xref: /sqlite-3.40.0/src/where.c (revision e7952263)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /*
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly.  The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
26 **
27 ** This object is not an API and can be changed from one release to the
28 ** next.  As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
30 */
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33   WhereClause *pWC;   /* The Where clause being analyzed */
34   Parse *pParse;      /* The parsing context */
35 };
36 
37 /* Forward declaration of methods */
38 static int whereLoopResize(sqlite3*, WhereLoop*, int);
39 
40 /* Test variable that can be set to enable WHERE tracing */
41 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
42 /***/ int sqlite3WhereTrace = 0;
43 #endif
44 
45 
46 /*
47 ** Return the estimated number of output rows from a WHERE clause
48 */
49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
50   return pWInfo->nRowOut;
51 }
52 
53 /*
54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
55 ** WHERE clause returns outputs for DISTINCT processing.
56 */
57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
58   return pWInfo->eDistinct;
59 }
60 
61 /*
62 ** Return TRUE if the WHERE clause returns rows in ORDER BY order.
63 ** Return FALSE if the output needs to be sorted.
64 */
65 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
66   return pWInfo->nOBSat;
67 }
68 
69 /*
70 ** Return TRUE if the innermost loop of the WHERE clause implementation
71 ** returns rows in ORDER BY order for complete run of the inner loop.
72 **
73 ** Across multiple iterations of outer loops, the output rows need not be
74 ** sorted.  As long as rows are sorted for just the innermost loop, this
75 ** routine can return TRUE.
76 */
77 int sqlite3WhereOrderedInnerLoop(WhereInfo *pWInfo){
78   return pWInfo->bOrderedInnerLoop;
79 }
80 
81 /*
82 ** Return the VDBE address or label to jump to in order to continue
83 ** immediately with the next row of a WHERE clause.
84 */
85 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
86   assert( pWInfo->iContinue!=0 );
87   return pWInfo->iContinue;
88 }
89 
90 /*
91 ** Return the VDBE address or label to jump to in order to break
92 ** out of a WHERE loop.
93 */
94 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
95   return pWInfo->iBreak;
96 }
97 
98 /*
99 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
100 ** operate directly on the rowis returned by a WHERE clause.  Return
101 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
102 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
103 ** optimization can be used on multiple
104 **
105 ** If the ONEPASS optimization is used (if this routine returns true)
106 ** then also write the indices of open cursors used by ONEPASS
107 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
108 ** table and iaCur[1] gets the cursor used by an auxiliary index.
109 ** Either value may be -1, indicating that cursor is not used.
110 ** Any cursors returned will have been opened for writing.
111 **
112 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
113 ** unable to use the ONEPASS optimization.
114 */
115 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
116   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
117 #ifdef WHERETRACE_ENABLED
118   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
119     sqlite3DebugPrintf("%s cursors: %d %d\n",
120          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
121          aiCur[0], aiCur[1]);
122   }
123 #endif
124   return pWInfo->eOnePass;
125 }
126 
127 /*
128 ** Move the content of pSrc into pDest
129 */
130 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
131   pDest->n = pSrc->n;
132   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
133 }
134 
135 /*
136 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
137 **
138 ** The new entry might overwrite an existing entry, or it might be
139 ** appended, or it might be discarded.  Do whatever is the right thing
140 ** so that pSet keeps the N_OR_COST best entries seen so far.
141 */
142 static int whereOrInsert(
143   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
144   Bitmask prereq,        /* Prerequisites of the new entry */
145   LogEst rRun,           /* Run-cost of the new entry */
146   LogEst nOut            /* Number of outputs for the new entry */
147 ){
148   u16 i;
149   WhereOrCost *p;
150   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
151     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
152       goto whereOrInsert_done;
153     }
154     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
155       return 0;
156     }
157   }
158   if( pSet->n<N_OR_COST ){
159     p = &pSet->a[pSet->n++];
160     p->nOut = nOut;
161   }else{
162     p = pSet->a;
163     for(i=1; i<pSet->n; i++){
164       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
165     }
166     if( p->rRun<=rRun ) return 0;
167   }
168 whereOrInsert_done:
169   p->prereq = prereq;
170   p->rRun = rRun;
171   if( p->nOut>nOut ) p->nOut = nOut;
172   return 1;
173 }
174 
175 /*
176 ** Return the bitmask for the given cursor number.  Return 0 if
177 ** iCursor is not in the set.
178 */
179 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
180   int i;
181   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
182   for(i=0; i<pMaskSet->n; i++){
183     if( pMaskSet->ix[i]==iCursor ){
184       return MASKBIT(i);
185     }
186   }
187   return 0;
188 }
189 
190 /*
191 ** Create a new mask for cursor iCursor.
192 **
193 ** There is one cursor per table in the FROM clause.  The number of
194 ** tables in the FROM clause is limited by a test early in the
195 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
196 ** array will never overflow.
197 */
198 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
199   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
200   pMaskSet->ix[pMaskSet->n++] = iCursor;
201 }
202 
203 /*
204 ** Advance to the next WhereTerm that matches according to the criteria
205 ** established when the pScan object was initialized by whereScanInit().
206 ** Return NULL if there are no more matching WhereTerms.
207 */
208 static WhereTerm *whereScanNext(WhereScan *pScan){
209   int iCur;            /* The cursor on the LHS of the term */
210   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
211   Expr *pX;            /* An expression being tested */
212   WhereClause *pWC;    /* Shorthand for pScan->pWC */
213   WhereTerm *pTerm;    /* The term being tested */
214   int k = pScan->k;    /* Where to start scanning */
215 
216   assert( pScan->iEquiv<=pScan->nEquiv );
217   pWC = pScan->pWC;
218   while(1){
219     iColumn = pScan->aiColumn[pScan->iEquiv-1];
220     iCur = pScan->aiCur[pScan->iEquiv-1];
221     assert( pWC!=0 );
222     do{
223       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
224         if( pTerm->leftCursor==iCur
225          && pTerm->u.leftColumn==iColumn
226          && (iColumn!=XN_EXPR
227              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
228                                        pScan->pIdxExpr,iCur)==0)
229          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
230         ){
231           if( (pTerm->eOperator & WO_EQUIV)!=0
232            && pScan->nEquiv<ArraySize(pScan->aiCur)
233            && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN
234           ){
235             int j;
236             for(j=0; j<pScan->nEquiv; j++){
237               if( pScan->aiCur[j]==pX->iTable
238                && pScan->aiColumn[j]==pX->iColumn ){
239                   break;
240               }
241             }
242             if( j==pScan->nEquiv ){
243               pScan->aiCur[j] = pX->iTable;
244               pScan->aiColumn[j] = pX->iColumn;
245               pScan->nEquiv++;
246             }
247           }
248           if( (pTerm->eOperator & pScan->opMask)!=0 ){
249             /* Verify the affinity and collating sequence match */
250             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
251               CollSeq *pColl;
252               Parse *pParse = pWC->pWInfo->pParse;
253               pX = pTerm->pExpr;
254               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
255                 continue;
256               }
257               assert(pX->pLeft);
258               pColl = sqlite3BinaryCompareCollSeq(pParse,
259                                                   pX->pLeft, pX->pRight);
260               if( pColl==0 ) pColl = pParse->db->pDfltColl;
261               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
262                 continue;
263               }
264             }
265             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
266              && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
267              && pX->iTable==pScan->aiCur[0]
268              && pX->iColumn==pScan->aiColumn[0]
269             ){
270               testcase( pTerm->eOperator & WO_IS );
271               continue;
272             }
273             pScan->pWC = pWC;
274             pScan->k = k+1;
275             return pTerm;
276           }
277         }
278       }
279       pWC = pWC->pOuter;
280       k = 0;
281     }while( pWC!=0 );
282     if( pScan->iEquiv>=pScan->nEquiv ) break;
283     pWC = pScan->pOrigWC;
284     k = 0;
285     pScan->iEquiv++;
286   }
287   return 0;
288 }
289 
290 /*
291 ** Initialize a WHERE clause scanner object.  Return a pointer to the
292 ** first match.  Return NULL if there are no matches.
293 **
294 ** The scanner will be searching the WHERE clause pWC.  It will look
295 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
296 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
297 ** must be one of the indexes of table iCur.
298 **
299 ** The <op> must be one of the operators described by opMask.
300 **
301 ** If the search is for X and the WHERE clause contains terms of the
302 ** form X=Y then this routine might also return terms of the form
303 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
304 ** but is enough to handle most commonly occurring SQL statements.
305 **
306 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
307 ** index pIdx.
308 */
309 static WhereTerm *whereScanInit(
310   WhereScan *pScan,       /* The WhereScan object being initialized */
311   WhereClause *pWC,       /* The WHERE clause to be scanned */
312   int iCur,               /* Cursor to scan for */
313   int iColumn,            /* Column to scan for */
314   u32 opMask,             /* Operator(s) to scan for */
315   Index *pIdx             /* Must be compatible with this index */
316 ){
317   pScan->pOrigWC = pWC;
318   pScan->pWC = pWC;
319   pScan->pIdxExpr = 0;
320   pScan->idxaff = 0;
321   pScan->zCollName = 0;
322   if( pIdx ){
323     int j = iColumn;
324     iColumn = pIdx->aiColumn[j];
325     if( iColumn==XN_EXPR ){
326       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
327       pScan->zCollName = pIdx->azColl[j];
328     }else if( iColumn==pIdx->pTable->iPKey ){
329       iColumn = XN_ROWID;
330     }else if( iColumn>=0 ){
331       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
332       pScan->zCollName = pIdx->azColl[j];
333     }
334   }else if( iColumn==XN_EXPR ){
335     return 0;
336   }
337   pScan->opMask = opMask;
338   pScan->k = 0;
339   pScan->aiCur[0] = iCur;
340   pScan->aiColumn[0] = iColumn;
341   pScan->nEquiv = 1;
342   pScan->iEquiv = 1;
343   return whereScanNext(pScan);
344 }
345 
346 /*
347 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
348 ** where X is a reference to the iColumn of table iCur or of index pIdx
349 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
350 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
351 **
352 ** If pIdx!=0 then it must be one of the indexes of table iCur.
353 ** Search for terms matching the iColumn-th column of pIdx
354 ** rather than the iColumn-th column of table iCur.
355 **
356 ** The term returned might by Y=<expr> if there is another constraint in
357 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
358 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
359 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
360 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
361 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
362 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
363 **
364 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
365 ** then try for the one with no dependencies on <expr> - in other words where
366 ** <expr> is a constant expression of some kind.  Only return entries of
367 ** the form "X <op> Y" where Y is a column in another table if no terms of
368 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
369 ** exist, try to return a term that does not use WO_EQUIV.
370 */
371 WhereTerm *sqlite3WhereFindTerm(
372   WhereClause *pWC,     /* The WHERE clause to be searched */
373   int iCur,             /* Cursor number of LHS */
374   int iColumn,          /* Column number of LHS */
375   Bitmask notReady,     /* RHS must not overlap with this mask */
376   u32 op,               /* Mask of WO_xx values describing operator */
377   Index *pIdx           /* Must be compatible with this index, if not NULL */
378 ){
379   WhereTerm *pResult = 0;
380   WhereTerm *p;
381   WhereScan scan;
382 
383   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
384   op &= WO_EQ|WO_IS;
385   while( p ){
386     if( (p->prereqRight & notReady)==0 ){
387       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
388         testcase( p->eOperator & WO_IS );
389         return p;
390       }
391       if( pResult==0 ) pResult = p;
392     }
393     p = whereScanNext(&scan);
394   }
395   return pResult;
396 }
397 
398 /*
399 ** This function searches pList for an entry that matches the iCol-th column
400 ** of index pIdx.
401 **
402 ** If such an expression is found, its index in pList->a[] is returned. If
403 ** no expression is found, -1 is returned.
404 */
405 static int findIndexCol(
406   Parse *pParse,                  /* Parse context */
407   ExprList *pList,                /* Expression list to search */
408   int iBase,                      /* Cursor for table associated with pIdx */
409   Index *pIdx,                    /* Index to match column of */
410   int iCol                        /* Column of index to match */
411 ){
412   int i;
413   const char *zColl = pIdx->azColl[iCol];
414 
415   for(i=0; i<pList->nExpr; i++){
416     Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr);
417     if( p->op==TK_COLUMN
418      && p->iColumn==pIdx->aiColumn[iCol]
419      && p->iTable==iBase
420     ){
421       CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
422       if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
423         return i;
424       }
425     }
426   }
427 
428   return -1;
429 }
430 
431 /*
432 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
433 */
434 static int indexColumnNotNull(Index *pIdx, int iCol){
435   int j;
436   assert( pIdx!=0 );
437   assert( iCol>=0 && iCol<pIdx->nColumn );
438   j = pIdx->aiColumn[iCol];
439   if( j>=0 ){
440     return pIdx->pTable->aCol[j].notNull;
441   }else if( j==(-1) ){
442     return 1;
443   }else{
444     assert( j==(-2) );
445     return 0;  /* Assume an indexed expression can always yield a NULL */
446 
447   }
448 }
449 
450 /*
451 ** Return true if the DISTINCT expression-list passed as the third argument
452 ** is redundant.
453 **
454 ** A DISTINCT list is redundant if any subset of the columns in the
455 ** DISTINCT list are collectively unique and individually non-null.
456 */
457 static int isDistinctRedundant(
458   Parse *pParse,            /* Parsing context */
459   SrcList *pTabList,        /* The FROM clause */
460   WhereClause *pWC,         /* The WHERE clause */
461   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
462 ){
463   Table *pTab;
464   Index *pIdx;
465   int i;
466   int iBase;
467 
468   /* If there is more than one table or sub-select in the FROM clause of
469   ** this query, then it will not be possible to show that the DISTINCT
470   ** clause is redundant. */
471   if( pTabList->nSrc!=1 ) return 0;
472   iBase = pTabList->a[0].iCursor;
473   pTab = pTabList->a[0].pTab;
474 
475   /* If any of the expressions is an IPK column on table iBase, then return
476   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
477   ** current SELECT is a correlated sub-query.
478   */
479   for(i=0; i<pDistinct->nExpr; i++){
480     Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr);
481     if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
482   }
483 
484   /* Loop through all indices on the table, checking each to see if it makes
485   ** the DISTINCT qualifier redundant. It does so if:
486   **
487   **   1. The index is itself UNIQUE, and
488   **
489   **   2. All of the columns in the index are either part of the pDistinct
490   **      list, or else the WHERE clause contains a term of the form "col=X",
491   **      where X is a constant value. The collation sequences of the
492   **      comparison and select-list expressions must match those of the index.
493   **
494   **   3. All of those index columns for which the WHERE clause does not
495   **      contain a "col=X" term are subject to a NOT NULL constraint.
496   */
497   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
498     if( !IsUniqueIndex(pIdx) ) continue;
499     for(i=0; i<pIdx->nKeyCol; i++){
500       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
501         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
502         if( indexColumnNotNull(pIdx, i)==0 ) break;
503       }
504     }
505     if( i==pIdx->nKeyCol ){
506       /* This index implies that the DISTINCT qualifier is redundant. */
507       return 1;
508     }
509   }
510 
511   return 0;
512 }
513 
514 
515 /*
516 ** Estimate the logarithm of the input value to base 2.
517 */
518 static LogEst estLog(LogEst N){
519   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
520 }
521 
522 /*
523 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
524 **
525 ** This routine runs over generated VDBE code and translates OP_Column
526 ** opcodes into OP_Copy when the table is being accessed via co-routine
527 ** instead of via table lookup.
528 **
529 ** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on
530 ** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero,
531 ** then each OP_Rowid is transformed into an instruction to increment the
532 ** value stored in its output register.
533 */
534 static void translateColumnToCopy(
535   Parse *pParse,      /* Parsing context */
536   int iStart,         /* Translate from this opcode to the end */
537   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
538   int iRegister,      /* The first column is in this register */
539   int bIncrRowid      /* If non-zero, transform OP_rowid to OP_AddImm(1) */
540 ){
541   Vdbe *v = pParse->pVdbe;
542   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
543   int iEnd = sqlite3VdbeCurrentAddr(v);
544   if( pParse->db->mallocFailed ) return;
545   for(; iStart<iEnd; iStart++, pOp++){
546     if( pOp->p1!=iTabCur ) continue;
547     if( pOp->opcode==OP_Column ){
548       pOp->opcode = OP_Copy;
549       pOp->p1 = pOp->p2 + iRegister;
550       pOp->p2 = pOp->p3;
551       pOp->p3 = 0;
552     }else if( pOp->opcode==OP_Rowid ){
553       if( bIncrRowid ){
554         /* Increment the value stored in the P2 operand of the OP_Rowid. */
555         pOp->opcode = OP_AddImm;
556         pOp->p1 = pOp->p2;
557         pOp->p2 = 1;
558       }else{
559         pOp->opcode = OP_Null;
560         pOp->p1 = 0;
561         pOp->p3 = 0;
562       }
563     }
564   }
565 }
566 
567 /*
568 ** Two routines for printing the content of an sqlite3_index_info
569 ** structure.  Used for testing and debugging only.  If neither
570 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
571 ** are no-ops.
572 */
573 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
574 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
575   int i;
576   if( !sqlite3WhereTrace ) return;
577   for(i=0; i<p->nConstraint; i++){
578     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
579        i,
580        p->aConstraint[i].iColumn,
581        p->aConstraint[i].iTermOffset,
582        p->aConstraint[i].op,
583        p->aConstraint[i].usable);
584   }
585   for(i=0; i<p->nOrderBy; i++){
586     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
587        i,
588        p->aOrderBy[i].iColumn,
589        p->aOrderBy[i].desc);
590   }
591 }
592 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
593   int i;
594   if( !sqlite3WhereTrace ) return;
595   for(i=0; i<p->nConstraint; i++){
596     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
597        i,
598        p->aConstraintUsage[i].argvIndex,
599        p->aConstraintUsage[i].omit);
600   }
601   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
602   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
603   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
604   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
605   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
606 }
607 #else
608 #define TRACE_IDX_INPUTS(A)
609 #define TRACE_IDX_OUTPUTS(A)
610 #endif
611 
612 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
613 /*
614 ** Return TRUE if the WHERE clause term pTerm is of a form where it
615 ** could be used with an index to access pSrc, assuming an appropriate
616 ** index existed.
617 */
618 static int termCanDriveIndex(
619   WhereTerm *pTerm,              /* WHERE clause term to check */
620   struct SrcList_item *pSrc,     /* Table we are trying to access */
621   Bitmask notReady               /* Tables in outer loops of the join */
622 ){
623   char aff;
624   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
625   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
626   if( (pSrc->fg.jointype & JT_LEFT)
627    && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
628    && (pTerm->eOperator & WO_IS)
629   ){
630     /* Cannot use an IS term from the WHERE clause as an index driver for
631     ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
632     ** the ON clause.  */
633     return 0;
634   }
635   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
636   if( pTerm->u.leftColumn<0 ) return 0;
637   aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
638   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
639   testcase( pTerm->pExpr->op==TK_IS );
640   return 1;
641 }
642 #endif
643 
644 
645 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
646 /*
647 ** Generate code to construct the Index object for an automatic index
648 ** and to set up the WhereLevel object pLevel so that the code generator
649 ** makes use of the automatic index.
650 */
651 static void constructAutomaticIndex(
652   Parse *pParse,              /* The parsing context */
653   WhereClause *pWC,           /* The WHERE clause */
654   struct SrcList_item *pSrc,  /* The FROM clause term to get the next index */
655   Bitmask notReady,           /* Mask of cursors that are not available */
656   WhereLevel *pLevel          /* Write new index here */
657 ){
658   int nKeyCol;                /* Number of columns in the constructed index */
659   WhereTerm *pTerm;           /* A single term of the WHERE clause */
660   WhereTerm *pWCEnd;          /* End of pWC->a[] */
661   Index *pIdx;                /* Object describing the transient index */
662   Vdbe *v;                    /* Prepared statement under construction */
663   int addrInit;               /* Address of the initialization bypass jump */
664   Table *pTable;              /* The table being indexed */
665   int addrTop;                /* Top of the index fill loop */
666   int regRecord;              /* Register holding an index record */
667   int n;                      /* Column counter */
668   int i;                      /* Loop counter */
669   int mxBitCol;               /* Maximum column in pSrc->colUsed */
670   CollSeq *pColl;             /* Collating sequence to on a column */
671   WhereLoop *pLoop;           /* The Loop object */
672   char *zNotUsed;             /* Extra space on the end of pIdx */
673   Bitmask idxCols;            /* Bitmap of columns used for indexing */
674   Bitmask extraCols;          /* Bitmap of additional columns */
675   u8 sentWarning = 0;         /* True if a warnning has been issued */
676   Expr *pPartial = 0;         /* Partial Index Expression */
677   int iContinue = 0;          /* Jump here to skip excluded rows */
678   struct SrcList_item *pTabItem;  /* FROM clause term being indexed */
679   int addrCounter = 0;        /* Address where integer counter is initialized */
680   int regBase;                /* Array of registers where record is assembled */
681 
682   /* Generate code to skip over the creation and initialization of the
683   ** transient index on 2nd and subsequent iterations of the loop. */
684   v = pParse->pVdbe;
685   assert( v!=0 );
686   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
687 
688   /* Count the number of columns that will be added to the index
689   ** and used to match WHERE clause constraints */
690   nKeyCol = 0;
691   pTable = pSrc->pTab;
692   pWCEnd = &pWC->a[pWC->nTerm];
693   pLoop = pLevel->pWLoop;
694   idxCols = 0;
695   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
696     Expr *pExpr = pTerm->pExpr;
697     assert( !ExprHasProperty(pExpr, EP_FromJoin)    /* prereq always non-zero */
698          || pExpr->iRightJoinTable!=pSrc->iCursor   /*   for the right-hand   */
699          || pLoop->prereq!=0 );                     /*   table of a LEFT JOIN */
700     if( pLoop->prereq==0
701      && (pTerm->wtFlags & TERM_VIRTUAL)==0
702      && !ExprHasProperty(pExpr, EP_FromJoin)
703      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
704       pPartial = sqlite3ExprAnd(pParse->db, pPartial,
705                                 sqlite3ExprDup(pParse->db, pExpr, 0));
706     }
707     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
708       int iCol = pTerm->u.leftColumn;
709       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
710       testcase( iCol==BMS );
711       testcase( iCol==BMS-1 );
712       if( !sentWarning ){
713         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
714             "automatic index on %s(%s)", pTable->zName,
715             pTable->aCol[iCol].zName);
716         sentWarning = 1;
717       }
718       if( (idxCols & cMask)==0 ){
719         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
720           goto end_auto_index_create;
721         }
722         pLoop->aLTerm[nKeyCol++] = pTerm;
723         idxCols |= cMask;
724       }
725     }
726   }
727   assert( nKeyCol>0 );
728   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
729   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
730                      | WHERE_AUTO_INDEX;
731 
732   /* Count the number of additional columns needed to create a
733   ** covering index.  A "covering index" is an index that contains all
734   ** columns that are needed by the query.  With a covering index, the
735   ** original table never needs to be accessed.  Automatic indices must
736   ** be a covering index because the index will not be updated if the
737   ** original table changes and the index and table cannot both be used
738   ** if they go out of sync.
739   */
740   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
741   mxBitCol = MIN(BMS-1,pTable->nCol);
742   testcase( pTable->nCol==BMS-1 );
743   testcase( pTable->nCol==BMS-2 );
744   for(i=0; i<mxBitCol; i++){
745     if( extraCols & MASKBIT(i) ) nKeyCol++;
746   }
747   if( pSrc->colUsed & MASKBIT(BMS-1) ){
748     nKeyCol += pTable->nCol - BMS + 1;
749   }
750 
751   /* Construct the Index object to describe this index */
752   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
753   if( pIdx==0 ) goto end_auto_index_create;
754   pLoop->u.btree.pIndex = pIdx;
755   pIdx->zName = "auto-index";
756   pIdx->pTable = pTable;
757   n = 0;
758   idxCols = 0;
759   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
760     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
761       int iCol = pTerm->u.leftColumn;
762       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
763       testcase( iCol==BMS-1 );
764       testcase( iCol==BMS );
765       if( (idxCols & cMask)==0 ){
766         Expr *pX = pTerm->pExpr;
767         idxCols |= cMask;
768         pIdx->aiColumn[n] = pTerm->u.leftColumn;
769         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
770         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
771         n++;
772       }
773     }
774   }
775   assert( (u32)n==pLoop->u.btree.nEq );
776 
777   /* Add additional columns needed to make the automatic index into
778   ** a covering index */
779   for(i=0; i<mxBitCol; i++){
780     if( extraCols & MASKBIT(i) ){
781       pIdx->aiColumn[n] = i;
782       pIdx->azColl[n] = sqlite3StrBINARY;
783       n++;
784     }
785   }
786   if( pSrc->colUsed & MASKBIT(BMS-1) ){
787     for(i=BMS-1; i<pTable->nCol; i++){
788       pIdx->aiColumn[n] = i;
789       pIdx->azColl[n] = sqlite3StrBINARY;
790       n++;
791     }
792   }
793   assert( n==nKeyCol );
794   pIdx->aiColumn[n] = XN_ROWID;
795   pIdx->azColl[n] = sqlite3StrBINARY;
796 
797   /* Create the automatic index */
798   assert( pLevel->iIdxCur>=0 );
799   pLevel->iIdxCur = pParse->nTab++;
800   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
801   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
802   VdbeComment((v, "for %s", pTable->zName));
803 
804   /* Fill the automatic index with content */
805   sqlite3ExprCachePush(pParse);
806   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
807   if( pTabItem->fg.viaCoroutine ){
808     int regYield = pTabItem->regReturn;
809     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
810     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
811     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
812     VdbeCoverage(v);
813     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
814   }else{
815     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
816   }
817   if( pPartial ){
818     iContinue = sqlite3VdbeMakeLabel(v);
819     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
820     pLoop->wsFlags |= WHERE_PARTIALIDX;
821   }
822   regRecord = sqlite3GetTempReg(pParse);
823   regBase = sqlite3GenerateIndexKey(
824       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
825   );
826   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
827   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
828   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
829   if( pTabItem->fg.viaCoroutine ){
830     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
831     testcase( pParse->db->mallocFailed );
832     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
833                           pTabItem->regResult, 1);
834     sqlite3VdbeGoto(v, addrTop);
835     pTabItem->fg.viaCoroutine = 0;
836   }else{
837     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
838   }
839   sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
840   sqlite3VdbeJumpHere(v, addrTop);
841   sqlite3ReleaseTempReg(pParse, regRecord);
842   sqlite3ExprCachePop(pParse);
843 
844   /* Jump here when skipping the initialization */
845   sqlite3VdbeJumpHere(v, addrInit);
846 
847 end_auto_index_create:
848   sqlite3ExprDelete(pParse->db, pPartial);
849 }
850 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
851 
852 #ifndef SQLITE_OMIT_VIRTUALTABLE
853 /*
854 ** Allocate and populate an sqlite3_index_info structure. It is the
855 ** responsibility of the caller to eventually release the structure
856 ** by passing the pointer returned by this function to sqlite3_free().
857 */
858 static sqlite3_index_info *allocateIndexInfo(
859   Parse *pParse,                  /* The parsing context */
860   WhereClause *pWC,               /* The WHERE clause being analyzed */
861   Bitmask mUnusable,              /* Ignore terms with these prereqs */
862   struct SrcList_item *pSrc,      /* The FROM clause term that is the vtab */
863   ExprList *pOrderBy,             /* The ORDER BY clause */
864   u16 *pmNoOmit                   /* Mask of terms not to omit */
865 ){
866   int i, j;
867   int nTerm;
868   struct sqlite3_index_constraint *pIdxCons;
869   struct sqlite3_index_orderby *pIdxOrderBy;
870   struct sqlite3_index_constraint_usage *pUsage;
871   struct HiddenIndexInfo *pHidden;
872   WhereTerm *pTerm;
873   int nOrderBy;
874   sqlite3_index_info *pIdxInfo;
875   u16 mNoOmit = 0;
876 
877   /* Count the number of possible WHERE clause constraints referring
878   ** to this virtual table */
879   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
880     if( pTerm->leftCursor != pSrc->iCursor ) continue;
881     if( pTerm->prereqRight & mUnusable ) continue;
882     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
883     testcase( pTerm->eOperator & WO_IN );
884     testcase( pTerm->eOperator & WO_ISNULL );
885     testcase( pTerm->eOperator & WO_IS );
886     testcase( pTerm->eOperator & WO_ALL );
887     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
888     if( pTerm->wtFlags & TERM_VNULL ) continue;
889     assert( pTerm->u.leftColumn>=(-1) );
890     nTerm++;
891   }
892 
893   /* If the ORDER BY clause contains only columns in the current
894   ** virtual table then allocate space for the aOrderBy part of
895   ** the sqlite3_index_info structure.
896   */
897   nOrderBy = 0;
898   if( pOrderBy ){
899     int n = pOrderBy->nExpr;
900     for(i=0; i<n; i++){
901       Expr *pExpr = pOrderBy->a[i].pExpr;
902       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
903     }
904     if( i==n){
905       nOrderBy = n;
906     }
907   }
908 
909   /* Allocate the sqlite3_index_info structure
910   */
911   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
912                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
913                            + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) );
914   if( pIdxInfo==0 ){
915     sqlite3ErrorMsg(pParse, "out of memory");
916     return 0;
917   }
918 
919   /* Initialize the structure.  The sqlite3_index_info structure contains
920   ** many fields that are declared "const" to prevent xBestIndex from
921   ** changing them.  We have to do some funky casting in order to
922   ** initialize those fields.
923   */
924   pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
925   pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1];
926   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
927   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
928   *(int*)&pIdxInfo->nConstraint = nTerm;
929   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
930   *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
931   *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
932   *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
933                                                                    pUsage;
934 
935   pHidden->pWC = pWC;
936   pHidden->pParse = pParse;
937   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
938     u16 op;
939     if( pTerm->leftCursor != pSrc->iCursor ) continue;
940     if( pTerm->prereqRight & mUnusable ) continue;
941     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
942     testcase( pTerm->eOperator & WO_IN );
943     testcase( pTerm->eOperator & WO_IS );
944     testcase( pTerm->eOperator & WO_ISNULL );
945     testcase( pTerm->eOperator & WO_ALL );
946     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
947     if( pTerm->wtFlags & TERM_VNULL ) continue;
948     assert( pTerm->u.leftColumn>=(-1) );
949     pIdxCons[j].iColumn = pTerm->u.leftColumn;
950     pIdxCons[j].iTermOffset = i;
951     op = pTerm->eOperator & WO_ALL;
952     if( op==WO_IN ) op = WO_EQ;
953     if( op==WO_AUX ){
954       pIdxCons[j].op = pTerm->eMatchOp;
955     }else if( op & (WO_ISNULL|WO_IS) ){
956       if( op==WO_ISNULL ){
957         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
958       }else{
959         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
960       }
961     }else{
962       pIdxCons[j].op = (u8)op;
963       /* The direct assignment in the previous line is possible only because
964       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
965       ** following asserts verify this fact. */
966       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
967       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
968       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
969       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
970       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
971       assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
972 
973       if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
974        && sqlite3ExprIsVector(pTerm->pExpr->pRight)
975       ){
976         if( i<16 ) mNoOmit |= (1 << i);
977         if( op==WO_LT ) pIdxCons[j].op = WO_LE;
978         if( op==WO_GT ) pIdxCons[j].op = WO_GE;
979       }
980     }
981 
982     j++;
983   }
984   for(i=0; i<nOrderBy; i++){
985     Expr *pExpr = pOrderBy->a[i].pExpr;
986     pIdxOrderBy[i].iColumn = pExpr->iColumn;
987     pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
988   }
989 
990   *pmNoOmit = mNoOmit;
991   return pIdxInfo;
992 }
993 
994 /*
995 ** The table object reference passed as the second argument to this function
996 ** must represent a virtual table. This function invokes the xBestIndex()
997 ** method of the virtual table with the sqlite3_index_info object that
998 ** comes in as the 3rd argument to this function.
999 **
1000 ** If an error occurs, pParse is populated with an error message and a
1001 ** non-zero value is returned. Otherwise, 0 is returned and the output
1002 ** part of the sqlite3_index_info structure is left populated.
1003 **
1004 ** Whether or not an error is returned, it is the responsibility of the
1005 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1006 ** that this is required.
1007 */
1008 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1009   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1010   int rc;
1011 
1012   TRACE_IDX_INPUTS(p);
1013   rc = pVtab->pModule->xBestIndex(pVtab, p);
1014   TRACE_IDX_OUTPUTS(p);
1015 
1016   if( rc!=SQLITE_OK ){
1017     if( rc==SQLITE_NOMEM ){
1018       sqlite3OomFault(pParse->db);
1019     }else if( !pVtab->zErrMsg ){
1020       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1021     }else{
1022       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1023     }
1024   }
1025   sqlite3_free(pVtab->zErrMsg);
1026   pVtab->zErrMsg = 0;
1027 
1028 #if 0
1029   /* This error is now caught by the caller.
1030   ** Search for "xBestIndex malfunction" below */
1031   for(i=0; i<p->nConstraint; i++){
1032     if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
1033       sqlite3ErrorMsg(pParse,
1034           "table %s: xBestIndex returned an invalid plan", pTab->zName);
1035     }
1036   }
1037 #endif
1038 
1039   return pParse->nErr;
1040 }
1041 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1042 
1043 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1044 /*
1045 ** Estimate the location of a particular key among all keys in an
1046 ** index.  Store the results in aStat as follows:
1047 **
1048 **    aStat[0]      Est. number of rows less than pRec
1049 **    aStat[1]      Est. number of rows equal to pRec
1050 **
1051 ** Return the index of the sample that is the smallest sample that
1052 ** is greater than or equal to pRec. Note that this index is not an index
1053 ** into the aSample[] array - it is an index into a virtual set of samples
1054 ** based on the contents of aSample[] and the number of fields in record
1055 ** pRec.
1056 */
1057 static int whereKeyStats(
1058   Parse *pParse,              /* Database connection */
1059   Index *pIdx,                /* Index to consider domain of */
1060   UnpackedRecord *pRec,       /* Vector of values to consider */
1061   int roundUp,                /* Round up if true.  Round down if false */
1062   tRowcnt *aStat              /* OUT: stats written here */
1063 ){
1064   IndexSample *aSample = pIdx->aSample;
1065   int iCol;                   /* Index of required stats in anEq[] etc. */
1066   int i;                      /* Index of first sample >= pRec */
1067   int iSample;                /* Smallest sample larger than or equal to pRec */
1068   int iMin = 0;               /* Smallest sample not yet tested */
1069   int iTest;                  /* Next sample to test */
1070   int res;                    /* Result of comparison operation */
1071   int nField;                 /* Number of fields in pRec */
1072   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1073 
1074 #ifndef SQLITE_DEBUG
1075   UNUSED_PARAMETER( pParse );
1076 #endif
1077   assert( pRec!=0 );
1078   assert( pIdx->nSample>0 );
1079   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1080 
1081   /* Do a binary search to find the first sample greater than or equal
1082   ** to pRec. If pRec contains a single field, the set of samples to search
1083   ** is simply the aSample[] array. If the samples in aSample[] contain more
1084   ** than one fields, all fields following the first are ignored.
1085   **
1086   ** If pRec contains N fields, where N is more than one, then as well as the
1087   ** samples in aSample[] (truncated to N fields), the search also has to
1088   ** consider prefixes of those samples. For example, if the set of samples
1089   ** in aSample is:
1090   **
1091   **     aSample[0] = (a, 5)
1092   **     aSample[1] = (a, 10)
1093   **     aSample[2] = (b, 5)
1094   **     aSample[3] = (c, 100)
1095   **     aSample[4] = (c, 105)
1096   **
1097   ** Then the search space should ideally be the samples above and the
1098   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1099   ** the code actually searches this set:
1100   **
1101   **     0: (a)
1102   **     1: (a, 5)
1103   **     2: (a, 10)
1104   **     3: (a, 10)
1105   **     4: (b)
1106   **     5: (b, 5)
1107   **     6: (c)
1108   **     7: (c, 100)
1109   **     8: (c, 105)
1110   **     9: (c, 105)
1111   **
1112   ** For each sample in the aSample[] array, N samples are present in the
1113   ** effective sample array. In the above, samples 0 and 1 are based on
1114   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1115   **
1116   ** Often, sample i of each block of N effective samples has (i+1) fields.
1117   ** Except, each sample may be extended to ensure that it is greater than or
1118   ** equal to the previous sample in the array. For example, in the above,
1119   ** sample 2 is the first sample of a block of N samples, so at first it
1120   ** appears that it should be 1 field in size. However, that would make it
1121   ** smaller than sample 1, so the binary search would not work. As a result,
1122   ** it is extended to two fields. The duplicates that this creates do not
1123   ** cause any problems.
1124   */
1125   nField = pRec->nField;
1126   iCol = 0;
1127   iSample = pIdx->nSample * nField;
1128   do{
1129     int iSamp;                    /* Index in aSample[] of test sample */
1130     int n;                        /* Number of fields in test sample */
1131 
1132     iTest = (iMin+iSample)/2;
1133     iSamp = iTest / nField;
1134     if( iSamp>0 ){
1135       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1136       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1137       ** fields that is greater than the previous effective sample.  */
1138       for(n=(iTest % nField) + 1; n<nField; n++){
1139         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1140       }
1141     }else{
1142       n = iTest + 1;
1143     }
1144 
1145     pRec->nField = n;
1146     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1147     if( res<0 ){
1148       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1149       iMin = iTest+1;
1150     }else if( res==0 && n<nField ){
1151       iLower = aSample[iSamp].anLt[n-1];
1152       iMin = iTest+1;
1153       res = -1;
1154     }else{
1155       iSample = iTest;
1156       iCol = n-1;
1157     }
1158   }while( res && iMin<iSample );
1159   i = iSample / nField;
1160 
1161 #ifdef SQLITE_DEBUG
1162   /* The following assert statements check that the binary search code
1163   ** above found the right answer. This block serves no purpose other
1164   ** than to invoke the asserts.  */
1165   if( pParse->db->mallocFailed==0 ){
1166     if( res==0 ){
1167       /* If (res==0) is true, then pRec must be equal to sample i. */
1168       assert( i<pIdx->nSample );
1169       assert( iCol==nField-1 );
1170       pRec->nField = nField;
1171       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1172            || pParse->db->mallocFailed
1173       );
1174     }else{
1175       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1176       ** all samples in the aSample[] array, pRec must be smaller than the
1177       ** (iCol+1) field prefix of sample i.  */
1178       assert( i<=pIdx->nSample && i>=0 );
1179       pRec->nField = iCol+1;
1180       assert( i==pIdx->nSample
1181            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1182            || pParse->db->mallocFailed );
1183 
1184       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1185       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1186       ** be greater than or equal to the (iCol) field prefix of sample i.
1187       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1188       if( iCol>0 ){
1189         pRec->nField = iCol;
1190         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1191              || pParse->db->mallocFailed );
1192       }
1193       if( i>0 ){
1194         pRec->nField = nField;
1195         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1196              || pParse->db->mallocFailed );
1197       }
1198     }
1199   }
1200 #endif /* ifdef SQLITE_DEBUG */
1201 
1202   if( res==0 ){
1203     /* Record pRec is equal to sample i */
1204     assert( iCol==nField-1 );
1205     aStat[0] = aSample[i].anLt[iCol];
1206     aStat[1] = aSample[i].anEq[iCol];
1207   }else{
1208     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1209     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1210     ** is larger than all samples in the array. */
1211     tRowcnt iUpper, iGap;
1212     if( i>=pIdx->nSample ){
1213       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1214     }else{
1215       iUpper = aSample[i].anLt[iCol];
1216     }
1217 
1218     if( iLower>=iUpper ){
1219       iGap = 0;
1220     }else{
1221       iGap = iUpper - iLower;
1222     }
1223     if( roundUp ){
1224       iGap = (iGap*2)/3;
1225     }else{
1226       iGap = iGap/3;
1227     }
1228     aStat[0] = iLower + iGap;
1229     aStat[1] = pIdx->aAvgEq[nField-1];
1230   }
1231 
1232   /* Restore the pRec->nField value before returning.  */
1233   pRec->nField = nField;
1234   return i;
1235 }
1236 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1237 
1238 /*
1239 ** If it is not NULL, pTerm is a term that provides an upper or lower
1240 ** bound on a range scan. Without considering pTerm, it is estimated
1241 ** that the scan will visit nNew rows. This function returns the number
1242 ** estimated to be visited after taking pTerm into account.
1243 **
1244 ** If the user explicitly specified a likelihood() value for this term,
1245 ** then the return value is the likelihood multiplied by the number of
1246 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1247 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1248 */
1249 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1250   LogEst nRet = nNew;
1251   if( pTerm ){
1252     if( pTerm->truthProb<=0 ){
1253       nRet += pTerm->truthProb;
1254     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1255       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1256     }
1257   }
1258   return nRet;
1259 }
1260 
1261 
1262 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1263 /*
1264 ** Return the affinity for a single column of an index.
1265 */
1266 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1267   assert( iCol>=0 && iCol<pIdx->nColumn );
1268   if( !pIdx->zColAff ){
1269     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1270   }
1271   return pIdx->zColAff[iCol];
1272 }
1273 #endif
1274 
1275 
1276 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1277 /*
1278 ** This function is called to estimate the number of rows visited by a
1279 ** range-scan on a skip-scan index. For example:
1280 **
1281 **   CREATE INDEX i1 ON t1(a, b, c);
1282 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1283 **
1284 ** Value pLoop->nOut is currently set to the estimated number of rows
1285 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1286 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1287 ** on the stat4 data for the index. this scan will be peformed multiple
1288 ** times (once for each (a,b) combination that matches a=?) is dealt with
1289 ** by the caller.
1290 **
1291 ** It does this by scanning through all stat4 samples, comparing values
1292 ** extracted from pLower and pUpper with the corresponding column in each
1293 ** sample. If L and U are the number of samples found to be less than or
1294 ** equal to the values extracted from pLower and pUpper respectively, and
1295 ** N is the total number of samples, the pLoop->nOut value is adjusted
1296 ** as follows:
1297 **
1298 **   nOut = nOut * ( min(U - L, 1) / N )
1299 **
1300 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1301 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1302 ** U is set to N.
1303 **
1304 ** Normally, this function sets *pbDone to 1 before returning. However,
1305 ** if no value can be extracted from either pLower or pUpper (and so the
1306 ** estimate of the number of rows delivered remains unchanged), *pbDone
1307 ** is left as is.
1308 **
1309 ** If an error occurs, an SQLite error code is returned. Otherwise,
1310 ** SQLITE_OK.
1311 */
1312 static int whereRangeSkipScanEst(
1313   Parse *pParse,       /* Parsing & code generating context */
1314   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1315   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1316   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1317   int *pbDone          /* Set to true if at least one expr. value extracted */
1318 ){
1319   Index *p = pLoop->u.btree.pIndex;
1320   int nEq = pLoop->u.btree.nEq;
1321   sqlite3 *db = pParse->db;
1322   int nLower = -1;
1323   int nUpper = p->nSample+1;
1324   int rc = SQLITE_OK;
1325   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1326   CollSeq *pColl;
1327 
1328   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1329   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1330   sqlite3_value *pVal = 0;        /* Value extracted from record */
1331 
1332   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1333   if( pLower ){
1334     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1335     nLower = 0;
1336   }
1337   if( pUpper && rc==SQLITE_OK ){
1338     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1339     nUpper = p2 ? 0 : p->nSample;
1340   }
1341 
1342   if( p1 || p2 ){
1343     int i;
1344     int nDiff;
1345     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1346       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1347       if( rc==SQLITE_OK && p1 ){
1348         int res = sqlite3MemCompare(p1, pVal, pColl);
1349         if( res>=0 ) nLower++;
1350       }
1351       if( rc==SQLITE_OK && p2 ){
1352         int res = sqlite3MemCompare(p2, pVal, pColl);
1353         if( res>=0 ) nUpper++;
1354       }
1355     }
1356     nDiff = (nUpper - nLower);
1357     if( nDiff<=0 ) nDiff = 1;
1358 
1359     /* If there is both an upper and lower bound specified, and the
1360     ** comparisons indicate that they are close together, use the fallback
1361     ** method (assume that the scan visits 1/64 of the rows) for estimating
1362     ** the number of rows visited. Otherwise, estimate the number of rows
1363     ** using the method described in the header comment for this function. */
1364     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1365       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1366       pLoop->nOut -= nAdjust;
1367       *pbDone = 1;
1368       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1369                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1370     }
1371 
1372   }else{
1373     assert( *pbDone==0 );
1374   }
1375 
1376   sqlite3ValueFree(p1);
1377   sqlite3ValueFree(p2);
1378   sqlite3ValueFree(pVal);
1379 
1380   return rc;
1381 }
1382 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1383 
1384 /*
1385 ** This function is used to estimate the number of rows that will be visited
1386 ** by scanning an index for a range of values. The range may have an upper
1387 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1388 ** and lower bounds are represented by pLower and pUpper respectively. For
1389 ** example, assuming that index p is on t1(a):
1390 **
1391 **   ... FROM t1 WHERE a > ? AND a < ? ...
1392 **                    |_____|   |_____|
1393 **                       |         |
1394 **                     pLower    pUpper
1395 **
1396 ** If either of the upper or lower bound is not present, then NULL is passed in
1397 ** place of the corresponding WhereTerm.
1398 **
1399 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1400 ** column subject to the range constraint. Or, equivalently, the number of
1401 ** equality constraints optimized by the proposed index scan. For example,
1402 ** assuming index p is on t1(a, b), and the SQL query is:
1403 **
1404 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1405 **
1406 ** then nEq is set to 1 (as the range restricted column, b, is the second
1407 ** left-most column of the index). Or, if the query is:
1408 **
1409 **   ... FROM t1 WHERE a > ? AND a < ? ...
1410 **
1411 ** then nEq is set to 0.
1412 **
1413 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1414 ** number of rows that the index scan is expected to visit without
1415 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1416 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1417 ** to account for the range constraints pLower and pUpper.
1418 **
1419 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1420 ** used, a single range inequality reduces the search space by a factor of 4.
1421 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1422 ** rows visited by a factor of 64.
1423 */
1424 static int whereRangeScanEst(
1425   Parse *pParse,       /* Parsing & code generating context */
1426   WhereLoopBuilder *pBuilder,
1427   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1428   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1429   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1430 ){
1431   int rc = SQLITE_OK;
1432   int nOut = pLoop->nOut;
1433   LogEst nNew;
1434 
1435 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1436   Index *p = pLoop->u.btree.pIndex;
1437   int nEq = pLoop->u.btree.nEq;
1438 
1439   if( p->nSample>0 && nEq<p->nSampleCol ){
1440     if( nEq==pBuilder->nRecValid ){
1441       UnpackedRecord *pRec = pBuilder->pRec;
1442       tRowcnt a[2];
1443       int nBtm = pLoop->u.btree.nBtm;
1444       int nTop = pLoop->u.btree.nTop;
1445 
1446       /* Variable iLower will be set to the estimate of the number of rows in
1447       ** the index that are less than the lower bound of the range query. The
1448       ** lower bound being the concatenation of $P and $L, where $P is the
1449       ** key-prefix formed by the nEq values matched against the nEq left-most
1450       ** columns of the index, and $L is the value in pLower.
1451       **
1452       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1453       ** is not a simple variable or literal value), the lower bound of the
1454       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1455       ** if $L is available, whereKeyStats() is called for both ($P) and
1456       ** ($P:$L) and the larger of the two returned values is used.
1457       **
1458       ** Similarly, iUpper is to be set to the estimate of the number of rows
1459       ** less than the upper bound of the range query. Where the upper bound
1460       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1461       ** of iUpper are requested of whereKeyStats() and the smaller used.
1462       **
1463       ** The number of rows between the two bounds is then just iUpper-iLower.
1464       */
1465       tRowcnt iLower;     /* Rows less than the lower bound */
1466       tRowcnt iUpper;     /* Rows less than the upper bound */
1467       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1468       int iUprIdx = -1;   /* aSample[] for the upper bound */
1469 
1470       if( pRec ){
1471         testcase( pRec->nField!=pBuilder->nRecValid );
1472         pRec->nField = pBuilder->nRecValid;
1473       }
1474       /* Determine iLower and iUpper using ($P) only. */
1475       if( nEq==0 ){
1476         iLower = 0;
1477         iUpper = p->nRowEst0;
1478       }else{
1479         /* Note: this call could be optimized away - since the same values must
1480         ** have been requested when testing key $P in whereEqualScanEst().  */
1481         whereKeyStats(pParse, p, pRec, 0, a);
1482         iLower = a[0];
1483         iUpper = a[0] + a[1];
1484       }
1485 
1486       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1487       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1488       assert( p->aSortOrder!=0 );
1489       if( p->aSortOrder[nEq] ){
1490         /* The roles of pLower and pUpper are swapped for a DESC index */
1491         SWAP(WhereTerm*, pLower, pUpper);
1492         SWAP(int, nBtm, nTop);
1493       }
1494 
1495       /* If possible, improve on the iLower estimate using ($P:$L). */
1496       if( pLower ){
1497         int n;                    /* Values extracted from pExpr */
1498         Expr *pExpr = pLower->pExpr->pRight;
1499         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1500         if( rc==SQLITE_OK && n ){
1501           tRowcnt iNew;
1502           u16 mask = WO_GT|WO_LE;
1503           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1504           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1505           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1506           if( iNew>iLower ) iLower = iNew;
1507           nOut--;
1508           pLower = 0;
1509         }
1510       }
1511 
1512       /* If possible, improve on the iUpper estimate using ($P:$U). */
1513       if( pUpper ){
1514         int n;                    /* Values extracted from pExpr */
1515         Expr *pExpr = pUpper->pExpr->pRight;
1516         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1517         if( rc==SQLITE_OK && n ){
1518           tRowcnt iNew;
1519           u16 mask = WO_GT|WO_LE;
1520           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1521           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1522           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1523           if( iNew<iUpper ) iUpper = iNew;
1524           nOut--;
1525           pUpper = 0;
1526         }
1527       }
1528 
1529       pBuilder->pRec = pRec;
1530       if( rc==SQLITE_OK ){
1531         if( iUpper>iLower ){
1532           nNew = sqlite3LogEst(iUpper - iLower);
1533           /* TUNING:  If both iUpper and iLower are derived from the same
1534           ** sample, then assume they are 4x more selective.  This brings
1535           ** the estimated selectivity more in line with what it would be
1536           ** if estimated without the use of STAT3/4 tables. */
1537           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1538         }else{
1539           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1540         }
1541         if( nNew<nOut ){
1542           nOut = nNew;
1543         }
1544         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1545                            (u32)iLower, (u32)iUpper, nOut));
1546       }
1547     }else{
1548       int bDone = 0;
1549       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1550       if( bDone ) return rc;
1551     }
1552   }
1553 #else
1554   UNUSED_PARAMETER(pParse);
1555   UNUSED_PARAMETER(pBuilder);
1556   assert( pLower || pUpper );
1557 #endif
1558   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1559   nNew = whereRangeAdjust(pLower, nOut);
1560   nNew = whereRangeAdjust(pUpper, nNew);
1561 
1562   /* TUNING: If there is both an upper and lower limit and neither limit
1563   ** has an application-defined likelihood(), assume the range is
1564   ** reduced by an additional 75%. This means that, by default, an open-ended
1565   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1566   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1567   ** match 1/64 of the index. */
1568   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1569     nNew -= 20;
1570   }
1571 
1572   nOut -= (pLower!=0) + (pUpper!=0);
1573   if( nNew<10 ) nNew = 10;
1574   if( nNew<nOut ) nOut = nNew;
1575 #if defined(WHERETRACE_ENABLED)
1576   if( pLoop->nOut>nOut ){
1577     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1578                     pLoop->nOut, nOut));
1579   }
1580 #endif
1581   pLoop->nOut = (LogEst)nOut;
1582   return rc;
1583 }
1584 
1585 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1586 /*
1587 ** Estimate the number of rows that will be returned based on
1588 ** an equality constraint x=VALUE and where that VALUE occurs in
1589 ** the histogram data.  This only works when x is the left-most
1590 ** column of an index and sqlite_stat3 histogram data is available
1591 ** for that index.  When pExpr==NULL that means the constraint is
1592 ** "x IS NULL" instead of "x=VALUE".
1593 **
1594 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1595 ** If unable to make an estimate, leave *pnRow unchanged and return
1596 ** non-zero.
1597 **
1598 ** This routine can fail if it is unable to load a collating sequence
1599 ** required for string comparison, or if unable to allocate memory
1600 ** for a UTF conversion required for comparison.  The error is stored
1601 ** in the pParse structure.
1602 */
1603 static int whereEqualScanEst(
1604   Parse *pParse,       /* Parsing & code generating context */
1605   WhereLoopBuilder *pBuilder,
1606   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1607   tRowcnt *pnRow       /* Write the revised row estimate here */
1608 ){
1609   Index *p = pBuilder->pNew->u.btree.pIndex;
1610   int nEq = pBuilder->pNew->u.btree.nEq;
1611   UnpackedRecord *pRec = pBuilder->pRec;
1612   int rc;                   /* Subfunction return code */
1613   tRowcnt a[2];             /* Statistics */
1614   int bOk;
1615 
1616   assert( nEq>=1 );
1617   assert( nEq<=p->nColumn );
1618   assert( p->aSample!=0 );
1619   assert( p->nSample>0 );
1620   assert( pBuilder->nRecValid<nEq );
1621 
1622   /* If values are not available for all fields of the index to the left
1623   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1624   if( pBuilder->nRecValid<(nEq-1) ){
1625     return SQLITE_NOTFOUND;
1626   }
1627 
1628   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1629   ** below would return the same value.  */
1630   if( nEq>=p->nColumn ){
1631     *pnRow = 1;
1632     return SQLITE_OK;
1633   }
1634 
1635   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1636   pBuilder->pRec = pRec;
1637   if( rc!=SQLITE_OK ) return rc;
1638   if( bOk==0 ) return SQLITE_NOTFOUND;
1639   pBuilder->nRecValid = nEq;
1640 
1641   whereKeyStats(pParse, p, pRec, 0, a);
1642   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1643                    p->zName, nEq-1, (int)a[1]));
1644   *pnRow = a[1];
1645 
1646   return rc;
1647 }
1648 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1649 
1650 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1651 /*
1652 ** Estimate the number of rows that will be returned based on
1653 ** an IN constraint where the right-hand side of the IN operator
1654 ** is a list of values.  Example:
1655 **
1656 **        WHERE x IN (1,2,3,4)
1657 **
1658 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1659 ** If unable to make an estimate, leave *pnRow unchanged and return
1660 ** non-zero.
1661 **
1662 ** This routine can fail if it is unable to load a collating sequence
1663 ** required for string comparison, or if unable to allocate memory
1664 ** for a UTF conversion required for comparison.  The error is stored
1665 ** in the pParse structure.
1666 */
1667 static int whereInScanEst(
1668   Parse *pParse,       /* Parsing & code generating context */
1669   WhereLoopBuilder *pBuilder,
1670   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1671   tRowcnt *pnRow       /* Write the revised row estimate here */
1672 ){
1673   Index *p = pBuilder->pNew->u.btree.pIndex;
1674   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1675   int nRecValid = pBuilder->nRecValid;
1676   int rc = SQLITE_OK;     /* Subfunction return code */
1677   tRowcnt nEst;           /* Number of rows for a single term */
1678   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
1679   int i;                  /* Loop counter */
1680 
1681   assert( p->aSample!=0 );
1682   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1683     nEst = nRow0;
1684     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1685     nRowEst += nEst;
1686     pBuilder->nRecValid = nRecValid;
1687   }
1688 
1689   if( rc==SQLITE_OK ){
1690     if( nRowEst > nRow0 ) nRowEst = nRow0;
1691     *pnRow = nRowEst;
1692     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1693   }
1694   assert( pBuilder->nRecValid==nRecValid );
1695   return rc;
1696 }
1697 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1698 
1699 
1700 #ifdef WHERETRACE_ENABLED
1701 /*
1702 ** Print the content of a WhereTerm object
1703 */
1704 static void whereTermPrint(WhereTerm *pTerm, int iTerm){
1705   if( pTerm==0 ){
1706     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1707   }else{
1708     char zType[4];
1709     char zLeft[50];
1710     memcpy(zType, "...", 4);
1711     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1712     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
1713     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1714     if( pTerm->eOperator & WO_SINGLE ){
1715       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1716                        pTerm->leftCursor, pTerm->u.leftColumn);
1717     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1718       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld",
1719                        pTerm->u.pOrInfo->indexable);
1720     }else{
1721       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1722     }
1723     sqlite3DebugPrintf(
1724        "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x",
1725        iTerm, pTerm, zType, zLeft, pTerm->truthProb,
1726        pTerm->eOperator, pTerm->wtFlags);
1727     if( pTerm->iField ){
1728       sqlite3DebugPrintf(" iField=%d\n", pTerm->iField);
1729     }else{
1730       sqlite3DebugPrintf("\n");
1731     }
1732     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1733   }
1734 }
1735 #endif
1736 
1737 #ifdef WHERETRACE_ENABLED
1738 /*
1739 ** Show the complete content of a WhereClause
1740 */
1741 void sqlite3WhereClausePrint(WhereClause *pWC){
1742   int i;
1743   for(i=0; i<pWC->nTerm; i++){
1744     whereTermPrint(&pWC->a[i], i);
1745   }
1746 }
1747 #endif
1748 
1749 #ifdef WHERETRACE_ENABLED
1750 /*
1751 ** Print a WhereLoop object for debugging purposes
1752 */
1753 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
1754   WhereInfo *pWInfo = pWC->pWInfo;
1755   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1756   struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
1757   Table *pTab = pItem->pTab;
1758   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1759   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1760                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1761   sqlite3DebugPrintf(" %12s",
1762                      pItem->zAlias ? pItem->zAlias : pTab->zName);
1763   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1764     const char *zName;
1765     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1766       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1767         int i = sqlite3Strlen30(zName) - 1;
1768         while( zName[i]!='_' ) i--;
1769         zName += i;
1770       }
1771       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1772     }else{
1773       sqlite3DebugPrintf("%20s","");
1774     }
1775   }else{
1776     char *z;
1777     if( p->u.vtab.idxStr ){
1778       z = sqlite3_mprintf("(%d,\"%s\",%x)",
1779                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1780     }else{
1781       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1782     }
1783     sqlite3DebugPrintf(" %-19s", z);
1784     sqlite3_free(z);
1785   }
1786   if( p->wsFlags & WHERE_SKIPSCAN ){
1787     sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1788   }else{
1789     sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1790   }
1791   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1792   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1793     int i;
1794     for(i=0; i<p->nLTerm; i++){
1795       whereTermPrint(p->aLTerm[i], i);
1796     }
1797   }
1798 }
1799 #endif
1800 
1801 /*
1802 ** Convert bulk memory into a valid WhereLoop that can be passed
1803 ** to whereLoopClear harmlessly.
1804 */
1805 static void whereLoopInit(WhereLoop *p){
1806   p->aLTerm = p->aLTermSpace;
1807   p->nLTerm = 0;
1808   p->nLSlot = ArraySize(p->aLTermSpace);
1809   p->wsFlags = 0;
1810 }
1811 
1812 /*
1813 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
1814 */
1815 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1816   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1817     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1818       sqlite3_free(p->u.vtab.idxStr);
1819       p->u.vtab.needFree = 0;
1820       p->u.vtab.idxStr = 0;
1821     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1822       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1823       sqlite3DbFreeNN(db, p->u.btree.pIndex);
1824       p->u.btree.pIndex = 0;
1825     }
1826   }
1827 }
1828 
1829 /*
1830 ** Deallocate internal memory used by a WhereLoop object
1831 */
1832 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1833   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1834   whereLoopClearUnion(db, p);
1835   whereLoopInit(p);
1836 }
1837 
1838 /*
1839 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1840 */
1841 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1842   WhereTerm **paNew;
1843   if( p->nLSlot>=n ) return SQLITE_OK;
1844   n = (n+7)&~7;
1845   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1846   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1847   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1848   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1849   p->aLTerm = paNew;
1850   p->nLSlot = n;
1851   return SQLITE_OK;
1852 }
1853 
1854 /*
1855 ** Transfer content from the second pLoop into the first.
1856 */
1857 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1858   whereLoopClearUnion(db, pTo);
1859   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1860     memset(&pTo->u, 0, sizeof(pTo->u));
1861     return SQLITE_NOMEM_BKPT;
1862   }
1863   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1864   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1865   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1866     pFrom->u.vtab.needFree = 0;
1867   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1868     pFrom->u.btree.pIndex = 0;
1869   }
1870   return SQLITE_OK;
1871 }
1872 
1873 /*
1874 ** Delete a WhereLoop object
1875 */
1876 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1877   whereLoopClear(db, p);
1878   sqlite3DbFreeNN(db, p);
1879 }
1880 
1881 /*
1882 ** Free a WhereInfo structure
1883 */
1884 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1885   int i;
1886   assert( pWInfo!=0 );
1887   for(i=0; i<pWInfo->nLevel; i++){
1888     WhereLevel *pLevel = &pWInfo->a[i];
1889     if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1890       sqlite3DbFree(db, pLevel->u.in.aInLoop);
1891     }
1892   }
1893   sqlite3WhereClauseClear(&pWInfo->sWC);
1894   while( pWInfo->pLoops ){
1895     WhereLoop *p = pWInfo->pLoops;
1896     pWInfo->pLoops = p->pNextLoop;
1897     whereLoopDelete(db, p);
1898   }
1899   sqlite3DbFreeNN(db, pWInfo);
1900 }
1901 
1902 /*
1903 ** Return TRUE if all of the following are true:
1904 **
1905 **   (1)  X has the same or lower cost that Y
1906 **   (2)  X uses fewer WHERE clause terms than Y
1907 **   (3)  Every WHERE clause term used by X is also used by Y
1908 **   (4)  X skips at least as many columns as Y
1909 **   (5)  If X is a covering index, than Y is too
1910 **
1911 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
1912 ** If X is a proper subset of Y then Y is a better choice and ought
1913 ** to have a lower cost.  This routine returns TRUE when that cost
1914 ** relationship is inverted and needs to be adjusted.  Constraint (4)
1915 ** was added because if X uses skip-scan less than Y it still might
1916 ** deserve a lower cost even if it is a proper subset of Y.  Constraint (5)
1917 ** was added because a covering index probably deserves to have a lower cost
1918 ** than a non-covering index even if it is a proper subset.
1919 */
1920 static int whereLoopCheaperProperSubset(
1921   const WhereLoop *pX,       /* First WhereLoop to compare */
1922   const WhereLoop *pY        /* Compare against this WhereLoop */
1923 ){
1924   int i, j;
1925   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
1926     return 0; /* X is not a subset of Y */
1927   }
1928   if( pY->nSkip > pX->nSkip ) return 0;
1929   if( pX->rRun >= pY->rRun ){
1930     if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
1931     if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
1932   }
1933   for(i=pX->nLTerm-1; i>=0; i--){
1934     if( pX->aLTerm[i]==0 ) continue;
1935     for(j=pY->nLTerm-1; j>=0; j--){
1936       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
1937     }
1938     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
1939   }
1940   if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
1941    && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
1942     return 0;  /* Constraint (5) */
1943   }
1944   return 1;  /* All conditions meet */
1945 }
1946 
1947 /*
1948 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
1949 ** that:
1950 **
1951 **   (1) pTemplate costs less than any other WhereLoops that are a proper
1952 **       subset of pTemplate
1953 **
1954 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
1955 **       is a proper subset.
1956 **
1957 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
1958 ** WHERE clause terms than Y and that every WHERE clause term used by X is
1959 ** also used by Y.
1960 */
1961 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
1962   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
1963   for(; p; p=p->pNextLoop){
1964     if( p->iTab!=pTemplate->iTab ) continue;
1965     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
1966     if( whereLoopCheaperProperSubset(p, pTemplate) ){
1967       /* Adjust pTemplate cost downward so that it is cheaper than its
1968       ** subset p. */
1969       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1970                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
1971       pTemplate->rRun = p->rRun;
1972       pTemplate->nOut = p->nOut - 1;
1973     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
1974       /* Adjust pTemplate cost upward so that it is costlier than p since
1975       ** pTemplate is a proper subset of p */
1976       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1977                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
1978       pTemplate->rRun = p->rRun;
1979       pTemplate->nOut = p->nOut + 1;
1980     }
1981   }
1982 }
1983 
1984 /*
1985 ** Search the list of WhereLoops in *ppPrev looking for one that can be
1986 ** replaced by pTemplate.
1987 **
1988 ** Return NULL if pTemplate does not belong on the WhereLoop list.
1989 ** In other words if pTemplate ought to be dropped from further consideration.
1990 **
1991 ** If pX is a WhereLoop that pTemplate can replace, then return the
1992 ** link that points to pX.
1993 **
1994 ** If pTemplate cannot replace any existing element of the list but needs
1995 ** to be added to the list as a new entry, then return a pointer to the
1996 ** tail of the list.
1997 */
1998 static WhereLoop **whereLoopFindLesser(
1999   WhereLoop **ppPrev,
2000   const WhereLoop *pTemplate
2001 ){
2002   WhereLoop *p;
2003   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2004     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2005       /* If either the iTab or iSortIdx values for two WhereLoop are different
2006       ** then those WhereLoops need to be considered separately.  Neither is
2007       ** a candidate to replace the other. */
2008       continue;
2009     }
2010     /* In the current implementation, the rSetup value is either zero
2011     ** or the cost of building an automatic index (NlogN) and the NlogN
2012     ** is the same for compatible WhereLoops. */
2013     assert( p->rSetup==0 || pTemplate->rSetup==0
2014                  || p->rSetup==pTemplate->rSetup );
2015 
2016     /* whereLoopAddBtree() always generates and inserts the automatic index
2017     ** case first.  Hence compatible candidate WhereLoops never have a larger
2018     ** rSetup. Call this SETUP-INVARIANT */
2019     assert( p->rSetup>=pTemplate->rSetup );
2020 
2021     /* Any loop using an appliation-defined index (or PRIMARY KEY or
2022     ** UNIQUE constraint) with one or more == constraints is better
2023     ** than an automatic index. Unless it is a skip-scan. */
2024     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2025      && (pTemplate->nSkip)==0
2026      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2027      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2028      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2029     ){
2030       break;
2031     }
2032 
2033     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2034     ** discarded.  WhereLoop p is better if:
2035     **   (1)  p has no more dependencies than pTemplate, and
2036     **   (2)  p has an equal or lower cost than pTemplate
2037     */
2038     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2039      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2040      && p->rRun<=pTemplate->rRun                      /* (2b) */
2041      && p->nOut<=pTemplate->nOut                      /* (2c) */
2042     ){
2043       return 0;  /* Discard pTemplate */
2044     }
2045 
2046     /* If pTemplate is always better than p, then cause p to be overwritten
2047     ** with pTemplate.  pTemplate is better than p if:
2048     **   (1)  pTemplate has no more dependences than p, and
2049     **   (2)  pTemplate has an equal or lower cost than p.
2050     */
2051     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2052      && p->rRun>=pTemplate->rRun                             /* (2a) */
2053      && p->nOut>=pTemplate->nOut                             /* (2b) */
2054     ){
2055       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2056       break;   /* Cause p to be overwritten by pTemplate */
2057     }
2058   }
2059   return ppPrev;
2060 }
2061 
2062 /*
2063 ** Insert or replace a WhereLoop entry using the template supplied.
2064 **
2065 ** An existing WhereLoop entry might be overwritten if the new template
2066 ** is better and has fewer dependencies.  Or the template will be ignored
2067 ** and no insert will occur if an existing WhereLoop is faster and has
2068 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2069 ** added based on the template.
2070 **
2071 ** If pBuilder->pOrSet is not NULL then we care about only the
2072 ** prerequisites and rRun and nOut costs of the N best loops.  That
2073 ** information is gathered in the pBuilder->pOrSet object.  This special
2074 ** processing mode is used only for OR clause processing.
2075 **
2076 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2077 ** still might overwrite similar loops with the new template if the
2078 ** new template is better.  Loops may be overwritten if the following
2079 ** conditions are met:
2080 **
2081 **    (1)  They have the same iTab.
2082 **    (2)  They have the same iSortIdx.
2083 **    (3)  The template has same or fewer dependencies than the current loop
2084 **    (4)  The template has the same or lower cost than the current loop
2085 */
2086 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2087   WhereLoop **ppPrev, *p;
2088   WhereInfo *pWInfo = pBuilder->pWInfo;
2089   sqlite3 *db = pWInfo->pParse->db;
2090   int rc;
2091 
2092   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2093   ** and prereqs.
2094   */
2095   if( pBuilder->pOrSet!=0 ){
2096     if( pTemplate->nLTerm ){
2097 #if WHERETRACE_ENABLED
2098       u16 n = pBuilder->pOrSet->n;
2099       int x =
2100 #endif
2101       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2102                                     pTemplate->nOut);
2103 #if WHERETRACE_ENABLED /* 0x8 */
2104       if( sqlite3WhereTrace & 0x8 ){
2105         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2106         whereLoopPrint(pTemplate, pBuilder->pWC);
2107       }
2108 #endif
2109     }
2110     return SQLITE_OK;
2111   }
2112 
2113   /* Look for an existing WhereLoop to replace with pTemplate
2114   */
2115   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2116   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2117 
2118   if( ppPrev==0 ){
2119     /* There already exists a WhereLoop on the list that is better
2120     ** than pTemplate, so just ignore pTemplate */
2121 #if WHERETRACE_ENABLED /* 0x8 */
2122     if( sqlite3WhereTrace & 0x8 ){
2123       sqlite3DebugPrintf("   skip: ");
2124       whereLoopPrint(pTemplate, pBuilder->pWC);
2125     }
2126 #endif
2127     return SQLITE_OK;
2128   }else{
2129     p = *ppPrev;
2130   }
2131 
2132   /* If we reach this point it means that either p[] should be overwritten
2133   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2134   ** WhereLoop and insert it.
2135   */
2136 #if WHERETRACE_ENABLED /* 0x8 */
2137   if( sqlite3WhereTrace & 0x8 ){
2138     if( p!=0 ){
2139       sqlite3DebugPrintf("replace: ");
2140       whereLoopPrint(p, pBuilder->pWC);
2141       sqlite3DebugPrintf("   with: ");
2142     }else{
2143       sqlite3DebugPrintf("    add: ");
2144     }
2145     whereLoopPrint(pTemplate, pBuilder->pWC);
2146   }
2147 #endif
2148   if( p==0 ){
2149     /* Allocate a new WhereLoop to add to the end of the list */
2150     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2151     if( p==0 ) return SQLITE_NOMEM_BKPT;
2152     whereLoopInit(p);
2153     p->pNextLoop = 0;
2154   }else{
2155     /* We will be overwriting WhereLoop p[].  But before we do, first
2156     ** go through the rest of the list and delete any other entries besides
2157     ** p[] that are also supplated by pTemplate */
2158     WhereLoop **ppTail = &p->pNextLoop;
2159     WhereLoop *pToDel;
2160     while( *ppTail ){
2161       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2162       if( ppTail==0 ) break;
2163       pToDel = *ppTail;
2164       if( pToDel==0 ) break;
2165       *ppTail = pToDel->pNextLoop;
2166 #if WHERETRACE_ENABLED /* 0x8 */
2167       if( sqlite3WhereTrace & 0x8 ){
2168         sqlite3DebugPrintf(" delete: ");
2169         whereLoopPrint(pToDel, pBuilder->pWC);
2170       }
2171 #endif
2172       whereLoopDelete(db, pToDel);
2173     }
2174   }
2175   rc = whereLoopXfer(db, p, pTemplate);
2176   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2177     Index *pIndex = p->u.btree.pIndex;
2178     if( pIndex && pIndex->tnum==0 ){
2179       p->u.btree.pIndex = 0;
2180     }
2181   }
2182   return rc;
2183 }
2184 
2185 /*
2186 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2187 ** WHERE clause that reference the loop but which are not used by an
2188 ** index.
2189 *
2190 ** For every WHERE clause term that is not used by the index
2191 ** and which has a truth probability assigned by one of the likelihood(),
2192 ** likely(), or unlikely() SQL functions, reduce the estimated number
2193 ** of output rows by the probability specified.
2194 **
2195 ** TUNING:  For every WHERE clause term that is not used by the index
2196 ** and which does not have an assigned truth probability, heuristics
2197 ** described below are used to try to estimate the truth probability.
2198 ** TODO --> Perhaps this is something that could be improved by better
2199 ** table statistics.
2200 **
2201 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2202 ** value corresponds to -1 in LogEst notation, so this means decrement
2203 ** the WhereLoop.nOut field for every such WHERE clause term.
2204 **
2205 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2206 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2207 ** final output row estimate is no greater than 1/4 of the total number
2208 ** of rows in the table.  In other words, assume that x==EXPR will filter
2209 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2210 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2211 ** on the "x" column and so in that case only cap the output row estimate
2212 ** at 1/2 instead of 1/4.
2213 */
2214 static void whereLoopOutputAdjust(
2215   WhereClause *pWC,      /* The WHERE clause */
2216   WhereLoop *pLoop,      /* The loop to adjust downward */
2217   LogEst nRow            /* Number of rows in the entire table */
2218 ){
2219   WhereTerm *pTerm, *pX;
2220   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2221   int i, j, k;
2222   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2223 
2224   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2225   for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2226     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2227     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2228     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2229     for(j=pLoop->nLTerm-1; j>=0; j--){
2230       pX = pLoop->aLTerm[j];
2231       if( pX==0 ) continue;
2232       if( pX==pTerm ) break;
2233       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2234     }
2235     if( j<0 ){
2236       if( pTerm->truthProb<=0 ){
2237         /* If a truth probability is specified using the likelihood() hints,
2238         ** then use the probability provided by the application. */
2239         pLoop->nOut += pTerm->truthProb;
2240       }else{
2241         /* In the absence of explicit truth probabilities, use heuristics to
2242         ** guess a reasonable truth probability. */
2243         pLoop->nOut--;
2244         if( pTerm->eOperator&(WO_EQ|WO_IS) ){
2245           Expr *pRight = pTerm->pExpr->pRight;
2246           testcase( pTerm->pExpr->op==TK_IS );
2247           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2248             k = 10;
2249           }else{
2250             k = 20;
2251           }
2252           if( iReduce<k ) iReduce = k;
2253         }
2254       }
2255     }
2256   }
2257   if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;
2258 }
2259 
2260 /*
2261 ** Term pTerm is a vector range comparison operation. The first comparison
2262 ** in the vector can be optimized using column nEq of the index. This
2263 ** function returns the total number of vector elements that can be used
2264 ** as part of the range comparison.
2265 **
2266 ** For example, if the query is:
2267 **
2268 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2269 **
2270 ** and the index:
2271 **
2272 **   CREATE INDEX ... ON (a, b, c, d, e)
2273 **
2274 ** then this function would be invoked with nEq=1. The value returned in
2275 ** this case is 3.
2276 */
2277 static int whereRangeVectorLen(
2278   Parse *pParse,       /* Parsing context */
2279   int iCur,            /* Cursor open on pIdx */
2280   Index *pIdx,         /* The index to be used for a inequality constraint */
2281   int nEq,             /* Number of prior equality constraints on same index */
2282   WhereTerm *pTerm     /* The vector inequality constraint */
2283 ){
2284   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2285   int i;
2286 
2287   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2288   for(i=1; i<nCmp; i++){
2289     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2290     ** of the index. If not, exit the loop.  */
2291     char aff;                     /* Comparison affinity */
2292     char idxaff = 0;              /* Indexed columns affinity */
2293     CollSeq *pColl;               /* Comparison collation sequence */
2294     Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2295     Expr *pRhs = pTerm->pExpr->pRight;
2296     if( pRhs->flags & EP_xIsSelect ){
2297       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2298     }else{
2299       pRhs = pRhs->x.pList->a[i].pExpr;
2300     }
2301 
2302     /* Check that the LHS of the comparison is a column reference to
2303     ** the right column of the right source table. And that the sort
2304     ** order of the index column is the same as the sort order of the
2305     ** leftmost index column.  */
2306     if( pLhs->op!=TK_COLUMN
2307      || pLhs->iTable!=iCur
2308      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2309      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2310     ){
2311       break;
2312     }
2313 
2314     testcase( pLhs->iColumn==XN_ROWID );
2315     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2316     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2317     if( aff!=idxaff ) break;
2318 
2319     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2320     if( pColl==0 ) break;
2321     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2322   }
2323   return i;
2324 }
2325 
2326 /*
2327 ** Adjust the cost C by the costMult facter T.  This only occurs if
2328 ** compiled with -DSQLITE_ENABLE_COSTMULT
2329 */
2330 #ifdef SQLITE_ENABLE_COSTMULT
2331 # define ApplyCostMultiplier(C,T)  C += T
2332 #else
2333 # define ApplyCostMultiplier(C,T)
2334 #endif
2335 
2336 /*
2337 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2338 ** index pIndex. Try to match one more.
2339 **
2340 ** When this function is called, pBuilder->pNew->nOut contains the
2341 ** number of rows expected to be visited by filtering using the nEq
2342 ** terms only. If it is modified, this value is restored before this
2343 ** function returns.
2344 **
2345 ** If pProbe->tnum==0, that means pIndex is a fake index used for the
2346 ** INTEGER PRIMARY KEY.
2347 */
2348 static int whereLoopAddBtreeIndex(
2349   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2350   struct SrcList_item *pSrc,      /* FROM clause term being analyzed */
2351   Index *pProbe,                  /* An index on pSrc */
2352   LogEst nInMul                   /* log(Number of iterations due to IN) */
2353 ){
2354   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2355   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2356   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2357   WhereLoop *pNew;                /* Template WhereLoop under construction */
2358   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2359   int opMask;                     /* Valid operators for constraints */
2360   WhereScan scan;                 /* Iterator for WHERE terms */
2361   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2362   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2363   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2364   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2365   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2366   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2367   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2368   LogEst saved_nOut;              /* Original value of pNew->nOut */
2369   int rc = SQLITE_OK;             /* Return code */
2370   LogEst rSize;                   /* Number of rows in the table */
2371   LogEst rLogSize;                /* Logarithm of table size */
2372   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2373 
2374   pNew = pBuilder->pNew;
2375   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2376   WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d\n",
2377                      pProbe->pTable->zName,pProbe->zName, pNew->u.btree.nEq));
2378 
2379   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2380   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2381   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2382     opMask = WO_LT|WO_LE;
2383   }else{
2384     assert( pNew->u.btree.nBtm==0 );
2385     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2386   }
2387   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2388 
2389   assert( pNew->u.btree.nEq<pProbe->nColumn );
2390 
2391   saved_nEq = pNew->u.btree.nEq;
2392   saved_nBtm = pNew->u.btree.nBtm;
2393   saved_nTop = pNew->u.btree.nTop;
2394   saved_nSkip = pNew->nSkip;
2395   saved_nLTerm = pNew->nLTerm;
2396   saved_wsFlags = pNew->wsFlags;
2397   saved_prereq = pNew->prereq;
2398   saved_nOut = pNew->nOut;
2399   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2400                         opMask, pProbe);
2401   pNew->rSetup = 0;
2402   rSize = pProbe->aiRowLogEst[0];
2403   rLogSize = estLog(rSize);
2404   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2405     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2406     LogEst rCostIdx;
2407     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2408     int nIn = 0;
2409 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2410     int nRecValid = pBuilder->nRecValid;
2411 #endif
2412     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2413      && indexColumnNotNull(pProbe, saved_nEq)
2414     ){
2415       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2416     }
2417     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2418 
2419     /* Do not allow the upper bound of a LIKE optimization range constraint
2420     ** to mix with a lower range bound from some other source */
2421     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2422 
2423     /* Do not allow constraints from the WHERE clause to be used by the
2424     ** right table of a LEFT JOIN.  Only constraints in the ON clause are
2425     ** allowed */
2426     if( (pSrc->fg.jointype & JT_LEFT)!=0
2427      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2428     ){
2429       continue;
2430     }
2431 
2432     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2433       pBuilder->bldFlags |= SQLITE_BLDF_UNIQUE;
2434     }else{
2435       pBuilder->bldFlags |= SQLITE_BLDF_INDEXED;
2436     }
2437     pNew->wsFlags = saved_wsFlags;
2438     pNew->u.btree.nEq = saved_nEq;
2439     pNew->u.btree.nBtm = saved_nBtm;
2440     pNew->u.btree.nTop = saved_nTop;
2441     pNew->nLTerm = saved_nLTerm;
2442     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2443     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2444     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2445 
2446     assert( nInMul==0
2447         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2448         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2449         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2450     );
2451 
2452     if( eOp & WO_IN ){
2453       Expr *pExpr = pTerm->pExpr;
2454       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2455         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2456         int i;
2457         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2458 
2459         /* The expression may actually be of the form (x, y) IN (SELECT...).
2460         ** In this case there is a separate term for each of (x) and (y).
2461         ** However, the nIn multiplier should only be applied once, not once
2462         ** for each such term. The following loop checks that pTerm is the
2463         ** first such term in use, and sets nIn back to 0 if it is not. */
2464         for(i=0; i<pNew->nLTerm-1; i++){
2465           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2466         }
2467       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2468         /* "x IN (value, value, ...)" */
2469         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2470         assert( nIn>0 );  /* RHS always has 2 or more terms...  The parser
2471                           ** changes "x IN (?)" into "x=?". */
2472       }
2473       if( pProbe->hasStat1 ){
2474         LogEst M, logK, safetyMargin;
2475         /* Let:
2476         **   N = the total number of rows in the table
2477         **   K = the number of entries on the RHS of the IN operator
2478         **   M = the number of rows in the table that match terms to the
2479         **       to the left in the same index.  If the IN operator is on
2480         **       the left-most index column, M==N.
2481         **
2482         ** Given the definitions above, it is better to omit the IN operator
2483         ** from the index lookup and instead do a scan of the M elements,
2484         ** testing each scanned row against the IN operator separately, if:
2485         **
2486         **        M*log(K) < K*log(N)
2487         **
2488         ** Our estimates for M, K, and N might be inaccurate, so we build in
2489         ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2490         ** with the index, as using an index has better worst-case behavior.
2491         ** If we do not have real sqlite_stat1 data, always prefer to use
2492         ** the index.
2493         */
2494         M = pProbe->aiRowLogEst[saved_nEq];
2495         logK = estLog(nIn);
2496         safetyMargin = 10;  /* TUNING: extra weight for indexed IN */
2497         if( M + logK + safetyMargin < nIn + rLogSize ){
2498           WHERETRACE(0x40,
2499             ("Scan preferred over IN operator on column %d of \"%s\" (%d<%d)\n",
2500              saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2501           continue;
2502         }else{
2503           WHERETRACE(0x40,
2504             ("IN operator preferred on column %d of \"%s\" (%d>=%d)\n",
2505              saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2506         }
2507       }
2508       pNew->wsFlags |= WHERE_COLUMN_IN;
2509     }else if( eOp & (WO_EQ|WO_IS) ){
2510       int iCol = pProbe->aiColumn[saved_nEq];
2511       pNew->wsFlags |= WHERE_COLUMN_EQ;
2512       assert( saved_nEq==pNew->u.btree.nEq );
2513       if( iCol==XN_ROWID
2514        || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2515       ){
2516         if( iCol==XN_ROWID || pProbe->uniqNotNull
2517          || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2518         ){
2519           pNew->wsFlags |= WHERE_ONEROW;
2520         }else{
2521           pNew->wsFlags |= WHERE_UNQ_WANTED;
2522         }
2523       }
2524     }else if( eOp & WO_ISNULL ){
2525       pNew->wsFlags |= WHERE_COLUMN_NULL;
2526     }else if( eOp & (WO_GT|WO_GE) ){
2527       testcase( eOp & WO_GT );
2528       testcase( eOp & WO_GE );
2529       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2530       pNew->u.btree.nBtm = whereRangeVectorLen(
2531           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2532       );
2533       pBtm = pTerm;
2534       pTop = 0;
2535       if( pTerm->wtFlags & TERM_LIKEOPT ){
2536         /* Range contraints that come from the LIKE optimization are
2537         ** always used in pairs. */
2538         pTop = &pTerm[1];
2539         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2540         assert( pTop->wtFlags & TERM_LIKEOPT );
2541         assert( pTop->eOperator==WO_LT );
2542         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2543         pNew->aLTerm[pNew->nLTerm++] = pTop;
2544         pNew->wsFlags |= WHERE_TOP_LIMIT;
2545         pNew->u.btree.nTop = 1;
2546       }
2547     }else{
2548       assert( eOp & (WO_LT|WO_LE) );
2549       testcase( eOp & WO_LT );
2550       testcase( eOp & WO_LE );
2551       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2552       pNew->u.btree.nTop = whereRangeVectorLen(
2553           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2554       );
2555       pTop = pTerm;
2556       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2557                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2558     }
2559 
2560     /* At this point pNew->nOut is set to the number of rows expected to
2561     ** be visited by the index scan before considering term pTerm, or the
2562     ** values of nIn and nInMul. In other words, assuming that all
2563     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2564     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2565     assert( pNew->nOut==saved_nOut );
2566     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2567       /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4
2568       ** data, using some other estimate.  */
2569       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2570     }else{
2571       int nEq = ++pNew->u.btree.nEq;
2572       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2573 
2574       assert( pNew->nOut==saved_nOut );
2575       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2576         assert( (eOp & WO_IN) || nIn==0 );
2577         testcase( eOp & WO_IN );
2578         pNew->nOut += pTerm->truthProb;
2579         pNew->nOut -= nIn;
2580       }else{
2581 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2582         tRowcnt nOut = 0;
2583         if( nInMul==0
2584          && pProbe->nSample
2585          && pNew->u.btree.nEq<=pProbe->nSampleCol
2586          && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2587         ){
2588           Expr *pExpr = pTerm->pExpr;
2589           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2590             testcase( eOp & WO_EQ );
2591             testcase( eOp & WO_IS );
2592             testcase( eOp & WO_ISNULL );
2593             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2594           }else{
2595             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2596           }
2597           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2598           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2599           if( nOut ){
2600             pNew->nOut = sqlite3LogEst(nOut);
2601             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2602             pNew->nOut -= nIn;
2603           }
2604         }
2605         if( nOut==0 )
2606 #endif
2607         {
2608           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2609           if( eOp & WO_ISNULL ){
2610             /* TUNING: If there is no likelihood() value, assume that a
2611             ** "col IS NULL" expression matches twice as many rows
2612             ** as (col=?). */
2613             pNew->nOut += 10;
2614           }
2615         }
2616       }
2617     }
2618 
2619     /* Set rCostIdx to the cost of visiting selected rows in index. Add
2620     ** it to pNew->rRun, which is currently set to the cost of the index
2621     ** seek only. Then, if this is a non-covering index, add the cost of
2622     ** visiting the rows in the main table.  */
2623     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2624     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2625     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2626       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2627     }
2628     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2629 
2630     nOutUnadjusted = pNew->nOut;
2631     pNew->rRun += nInMul + nIn;
2632     pNew->nOut += nInMul + nIn;
2633     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2634     rc = whereLoopInsert(pBuilder, pNew);
2635 
2636     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2637       pNew->nOut = saved_nOut;
2638     }else{
2639       pNew->nOut = nOutUnadjusted;
2640     }
2641 
2642     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2643      && pNew->u.btree.nEq<pProbe->nColumn
2644     ){
2645       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2646     }
2647     pNew->nOut = saved_nOut;
2648 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2649     pBuilder->nRecValid = nRecValid;
2650 #endif
2651   }
2652   pNew->prereq = saved_prereq;
2653   pNew->u.btree.nEq = saved_nEq;
2654   pNew->u.btree.nBtm = saved_nBtm;
2655   pNew->u.btree.nTop = saved_nTop;
2656   pNew->nSkip = saved_nSkip;
2657   pNew->wsFlags = saved_wsFlags;
2658   pNew->nOut = saved_nOut;
2659   pNew->nLTerm = saved_nLTerm;
2660 
2661   /* Consider using a skip-scan if there are no WHERE clause constraints
2662   ** available for the left-most terms of the index, and if the average
2663   ** number of repeats in the left-most terms is at least 18.
2664   **
2665   ** The magic number 18 is selected on the basis that scanning 17 rows
2666   ** is almost always quicker than an index seek (even though if the index
2667   ** contains fewer than 2^17 rows we assume otherwise in other parts of
2668   ** the code). And, even if it is not, it should not be too much slower.
2669   ** On the other hand, the extra seeks could end up being significantly
2670   ** more expensive.  */
2671   assert( 42==sqlite3LogEst(18) );
2672   if( saved_nEq==saved_nSkip
2673    && saved_nEq+1<pProbe->nKeyCol
2674    && pProbe->noSkipScan==0
2675    && OptimizationEnabled(db, SQLITE_SkipScan)
2676    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
2677    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2678   ){
2679     LogEst nIter;
2680     pNew->u.btree.nEq++;
2681     pNew->nSkip++;
2682     pNew->aLTerm[pNew->nLTerm++] = 0;
2683     pNew->wsFlags |= WHERE_SKIPSCAN;
2684     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2685     pNew->nOut -= nIter;
2686     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
2687     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2688     nIter += 5;
2689     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2690     pNew->nOut = saved_nOut;
2691     pNew->u.btree.nEq = saved_nEq;
2692     pNew->nSkip = saved_nSkip;
2693     pNew->wsFlags = saved_wsFlags;
2694   }
2695 
2696   WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
2697                       pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
2698   return rc;
2699 }
2700 
2701 /*
2702 ** Return True if it is possible that pIndex might be useful in
2703 ** implementing the ORDER BY clause in pBuilder.
2704 **
2705 ** Return False if pBuilder does not contain an ORDER BY clause or
2706 ** if there is no way for pIndex to be useful in implementing that
2707 ** ORDER BY clause.
2708 */
2709 static int indexMightHelpWithOrderBy(
2710   WhereLoopBuilder *pBuilder,
2711   Index *pIndex,
2712   int iCursor
2713 ){
2714   ExprList *pOB;
2715   ExprList *aColExpr;
2716   int ii, jj;
2717 
2718   if( pIndex->bUnordered ) return 0;
2719   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2720   for(ii=0; ii<pOB->nExpr; ii++){
2721     Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
2722     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2723       if( pExpr->iColumn<0 ) return 1;
2724       for(jj=0; jj<pIndex->nKeyCol; jj++){
2725         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2726       }
2727     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2728       for(jj=0; jj<pIndex->nKeyCol; jj++){
2729         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2730         if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2731           return 1;
2732         }
2733       }
2734     }
2735   }
2736   return 0;
2737 }
2738 
2739 /* Check to see if a partial index with pPartIndexWhere can be used
2740 ** in the current query.  Return true if it can be and false if not.
2741 */
2742 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){
2743   int i;
2744   WhereTerm *pTerm;
2745   Parse *pParse = pWC->pWInfo->pParse;
2746   while( pWhere->op==TK_AND ){
2747     if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0;
2748     pWhere = pWhere->pRight;
2749   }
2750   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
2751   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2752     Expr *pExpr = pTerm->pExpr;
2753     if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2754      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
2755     ){
2756       return 1;
2757     }
2758   }
2759   return 0;
2760 }
2761 
2762 /*
2763 ** Add all WhereLoop objects for a single table of the join where the table
2764 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
2765 ** a b-tree table, not a virtual table.
2766 **
2767 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2768 ** are calculated as follows:
2769 **
2770 ** For a full scan, assuming the table (or index) contains nRow rows:
2771 **
2772 **     cost = nRow * 3.0                    // full-table scan
2773 **     cost = nRow * K                      // scan of covering index
2774 **     cost = nRow * (K+3.0)                // scan of non-covering index
2775 **
2776 ** where K is a value between 1.1 and 3.0 set based on the relative
2777 ** estimated average size of the index and table records.
2778 **
2779 ** For an index scan, where nVisit is the number of index rows visited
2780 ** by the scan, and nSeek is the number of seek operations required on
2781 ** the index b-tree:
2782 **
2783 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
2784 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
2785 **
2786 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2787 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2788 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2789 **
2790 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2791 ** of uncertainty.  For this reason, scoring is designed to pick plans that
2792 ** "do the least harm" if the estimates are inaccurate.  For example, a
2793 ** log(nRow) factor is omitted from a non-covering index scan in order to
2794 ** bias the scoring in favor of using an index, since the worst-case
2795 ** performance of using an index is far better than the worst-case performance
2796 ** of a full table scan.
2797 */
2798 static int whereLoopAddBtree(
2799   WhereLoopBuilder *pBuilder, /* WHERE clause information */
2800   Bitmask mPrereq             /* Extra prerequesites for using this table */
2801 ){
2802   WhereInfo *pWInfo;          /* WHERE analysis context */
2803   Index *pProbe;              /* An index we are evaluating */
2804   Index sPk;                  /* A fake index object for the primary key */
2805   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
2806   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
2807   SrcList *pTabList;          /* The FROM clause */
2808   struct SrcList_item *pSrc;  /* The FROM clause btree term to add */
2809   WhereLoop *pNew;            /* Template WhereLoop object */
2810   int rc = SQLITE_OK;         /* Return code */
2811   int iSortIdx = 1;           /* Index number */
2812   int b;                      /* A boolean value */
2813   LogEst rSize;               /* number of rows in the table */
2814   LogEst rLogSize;            /* Logarithm of the number of rows in the table */
2815   WhereClause *pWC;           /* The parsed WHERE clause */
2816   Table *pTab;                /* Table being queried */
2817 
2818   pNew = pBuilder->pNew;
2819   pWInfo = pBuilder->pWInfo;
2820   pTabList = pWInfo->pTabList;
2821   pSrc = pTabList->a + pNew->iTab;
2822   pTab = pSrc->pTab;
2823   pWC = pBuilder->pWC;
2824   assert( !IsVirtual(pSrc->pTab) );
2825 
2826   if( pSrc->pIBIndex ){
2827     /* An INDEXED BY clause specifies a particular index to use */
2828     pProbe = pSrc->pIBIndex;
2829   }else if( !HasRowid(pTab) ){
2830     pProbe = pTab->pIndex;
2831   }else{
2832     /* There is no INDEXED BY clause.  Create a fake Index object in local
2833     ** variable sPk to represent the rowid primary key index.  Make this
2834     ** fake index the first in a chain of Index objects with all of the real
2835     ** indices to follow */
2836     Index *pFirst;                  /* First of real indices on the table */
2837     memset(&sPk, 0, sizeof(Index));
2838     sPk.nKeyCol = 1;
2839     sPk.nColumn = 1;
2840     sPk.aiColumn = &aiColumnPk;
2841     sPk.aiRowLogEst = aiRowEstPk;
2842     sPk.onError = OE_Replace;
2843     sPk.pTable = pTab;
2844     sPk.szIdxRow = pTab->szTabRow;
2845     aiRowEstPk[0] = pTab->nRowLogEst;
2846     aiRowEstPk[1] = 0;
2847     pFirst = pSrc->pTab->pIndex;
2848     if( pSrc->fg.notIndexed==0 ){
2849       /* The real indices of the table are only considered if the
2850       ** NOT INDEXED qualifier is omitted from the FROM clause */
2851       sPk.pNext = pFirst;
2852     }
2853     pProbe = &sPk;
2854   }
2855   rSize = pTab->nRowLogEst;
2856   rLogSize = estLog(rSize);
2857 
2858 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
2859   /* Automatic indexes */
2860   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
2861    && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
2862    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
2863    && pSrc->pIBIndex==0      /* Has no INDEXED BY clause */
2864    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
2865    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
2866    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
2867    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
2868   ){
2869     /* Generate auto-index WhereLoops */
2870     WhereTerm *pTerm;
2871     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
2872     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
2873       if( pTerm->prereqRight & pNew->maskSelf ) continue;
2874       if( termCanDriveIndex(pTerm, pSrc, 0) ){
2875         pNew->u.btree.nEq = 1;
2876         pNew->nSkip = 0;
2877         pNew->u.btree.pIndex = 0;
2878         pNew->nLTerm = 1;
2879         pNew->aLTerm[0] = pTerm;
2880         /* TUNING: One-time cost for computing the automatic index is
2881         ** estimated to be X*N*log2(N) where N is the number of rows in
2882         ** the table being indexed and where X is 7 (LogEst=28) for normal
2883         ** tables or 0.5 (LogEst=-10) for views and subqueries.  The value
2884         ** of X is smaller for views and subqueries so that the query planner
2885         ** will be more aggressive about generating automatic indexes for
2886         ** those objects, since there is no opportunity to add schema
2887         ** indexes on subqueries and views. */
2888         pNew->rSetup = rLogSize + rSize;
2889         if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
2890           pNew->rSetup += 28;
2891         }else{
2892           pNew->rSetup -= 10;
2893         }
2894         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
2895         if( pNew->rSetup<0 ) pNew->rSetup = 0;
2896         /* TUNING: Each index lookup yields 20 rows in the table.  This
2897         ** is more than the usual guess of 10 rows, since we have no way
2898         ** of knowing how selective the index will ultimately be.  It would
2899         ** not be unreasonable to make this value much larger. */
2900         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
2901         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
2902         pNew->wsFlags = WHERE_AUTO_INDEX;
2903         pNew->prereq = mPrereq | pTerm->prereqRight;
2904         rc = whereLoopInsert(pBuilder, pNew);
2905       }
2906     }
2907   }
2908 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
2909 
2910   /* Loop over all indices. If there was an INDEXED BY clause, then only
2911   ** consider index pProbe.  */
2912   for(; rc==SQLITE_OK && pProbe;
2913       pProbe=(pSrc->pIBIndex ? 0 : pProbe->pNext), iSortIdx++
2914   ){
2915     if( pProbe->pPartIdxWhere!=0
2916      && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){
2917       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
2918       continue;  /* Partial index inappropriate for this query */
2919     }
2920     if( pProbe->bNoQuery ) continue;
2921     rSize = pProbe->aiRowLogEst[0];
2922     pNew->u.btree.nEq = 0;
2923     pNew->u.btree.nBtm = 0;
2924     pNew->u.btree.nTop = 0;
2925     pNew->nSkip = 0;
2926     pNew->nLTerm = 0;
2927     pNew->iSortIdx = 0;
2928     pNew->rSetup = 0;
2929     pNew->prereq = mPrereq;
2930     pNew->nOut = rSize;
2931     pNew->u.btree.pIndex = pProbe;
2932     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
2933     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
2934     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
2935     if( pProbe->tnum<=0 ){
2936       /* Integer primary key index */
2937       pNew->wsFlags = WHERE_IPK;
2938 
2939       /* Full table scan */
2940       pNew->iSortIdx = b ? iSortIdx : 0;
2941       /* TUNING: Cost of full table scan is (N*3.0). */
2942       pNew->rRun = rSize + 16;
2943       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
2944       whereLoopOutputAdjust(pWC, pNew, rSize);
2945       rc = whereLoopInsert(pBuilder, pNew);
2946       pNew->nOut = rSize;
2947       if( rc ) break;
2948     }else{
2949       Bitmask m;
2950       if( pProbe->isCovering ){
2951         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
2952         m = 0;
2953       }else{
2954         m = pSrc->colUsed & pProbe->colNotIdxed;
2955         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
2956       }
2957 
2958       /* Full scan via index */
2959       if( b
2960        || !HasRowid(pTab)
2961        || pProbe->pPartIdxWhere!=0
2962        || ( m==0
2963          && pProbe->bUnordered==0
2964          && (pProbe->szIdxRow<pTab->szTabRow)
2965          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
2966          && sqlite3GlobalConfig.bUseCis
2967          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
2968           )
2969       ){
2970         pNew->iSortIdx = b ? iSortIdx : 0;
2971 
2972         /* The cost of visiting the index rows is N*K, where K is
2973         ** between 1.1 and 3.0, depending on the relative sizes of the
2974         ** index and table rows. */
2975         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
2976         if( m!=0 ){
2977           /* If this is a non-covering index scan, add in the cost of
2978           ** doing table lookups.  The cost will be 3x the number of
2979           ** lookups.  Take into account WHERE clause terms that can be
2980           ** satisfied using just the index, and that do not require a
2981           ** table lookup. */
2982           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
2983           int ii;
2984           int iCur = pSrc->iCursor;
2985           WhereClause *pWC2 = &pWInfo->sWC;
2986           for(ii=0; ii<pWC2->nTerm; ii++){
2987             WhereTerm *pTerm = &pWC2->a[ii];
2988             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
2989               break;
2990             }
2991             /* pTerm can be evaluated using just the index.  So reduce
2992             ** the expected number of table lookups accordingly */
2993             if( pTerm->truthProb<=0 ){
2994               nLookup += pTerm->truthProb;
2995             }else{
2996               nLookup--;
2997               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
2998             }
2999           }
3000 
3001           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3002         }
3003         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3004         whereLoopOutputAdjust(pWC, pNew, rSize);
3005         rc = whereLoopInsert(pBuilder, pNew);
3006         pNew->nOut = rSize;
3007         if( rc ) break;
3008       }
3009     }
3010 
3011     pBuilder->bldFlags = 0;
3012     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3013     if( pBuilder->bldFlags==SQLITE_BLDF_INDEXED ){
3014       /* If a non-unique index is used, or if a prefix of the key for
3015       ** unique index is used (making the index functionally non-unique)
3016       ** then the sqlite_stat1 data becomes important for scoring the
3017       ** plan */
3018       pTab->tabFlags |= TF_StatsUsed;
3019     }
3020 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
3021     sqlite3Stat4ProbeFree(pBuilder->pRec);
3022     pBuilder->nRecValid = 0;
3023     pBuilder->pRec = 0;
3024 #endif
3025   }
3026   return rc;
3027 }
3028 
3029 #ifndef SQLITE_OMIT_VIRTUALTABLE
3030 
3031 /*
3032 ** Argument pIdxInfo is already populated with all constraints that may
3033 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3034 ** function marks a subset of those constraints usable, invokes the
3035 ** xBestIndex method and adds the returned plan to pBuilder.
3036 **
3037 ** A constraint is marked usable if:
3038 **
3039 **   * Argument mUsable indicates that its prerequisites are available, and
3040 **
3041 **   * It is not one of the operators specified in the mExclude mask passed
3042 **     as the fourth argument (which in practice is either WO_IN or 0).
3043 **
3044 ** Argument mPrereq is a mask of tables that must be scanned before the
3045 ** virtual table in question. These are added to the plans prerequisites
3046 ** before it is added to pBuilder.
3047 **
3048 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3049 ** uses one or more WO_IN terms, or false otherwise.
3050 */
3051 static int whereLoopAddVirtualOne(
3052   WhereLoopBuilder *pBuilder,
3053   Bitmask mPrereq,                /* Mask of tables that must be used. */
3054   Bitmask mUsable,                /* Mask of usable tables */
3055   u16 mExclude,                   /* Exclude terms using these operators */
3056   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3057   u16 mNoOmit,                    /* Do not omit these constraints */
3058   int *pbIn                       /* OUT: True if plan uses an IN(...) op */
3059 ){
3060   WhereClause *pWC = pBuilder->pWC;
3061   struct sqlite3_index_constraint *pIdxCons;
3062   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3063   int i;
3064   int mxTerm;
3065   int rc = SQLITE_OK;
3066   WhereLoop *pNew = pBuilder->pNew;
3067   Parse *pParse = pBuilder->pWInfo->pParse;
3068   struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3069   int nConstraint = pIdxInfo->nConstraint;
3070 
3071   assert( (mUsable & mPrereq)==mPrereq );
3072   *pbIn = 0;
3073   pNew->prereq = mPrereq;
3074 
3075   /* Set the usable flag on the subset of constraints identified by
3076   ** arguments mUsable and mExclude. */
3077   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3078   for(i=0; i<nConstraint; i++, pIdxCons++){
3079     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3080     pIdxCons->usable = 0;
3081     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3082      && (pTerm->eOperator & mExclude)==0
3083     ){
3084       pIdxCons->usable = 1;
3085     }
3086   }
3087 
3088   /* Initialize the output fields of the sqlite3_index_info structure */
3089   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3090   assert( pIdxInfo->needToFreeIdxStr==0 );
3091   pIdxInfo->idxStr = 0;
3092   pIdxInfo->idxNum = 0;
3093   pIdxInfo->orderByConsumed = 0;
3094   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3095   pIdxInfo->estimatedRows = 25;
3096   pIdxInfo->idxFlags = 0;
3097   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3098 
3099   /* Invoke the virtual table xBestIndex() method */
3100   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3101   if( rc ) return rc;
3102 
3103   mxTerm = -1;
3104   assert( pNew->nLSlot>=nConstraint );
3105   for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3106   pNew->u.vtab.omitMask = 0;
3107   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3108   for(i=0; i<nConstraint; i++, pIdxCons++){
3109     int iTerm;
3110     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3111       WhereTerm *pTerm;
3112       int j = pIdxCons->iTermOffset;
3113       if( iTerm>=nConstraint
3114        || j<0
3115        || j>=pWC->nTerm
3116        || pNew->aLTerm[iTerm]!=0
3117        || pIdxCons->usable==0
3118       ){
3119         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3120         testcase( pIdxInfo->needToFreeIdxStr );
3121         return SQLITE_ERROR;
3122       }
3123       testcase( iTerm==nConstraint-1 );
3124       testcase( j==0 );
3125       testcase( j==pWC->nTerm-1 );
3126       pTerm = &pWC->a[j];
3127       pNew->prereq |= pTerm->prereqRight;
3128       assert( iTerm<pNew->nLSlot );
3129       pNew->aLTerm[iTerm] = pTerm;
3130       if( iTerm>mxTerm ) mxTerm = iTerm;
3131       testcase( iTerm==15 );
3132       testcase( iTerm==16 );
3133       if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm;
3134       if( (pTerm->eOperator & WO_IN)!=0 ){
3135         /* A virtual table that is constrained by an IN clause may not
3136         ** consume the ORDER BY clause because (1) the order of IN terms
3137         ** is not necessarily related to the order of output terms and
3138         ** (2) Multiple outputs from a single IN value will not merge
3139         ** together.  */
3140         pIdxInfo->orderByConsumed = 0;
3141         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3142         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3143       }
3144     }
3145   }
3146   pNew->u.vtab.omitMask &= ~mNoOmit;
3147 
3148   pNew->nLTerm = mxTerm+1;
3149   for(i=0; i<=mxTerm; i++){
3150     if( pNew->aLTerm[i]==0 ){
3151       /* The non-zero argvIdx values must be contiguous.  Raise an
3152       ** error if they are not */
3153       sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3154       testcase( pIdxInfo->needToFreeIdxStr );
3155       return SQLITE_ERROR;
3156     }
3157   }
3158   assert( pNew->nLTerm<=pNew->nLSlot );
3159   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3160   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3161   pIdxInfo->needToFreeIdxStr = 0;
3162   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3163   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3164       pIdxInfo->nOrderBy : 0);
3165   pNew->rSetup = 0;
3166   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3167   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3168 
3169   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3170   ** that the scan will visit at most one row. Clear it otherwise. */
3171   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3172     pNew->wsFlags |= WHERE_ONEROW;
3173   }else{
3174     pNew->wsFlags &= ~WHERE_ONEROW;
3175   }
3176   rc = whereLoopInsert(pBuilder, pNew);
3177   if( pNew->u.vtab.needFree ){
3178     sqlite3_free(pNew->u.vtab.idxStr);
3179     pNew->u.vtab.needFree = 0;
3180   }
3181   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3182                       *pbIn, (sqlite3_uint64)mPrereq,
3183                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3184 
3185   return rc;
3186 }
3187 
3188 /*
3189 ** If this function is invoked from within an xBestIndex() callback, it
3190 ** returns a pointer to a buffer containing the name of the collation
3191 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint
3192 ** array. Or, if iCons is out of range or there is no active xBestIndex
3193 ** call, return NULL.
3194 */
3195 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3196   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3197   const char *zRet = 0;
3198   if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3199     CollSeq *pC = 0;
3200     int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3201     Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3202     if( pX->pLeft ){
3203       pC = sqlite3BinaryCompareCollSeq(pHidden->pParse, pX->pLeft, pX->pRight);
3204     }
3205     zRet = (pC ? pC->zName : "BINARY");
3206   }
3207   return zRet;
3208 }
3209 
3210 /*
3211 ** Add all WhereLoop objects for a table of the join identified by
3212 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3213 **
3214 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3215 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3216 ** entries that occur before the virtual table in the FROM clause and are
3217 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3218 ** mUnusable mask contains all FROM clause entries that occur after the
3219 ** virtual table and are separated from it by at least one LEFT or
3220 ** CROSS JOIN.
3221 **
3222 ** For example, if the query were:
3223 **
3224 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3225 **
3226 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3227 **
3228 ** All the tables in mPrereq must be scanned before the current virtual
3229 ** table. So any terms for which all prerequisites are satisfied by
3230 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3231 ** Conversely, all tables in mUnusable must be scanned after the current
3232 ** virtual table, so any terms for which the prerequisites overlap with
3233 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3234 */
3235 static int whereLoopAddVirtual(
3236   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3237   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3238   Bitmask mUnusable            /* Tables that must be scanned after this one */
3239 ){
3240   int rc = SQLITE_OK;          /* Return code */
3241   WhereInfo *pWInfo;           /* WHERE analysis context */
3242   Parse *pParse;               /* The parsing context */
3243   WhereClause *pWC;            /* The WHERE clause */
3244   struct SrcList_item *pSrc;   /* The FROM clause term to search */
3245   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3246   int nConstraint;             /* Number of constraints in p */
3247   int bIn;                     /* True if plan uses IN(...) operator */
3248   WhereLoop *pNew;
3249   Bitmask mBest;               /* Tables used by best possible plan */
3250   u16 mNoOmit;
3251 
3252   assert( (mPrereq & mUnusable)==0 );
3253   pWInfo = pBuilder->pWInfo;
3254   pParse = pWInfo->pParse;
3255   pWC = pBuilder->pWC;
3256   pNew = pBuilder->pNew;
3257   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3258   assert( IsVirtual(pSrc->pTab) );
3259   p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3260       &mNoOmit);
3261   if( p==0 ) return SQLITE_NOMEM_BKPT;
3262   pNew->rSetup = 0;
3263   pNew->wsFlags = WHERE_VIRTUALTABLE;
3264   pNew->nLTerm = 0;
3265   pNew->u.vtab.needFree = 0;
3266   nConstraint = p->nConstraint;
3267   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3268     sqlite3DbFree(pParse->db, p);
3269     return SQLITE_NOMEM_BKPT;
3270   }
3271 
3272   /* First call xBestIndex() with all constraints usable. */
3273   WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3274   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3275   rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3276 
3277   /* If the call to xBestIndex() with all terms enabled produced a plan
3278   ** that does not require any source tables (IOW: a plan with mBest==0),
3279   ** then there is no point in making any further calls to xBestIndex()
3280   ** since they will all return the same result (if the xBestIndex()
3281   ** implementation is sane). */
3282   if( rc==SQLITE_OK && (mBest = (pNew->prereq & ~mPrereq))!=0 ){
3283     int seenZero = 0;             /* True if a plan with no prereqs seen */
3284     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3285     Bitmask mPrev = 0;
3286     Bitmask mBestNoIn = 0;
3287 
3288     /* If the plan produced by the earlier call uses an IN(...) term, call
3289     ** xBestIndex again, this time with IN(...) terms disabled. */
3290     if( bIn ){
3291       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3292       rc = whereLoopAddVirtualOne(
3293           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3294       assert( bIn==0 );
3295       mBestNoIn = pNew->prereq & ~mPrereq;
3296       if( mBestNoIn==0 ){
3297         seenZero = 1;
3298         seenZeroNoIN = 1;
3299       }
3300     }
3301 
3302     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3303     ** in the set of terms that apply to the current virtual table.  */
3304     while( rc==SQLITE_OK ){
3305       int i;
3306       Bitmask mNext = ALLBITS;
3307       assert( mNext>0 );
3308       for(i=0; i<nConstraint; i++){
3309         Bitmask mThis = (
3310             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3311         );
3312         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3313       }
3314       mPrev = mNext;
3315       if( mNext==ALLBITS ) break;
3316       if( mNext==mBest || mNext==mBestNoIn ) continue;
3317       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
3318                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3319       rc = whereLoopAddVirtualOne(
3320           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3321       if( pNew->prereq==mPrereq ){
3322         seenZero = 1;
3323         if( bIn==0 ) seenZeroNoIN = 1;
3324       }
3325     }
3326 
3327     /* If the calls to xBestIndex() in the above loop did not find a plan
3328     ** that requires no source tables at all (i.e. one guaranteed to be
3329     ** usable), make a call here with all source tables disabled */
3330     if( rc==SQLITE_OK && seenZero==0 ){
3331       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
3332       rc = whereLoopAddVirtualOne(
3333           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3334       if( bIn==0 ) seenZeroNoIN = 1;
3335     }
3336 
3337     /* If the calls to xBestIndex() have so far failed to find a plan
3338     ** that requires no source tables at all and does not use an IN(...)
3339     ** operator, make a final call to obtain one here.  */
3340     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3341       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
3342       rc = whereLoopAddVirtualOne(
3343           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3344     }
3345   }
3346 
3347   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3348   sqlite3DbFreeNN(pParse->db, p);
3349   WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
3350   return rc;
3351 }
3352 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3353 
3354 /*
3355 ** Add WhereLoop entries to handle OR terms.  This works for either
3356 ** btrees or virtual tables.
3357 */
3358 static int whereLoopAddOr(
3359   WhereLoopBuilder *pBuilder,
3360   Bitmask mPrereq,
3361   Bitmask mUnusable
3362 ){
3363   WhereInfo *pWInfo = pBuilder->pWInfo;
3364   WhereClause *pWC;
3365   WhereLoop *pNew;
3366   WhereTerm *pTerm, *pWCEnd;
3367   int rc = SQLITE_OK;
3368   int iCur;
3369   WhereClause tempWC;
3370   WhereLoopBuilder sSubBuild;
3371   WhereOrSet sSum, sCur;
3372   struct SrcList_item *pItem;
3373 
3374   pWC = pBuilder->pWC;
3375   pWCEnd = pWC->a + pWC->nTerm;
3376   pNew = pBuilder->pNew;
3377   memset(&sSum, 0, sizeof(sSum));
3378   pItem = pWInfo->pTabList->a + pNew->iTab;
3379   iCur = pItem->iCursor;
3380 
3381   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3382     if( (pTerm->eOperator & WO_OR)!=0
3383      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3384     ){
3385       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3386       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3387       WhereTerm *pOrTerm;
3388       int once = 1;
3389       int i, j;
3390 
3391       sSubBuild = *pBuilder;
3392       sSubBuild.pOrderBy = 0;
3393       sSubBuild.pOrSet = &sCur;
3394 
3395       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3396       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3397         if( (pOrTerm->eOperator & WO_AND)!=0 ){
3398           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3399         }else if( pOrTerm->leftCursor==iCur ){
3400           tempWC.pWInfo = pWC->pWInfo;
3401           tempWC.pOuter = pWC;
3402           tempWC.op = TK_AND;
3403           tempWC.nTerm = 1;
3404           tempWC.a = pOrTerm;
3405           sSubBuild.pWC = &tempWC;
3406         }else{
3407           continue;
3408         }
3409         sCur.n = 0;
3410 #ifdef WHERETRACE_ENABLED
3411         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3412                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3413         if( sqlite3WhereTrace & 0x400 ){
3414           sqlite3WhereClausePrint(sSubBuild.pWC);
3415         }
3416 #endif
3417 #ifndef SQLITE_OMIT_VIRTUALTABLE
3418         if( IsVirtual(pItem->pTab) ){
3419           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3420         }else
3421 #endif
3422         {
3423           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3424         }
3425         if( rc==SQLITE_OK ){
3426           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3427         }
3428         assert( rc==SQLITE_OK || sCur.n==0 );
3429         if( sCur.n==0 ){
3430           sSum.n = 0;
3431           break;
3432         }else if( once ){
3433           whereOrMove(&sSum, &sCur);
3434           once = 0;
3435         }else{
3436           WhereOrSet sPrev;
3437           whereOrMove(&sPrev, &sSum);
3438           sSum.n = 0;
3439           for(i=0; i<sPrev.n; i++){
3440             for(j=0; j<sCur.n; j++){
3441               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3442                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3443                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3444             }
3445           }
3446         }
3447       }
3448       pNew->nLTerm = 1;
3449       pNew->aLTerm[0] = pTerm;
3450       pNew->wsFlags = WHERE_MULTI_OR;
3451       pNew->rSetup = 0;
3452       pNew->iSortIdx = 0;
3453       memset(&pNew->u, 0, sizeof(pNew->u));
3454       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3455         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3456         ** of all sub-scans required by the OR-scan. However, due to rounding
3457         ** errors, it may be that the cost of the OR-scan is equal to its
3458         ** most expensive sub-scan. Add the smallest possible penalty
3459         ** (equivalent to multiplying the cost by 1.07) to ensure that
3460         ** this does not happen. Otherwise, for WHERE clauses such as the
3461         ** following where there is an index on "y":
3462         **
3463         **     WHERE likelihood(x=?, 0.99) OR y=?
3464         **
3465         ** the planner may elect to "OR" together a full-table scan and an
3466         ** index lookup. And other similarly odd results.  */
3467         pNew->rRun = sSum.a[i].rRun + 1;
3468         pNew->nOut = sSum.a[i].nOut;
3469         pNew->prereq = sSum.a[i].prereq;
3470         rc = whereLoopInsert(pBuilder, pNew);
3471       }
3472       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3473     }
3474   }
3475   return rc;
3476 }
3477 
3478 /*
3479 ** Add all WhereLoop objects for all tables
3480 */
3481 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3482   WhereInfo *pWInfo = pBuilder->pWInfo;
3483   Bitmask mPrereq = 0;
3484   Bitmask mPrior = 0;
3485   int iTab;
3486   SrcList *pTabList = pWInfo->pTabList;
3487   struct SrcList_item *pItem;
3488   struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel];
3489   sqlite3 *db = pWInfo->pParse->db;
3490   int rc = SQLITE_OK;
3491   WhereLoop *pNew;
3492   u8 priorJointype = 0;
3493 
3494   /* Loop over the tables in the join, from left to right */
3495   pNew = pBuilder->pNew;
3496   whereLoopInit(pNew);
3497   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3498     Bitmask mUnusable = 0;
3499     pNew->iTab = iTab;
3500     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3501     if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){
3502       /* This condition is true when pItem is the FROM clause term on the
3503       ** right-hand-side of a LEFT or CROSS JOIN.  */
3504       mPrereq = mPrior;
3505     }
3506     priorJointype = pItem->fg.jointype;
3507 #ifndef SQLITE_OMIT_VIRTUALTABLE
3508     if( IsVirtual(pItem->pTab) ){
3509       struct SrcList_item *p;
3510       for(p=&pItem[1]; p<pEnd; p++){
3511         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3512           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3513         }
3514       }
3515       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3516     }else
3517 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3518     {
3519       rc = whereLoopAddBtree(pBuilder, mPrereq);
3520     }
3521     if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
3522       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3523     }
3524     mPrior |= pNew->maskSelf;
3525     if( rc || db->mallocFailed ) break;
3526   }
3527 
3528   whereLoopClear(db, pNew);
3529   return rc;
3530 }
3531 
3532 /*
3533 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
3534 ** parameters) to see if it outputs rows in the requested ORDER BY
3535 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
3536 **
3537 **   N>0:   N terms of the ORDER BY clause are satisfied
3538 **   N==0:  No terms of the ORDER BY clause are satisfied
3539 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
3540 **
3541 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3542 ** strict.  With GROUP BY and DISTINCT the only requirement is that
3543 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
3544 ** and DISTINCT do not require rows to appear in any particular order as long
3545 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
3546 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
3547 ** pOrderBy terms must be matched in strict left-to-right order.
3548 */
3549 static i8 wherePathSatisfiesOrderBy(
3550   WhereInfo *pWInfo,    /* The WHERE clause */
3551   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
3552   WherePath *pPath,     /* The WherePath to check */
3553   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3554   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
3555   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
3556   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
3557 ){
3558   u8 revSet;            /* True if rev is known */
3559   u8 rev;               /* Composite sort order */
3560   u8 revIdx;            /* Index sort order */
3561   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
3562   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
3563   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
3564   u16 eqOpMask;         /* Allowed equality operators */
3565   u16 nKeyCol;          /* Number of key columns in pIndex */
3566   u16 nColumn;          /* Total number of ordered columns in the index */
3567   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
3568   int iLoop;            /* Index of WhereLoop in pPath being processed */
3569   int i, j;             /* Loop counters */
3570   int iCur;             /* Cursor number for current WhereLoop */
3571   int iColumn;          /* A column number within table iCur */
3572   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3573   WhereTerm *pTerm;     /* A single term of the WHERE clause */
3574   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
3575   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
3576   Index *pIndex;        /* The index associated with pLoop */
3577   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
3578   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
3579   Bitmask obDone;       /* Mask of all ORDER BY terms */
3580   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
3581   Bitmask ready;              /* Mask of inner loops */
3582 
3583   /*
3584   ** We say the WhereLoop is "one-row" if it generates no more than one
3585   ** row of output.  A WhereLoop is one-row if all of the following are true:
3586   **  (a) All index columns match with WHERE_COLUMN_EQ.
3587   **  (b) The index is unique
3588   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3589   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3590   **
3591   ** We say the WhereLoop is "order-distinct" if the set of columns from
3592   ** that WhereLoop that are in the ORDER BY clause are different for every
3593   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
3594   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
3595   ** is not order-distinct. To be order-distinct is not quite the same as being
3596   ** UNIQUE since a UNIQUE column or index can have multiple rows that
3597   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3598   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3599   **
3600   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3601   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3602   ** automatically order-distinct.
3603   */
3604 
3605   assert( pOrderBy!=0 );
3606   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3607 
3608   nOrderBy = pOrderBy->nExpr;
3609   testcase( nOrderBy==BMS-1 );
3610   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
3611   isOrderDistinct = 1;
3612   obDone = MASKBIT(nOrderBy)-1;
3613   orderDistinctMask = 0;
3614   ready = 0;
3615   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3616   if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN;
3617   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3618     if( iLoop>0 ) ready |= pLoop->maskSelf;
3619     if( iLoop<nLoop ){
3620       pLoop = pPath->aLoop[iLoop];
3621       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3622     }else{
3623       pLoop = pLast;
3624     }
3625     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3626       if( pLoop->u.vtab.isOrdered ) obSat = obDone;
3627       break;
3628     }else{
3629       pLoop->u.btree.nIdxCol = 0;
3630     }
3631     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3632 
3633     /* Mark off any ORDER BY term X that is a column in the table of
3634     ** the current loop for which there is term in the WHERE
3635     ** clause of the form X IS NULL or X=? that reference only outer
3636     ** loops.
3637     */
3638     for(i=0; i<nOrderBy; i++){
3639       if( MASKBIT(i) & obSat ) continue;
3640       pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3641       if( pOBExpr->op!=TK_COLUMN ) continue;
3642       if( pOBExpr->iTable!=iCur ) continue;
3643       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3644                        ~ready, eqOpMask, 0);
3645       if( pTerm==0 ) continue;
3646       if( pTerm->eOperator==WO_IN ){
3647         /* IN terms are only valid for sorting in the ORDER BY LIMIT
3648         ** optimization, and then only if they are actually used
3649         ** by the query plan */
3650         assert( wctrlFlags & WHERE_ORDERBY_LIMIT );
3651         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3652         if( j>=pLoop->nLTerm ) continue;
3653       }
3654       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3655         if( sqlite3ExprCollSeqMatch(pWInfo->pParse,
3656                   pOrderBy->a[i].pExpr, pTerm->pExpr)==0 ){
3657           continue;
3658         }
3659         testcase( pTerm->pExpr->op==TK_IS );
3660       }
3661       obSat |= MASKBIT(i);
3662     }
3663 
3664     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3665       if( pLoop->wsFlags & WHERE_IPK ){
3666         pIndex = 0;
3667         nKeyCol = 0;
3668         nColumn = 1;
3669       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3670         return 0;
3671       }else{
3672         nKeyCol = pIndex->nKeyCol;
3673         nColumn = pIndex->nColumn;
3674         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3675         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3676                           || !HasRowid(pIndex->pTable));
3677         isOrderDistinct = IsUniqueIndex(pIndex);
3678       }
3679 
3680       /* Loop through all columns of the index and deal with the ones
3681       ** that are not constrained by == or IN.
3682       */
3683       rev = revSet = 0;
3684       distinctColumns = 0;
3685       for(j=0; j<nColumn; j++){
3686         u8 bOnce = 1; /* True to run the ORDER BY search loop */
3687 
3688         assert( j>=pLoop->u.btree.nEq
3689             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3690         );
3691         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3692           u16 eOp = pLoop->aLTerm[j]->eOperator;
3693 
3694           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
3695           ** doing WHERE_ORDERBY_LIMIT processing).
3696           **
3697           ** If the current term is a column of an ((?,?) IN (SELECT...))
3698           ** expression for which the SELECT returns more than one column,
3699           ** check that it is the only column used by this loop. Otherwise,
3700           ** if it is one of two or more, none of the columns can be
3701           ** considered to match an ORDER BY term.  */
3702           if( (eOp & eqOpMask)!=0 ){
3703             if( eOp & WO_ISNULL ){
3704               testcase( isOrderDistinct );
3705               isOrderDistinct = 0;
3706             }
3707             continue;
3708           }else if( ALWAYS(eOp & WO_IN) ){
3709             /* ALWAYS() justification: eOp is an equality operator due to the
3710             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
3711             ** than WO_IN is captured by the previous "if".  So this one
3712             ** always has to be WO_IN. */
3713             Expr *pX = pLoop->aLTerm[j]->pExpr;
3714             for(i=j+1; i<pLoop->u.btree.nEq; i++){
3715               if( pLoop->aLTerm[i]->pExpr==pX ){
3716                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3717                 bOnce = 0;
3718                 break;
3719               }
3720             }
3721           }
3722         }
3723 
3724         /* Get the column number in the table (iColumn) and sort order
3725         ** (revIdx) for the j-th column of the index.
3726         */
3727         if( pIndex ){
3728           iColumn = pIndex->aiColumn[j];
3729           revIdx = pIndex->aSortOrder[j];
3730           if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
3731         }else{
3732           iColumn = XN_ROWID;
3733           revIdx = 0;
3734         }
3735 
3736         /* An unconstrained column that might be NULL means that this
3737         ** WhereLoop is not well-ordered
3738         */
3739         if( isOrderDistinct
3740          && iColumn>=0
3741          && j>=pLoop->u.btree.nEq
3742          && pIndex->pTable->aCol[iColumn].notNull==0
3743         ){
3744           isOrderDistinct = 0;
3745         }
3746 
3747         /* Find the ORDER BY term that corresponds to the j-th column
3748         ** of the index and mark that ORDER BY term off
3749         */
3750         isMatch = 0;
3751         for(i=0; bOnce && i<nOrderBy; i++){
3752           if( MASKBIT(i) & obSat ) continue;
3753           pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3754           testcase( wctrlFlags & WHERE_GROUPBY );
3755           testcase( wctrlFlags & WHERE_DISTINCTBY );
3756           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
3757           if( iColumn>=XN_ROWID ){
3758             if( pOBExpr->op!=TK_COLUMN ) continue;
3759             if( pOBExpr->iTable!=iCur ) continue;
3760             if( pOBExpr->iColumn!=iColumn ) continue;
3761           }else{
3762             Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
3763             if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
3764               continue;
3765             }
3766           }
3767           if( iColumn!=XN_ROWID ){
3768             pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3769             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
3770           }
3771           pLoop->u.btree.nIdxCol = j+1;
3772           isMatch = 1;
3773           break;
3774         }
3775         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
3776           /* Make sure the sort order is compatible in an ORDER BY clause.
3777           ** Sort order is irrelevant for a GROUP BY clause. */
3778           if( revSet ){
3779             if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0;
3780           }else{
3781             rev = revIdx ^ pOrderBy->a[i].sortOrder;
3782             if( rev ) *pRevMask |= MASKBIT(iLoop);
3783             revSet = 1;
3784           }
3785         }
3786         if( isMatch ){
3787           if( iColumn==XN_ROWID ){
3788             testcase( distinctColumns==0 );
3789             distinctColumns = 1;
3790           }
3791           obSat |= MASKBIT(i);
3792         }else{
3793           /* No match found */
3794           if( j==0 || j<nKeyCol ){
3795             testcase( isOrderDistinct!=0 );
3796             isOrderDistinct = 0;
3797           }
3798           break;
3799         }
3800       } /* end Loop over all index columns */
3801       if( distinctColumns ){
3802         testcase( isOrderDistinct==0 );
3803         isOrderDistinct = 1;
3804       }
3805     } /* end-if not one-row */
3806 
3807     /* Mark off any other ORDER BY terms that reference pLoop */
3808     if( isOrderDistinct ){
3809       orderDistinctMask |= pLoop->maskSelf;
3810       for(i=0; i<nOrderBy; i++){
3811         Expr *p;
3812         Bitmask mTerm;
3813         if( MASKBIT(i) & obSat ) continue;
3814         p = pOrderBy->a[i].pExpr;
3815         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
3816         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
3817         if( (mTerm&~orderDistinctMask)==0 ){
3818           obSat |= MASKBIT(i);
3819         }
3820       }
3821     }
3822   } /* End the loop over all WhereLoops from outer-most down to inner-most */
3823   if( obSat==obDone ) return (i8)nOrderBy;
3824   if( !isOrderDistinct ){
3825     for(i=nOrderBy-1; i>0; i--){
3826       Bitmask m = MASKBIT(i) - 1;
3827       if( (obSat&m)==m ) return i;
3828     }
3829     return 0;
3830   }
3831   return -1;
3832 }
3833 
3834 
3835 /*
3836 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
3837 ** the planner assumes that the specified pOrderBy list is actually a GROUP
3838 ** BY clause - and so any order that groups rows as required satisfies the
3839 ** request.
3840 **
3841 ** Normally, in this case it is not possible for the caller to determine
3842 ** whether or not the rows are really being delivered in sorted order, or
3843 ** just in some other order that provides the required grouping. However,
3844 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
3845 ** this function may be called on the returned WhereInfo object. It returns
3846 ** true if the rows really will be sorted in the specified order, or false
3847 ** otherwise.
3848 **
3849 ** For example, assuming:
3850 **
3851 **   CREATE INDEX i1 ON t1(x, Y);
3852 **
3853 ** then
3854 **
3855 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
3856 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
3857 */
3858 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
3859   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
3860   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
3861   return pWInfo->sorted;
3862 }
3863 
3864 #ifdef WHERETRACE_ENABLED
3865 /* For debugging use only: */
3866 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
3867   static char zName[65];
3868   int i;
3869   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
3870   if( pLast ) zName[i++] = pLast->cId;
3871   zName[i] = 0;
3872   return zName;
3873 }
3874 #endif
3875 
3876 /*
3877 ** Return the cost of sorting nRow rows, assuming that the keys have
3878 ** nOrderby columns and that the first nSorted columns are already in
3879 ** order.
3880 */
3881 static LogEst whereSortingCost(
3882   WhereInfo *pWInfo,
3883   LogEst nRow,
3884   int nOrderBy,
3885   int nSorted
3886 ){
3887   /* TUNING: Estimated cost of a full external sort, where N is
3888   ** the number of rows to sort is:
3889   **
3890   **   cost = (3.0 * N * log(N)).
3891   **
3892   ** Or, if the order-by clause has X terms but only the last Y
3893   ** terms are out of order, then block-sorting will reduce the
3894   ** sorting cost to:
3895   **
3896   **   cost = (3.0 * N * log(N)) * (Y/X)
3897   **
3898   ** The (Y/X) term is implemented using stack variable rScale
3899   ** below.  */
3900   LogEst rScale, rSortCost;
3901   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
3902   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
3903   rSortCost = nRow + rScale + 16;
3904 
3905   /* Multiple by log(M) where M is the number of output rows.
3906   ** Use the LIMIT for M if it is smaller */
3907   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
3908     nRow = pWInfo->iLimit;
3909   }
3910   rSortCost += estLog(nRow);
3911   return rSortCost;
3912 }
3913 
3914 /*
3915 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
3916 ** attempts to find the lowest cost path that visits each WhereLoop
3917 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
3918 **
3919 ** Assume that the total number of output rows that will need to be sorted
3920 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
3921 ** costs if nRowEst==0.
3922 **
3923 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
3924 ** error occurs.
3925 */
3926 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
3927   int mxChoice;             /* Maximum number of simultaneous paths tracked */
3928   int nLoop;                /* Number of terms in the join */
3929   Parse *pParse;            /* Parsing context */
3930   sqlite3 *db;              /* The database connection */
3931   int iLoop;                /* Loop counter over the terms of the join */
3932   int ii, jj;               /* Loop counters */
3933   int mxI = 0;              /* Index of next entry to replace */
3934   int nOrderBy;             /* Number of ORDER BY clause terms */
3935   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
3936   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
3937   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
3938   WherePath *aFrom;         /* All nFrom paths at the previous level */
3939   WherePath *aTo;           /* The nTo best paths at the current level */
3940   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
3941   WherePath *pTo;           /* An element of aTo[] that we are working on */
3942   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
3943   WhereLoop **pX;           /* Used to divy up the pSpace memory */
3944   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
3945   char *pSpace;             /* Temporary memory used by this routine */
3946   int nSpace;               /* Bytes of space allocated at pSpace */
3947 
3948   pParse = pWInfo->pParse;
3949   db = pParse->db;
3950   nLoop = pWInfo->nLevel;
3951   /* TUNING: For simple queries, only the best path is tracked.
3952   ** For 2-way joins, the 5 best paths are followed.
3953   ** For joins of 3 or more tables, track the 10 best paths */
3954   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
3955   assert( nLoop<=pWInfo->pTabList->nSrc );
3956   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
3957 
3958   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
3959   ** case the purpose of this call is to estimate the number of rows returned
3960   ** by the overall query. Once this estimate has been obtained, the caller
3961   ** will invoke this function a second time, passing the estimate as the
3962   ** nRowEst parameter.  */
3963   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
3964     nOrderBy = 0;
3965   }else{
3966     nOrderBy = pWInfo->pOrderBy->nExpr;
3967   }
3968 
3969   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
3970   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
3971   nSpace += sizeof(LogEst) * nOrderBy;
3972   pSpace = sqlite3DbMallocRawNN(db, nSpace);
3973   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
3974   aTo = (WherePath*)pSpace;
3975   aFrom = aTo+mxChoice;
3976   memset(aFrom, 0, sizeof(aFrom[0]));
3977   pX = (WhereLoop**)(aFrom+mxChoice);
3978   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
3979     pFrom->aLoop = pX;
3980   }
3981   if( nOrderBy ){
3982     /* If there is an ORDER BY clause and it is not being ignored, set up
3983     ** space for the aSortCost[] array. Each element of the aSortCost array
3984     ** is either zero - meaning it has not yet been initialized - or the
3985     ** cost of sorting nRowEst rows of data where the first X terms of
3986     ** the ORDER BY clause are already in order, where X is the array
3987     ** index.  */
3988     aSortCost = (LogEst*)pX;
3989     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
3990   }
3991   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
3992   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
3993 
3994   /* Seed the search with a single WherePath containing zero WhereLoops.
3995   **
3996   ** TUNING: Do not let the number of iterations go above 28.  If the cost
3997   ** of computing an automatic index is not paid back within the first 28
3998   ** rows, then do not use the automatic index. */
3999   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
4000   nFrom = 1;
4001   assert( aFrom[0].isOrdered==0 );
4002   if( nOrderBy ){
4003     /* If nLoop is zero, then there are no FROM terms in the query. Since
4004     ** in this case the query may return a maximum of one row, the results
4005     ** are already in the requested order. Set isOrdered to nOrderBy to
4006     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4007     ** -1, indicating that the result set may or may not be ordered,
4008     ** depending on the loops added to the current plan.  */
4009     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4010   }
4011 
4012   /* Compute successively longer WherePaths using the previous generation
4013   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
4014   ** best paths at each generation */
4015   for(iLoop=0; iLoop<nLoop; iLoop++){
4016     nTo = 0;
4017     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4018       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4019         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
4020         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
4021         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
4022         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
4023         Bitmask maskNew;                  /* Mask of src visited by (..) */
4024         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
4025 
4026         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4027         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4028         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4029           /* Do not use an automatic index if the this loop is expected
4030           ** to run less than 1.25 times.  It is tempting to also exclude
4031           ** automatic index usage on an outer loop, but sometimes an automatic
4032           ** index is useful in the outer loop of a correlated subquery. */
4033           assert( 10==sqlite3LogEst(2) );
4034           continue;
4035         }
4036 
4037         /* At this point, pWLoop is a candidate to be the next loop.
4038         ** Compute its cost */
4039         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4040         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4041         nOut = pFrom->nRow + pWLoop->nOut;
4042         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4043         if( isOrdered<0 ){
4044           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4045                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4046                        iLoop, pWLoop, &revMask);
4047         }else{
4048           revMask = pFrom->revLoop;
4049         }
4050         if( isOrdered>=0 && isOrdered<nOrderBy ){
4051           if( aSortCost[isOrdered]==0 ){
4052             aSortCost[isOrdered] = whereSortingCost(
4053                 pWInfo, nRowEst, nOrderBy, isOrdered
4054             );
4055           }
4056           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]);
4057 
4058           WHERETRACE(0x002,
4059               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4060                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4061                rUnsorted, rCost));
4062         }else{
4063           rCost = rUnsorted;
4064           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
4065         }
4066 
4067         /* Check to see if pWLoop should be added to the set of
4068         ** mxChoice best-so-far paths.
4069         **
4070         ** First look for an existing path among best-so-far paths
4071         ** that covers the same set of loops and has the same isOrdered
4072         ** setting as the current path candidate.
4073         **
4074         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4075         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4076         ** of legal values for isOrdered, -1..64.
4077         */
4078         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4079           if( pTo->maskLoop==maskNew
4080            && ((pTo->isOrdered^isOrdered)&0x80)==0
4081           ){
4082             testcase( jj==nTo-1 );
4083             break;
4084           }
4085         }
4086         if( jj>=nTo ){
4087           /* None of the existing best-so-far paths match the candidate. */
4088           if( nTo>=mxChoice
4089            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4090           ){
4091             /* The current candidate is no better than any of the mxChoice
4092             ** paths currently in the best-so-far buffer.  So discard
4093             ** this candidate as not viable. */
4094 #ifdef WHERETRACE_ENABLED /* 0x4 */
4095             if( sqlite3WhereTrace&0x4 ){
4096               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4097                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4098                   isOrdered>=0 ? isOrdered+'0' : '?');
4099             }
4100 #endif
4101             continue;
4102           }
4103           /* If we reach this points it means that the new candidate path
4104           ** needs to be added to the set of best-so-far paths. */
4105           if( nTo<mxChoice ){
4106             /* Increase the size of the aTo set by one */
4107             jj = nTo++;
4108           }else{
4109             /* New path replaces the prior worst to keep count below mxChoice */
4110             jj = mxI;
4111           }
4112           pTo = &aTo[jj];
4113 #ifdef WHERETRACE_ENABLED /* 0x4 */
4114           if( sqlite3WhereTrace&0x4 ){
4115             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4116                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4117                 isOrdered>=0 ? isOrdered+'0' : '?');
4118           }
4119 #endif
4120         }else{
4121           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4122           ** same set of loops and has the same isOrdered setting as the
4123           ** candidate path.  Check to see if the candidate should replace
4124           ** pTo or if the candidate should be skipped.
4125           **
4126           ** The conditional is an expanded vector comparison equivalent to:
4127           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4128           */
4129           if( pTo->rCost<rCost
4130            || (pTo->rCost==rCost
4131                && (pTo->nRow<nOut
4132                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4133                   )
4134               )
4135           ){
4136 #ifdef WHERETRACE_ENABLED /* 0x4 */
4137             if( sqlite3WhereTrace&0x4 ){
4138               sqlite3DebugPrintf(
4139                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4140                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4141                   isOrdered>=0 ? isOrdered+'0' : '?');
4142               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4143                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4144                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4145             }
4146 #endif
4147             /* Discard the candidate path from further consideration */
4148             testcase( pTo->rCost==rCost );
4149             continue;
4150           }
4151           testcase( pTo->rCost==rCost+1 );
4152           /* Control reaches here if the candidate path is better than the
4153           ** pTo path.  Replace pTo with the candidate. */
4154 #ifdef WHERETRACE_ENABLED /* 0x4 */
4155           if( sqlite3WhereTrace&0x4 ){
4156             sqlite3DebugPrintf(
4157                 "Update %s cost=%-3d,%3d,%3d order=%c",
4158                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4159                 isOrdered>=0 ? isOrdered+'0' : '?');
4160             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4161                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4162                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4163           }
4164 #endif
4165         }
4166         /* pWLoop is a winner.  Add it to the set of best so far */
4167         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4168         pTo->revLoop = revMask;
4169         pTo->nRow = nOut;
4170         pTo->rCost = rCost;
4171         pTo->rUnsorted = rUnsorted;
4172         pTo->isOrdered = isOrdered;
4173         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4174         pTo->aLoop[iLoop] = pWLoop;
4175         if( nTo>=mxChoice ){
4176           mxI = 0;
4177           mxCost = aTo[0].rCost;
4178           mxUnsorted = aTo[0].nRow;
4179           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4180             if( pTo->rCost>mxCost
4181              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4182             ){
4183               mxCost = pTo->rCost;
4184               mxUnsorted = pTo->rUnsorted;
4185               mxI = jj;
4186             }
4187           }
4188         }
4189       }
4190     }
4191 
4192 #ifdef WHERETRACE_ENABLED  /* >=2 */
4193     if( sqlite3WhereTrace & 0x02 ){
4194       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4195       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4196         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4197            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4198            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4199         if( pTo->isOrdered>0 ){
4200           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4201         }else{
4202           sqlite3DebugPrintf("\n");
4203         }
4204       }
4205     }
4206 #endif
4207 
4208     /* Swap the roles of aFrom and aTo for the next generation */
4209     pFrom = aTo;
4210     aTo = aFrom;
4211     aFrom = pFrom;
4212     nFrom = nTo;
4213   }
4214 
4215   if( nFrom==0 ){
4216     sqlite3ErrorMsg(pParse, "no query solution");
4217     sqlite3DbFreeNN(db, pSpace);
4218     return SQLITE_ERROR;
4219   }
4220 
4221   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4222   pFrom = aFrom;
4223   for(ii=1; ii<nFrom; ii++){
4224     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4225   }
4226   assert( pWInfo->nLevel==nLoop );
4227   /* Load the lowest cost path into pWInfo */
4228   for(iLoop=0; iLoop<nLoop; iLoop++){
4229     WhereLevel *pLevel = pWInfo->a + iLoop;
4230     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4231     pLevel->iFrom = pWLoop->iTab;
4232     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4233   }
4234   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4235    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4236    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4237    && nRowEst
4238   ){
4239     Bitmask notUsed;
4240     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4241                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4242     if( rc==pWInfo->pResultSet->nExpr ){
4243       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4244     }
4245   }
4246   if( pWInfo->pOrderBy ){
4247     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4248       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4249         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4250       }
4251     }else{
4252       pWInfo->nOBSat = pFrom->isOrdered;
4253       pWInfo->revMask = pFrom->revLoop;
4254       if( pWInfo->nOBSat<=0 ){
4255         pWInfo->nOBSat = 0;
4256         if( nLoop>0 ){
4257           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4258           if( (wsFlags & WHERE_ONEROW)==0
4259            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4260           ){
4261             Bitmask m = 0;
4262             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4263                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4264             testcase( wsFlags & WHERE_IPK );
4265             testcase( wsFlags & WHERE_COLUMN_IN );
4266             if( rc==pWInfo->pOrderBy->nExpr ){
4267               pWInfo->bOrderedInnerLoop = 1;
4268               pWInfo->revMask = m;
4269             }
4270           }
4271         }
4272       }
4273     }
4274     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4275         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4276     ){
4277       Bitmask revMask = 0;
4278       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4279           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4280       );
4281       assert( pWInfo->sorted==0 );
4282       if( nOrder==pWInfo->pOrderBy->nExpr ){
4283         pWInfo->sorted = 1;
4284         pWInfo->revMask = revMask;
4285       }
4286     }
4287   }
4288 
4289 
4290   pWInfo->nRowOut = pFrom->nRow;
4291 
4292   /* Free temporary memory and return success */
4293   sqlite3DbFreeNN(db, pSpace);
4294   return SQLITE_OK;
4295 }
4296 
4297 /*
4298 ** Most queries use only a single table (they are not joins) and have
4299 ** simple == constraints against indexed fields.  This routine attempts
4300 ** to plan those simple cases using much less ceremony than the
4301 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4302 ** times for the common case.
4303 **
4304 ** Return non-zero on success, if this query can be handled by this
4305 ** no-frills query planner.  Return zero if this query needs the
4306 ** general-purpose query planner.
4307 */
4308 static int whereShortCut(WhereLoopBuilder *pBuilder){
4309   WhereInfo *pWInfo;
4310   struct SrcList_item *pItem;
4311   WhereClause *pWC;
4312   WhereTerm *pTerm;
4313   WhereLoop *pLoop;
4314   int iCur;
4315   int j;
4316   Table *pTab;
4317   Index *pIdx;
4318 
4319   pWInfo = pBuilder->pWInfo;
4320   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4321   assert( pWInfo->pTabList->nSrc>=1 );
4322   pItem = pWInfo->pTabList->a;
4323   pTab = pItem->pTab;
4324   if( IsVirtual(pTab) ) return 0;
4325   if( pItem->fg.isIndexedBy ) return 0;
4326   iCur = pItem->iCursor;
4327   pWC = &pWInfo->sWC;
4328   pLoop = pBuilder->pNew;
4329   pLoop->wsFlags = 0;
4330   pLoop->nSkip = 0;
4331   pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
4332   if( pTerm ){
4333     testcase( pTerm->eOperator & WO_IS );
4334     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4335     pLoop->aLTerm[0] = pTerm;
4336     pLoop->nLTerm = 1;
4337     pLoop->u.btree.nEq = 1;
4338     /* TUNING: Cost of a rowid lookup is 10 */
4339     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
4340   }else{
4341     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4342       int opMask;
4343       assert( pLoop->aLTermSpace==pLoop->aLTerm );
4344       if( !IsUniqueIndex(pIdx)
4345        || pIdx->pPartIdxWhere!=0
4346        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4347       ) continue;
4348       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4349       for(j=0; j<pIdx->nKeyCol; j++){
4350         pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
4351         if( pTerm==0 ) break;
4352         testcase( pTerm->eOperator & WO_IS );
4353         pLoop->aLTerm[j] = pTerm;
4354       }
4355       if( j!=pIdx->nKeyCol ) continue;
4356       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4357       if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
4358         pLoop->wsFlags |= WHERE_IDX_ONLY;
4359       }
4360       pLoop->nLTerm = j;
4361       pLoop->u.btree.nEq = j;
4362       pLoop->u.btree.pIndex = pIdx;
4363       /* TUNING: Cost of a unique index lookup is 15 */
4364       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
4365       break;
4366     }
4367   }
4368   if( pLoop->wsFlags ){
4369     pLoop->nOut = (LogEst)1;
4370     pWInfo->a[0].pWLoop = pLoop;
4371     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
4372     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4373     pWInfo->a[0].iTabCur = iCur;
4374     pWInfo->nRowOut = 1;
4375     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
4376     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4377       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4378     }
4379 #ifdef SQLITE_DEBUG
4380     pLoop->cId = '0';
4381 #endif
4382     return 1;
4383   }
4384   return 0;
4385 }
4386 
4387 /*
4388 ** Helper function for exprIsDeterministic().
4389 */
4390 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
4391   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
4392     pWalker->eCode = 0;
4393     return WRC_Abort;
4394   }
4395   return WRC_Continue;
4396 }
4397 
4398 /*
4399 ** Return true if the expression contains no non-deterministic SQL
4400 ** functions. Do not consider non-deterministic SQL functions that are
4401 ** part of sub-select statements.
4402 */
4403 static int exprIsDeterministic(Expr *p){
4404   Walker w;
4405   memset(&w, 0, sizeof(w));
4406   w.eCode = 1;
4407   w.xExprCallback = exprNodeIsDeterministic;
4408   w.xSelectCallback = sqlite3SelectWalkFail;
4409   sqlite3WalkExpr(&w, p);
4410   return w.eCode;
4411 }
4412 
4413 /*
4414 ** Generate the beginning of the loop used for WHERE clause processing.
4415 ** The return value is a pointer to an opaque structure that contains
4416 ** information needed to terminate the loop.  Later, the calling routine
4417 ** should invoke sqlite3WhereEnd() with the return value of this function
4418 ** in order to complete the WHERE clause processing.
4419 **
4420 ** If an error occurs, this routine returns NULL.
4421 **
4422 ** The basic idea is to do a nested loop, one loop for each table in
4423 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
4424 ** same as a SELECT with only a single table in the FROM clause.)  For
4425 ** example, if the SQL is this:
4426 **
4427 **       SELECT * FROM t1, t2, t3 WHERE ...;
4428 **
4429 ** Then the code generated is conceptually like the following:
4430 **
4431 **      foreach row1 in t1 do       \    Code generated
4432 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
4433 **          foreach row3 in t3 do   /
4434 **            ...
4435 **          end                     \    Code generated
4436 **        end                        |-- by sqlite3WhereEnd()
4437 **      end                         /
4438 **
4439 ** Note that the loops might not be nested in the order in which they
4440 ** appear in the FROM clause if a different order is better able to make
4441 ** use of indices.  Note also that when the IN operator appears in
4442 ** the WHERE clause, it might result in additional nested loops for
4443 ** scanning through all values on the right-hand side of the IN.
4444 **
4445 ** There are Btree cursors associated with each table.  t1 uses cursor
4446 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
4447 ** And so forth.  This routine generates code to open those VDBE cursors
4448 ** and sqlite3WhereEnd() generates the code to close them.
4449 **
4450 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4451 ** in pTabList pointing at their appropriate entries.  The [...] code
4452 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4453 ** data from the various tables of the loop.
4454 **
4455 ** If the WHERE clause is empty, the foreach loops must each scan their
4456 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
4457 ** the tables have indices and there are terms in the WHERE clause that
4458 ** refer to those indices, a complete table scan can be avoided and the
4459 ** code will run much faster.  Most of the work of this routine is checking
4460 ** to see if there are indices that can be used to speed up the loop.
4461 **
4462 ** Terms of the WHERE clause are also used to limit which rows actually
4463 ** make it to the "..." in the middle of the loop.  After each "foreach",
4464 ** terms of the WHERE clause that use only terms in that loop and outer
4465 ** loops are evaluated and if false a jump is made around all subsequent
4466 ** inner loops (or around the "..." if the test occurs within the inner-
4467 ** most loop)
4468 **
4469 ** OUTER JOINS
4470 **
4471 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4472 **
4473 **    foreach row1 in t1 do
4474 **      flag = 0
4475 **      foreach row2 in t2 do
4476 **        start:
4477 **          ...
4478 **          flag = 1
4479 **      end
4480 **      if flag==0 then
4481 **        move the row2 cursor to a null row
4482 **        goto start
4483 **      fi
4484 **    end
4485 **
4486 ** ORDER BY CLAUSE PROCESSING
4487 **
4488 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4489 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4490 ** if there is one.  If there is no ORDER BY clause or if this routine
4491 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4492 **
4493 ** The iIdxCur parameter is the cursor number of an index.  If
4494 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4495 ** to use for OR clause processing.  The WHERE clause should use this
4496 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4497 ** the first cursor in an array of cursors for all indices.  iIdxCur should
4498 ** be used to compute the appropriate cursor depending on which index is
4499 ** used.
4500 */
4501 WhereInfo *sqlite3WhereBegin(
4502   Parse *pParse,          /* The parser context */
4503   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
4504   Expr *pWhere,           /* The WHERE clause */
4505   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
4506   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
4507   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
4508   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4509                           ** If WHERE_USE_LIMIT, then the limit amount */
4510 ){
4511   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
4512   int nTabList;              /* Number of elements in pTabList */
4513   WhereInfo *pWInfo;         /* Will become the return value of this function */
4514   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
4515   Bitmask notReady;          /* Cursors that are not yet positioned */
4516   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
4517   WhereMaskSet *pMaskSet;    /* The expression mask set */
4518   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
4519   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
4520   int ii;                    /* Loop counter */
4521   sqlite3 *db;               /* Database connection */
4522   int rc;                    /* Return code */
4523   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
4524 
4525   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4526         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4527      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4528   ));
4529 
4530   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4531   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4532             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4533 
4534   /* Variable initialization */
4535   db = pParse->db;
4536   memset(&sWLB, 0, sizeof(sWLB));
4537 
4538   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4539   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4540   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4541   sWLB.pOrderBy = pOrderBy;
4542 
4543   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4544   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4545   if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4546     wctrlFlags &= ~WHERE_WANT_DISTINCT;
4547   }
4548 
4549   /* The number of tables in the FROM clause is limited by the number of
4550   ** bits in a Bitmask
4551   */
4552   testcase( pTabList->nSrc==BMS );
4553   if( pTabList->nSrc>BMS ){
4554     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4555     return 0;
4556   }
4557 
4558   /* This function normally generates a nested loop for all tables in
4559   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4560   ** only generate code for the first table in pTabList and assume that
4561   ** any cursors associated with subsequent tables are uninitialized.
4562   */
4563   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4564 
4565   /* Allocate and initialize the WhereInfo structure that will become the
4566   ** return value. A single allocation is used to store the WhereInfo
4567   ** struct, the contents of WhereInfo.a[], the WhereClause structure
4568   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4569   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4570   ** some architectures. Hence the ROUND8() below.
4571   */
4572   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4573   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4574   if( db->mallocFailed ){
4575     sqlite3DbFree(db, pWInfo);
4576     pWInfo = 0;
4577     goto whereBeginError;
4578   }
4579   pWInfo->pParse = pParse;
4580   pWInfo->pTabList = pTabList;
4581   pWInfo->pOrderBy = pOrderBy;
4582   pWInfo->pWhere = pWhere;
4583   pWInfo->pResultSet = pResultSet;
4584   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4585   pWInfo->nLevel = nTabList;
4586   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
4587   pWInfo->wctrlFlags = wctrlFlags;
4588   pWInfo->iLimit = iAuxArg;
4589   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4590   memset(&pWInfo->nOBSat, 0,
4591          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4592   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4593   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
4594   pMaskSet = &pWInfo->sMaskSet;
4595   sWLB.pWInfo = pWInfo;
4596   sWLB.pWC = &pWInfo->sWC;
4597   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4598   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4599   whereLoopInit(sWLB.pNew);
4600 #ifdef SQLITE_DEBUG
4601   sWLB.pNew->cId = '*';
4602 #endif
4603 
4604   /* Split the WHERE clause into separate subexpressions where each
4605   ** subexpression is separated by an AND operator.
4606   */
4607   initMaskSet(pMaskSet);
4608   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4609   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4610 
4611   /* Special case: No FROM clause
4612   */
4613   if( nTabList==0 ){
4614     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4615     if( wctrlFlags & WHERE_WANT_DISTINCT ){
4616       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4617     }
4618     ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
4619   }else{
4620     /* Assign a bit from the bitmask to every term in the FROM clause.
4621     **
4622     ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4623     **
4624     ** The rule of the previous sentence ensures thta if X is the bitmask for
4625     ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4626     ** Knowing the bitmask for all tables to the left of a left join is
4627     ** important.  Ticket #3015.
4628     **
4629     ** Note that bitmasks are created for all pTabList->nSrc tables in
4630     ** pTabList, not just the first nTabList tables.  nTabList is normally
4631     ** equal to pTabList->nSrc but might be shortened to 1 if the
4632     ** WHERE_OR_SUBCLAUSE flag is set.
4633     */
4634     ii = 0;
4635     do{
4636       createMask(pMaskSet, pTabList->a[ii].iCursor);
4637       sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4638     }while( (++ii)<pTabList->nSrc );
4639   #ifdef SQLITE_DEBUG
4640     {
4641       Bitmask mx = 0;
4642       for(ii=0; ii<pTabList->nSrc; ii++){
4643         Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4644         assert( m>=mx );
4645         mx = m;
4646       }
4647     }
4648   #endif
4649   }
4650 
4651   /* Analyze all of the subexpressions. */
4652   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4653   if( db->mallocFailed ) goto whereBeginError;
4654 
4655   /* Special case: WHERE terms that do not refer to any tables in the join
4656   ** (constant expressions). Evaluate each such term, and jump over all the
4657   ** generated code if the result is not true.
4658   **
4659   ** Do not do this if the expression contains non-deterministic functions
4660   ** that are not within a sub-select. This is not strictly required, but
4661   ** preserves SQLite's legacy behaviour in the following two cases:
4662   **
4663   **   FROM ... WHERE random()>0;           -- eval random() once per row
4664   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
4665   */
4666   for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4667     WhereTerm *pT = &sWLB.pWC->a[ii];
4668     if( pT->wtFlags & TERM_VIRTUAL ) continue;
4669     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
4670       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
4671       pT->wtFlags |= TERM_CODED;
4672     }
4673   }
4674 
4675   if( wctrlFlags & WHERE_WANT_DISTINCT ){
4676     if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
4677       /* The DISTINCT marking is pointless.  Ignore it. */
4678       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4679     }else if( pOrderBy==0 ){
4680       /* Try to ORDER BY the result set to make distinct processing easier */
4681       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4682       pWInfo->pOrderBy = pResultSet;
4683     }
4684   }
4685 
4686   /* Construct the WhereLoop objects */
4687 #if defined(WHERETRACE_ENABLED)
4688   if( sqlite3WhereTrace & 0xffff ){
4689     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
4690     if( wctrlFlags & WHERE_USE_LIMIT ){
4691       sqlite3DebugPrintf(", limit: %d", iAuxArg);
4692     }
4693     sqlite3DebugPrintf(")\n");
4694   }
4695   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
4696     sqlite3WhereClausePrint(sWLB.pWC);
4697   }
4698 #endif
4699 
4700   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
4701     rc = whereLoopAddAll(&sWLB);
4702     if( rc ) goto whereBeginError;
4703 
4704 #ifdef WHERETRACE_ENABLED
4705     if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
4706       WhereLoop *p;
4707       int i;
4708       static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4709                                              "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4710       for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4711         p->cId = zLabel[i%(sizeof(zLabel)-1)];
4712         whereLoopPrint(p, sWLB.pWC);
4713       }
4714     }
4715 #endif
4716 
4717     wherePathSolver(pWInfo, 0);
4718     if( db->mallocFailed ) goto whereBeginError;
4719     if( pWInfo->pOrderBy ){
4720        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
4721        if( db->mallocFailed ) goto whereBeginError;
4722     }
4723   }
4724   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
4725      pWInfo->revMask = ALLBITS;
4726   }
4727   if( pParse->nErr || NEVER(db->mallocFailed) ){
4728     goto whereBeginError;
4729   }
4730 #ifdef WHERETRACE_ENABLED
4731   if( sqlite3WhereTrace ){
4732     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
4733     if( pWInfo->nOBSat>0 ){
4734       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
4735     }
4736     switch( pWInfo->eDistinct ){
4737       case WHERE_DISTINCT_UNIQUE: {
4738         sqlite3DebugPrintf("  DISTINCT=unique");
4739         break;
4740       }
4741       case WHERE_DISTINCT_ORDERED: {
4742         sqlite3DebugPrintf("  DISTINCT=ordered");
4743         break;
4744       }
4745       case WHERE_DISTINCT_UNORDERED: {
4746         sqlite3DebugPrintf("  DISTINCT=unordered");
4747         break;
4748       }
4749     }
4750     sqlite3DebugPrintf("\n");
4751     for(ii=0; ii<pWInfo->nLevel; ii++){
4752       whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
4753     }
4754   }
4755 #endif
4756 
4757   /* Attempt to omit tables from the join that do not affect the result.
4758   ** For a table to not affect the result, the following must be true:
4759   **
4760   **   1) The query must not be an aggregate.
4761   **   2) The table must be the RHS of a LEFT JOIN.
4762   **   3) Either the query must be DISTINCT, or else the ON or USING clause
4763   **      must contain a constraint that limits the scan of the table to
4764   **      at most a single row.
4765   **   4) The table must not be referenced by any part of the query apart
4766   **      from its own USING or ON clause.
4767   **
4768   ** For example, given:
4769   **
4770   **     CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
4771   **     CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
4772   **     CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
4773   **
4774   ** then table t2 can be omitted from the following:
4775   **
4776   **     SELECT v1, v3 FROM t1
4777   **       LEFT JOIN t2 USING (t1.ipk=t2.ipk)
4778   **       LEFT JOIN t3 USING (t1.ipk=t3.ipk)
4779   **
4780   ** or from:
4781   **
4782   **     SELECT DISTINCT v1, v3 FROM t1
4783   **       LEFT JOIN t2
4784   **       LEFT JOIN t3 USING (t1.ipk=t3.ipk)
4785   */
4786   notReady = ~(Bitmask)0;
4787   if( pWInfo->nLevel>=2
4788    && pResultSet!=0               /* guarantees condition (1) above */
4789    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
4790   ){
4791     int i;
4792     Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
4793     if( sWLB.pOrderBy ){
4794       tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
4795     }
4796     for(i=pWInfo->nLevel-1; i>=1; i--){
4797       WhereTerm *pTerm, *pEnd;
4798       struct SrcList_item *pItem;
4799       pLoop = pWInfo->a[i].pWLoop;
4800       pItem = &pWInfo->pTabList->a[pLoop->iTab];
4801       if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
4802       if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
4803        && (pLoop->wsFlags & WHERE_ONEROW)==0
4804       ){
4805         continue;
4806       }
4807       if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
4808       pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
4809       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
4810         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
4811           if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
4812            || pTerm->pExpr->iRightJoinTable!=pItem->iCursor
4813           ){
4814             break;
4815           }
4816         }
4817       }
4818       if( pTerm<pEnd ) continue;
4819       WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
4820       notReady &= ~pLoop->maskSelf;
4821       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
4822         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
4823           pTerm->wtFlags |= TERM_CODED;
4824         }
4825       }
4826       if( i!=pWInfo->nLevel-1 ){
4827         int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
4828         memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
4829       }
4830       pWInfo->nLevel--;
4831       nTabList--;
4832     }
4833   }
4834   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
4835   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
4836 
4837   /* If the caller is an UPDATE or DELETE statement that is requesting
4838   ** to use a one-pass algorithm, determine if this is appropriate.
4839   **
4840   ** A one-pass approach can be used if the caller has requested one
4841   ** and either (a) the scan visits at most one row or (b) each
4842   ** of the following are true:
4843   **
4844   **   * the caller has indicated that a one-pass approach can be used
4845   **     with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
4846   **   * the table is not a virtual table, and
4847   **   * either the scan does not use the OR optimization or the caller
4848   **     is a DELETE operation (WHERE_DUPLICATES_OK is only specified
4849   **     for DELETE).
4850   **
4851   ** The last qualification is because an UPDATE statement uses
4852   ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
4853   ** use a one-pass approach, and this is not set accurately for scans
4854   ** that use the OR optimization.
4855   */
4856   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
4857   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
4858     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
4859     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
4860     if( bOnerow || (
4861         0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
4862      && 0==(wsFlags & WHERE_VIRTUALTABLE)
4863      && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
4864     )){
4865       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
4866       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
4867         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
4868           bFordelete = OPFLAG_FORDELETE;
4869         }
4870         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
4871       }
4872     }
4873   }
4874 
4875   /* Open all tables in the pTabList and any indices selected for
4876   ** searching those tables.
4877   */
4878   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
4879     Table *pTab;     /* Table to open */
4880     int iDb;         /* Index of database containing table/index */
4881     struct SrcList_item *pTabItem;
4882 
4883     pTabItem = &pTabList->a[pLevel->iFrom];
4884     pTab = pTabItem->pTab;
4885     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4886     pLoop = pLevel->pWLoop;
4887     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
4888       /* Do nothing */
4889     }else
4890 #ifndef SQLITE_OMIT_VIRTUALTABLE
4891     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
4892       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
4893       int iCur = pTabItem->iCursor;
4894       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
4895     }else if( IsVirtual(pTab) ){
4896       /* noop */
4897     }else
4898 #endif
4899     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
4900          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
4901       int op = OP_OpenRead;
4902       if( pWInfo->eOnePass!=ONEPASS_OFF ){
4903         op = OP_OpenWrite;
4904         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
4905       };
4906       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
4907       assert( pTabItem->iCursor==pLevel->iTabCur );
4908       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
4909       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
4910       if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){
4911         Bitmask b = pTabItem->colUsed;
4912         int n = 0;
4913         for(; b; b=b>>1, n++){}
4914         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
4915         assert( n<=pTab->nCol );
4916       }
4917 #ifdef SQLITE_ENABLE_CURSOR_HINTS
4918       if( pLoop->u.btree.pIndex!=0 ){
4919         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
4920       }else
4921 #endif
4922       {
4923         sqlite3VdbeChangeP5(v, bFordelete);
4924       }
4925 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4926       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
4927                             (const u8*)&pTabItem->colUsed, P4_INT64);
4928 #endif
4929     }else{
4930       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4931     }
4932     if( pLoop->wsFlags & WHERE_INDEXED ){
4933       Index *pIx = pLoop->u.btree.pIndex;
4934       int iIndexCur;
4935       int op = OP_OpenRead;
4936       /* iAuxArg is always set to a positive value if ONEPASS is possible */
4937       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
4938       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
4939        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
4940       ){
4941         /* This is one term of an OR-optimization using the PRIMARY KEY of a
4942         ** WITHOUT ROWID table.  No need for a separate index */
4943         iIndexCur = pLevel->iTabCur;
4944         op = 0;
4945       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
4946         Index *pJ = pTabItem->pTab->pIndex;
4947         iIndexCur = iAuxArg;
4948         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
4949         while( ALWAYS(pJ) && pJ!=pIx ){
4950           iIndexCur++;
4951           pJ = pJ->pNext;
4952         }
4953         op = OP_OpenWrite;
4954         pWInfo->aiCurOnePass[1] = iIndexCur;
4955       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
4956         iIndexCur = iAuxArg;
4957         op = OP_ReopenIdx;
4958       }else{
4959         iIndexCur = pParse->nTab++;
4960       }
4961       pLevel->iIdxCur = iIndexCur;
4962       assert( pIx->pSchema==pTab->pSchema );
4963       assert( iIndexCur>=0 );
4964       if( op ){
4965         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
4966         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
4967         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
4968          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
4969          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
4970          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
4971         ){
4972           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */
4973         }
4974         VdbeComment((v, "%s", pIx->zName));
4975 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4976         {
4977           u64 colUsed = 0;
4978           int ii, jj;
4979           for(ii=0; ii<pIx->nColumn; ii++){
4980             jj = pIx->aiColumn[ii];
4981             if( jj<0 ) continue;
4982             if( jj>63 ) jj = 63;
4983             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
4984             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
4985           }
4986           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
4987                                 (u8*)&colUsed, P4_INT64);
4988         }
4989 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
4990       }
4991     }
4992     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
4993   }
4994   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
4995   if( db->mallocFailed ) goto whereBeginError;
4996 
4997   /* Generate the code to do the search.  Each iteration of the for
4998   ** loop below generates code for a single nested loop of the VM
4999   ** program.
5000   */
5001   for(ii=0; ii<nTabList; ii++){
5002     int addrExplain;
5003     int wsFlags;
5004     pLevel = &pWInfo->a[ii];
5005     wsFlags = pLevel->pWLoop->wsFlags;
5006 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5007     if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
5008       constructAutomaticIndex(pParse, &pWInfo->sWC,
5009                 &pTabList->a[pLevel->iFrom], notReady, pLevel);
5010       if( db->mallocFailed ) goto whereBeginError;
5011     }
5012 #endif
5013     addrExplain = sqlite3WhereExplainOneScan(
5014         pParse, pTabList, pLevel, wctrlFlags
5015     );
5016     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
5017     notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady);
5018     pWInfo->iContinue = pLevel->addrCont;
5019     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
5020       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
5021     }
5022   }
5023 
5024   /* Done. */
5025   VdbeModuleComment((v, "Begin WHERE-core"));
5026   return pWInfo;
5027 
5028   /* Jump here if malloc fails */
5029 whereBeginError:
5030   if( pWInfo ){
5031     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5032     whereInfoFree(db, pWInfo);
5033   }
5034   return 0;
5035 }
5036 
5037 /*
5038 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
5039 ** index rather than the main table.  In SQLITE_DEBUG mode, we want
5040 ** to trace those changes if PRAGMA vdbe_addoptrace=on.  This routine
5041 ** does that.
5042 */
5043 #ifndef SQLITE_DEBUG
5044 # define OpcodeRewriteTrace(D,K,P) /* no-op */
5045 #else
5046 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
5047   static void sqlite3WhereOpcodeRewriteTrace(
5048     sqlite3 *db,
5049     int pc,
5050     VdbeOp *pOp
5051   ){
5052     if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
5053     sqlite3VdbePrintOp(0, pc, pOp);
5054   }
5055 #endif
5056 
5057 /*
5058 ** Generate the end of the WHERE loop.  See comments on
5059 ** sqlite3WhereBegin() for additional information.
5060 */
5061 void sqlite3WhereEnd(WhereInfo *pWInfo){
5062   Parse *pParse = pWInfo->pParse;
5063   Vdbe *v = pParse->pVdbe;
5064   int i;
5065   WhereLevel *pLevel;
5066   WhereLoop *pLoop;
5067   SrcList *pTabList = pWInfo->pTabList;
5068   sqlite3 *db = pParse->db;
5069 
5070   /* Generate loop termination code.
5071   */
5072   VdbeModuleComment((v, "End WHERE-core"));
5073   sqlite3ExprCacheClear(pParse);
5074   for(i=pWInfo->nLevel-1; i>=0; i--){
5075     int addr;
5076     pLevel = &pWInfo->a[i];
5077     pLoop = pLevel->pWLoop;
5078     if( pLevel->op!=OP_Noop ){
5079 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5080       int addrSeek = 0;
5081       Index *pIdx;
5082       int n;
5083       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
5084        && i==pWInfo->nLevel-1  /* Ticket [ef9318757b152e3] 2017-10-21 */
5085        && (pLoop->wsFlags & WHERE_INDEXED)!=0
5086        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
5087        && (n = pLoop->u.btree.nIdxCol)>0
5088        && pIdx->aiRowLogEst[n]>=36
5089       ){
5090         int r1 = pParse->nMem+1;
5091         int j, op;
5092         for(j=0; j<n; j++){
5093           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
5094         }
5095         pParse->nMem += n+1;
5096         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
5097         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
5098         VdbeCoverageIf(v, op==OP_SeekLT);
5099         VdbeCoverageIf(v, op==OP_SeekGT);
5100         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
5101       }
5102 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
5103       /* The common case: Advance to the next row */
5104       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5105       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
5106       sqlite3VdbeChangeP5(v, pLevel->p5);
5107       VdbeCoverage(v);
5108       VdbeCoverageIf(v, pLevel->op==OP_Next);
5109       VdbeCoverageIf(v, pLevel->op==OP_Prev);
5110       VdbeCoverageIf(v, pLevel->op==OP_VNext);
5111 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5112       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
5113 #endif
5114     }else{
5115       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5116     }
5117     if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
5118       struct InLoop *pIn;
5119       int j;
5120       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
5121       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
5122         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5123         if( pIn->eEndLoopOp!=OP_Noop ){
5124           if( pIn->nPrefix ){
5125             assert( pLoop->wsFlags & WHERE_IN_EARLYOUT );
5126             sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
5127                               sqlite3VdbeCurrentAddr(v)+2,
5128                               pIn->iBase, pIn->nPrefix);
5129             VdbeCoverage(v);
5130           }
5131           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
5132           VdbeCoverage(v);
5133           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
5134           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
5135         }
5136         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
5137       }
5138     }
5139     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
5140     if( pLevel->addrSkip ){
5141       sqlite3VdbeGoto(v, pLevel->addrSkip);
5142       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
5143       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
5144       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
5145     }
5146 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
5147     if( pLevel->addrLikeRep ){
5148       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
5149                         pLevel->addrLikeRep);
5150       VdbeCoverage(v);
5151     }
5152 #endif
5153     if( pLevel->iLeftJoin ){
5154       int ws = pLoop->wsFlags;
5155       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
5156       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
5157       if( (ws & WHERE_IDX_ONLY)==0 ){
5158         assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
5159         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
5160       }
5161       if( (ws & WHERE_INDEXED)
5162        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx)
5163       ){
5164         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
5165       }
5166       if( pLevel->op==OP_Return ){
5167         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
5168       }else{
5169         sqlite3VdbeGoto(v, pLevel->addrFirst);
5170       }
5171       sqlite3VdbeJumpHere(v, addr);
5172     }
5173     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
5174                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
5175   }
5176 
5177   /* The "break" point is here, just past the end of the outer loop.
5178   ** Set it.
5179   */
5180   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
5181 
5182   assert( pWInfo->nLevel<=pTabList->nSrc );
5183   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
5184     int k, last;
5185     VdbeOp *pOp;
5186     Index *pIdx = 0;
5187     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
5188     Table *pTab = pTabItem->pTab;
5189     assert( pTab!=0 );
5190     pLoop = pLevel->pWLoop;
5191 
5192     /* For a co-routine, change all OP_Column references to the table of
5193     ** the co-routine into OP_Copy of result contained in a register.
5194     ** OP_Rowid becomes OP_Null.
5195     */
5196     if( pTabItem->fg.viaCoroutine ){
5197       testcase( pParse->db->mallocFailed );
5198       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
5199                             pTabItem->regResult, 0);
5200       continue;
5201     }
5202 
5203     /* If this scan uses an index, make VDBE code substitutions to read data
5204     ** from the index instead of from the table where possible.  In some cases
5205     ** this optimization prevents the table from ever being read, which can
5206     ** yield a significant performance boost.
5207     **
5208     ** Calls to the code generator in between sqlite3WhereBegin and
5209     ** sqlite3WhereEnd will have created code that references the table
5210     ** directly.  This loop scans all that code looking for opcodes
5211     ** that reference the table and converts them into opcodes that
5212     ** reference the index.
5213     */
5214     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
5215       pIdx = pLoop->u.btree.pIndex;
5216     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
5217       pIdx = pLevel->u.pCovidx;
5218     }
5219     if( pIdx
5220      && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable))
5221      && !db->mallocFailed
5222     ){
5223       last = sqlite3VdbeCurrentAddr(v);
5224       k = pLevel->addrBody;
5225 #ifdef SQLITE_DEBUG
5226       if( db->flags & SQLITE_VdbeAddopTrace ){
5227         printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
5228       }
5229 #endif
5230       pOp = sqlite3VdbeGetOp(v, k);
5231       for(; k<last; k++, pOp++){
5232         if( pOp->p1!=pLevel->iTabCur ) continue;
5233         if( pOp->opcode==OP_Column
5234 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
5235          || pOp->opcode==OP_Offset
5236 #endif
5237         ){
5238           int x = pOp->p2;
5239           assert( pIdx->pTable==pTab );
5240           if( !HasRowid(pTab) ){
5241             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5242             x = pPk->aiColumn[x];
5243             assert( x>=0 );
5244           }
5245           x = sqlite3ColumnOfIndex(pIdx, x);
5246           if( x>=0 ){
5247             pOp->p2 = x;
5248             pOp->p1 = pLevel->iIdxCur;
5249             OpcodeRewriteTrace(db, k, pOp);
5250           }
5251           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
5252               || pWInfo->eOnePass );
5253         }else if( pOp->opcode==OP_Rowid ){
5254           pOp->p1 = pLevel->iIdxCur;
5255           pOp->opcode = OP_IdxRowid;
5256           OpcodeRewriteTrace(db, k, pOp);
5257         }else if( pOp->opcode==OP_IfNullRow ){
5258           pOp->p1 = pLevel->iIdxCur;
5259           OpcodeRewriteTrace(db, k, pOp);
5260         }
5261       }
5262 #ifdef SQLITE_DEBUG
5263       if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
5264 #endif
5265     }
5266   }
5267 
5268   /* Final cleanup
5269   */
5270   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5271   whereInfoFree(db, pWInfo);
5272   return;
5273 }
5274