 pSpace = sqlite3DbMallocRawNN(db, nSpace); 4077 if( pSpace==0 ) return SQLITE_NOMEM_BKPT; 4078 aTo = (WherePath*)pSpace; 4079 aFrom = aTo+mxChoice; 4080 memset(aFrom, 0, sizeof(aFrom[0])); 4081 pX = (WhereLoop**)(aFrom+mxChoice); 4082 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 4083 pFrom->aLoop = pX; 4084 } 4085 if( nOrderBy ){ 4086 /* If there is an ORDER BY clause and it is not being ignored, set up 4087 ** space for the aSortCost[] array. Each element of the aSortCost array 4088 ** is either zero - meaning it has not yet been initialized - or the 4089 ** cost of sorting nRowEst rows of data where the first X terms of 4090 ** the ORDER BY clause are already in order, where X is the array 4091 ** index. */ 4092 aSortCost = (LogEst*)pX; 4093 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 4094 } 4095 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 4096 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 4097 4098 /* Seed the search with a single WherePath containing zero WhereLoops. 4099 ** 4100 ** TUNING: Do not let the number of iterations go above 28. If the cost 4101 ** of computing an automatic index is not paid back within the first 28 4102 ** rows, then do not use the automatic index. */ 4103 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); 4104 nFrom = 1; 4105 assert( aFrom[0].isOrdered==0 ); 4106 if( nOrderBy ){ 4107 /* If nLoop is zero, then there are no FROM terms in the query. Since 4108 ** in this case the query may return a maximum of one row, the results 4109 ** are already in the requested order. Set isOrdered to nOrderBy to 4110 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 4111 ** -1, indicating that the result set may or may not be ordered, 4112 ** depending on the loops added to the current plan. */ 4113 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 4114 } 4115 4116 /* Compute successively longer WherePaths using the previous generation 4117 ** of WherePaths as the basis for the next. Keep track of the mxChoice 4118 ** best paths at each generation */ 4119 for(iLoop=0; iLoop<nLoop; iLoop++){ 4120 nTo = 0; 4121 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 4122 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 4123 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 4124 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 4125 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 4126 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ 4127 Bitmask maskNew; /* Mask of src visited by (..) */ 4128 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ 4129 4130 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 4131 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 4132 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){ 4133 /* Do not use an automatic index if the this loop is expected 4134 ** to run less than 1.25 times. It is tempting to also exclude 4135 ** automatic index usage on an outer loop, but sometimes an automatic 4136 ** index is useful in the outer loop of a correlated subquery. */ 4137 assert( 10==sqlite3LogEst(2) ); 4138 continue; 4139 } 4140 4141 /* At this point, pWLoop is a candidate to be the next loop. 4142 ** Compute its cost */ 4143 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 4144 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 4145 nOut = pFrom->nRow + pWLoop->nOut; 4146 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 4147 if( isOrdered<0 ){ 4148 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 4149 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 4150 iLoop, pWLoop, &revMask); 4151 }else{ 4152 revMask = pFrom->revLoop; 4153 } 4154 if( isOrdered>=0 && isOrdered<nOrderBy ){ 4155 if( aSortCost[isOrdered]==0 ){ 4156 aSortCost[isOrdered] = whereSortingCost( 4157 pWInfo, nRowEst, nOrderBy, isOrdered 4158 ); 4159 } 4160 /* TUNING: Add a small extra penalty (5) to sorting as an 4161 ** extra encouragment to the query planner to select a plan 4162 ** where the rows emerge in the correct order without any sorting 4163 ** required. */ 4164 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5; 4165 4166 WHERETRACE(0x002, 4167 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 4168 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 4169 rUnsorted, rCost)); 4170 }else{ 4171 rCost = rUnsorted; 4172 rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */ 4173 } 4174 4175 /* Check to see if pWLoop should be added to the set of 4176 ** mxChoice best-so-far paths. 4177 ** 4178 ** First look for an existing path among best-so-far paths 4179 ** that covers the same set of loops and has the same isOrdered 4180 ** setting as the current path candidate. 4181 ** 4182 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 4183 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 4184 ** of legal values for isOrdered, -1..64. 4185 */ 4186 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 4187 if( pTo->maskLoop==maskNew 4188 && ((pTo->isOrdered^isOrdered)&0x80)==0 4189 ){ 4190 testcase( jj==nTo-1 ); 4191 break; 4192 } 4193 } 4194 if( jj>=nTo ){ 4195 /* None of the existing best-so-far paths match the candidate. */ 4196 if( nTo>=mxChoice 4197 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 4198 ){ 4199 /* The current candidate is no better than any of the mxChoice 4200 ** paths currently in the best-so-far buffer. So discard 4201 ** this candidate as not viable. */ 4202 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4203 if( sqlite3WhereTrace&0x4 ){ 4204 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n", 4205 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4206 isOrdered>=0 ? isOrdered+'0' : '?'); 4207 } 4208 #endif 4209 continue; 4210 } 4211 /* If we reach this points it means that the new candidate path 4212 ** needs to be added to the set of best-so-far paths. */ 4213 if( nTo<mxChoice ){ 4214 /* Increase the size of the aTo set by one */ 4215 jj = nTo++; 4216 }else{ 4217 /* New path replaces the prior worst to keep count below mxChoice */ 4218 jj = mxI; 4219 } 4220 pTo = &aTo[jj]; 4221 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4222 if( sqlite3WhereTrace&0x4 ){ 4223 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n", 4224 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4225 isOrdered>=0 ? isOrdered+'0' : '?'); 4226 } 4227 #endif 4228 }else{ 4229 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 4230 ** same set of loops and has the same isOrdered setting as the 4231 ** candidate path. Check to see if the candidate should replace 4232 ** pTo or if the candidate should be skipped. 4233 ** 4234 ** The conditional is an expanded vector comparison equivalent to: 4235 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted) 4236 */ 4237 if( pTo->rCost<rCost 4238 || (pTo->rCost==rCost 4239 && (pTo->nRow<nOut 4240 || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted) 4241 ) 4242 ) 4243 ){ 4244 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4245 if( sqlite3WhereTrace&0x4 ){ 4246 sqlite3DebugPrintf( 4247 "Skip %s cost=%-3d,%3d,%3d order=%c", 4248 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4249 isOrdered>=0 ? isOrdered+'0' : '?'); 4250 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n", 4251 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4252 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4253 } 4254 #endif 4255 /* Discard the candidate path from further consideration */ 4256 testcase( pTo->rCost==rCost ); 4257 continue; 4258 } 4259 testcase( pTo->rCost==rCost+1 ); 4260 /* Control reaches here if the candidate path is better than the 4261 ** pTo path. Replace pTo with the candidate. */ 4262 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4263 if( sqlite3WhereTrace&0x4 ){ 4264 sqlite3DebugPrintf( 4265 "Update %s cost=%-3d,%3d,%3d order=%c", 4266 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4267 isOrdered>=0 ? isOrdered+'0' : '?'); 4268 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n", 4269 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4270 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4271 } 4272 #endif 4273 } 4274 /* pWLoop is a winner. Add it to the set of best so far */ 4275 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 4276 pTo->revLoop = revMask; 4277 pTo->nRow = nOut; 4278 pTo->rCost = rCost; 4279 pTo->rUnsorted = rUnsorted; 4280 pTo->isOrdered = isOrdered; 4281 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 4282 pTo->aLoop[iLoop] = pWLoop; 4283 if( nTo>=mxChoice ){ 4284 mxI = 0; 4285 mxCost = aTo[0].rCost; 4286 mxUnsorted = aTo[0].nRow; 4287 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 4288 if( pTo->rCost>mxCost 4289 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 4290 ){ 4291 mxCost = pTo->rCost; 4292 mxUnsorted = pTo->rUnsorted; 4293 mxI = jj; 4294 } 4295 } 4296 } 4297 } 4298 } 4299 4300 #ifdef WHERETRACE_ENABLED /* >=2 */ 4301 if( sqlite3WhereTrace & 0x02 ){ 4302 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 4303 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 4304 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 4305 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4306 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 4307 if( pTo->isOrdered>0 ){ 4308 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 4309 }else{ 4310 sqlite3DebugPrintf("\n"); 4311 } 4312 } 4313 } 4314 #endif 4315 4316 /* Swap the roles of aFrom and aTo for the next generation */ 4317 pFrom = aTo; 4318 aTo = aFrom; 4319 aFrom = pFrom; 4320 nFrom = nTo; 4321 } 4322 4323 if( nFrom==0 ){ 4324 sqlite3ErrorMsg(pParse, "no query solution"); 4325 sqlite3DbFreeNN(db, pSpace); 4326 return SQLITE_ERROR; 4327 } 4328 4329 /* Find the lowest cost path. pFrom will be left pointing to that path */ 4330 pFrom = aFrom; 4331 for(ii=1; ii<nFrom; ii++){ 4332 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 4333 } 4334 assert( pWInfo->nLevel==nLoop ); 4335 /* Load the lowest cost path into pWInfo */ 4336 for(iLoop=0; iLoop<nLoop; iLoop++){ 4337 WhereLevel *pLevel = pWInfo->a + iLoop; 4338 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 4339 pLevel->iFrom = pWLoop->iTab; 4340 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 4341 } 4342 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 4343 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 4344 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 4345 && nRowEst 4346 ){ 4347 Bitmask notUsed; 4348 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, 4349 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 4350 if( rc==pWInfo->pResultSet->nExpr ){ 4351 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4352 } 4353 } 4354 pWInfo->bOrderedInnerLoop = 0; 4355 if( pWInfo->pOrderBy ){ 4356 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 4357 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 4358 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4359 } 4360 }else{ 4361 pWInfo->nOBSat = pFrom->isOrdered; 4362 pWInfo->revMask = pFrom->revLoop; 4363 if( pWInfo->nOBSat<=0 ){ 4364 pWInfo->nOBSat = 0; 4365 if( nLoop>0 ){ 4366 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags; 4367 if( (wsFlags & WHERE_ONEROW)==0 4368 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN) 4369 ){ 4370 Bitmask m = 0; 4371 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 4372 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m); 4373 testcase( wsFlags & WHERE_IPK ); 4374 testcase( wsFlags & WHERE_COLUMN_IN ); 4375 if( rc==pWInfo->pOrderBy->nExpr ){ 4376 pWInfo->bOrderedInnerLoop = 1; 4377 pWInfo->revMask = m; 4378 } 4379 } 4380 } 4381 } 4382 } 4383 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 4384 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 4385 ){ 4386 Bitmask revMask = 0; 4387 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 4388 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 4389 ); 4390 assert( pWInfo->sorted==0 ); 4391 if( nOrder==pWInfo->pOrderBy->nExpr ){ 4392 pWInfo->sorted = 1; 4393 pWInfo->revMask = revMask; 4394 } 4395 } 4396 } 4397 4398 4399 pWInfo->nRowOut = pFrom->nRow; 4400 4401 /* Free temporary memory and return success */ 4402 sqlite3DbFreeNN(db, pSpace); 4403 return SQLITE_OK; 4404 } 4405 4406 /* 4407 ** Most queries use only a single table (they are not joins) and have 4408 ** simple == constraints against indexed fields. This routine attempts 4409 ** to plan those simple cases using much less ceremony than the 4410 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 4411 ** times for the common case. 4412 ** 4413 ** Return non-zero on success, if this query can be handled by this 4414 ** no-frills query planner. Return zero if this query needs the 4415 ** general-purpose query planner. 4416 */ 4417 static int whereShortCut(WhereLoopBuilder *pBuilder){ 4418 WhereInfo *pWInfo; 4419 struct SrcList_item *pItem; 4420 WhereClause *pWC; 4421 WhereTerm *pTerm; 4422 WhereLoop *pLoop; 4423 int iCur; 4424 int j; 4425 Table *pTab; 4426 Index *pIdx; 4427 4428 pWInfo = pBuilder->pWInfo; 4429 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0; 4430 assert( pWInfo->pTabList->nSrc>=1 ); 4431 pItem = pWInfo->pTabList->a; 4432 pTab = pItem->pTab; 4433 if( IsVirtual(pTab) ) return 0; 4434 if( pItem->fg.isIndexedBy ) return 0; 4435 iCur = pItem->iCursor; 4436 pWC = &pWInfo->sWC; 4437 pLoop = pBuilder->pNew; 4438 pLoop->wsFlags = 0; 4439 pLoop->nSkip = 0; 4440 pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0); 4441 if( pTerm ){ 4442 testcase( pTerm->eOperator & WO_IS ); 4443 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 4444 pLoop->aLTerm[0] = pTerm; 4445 pLoop->nLTerm = 1; 4446 pLoop->u.btree.nEq = 1; 4447 /* TUNING: Cost of a rowid lookup is 10 */ 4448 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 4449 }else{ 4450 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4451 int opMask; 4452 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 4453 if( !IsUniqueIndex(pIdx) 4454 || pIdx->pPartIdxWhere!=0 4455 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 4456 ) continue; 4457 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; 4458 for(j=0; j<pIdx->nKeyCol; j++){ 4459 pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx); 4460 if( pTerm==0 ) break; 4461 testcase( pTerm->eOperator & WO_IS ); 4462 pLoop->aLTerm[j] = pTerm; 4463 } 4464 if( j!=pIdx->nKeyCol ) continue; 4465 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 4466 if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){ 4467 pLoop->wsFlags |= WHERE_IDX_ONLY; 4468 } 4469 pLoop->nLTerm = j; 4470 pLoop->u.btree.nEq = j; 4471 pLoop->u.btree.pIndex = pIdx; 4472 /* TUNING: Cost of a unique index lookup is 15 */ 4473 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 4474 break; 4475 } 4476 } 4477 if( pLoop->wsFlags ){ 4478 pLoop->nOut = (LogEst)1; 4479 pWInfo->a[0].pWLoop = pLoop; 4480 assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] ); 4481 pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */ 4482 pWInfo->a[0].iTabCur = iCur; 4483 pWInfo->nRowOut = 1; 4484 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 4485 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 4486 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4487 } 4488 #ifdef SQLITE_DEBUG 4489 pLoop->cId = '0'; 4490 #endif 4491 return 1; 4492 } 4493 return 0; 4494 } 4495 4496 /* 4497 ** Helper function for exprIsDeterministic(). 4498 */ 4499 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){ 4500 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){ 4501 pWalker->eCode = 0; 4502 return WRC_Abort; 4503 } 4504 return WRC_Continue; 4505 } 4506 4507 /* 4508 ** Return true if the expression contains no non-deterministic SQL 4509 ** functions. Do not consider non-deterministic SQL functions that are 4510 ** part of sub-select statements. 4511 */ 4512 static int exprIsDeterministic(Expr *p){ 4513 Walker w; 4514 memset(&w, 0, sizeof(w)); 4515 w.eCode = 1; 4516 w.xExprCallback = exprNodeIsDeterministic; 4517 w.xSelectCallback = sqlite3SelectWalkFail; 4518 sqlite3WalkExpr(&w, p); 4519 return w.eCode; 4520 } 4521 4522 /* 4523 ** Generate the beginning of the loop used for WHERE clause processing. 4524 ** The return value is a pointer to an opaque structure that contains 4525 ** information needed to terminate the loop. Later, the calling routine 4526 ** should invoke sqlite3WhereEnd() with the return value of this function 4527 ** in order to complete the WHERE clause processing. 4528 ** 4529 ** If an error occurs, this routine returns NULL. 4530 ** 4531 ** The basic idea is to do a nested loop, one loop for each table in 4532 ** the FROM clause of a select. (INSERT and UPDATE statements are the 4533 ** same as a SELECT with only a single table in the FROM clause.) For 4534 ** example, if the SQL is this: 4535 ** 4536 ** SELECT * FROM t1, t2, t3 WHERE ...; 4537 ** 4538 ** Then the code generated is conceptually like the following: 4539 ** 4540 ** foreach row1 in t1 do \ Code generated 4541 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 4542 ** foreach row3 in t3 do / 4543 ** ... 4544 ** end \ Code generated 4545 ** end |-- by sqlite3WhereEnd() 4546 ** end / 4547 ** 4548 ** Note that the loops might not be nested in the order in which they 4549 ** appear in the FROM clause if a different order is better able to make 4550 ** use of indices. Note also that when the IN operator appears in 4551 ** the WHERE clause, it might result in additional nested loops for 4552 ** scanning through all values on the right-hand side of the IN. 4553 ** 4554 ** There are Btree cursors associated with each table. t1 uses cursor 4555 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 4556 ** And so forth. This routine generates code to open those VDBE cursors 4557 ** and sqlite3WhereEnd() generates the code to close them. 4558 ** 4559 ** The code that sqlite3WhereBegin() generates leaves the cursors named 4560 ** in pTabList pointing at their appropriate entries. The [...] code 4561 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 4562 ** data from the various tables of the loop. 4563 ** 4564 ** If the WHERE clause is empty, the foreach loops must each scan their 4565 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 4566 ** the tables have indices and there are terms in the WHERE clause that 4567 ** refer to those indices, a complete table scan can be avoided and the 4568 ** code will run much faster. Most of the work of this routine is checking 4569 ** to see if there are indices that can be used to speed up the loop. 4570 ** 4571 ** Terms of the WHERE clause are also used to limit which rows actually 4572 ** make it to the "..." in the middle of the loop. After each "foreach", 4573 ** terms of the WHERE clause that use only terms in that loop and outer 4574 ** loops are evaluated and if false a jump is made around all subsequent 4575 ** inner loops (or around the "..." if the test occurs within the inner- 4576 ** most loop) 4577 ** 4578 ** OUTER JOINS 4579 ** 4580 ** An outer join of tables t1 and t2 is conceptally coded as follows: 4581 ** 4582 ** foreach row1 in t1 do 4583 ** flag = 0 4584 ** foreach row2 in t2 do 4585 ** start: 4586 ** ... 4587 ** flag = 1 4588 ** end 4589 ** if flag==0 then 4590 ** move the row2 cursor to a null row 4591 ** goto start 4592 ** fi 4593 ** end 4594 ** 4595 ** ORDER BY CLAUSE PROCESSING 4596 ** 4597 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 4598 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 4599 ** if there is one. If there is no ORDER BY clause or if this routine 4600 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 4601 ** 4602 ** The iIdxCur parameter is the cursor number of an index. If 4603 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index 4604 ** to use for OR clause processing. The WHERE clause should use this 4605 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 4606 ** the first cursor in an array of cursors for all indices. iIdxCur should 4607 ** be used to compute the appropriate cursor depending on which index is 4608 ** used. 4609 */ 4610 WhereInfo *sqlite3WhereBegin( 4611 Parse *pParse, /* The parser context */ 4612 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 4613 Expr *pWhere, /* The WHERE clause */ 4614 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 4615 ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */ 4616 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */ 4617 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number 4618 ** If WHERE_USE_LIMIT, then the limit amount */ 4619 ){ 4620 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 4621 int nTabList; /* Number of elements in pTabList */ 4622 WhereInfo *pWInfo; /* Will become the return value of this function */ 4623 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 4624 Bitmask notReady; /* Cursors that are not yet positioned */ 4625 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 4626 WhereMaskSet *pMaskSet; /* The expression mask set */ 4627 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 4628 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 4629 int ii; /* Loop counter */ 4630 sqlite3 *db; /* Database connection */ 4631 int rc; /* Return code */ 4632 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ 4633 4634 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( 4635 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 4636 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4637 )); 4638 4639 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */ 4640 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4641 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); 4642 4643 /* Variable initialization */ 4644 db = pParse->db; 4645 memset(&sWLB, 0, sizeof(sWLB)); 4646 4647 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 4648 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 4649 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; 4650 sWLB.pOrderBy = pOrderBy; 4651 4652 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 4653 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 4654 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 4655 wctrlFlags &= ~WHERE_WANT_DISTINCT; 4656 } 4657 4658 /* The number of tables in the FROM clause is limited by the number of 4659 ** bits in a Bitmask 4660 */ 4661 testcase( pTabList->nSrc==BMS ); 4662 if( pTabList->nSrc>BMS ){ 4663 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 4664 return 0; 4665 } 4666 4667 /* This function normally generates a nested loop for all tables in 4668 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should 4669 ** only generate code for the first table in pTabList and assume that 4670 ** any cursors associated with subsequent tables are uninitialized. 4671 */ 4672 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc; 4673 4674 /* Allocate and initialize the WhereInfo structure that will become the 4675 ** return value. A single allocation is used to store the WhereInfo 4676 ** struct, the contents of WhereInfo.a[], the WhereClause structure 4677 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 4678 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 4679 ** some architectures. Hence the ROUND8() below. 4680 */ 4681 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 4682 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop)); 4683 if( db->mallocFailed ){ 4684 sqlite3DbFree(db, pWInfo); 4685 pWInfo = 0; 4686 goto whereBeginError; 4687 } 4688 pWInfo->pParse = pParse; 4689 pWInfo->pTabList = pTabList; 4690 pWInfo->pOrderBy = pOrderBy; 4691 pWInfo->pWhere = pWhere; 4692 pWInfo->pResultSet = pResultSet; 4693 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 4694 pWInfo->nLevel = nTabList; 4695 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse); 4696 pWInfo->wctrlFlags = wctrlFlags; 4697 pWInfo->iLimit = iAuxArg; 4698 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 4699 memset(&pWInfo->nOBSat, 0, 4700 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat)); 4701 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel)); 4702 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ 4703 pMaskSet = &pWInfo->sMaskSet; 4704 sWLB.pWInfo = pWInfo; 4705 sWLB.pWC = &pWInfo->sWC; 4706 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 4707 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 4708 whereLoopInit(sWLB.pNew); 4709 #ifdef SQLITE_DEBUG 4710 sWLB.pNew->cId = '*'; 4711 #endif 4712 4713 /* Split the WHERE clause into separate subexpressions where each 4714 ** subexpression is separated by an AND operator. 4715 */ 4716 initMaskSet(pMaskSet); 4717 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); 4718 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); 4719 4720 /* Special case: No FROM clause 4721 */ 4722 if( nTabList==0 ){ 4723 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 4724 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4725 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4726 } 4727 ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW")); 4728 }else{ 4729 /* Assign a bit from the bitmask to every term in the FROM clause. 4730 ** 4731 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. 4732 ** 4733 ** The rule of the previous sentence ensures thta if X is the bitmask for 4734 ** a table T, then X-1 is the bitmask for all other tables to the left of T. 4735 ** Knowing the bitmask for all tables to the left of a left join is 4736 ** important. Ticket #3015. 4737 ** 4738 ** Note that bitmasks are created for all pTabList->nSrc tables in 4739 ** pTabList, not just the first nTabList tables. nTabList is normally 4740 ** equal to pTabList->nSrc but might be shortened to 1 if the 4741 ** WHERE_OR_SUBCLAUSE flag is set. 4742 */ 4743 ii = 0; 4744 do{ 4745 createMask(pMaskSet, pTabList->a[ii].iCursor); 4746 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); 4747 }while( (++ii)<pTabList->nSrc ); 4748 #ifdef SQLITE_DEBUG 4749 { 4750 Bitmask mx = 0; 4751 for(ii=0; ii<pTabList->nSrc; ii++){ 4752 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); 4753 assert( m>=mx ); 4754 mx = m; 4755 } 4756 } 4757 #endif 4758 } 4759 4760 /* Analyze all of the subexpressions. */ 4761 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); 4762 if( db->mallocFailed ) goto whereBeginError; 4763 4764 /* Special case: WHERE terms that do not refer to any tables in the join 4765 ** (constant expressions). Evaluate each such term, and jump over all the 4766 ** generated code if the result is not true. 4767 ** 4768 ** Do not do this if the expression contains non-deterministic functions 4769 ** that are not within a sub-select. This is not strictly required, but 4770 ** preserves SQLite's legacy behaviour in the following two cases: 4771 ** 4772 ** FROM ... WHERE random()>0; -- eval random() once per row 4773 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall 4774 */ 4775 for(ii=0; ii<sWLB.pWC->nTerm; ii++){ 4776 WhereTerm *pT = &sWLB.pWC->a[ii]; 4777 if( pT->wtFlags & TERM_VIRTUAL ) continue; 4778 if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){ 4779 sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL); 4780 pT->wtFlags |= TERM_CODED; 4781 } 4782 } 4783 4784 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4785 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ 4786 /* The DISTINCT marking is pointless. Ignore it. */ 4787 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4788 }else if( pOrderBy==0 ){ 4789 /* Try to ORDER BY the result set to make distinct processing easier */ 4790 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 4791 pWInfo->pOrderBy = pResultSet; 4792 } 4793 } 4794 4795 /* Construct the WhereLoop objects */ 4796 #if defined(WHERETRACE_ENABLED) 4797 if( sqlite3WhereTrace & 0xffff ){ 4798 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); 4799 if( wctrlFlags & WHERE_USE_LIMIT ){ 4800 sqlite3DebugPrintf(", limit: %d", iAuxArg); 4801 } 4802 sqlite3DebugPrintf(")\n"); 4803 if( sqlite3WhereTrace & 0x100 ){ 4804 Select sSelect; 4805 memset(&sSelect, 0, sizeof(sSelect)); 4806 sSelect.selFlags = SF_WhereBegin; 4807 sSelect.pSrc = pTabList; 4808 sSelect.pWhere = pWhere; 4809 sSelect.pOrderBy = pOrderBy; 4810 sSelect.pEList = pResultSet; 4811 sqlite3TreeViewSelect(0, &sSelect, 0); 4812 } 4813 } 4814 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 4815 sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n"); 4816 sqlite3WhereClausePrint(sWLB.pWC); 4817 } 4818 #endif 4819 4820 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 4821 rc = whereLoopAddAll(&sWLB); 4822 if( rc ) goto whereBeginError; 4823 4824 #ifdef WHERETRACE_ENABLED 4825 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ 4826 WhereLoop *p; 4827 int i; 4828 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 4829 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 4830 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 4831 p->cId = zLabel[i%(sizeof(zLabel)-1)]; 4832 whereLoopPrint(p, sWLB.pWC); 4833 } 4834 } 4835 #endif 4836 4837 wherePathSolver(pWInfo, 0); 4838 if( db->mallocFailed ) goto whereBeginError; 4839 if( pWInfo->pOrderBy ){ 4840 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 4841 if( db->mallocFailed ) goto whereBeginError; 4842 } 4843 } 4844 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 4845 pWInfo->revMask = ALLBITS; 4846 } 4847 if( pParse->nErr || NEVER(db->mallocFailed) ){ 4848 goto whereBeginError; 4849 } 4850 #ifdef WHERETRACE_ENABLED 4851 if( sqlite3WhereTrace ){ 4852 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 4853 if( pWInfo->nOBSat>0 ){ 4854 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 4855 } 4856 switch( pWInfo->eDistinct ){ 4857 case WHERE_DISTINCT_UNIQUE: { 4858 sqlite3DebugPrintf(" DISTINCT=unique"); 4859 break; 4860 } 4861 case WHERE_DISTINCT_ORDERED: { 4862 sqlite3DebugPrintf(" DISTINCT=ordered"); 4863 break; 4864 } 4865 case WHERE_DISTINCT_UNORDERED: { 4866 sqlite3DebugPrintf(" DISTINCT=unordered"); 4867 break; 4868 } 4869 } 4870 sqlite3DebugPrintf("\n"); 4871 for(ii=0; ii<pWInfo->nLevel; ii++){ 4872 whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 4873 } 4874 } 4875 #endif 4876 4877 /* Attempt to omit tables from the join that do not affect the result. 4878 ** For a table to not affect the result, the following must be true: 4879 ** 4880 ** 1) The query must not be an aggregate. 4881 ** 2) The table must be the RHS of a LEFT JOIN. 4882 ** 3) Either the query must be DISTINCT, or else the ON or USING clause 4883 ** must contain a constraint that limits the scan of the table to 4884 ** at most a single row. 4885 ** 4) The table must not be referenced by any part of the query apart 4886 ** from its own USING or ON clause. 4887 ** 4888 ** For example, given: 4889 ** 4890 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1); 4891 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2); 4892 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3); 4893 ** 4894 ** then table t2 can be omitted from the following: 4895 ** 4896 ** SELECT v1, v3 FROM t1 4897 ** LEFT JOIN t2 USING (t1.ipk=t2.ipk) 4898 ** LEFT JOIN t3 USING (t1.ipk=t3.ipk) 4899 ** 4900 ** or from: 4901 ** 4902 ** SELECT DISTINCT v1, v3 FROM t1 4903 ** LEFT JOIN t2 4904 ** LEFT JOIN t3 USING (t1.ipk=t3.ipk) 4905 */ 4906 notReady = ~(Bitmask)0; 4907 if( pWInfo->nLevel>=2 4908 && pResultSet!=0 /* guarantees condition (1) above */ 4909 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) 4910 ){ 4911 int i; 4912 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet); 4913 if( sWLB.pOrderBy ){ 4914 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy); 4915 } 4916 for(i=pWInfo->nLevel-1; i>=1; i--){ 4917 WhereTerm *pTerm, *pEnd; 4918 struct SrcList_item *pItem; 4919 pLoop = pWInfo->a[i].pWLoop; 4920 pItem = &pWInfo->pTabList->a[pLoop->iTab]; 4921 if( (pItem->fg.jointype & JT_LEFT)==0 ) continue; 4922 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 4923 && (pLoop->wsFlags & WHERE_ONEROW)==0 4924 ){ 4925 continue; 4926 } 4927 if( (tabUsed & pLoop->maskSelf)!=0 ) continue; 4928 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; 4929 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 4930 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 4931 if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 4932 || pTerm->pExpr->iRightJoinTable!=pItem->iCursor 4933 ){ 4934 break; 4935 } 4936 } 4937 } 4938 if( pTerm<pEnd ) continue; 4939 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); 4940 notReady &= ~pLoop->maskSelf; 4941 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 4942 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 4943 pTerm->wtFlags |= TERM_CODED; 4944 } 4945 } 4946 if( i!=pWInfo->nLevel-1 ){ 4947 int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel); 4948 memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte); 4949 } 4950 pWInfo->nLevel--; 4951 nTabList--; 4952 } 4953 } 4954 #if defined(WHERETRACE_ENABLED) 4955 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 4956 sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n"); 4957 sqlite3WhereClausePrint(sWLB.pWC); 4958 } 4959 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); 4960 #endif 4961 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 4962 4963 /* If the caller is an UPDATE or DELETE statement that is requesting 4964 ** to use a one-pass algorithm, determine if this is appropriate. 4965 ** 4966 ** A one-pass approach can be used if the caller has requested one 4967 ** and either (a) the scan visits at most one row or (b) each 4968 ** of the following are true: 4969 ** 4970 ** * the caller has indicated that a one-pass approach can be used 4971 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and 4972 ** * the table is not a virtual table, and 4973 ** * either the scan does not use the OR optimization or the caller 4974 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified 4975 ** for DELETE). 4976 ** 4977 ** The last qualification is because an UPDATE statement uses 4978 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can 4979 ** use a one-pass approach, and this is not set accurately for scans 4980 ** that use the OR optimization. 4981 */ 4982 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 4983 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ 4984 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; 4985 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; 4986 assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) ); 4987 if( bOnerow || ( 4988 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW) 4989 && !IsVirtual(pTabList->a[0].pTab) 4990 && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK)) 4991 )){ 4992 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; 4993 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ 4994 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ 4995 bFordelete = OPFLAG_FORDELETE; 4996 } 4997 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); 4998 } 4999 } 5000 } 5001 5002 /* Open all tables in the pTabList and any indices selected for 5003 ** searching those tables. 5004 */ 5005 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 5006 Table *pTab; /* Table to open */ 5007 int iDb; /* Index of database containing table/index */ 5008 struct SrcList_item *pTabItem; 5009 5010 pTabItem = &pTabList->a[pLevel->iFrom]; 5011 pTab = pTabItem->pTab; 5012 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5013 pLoop = pLevel->pWLoop; 5014 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ 5015 /* Do nothing */ 5016 }else 5017 #ifndef SQLITE_OMIT_VIRTUALTABLE 5018 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 5019 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 5020 int iCur = pTabItem->iCursor; 5021 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 5022 }else if( IsVirtual(pTab) ){ 5023 /* noop */ 5024 }else 5025 #endif 5026 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 5027 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ 5028 int op = OP_OpenRead; 5029 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5030 op = OP_OpenWrite; 5031 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 5032 }; 5033 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 5034 assert( pTabItem->iCursor==pLevel->iTabCur ); 5035 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); 5036 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); 5037 if( pWInfo->eOnePass==ONEPASS_OFF 5038 && pTab->nCol<BMS 5039 && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0 5040 ){ 5041 /* If we know that only a prefix of the record will be used, 5042 ** it is advantageous to reduce the "column count" field in 5043 ** the P4 operand of the OP_OpenRead/Write opcode. */ 5044 Bitmask b = pTabItem->colUsed; 5045 int n = 0; 5046 for(; b; b=b>>1, n++){} 5047 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); 5048 assert( n<=pTab->nCol ); 5049 } 5050 #ifdef SQLITE_ENABLE_CURSOR_HINTS 5051 if( pLoop->u.btree.pIndex!=0 ){ 5052 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); 5053 }else 5054 #endif 5055 { 5056 sqlite3VdbeChangeP5(v, bFordelete); 5057 } 5058 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5059 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, 5060 (const u8*)&pTabItem->colUsed, P4_INT64); 5061 #endif 5062 }else{ 5063 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5064 } 5065 if( pLoop->wsFlags & WHERE_INDEXED ){ 5066 Index *pIx = pLoop->u.btree.pIndex; 5067 int iIndexCur; 5068 int op = OP_OpenRead; 5069 /* iAuxArg is always set to a positive value if ONEPASS is possible */ 5070 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 5071 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 5072 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 5073 ){ 5074 /* This is one term of an OR-optimization using the PRIMARY KEY of a 5075 ** WITHOUT ROWID table. No need for a separate index */ 5076 iIndexCur = pLevel->iTabCur; 5077 op = 0; 5078 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5079 Index *pJ = pTabItem->pTab->pIndex; 5080 iIndexCur = iAuxArg; 5081 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 5082 while( ALWAYS(pJ) && pJ!=pIx ){ 5083 iIndexCur++; 5084 pJ = pJ->pNext; 5085 } 5086 op = OP_OpenWrite; 5087 pWInfo->aiCurOnePass[1] = iIndexCur; 5088 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ 5089 iIndexCur = iAuxArg; 5090 op = OP_ReopenIdx; 5091 }else{ 5092 iIndexCur = pParse->nTab++; 5093 } 5094 pLevel->iIdxCur = iIndexCur; 5095 assert( pIx->pSchema==pTab->pSchema ); 5096 assert( iIndexCur>=0 ); 5097 if( op ){ 5098 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 5099 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 5100 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 5101 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 5102 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0 5103 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 5104 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED 5105 ){ 5106 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */ 5107 } 5108 VdbeComment((v, "%s", pIx->zName)); 5109 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5110 { 5111 u64 colUsed = 0; 5112 int ii, jj; 5113 for(ii=0; ii<pIx->nColumn; ii++){ 5114 jj = pIx->aiColumn[ii]; 5115 if( jj<0 ) continue; 5116 if( jj>63 ) jj = 63; 5117 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; 5118 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); 5119 } 5120 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, 5121 (u8*)&colUsed, P4_INT64); 5122 } 5123 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ 5124 } 5125 } 5126 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 5127 } 5128 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 5129 if( db->mallocFailed ) goto whereBeginError; 5130 5131 /* Generate the code to do the search. Each iteration of the for 5132 ** loop below generates code for a single nested loop of the VM 5133 ** program. 5134 */ 5135 for(ii=0; ii<nTabList; ii++){ 5136 int addrExplain; 5137 int wsFlags; 5138 pLevel = &pWInfo->a[ii]; 5139 wsFlags = pLevel->pWLoop->wsFlags; 5140 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 5141 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 5142 constructAutomaticIndex(pParse, &pWInfo->sWC, 5143 &pTabList->a[pLevel->iFrom], notReady, pLevel); 5144 if( db->mallocFailed ) goto whereBeginError; 5145 } 5146 #endif 5147 addrExplain = sqlite3WhereExplainOneScan( 5148 pParse, pTabList, pLevel, wctrlFlags 5149 ); 5150 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 5151 notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady); 5152 pWInfo->iContinue = pLevel->addrCont; 5153 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){ 5154 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); 5155 } 5156 } 5157 5158 /* Done. */ 5159 VdbeModuleComment((v, "Begin WHERE-core")); 5160 return pWInfo; 5161 5162 /* Jump here if malloc fails */ 5163 whereBeginError: 5164 if( pWInfo ){ 5165 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 5166 whereInfoFree(db, pWInfo); 5167 } 5168 return 0; 5169 } 5170 5171 /* 5172 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the 5173 ** index rather than the main table. In SQLITE_DEBUG mode, we want 5174 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine 5175 ** does that. 5176 */ 5177 #ifndef SQLITE_DEBUG 5178 # define OpcodeRewriteTrace(D,K,P) /* no-op */ 5179 #else 5180 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P) 5181 static void sqlite3WhereOpcodeRewriteTrace( 5182 sqlite3 *db, 5183 int pc, 5184 VdbeOp *pOp 5185 ){ 5186 if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return; 5187 sqlite3VdbePrintOp(0, pc, pOp); 5188 } 5189 #endif 5190 5191 /* 5192 ** Generate the end of the WHERE loop. See comments on 5193 ** sqlite3WhereBegin() for additional information. 5194 */ 5195 void sqlite3WhereEnd(WhereInfo *pWInfo){ 5196 Parse *pParse = pWInfo->pParse; 5197 Vdbe *v = pParse->pVdbe; 5198 int i; 5199 WhereLevel *pLevel; 5200 WhereLoop *pLoop; 5201 SrcList *pTabList = pWInfo->pTabList; 5202 sqlite3 *db = pParse->db; 5203 5204 /* Generate loop termination code. 5205 */ 5206 VdbeModuleComment((v, "End WHERE-core")); 5207 for(i=pWInfo->nLevel-1; i>=0; i--){ 5208 int addr; 5209 pLevel = &pWInfo->a[i]; 5210 pLoop = pLevel->pWLoop; 5211 if( pLevel->op!=OP_Noop ){ 5212 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 5213 int addrSeek = 0; 5214 Index *pIdx; 5215 int n; 5216 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED 5217 && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */ 5218 && (pLoop->wsFlags & WHERE_INDEXED)!=0 5219 && (pIdx = pLoop->u.btree.pIndex)->hasStat1 5220 && (n = pLoop->u.btree.nDistinctCol)>0 5221 && pIdx->aiRowLogEst[n]>=36 5222 ){ 5223 int r1 = pParse->nMem+1; 5224 int j, op; 5225 for(j=0; j<n; j++){ 5226 sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j); 5227 } 5228 pParse->nMem += n+1; 5229 op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT; 5230 addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n); 5231 VdbeCoverageIf(v, op==OP_SeekLT); 5232 VdbeCoverageIf(v, op==OP_SeekGT); 5233 sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2); 5234 } 5235 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */ 5236 /* The common case: Advance to the next row */ 5237 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 5238 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 5239 sqlite3VdbeChangeP5(v, pLevel->p5); 5240 VdbeCoverage(v); 5241 VdbeCoverageIf(v, pLevel->op==OP_Next); 5242 VdbeCoverageIf(v, pLevel->op==OP_Prev); 5243 VdbeCoverageIf(v, pLevel->op==OP_VNext); 5244 if( pLevel->regBignull ){ 5245 sqlite3VdbeResolveLabel(v, pLevel->addrBignull); 5246 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1); 5247 VdbeCoverage(v); 5248 } 5249 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 5250 if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek); 5251 #endif 5252 }else{ 5253 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 5254 } 5255 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ 5256 struct InLoop *pIn; 5257 int j; 5258 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 5259 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 5260 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 5261 if( pIn->eEndLoopOp!=OP_Noop ){ 5262 if( pIn->nPrefix ){ 5263 assert( pLoop->wsFlags & WHERE_IN_EARLYOUT ); 5264 sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur, 5265 sqlite3VdbeCurrentAddr(v)+2, 5266 pIn->iBase, pIn->nPrefix); 5267 VdbeCoverage(v); 5268 } 5269 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 5270 VdbeCoverage(v); 5271 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev); 5272 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next); 5273 } 5274 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 5275 } 5276 } 5277 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 5278 if( pLevel->addrSkip ){ 5279 sqlite3VdbeGoto(v, pLevel->addrSkip); 5280 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 5281 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 5282 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 5283 } 5284 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 5285 if( pLevel->addrLikeRep ){ 5286 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1), 5287 pLevel->addrLikeRep); 5288 VdbeCoverage(v); 5289 } 5290 #endif 5291 if( pLevel->iLeftJoin ){ 5292 int ws = pLoop->wsFlags; 5293 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 5294 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); 5295 if( (ws & WHERE_IDX_ONLY)==0 ){ 5296 assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor ); 5297 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur); 5298 } 5299 if( (ws & WHERE_INDEXED) 5300 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx) 5301 ){ 5302 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 5303 } 5304 if( pLevel->op==OP_Return ){ 5305 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 5306 }else{ 5307 sqlite3VdbeGoto(v, pLevel->addrFirst); 5308 } 5309 sqlite3VdbeJumpHere(v, addr); 5310 } 5311 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 5312 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 5313 } 5314 5315 /* The "break" point is here, just past the end of the outer loop. 5316 ** Set it. 5317 */ 5318 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 5319 5320 assert( pWInfo->nLevel<=pTabList->nSrc ); 5321 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 5322 int k, last; 5323 VdbeOp *pOp; 5324 Index *pIdx = 0; 5325 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 5326 Table *pTab = pTabItem->pTab; 5327 assert( pTab!=0 ); 5328 pLoop = pLevel->pWLoop; 5329 5330 /* For a co-routine, change all OP_Column references to the table of 5331 ** the co-routine into OP_Copy of result contained in a register. 5332 ** OP_Rowid becomes OP_Null. 5333 */ 5334 if( pTabItem->fg.viaCoroutine ){ 5335 testcase( pParse->db->mallocFailed ); 5336 translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur, 5337 pTabItem->regResult, 0); 5338 continue; 5339 } 5340 5341 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE 5342 /* Close all of the cursors that were opened by sqlite3WhereBegin. 5343 ** Except, do not close cursors that will be reused by the OR optimization 5344 ** (WHERE_OR_SUBCLAUSE). And do not close the OP_OpenWrite cursors 5345 ** created for the ONEPASS optimization. 5346 */ 5347 if( (pTab->tabFlags & TF_Ephemeral)==0 5348 && pTab->pSelect==0 5349 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 5350 ){ 5351 int ws = pLoop->wsFlags; 5352 if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){ 5353 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); 5354 } 5355 if( (ws & WHERE_INDEXED)!=0 5356 && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0 5357 && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1] 5358 ){ 5359 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); 5360 } 5361 } 5362 #endif 5363 5364 /* If this scan uses an index, make VDBE code substitutions to read data 5365 ** from the index instead of from the table where possible. In some cases 5366 ** this optimization prevents the table from ever being read, which can 5367 ** yield a significant performance boost. 5368 ** 5369 ** Calls to the code generator in between sqlite3WhereBegin and 5370 ** sqlite3WhereEnd will have created code that references the table 5371 ** directly. This loop scans all that code looking for opcodes 5372 ** that reference the table and converts them into opcodes that 5373 ** reference the index. 5374 */ 5375 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 5376 pIdx = pLoop->u.btree.pIndex; 5377 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 5378 pIdx = pLevel->u.pCovidx; 5379 } 5380 if( pIdx 5381 && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable)) 5382 && !db->mallocFailed 5383 ){ 5384 last = sqlite3VdbeCurrentAddr(v); 5385 k = pLevel->addrBody; 5386 #ifdef SQLITE_DEBUG 5387 if( db->flags & SQLITE_VdbeAddopTrace ){ 5388 printf("TRANSLATE opcodes in range %d..%d\n", k, last-1); 5389 } 5390 #endif 5391 pOp = sqlite3VdbeGetOp(v, k); 5392 for(; k<last; k++, pOp++){ 5393 if( pOp->p1!=pLevel->iTabCur ) continue; 5394 if( pOp->opcode==OP_Column 5395 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 5396 || pOp->opcode==OP_Offset 5397 #endif 5398 ){ 5399 int x = pOp->p2; 5400 assert( pIdx->pTable==pTab ); 5401 if( !HasRowid(pTab) ){ 5402 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 5403 x = pPk->aiColumn[x]; 5404 assert( x>=0 ); 5405 }else{ 5406 testcase( x!=sqlite3StorageColumnToTable(pTab,x) ); 5407 x = sqlite3StorageColumnToTable(pTab,x); 5408 } 5409 x = sqlite3TableColumnToIndex(pIdx, x); 5410 if( x>=0 ){ 5411 pOp->p2 = x; 5412 pOp->p1 = pLevel->iIdxCur; 5413 OpcodeRewriteTrace(db, k, pOp); 5414 } 5415 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 5416 || pWInfo->eOnePass ); 5417 }else if( pOp->opcode==OP_Rowid ){ 5418 pOp->p1 = pLevel->iIdxCur; 5419 pOp->opcode = OP_IdxRowid; 5420 OpcodeRewriteTrace(db, k, pOp); 5421 }else if( pOp->opcode==OP_IfNullRow ){ 5422 pOp->p1 = pLevel->iIdxCur; 5423 OpcodeRewriteTrace(db, k, pOp); 5424 } 5425 } 5426 #ifdef SQLITE_DEBUG 5427 if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n"); 5428 #endif 5429 } 5430 } 5431 5432 /* Final cleanup 5433 */ 5434 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 5435 whereInfoFree(db, pWInfo); 5436 return; 5437 } 5438