1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* 23 ** Extra information appended to the end of sqlite3_index_info but not 24 ** visible to the xBestIndex function, at least not directly. The 25 ** sqlite3_vtab_collation() interface knows how to reach it, however. 26 ** 27 ** This object is not an API and can be changed from one release to the 28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation() 29 ** agree on the structure, all will be well. 30 */ 31 typedef struct HiddenIndexInfo HiddenIndexInfo; 32 struct HiddenIndexInfo { 33 WhereClause *pWC; /* The Where clause being analyzed */ 34 Parse *pParse; /* The parsing context */ 35 }; 36 37 /* Forward declaration of methods */ 38 static int whereLoopResize(sqlite3*, WhereLoop*, int); 39 40 /* Test variable that can be set to enable WHERE tracing */ 41 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 42 /***/ int sqlite3WhereTrace = 0; 43 #endif 44 45 46 /* 47 ** Return the estimated number of output rows from a WHERE clause 48 */ 49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 50 return pWInfo->nRowOut; 51 } 52 53 /* 54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 55 ** WHERE clause returns outputs for DISTINCT processing. 56 */ 57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 58 return pWInfo->eDistinct; 59 } 60 61 /* 62 ** Return TRUE if the WHERE clause returns rows in ORDER BY order. 63 ** Return FALSE if the output needs to be sorted. 64 */ 65 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 66 return pWInfo->nOBSat; 67 } 68 69 /* 70 ** Return TRUE if the innermost loop of the WHERE clause implementation 71 ** returns rows in ORDER BY order for complete run of the inner loop. 72 ** 73 ** Across multiple iterations of outer loops, the output rows need not be 74 ** sorted. As long as rows are sorted for just the innermost loop, this 75 ** routine can return TRUE. 76 */ 77 int sqlite3WhereOrderedInnerLoop(WhereInfo *pWInfo){ 78 return pWInfo->bOrderedInnerLoop; 79 } 80 81 /* 82 ** Return the VDBE address or label to jump to in order to continue 83 ** immediately with the next row of a WHERE clause. 84 */ 85 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 86 assert( pWInfo->iContinue!=0 ); 87 return pWInfo->iContinue; 88 } 89 90 /* 91 ** Return the VDBE address or label to jump to in order to break 92 ** out of a WHERE loop. 93 */ 94 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 95 return pWInfo->iBreak; 96 } 97 98 /* 99 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to 100 ** operate directly on the rowis returned by a WHERE clause. Return 101 ** ONEPASS_SINGLE (1) if the statement can operation directly because only 102 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass 103 ** optimization can be used on multiple 104 ** 105 ** If the ONEPASS optimization is used (if this routine returns true) 106 ** then also write the indices of open cursors used by ONEPASS 107 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 108 ** table and iaCur[1] gets the cursor used by an auxiliary index. 109 ** Either value may be -1, indicating that cursor is not used. 110 ** Any cursors returned will have been opened for writing. 111 ** 112 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 113 ** unable to use the ONEPASS optimization. 114 */ 115 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 116 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 117 #ifdef WHERETRACE_ENABLED 118 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ 119 sqlite3DebugPrintf("%s cursors: %d %d\n", 120 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", 121 aiCur[0], aiCur[1]); 122 } 123 #endif 124 return pWInfo->eOnePass; 125 } 126 127 /* 128 ** Move the content of pSrc into pDest 129 */ 130 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 131 pDest->n = pSrc->n; 132 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 133 } 134 135 /* 136 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 137 ** 138 ** The new entry might overwrite an existing entry, or it might be 139 ** appended, or it might be discarded. Do whatever is the right thing 140 ** so that pSet keeps the N_OR_COST best entries seen so far. 141 */ 142 static int whereOrInsert( 143 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 144 Bitmask prereq, /* Prerequisites of the new entry */ 145 LogEst rRun, /* Run-cost of the new entry */ 146 LogEst nOut /* Number of outputs for the new entry */ 147 ){ 148 u16 i; 149 WhereOrCost *p; 150 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 151 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 152 goto whereOrInsert_done; 153 } 154 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 155 return 0; 156 } 157 } 158 if( pSet->n<N_OR_COST ){ 159 p = &pSet->a[pSet->n++]; 160 p->nOut = nOut; 161 }else{ 162 p = pSet->a; 163 for(i=1; i<pSet->n; i++){ 164 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 165 } 166 if( p->rRun<=rRun ) return 0; 167 } 168 whereOrInsert_done: 169 p->prereq = prereq; 170 p->rRun = rRun; 171 if( p->nOut>nOut ) p->nOut = nOut; 172 return 1; 173 } 174 175 /* 176 ** Return the bitmask for the given cursor number. Return 0 if 177 ** iCursor is not in the set. 178 */ 179 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ 180 int i; 181 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 182 for(i=0; i<pMaskSet->n; i++){ 183 if( pMaskSet->ix[i]==iCursor ){ 184 return MASKBIT(i); 185 } 186 } 187 return 0; 188 } 189 190 /* 191 ** Create a new mask for cursor iCursor. 192 ** 193 ** There is one cursor per table in the FROM clause. The number of 194 ** tables in the FROM clause is limited by a test early in the 195 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 196 ** array will never overflow. 197 */ 198 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 199 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 200 pMaskSet->ix[pMaskSet->n++] = iCursor; 201 } 202 203 /* 204 ** Advance to the next WhereTerm that matches according to the criteria 205 ** established when the pScan object was initialized by whereScanInit(). 206 ** Return NULL if there are no more matching WhereTerms. 207 */ 208 static WhereTerm *whereScanNext(WhereScan *pScan){ 209 int iCur; /* The cursor on the LHS of the term */ 210 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ 211 Expr *pX; /* An expression being tested */ 212 WhereClause *pWC; /* Shorthand for pScan->pWC */ 213 WhereTerm *pTerm; /* The term being tested */ 214 int k = pScan->k; /* Where to start scanning */ 215 216 assert( pScan->iEquiv<=pScan->nEquiv ); 217 pWC = pScan->pWC; 218 while(1){ 219 iColumn = pScan->aiColumn[pScan->iEquiv-1]; 220 iCur = pScan->aiCur[pScan->iEquiv-1]; 221 assert( pWC!=0 ); 222 do{ 223 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 224 if( pTerm->leftCursor==iCur 225 && pTerm->u.leftColumn==iColumn 226 && (iColumn!=XN_EXPR 227 || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft, 228 pScan->pIdxExpr,iCur)==0) 229 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 230 ){ 231 if( (pTerm->eOperator & WO_EQUIV)!=0 232 && pScan->nEquiv<ArraySize(pScan->aiCur) 233 && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN 234 ){ 235 int j; 236 for(j=0; j<pScan->nEquiv; j++){ 237 if( pScan->aiCur[j]==pX->iTable 238 && pScan->aiColumn[j]==pX->iColumn ){ 239 break; 240 } 241 } 242 if( j==pScan->nEquiv ){ 243 pScan->aiCur[j] = pX->iTable; 244 pScan->aiColumn[j] = pX->iColumn; 245 pScan->nEquiv++; 246 } 247 } 248 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 249 /* Verify the affinity and collating sequence match */ 250 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 251 CollSeq *pColl; 252 Parse *pParse = pWC->pWInfo->pParse; 253 pX = pTerm->pExpr; 254 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 255 continue; 256 } 257 assert(pX->pLeft); 258 pColl = sqlite3BinaryCompareCollSeq(pParse, 259 pX->pLeft, pX->pRight); 260 if( pColl==0 ) pColl = pParse->db->pDfltColl; 261 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ 262 continue; 263 } 264 } 265 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 266 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN 267 && pX->iTable==pScan->aiCur[0] 268 && pX->iColumn==pScan->aiColumn[0] 269 ){ 270 testcase( pTerm->eOperator & WO_IS ); 271 continue; 272 } 273 pScan->pWC = pWC; 274 pScan->k = k+1; 275 return pTerm; 276 } 277 } 278 } 279 pWC = pWC->pOuter; 280 k = 0; 281 }while( pWC!=0 ); 282 if( pScan->iEquiv>=pScan->nEquiv ) break; 283 pWC = pScan->pOrigWC; 284 k = 0; 285 pScan->iEquiv++; 286 } 287 return 0; 288 } 289 290 /* 291 ** Initialize a WHERE clause scanner object. Return a pointer to the 292 ** first match. Return NULL if there are no matches. 293 ** 294 ** The scanner will be searching the WHERE clause pWC. It will look 295 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 296 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx 297 ** must be one of the indexes of table iCur. 298 ** 299 ** The <op> must be one of the operators described by opMask. 300 ** 301 ** If the search is for X and the WHERE clause contains terms of the 302 ** form X=Y then this routine might also return terms of the form 303 ** "Y <op> <expr>". The number of levels of transitivity is limited, 304 ** but is enough to handle most commonly occurring SQL statements. 305 ** 306 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 307 ** index pIdx. 308 */ 309 static WhereTerm *whereScanInit( 310 WhereScan *pScan, /* The WhereScan object being initialized */ 311 WhereClause *pWC, /* The WHERE clause to be scanned */ 312 int iCur, /* Cursor to scan for */ 313 int iColumn, /* Column to scan for */ 314 u32 opMask, /* Operator(s) to scan for */ 315 Index *pIdx /* Must be compatible with this index */ 316 ){ 317 pScan->pOrigWC = pWC; 318 pScan->pWC = pWC; 319 pScan->pIdxExpr = 0; 320 pScan->idxaff = 0; 321 pScan->zCollName = 0; 322 if( pIdx ){ 323 int j = iColumn; 324 iColumn = pIdx->aiColumn[j]; 325 if( iColumn==XN_EXPR ){ 326 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; 327 pScan->zCollName = pIdx->azColl[j]; 328 }else if( iColumn==pIdx->pTable->iPKey ){ 329 iColumn = XN_ROWID; 330 }else if( iColumn>=0 ){ 331 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 332 pScan->zCollName = pIdx->azColl[j]; 333 } 334 }else if( iColumn==XN_EXPR ){ 335 return 0; 336 } 337 pScan->opMask = opMask; 338 pScan->k = 0; 339 pScan->aiCur[0] = iCur; 340 pScan->aiColumn[0] = iColumn; 341 pScan->nEquiv = 1; 342 pScan->iEquiv = 1; 343 return whereScanNext(pScan); 344 } 345 346 /* 347 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 348 ** where X is a reference to the iColumn of table iCur or of index pIdx 349 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by 350 ** the op parameter. Return a pointer to the term. Return 0 if not found. 351 ** 352 ** If pIdx!=0 then it must be one of the indexes of table iCur. 353 ** Search for terms matching the iColumn-th column of pIdx 354 ** rather than the iColumn-th column of table iCur. 355 ** 356 ** The term returned might by Y=<expr> if there is another constraint in 357 ** the WHERE clause that specifies that X=Y. Any such constraints will be 358 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 359 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 360 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 361 ** other equivalent values. Hence a search for X will return <expr> if X=A1 362 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. 363 ** 364 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 365 ** then try for the one with no dependencies on <expr> - in other words where 366 ** <expr> is a constant expression of some kind. Only return entries of 367 ** the form "X <op> Y" where Y is a column in another table if no terms of 368 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 369 ** exist, try to return a term that does not use WO_EQUIV. 370 */ 371 WhereTerm *sqlite3WhereFindTerm( 372 WhereClause *pWC, /* The WHERE clause to be searched */ 373 int iCur, /* Cursor number of LHS */ 374 int iColumn, /* Column number of LHS */ 375 Bitmask notReady, /* RHS must not overlap with this mask */ 376 u32 op, /* Mask of WO_xx values describing operator */ 377 Index *pIdx /* Must be compatible with this index, if not NULL */ 378 ){ 379 WhereTerm *pResult = 0; 380 WhereTerm *p; 381 WhereScan scan; 382 383 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 384 op &= WO_EQ|WO_IS; 385 while( p ){ 386 if( (p->prereqRight & notReady)==0 ){ 387 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ 388 testcase( p->eOperator & WO_IS ); 389 return p; 390 } 391 if( pResult==0 ) pResult = p; 392 } 393 p = whereScanNext(&scan); 394 } 395 return pResult; 396 } 397 398 /* 399 ** This function searches pList for an entry that matches the iCol-th column 400 ** of index pIdx. 401 ** 402 ** If such an expression is found, its index in pList->a[] is returned. If 403 ** no expression is found, -1 is returned. 404 */ 405 static int findIndexCol( 406 Parse *pParse, /* Parse context */ 407 ExprList *pList, /* Expression list to search */ 408 int iBase, /* Cursor for table associated with pIdx */ 409 Index *pIdx, /* Index to match column of */ 410 int iCol /* Column of index to match */ 411 ){ 412 int i; 413 const char *zColl = pIdx->azColl[iCol]; 414 415 for(i=0; i<pList->nExpr; i++){ 416 Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); 417 if( p->op==TK_COLUMN 418 && p->iColumn==pIdx->aiColumn[iCol] 419 && p->iTable==iBase 420 ){ 421 CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr); 422 if( 0==sqlite3StrICmp(pColl->zName, zColl) ){ 423 return i; 424 } 425 } 426 } 427 428 return -1; 429 } 430 431 /* 432 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL 433 */ 434 static int indexColumnNotNull(Index *pIdx, int iCol){ 435 int j; 436 assert( pIdx!=0 ); 437 assert( iCol>=0 && iCol<pIdx->nColumn ); 438 j = pIdx->aiColumn[iCol]; 439 if( j>=0 ){ 440 return pIdx->pTable->aCol[j].notNull; 441 }else if( j==(-1) ){ 442 return 1; 443 }else{ 444 assert( j==(-2) ); 445 return 0; /* Assume an indexed expression can always yield a NULL */ 446 447 } 448 } 449 450 /* 451 ** Return true if the DISTINCT expression-list passed as the third argument 452 ** is redundant. 453 ** 454 ** A DISTINCT list is redundant if any subset of the columns in the 455 ** DISTINCT list are collectively unique and individually non-null. 456 */ 457 static int isDistinctRedundant( 458 Parse *pParse, /* Parsing context */ 459 SrcList *pTabList, /* The FROM clause */ 460 WhereClause *pWC, /* The WHERE clause */ 461 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 462 ){ 463 Table *pTab; 464 Index *pIdx; 465 int i; 466 int iBase; 467 468 /* If there is more than one table or sub-select in the FROM clause of 469 ** this query, then it will not be possible to show that the DISTINCT 470 ** clause is redundant. */ 471 if( pTabList->nSrc!=1 ) return 0; 472 iBase = pTabList->a[0].iCursor; 473 pTab = pTabList->a[0].pTab; 474 475 /* If any of the expressions is an IPK column on table iBase, then return 476 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 477 ** current SELECT is a correlated sub-query. 478 */ 479 for(i=0; i<pDistinct->nExpr; i++){ 480 Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); 481 if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; 482 } 483 484 /* Loop through all indices on the table, checking each to see if it makes 485 ** the DISTINCT qualifier redundant. It does so if: 486 ** 487 ** 1. The index is itself UNIQUE, and 488 ** 489 ** 2. All of the columns in the index are either part of the pDistinct 490 ** list, or else the WHERE clause contains a term of the form "col=X", 491 ** where X is a constant value. The collation sequences of the 492 ** comparison and select-list expressions must match those of the index. 493 ** 494 ** 3. All of those index columns for which the WHERE clause does not 495 ** contain a "col=X" term are subject to a NOT NULL constraint. 496 */ 497 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 498 if( !IsUniqueIndex(pIdx) ) continue; 499 for(i=0; i<pIdx->nKeyCol; i++){ 500 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ 501 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; 502 if( indexColumnNotNull(pIdx, i)==0 ) break; 503 } 504 } 505 if( i==pIdx->nKeyCol ){ 506 /* This index implies that the DISTINCT qualifier is redundant. */ 507 return 1; 508 } 509 } 510 511 return 0; 512 } 513 514 515 /* 516 ** Estimate the logarithm of the input value to base 2. 517 */ 518 static LogEst estLog(LogEst N){ 519 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 520 } 521 522 /* 523 ** Convert OP_Column opcodes to OP_Copy in previously generated code. 524 ** 525 ** This routine runs over generated VDBE code and translates OP_Column 526 ** opcodes into OP_Copy when the table is being accessed via co-routine 527 ** instead of via table lookup. 528 ** 529 ** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on 530 ** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero, 531 ** then each OP_Rowid is transformed into an instruction to increment the 532 ** value stored in its output register. 533 */ 534 static void translateColumnToCopy( 535 Parse *pParse, /* Parsing context */ 536 int iStart, /* Translate from this opcode to the end */ 537 int iTabCur, /* OP_Column/OP_Rowid references to this table */ 538 int iRegister, /* The first column is in this register */ 539 int bIncrRowid /* If non-zero, transform OP_rowid to OP_AddImm(1) */ 540 ){ 541 Vdbe *v = pParse->pVdbe; 542 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); 543 int iEnd = sqlite3VdbeCurrentAddr(v); 544 if( pParse->db->mallocFailed ) return; 545 for(; iStart<iEnd; iStart++, pOp++){ 546 if( pOp->p1!=iTabCur ) continue; 547 if( pOp->opcode==OP_Column ){ 548 pOp->opcode = OP_Copy; 549 pOp->p1 = pOp->p2 + iRegister; 550 pOp->p2 = pOp->p3; 551 pOp->p3 = 0; 552 }else if( pOp->opcode==OP_Rowid ){ 553 if( bIncrRowid ){ 554 /* Increment the value stored in the P2 operand of the OP_Rowid. */ 555 pOp->opcode = OP_AddImm; 556 pOp->p1 = pOp->p2; 557 pOp->p2 = 1; 558 }else{ 559 pOp->opcode = OP_Null; 560 pOp->p1 = 0; 561 pOp->p3 = 0; 562 } 563 } 564 } 565 } 566 567 /* 568 ** Two routines for printing the content of an sqlite3_index_info 569 ** structure. Used for testing and debugging only. If neither 570 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 571 ** are no-ops. 572 */ 573 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 574 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 575 int i; 576 if( !sqlite3WhereTrace ) return; 577 for(i=0; i<p->nConstraint; i++){ 578 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 579 i, 580 p->aConstraint[i].iColumn, 581 p->aConstraint[i].iTermOffset, 582 p->aConstraint[i].op, 583 p->aConstraint[i].usable); 584 } 585 for(i=0; i<p->nOrderBy; i++){ 586 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 587 i, 588 p->aOrderBy[i].iColumn, 589 p->aOrderBy[i].desc); 590 } 591 } 592 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 593 int i; 594 if( !sqlite3WhereTrace ) return; 595 for(i=0; i<p->nConstraint; i++){ 596 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 597 i, 598 p->aConstraintUsage[i].argvIndex, 599 p->aConstraintUsage[i].omit); 600 } 601 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 602 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 603 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 604 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 605 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 606 } 607 #else 608 #define TRACE_IDX_INPUTS(A) 609 #define TRACE_IDX_OUTPUTS(A) 610 #endif 611 612 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 613 /* 614 ** Return TRUE if the WHERE clause term pTerm is of a form where it 615 ** could be used with an index to access pSrc, assuming an appropriate 616 ** index existed. 617 */ 618 static int termCanDriveIndex( 619 WhereTerm *pTerm, /* WHERE clause term to check */ 620 struct SrcList_item *pSrc, /* Table we are trying to access */ 621 Bitmask notReady /* Tables in outer loops of the join */ 622 ){ 623 char aff; 624 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 625 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; 626 if( (pSrc->fg.jointype & JT_LEFT) 627 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 628 && (pTerm->eOperator & WO_IS) 629 ){ 630 /* Cannot use an IS term from the WHERE clause as an index driver for 631 ** the RHS of a LEFT JOIN. Such a term can only be used if it is from 632 ** the ON clause. */ 633 return 0; 634 } 635 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 636 if( pTerm->u.leftColumn<0 ) return 0; 637 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; 638 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 639 testcase( pTerm->pExpr->op==TK_IS ); 640 return 1; 641 } 642 #endif 643 644 645 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 646 /* 647 ** Generate code to construct the Index object for an automatic index 648 ** and to set up the WhereLevel object pLevel so that the code generator 649 ** makes use of the automatic index. 650 */ 651 static void constructAutomaticIndex( 652 Parse *pParse, /* The parsing context */ 653 WhereClause *pWC, /* The WHERE clause */ 654 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ 655 Bitmask notReady, /* Mask of cursors that are not available */ 656 WhereLevel *pLevel /* Write new index here */ 657 ){ 658 int nKeyCol; /* Number of columns in the constructed index */ 659 WhereTerm *pTerm; /* A single term of the WHERE clause */ 660 WhereTerm *pWCEnd; /* End of pWC->a[] */ 661 Index *pIdx; /* Object describing the transient index */ 662 Vdbe *v; /* Prepared statement under construction */ 663 int addrInit; /* Address of the initialization bypass jump */ 664 Table *pTable; /* The table being indexed */ 665 int addrTop; /* Top of the index fill loop */ 666 int regRecord; /* Register holding an index record */ 667 int n; /* Column counter */ 668 int i; /* Loop counter */ 669 int mxBitCol; /* Maximum column in pSrc->colUsed */ 670 CollSeq *pColl; /* Collating sequence to on a column */ 671 WhereLoop *pLoop; /* The Loop object */ 672 char *zNotUsed; /* Extra space on the end of pIdx */ 673 Bitmask idxCols; /* Bitmap of columns used for indexing */ 674 Bitmask extraCols; /* Bitmap of additional columns */ 675 u8 sentWarning = 0; /* True if a warnning has been issued */ 676 Expr *pPartial = 0; /* Partial Index Expression */ 677 int iContinue = 0; /* Jump here to skip excluded rows */ 678 struct SrcList_item *pTabItem; /* FROM clause term being indexed */ 679 int addrCounter = 0; /* Address where integer counter is initialized */ 680 int regBase; /* Array of registers where record is assembled */ 681 682 /* Generate code to skip over the creation and initialization of the 683 ** transient index on 2nd and subsequent iterations of the loop. */ 684 v = pParse->pVdbe; 685 assert( v!=0 ); 686 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 687 688 /* Count the number of columns that will be added to the index 689 ** and used to match WHERE clause constraints */ 690 nKeyCol = 0; 691 pTable = pSrc->pTab; 692 pWCEnd = &pWC->a[pWC->nTerm]; 693 pLoop = pLevel->pWLoop; 694 idxCols = 0; 695 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 696 Expr *pExpr = pTerm->pExpr; 697 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */ 698 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */ 699 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */ 700 if( pLoop->prereq==0 701 && (pTerm->wtFlags & TERM_VIRTUAL)==0 702 && !ExprHasProperty(pExpr, EP_FromJoin) 703 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){ 704 pPartial = sqlite3ExprAnd(pParse->db, pPartial, 705 sqlite3ExprDup(pParse->db, pExpr, 0)); 706 } 707 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 708 int iCol = pTerm->u.leftColumn; 709 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 710 testcase( iCol==BMS ); 711 testcase( iCol==BMS-1 ); 712 if( !sentWarning ){ 713 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 714 "automatic index on %s(%s)", pTable->zName, 715 pTable->aCol[iCol].zName); 716 sentWarning = 1; 717 } 718 if( (idxCols & cMask)==0 ){ 719 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 720 goto end_auto_index_create; 721 } 722 pLoop->aLTerm[nKeyCol++] = pTerm; 723 idxCols |= cMask; 724 } 725 } 726 } 727 assert( nKeyCol>0 ); 728 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 729 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 730 | WHERE_AUTO_INDEX; 731 732 /* Count the number of additional columns needed to create a 733 ** covering index. A "covering index" is an index that contains all 734 ** columns that are needed by the query. With a covering index, the 735 ** original table never needs to be accessed. Automatic indices must 736 ** be a covering index because the index will not be updated if the 737 ** original table changes and the index and table cannot both be used 738 ** if they go out of sync. 739 */ 740 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 741 mxBitCol = MIN(BMS-1,pTable->nCol); 742 testcase( pTable->nCol==BMS-1 ); 743 testcase( pTable->nCol==BMS-2 ); 744 for(i=0; i<mxBitCol; i++){ 745 if( extraCols & MASKBIT(i) ) nKeyCol++; 746 } 747 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 748 nKeyCol += pTable->nCol - BMS + 1; 749 } 750 751 /* Construct the Index object to describe this index */ 752 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 753 if( pIdx==0 ) goto end_auto_index_create; 754 pLoop->u.btree.pIndex = pIdx; 755 pIdx->zName = "auto-index"; 756 pIdx->pTable = pTable; 757 n = 0; 758 idxCols = 0; 759 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 760 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 761 int iCol = pTerm->u.leftColumn; 762 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 763 testcase( iCol==BMS-1 ); 764 testcase( iCol==BMS ); 765 if( (idxCols & cMask)==0 ){ 766 Expr *pX = pTerm->pExpr; 767 idxCols |= cMask; 768 pIdx->aiColumn[n] = pTerm->u.leftColumn; 769 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 770 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; 771 n++; 772 } 773 } 774 } 775 assert( (u32)n==pLoop->u.btree.nEq ); 776 777 /* Add additional columns needed to make the automatic index into 778 ** a covering index */ 779 for(i=0; i<mxBitCol; i++){ 780 if( extraCols & MASKBIT(i) ){ 781 pIdx->aiColumn[n] = i; 782 pIdx->azColl[n] = sqlite3StrBINARY; 783 n++; 784 } 785 } 786 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 787 for(i=BMS-1; i<pTable->nCol; i++){ 788 pIdx->aiColumn[n] = i; 789 pIdx->azColl[n] = sqlite3StrBINARY; 790 n++; 791 } 792 } 793 assert( n==nKeyCol ); 794 pIdx->aiColumn[n] = XN_ROWID; 795 pIdx->azColl[n] = sqlite3StrBINARY; 796 797 /* Create the automatic index */ 798 assert( pLevel->iIdxCur>=0 ); 799 pLevel->iIdxCur = pParse->nTab++; 800 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 801 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 802 VdbeComment((v, "for %s", pTable->zName)); 803 804 /* Fill the automatic index with content */ 805 sqlite3ExprCachePush(pParse); 806 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; 807 if( pTabItem->fg.viaCoroutine ){ 808 int regYield = pTabItem->regReturn; 809 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); 810 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 811 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); 812 VdbeCoverage(v); 813 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 814 }else{ 815 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 816 } 817 if( pPartial ){ 818 iContinue = sqlite3VdbeMakeLabel(v); 819 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 820 pLoop->wsFlags |= WHERE_PARTIALIDX; 821 } 822 regRecord = sqlite3GetTempReg(pParse); 823 regBase = sqlite3GenerateIndexKey( 824 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 825 ); 826 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 827 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 828 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 829 if( pTabItem->fg.viaCoroutine ){ 830 sqlite3VdbeChangeP2(v, addrCounter, regBase+n); 831 testcase( pParse->db->mallocFailed ); 832 translateColumnToCopy(pParse, addrTop, pLevel->iTabCur, 833 pTabItem->regResult, 1); 834 sqlite3VdbeGoto(v, addrTop); 835 pTabItem->fg.viaCoroutine = 0; 836 }else{ 837 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 838 } 839 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 840 sqlite3VdbeJumpHere(v, addrTop); 841 sqlite3ReleaseTempReg(pParse, regRecord); 842 sqlite3ExprCachePop(pParse); 843 844 /* Jump here when skipping the initialization */ 845 sqlite3VdbeJumpHere(v, addrInit); 846 847 end_auto_index_create: 848 sqlite3ExprDelete(pParse->db, pPartial); 849 } 850 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 851 852 #ifndef SQLITE_OMIT_VIRTUALTABLE 853 /* 854 ** Allocate and populate an sqlite3_index_info structure. It is the 855 ** responsibility of the caller to eventually release the structure 856 ** by passing the pointer returned by this function to sqlite3_free(). 857 */ 858 static sqlite3_index_info *allocateIndexInfo( 859 Parse *pParse, /* The parsing context */ 860 WhereClause *pWC, /* The WHERE clause being analyzed */ 861 Bitmask mUnusable, /* Ignore terms with these prereqs */ 862 struct SrcList_item *pSrc, /* The FROM clause term that is the vtab */ 863 ExprList *pOrderBy, /* The ORDER BY clause */ 864 u16 *pmNoOmit /* Mask of terms not to omit */ 865 ){ 866 int i, j; 867 int nTerm; 868 struct sqlite3_index_constraint *pIdxCons; 869 struct sqlite3_index_orderby *pIdxOrderBy; 870 struct sqlite3_index_constraint_usage *pUsage; 871 struct HiddenIndexInfo *pHidden; 872 WhereTerm *pTerm; 873 int nOrderBy; 874 sqlite3_index_info *pIdxInfo; 875 u16 mNoOmit = 0; 876 877 /* Count the number of possible WHERE clause constraints referring 878 ** to this virtual table */ 879 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 880 if( pTerm->leftCursor != pSrc->iCursor ) continue; 881 if( pTerm->prereqRight & mUnusable ) continue; 882 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 883 testcase( pTerm->eOperator & WO_IN ); 884 testcase( pTerm->eOperator & WO_ISNULL ); 885 testcase( pTerm->eOperator & WO_IS ); 886 testcase( pTerm->eOperator & WO_ALL ); 887 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 888 if( pTerm->wtFlags & TERM_VNULL ) continue; 889 assert( pTerm->u.leftColumn>=(-1) ); 890 nTerm++; 891 } 892 893 /* If the ORDER BY clause contains only columns in the current 894 ** virtual table then allocate space for the aOrderBy part of 895 ** the sqlite3_index_info structure. 896 */ 897 nOrderBy = 0; 898 if( pOrderBy ){ 899 int n = pOrderBy->nExpr; 900 for(i=0; i<n; i++){ 901 Expr *pExpr = pOrderBy->a[i].pExpr; 902 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 903 } 904 if( i==n){ 905 nOrderBy = n; 906 } 907 } 908 909 /* Allocate the sqlite3_index_info structure 910 */ 911 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 912 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 913 + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) ); 914 if( pIdxInfo==0 ){ 915 sqlite3ErrorMsg(pParse, "out of memory"); 916 return 0; 917 } 918 919 /* Initialize the structure. The sqlite3_index_info structure contains 920 ** many fields that are declared "const" to prevent xBestIndex from 921 ** changing them. We have to do some funky casting in order to 922 ** initialize those fields. 923 */ 924 pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1]; 925 pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1]; 926 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 927 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 928 *(int*)&pIdxInfo->nConstraint = nTerm; 929 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 930 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 931 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 932 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 933 pUsage; 934 935 pHidden->pWC = pWC; 936 pHidden->pParse = pParse; 937 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 938 u16 op; 939 if( pTerm->leftCursor != pSrc->iCursor ) continue; 940 if( pTerm->prereqRight & mUnusable ) continue; 941 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 942 testcase( pTerm->eOperator & WO_IN ); 943 testcase( pTerm->eOperator & WO_IS ); 944 testcase( pTerm->eOperator & WO_ISNULL ); 945 testcase( pTerm->eOperator & WO_ALL ); 946 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 947 if( pTerm->wtFlags & TERM_VNULL ) continue; 948 assert( pTerm->u.leftColumn>=(-1) ); 949 pIdxCons[j].iColumn = pTerm->u.leftColumn; 950 pIdxCons[j].iTermOffset = i; 951 op = pTerm->eOperator & WO_ALL; 952 if( op==WO_IN ) op = WO_EQ; 953 if( op==WO_AUX ){ 954 pIdxCons[j].op = pTerm->eMatchOp; 955 }else if( op & (WO_ISNULL|WO_IS) ){ 956 if( op==WO_ISNULL ){ 957 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL; 958 }else{ 959 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS; 960 } 961 }else{ 962 pIdxCons[j].op = (u8)op; 963 /* The direct assignment in the previous line is possible only because 964 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 965 ** following asserts verify this fact. */ 966 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 967 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 968 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 969 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 970 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 971 assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) ); 972 973 if( op & (WO_LT|WO_LE|WO_GT|WO_GE) 974 && sqlite3ExprIsVector(pTerm->pExpr->pRight) 975 ){ 976 if( i<16 ) mNoOmit |= (1 << i); 977 if( op==WO_LT ) pIdxCons[j].op = WO_LE; 978 if( op==WO_GT ) pIdxCons[j].op = WO_GE; 979 } 980 } 981 982 j++; 983 } 984 for(i=0; i<nOrderBy; i++){ 985 Expr *pExpr = pOrderBy->a[i].pExpr; 986 pIdxOrderBy[i].iColumn = pExpr->iColumn; 987 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 988 } 989 990 *pmNoOmit = mNoOmit; 991 return pIdxInfo; 992 } 993 994 /* 995 ** The table object reference passed as the second argument to this function 996 ** must represent a virtual table. This function invokes the xBestIndex() 997 ** method of the virtual table with the sqlite3_index_info object that 998 ** comes in as the 3rd argument to this function. 999 ** 1000 ** If an error occurs, pParse is populated with an error message and a 1001 ** non-zero value is returned. Otherwise, 0 is returned and the output 1002 ** part of the sqlite3_index_info structure is left populated. 1003 ** 1004 ** Whether or not an error is returned, it is the responsibility of the 1005 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 1006 ** that this is required. 1007 */ 1008 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 1009 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 1010 int rc; 1011 1012 TRACE_IDX_INPUTS(p); 1013 rc = pVtab->pModule->xBestIndex(pVtab, p); 1014 TRACE_IDX_OUTPUTS(p); 1015 1016 if( rc!=SQLITE_OK ){ 1017 if( rc==SQLITE_NOMEM ){ 1018 sqlite3OomFault(pParse->db); 1019 }else if( !pVtab->zErrMsg ){ 1020 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1021 }else{ 1022 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 1023 } 1024 } 1025 sqlite3_free(pVtab->zErrMsg); 1026 pVtab->zErrMsg = 0; 1027 1028 #if 0 1029 /* This error is now caught by the caller. 1030 ** Search for "xBestIndex malfunction" below */ 1031 for(i=0; i<p->nConstraint; i++){ 1032 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ 1033 sqlite3ErrorMsg(pParse, 1034 "table %s: xBestIndex returned an invalid plan", pTab->zName); 1035 } 1036 } 1037 #endif 1038 1039 return pParse->nErr; 1040 } 1041 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1042 1043 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1044 /* 1045 ** Estimate the location of a particular key among all keys in an 1046 ** index. Store the results in aStat as follows: 1047 ** 1048 ** aStat[0] Est. number of rows less than pRec 1049 ** aStat[1] Est. number of rows equal to pRec 1050 ** 1051 ** Return the index of the sample that is the smallest sample that 1052 ** is greater than or equal to pRec. Note that this index is not an index 1053 ** into the aSample[] array - it is an index into a virtual set of samples 1054 ** based on the contents of aSample[] and the number of fields in record 1055 ** pRec. 1056 */ 1057 static int whereKeyStats( 1058 Parse *pParse, /* Database connection */ 1059 Index *pIdx, /* Index to consider domain of */ 1060 UnpackedRecord *pRec, /* Vector of values to consider */ 1061 int roundUp, /* Round up if true. Round down if false */ 1062 tRowcnt *aStat /* OUT: stats written here */ 1063 ){ 1064 IndexSample *aSample = pIdx->aSample; 1065 int iCol; /* Index of required stats in anEq[] etc. */ 1066 int i; /* Index of first sample >= pRec */ 1067 int iSample; /* Smallest sample larger than or equal to pRec */ 1068 int iMin = 0; /* Smallest sample not yet tested */ 1069 int iTest; /* Next sample to test */ 1070 int res; /* Result of comparison operation */ 1071 int nField; /* Number of fields in pRec */ 1072 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ 1073 1074 #ifndef SQLITE_DEBUG 1075 UNUSED_PARAMETER( pParse ); 1076 #endif 1077 assert( pRec!=0 ); 1078 assert( pIdx->nSample>0 ); 1079 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol ); 1080 1081 /* Do a binary search to find the first sample greater than or equal 1082 ** to pRec. If pRec contains a single field, the set of samples to search 1083 ** is simply the aSample[] array. If the samples in aSample[] contain more 1084 ** than one fields, all fields following the first are ignored. 1085 ** 1086 ** If pRec contains N fields, where N is more than one, then as well as the 1087 ** samples in aSample[] (truncated to N fields), the search also has to 1088 ** consider prefixes of those samples. For example, if the set of samples 1089 ** in aSample is: 1090 ** 1091 ** aSample[0] = (a, 5) 1092 ** aSample[1] = (a, 10) 1093 ** aSample[2] = (b, 5) 1094 ** aSample[3] = (c, 100) 1095 ** aSample[4] = (c, 105) 1096 ** 1097 ** Then the search space should ideally be the samples above and the 1098 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 1099 ** the code actually searches this set: 1100 ** 1101 ** 0: (a) 1102 ** 1: (a, 5) 1103 ** 2: (a, 10) 1104 ** 3: (a, 10) 1105 ** 4: (b) 1106 ** 5: (b, 5) 1107 ** 6: (c) 1108 ** 7: (c, 100) 1109 ** 8: (c, 105) 1110 ** 9: (c, 105) 1111 ** 1112 ** For each sample in the aSample[] array, N samples are present in the 1113 ** effective sample array. In the above, samples 0 and 1 are based on 1114 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. 1115 ** 1116 ** Often, sample i of each block of N effective samples has (i+1) fields. 1117 ** Except, each sample may be extended to ensure that it is greater than or 1118 ** equal to the previous sample in the array. For example, in the above, 1119 ** sample 2 is the first sample of a block of N samples, so at first it 1120 ** appears that it should be 1 field in size. However, that would make it 1121 ** smaller than sample 1, so the binary search would not work. As a result, 1122 ** it is extended to two fields. The duplicates that this creates do not 1123 ** cause any problems. 1124 */ 1125 nField = pRec->nField; 1126 iCol = 0; 1127 iSample = pIdx->nSample * nField; 1128 do{ 1129 int iSamp; /* Index in aSample[] of test sample */ 1130 int n; /* Number of fields in test sample */ 1131 1132 iTest = (iMin+iSample)/2; 1133 iSamp = iTest / nField; 1134 if( iSamp>0 ){ 1135 /* The proposed effective sample is a prefix of sample aSample[iSamp]. 1136 ** Specifically, the shortest prefix of at least (1 + iTest%nField) 1137 ** fields that is greater than the previous effective sample. */ 1138 for(n=(iTest % nField) + 1; n<nField; n++){ 1139 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; 1140 } 1141 }else{ 1142 n = iTest + 1; 1143 } 1144 1145 pRec->nField = n; 1146 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); 1147 if( res<0 ){ 1148 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; 1149 iMin = iTest+1; 1150 }else if( res==0 && n<nField ){ 1151 iLower = aSample[iSamp].anLt[n-1]; 1152 iMin = iTest+1; 1153 res = -1; 1154 }else{ 1155 iSample = iTest; 1156 iCol = n-1; 1157 } 1158 }while( res && iMin<iSample ); 1159 i = iSample / nField; 1160 1161 #ifdef SQLITE_DEBUG 1162 /* The following assert statements check that the binary search code 1163 ** above found the right answer. This block serves no purpose other 1164 ** than to invoke the asserts. */ 1165 if( pParse->db->mallocFailed==0 ){ 1166 if( res==0 ){ 1167 /* If (res==0) is true, then pRec must be equal to sample i. */ 1168 assert( i<pIdx->nSample ); 1169 assert( iCol==nField-1 ); 1170 pRec->nField = nField; 1171 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 1172 || pParse->db->mallocFailed 1173 ); 1174 }else{ 1175 /* Unless i==pIdx->nSample, indicating that pRec is larger than 1176 ** all samples in the aSample[] array, pRec must be smaller than the 1177 ** (iCol+1) field prefix of sample i. */ 1178 assert( i<=pIdx->nSample && i>=0 ); 1179 pRec->nField = iCol+1; 1180 assert( i==pIdx->nSample 1181 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 1182 || pParse->db->mallocFailed ); 1183 1184 /* if i==0 and iCol==0, then record pRec is smaller than all samples 1185 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must 1186 ** be greater than or equal to the (iCol) field prefix of sample i. 1187 ** If (i>0), then pRec must also be greater than sample (i-1). */ 1188 if( iCol>0 ){ 1189 pRec->nField = iCol; 1190 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 1191 || pParse->db->mallocFailed ); 1192 } 1193 if( i>0 ){ 1194 pRec->nField = nField; 1195 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 1196 || pParse->db->mallocFailed ); 1197 } 1198 } 1199 } 1200 #endif /* ifdef SQLITE_DEBUG */ 1201 1202 if( res==0 ){ 1203 /* Record pRec is equal to sample i */ 1204 assert( iCol==nField-1 ); 1205 aStat[0] = aSample[i].anLt[iCol]; 1206 aStat[1] = aSample[i].anEq[iCol]; 1207 }else{ 1208 /* At this point, the (iCol+1) field prefix of aSample[i] is the first 1209 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec 1210 ** is larger than all samples in the array. */ 1211 tRowcnt iUpper, iGap; 1212 if( i>=pIdx->nSample ){ 1213 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); 1214 }else{ 1215 iUpper = aSample[i].anLt[iCol]; 1216 } 1217 1218 if( iLower>=iUpper ){ 1219 iGap = 0; 1220 }else{ 1221 iGap = iUpper - iLower; 1222 } 1223 if( roundUp ){ 1224 iGap = (iGap*2)/3; 1225 }else{ 1226 iGap = iGap/3; 1227 } 1228 aStat[0] = iLower + iGap; 1229 aStat[1] = pIdx->aAvgEq[nField-1]; 1230 } 1231 1232 /* Restore the pRec->nField value before returning. */ 1233 pRec->nField = nField; 1234 return i; 1235 } 1236 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1237 1238 /* 1239 ** If it is not NULL, pTerm is a term that provides an upper or lower 1240 ** bound on a range scan. Without considering pTerm, it is estimated 1241 ** that the scan will visit nNew rows. This function returns the number 1242 ** estimated to be visited after taking pTerm into account. 1243 ** 1244 ** If the user explicitly specified a likelihood() value for this term, 1245 ** then the return value is the likelihood multiplied by the number of 1246 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 1247 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 1248 */ 1249 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 1250 LogEst nRet = nNew; 1251 if( pTerm ){ 1252 if( pTerm->truthProb<=0 ){ 1253 nRet += pTerm->truthProb; 1254 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 1255 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 1256 } 1257 } 1258 return nRet; 1259 } 1260 1261 1262 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1263 /* 1264 ** Return the affinity for a single column of an index. 1265 */ 1266 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ 1267 assert( iCol>=0 && iCol<pIdx->nColumn ); 1268 if( !pIdx->zColAff ){ 1269 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; 1270 } 1271 return pIdx->zColAff[iCol]; 1272 } 1273 #endif 1274 1275 1276 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1277 /* 1278 ** This function is called to estimate the number of rows visited by a 1279 ** range-scan on a skip-scan index. For example: 1280 ** 1281 ** CREATE INDEX i1 ON t1(a, b, c); 1282 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 1283 ** 1284 ** Value pLoop->nOut is currently set to the estimated number of rows 1285 ** visited for scanning (a=? AND b=?). This function reduces that estimate 1286 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 1287 ** on the stat4 data for the index. this scan will be peformed multiple 1288 ** times (once for each (a,b) combination that matches a=?) is dealt with 1289 ** by the caller. 1290 ** 1291 ** It does this by scanning through all stat4 samples, comparing values 1292 ** extracted from pLower and pUpper with the corresponding column in each 1293 ** sample. If L and U are the number of samples found to be less than or 1294 ** equal to the values extracted from pLower and pUpper respectively, and 1295 ** N is the total number of samples, the pLoop->nOut value is adjusted 1296 ** as follows: 1297 ** 1298 ** nOut = nOut * ( min(U - L, 1) / N ) 1299 ** 1300 ** If pLower is NULL, or a value cannot be extracted from the term, L is 1301 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 1302 ** U is set to N. 1303 ** 1304 ** Normally, this function sets *pbDone to 1 before returning. However, 1305 ** if no value can be extracted from either pLower or pUpper (and so the 1306 ** estimate of the number of rows delivered remains unchanged), *pbDone 1307 ** is left as is. 1308 ** 1309 ** If an error occurs, an SQLite error code is returned. Otherwise, 1310 ** SQLITE_OK. 1311 */ 1312 static int whereRangeSkipScanEst( 1313 Parse *pParse, /* Parsing & code generating context */ 1314 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1315 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1316 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 1317 int *pbDone /* Set to true if at least one expr. value extracted */ 1318 ){ 1319 Index *p = pLoop->u.btree.pIndex; 1320 int nEq = pLoop->u.btree.nEq; 1321 sqlite3 *db = pParse->db; 1322 int nLower = -1; 1323 int nUpper = p->nSample+1; 1324 int rc = SQLITE_OK; 1325 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); 1326 CollSeq *pColl; 1327 1328 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 1329 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 1330 sqlite3_value *pVal = 0; /* Value extracted from record */ 1331 1332 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 1333 if( pLower ){ 1334 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 1335 nLower = 0; 1336 } 1337 if( pUpper && rc==SQLITE_OK ){ 1338 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 1339 nUpper = p2 ? 0 : p->nSample; 1340 } 1341 1342 if( p1 || p2 ){ 1343 int i; 1344 int nDiff; 1345 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 1346 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 1347 if( rc==SQLITE_OK && p1 ){ 1348 int res = sqlite3MemCompare(p1, pVal, pColl); 1349 if( res>=0 ) nLower++; 1350 } 1351 if( rc==SQLITE_OK && p2 ){ 1352 int res = sqlite3MemCompare(p2, pVal, pColl); 1353 if( res>=0 ) nUpper++; 1354 } 1355 } 1356 nDiff = (nUpper - nLower); 1357 if( nDiff<=0 ) nDiff = 1; 1358 1359 /* If there is both an upper and lower bound specified, and the 1360 ** comparisons indicate that they are close together, use the fallback 1361 ** method (assume that the scan visits 1/64 of the rows) for estimating 1362 ** the number of rows visited. Otherwise, estimate the number of rows 1363 ** using the method described in the header comment for this function. */ 1364 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 1365 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 1366 pLoop->nOut -= nAdjust; 1367 *pbDone = 1; 1368 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 1369 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 1370 } 1371 1372 }else{ 1373 assert( *pbDone==0 ); 1374 } 1375 1376 sqlite3ValueFree(p1); 1377 sqlite3ValueFree(p2); 1378 sqlite3ValueFree(pVal); 1379 1380 return rc; 1381 } 1382 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1383 1384 /* 1385 ** This function is used to estimate the number of rows that will be visited 1386 ** by scanning an index for a range of values. The range may have an upper 1387 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 1388 ** and lower bounds are represented by pLower and pUpper respectively. For 1389 ** example, assuming that index p is on t1(a): 1390 ** 1391 ** ... FROM t1 WHERE a > ? AND a < ? ... 1392 ** |_____| |_____| 1393 ** | | 1394 ** pLower pUpper 1395 ** 1396 ** If either of the upper or lower bound is not present, then NULL is passed in 1397 ** place of the corresponding WhereTerm. 1398 ** 1399 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 1400 ** column subject to the range constraint. Or, equivalently, the number of 1401 ** equality constraints optimized by the proposed index scan. For example, 1402 ** assuming index p is on t1(a, b), and the SQL query is: 1403 ** 1404 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 1405 ** 1406 ** then nEq is set to 1 (as the range restricted column, b, is the second 1407 ** left-most column of the index). Or, if the query is: 1408 ** 1409 ** ... FROM t1 WHERE a > ? AND a < ? ... 1410 ** 1411 ** then nEq is set to 0. 1412 ** 1413 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 1414 ** number of rows that the index scan is expected to visit without 1415 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 1416 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 1417 ** to account for the range constraints pLower and pUpper. 1418 ** 1419 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 1420 ** used, a single range inequality reduces the search space by a factor of 4. 1421 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 1422 ** rows visited by a factor of 64. 1423 */ 1424 static int whereRangeScanEst( 1425 Parse *pParse, /* Parsing & code generating context */ 1426 WhereLoopBuilder *pBuilder, 1427 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1428 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1429 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 1430 ){ 1431 int rc = SQLITE_OK; 1432 int nOut = pLoop->nOut; 1433 LogEst nNew; 1434 1435 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1436 Index *p = pLoop->u.btree.pIndex; 1437 int nEq = pLoop->u.btree.nEq; 1438 1439 if( p->nSample>0 && nEq<p->nSampleCol ){ 1440 if( nEq==pBuilder->nRecValid ){ 1441 UnpackedRecord *pRec = pBuilder->pRec; 1442 tRowcnt a[2]; 1443 int nBtm = pLoop->u.btree.nBtm; 1444 int nTop = pLoop->u.btree.nTop; 1445 1446 /* Variable iLower will be set to the estimate of the number of rows in 1447 ** the index that are less than the lower bound of the range query. The 1448 ** lower bound being the concatenation of $P and $L, where $P is the 1449 ** key-prefix formed by the nEq values matched against the nEq left-most 1450 ** columns of the index, and $L is the value in pLower. 1451 ** 1452 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 1453 ** is not a simple variable or literal value), the lower bound of the 1454 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 1455 ** if $L is available, whereKeyStats() is called for both ($P) and 1456 ** ($P:$L) and the larger of the two returned values is used. 1457 ** 1458 ** Similarly, iUpper is to be set to the estimate of the number of rows 1459 ** less than the upper bound of the range query. Where the upper bound 1460 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 1461 ** of iUpper are requested of whereKeyStats() and the smaller used. 1462 ** 1463 ** The number of rows between the two bounds is then just iUpper-iLower. 1464 */ 1465 tRowcnt iLower; /* Rows less than the lower bound */ 1466 tRowcnt iUpper; /* Rows less than the upper bound */ 1467 int iLwrIdx = -2; /* aSample[] for the lower bound */ 1468 int iUprIdx = -1; /* aSample[] for the upper bound */ 1469 1470 if( pRec ){ 1471 testcase( pRec->nField!=pBuilder->nRecValid ); 1472 pRec->nField = pBuilder->nRecValid; 1473 } 1474 /* Determine iLower and iUpper using ($P) only. */ 1475 if( nEq==0 ){ 1476 iLower = 0; 1477 iUpper = p->nRowEst0; 1478 }else{ 1479 /* Note: this call could be optimized away - since the same values must 1480 ** have been requested when testing key $P in whereEqualScanEst(). */ 1481 whereKeyStats(pParse, p, pRec, 0, a); 1482 iLower = a[0]; 1483 iUpper = a[0] + a[1]; 1484 } 1485 1486 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 1487 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 1488 assert( p->aSortOrder!=0 ); 1489 if( p->aSortOrder[nEq] ){ 1490 /* The roles of pLower and pUpper are swapped for a DESC index */ 1491 SWAP(WhereTerm*, pLower, pUpper); 1492 SWAP(int, nBtm, nTop); 1493 } 1494 1495 /* If possible, improve on the iLower estimate using ($P:$L). */ 1496 if( pLower ){ 1497 int n; /* Values extracted from pExpr */ 1498 Expr *pExpr = pLower->pExpr->pRight; 1499 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n); 1500 if( rc==SQLITE_OK && n ){ 1501 tRowcnt iNew; 1502 u16 mask = WO_GT|WO_LE; 1503 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1504 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 1505 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0); 1506 if( iNew>iLower ) iLower = iNew; 1507 nOut--; 1508 pLower = 0; 1509 } 1510 } 1511 1512 /* If possible, improve on the iUpper estimate using ($P:$U). */ 1513 if( pUpper ){ 1514 int n; /* Values extracted from pExpr */ 1515 Expr *pExpr = pUpper->pExpr->pRight; 1516 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n); 1517 if( rc==SQLITE_OK && n ){ 1518 tRowcnt iNew; 1519 u16 mask = WO_GT|WO_LE; 1520 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1521 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 1522 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0); 1523 if( iNew<iUpper ) iUpper = iNew; 1524 nOut--; 1525 pUpper = 0; 1526 } 1527 } 1528 1529 pBuilder->pRec = pRec; 1530 if( rc==SQLITE_OK ){ 1531 if( iUpper>iLower ){ 1532 nNew = sqlite3LogEst(iUpper - iLower); 1533 /* TUNING: If both iUpper and iLower are derived from the same 1534 ** sample, then assume they are 4x more selective. This brings 1535 ** the estimated selectivity more in line with what it would be 1536 ** if estimated without the use of STAT3/4 tables. */ 1537 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); 1538 }else{ 1539 nNew = 10; assert( 10==sqlite3LogEst(2) ); 1540 } 1541 if( nNew<nOut ){ 1542 nOut = nNew; 1543 } 1544 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", 1545 (u32)iLower, (u32)iUpper, nOut)); 1546 } 1547 }else{ 1548 int bDone = 0; 1549 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 1550 if( bDone ) return rc; 1551 } 1552 } 1553 #else 1554 UNUSED_PARAMETER(pParse); 1555 UNUSED_PARAMETER(pBuilder); 1556 assert( pLower || pUpper ); 1557 #endif 1558 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); 1559 nNew = whereRangeAdjust(pLower, nOut); 1560 nNew = whereRangeAdjust(pUpper, nNew); 1561 1562 /* TUNING: If there is both an upper and lower limit and neither limit 1563 ** has an application-defined likelihood(), assume the range is 1564 ** reduced by an additional 75%. This means that, by default, an open-ended 1565 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 1566 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 1567 ** match 1/64 of the index. */ 1568 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 1569 nNew -= 20; 1570 } 1571 1572 nOut -= (pLower!=0) + (pUpper!=0); 1573 if( nNew<10 ) nNew = 10; 1574 if( nNew<nOut ) nOut = nNew; 1575 #if defined(WHERETRACE_ENABLED) 1576 if( pLoop->nOut>nOut ){ 1577 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", 1578 pLoop->nOut, nOut)); 1579 } 1580 #endif 1581 pLoop->nOut = (LogEst)nOut; 1582 return rc; 1583 } 1584 1585 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1586 /* 1587 ** Estimate the number of rows that will be returned based on 1588 ** an equality constraint x=VALUE and where that VALUE occurs in 1589 ** the histogram data. This only works when x is the left-most 1590 ** column of an index and sqlite_stat3 histogram data is available 1591 ** for that index. When pExpr==NULL that means the constraint is 1592 ** "x IS NULL" instead of "x=VALUE". 1593 ** 1594 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1595 ** If unable to make an estimate, leave *pnRow unchanged and return 1596 ** non-zero. 1597 ** 1598 ** This routine can fail if it is unable to load a collating sequence 1599 ** required for string comparison, or if unable to allocate memory 1600 ** for a UTF conversion required for comparison. The error is stored 1601 ** in the pParse structure. 1602 */ 1603 static int whereEqualScanEst( 1604 Parse *pParse, /* Parsing & code generating context */ 1605 WhereLoopBuilder *pBuilder, 1606 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 1607 tRowcnt *pnRow /* Write the revised row estimate here */ 1608 ){ 1609 Index *p = pBuilder->pNew->u.btree.pIndex; 1610 int nEq = pBuilder->pNew->u.btree.nEq; 1611 UnpackedRecord *pRec = pBuilder->pRec; 1612 int rc; /* Subfunction return code */ 1613 tRowcnt a[2]; /* Statistics */ 1614 int bOk; 1615 1616 assert( nEq>=1 ); 1617 assert( nEq<=p->nColumn ); 1618 assert( p->aSample!=0 ); 1619 assert( p->nSample>0 ); 1620 assert( pBuilder->nRecValid<nEq ); 1621 1622 /* If values are not available for all fields of the index to the left 1623 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 1624 if( pBuilder->nRecValid<(nEq-1) ){ 1625 return SQLITE_NOTFOUND; 1626 } 1627 1628 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 1629 ** below would return the same value. */ 1630 if( nEq>=p->nColumn ){ 1631 *pnRow = 1; 1632 return SQLITE_OK; 1633 } 1634 1635 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk); 1636 pBuilder->pRec = pRec; 1637 if( rc!=SQLITE_OK ) return rc; 1638 if( bOk==0 ) return SQLITE_NOTFOUND; 1639 pBuilder->nRecValid = nEq; 1640 1641 whereKeyStats(pParse, p, pRec, 0, a); 1642 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n", 1643 p->zName, nEq-1, (int)a[1])); 1644 *pnRow = a[1]; 1645 1646 return rc; 1647 } 1648 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1649 1650 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1651 /* 1652 ** Estimate the number of rows that will be returned based on 1653 ** an IN constraint where the right-hand side of the IN operator 1654 ** is a list of values. Example: 1655 ** 1656 ** WHERE x IN (1,2,3,4) 1657 ** 1658 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1659 ** If unable to make an estimate, leave *pnRow unchanged and return 1660 ** non-zero. 1661 ** 1662 ** This routine can fail if it is unable to load a collating sequence 1663 ** required for string comparison, or if unable to allocate memory 1664 ** for a UTF conversion required for comparison. The error is stored 1665 ** in the pParse structure. 1666 */ 1667 static int whereInScanEst( 1668 Parse *pParse, /* Parsing & code generating context */ 1669 WhereLoopBuilder *pBuilder, 1670 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 1671 tRowcnt *pnRow /* Write the revised row estimate here */ 1672 ){ 1673 Index *p = pBuilder->pNew->u.btree.pIndex; 1674 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 1675 int nRecValid = pBuilder->nRecValid; 1676 int rc = SQLITE_OK; /* Subfunction return code */ 1677 tRowcnt nEst; /* Number of rows for a single term */ 1678 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 1679 int i; /* Loop counter */ 1680 1681 assert( p->aSample!=0 ); 1682 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 1683 nEst = nRow0; 1684 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 1685 nRowEst += nEst; 1686 pBuilder->nRecValid = nRecValid; 1687 } 1688 1689 if( rc==SQLITE_OK ){ 1690 if( nRowEst > nRow0 ) nRowEst = nRow0; 1691 *pnRow = nRowEst; 1692 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); 1693 } 1694 assert( pBuilder->nRecValid==nRecValid ); 1695 return rc; 1696 } 1697 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1698 1699 1700 #ifdef WHERETRACE_ENABLED 1701 /* 1702 ** Print the content of a WhereTerm object 1703 */ 1704 static void whereTermPrint(WhereTerm *pTerm, int iTerm){ 1705 if( pTerm==0 ){ 1706 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 1707 }else{ 1708 char zType[4]; 1709 char zLeft[50]; 1710 memcpy(zType, "...", 4); 1711 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 1712 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 1713 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; 1714 if( pTerm->eOperator & WO_SINGLE ){ 1715 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}", 1716 pTerm->leftCursor, pTerm->u.leftColumn); 1717 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){ 1718 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld", 1719 pTerm->u.pOrInfo->indexable); 1720 }else{ 1721 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor); 1722 } 1723 sqlite3DebugPrintf( 1724 "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x", 1725 iTerm, pTerm, zType, zLeft, pTerm->truthProb, 1726 pTerm->eOperator, pTerm->wtFlags); 1727 if( pTerm->iField ){ 1728 sqlite3DebugPrintf(" iField=%d\n", pTerm->iField); 1729 }else{ 1730 sqlite3DebugPrintf("\n"); 1731 } 1732 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 1733 } 1734 } 1735 #endif 1736 1737 #ifdef WHERETRACE_ENABLED 1738 /* 1739 ** Show the complete content of a WhereClause 1740 */ 1741 void sqlite3WhereClausePrint(WhereClause *pWC){ 1742 int i; 1743 for(i=0; i<pWC->nTerm; i++){ 1744 whereTermPrint(&pWC->a[i], i); 1745 } 1746 } 1747 #endif 1748 1749 #ifdef WHERETRACE_ENABLED 1750 /* 1751 ** Print a WhereLoop object for debugging purposes 1752 */ 1753 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){ 1754 WhereInfo *pWInfo = pWC->pWInfo; 1755 int nb = 1+(pWInfo->pTabList->nSrc+3)/4; 1756 struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab; 1757 Table *pTab = pItem->pTab; 1758 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1; 1759 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 1760 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll); 1761 sqlite3DebugPrintf(" %12s", 1762 pItem->zAlias ? pItem->zAlias : pTab->zName); 1763 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 1764 const char *zName; 1765 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 1766 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 1767 int i = sqlite3Strlen30(zName) - 1; 1768 while( zName[i]!='_' ) i--; 1769 zName += i; 1770 } 1771 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 1772 }else{ 1773 sqlite3DebugPrintf("%20s",""); 1774 } 1775 }else{ 1776 char *z; 1777 if( p->u.vtab.idxStr ){ 1778 z = sqlite3_mprintf("(%d,\"%s\",%x)", 1779 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 1780 }else{ 1781 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 1782 } 1783 sqlite3DebugPrintf(" %-19s", z); 1784 sqlite3_free(z); 1785 } 1786 if( p->wsFlags & WHERE_SKIPSCAN ){ 1787 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 1788 }else{ 1789 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); 1790 } 1791 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 1792 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ 1793 int i; 1794 for(i=0; i<p->nLTerm; i++){ 1795 whereTermPrint(p->aLTerm[i], i); 1796 } 1797 } 1798 } 1799 #endif 1800 1801 /* 1802 ** Convert bulk memory into a valid WhereLoop that can be passed 1803 ** to whereLoopClear harmlessly. 1804 */ 1805 static void whereLoopInit(WhereLoop *p){ 1806 p->aLTerm = p->aLTermSpace; 1807 p->nLTerm = 0; 1808 p->nLSlot = ArraySize(p->aLTermSpace); 1809 p->wsFlags = 0; 1810 } 1811 1812 /* 1813 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 1814 */ 1815 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 1816 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 1817 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 1818 sqlite3_free(p->u.vtab.idxStr); 1819 p->u.vtab.needFree = 0; 1820 p->u.vtab.idxStr = 0; 1821 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 1822 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 1823 sqlite3DbFreeNN(db, p->u.btree.pIndex); 1824 p->u.btree.pIndex = 0; 1825 } 1826 } 1827 } 1828 1829 /* 1830 ** Deallocate internal memory used by a WhereLoop object 1831 */ 1832 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 1833 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 1834 whereLoopClearUnion(db, p); 1835 whereLoopInit(p); 1836 } 1837 1838 /* 1839 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 1840 */ 1841 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 1842 WhereTerm **paNew; 1843 if( p->nLSlot>=n ) return SQLITE_OK; 1844 n = (n+7)&~7; 1845 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); 1846 if( paNew==0 ) return SQLITE_NOMEM_BKPT; 1847 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 1848 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 1849 p->aLTerm = paNew; 1850 p->nLSlot = n; 1851 return SQLITE_OK; 1852 } 1853 1854 /* 1855 ** Transfer content from the second pLoop into the first. 1856 */ 1857 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 1858 whereLoopClearUnion(db, pTo); 1859 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ 1860 memset(&pTo->u, 0, sizeof(pTo->u)); 1861 return SQLITE_NOMEM_BKPT; 1862 } 1863 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 1864 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 1865 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 1866 pFrom->u.vtab.needFree = 0; 1867 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 1868 pFrom->u.btree.pIndex = 0; 1869 } 1870 return SQLITE_OK; 1871 } 1872 1873 /* 1874 ** Delete a WhereLoop object 1875 */ 1876 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 1877 whereLoopClear(db, p); 1878 sqlite3DbFreeNN(db, p); 1879 } 1880 1881 /* 1882 ** Free a WhereInfo structure 1883 */ 1884 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 1885 int i; 1886 assert( pWInfo!=0 ); 1887 for(i=0; i<pWInfo->nLevel; i++){ 1888 WhereLevel *pLevel = &pWInfo->a[i]; 1889 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){ 1890 sqlite3DbFree(db, pLevel->u.in.aInLoop); 1891 } 1892 } 1893 sqlite3WhereClauseClear(&pWInfo->sWC); 1894 while( pWInfo->pLoops ){ 1895 WhereLoop *p = pWInfo->pLoops; 1896 pWInfo->pLoops = p->pNextLoop; 1897 whereLoopDelete(db, p); 1898 } 1899 sqlite3DbFreeNN(db, pWInfo); 1900 } 1901 1902 /* 1903 ** Return TRUE if all of the following are true: 1904 ** 1905 ** (1) X has the same or lower cost that Y 1906 ** (2) X uses fewer WHERE clause terms than Y 1907 ** (3) Every WHERE clause term used by X is also used by Y 1908 ** (4) X skips at least as many columns as Y 1909 ** (5) If X is a covering index, than Y is too 1910 ** 1911 ** Conditions (2) and (3) mean that X is a "proper subset" of Y. 1912 ** If X is a proper subset of Y then Y is a better choice and ought 1913 ** to have a lower cost. This routine returns TRUE when that cost 1914 ** relationship is inverted and needs to be adjusted. Constraint (4) 1915 ** was added because if X uses skip-scan less than Y it still might 1916 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5) 1917 ** was added because a covering index probably deserves to have a lower cost 1918 ** than a non-covering index even if it is a proper subset. 1919 */ 1920 static int whereLoopCheaperProperSubset( 1921 const WhereLoop *pX, /* First WhereLoop to compare */ 1922 const WhereLoop *pY /* Compare against this WhereLoop */ 1923 ){ 1924 int i, j; 1925 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 1926 return 0; /* X is not a subset of Y */ 1927 } 1928 if( pY->nSkip > pX->nSkip ) return 0; 1929 if( pX->rRun >= pY->rRun ){ 1930 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */ 1931 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */ 1932 } 1933 for(i=pX->nLTerm-1; i>=0; i--){ 1934 if( pX->aLTerm[i]==0 ) continue; 1935 for(j=pY->nLTerm-1; j>=0; j--){ 1936 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 1937 } 1938 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ 1939 } 1940 if( (pX->wsFlags&WHERE_IDX_ONLY)!=0 1941 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){ 1942 return 0; /* Constraint (5) */ 1943 } 1944 return 1; /* All conditions meet */ 1945 } 1946 1947 /* 1948 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so 1949 ** that: 1950 ** 1951 ** (1) pTemplate costs less than any other WhereLoops that are a proper 1952 ** subset of pTemplate 1953 ** 1954 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 1955 ** is a proper subset. 1956 ** 1957 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 1958 ** WHERE clause terms than Y and that every WHERE clause term used by X is 1959 ** also used by Y. 1960 */ 1961 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 1962 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 1963 for(; p; p=p->pNextLoop){ 1964 if( p->iTab!=pTemplate->iTab ) continue; 1965 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 1966 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 1967 /* Adjust pTemplate cost downward so that it is cheaper than its 1968 ** subset p. */ 1969 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 1970 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1)); 1971 pTemplate->rRun = p->rRun; 1972 pTemplate->nOut = p->nOut - 1; 1973 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 1974 /* Adjust pTemplate cost upward so that it is costlier than p since 1975 ** pTemplate is a proper subset of p */ 1976 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 1977 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1)); 1978 pTemplate->rRun = p->rRun; 1979 pTemplate->nOut = p->nOut + 1; 1980 } 1981 } 1982 } 1983 1984 /* 1985 ** Search the list of WhereLoops in *ppPrev looking for one that can be 1986 ** replaced by pTemplate. 1987 ** 1988 ** Return NULL if pTemplate does not belong on the WhereLoop list. 1989 ** In other words if pTemplate ought to be dropped from further consideration. 1990 ** 1991 ** If pX is a WhereLoop that pTemplate can replace, then return the 1992 ** link that points to pX. 1993 ** 1994 ** If pTemplate cannot replace any existing element of the list but needs 1995 ** to be added to the list as a new entry, then return a pointer to the 1996 ** tail of the list. 1997 */ 1998 static WhereLoop **whereLoopFindLesser( 1999 WhereLoop **ppPrev, 2000 const WhereLoop *pTemplate 2001 ){ 2002 WhereLoop *p; 2003 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 2004 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 2005 /* If either the iTab or iSortIdx values for two WhereLoop are different 2006 ** then those WhereLoops need to be considered separately. Neither is 2007 ** a candidate to replace the other. */ 2008 continue; 2009 } 2010 /* In the current implementation, the rSetup value is either zero 2011 ** or the cost of building an automatic index (NlogN) and the NlogN 2012 ** is the same for compatible WhereLoops. */ 2013 assert( p->rSetup==0 || pTemplate->rSetup==0 2014 || p->rSetup==pTemplate->rSetup ); 2015 2016 /* whereLoopAddBtree() always generates and inserts the automatic index 2017 ** case first. Hence compatible candidate WhereLoops never have a larger 2018 ** rSetup. Call this SETUP-INVARIANT */ 2019 assert( p->rSetup>=pTemplate->rSetup ); 2020 2021 /* Any loop using an appliation-defined index (or PRIMARY KEY or 2022 ** UNIQUE constraint) with one or more == constraints is better 2023 ** than an automatic index. Unless it is a skip-scan. */ 2024 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 2025 && (pTemplate->nSkip)==0 2026 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 2027 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 2028 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 2029 ){ 2030 break; 2031 } 2032 2033 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 2034 ** discarded. WhereLoop p is better if: 2035 ** (1) p has no more dependencies than pTemplate, and 2036 ** (2) p has an equal or lower cost than pTemplate 2037 */ 2038 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 2039 && p->rSetup<=pTemplate->rSetup /* (2a) */ 2040 && p->rRun<=pTemplate->rRun /* (2b) */ 2041 && p->nOut<=pTemplate->nOut /* (2c) */ 2042 ){ 2043 return 0; /* Discard pTemplate */ 2044 } 2045 2046 /* If pTemplate is always better than p, then cause p to be overwritten 2047 ** with pTemplate. pTemplate is better than p if: 2048 ** (1) pTemplate has no more dependences than p, and 2049 ** (2) pTemplate has an equal or lower cost than p. 2050 */ 2051 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 2052 && p->rRun>=pTemplate->rRun /* (2a) */ 2053 && p->nOut>=pTemplate->nOut /* (2b) */ 2054 ){ 2055 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 2056 break; /* Cause p to be overwritten by pTemplate */ 2057 } 2058 } 2059 return ppPrev; 2060 } 2061 2062 /* 2063 ** Insert or replace a WhereLoop entry using the template supplied. 2064 ** 2065 ** An existing WhereLoop entry might be overwritten if the new template 2066 ** is better and has fewer dependencies. Or the template will be ignored 2067 ** and no insert will occur if an existing WhereLoop is faster and has 2068 ** fewer dependencies than the template. Otherwise a new WhereLoop is 2069 ** added based on the template. 2070 ** 2071 ** If pBuilder->pOrSet is not NULL then we care about only the 2072 ** prerequisites and rRun and nOut costs of the N best loops. That 2073 ** information is gathered in the pBuilder->pOrSet object. This special 2074 ** processing mode is used only for OR clause processing. 2075 ** 2076 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 2077 ** still might overwrite similar loops with the new template if the 2078 ** new template is better. Loops may be overwritten if the following 2079 ** conditions are met: 2080 ** 2081 ** (1) They have the same iTab. 2082 ** (2) They have the same iSortIdx. 2083 ** (3) The template has same or fewer dependencies than the current loop 2084 ** (4) The template has the same or lower cost than the current loop 2085 */ 2086 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 2087 WhereLoop **ppPrev, *p; 2088 WhereInfo *pWInfo = pBuilder->pWInfo; 2089 sqlite3 *db = pWInfo->pParse->db; 2090 int rc; 2091 2092 /* If pBuilder->pOrSet is defined, then only keep track of the costs 2093 ** and prereqs. 2094 */ 2095 if( pBuilder->pOrSet!=0 ){ 2096 if( pTemplate->nLTerm ){ 2097 #if WHERETRACE_ENABLED 2098 u16 n = pBuilder->pOrSet->n; 2099 int x = 2100 #endif 2101 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 2102 pTemplate->nOut); 2103 #if WHERETRACE_ENABLED /* 0x8 */ 2104 if( sqlite3WhereTrace & 0x8 ){ 2105 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 2106 whereLoopPrint(pTemplate, pBuilder->pWC); 2107 } 2108 #endif 2109 } 2110 return SQLITE_OK; 2111 } 2112 2113 /* Look for an existing WhereLoop to replace with pTemplate 2114 */ 2115 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 2116 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 2117 2118 if( ppPrev==0 ){ 2119 /* There already exists a WhereLoop on the list that is better 2120 ** than pTemplate, so just ignore pTemplate */ 2121 #if WHERETRACE_ENABLED /* 0x8 */ 2122 if( sqlite3WhereTrace & 0x8 ){ 2123 sqlite3DebugPrintf(" skip: "); 2124 whereLoopPrint(pTemplate, pBuilder->pWC); 2125 } 2126 #endif 2127 return SQLITE_OK; 2128 }else{ 2129 p = *ppPrev; 2130 } 2131 2132 /* If we reach this point it means that either p[] should be overwritten 2133 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 2134 ** WhereLoop and insert it. 2135 */ 2136 #if WHERETRACE_ENABLED /* 0x8 */ 2137 if( sqlite3WhereTrace & 0x8 ){ 2138 if( p!=0 ){ 2139 sqlite3DebugPrintf("replace: "); 2140 whereLoopPrint(p, pBuilder->pWC); 2141 sqlite3DebugPrintf(" with: "); 2142 }else{ 2143 sqlite3DebugPrintf(" add: "); 2144 } 2145 whereLoopPrint(pTemplate, pBuilder->pWC); 2146 } 2147 #endif 2148 if( p==0 ){ 2149 /* Allocate a new WhereLoop to add to the end of the list */ 2150 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); 2151 if( p==0 ) return SQLITE_NOMEM_BKPT; 2152 whereLoopInit(p); 2153 p->pNextLoop = 0; 2154 }else{ 2155 /* We will be overwriting WhereLoop p[]. But before we do, first 2156 ** go through the rest of the list and delete any other entries besides 2157 ** p[] that are also supplated by pTemplate */ 2158 WhereLoop **ppTail = &p->pNextLoop; 2159 WhereLoop *pToDel; 2160 while( *ppTail ){ 2161 ppTail = whereLoopFindLesser(ppTail, pTemplate); 2162 if( ppTail==0 ) break; 2163 pToDel = *ppTail; 2164 if( pToDel==0 ) break; 2165 *ppTail = pToDel->pNextLoop; 2166 #if WHERETRACE_ENABLED /* 0x8 */ 2167 if( sqlite3WhereTrace & 0x8 ){ 2168 sqlite3DebugPrintf(" delete: "); 2169 whereLoopPrint(pToDel, pBuilder->pWC); 2170 } 2171 #endif 2172 whereLoopDelete(db, pToDel); 2173 } 2174 } 2175 rc = whereLoopXfer(db, p, pTemplate); 2176 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2177 Index *pIndex = p->u.btree.pIndex; 2178 if( pIndex && pIndex->tnum==0 ){ 2179 p->u.btree.pIndex = 0; 2180 } 2181 } 2182 return rc; 2183 } 2184 2185 /* 2186 ** Adjust the WhereLoop.nOut value downward to account for terms of the 2187 ** WHERE clause that reference the loop but which are not used by an 2188 ** index. 2189 * 2190 ** For every WHERE clause term that is not used by the index 2191 ** and which has a truth probability assigned by one of the likelihood(), 2192 ** likely(), or unlikely() SQL functions, reduce the estimated number 2193 ** of output rows by the probability specified. 2194 ** 2195 ** TUNING: For every WHERE clause term that is not used by the index 2196 ** and which does not have an assigned truth probability, heuristics 2197 ** described below are used to try to estimate the truth probability. 2198 ** TODO --> Perhaps this is something that could be improved by better 2199 ** table statistics. 2200 ** 2201 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 2202 ** value corresponds to -1 in LogEst notation, so this means decrement 2203 ** the WhereLoop.nOut field for every such WHERE clause term. 2204 ** 2205 ** Heuristic 2: If there exists one or more WHERE clause terms of the 2206 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 2207 ** final output row estimate is no greater than 1/4 of the total number 2208 ** of rows in the table. In other words, assume that x==EXPR will filter 2209 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 2210 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 2211 ** on the "x" column and so in that case only cap the output row estimate 2212 ** at 1/2 instead of 1/4. 2213 */ 2214 static void whereLoopOutputAdjust( 2215 WhereClause *pWC, /* The WHERE clause */ 2216 WhereLoop *pLoop, /* The loop to adjust downward */ 2217 LogEst nRow /* Number of rows in the entire table */ 2218 ){ 2219 WhereTerm *pTerm, *pX; 2220 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 2221 int i, j, k; 2222 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 2223 2224 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2225 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ 2226 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; 2227 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 2228 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 2229 for(j=pLoop->nLTerm-1; j>=0; j--){ 2230 pX = pLoop->aLTerm[j]; 2231 if( pX==0 ) continue; 2232 if( pX==pTerm ) break; 2233 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 2234 } 2235 if( j<0 ){ 2236 if( pTerm->truthProb<=0 ){ 2237 /* If a truth probability is specified using the likelihood() hints, 2238 ** then use the probability provided by the application. */ 2239 pLoop->nOut += pTerm->truthProb; 2240 }else{ 2241 /* In the absence of explicit truth probabilities, use heuristics to 2242 ** guess a reasonable truth probability. */ 2243 pLoop->nOut--; 2244 if( pTerm->eOperator&(WO_EQ|WO_IS) ){ 2245 Expr *pRight = pTerm->pExpr->pRight; 2246 testcase( pTerm->pExpr->op==TK_IS ); 2247 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 2248 k = 10; 2249 }else{ 2250 k = 20; 2251 } 2252 if( iReduce<k ) iReduce = k; 2253 } 2254 } 2255 } 2256 } 2257 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce; 2258 } 2259 2260 /* 2261 ** Term pTerm is a vector range comparison operation. The first comparison 2262 ** in the vector can be optimized using column nEq of the index. This 2263 ** function returns the total number of vector elements that can be used 2264 ** as part of the range comparison. 2265 ** 2266 ** For example, if the query is: 2267 ** 2268 ** WHERE a = ? AND (b, c, d) > (?, ?, ?) 2269 ** 2270 ** and the index: 2271 ** 2272 ** CREATE INDEX ... ON (a, b, c, d, e) 2273 ** 2274 ** then this function would be invoked with nEq=1. The value returned in 2275 ** this case is 3. 2276 */ 2277 static int whereRangeVectorLen( 2278 Parse *pParse, /* Parsing context */ 2279 int iCur, /* Cursor open on pIdx */ 2280 Index *pIdx, /* The index to be used for a inequality constraint */ 2281 int nEq, /* Number of prior equality constraints on same index */ 2282 WhereTerm *pTerm /* The vector inequality constraint */ 2283 ){ 2284 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft); 2285 int i; 2286 2287 nCmp = MIN(nCmp, (pIdx->nColumn - nEq)); 2288 for(i=1; i<nCmp; i++){ 2289 /* Test if comparison i of pTerm is compatible with column (i+nEq) 2290 ** of the index. If not, exit the loop. */ 2291 char aff; /* Comparison affinity */ 2292 char idxaff = 0; /* Indexed columns affinity */ 2293 CollSeq *pColl; /* Comparison collation sequence */ 2294 Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr; 2295 Expr *pRhs = pTerm->pExpr->pRight; 2296 if( pRhs->flags & EP_xIsSelect ){ 2297 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr; 2298 }else{ 2299 pRhs = pRhs->x.pList->a[i].pExpr; 2300 } 2301 2302 /* Check that the LHS of the comparison is a column reference to 2303 ** the right column of the right source table. And that the sort 2304 ** order of the index column is the same as the sort order of the 2305 ** leftmost index column. */ 2306 if( pLhs->op!=TK_COLUMN 2307 || pLhs->iTable!=iCur 2308 || pLhs->iColumn!=pIdx->aiColumn[i+nEq] 2309 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq] 2310 ){ 2311 break; 2312 } 2313 2314 testcase( pLhs->iColumn==XN_ROWID ); 2315 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs)); 2316 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn); 2317 if( aff!=idxaff ) break; 2318 2319 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2320 if( pColl==0 ) break; 2321 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; 2322 } 2323 return i; 2324 } 2325 2326 /* 2327 ** Adjust the cost C by the costMult facter T. This only occurs if 2328 ** compiled with -DSQLITE_ENABLE_COSTMULT 2329 */ 2330 #ifdef SQLITE_ENABLE_COSTMULT 2331 # define ApplyCostMultiplier(C,T) C += T 2332 #else 2333 # define ApplyCostMultiplier(C,T) 2334 #endif 2335 2336 /* 2337 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 2338 ** index pIndex. Try to match one more. 2339 ** 2340 ** When this function is called, pBuilder->pNew->nOut contains the 2341 ** number of rows expected to be visited by filtering using the nEq 2342 ** terms only. If it is modified, this value is restored before this 2343 ** function returns. 2344 ** 2345 ** If pProbe->tnum==0, that means pIndex is a fake index used for the 2346 ** INTEGER PRIMARY KEY. 2347 */ 2348 static int whereLoopAddBtreeIndex( 2349 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 2350 struct SrcList_item *pSrc, /* FROM clause term being analyzed */ 2351 Index *pProbe, /* An index on pSrc */ 2352 LogEst nInMul /* log(Number of iterations due to IN) */ 2353 ){ 2354 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ 2355 Parse *pParse = pWInfo->pParse; /* Parsing context */ 2356 sqlite3 *db = pParse->db; /* Database connection malloc context */ 2357 WhereLoop *pNew; /* Template WhereLoop under construction */ 2358 WhereTerm *pTerm; /* A WhereTerm under consideration */ 2359 int opMask; /* Valid operators for constraints */ 2360 WhereScan scan; /* Iterator for WHERE terms */ 2361 Bitmask saved_prereq; /* Original value of pNew->prereq */ 2362 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 2363 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 2364 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */ 2365 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */ 2366 u16 saved_nSkip; /* Original value of pNew->nSkip */ 2367 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 2368 LogEst saved_nOut; /* Original value of pNew->nOut */ 2369 int rc = SQLITE_OK; /* Return code */ 2370 LogEst rSize; /* Number of rows in the table */ 2371 LogEst rLogSize; /* Logarithm of table size */ 2372 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 2373 2374 pNew = pBuilder->pNew; 2375 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 2376 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d\n", 2377 pProbe->pTable->zName,pProbe->zName, pNew->u.btree.nEq)); 2378 2379 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 2380 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 2381 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 2382 opMask = WO_LT|WO_LE; 2383 }else{ 2384 assert( pNew->u.btree.nBtm==0 ); 2385 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; 2386 } 2387 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 2388 2389 assert( pNew->u.btree.nEq<pProbe->nColumn ); 2390 2391 saved_nEq = pNew->u.btree.nEq; 2392 saved_nBtm = pNew->u.btree.nBtm; 2393 saved_nTop = pNew->u.btree.nTop; 2394 saved_nSkip = pNew->nSkip; 2395 saved_nLTerm = pNew->nLTerm; 2396 saved_wsFlags = pNew->wsFlags; 2397 saved_prereq = pNew->prereq; 2398 saved_nOut = pNew->nOut; 2399 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, 2400 opMask, pProbe); 2401 pNew->rSetup = 0; 2402 rSize = pProbe->aiRowLogEst[0]; 2403 rLogSize = estLog(rSize); 2404 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 2405 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 2406 LogEst rCostIdx; 2407 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 2408 int nIn = 0; 2409 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2410 int nRecValid = pBuilder->nRecValid; 2411 #endif 2412 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 2413 && indexColumnNotNull(pProbe, saved_nEq) 2414 ){ 2415 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 2416 } 2417 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2418 2419 /* Do not allow the upper bound of a LIKE optimization range constraint 2420 ** to mix with a lower range bound from some other source */ 2421 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 2422 2423 /* Do not allow constraints from the WHERE clause to be used by the 2424 ** right table of a LEFT JOIN. Only constraints in the ON clause are 2425 ** allowed */ 2426 if( (pSrc->fg.jointype & JT_LEFT)!=0 2427 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 2428 ){ 2429 continue; 2430 } 2431 2432 if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){ 2433 pBuilder->bldFlags |= SQLITE_BLDF_UNIQUE; 2434 }else{ 2435 pBuilder->bldFlags |= SQLITE_BLDF_INDEXED; 2436 } 2437 pNew->wsFlags = saved_wsFlags; 2438 pNew->u.btree.nEq = saved_nEq; 2439 pNew->u.btree.nBtm = saved_nBtm; 2440 pNew->u.btree.nTop = saved_nTop; 2441 pNew->nLTerm = saved_nLTerm; 2442 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2443 pNew->aLTerm[pNew->nLTerm++] = pTerm; 2444 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 2445 2446 assert( nInMul==0 2447 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 2448 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 2449 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 2450 ); 2451 2452 if( eOp & WO_IN ){ 2453 Expr *pExpr = pTerm->pExpr; 2454 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2455 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 2456 int i; 2457 nIn = 46; assert( 46==sqlite3LogEst(25) ); 2458 2459 /* The expression may actually be of the form (x, y) IN (SELECT...). 2460 ** In this case there is a separate term for each of (x) and (y). 2461 ** However, the nIn multiplier should only be applied once, not once 2462 ** for each such term. The following loop checks that pTerm is the 2463 ** first such term in use, and sets nIn back to 0 if it is not. */ 2464 for(i=0; i<pNew->nLTerm-1; i++){ 2465 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0; 2466 } 2467 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2468 /* "x IN (value, value, ...)" */ 2469 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 2470 assert( nIn>0 ); /* RHS always has 2 or more terms... The parser 2471 ** changes "x IN (?)" into "x=?". */ 2472 } 2473 if( pProbe->hasStat1 ){ 2474 LogEst M, logK, safetyMargin; 2475 /* Let: 2476 ** N = the total number of rows in the table 2477 ** K = the number of entries on the RHS of the IN operator 2478 ** M = the number of rows in the table that match terms to the 2479 ** to the left in the same index. If the IN operator is on 2480 ** the left-most index column, M==N. 2481 ** 2482 ** Given the definitions above, it is better to omit the IN operator 2483 ** from the index lookup and instead do a scan of the M elements, 2484 ** testing each scanned row against the IN operator separately, if: 2485 ** 2486 ** M*log(K) < K*log(N) 2487 ** 2488 ** Our estimates for M, K, and N might be inaccurate, so we build in 2489 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator 2490 ** with the index, as using an index has better worst-case behavior. 2491 ** If we do not have real sqlite_stat1 data, always prefer to use 2492 ** the index. 2493 */ 2494 M = pProbe->aiRowLogEst[saved_nEq]; 2495 logK = estLog(nIn); 2496 safetyMargin = 10; /* TUNING: extra weight for indexed IN */ 2497 if( M + logK + safetyMargin < nIn + rLogSize ){ 2498 WHERETRACE(0x40, 2499 ("Scan preferred over IN operator on column %d of \"%s\" (%d<%d)\n", 2500 saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize)); 2501 continue; 2502 }else{ 2503 WHERETRACE(0x40, 2504 ("IN operator preferred on column %d of \"%s\" (%d>=%d)\n", 2505 saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize)); 2506 } 2507 } 2508 pNew->wsFlags |= WHERE_COLUMN_IN; 2509 }else if( eOp & (WO_EQ|WO_IS) ){ 2510 int iCol = pProbe->aiColumn[saved_nEq]; 2511 pNew->wsFlags |= WHERE_COLUMN_EQ; 2512 assert( saved_nEq==pNew->u.btree.nEq ); 2513 if( iCol==XN_ROWID 2514 || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) 2515 ){ 2516 if( iCol==XN_ROWID || pProbe->uniqNotNull 2517 || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ) 2518 ){ 2519 pNew->wsFlags |= WHERE_ONEROW; 2520 }else{ 2521 pNew->wsFlags |= WHERE_UNQ_WANTED; 2522 } 2523 } 2524 }else if( eOp & WO_ISNULL ){ 2525 pNew->wsFlags |= WHERE_COLUMN_NULL; 2526 }else if( eOp & (WO_GT|WO_GE) ){ 2527 testcase( eOp & WO_GT ); 2528 testcase( eOp & WO_GE ); 2529 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 2530 pNew->u.btree.nBtm = whereRangeVectorLen( 2531 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2532 ); 2533 pBtm = pTerm; 2534 pTop = 0; 2535 if( pTerm->wtFlags & TERM_LIKEOPT ){ 2536 /* Range contraints that come from the LIKE optimization are 2537 ** always used in pairs. */ 2538 pTop = &pTerm[1]; 2539 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 2540 assert( pTop->wtFlags & TERM_LIKEOPT ); 2541 assert( pTop->eOperator==WO_LT ); 2542 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2543 pNew->aLTerm[pNew->nLTerm++] = pTop; 2544 pNew->wsFlags |= WHERE_TOP_LIMIT; 2545 pNew->u.btree.nTop = 1; 2546 } 2547 }else{ 2548 assert( eOp & (WO_LT|WO_LE) ); 2549 testcase( eOp & WO_LT ); 2550 testcase( eOp & WO_LE ); 2551 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 2552 pNew->u.btree.nTop = whereRangeVectorLen( 2553 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2554 ); 2555 pTop = pTerm; 2556 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 2557 pNew->aLTerm[pNew->nLTerm-2] : 0; 2558 } 2559 2560 /* At this point pNew->nOut is set to the number of rows expected to 2561 ** be visited by the index scan before considering term pTerm, or the 2562 ** values of nIn and nInMul. In other words, assuming that all 2563 ** "x IN(...)" terms are replaced with "x = ?". This block updates 2564 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 2565 assert( pNew->nOut==saved_nOut ); 2566 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2567 /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4 2568 ** data, using some other estimate. */ 2569 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 2570 }else{ 2571 int nEq = ++pNew->u.btree.nEq; 2572 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); 2573 2574 assert( pNew->nOut==saved_nOut ); 2575 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ 2576 assert( (eOp & WO_IN) || nIn==0 ); 2577 testcase( eOp & WO_IN ); 2578 pNew->nOut += pTerm->truthProb; 2579 pNew->nOut -= nIn; 2580 }else{ 2581 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2582 tRowcnt nOut = 0; 2583 if( nInMul==0 2584 && pProbe->nSample 2585 && pNew->u.btree.nEq<=pProbe->nSampleCol 2586 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) 2587 ){ 2588 Expr *pExpr = pTerm->pExpr; 2589 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ 2590 testcase( eOp & WO_EQ ); 2591 testcase( eOp & WO_IS ); 2592 testcase( eOp & WO_ISNULL ); 2593 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 2594 }else{ 2595 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 2596 } 2597 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 2598 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 2599 if( nOut ){ 2600 pNew->nOut = sqlite3LogEst(nOut); 2601 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 2602 pNew->nOut -= nIn; 2603 } 2604 } 2605 if( nOut==0 ) 2606 #endif 2607 { 2608 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 2609 if( eOp & WO_ISNULL ){ 2610 /* TUNING: If there is no likelihood() value, assume that a 2611 ** "col IS NULL" expression matches twice as many rows 2612 ** as (col=?). */ 2613 pNew->nOut += 10; 2614 } 2615 } 2616 } 2617 } 2618 2619 /* Set rCostIdx to the cost of visiting selected rows in index. Add 2620 ** it to pNew->rRun, which is currently set to the cost of the index 2621 ** seek only. Then, if this is a non-covering index, add the cost of 2622 ** visiting the rows in the main table. */ 2623 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 2624 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); 2625 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ 2626 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 2627 } 2628 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 2629 2630 nOutUnadjusted = pNew->nOut; 2631 pNew->rRun += nInMul + nIn; 2632 pNew->nOut += nInMul + nIn; 2633 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 2634 rc = whereLoopInsert(pBuilder, pNew); 2635 2636 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2637 pNew->nOut = saved_nOut; 2638 }else{ 2639 pNew->nOut = nOutUnadjusted; 2640 } 2641 2642 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 2643 && pNew->u.btree.nEq<pProbe->nColumn 2644 ){ 2645 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 2646 } 2647 pNew->nOut = saved_nOut; 2648 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2649 pBuilder->nRecValid = nRecValid; 2650 #endif 2651 } 2652 pNew->prereq = saved_prereq; 2653 pNew->u.btree.nEq = saved_nEq; 2654 pNew->u.btree.nBtm = saved_nBtm; 2655 pNew->u.btree.nTop = saved_nTop; 2656 pNew->nSkip = saved_nSkip; 2657 pNew->wsFlags = saved_wsFlags; 2658 pNew->nOut = saved_nOut; 2659 pNew->nLTerm = saved_nLTerm; 2660 2661 /* Consider using a skip-scan if there are no WHERE clause constraints 2662 ** available for the left-most terms of the index, and if the average 2663 ** number of repeats in the left-most terms is at least 18. 2664 ** 2665 ** The magic number 18 is selected on the basis that scanning 17 rows 2666 ** is almost always quicker than an index seek (even though if the index 2667 ** contains fewer than 2^17 rows we assume otherwise in other parts of 2668 ** the code). And, even if it is not, it should not be too much slower. 2669 ** On the other hand, the extra seeks could end up being significantly 2670 ** more expensive. */ 2671 assert( 42==sqlite3LogEst(18) ); 2672 if( saved_nEq==saved_nSkip 2673 && saved_nEq+1<pProbe->nKeyCol 2674 && pProbe->noSkipScan==0 2675 && OptimizationEnabled(db, SQLITE_SkipScan) 2676 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 2677 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 2678 ){ 2679 LogEst nIter; 2680 pNew->u.btree.nEq++; 2681 pNew->nSkip++; 2682 pNew->aLTerm[pNew->nLTerm++] = 0; 2683 pNew->wsFlags |= WHERE_SKIPSCAN; 2684 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 2685 pNew->nOut -= nIter; 2686 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 2687 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 2688 nIter += 5; 2689 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 2690 pNew->nOut = saved_nOut; 2691 pNew->u.btree.nEq = saved_nEq; 2692 pNew->nSkip = saved_nSkip; 2693 pNew->wsFlags = saved_wsFlags; 2694 } 2695 2696 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n", 2697 pProbe->pTable->zName, pProbe->zName, saved_nEq, rc)); 2698 return rc; 2699 } 2700 2701 /* 2702 ** Return True if it is possible that pIndex might be useful in 2703 ** implementing the ORDER BY clause in pBuilder. 2704 ** 2705 ** Return False if pBuilder does not contain an ORDER BY clause or 2706 ** if there is no way for pIndex to be useful in implementing that 2707 ** ORDER BY clause. 2708 */ 2709 static int indexMightHelpWithOrderBy( 2710 WhereLoopBuilder *pBuilder, 2711 Index *pIndex, 2712 int iCursor 2713 ){ 2714 ExprList *pOB; 2715 ExprList *aColExpr; 2716 int ii, jj; 2717 2718 if( pIndex->bUnordered ) return 0; 2719 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 2720 for(ii=0; ii<pOB->nExpr; ii++){ 2721 Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr); 2722 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ 2723 if( pExpr->iColumn<0 ) return 1; 2724 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2725 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 2726 } 2727 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ 2728 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2729 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; 2730 if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ 2731 return 1; 2732 } 2733 } 2734 } 2735 } 2736 return 0; 2737 } 2738 2739 /* Check to see if a partial index with pPartIndexWhere can be used 2740 ** in the current query. Return true if it can be and false if not. 2741 */ 2742 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){ 2743 int i; 2744 WhereTerm *pTerm; 2745 Parse *pParse = pWC->pWInfo->pParse; 2746 while( pWhere->op==TK_AND ){ 2747 if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0; 2748 pWhere = pWhere->pRight; 2749 } 2750 if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0; 2751 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 2752 Expr *pExpr = pTerm->pExpr; 2753 if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab) 2754 && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab) 2755 ){ 2756 return 1; 2757 } 2758 } 2759 return 0; 2760 } 2761 2762 /* 2763 ** Add all WhereLoop objects for a single table of the join where the table 2764 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be 2765 ** a b-tree table, not a virtual table. 2766 ** 2767 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 2768 ** are calculated as follows: 2769 ** 2770 ** For a full scan, assuming the table (or index) contains nRow rows: 2771 ** 2772 ** cost = nRow * 3.0 // full-table scan 2773 ** cost = nRow * K // scan of covering index 2774 ** cost = nRow * (K+3.0) // scan of non-covering index 2775 ** 2776 ** where K is a value between 1.1 and 3.0 set based on the relative 2777 ** estimated average size of the index and table records. 2778 ** 2779 ** For an index scan, where nVisit is the number of index rows visited 2780 ** by the scan, and nSeek is the number of seek operations required on 2781 ** the index b-tree: 2782 ** 2783 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 2784 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 2785 ** 2786 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 2787 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 2788 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 2789 ** 2790 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 2791 ** of uncertainty. For this reason, scoring is designed to pick plans that 2792 ** "do the least harm" if the estimates are inaccurate. For example, a 2793 ** log(nRow) factor is omitted from a non-covering index scan in order to 2794 ** bias the scoring in favor of using an index, since the worst-case 2795 ** performance of using an index is far better than the worst-case performance 2796 ** of a full table scan. 2797 */ 2798 static int whereLoopAddBtree( 2799 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 2800 Bitmask mPrereq /* Extra prerequesites for using this table */ 2801 ){ 2802 WhereInfo *pWInfo; /* WHERE analysis context */ 2803 Index *pProbe; /* An index we are evaluating */ 2804 Index sPk; /* A fake index object for the primary key */ 2805 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 2806 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 2807 SrcList *pTabList; /* The FROM clause */ 2808 struct SrcList_item *pSrc; /* The FROM clause btree term to add */ 2809 WhereLoop *pNew; /* Template WhereLoop object */ 2810 int rc = SQLITE_OK; /* Return code */ 2811 int iSortIdx = 1; /* Index number */ 2812 int b; /* A boolean value */ 2813 LogEst rSize; /* number of rows in the table */ 2814 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 2815 WhereClause *pWC; /* The parsed WHERE clause */ 2816 Table *pTab; /* Table being queried */ 2817 2818 pNew = pBuilder->pNew; 2819 pWInfo = pBuilder->pWInfo; 2820 pTabList = pWInfo->pTabList; 2821 pSrc = pTabList->a + pNew->iTab; 2822 pTab = pSrc->pTab; 2823 pWC = pBuilder->pWC; 2824 assert( !IsVirtual(pSrc->pTab) ); 2825 2826 if( pSrc->pIBIndex ){ 2827 /* An INDEXED BY clause specifies a particular index to use */ 2828 pProbe = pSrc->pIBIndex; 2829 }else if( !HasRowid(pTab) ){ 2830 pProbe = pTab->pIndex; 2831 }else{ 2832 /* There is no INDEXED BY clause. Create a fake Index object in local 2833 ** variable sPk to represent the rowid primary key index. Make this 2834 ** fake index the first in a chain of Index objects with all of the real 2835 ** indices to follow */ 2836 Index *pFirst; /* First of real indices on the table */ 2837 memset(&sPk, 0, sizeof(Index)); 2838 sPk.nKeyCol = 1; 2839 sPk.nColumn = 1; 2840 sPk.aiColumn = &aiColumnPk; 2841 sPk.aiRowLogEst = aiRowEstPk; 2842 sPk.onError = OE_Replace; 2843 sPk.pTable = pTab; 2844 sPk.szIdxRow = pTab->szTabRow; 2845 aiRowEstPk[0] = pTab->nRowLogEst; 2846 aiRowEstPk[1] = 0; 2847 pFirst = pSrc->pTab->pIndex; 2848 if( pSrc->fg.notIndexed==0 ){ 2849 /* The real indices of the table are only considered if the 2850 ** NOT INDEXED qualifier is omitted from the FROM clause */ 2851 sPk.pNext = pFirst; 2852 } 2853 pProbe = &sPk; 2854 } 2855 rSize = pTab->nRowLogEst; 2856 rLogSize = estLog(rSize); 2857 2858 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 2859 /* Automatic indexes */ 2860 if( !pBuilder->pOrSet /* Not part of an OR optimization */ 2861 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 2862 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 2863 && pSrc->pIBIndex==0 /* Has no INDEXED BY clause */ 2864 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ 2865 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ 2866 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ 2867 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ 2868 ){ 2869 /* Generate auto-index WhereLoops */ 2870 WhereTerm *pTerm; 2871 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 2872 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 2873 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2874 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 2875 pNew->u.btree.nEq = 1; 2876 pNew->nSkip = 0; 2877 pNew->u.btree.pIndex = 0; 2878 pNew->nLTerm = 1; 2879 pNew->aLTerm[0] = pTerm; 2880 /* TUNING: One-time cost for computing the automatic index is 2881 ** estimated to be X*N*log2(N) where N is the number of rows in 2882 ** the table being indexed and where X is 7 (LogEst=28) for normal 2883 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value 2884 ** of X is smaller for views and subqueries so that the query planner 2885 ** will be more aggressive about generating automatic indexes for 2886 ** those objects, since there is no opportunity to add schema 2887 ** indexes on subqueries and views. */ 2888 pNew->rSetup = rLogSize + rSize; 2889 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){ 2890 pNew->rSetup += 28; 2891 }else{ 2892 pNew->rSetup -= 10; 2893 } 2894 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 2895 if( pNew->rSetup<0 ) pNew->rSetup = 0; 2896 /* TUNING: Each index lookup yields 20 rows in the table. This 2897 ** is more than the usual guess of 10 rows, since we have no way 2898 ** of knowing how selective the index will ultimately be. It would 2899 ** not be unreasonable to make this value much larger. */ 2900 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 2901 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 2902 pNew->wsFlags = WHERE_AUTO_INDEX; 2903 pNew->prereq = mPrereq | pTerm->prereqRight; 2904 rc = whereLoopInsert(pBuilder, pNew); 2905 } 2906 } 2907 } 2908 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 2909 2910 /* Loop over all indices. If there was an INDEXED BY clause, then only 2911 ** consider index pProbe. */ 2912 for(; rc==SQLITE_OK && pProbe; 2913 pProbe=(pSrc->pIBIndex ? 0 : pProbe->pNext), iSortIdx++ 2914 ){ 2915 if( pProbe->pPartIdxWhere!=0 2916 && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){ 2917 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 2918 continue; /* Partial index inappropriate for this query */ 2919 } 2920 if( pProbe->bNoQuery ) continue; 2921 rSize = pProbe->aiRowLogEst[0]; 2922 pNew->u.btree.nEq = 0; 2923 pNew->u.btree.nBtm = 0; 2924 pNew->u.btree.nTop = 0; 2925 pNew->nSkip = 0; 2926 pNew->nLTerm = 0; 2927 pNew->iSortIdx = 0; 2928 pNew->rSetup = 0; 2929 pNew->prereq = mPrereq; 2930 pNew->nOut = rSize; 2931 pNew->u.btree.pIndex = pProbe; 2932 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 2933 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 2934 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 2935 if( pProbe->tnum<=0 ){ 2936 /* Integer primary key index */ 2937 pNew->wsFlags = WHERE_IPK; 2938 2939 /* Full table scan */ 2940 pNew->iSortIdx = b ? iSortIdx : 0; 2941 /* TUNING: Cost of full table scan is (N*3.0). */ 2942 pNew->rRun = rSize + 16; 2943 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 2944 whereLoopOutputAdjust(pWC, pNew, rSize); 2945 rc = whereLoopInsert(pBuilder, pNew); 2946 pNew->nOut = rSize; 2947 if( rc ) break; 2948 }else{ 2949 Bitmask m; 2950 if( pProbe->isCovering ){ 2951 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 2952 m = 0; 2953 }else{ 2954 m = pSrc->colUsed & pProbe->colNotIdxed; 2955 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; 2956 } 2957 2958 /* Full scan via index */ 2959 if( b 2960 || !HasRowid(pTab) 2961 || pProbe->pPartIdxWhere!=0 2962 || ( m==0 2963 && pProbe->bUnordered==0 2964 && (pProbe->szIdxRow<pTab->szTabRow) 2965 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 2966 && sqlite3GlobalConfig.bUseCis 2967 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 2968 ) 2969 ){ 2970 pNew->iSortIdx = b ? iSortIdx : 0; 2971 2972 /* The cost of visiting the index rows is N*K, where K is 2973 ** between 1.1 and 3.0, depending on the relative sizes of the 2974 ** index and table rows. */ 2975 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 2976 if( m!=0 ){ 2977 /* If this is a non-covering index scan, add in the cost of 2978 ** doing table lookups. The cost will be 3x the number of 2979 ** lookups. Take into account WHERE clause terms that can be 2980 ** satisfied using just the index, and that do not require a 2981 ** table lookup. */ 2982 LogEst nLookup = rSize + 16; /* Base cost: N*3 */ 2983 int ii; 2984 int iCur = pSrc->iCursor; 2985 WhereClause *pWC2 = &pWInfo->sWC; 2986 for(ii=0; ii<pWC2->nTerm; ii++){ 2987 WhereTerm *pTerm = &pWC2->a[ii]; 2988 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){ 2989 break; 2990 } 2991 /* pTerm can be evaluated using just the index. So reduce 2992 ** the expected number of table lookups accordingly */ 2993 if( pTerm->truthProb<=0 ){ 2994 nLookup += pTerm->truthProb; 2995 }else{ 2996 nLookup--; 2997 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19; 2998 } 2999 } 3000 3001 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup); 3002 } 3003 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3004 whereLoopOutputAdjust(pWC, pNew, rSize); 3005 rc = whereLoopInsert(pBuilder, pNew); 3006 pNew->nOut = rSize; 3007 if( rc ) break; 3008 } 3009 } 3010 3011 pBuilder->bldFlags = 0; 3012 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 3013 if( pBuilder->bldFlags==SQLITE_BLDF_INDEXED ){ 3014 /* If a non-unique index is used, or if a prefix of the key for 3015 ** unique index is used (making the index functionally non-unique) 3016 ** then the sqlite_stat1 data becomes important for scoring the 3017 ** plan */ 3018 pTab->tabFlags |= TF_StatsUsed; 3019 } 3020 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 3021 sqlite3Stat4ProbeFree(pBuilder->pRec); 3022 pBuilder->nRecValid = 0; 3023 pBuilder->pRec = 0; 3024 #endif 3025 } 3026 return rc; 3027 } 3028 3029 #ifndef SQLITE_OMIT_VIRTUALTABLE 3030 3031 /* 3032 ** Argument pIdxInfo is already populated with all constraints that may 3033 ** be used by the virtual table identified by pBuilder->pNew->iTab. This 3034 ** function marks a subset of those constraints usable, invokes the 3035 ** xBestIndex method and adds the returned plan to pBuilder. 3036 ** 3037 ** A constraint is marked usable if: 3038 ** 3039 ** * Argument mUsable indicates that its prerequisites are available, and 3040 ** 3041 ** * It is not one of the operators specified in the mExclude mask passed 3042 ** as the fourth argument (which in practice is either WO_IN or 0). 3043 ** 3044 ** Argument mPrereq is a mask of tables that must be scanned before the 3045 ** virtual table in question. These are added to the plans prerequisites 3046 ** before it is added to pBuilder. 3047 ** 3048 ** Output parameter *pbIn is set to true if the plan added to pBuilder 3049 ** uses one or more WO_IN terms, or false otherwise. 3050 */ 3051 static int whereLoopAddVirtualOne( 3052 WhereLoopBuilder *pBuilder, 3053 Bitmask mPrereq, /* Mask of tables that must be used. */ 3054 Bitmask mUsable, /* Mask of usable tables */ 3055 u16 mExclude, /* Exclude terms using these operators */ 3056 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ 3057 u16 mNoOmit, /* Do not omit these constraints */ 3058 int *pbIn /* OUT: True if plan uses an IN(...) op */ 3059 ){ 3060 WhereClause *pWC = pBuilder->pWC; 3061 struct sqlite3_index_constraint *pIdxCons; 3062 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; 3063 int i; 3064 int mxTerm; 3065 int rc = SQLITE_OK; 3066 WhereLoop *pNew = pBuilder->pNew; 3067 Parse *pParse = pBuilder->pWInfo->pParse; 3068 struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; 3069 int nConstraint = pIdxInfo->nConstraint; 3070 3071 assert( (mUsable & mPrereq)==mPrereq ); 3072 *pbIn = 0; 3073 pNew->prereq = mPrereq; 3074 3075 /* Set the usable flag on the subset of constraints identified by 3076 ** arguments mUsable and mExclude. */ 3077 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3078 for(i=0; i<nConstraint; i++, pIdxCons++){ 3079 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset]; 3080 pIdxCons->usable = 0; 3081 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight 3082 && (pTerm->eOperator & mExclude)==0 3083 ){ 3084 pIdxCons->usable = 1; 3085 } 3086 } 3087 3088 /* Initialize the output fields of the sqlite3_index_info structure */ 3089 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); 3090 assert( pIdxInfo->needToFreeIdxStr==0 ); 3091 pIdxInfo->idxStr = 0; 3092 pIdxInfo->idxNum = 0; 3093 pIdxInfo->orderByConsumed = 0; 3094 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 3095 pIdxInfo->estimatedRows = 25; 3096 pIdxInfo->idxFlags = 0; 3097 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; 3098 3099 /* Invoke the virtual table xBestIndex() method */ 3100 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); 3101 if( rc ) return rc; 3102 3103 mxTerm = -1; 3104 assert( pNew->nLSlot>=nConstraint ); 3105 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; 3106 pNew->u.vtab.omitMask = 0; 3107 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3108 for(i=0; i<nConstraint; i++, pIdxCons++){ 3109 int iTerm; 3110 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 3111 WhereTerm *pTerm; 3112 int j = pIdxCons->iTermOffset; 3113 if( iTerm>=nConstraint 3114 || j<0 3115 || j>=pWC->nTerm 3116 || pNew->aLTerm[iTerm]!=0 3117 || pIdxCons->usable==0 3118 ){ 3119 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3120 testcase( pIdxInfo->needToFreeIdxStr ); 3121 return SQLITE_ERROR; 3122 } 3123 testcase( iTerm==nConstraint-1 ); 3124 testcase( j==0 ); 3125 testcase( j==pWC->nTerm-1 ); 3126 pTerm = &pWC->a[j]; 3127 pNew->prereq |= pTerm->prereqRight; 3128 assert( iTerm<pNew->nLSlot ); 3129 pNew->aLTerm[iTerm] = pTerm; 3130 if( iTerm>mxTerm ) mxTerm = iTerm; 3131 testcase( iTerm==15 ); 3132 testcase( iTerm==16 ); 3133 if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm; 3134 if( (pTerm->eOperator & WO_IN)!=0 ){ 3135 /* A virtual table that is constrained by an IN clause may not 3136 ** consume the ORDER BY clause because (1) the order of IN terms 3137 ** is not necessarily related to the order of output terms and 3138 ** (2) Multiple outputs from a single IN value will not merge 3139 ** together. */ 3140 pIdxInfo->orderByConsumed = 0; 3141 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; 3142 *pbIn = 1; assert( (mExclude & WO_IN)==0 ); 3143 } 3144 } 3145 } 3146 pNew->u.vtab.omitMask &= ~mNoOmit; 3147 3148 pNew->nLTerm = mxTerm+1; 3149 for(i=0; i<=mxTerm; i++){ 3150 if( pNew->aLTerm[i]==0 ){ 3151 /* The non-zero argvIdx values must be contiguous. Raise an 3152 ** error if they are not */ 3153 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3154 testcase( pIdxInfo->needToFreeIdxStr ); 3155 return SQLITE_ERROR; 3156 } 3157 } 3158 assert( pNew->nLTerm<=pNew->nLSlot ); 3159 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 3160 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 3161 pIdxInfo->needToFreeIdxStr = 0; 3162 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 3163 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 3164 pIdxInfo->nOrderBy : 0); 3165 pNew->rSetup = 0; 3166 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 3167 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 3168 3169 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated 3170 ** that the scan will visit at most one row. Clear it otherwise. */ 3171 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ 3172 pNew->wsFlags |= WHERE_ONEROW; 3173 }else{ 3174 pNew->wsFlags &= ~WHERE_ONEROW; 3175 } 3176 rc = whereLoopInsert(pBuilder, pNew); 3177 if( pNew->u.vtab.needFree ){ 3178 sqlite3_free(pNew->u.vtab.idxStr); 3179 pNew->u.vtab.needFree = 0; 3180 } 3181 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", 3182 *pbIn, (sqlite3_uint64)mPrereq, 3183 (sqlite3_uint64)(pNew->prereq & ~mPrereq))); 3184 3185 return rc; 3186 } 3187 3188 /* 3189 ** If this function is invoked from within an xBestIndex() callback, it 3190 ** returns a pointer to a buffer containing the name of the collation 3191 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint 3192 ** array. Or, if iCons is out of range or there is no active xBestIndex 3193 ** call, return NULL. 3194 */ 3195 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){ 3196 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3197 const char *zRet = 0; 3198 if( iCons>=0 && iCons<pIdxInfo->nConstraint ){ 3199 CollSeq *pC = 0; 3200 int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset; 3201 Expr *pX = pHidden->pWC->a[iTerm].pExpr; 3202 if( pX->pLeft ){ 3203 pC = sqlite3BinaryCompareCollSeq(pHidden->pParse, pX->pLeft, pX->pRight); 3204 } 3205 zRet = (pC ? pC->zName : "BINARY"); 3206 } 3207 return zRet; 3208 } 3209 3210 /* 3211 ** Add all WhereLoop objects for a table of the join identified by 3212 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 3213 ** 3214 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and 3215 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause 3216 ** entries that occur before the virtual table in the FROM clause and are 3217 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the 3218 ** mUnusable mask contains all FROM clause entries that occur after the 3219 ** virtual table and are separated from it by at least one LEFT or 3220 ** CROSS JOIN. 3221 ** 3222 ** For example, if the query were: 3223 ** 3224 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; 3225 ** 3226 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). 3227 ** 3228 ** All the tables in mPrereq must be scanned before the current virtual 3229 ** table. So any terms for which all prerequisites are satisfied by 3230 ** mPrereq may be specified as "usable" in all calls to xBestIndex. 3231 ** Conversely, all tables in mUnusable must be scanned after the current 3232 ** virtual table, so any terms for which the prerequisites overlap with 3233 ** mUnusable should always be configured as "not-usable" for xBestIndex. 3234 */ 3235 static int whereLoopAddVirtual( 3236 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3237 Bitmask mPrereq, /* Tables that must be scanned before this one */ 3238 Bitmask mUnusable /* Tables that must be scanned after this one */ 3239 ){ 3240 int rc = SQLITE_OK; /* Return code */ 3241 WhereInfo *pWInfo; /* WHERE analysis context */ 3242 Parse *pParse; /* The parsing context */ 3243 WhereClause *pWC; /* The WHERE clause */ 3244 struct SrcList_item *pSrc; /* The FROM clause term to search */ 3245 sqlite3_index_info *p; /* Object to pass to xBestIndex() */ 3246 int nConstraint; /* Number of constraints in p */ 3247 int bIn; /* True if plan uses IN(...) operator */ 3248 WhereLoop *pNew; 3249 Bitmask mBest; /* Tables used by best possible plan */ 3250 u16 mNoOmit; 3251 3252 assert( (mPrereq & mUnusable)==0 ); 3253 pWInfo = pBuilder->pWInfo; 3254 pParse = pWInfo->pParse; 3255 pWC = pBuilder->pWC; 3256 pNew = pBuilder->pNew; 3257 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 3258 assert( IsVirtual(pSrc->pTab) ); 3259 p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy, 3260 &mNoOmit); 3261 if( p==0 ) return SQLITE_NOMEM_BKPT; 3262 pNew->rSetup = 0; 3263 pNew->wsFlags = WHERE_VIRTUALTABLE; 3264 pNew->nLTerm = 0; 3265 pNew->u.vtab.needFree = 0; 3266 nConstraint = p->nConstraint; 3267 if( whereLoopResize(pParse->db, pNew, nConstraint) ){ 3268 sqlite3DbFree(pParse->db, p); 3269 return SQLITE_NOMEM_BKPT; 3270 } 3271 3272 /* First call xBestIndex() with all constraints usable. */ 3273 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName)); 3274 WHERETRACE(0x40, (" VirtualOne: all usable\n")); 3275 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn); 3276 3277 /* If the call to xBestIndex() with all terms enabled produced a plan 3278 ** that does not require any source tables (IOW: a plan with mBest==0), 3279 ** then there is no point in making any further calls to xBestIndex() 3280 ** since they will all return the same result (if the xBestIndex() 3281 ** implementation is sane). */ 3282 if( rc==SQLITE_OK && (mBest = (pNew->prereq & ~mPrereq))!=0 ){ 3283 int seenZero = 0; /* True if a plan with no prereqs seen */ 3284 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ 3285 Bitmask mPrev = 0; 3286 Bitmask mBestNoIn = 0; 3287 3288 /* If the plan produced by the earlier call uses an IN(...) term, call 3289 ** xBestIndex again, this time with IN(...) terms disabled. */ 3290 if( bIn ){ 3291 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n")); 3292 rc = whereLoopAddVirtualOne( 3293 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn); 3294 assert( bIn==0 ); 3295 mBestNoIn = pNew->prereq & ~mPrereq; 3296 if( mBestNoIn==0 ){ 3297 seenZero = 1; 3298 seenZeroNoIN = 1; 3299 } 3300 } 3301 3302 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) 3303 ** in the set of terms that apply to the current virtual table. */ 3304 while( rc==SQLITE_OK ){ 3305 int i; 3306 Bitmask mNext = ALLBITS; 3307 assert( mNext>0 ); 3308 for(i=0; i<nConstraint; i++){ 3309 Bitmask mThis = ( 3310 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq 3311 ); 3312 if( mThis>mPrev && mThis<mNext ) mNext = mThis; 3313 } 3314 mPrev = mNext; 3315 if( mNext==ALLBITS ) break; 3316 if( mNext==mBest || mNext==mBestNoIn ) continue; 3317 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n", 3318 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext)); 3319 rc = whereLoopAddVirtualOne( 3320 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn); 3321 if( pNew->prereq==mPrereq ){ 3322 seenZero = 1; 3323 if( bIn==0 ) seenZeroNoIN = 1; 3324 } 3325 } 3326 3327 /* If the calls to xBestIndex() in the above loop did not find a plan 3328 ** that requires no source tables at all (i.e. one guaranteed to be 3329 ** usable), make a call here with all source tables disabled */ 3330 if( rc==SQLITE_OK && seenZero==0 ){ 3331 WHERETRACE(0x40, (" VirtualOne: all disabled\n")); 3332 rc = whereLoopAddVirtualOne( 3333 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn); 3334 if( bIn==0 ) seenZeroNoIN = 1; 3335 } 3336 3337 /* If the calls to xBestIndex() have so far failed to find a plan 3338 ** that requires no source tables at all and does not use an IN(...) 3339 ** operator, make a final call to obtain one here. */ 3340 if( rc==SQLITE_OK && seenZeroNoIN==0 ){ 3341 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n")); 3342 rc = whereLoopAddVirtualOne( 3343 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn); 3344 } 3345 } 3346 3347 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr); 3348 sqlite3DbFreeNN(pParse->db, p); 3349 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc)); 3350 return rc; 3351 } 3352 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3353 3354 /* 3355 ** Add WhereLoop entries to handle OR terms. This works for either 3356 ** btrees or virtual tables. 3357 */ 3358 static int whereLoopAddOr( 3359 WhereLoopBuilder *pBuilder, 3360 Bitmask mPrereq, 3361 Bitmask mUnusable 3362 ){ 3363 WhereInfo *pWInfo = pBuilder->pWInfo; 3364 WhereClause *pWC; 3365 WhereLoop *pNew; 3366 WhereTerm *pTerm, *pWCEnd; 3367 int rc = SQLITE_OK; 3368 int iCur; 3369 WhereClause tempWC; 3370 WhereLoopBuilder sSubBuild; 3371 WhereOrSet sSum, sCur; 3372 struct SrcList_item *pItem; 3373 3374 pWC = pBuilder->pWC; 3375 pWCEnd = pWC->a + pWC->nTerm; 3376 pNew = pBuilder->pNew; 3377 memset(&sSum, 0, sizeof(sSum)); 3378 pItem = pWInfo->pTabList->a + pNew->iTab; 3379 iCur = pItem->iCursor; 3380 3381 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 3382 if( (pTerm->eOperator & WO_OR)!=0 3383 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 3384 ){ 3385 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 3386 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 3387 WhereTerm *pOrTerm; 3388 int once = 1; 3389 int i, j; 3390 3391 sSubBuild = *pBuilder; 3392 sSubBuild.pOrderBy = 0; 3393 sSubBuild.pOrSet = &sCur; 3394 3395 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); 3396 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 3397 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 3398 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 3399 }else if( pOrTerm->leftCursor==iCur ){ 3400 tempWC.pWInfo = pWC->pWInfo; 3401 tempWC.pOuter = pWC; 3402 tempWC.op = TK_AND; 3403 tempWC.nTerm = 1; 3404 tempWC.a = pOrTerm; 3405 sSubBuild.pWC = &tempWC; 3406 }else{ 3407 continue; 3408 } 3409 sCur.n = 0; 3410 #ifdef WHERETRACE_ENABLED 3411 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 3412 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 3413 if( sqlite3WhereTrace & 0x400 ){ 3414 sqlite3WhereClausePrint(sSubBuild.pWC); 3415 } 3416 #endif 3417 #ifndef SQLITE_OMIT_VIRTUALTABLE 3418 if( IsVirtual(pItem->pTab) ){ 3419 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); 3420 }else 3421 #endif 3422 { 3423 rc = whereLoopAddBtree(&sSubBuild, mPrereq); 3424 } 3425 if( rc==SQLITE_OK ){ 3426 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); 3427 } 3428 assert( rc==SQLITE_OK || sCur.n==0 ); 3429 if( sCur.n==0 ){ 3430 sSum.n = 0; 3431 break; 3432 }else if( once ){ 3433 whereOrMove(&sSum, &sCur); 3434 once = 0; 3435 }else{ 3436 WhereOrSet sPrev; 3437 whereOrMove(&sPrev, &sSum); 3438 sSum.n = 0; 3439 for(i=0; i<sPrev.n; i++){ 3440 for(j=0; j<sCur.n; j++){ 3441 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 3442 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 3443 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 3444 } 3445 } 3446 } 3447 } 3448 pNew->nLTerm = 1; 3449 pNew->aLTerm[0] = pTerm; 3450 pNew->wsFlags = WHERE_MULTI_OR; 3451 pNew->rSetup = 0; 3452 pNew->iSortIdx = 0; 3453 memset(&pNew->u, 0, sizeof(pNew->u)); 3454 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 3455 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 3456 ** of all sub-scans required by the OR-scan. However, due to rounding 3457 ** errors, it may be that the cost of the OR-scan is equal to its 3458 ** most expensive sub-scan. Add the smallest possible penalty 3459 ** (equivalent to multiplying the cost by 1.07) to ensure that 3460 ** this does not happen. Otherwise, for WHERE clauses such as the 3461 ** following where there is an index on "y": 3462 ** 3463 ** WHERE likelihood(x=?, 0.99) OR y=? 3464 ** 3465 ** the planner may elect to "OR" together a full-table scan and an 3466 ** index lookup. And other similarly odd results. */ 3467 pNew->rRun = sSum.a[i].rRun + 1; 3468 pNew->nOut = sSum.a[i].nOut; 3469 pNew->prereq = sSum.a[i].prereq; 3470 rc = whereLoopInsert(pBuilder, pNew); 3471 } 3472 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); 3473 } 3474 } 3475 return rc; 3476 } 3477 3478 /* 3479 ** Add all WhereLoop objects for all tables 3480 */ 3481 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 3482 WhereInfo *pWInfo = pBuilder->pWInfo; 3483 Bitmask mPrereq = 0; 3484 Bitmask mPrior = 0; 3485 int iTab; 3486 SrcList *pTabList = pWInfo->pTabList; 3487 struct SrcList_item *pItem; 3488 struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel]; 3489 sqlite3 *db = pWInfo->pParse->db; 3490 int rc = SQLITE_OK; 3491 WhereLoop *pNew; 3492 u8 priorJointype = 0; 3493 3494 /* Loop over the tables in the join, from left to right */ 3495 pNew = pBuilder->pNew; 3496 whereLoopInit(pNew); 3497 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ 3498 Bitmask mUnusable = 0; 3499 pNew->iTab = iTab; 3500 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); 3501 if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){ 3502 /* This condition is true when pItem is the FROM clause term on the 3503 ** right-hand-side of a LEFT or CROSS JOIN. */ 3504 mPrereq = mPrior; 3505 } 3506 priorJointype = pItem->fg.jointype; 3507 #ifndef SQLITE_OMIT_VIRTUALTABLE 3508 if( IsVirtual(pItem->pTab) ){ 3509 struct SrcList_item *p; 3510 for(p=&pItem[1]; p<pEnd; p++){ 3511 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){ 3512 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); 3513 } 3514 } 3515 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); 3516 }else 3517 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3518 { 3519 rc = whereLoopAddBtree(pBuilder, mPrereq); 3520 } 3521 if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){ 3522 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); 3523 } 3524 mPrior |= pNew->maskSelf; 3525 if( rc || db->mallocFailed ) break; 3526 } 3527 3528 whereLoopClear(db, pNew); 3529 return rc; 3530 } 3531 3532 /* 3533 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th 3534 ** parameters) to see if it outputs rows in the requested ORDER BY 3535 ** (or GROUP BY) without requiring a separate sort operation. Return N: 3536 ** 3537 ** N>0: N terms of the ORDER BY clause are satisfied 3538 ** N==0: No terms of the ORDER BY clause are satisfied 3539 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 3540 ** 3541 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 3542 ** strict. With GROUP BY and DISTINCT the only requirement is that 3543 ** equivalent rows appear immediately adjacent to one another. GROUP BY 3544 ** and DISTINCT do not require rows to appear in any particular order as long 3545 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 3546 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 3547 ** pOrderBy terms must be matched in strict left-to-right order. 3548 */ 3549 static i8 wherePathSatisfiesOrderBy( 3550 WhereInfo *pWInfo, /* The WHERE clause */ 3551 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 3552 WherePath *pPath, /* The WherePath to check */ 3553 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */ 3554 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 3555 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 3556 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 3557 ){ 3558 u8 revSet; /* True if rev is known */ 3559 u8 rev; /* Composite sort order */ 3560 u8 revIdx; /* Index sort order */ 3561 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 3562 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 3563 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 3564 u16 eqOpMask; /* Allowed equality operators */ 3565 u16 nKeyCol; /* Number of key columns in pIndex */ 3566 u16 nColumn; /* Total number of ordered columns in the index */ 3567 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 3568 int iLoop; /* Index of WhereLoop in pPath being processed */ 3569 int i, j; /* Loop counters */ 3570 int iCur; /* Cursor number for current WhereLoop */ 3571 int iColumn; /* A column number within table iCur */ 3572 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 3573 WhereTerm *pTerm; /* A single term of the WHERE clause */ 3574 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 3575 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 3576 Index *pIndex; /* The index associated with pLoop */ 3577 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 3578 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 3579 Bitmask obDone; /* Mask of all ORDER BY terms */ 3580 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 3581 Bitmask ready; /* Mask of inner loops */ 3582 3583 /* 3584 ** We say the WhereLoop is "one-row" if it generates no more than one 3585 ** row of output. A WhereLoop is one-row if all of the following are true: 3586 ** (a) All index columns match with WHERE_COLUMN_EQ. 3587 ** (b) The index is unique 3588 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 3589 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 3590 ** 3591 ** We say the WhereLoop is "order-distinct" if the set of columns from 3592 ** that WhereLoop that are in the ORDER BY clause are different for every 3593 ** row of the WhereLoop. Every one-row WhereLoop is automatically 3594 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 3595 ** is not order-distinct. To be order-distinct is not quite the same as being 3596 ** UNIQUE since a UNIQUE column or index can have multiple rows that 3597 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 3598 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 3599 ** 3600 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 3601 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 3602 ** automatically order-distinct. 3603 */ 3604 3605 assert( pOrderBy!=0 ); 3606 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 3607 3608 nOrderBy = pOrderBy->nExpr; 3609 testcase( nOrderBy==BMS-1 ); 3610 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 3611 isOrderDistinct = 1; 3612 obDone = MASKBIT(nOrderBy)-1; 3613 orderDistinctMask = 0; 3614 ready = 0; 3615 eqOpMask = WO_EQ | WO_IS | WO_ISNULL; 3616 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN; 3617 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 3618 if( iLoop>0 ) ready |= pLoop->maskSelf; 3619 if( iLoop<nLoop ){ 3620 pLoop = pPath->aLoop[iLoop]; 3621 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue; 3622 }else{ 3623 pLoop = pLast; 3624 } 3625 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 3626 if( pLoop->u.vtab.isOrdered ) obSat = obDone; 3627 break; 3628 }else{ 3629 pLoop->u.btree.nIdxCol = 0; 3630 } 3631 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 3632 3633 /* Mark off any ORDER BY term X that is a column in the table of 3634 ** the current loop for which there is term in the WHERE 3635 ** clause of the form X IS NULL or X=? that reference only outer 3636 ** loops. 3637 */ 3638 for(i=0; i<nOrderBy; i++){ 3639 if( MASKBIT(i) & obSat ) continue; 3640 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); 3641 if( pOBExpr->op!=TK_COLUMN ) continue; 3642 if( pOBExpr->iTable!=iCur ) continue; 3643 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 3644 ~ready, eqOpMask, 0); 3645 if( pTerm==0 ) continue; 3646 if( pTerm->eOperator==WO_IN ){ 3647 /* IN terms are only valid for sorting in the ORDER BY LIMIT 3648 ** optimization, and then only if they are actually used 3649 ** by the query plan */ 3650 assert( wctrlFlags & WHERE_ORDERBY_LIMIT ); 3651 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){} 3652 if( j>=pLoop->nLTerm ) continue; 3653 } 3654 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ 3655 if( sqlite3ExprCollSeqMatch(pWInfo->pParse, 3656 pOrderBy->a[i].pExpr, pTerm->pExpr)==0 ){ 3657 continue; 3658 } 3659 testcase( pTerm->pExpr->op==TK_IS ); 3660 } 3661 obSat |= MASKBIT(i); 3662 } 3663 3664 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 3665 if( pLoop->wsFlags & WHERE_IPK ){ 3666 pIndex = 0; 3667 nKeyCol = 0; 3668 nColumn = 1; 3669 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 3670 return 0; 3671 }else{ 3672 nKeyCol = pIndex->nKeyCol; 3673 nColumn = pIndex->nColumn; 3674 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 3675 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID 3676 || !HasRowid(pIndex->pTable)); 3677 isOrderDistinct = IsUniqueIndex(pIndex); 3678 } 3679 3680 /* Loop through all columns of the index and deal with the ones 3681 ** that are not constrained by == or IN. 3682 */ 3683 rev = revSet = 0; 3684 distinctColumns = 0; 3685 for(j=0; j<nColumn; j++){ 3686 u8 bOnce = 1; /* True to run the ORDER BY search loop */ 3687 3688 assert( j>=pLoop->u.btree.nEq 3689 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip) 3690 ); 3691 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){ 3692 u16 eOp = pLoop->aLTerm[j]->eOperator; 3693 3694 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when 3695 ** doing WHERE_ORDERBY_LIMIT processing). 3696 ** 3697 ** If the current term is a column of an ((?,?) IN (SELECT...)) 3698 ** expression for which the SELECT returns more than one column, 3699 ** check that it is the only column used by this loop. Otherwise, 3700 ** if it is one of two or more, none of the columns can be 3701 ** considered to match an ORDER BY term. */ 3702 if( (eOp & eqOpMask)!=0 ){ 3703 if( eOp & WO_ISNULL ){ 3704 testcase( isOrderDistinct ); 3705 isOrderDistinct = 0; 3706 } 3707 continue; 3708 }else if( ALWAYS(eOp & WO_IN) ){ 3709 /* ALWAYS() justification: eOp is an equality operator due to the 3710 ** j<pLoop->u.btree.nEq constraint above. Any equality other 3711 ** than WO_IN is captured by the previous "if". So this one 3712 ** always has to be WO_IN. */ 3713 Expr *pX = pLoop->aLTerm[j]->pExpr; 3714 for(i=j+1; i<pLoop->u.btree.nEq; i++){ 3715 if( pLoop->aLTerm[i]->pExpr==pX ){ 3716 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) ); 3717 bOnce = 0; 3718 break; 3719 } 3720 } 3721 } 3722 } 3723 3724 /* Get the column number in the table (iColumn) and sort order 3725 ** (revIdx) for the j-th column of the index. 3726 */ 3727 if( pIndex ){ 3728 iColumn = pIndex->aiColumn[j]; 3729 revIdx = pIndex->aSortOrder[j]; 3730 if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID; 3731 }else{ 3732 iColumn = XN_ROWID; 3733 revIdx = 0; 3734 } 3735 3736 /* An unconstrained column that might be NULL means that this 3737 ** WhereLoop is not well-ordered 3738 */ 3739 if( isOrderDistinct 3740 && iColumn>=0 3741 && j>=pLoop->u.btree.nEq 3742 && pIndex->pTable->aCol[iColumn].notNull==0 3743 ){ 3744 isOrderDistinct = 0; 3745 } 3746 3747 /* Find the ORDER BY term that corresponds to the j-th column 3748 ** of the index and mark that ORDER BY term off 3749 */ 3750 isMatch = 0; 3751 for(i=0; bOnce && i<nOrderBy; i++){ 3752 if( MASKBIT(i) & obSat ) continue; 3753 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); 3754 testcase( wctrlFlags & WHERE_GROUPBY ); 3755 testcase( wctrlFlags & WHERE_DISTINCTBY ); 3756 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 3757 if( iColumn>=XN_ROWID ){ 3758 if( pOBExpr->op!=TK_COLUMN ) continue; 3759 if( pOBExpr->iTable!=iCur ) continue; 3760 if( pOBExpr->iColumn!=iColumn ) continue; 3761 }else{ 3762 Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr; 3763 if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){ 3764 continue; 3765 } 3766 } 3767 if( iColumn!=XN_ROWID ){ 3768 pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 3769 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 3770 } 3771 pLoop->u.btree.nIdxCol = j+1; 3772 isMatch = 1; 3773 break; 3774 } 3775 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 3776 /* Make sure the sort order is compatible in an ORDER BY clause. 3777 ** Sort order is irrelevant for a GROUP BY clause. */ 3778 if( revSet ){ 3779 if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0; 3780 }else{ 3781 rev = revIdx ^ pOrderBy->a[i].sortOrder; 3782 if( rev ) *pRevMask |= MASKBIT(iLoop); 3783 revSet = 1; 3784 } 3785 } 3786 if( isMatch ){ 3787 if( iColumn==XN_ROWID ){ 3788 testcase( distinctColumns==0 ); 3789 distinctColumns = 1; 3790 } 3791 obSat |= MASKBIT(i); 3792 }else{ 3793 /* No match found */ 3794 if( j==0 || j<nKeyCol ){ 3795 testcase( isOrderDistinct!=0 ); 3796 isOrderDistinct = 0; 3797 } 3798 break; 3799 } 3800 } /* end Loop over all index columns */ 3801 if( distinctColumns ){ 3802 testcase( isOrderDistinct==0 ); 3803 isOrderDistinct = 1; 3804 } 3805 } /* end-if not one-row */ 3806 3807 /* Mark off any other ORDER BY terms that reference pLoop */ 3808 if( isOrderDistinct ){ 3809 orderDistinctMask |= pLoop->maskSelf; 3810 for(i=0; i<nOrderBy; i++){ 3811 Expr *p; 3812 Bitmask mTerm; 3813 if( MASKBIT(i) & obSat ) continue; 3814 p = pOrderBy->a[i].pExpr; 3815 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); 3816 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; 3817 if( (mTerm&~orderDistinctMask)==0 ){ 3818 obSat |= MASKBIT(i); 3819 } 3820 } 3821 } 3822 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 3823 if( obSat==obDone ) return (i8)nOrderBy; 3824 if( !isOrderDistinct ){ 3825 for(i=nOrderBy-1; i>0; i--){ 3826 Bitmask m = MASKBIT(i) - 1; 3827 if( (obSat&m)==m ) return i; 3828 } 3829 return 0; 3830 } 3831 return -1; 3832 } 3833 3834 3835 /* 3836 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 3837 ** the planner assumes that the specified pOrderBy list is actually a GROUP 3838 ** BY clause - and so any order that groups rows as required satisfies the 3839 ** request. 3840 ** 3841 ** Normally, in this case it is not possible for the caller to determine 3842 ** whether or not the rows are really being delivered in sorted order, or 3843 ** just in some other order that provides the required grouping. However, 3844 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 3845 ** this function may be called on the returned WhereInfo object. It returns 3846 ** true if the rows really will be sorted in the specified order, or false 3847 ** otherwise. 3848 ** 3849 ** For example, assuming: 3850 ** 3851 ** CREATE INDEX i1 ON t1(x, Y); 3852 ** 3853 ** then 3854 ** 3855 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 3856 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 3857 */ 3858 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 3859 assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); 3860 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 3861 return pWInfo->sorted; 3862 } 3863 3864 #ifdef WHERETRACE_ENABLED 3865 /* For debugging use only: */ 3866 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 3867 static char zName[65]; 3868 int i; 3869 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 3870 if( pLast ) zName[i++] = pLast->cId; 3871 zName[i] = 0; 3872 return zName; 3873 } 3874 #endif 3875 3876 /* 3877 ** Return the cost of sorting nRow rows, assuming that the keys have 3878 ** nOrderby columns and that the first nSorted columns are already in 3879 ** order. 3880 */ 3881 static LogEst whereSortingCost( 3882 WhereInfo *pWInfo, 3883 LogEst nRow, 3884 int nOrderBy, 3885 int nSorted 3886 ){ 3887 /* TUNING: Estimated cost of a full external sort, where N is 3888 ** the number of rows to sort is: 3889 ** 3890 ** cost = (3.0 * N * log(N)). 3891 ** 3892 ** Or, if the order-by clause has X terms but only the last Y 3893 ** terms are out of order, then block-sorting will reduce the 3894 ** sorting cost to: 3895 ** 3896 ** cost = (3.0 * N * log(N)) * (Y/X) 3897 ** 3898 ** The (Y/X) term is implemented using stack variable rScale 3899 ** below. */ 3900 LogEst rScale, rSortCost; 3901 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); 3902 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 3903 rSortCost = nRow + rScale + 16; 3904 3905 /* Multiple by log(M) where M is the number of output rows. 3906 ** Use the LIMIT for M if it is smaller */ 3907 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){ 3908 nRow = pWInfo->iLimit; 3909 } 3910 rSortCost += estLog(nRow); 3911 return rSortCost; 3912 } 3913 3914 /* 3915 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 3916 ** attempts to find the lowest cost path that visits each WhereLoop 3917 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 3918 ** 3919 ** Assume that the total number of output rows that will need to be sorted 3920 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 3921 ** costs if nRowEst==0. 3922 ** 3923 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 3924 ** error occurs. 3925 */ 3926 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 3927 int mxChoice; /* Maximum number of simultaneous paths tracked */ 3928 int nLoop; /* Number of terms in the join */ 3929 Parse *pParse; /* Parsing context */ 3930 sqlite3 *db; /* The database connection */ 3931 int iLoop; /* Loop counter over the terms of the join */ 3932 int ii, jj; /* Loop counters */ 3933 int mxI = 0; /* Index of next entry to replace */ 3934 int nOrderBy; /* Number of ORDER BY clause terms */ 3935 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 3936 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 3937 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 3938 WherePath *aFrom; /* All nFrom paths at the previous level */ 3939 WherePath *aTo; /* The nTo best paths at the current level */ 3940 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 3941 WherePath *pTo; /* An element of aTo[] that we are working on */ 3942 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 3943 WhereLoop **pX; /* Used to divy up the pSpace memory */ 3944 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 3945 char *pSpace; /* Temporary memory used by this routine */ 3946 int nSpace; /* Bytes of space allocated at pSpace */ 3947 3948 pParse = pWInfo->pParse; 3949 db = pParse->db; 3950 nLoop = pWInfo->nLevel; 3951 /* TUNING: For simple queries, only the best path is tracked. 3952 ** For 2-way joins, the 5 best paths are followed. 3953 ** For joins of 3 or more tables, track the 10 best paths */ 3954 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 3955 assert( nLoop<=pWInfo->pTabList->nSrc ); 3956 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); 3957 3958 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 3959 ** case the purpose of this call is to estimate the number of rows returned 3960 ** by the overall query. Once this estimate has been obtained, the caller 3961 ** will invoke this function a second time, passing the estimate as the 3962 ** nRowEst parameter. */ 3963 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 3964 nOrderBy = 0; 3965 }else{ 3966 nOrderBy = pWInfo->pOrderBy->nExpr; 3967 } 3968 3969 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 3970 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 3971 nSpace += sizeof(LogEst) * nOrderBy; 3972 pSpace = sqlite3DbMallocRawNN(db, nSpace); 3973 if( pSpace==0 ) return SQLITE_NOMEM_BKPT; 3974 aTo = (WherePath*)pSpace; 3975 aFrom = aTo+mxChoice; 3976 memset(aFrom, 0, sizeof(aFrom[0])); 3977 pX = (WhereLoop**)(aFrom+mxChoice); 3978 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 3979 pFrom->aLoop = pX; 3980 } 3981 if( nOrderBy ){ 3982 /* If there is an ORDER BY clause and it is not being ignored, set up 3983 ** space for the aSortCost[] array. Each element of the aSortCost array 3984 ** is either zero - meaning it has not yet been initialized - or the 3985 ** cost of sorting nRowEst rows of data where the first X terms of 3986 ** the ORDER BY clause are already in order, where X is the array 3987 ** index. */ 3988 aSortCost = (LogEst*)pX; 3989 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 3990 } 3991 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 3992 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 3993 3994 /* Seed the search with a single WherePath containing zero WhereLoops. 3995 ** 3996 ** TUNING: Do not let the number of iterations go above 28. If the cost 3997 ** of computing an automatic index is not paid back within the first 28 3998 ** rows, then do not use the automatic index. */ 3999 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); 4000 nFrom = 1; 4001 assert( aFrom[0].isOrdered==0 ); 4002 if( nOrderBy ){ 4003 /* If nLoop is zero, then there are no FROM terms in the query. Since 4004 ** in this case the query may return a maximum of one row, the results 4005 ** are already in the requested order. Set isOrdered to nOrderBy to 4006 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 4007 ** -1, indicating that the result set may or may not be ordered, 4008 ** depending on the loops added to the current plan. */ 4009 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 4010 } 4011 4012 /* Compute successively longer WherePaths using the previous generation 4013 ** of WherePaths as the basis for the next. Keep track of the mxChoice 4014 ** best paths at each generation */ 4015 for(iLoop=0; iLoop<nLoop; iLoop++){ 4016 nTo = 0; 4017 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 4018 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 4019 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 4020 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 4021 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 4022 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ 4023 Bitmask maskNew; /* Mask of src visited by (..) */ 4024 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ 4025 4026 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 4027 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 4028 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){ 4029 /* Do not use an automatic index if the this loop is expected 4030 ** to run less than 1.25 times. It is tempting to also exclude 4031 ** automatic index usage on an outer loop, but sometimes an automatic 4032 ** index is useful in the outer loop of a correlated subquery. */ 4033 assert( 10==sqlite3LogEst(2) ); 4034 continue; 4035 } 4036 4037 /* At this point, pWLoop is a candidate to be the next loop. 4038 ** Compute its cost */ 4039 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 4040 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 4041 nOut = pFrom->nRow + pWLoop->nOut; 4042 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 4043 if( isOrdered<0 ){ 4044 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 4045 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 4046 iLoop, pWLoop, &revMask); 4047 }else{ 4048 revMask = pFrom->revLoop; 4049 } 4050 if( isOrdered>=0 && isOrdered<nOrderBy ){ 4051 if( aSortCost[isOrdered]==0 ){ 4052 aSortCost[isOrdered] = whereSortingCost( 4053 pWInfo, nRowEst, nOrderBy, isOrdered 4054 ); 4055 } 4056 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]); 4057 4058 WHERETRACE(0x002, 4059 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 4060 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 4061 rUnsorted, rCost)); 4062 }else{ 4063 rCost = rUnsorted; 4064 rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */ 4065 } 4066 4067 /* Check to see if pWLoop should be added to the set of 4068 ** mxChoice best-so-far paths. 4069 ** 4070 ** First look for an existing path among best-so-far paths 4071 ** that covers the same set of loops and has the same isOrdered 4072 ** setting as the current path candidate. 4073 ** 4074 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 4075 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 4076 ** of legal values for isOrdered, -1..64. 4077 */ 4078 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 4079 if( pTo->maskLoop==maskNew 4080 && ((pTo->isOrdered^isOrdered)&0x80)==0 4081 ){ 4082 testcase( jj==nTo-1 ); 4083 break; 4084 } 4085 } 4086 if( jj>=nTo ){ 4087 /* None of the existing best-so-far paths match the candidate. */ 4088 if( nTo>=mxChoice 4089 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 4090 ){ 4091 /* The current candidate is no better than any of the mxChoice 4092 ** paths currently in the best-so-far buffer. So discard 4093 ** this candidate as not viable. */ 4094 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4095 if( sqlite3WhereTrace&0x4 ){ 4096 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n", 4097 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4098 isOrdered>=0 ? isOrdered+'0' : '?'); 4099 } 4100 #endif 4101 continue; 4102 } 4103 /* If we reach this points it means that the new candidate path 4104 ** needs to be added to the set of best-so-far paths. */ 4105 if( nTo<mxChoice ){ 4106 /* Increase the size of the aTo set by one */ 4107 jj = nTo++; 4108 }else{ 4109 /* New path replaces the prior worst to keep count below mxChoice */ 4110 jj = mxI; 4111 } 4112 pTo = &aTo[jj]; 4113 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4114 if( sqlite3WhereTrace&0x4 ){ 4115 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n", 4116 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4117 isOrdered>=0 ? isOrdered+'0' : '?'); 4118 } 4119 #endif 4120 }else{ 4121 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 4122 ** same set of loops and has the same isOrdered setting as the 4123 ** candidate path. Check to see if the candidate should replace 4124 ** pTo or if the candidate should be skipped. 4125 ** 4126 ** The conditional is an expanded vector comparison equivalent to: 4127 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted) 4128 */ 4129 if( pTo->rCost<rCost 4130 || (pTo->rCost==rCost 4131 && (pTo->nRow<nOut 4132 || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted) 4133 ) 4134 ) 4135 ){ 4136 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4137 if( sqlite3WhereTrace&0x4 ){ 4138 sqlite3DebugPrintf( 4139 "Skip %s cost=%-3d,%3d,%3d order=%c", 4140 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4141 isOrdered>=0 ? isOrdered+'0' : '?'); 4142 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n", 4143 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4144 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4145 } 4146 #endif 4147 /* Discard the candidate path from further consideration */ 4148 testcase( pTo->rCost==rCost ); 4149 continue; 4150 } 4151 testcase( pTo->rCost==rCost+1 ); 4152 /* Control reaches here if the candidate path is better than the 4153 ** pTo path. Replace pTo with the candidate. */ 4154 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4155 if( sqlite3WhereTrace&0x4 ){ 4156 sqlite3DebugPrintf( 4157 "Update %s cost=%-3d,%3d,%3d order=%c", 4158 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4159 isOrdered>=0 ? isOrdered+'0' : '?'); 4160 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n", 4161 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4162 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4163 } 4164 #endif 4165 } 4166 /* pWLoop is a winner. Add it to the set of best so far */ 4167 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 4168 pTo->revLoop = revMask; 4169 pTo->nRow = nOut; 4170 pTo->rCost = rCost; 4171 pTo->rUnsorted = rUnsorted; 4172 pTo->isOrdered = isOrdered; 4173 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 4174 pTo->aLoop[iLoop] = pWLoop; 4175 if( nTo>=mxChoice ){ 4176 mxI = 0; 4177 mxCost = aTo[0].rCost; 4178 mxUnsorted = aTo[0].nRow; 4179 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 4180 if( pTo->rCost>mxCost 4181 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 4182 ){ 4183 mxCost = pTo->rCost; 4184 mxUnsorted = pTo->rUnsorted; 4185 mxI = jj; 4186 } 4187 } 4188 } 4189 } 4190 } 4191 4192 #ifdef WHERETRACE_ENABLED /* >=2 */ 4193 if( sqlite3WhereTrace & 0x02 ){ 4194 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 4195 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 4196 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 4197 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4198 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 4199 if( pTo->isOrdered>0 ){ 4200 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 4201 }else{ 4202 sqlite3DebugPrintf("\n"); 4203 } 4204 } 4205 } 4206 #endif 4207 4208 /* Swap the roles of aFrom and aTo for the next generation */ 4209 pFrom = aTo; 4210 aTo = aFrom; 4211 aFrom = pFrom; 4212 nFrom = nTo; 4213 } 4214 4215 if( nFrom==0 ){ 4216 sqlite3ErrorMsg(pParse, "no query solution"); 4217 sqlite3DbFreeNN(db, pSpace); 4218 return SQLITE_ERROR; 4219 } 4220 4221 /* Find the lowest cost path. pFrom will be left pointing to that path */ 4222 pFrom = aFrom; 4223 for(ii=1; ii<nFrom; ii++){ 4224 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 4225 } 4226 assert( pWInfo->nLevel==nLoop ); 4227 /* Load the lowest cost path into pWInfo */ 4228 for(iLoop=0; iLoop<nLoop; iLoop++){ 4229 WhereLevel *pLevel = pWInfo->a + iLoop; 4230 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 4231 pLevel->iFrom = pWLoop->iTab; 4232 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 4233 } 4234 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 4235 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 4236 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 4237 && nRowEst 4238 ){ 4239 Bitmask notUsed; 4240 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, 4241 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 4242 if( rc==pWInfo->pResultSet->nExpr ){ 4243 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4244 } 4245 } 4246 if( pWInfo->pOrderBy ){ 4247 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 4248 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 4249 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4250 } 4251 }else{ 4252 pWInfo->nOBSat = pFrom->isOrdered; 4253 pWInfo->revMask = pFrom->revLoop; 4254 if( pWInfo->nOBSat<=0 ){ 4255 pWInfo->nOBSat = 0; 4256 if( nLoop>0 ){ 4257 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags; 4258 if( (wsFlags & WHERE_ONEROW)==0 4259 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN) 4260 ){ 4261 Bitmask m = 0; 4262 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 4263 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m); 4264 testcase( wsFlags & WHERE_IPK ); 4265 testcase( wsFlags & WHERE_COLUMN_IN ); 4266 if( rc==pWInfo->pOrderBy->nExpr ){ 4267 pWInfo->bOrderedInnerLoop = 1; 4268 pWInfo->revMask = m; 4269 } 4270 } 4271 } 4272 } 4273 } 4274 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 4275 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 4276 ){ 4277 Bitmask revMask = 0; 4278 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 4279 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 4280 ); 4281 assert( pWInfo->sorted==0 ); 4282 if( nOrder==pWInfo->pOrderBy->nExpr ){ 4283 pWInfo->sorted = 1; 4284 pWInfo->revMask = revMask; 4285 } 4286 } 4287 } 4288 4289 4290 pWInfo->nRowOut = pFrom->nRow; 4291 4292 /* Free temporary memory and return success */ 4293 sqlite3DbFreeNN(db, pSpace); 4294 return SQLITE_OK; 4295 } 4296 4297 /* 4298 ** Most queries use only a single table (they are not joins) and have 4299 ** simple == constraints against indexed fields. This routine attempts 4300 ** to plan those simple cases using much less ceremony than the 4301 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 4302 ** times for the common case. 4303 ** 4304 ** Return non-zero on success, if this query can be handled by this 4305 ** no-frills query planner. Return zero if this query needs the 4306 ** general-purpose query planner. 4307 */ 4308 static int whereShortCut(WhereLoopBuilder *pBuilder){ 4309 WhereInfo *pWInfo; 4310 struct SrcList_item *pItem; 4311 WhereClause *pWC; 4312 WhereTerm *pTerm; 4313 WhereLoop *pLoop; 4314 int iCur; 4315 int j; 4316 Table *pTab; 4317 Index *pIdx; 4318 4319 pWInfo = pBuilder->pWInfo; 4320 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0; 4321 assert( pWInfo->pTabList->nSrc>=1 ); 4322 pItem = pWInfo->pTabList->a; 4323 pTab = pItem->pTab; 4324 if( IsVirtual(pTab) ) return 0; 4325 if( pItem->fg.isIndexedBy ) return 0; 4326 iCur = pItem->iCursor; 4327 pWC = &pWInfo->sWC; 4328 pLoop = pBuilder->pNew; 4329 pLoop->wsFlags = 0; 4330 pLoop->nSkip = 0; 4331 pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0); 4332 if( pTerm ){ 4333 testcase( pTerm->eOperator & WO_IS ); 4334 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 4335 pLoop->aLTerm[0] = pTerm; 4336 pLoop->nLTerm = 1; 4337 pLoop->u.btree.nEq = 1; 4338 /* TUNING: Cost of a rowid lookup is 10 */ 4339 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 4340 }else{ 4341 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4342 int opMask; 4343 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 4344 if( !IsUniqueIndex(pIdx) 4345 || pIdx->pPartIdxWhere!=0 4346 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 4347 ) continue; 4348 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; 4349 for(j=0; j<pIdx->nKeyCol; j++){ 4350 pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx); 4351 if( pTerm==0 ) break; 4352 testcase( pTerm->eOperator & WO_IS ); 4353 pLoop->aLTerm[j] = pTerm; 4354 } 4355 if( j!=pIdx->nKeyCol ) continue; 4356 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 4357 if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){ 4358 pLoop->wsFlags |= WHERE_IDX_ONLY; 4359 } 4360 pLoop->nLTerm = j; 4361 pLoop->u.btree.nEq = j; 4362 pLoop->u.btree.pIndex = pIdx; 4363 /* TUNING: Cost of a unique index lookup is 15 */ 4364 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 4365 break; 4366 } 4367 } 4368 if( pLoop->wsFlags ){ 4369 pLoop->nOut = (LogEst)1; 4370 pWInfo->a[0].pWLoop = pLoop; 4371 assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] ); 4372 pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */ 4373 pWInfo->a[0].iTabCur = iCur; 4374 pWInfo->nRowOut = 1; 4375 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 4376 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 4377 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4378 } 4379 #ifdef SQLITE_DEBUG 4380 pLoop->cId = '0'; 4381 #endif 4382 return 1; 4383 } 4384 return 0; 4385 } 4386 4387 /* 4388 ** Helper function for exprIsDeterministic(). 4389 */ 4390 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){ 4391 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){ 4392 pWalker->eCode = 0; 4393 return WRC_Abort; 4394 } 4395 return WRC_Continue; 4396 } 4397 4398 /* 4399 ** Return true if the expression contains no non-deterministic SQL 4400 ** functions. Do not consider non-deterministic SQL functions that are 4401 ** part of sub-select statements. 4402 */ 4403 static int exprIsDeterministic(Expr *p){ 4404 Walker w; 4405 memset(&w, 0, sizeof(w)); 4406 w.eCode = 1; 4407 w.xExprCallback = exprNodeIsDeterministic; 4408 w.xSelectCallback = sqlite3SelectWalkFail; 4409 sqlite3WalkExpr(&w, p); 4410 return w.eCode; 4411 } 4412 4413 /* 4414 ** Generate the beginning of the loop used for WHERE clause processing. 4415 ** The return value is a pointer to an opaque structure that contains 4416 ** information needed to terminate the loop. Later, the calling routine 4417 ** should invoke sqlite3WhereEnd() with the return value of this function 4418 ** in order to complete the WHERE clause processing. 4419 ** 4420 ** If an error occurs, this routine returns NULL. 4421 ** 4422 ** The basic idea is to do a nested loop, one loop for each table in 4423 ** the FROM clause of a select. (INSERT and UPDATE statements are the 4424 ** same as a SELECT with only a single table in the FROM clause.) For 4425 ** example, if the SQL is this: 4426 ** 4427 ** SELECT * FROM t1, t2, t3 WHERE ...; 4428 ** 4429 ** Then the code generated is conceptually like the following: 4430 ** 4431 ** foreach row1 in t1 do \ Code generated 4432 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 4433 ** foreach row3 in t3 do / 4434 ** ... 4435 ** end \ Code generated 4436 ** end |-- by sqlite3WhereEnd() 4437 ** end / 4438 ** 4439 ** Note that the loops might not be nested in the order in which they 4440 ** appear in the FROM clause if a different order is better able to make 4441 ** use of indices. Note also that when the IN operator appears in 4442 ** the WHERE clause, it might result in additional nested loops for 4443 ** scanning through all values on the right-hand side of the IN. 4444 ** 4445 ** There are Btree cursors associated with each table. t1 uses cursor 4446 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 4447 ** And so forth. This routine generates code to open those VDBE cursors 4448 ** and sqlite3WhereEnd() generates the code to close them. 4449 ** 4450 ** The code that sqlite3WhereBegin() generates leaves the cursors named 4451 ** in pTabList pointing at their appropriate entries. The [...] code 4452 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 4453 ** data from the various tables of the loop. 4454 ** 4455 ** If the WHERE clause is empty, the foreach loops must each scan their 4456 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 4457 ** the tables have indices and there are terms in the WHERE clause that 4458 ** refer to those indices, a complete table scan can be avoided and the 4459 ** code will run much faster. Most of the work of this routine is checking 4460 ** to see if there are indices that can be used to speed up the loop. 4461 ** 4462 ** Terms of the WHERE clause are also used to limit which rows actually 4463 ** make it to the "..." in the middle of the loop. After each "foreach", 4464 ** terms of the WHERE clause that use only terms in that loop and outer 4465 ** loops are evaluated and if false a jump is made around all subsequent 4466 ** inner loops (or around the "..." if the test occurs within the inner- 4467 ** most loop) 4468 ** 4469 ** OUTER JOINS 4470 ** 4471 ** An outer join of tables t1 and t2 is conceptally coded as follows: 4472 ** 4473 ** foreach row1 in t1 do 4474 ** flag = 0 4475 ** foreach row2 in t2 do 4476 ** start: 4477 ** ... 4478 ** flag = 1 4479 ** end 4480 ** if flag==0 then 4481 ** move the row2 cursor to a null row 4482 ** goto start 4483 ** fi 4484 ** end 4485 ** 4486 ** ORDER BY CLAUSE PROCESSING 4487 ** 4488 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 4489 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 4490 ** if there is one. If there is no ORDER BY clause or if this routine 4491 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 4492 ** 4493 ** The iIdxCur parameter is the cursor number of an index. If 4494 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index 4495 ** to use for OR clause processing. The WHERE clause should use this 4496 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 4497 ** the first cursor in an array of cursors for all indices. iIdxCur should 4498 ** be used to compute the appropriate cursor depending on which index is 4499 ** used. 4500 */ 4501 WhereInfo *sqlite3WhereBegin( 4502 Parse *pParse, /* The parser context */ 4503 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 4504 Expr *pWhere, /* The WHERE clause */ 4505 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 4506 ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */ 4507 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */ 4508 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number 4509 ** If WHERE_USE_LIMIT, then the limit amount */ 4510 ){ 4511 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 4512 int nTabList; /* Number of elements in pTabList */ 4513 WhereInfo *pWInfo; /* Will become the return value of this function */ 4514 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 4515 Bitmask notReady; /* Cursors that are not yet positioned */ 4516 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 4517 WhereMaskSet *pMaskSet; /* The expression mask set */ 4518 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 4519 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 4520 int ii; /* Loop counter */ 4521 sqlite3 *db; /* Database connection */ 4522 int rc; /* Return code */ 4523 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ 4524 4525 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( 4526 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 4527 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4528 )); 4529 4530 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */ 4531 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4532 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); 4533 4534 /* Variable initialization */ 4535 db = pParse->db; 4536 memset(&sWLB, 0, sizeof(sWLB)); 4537 4538 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 4539 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 4540 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; 4541 sWLB.pOrderBy = pOrderBy; 4542 4543 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 4544 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 4545 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 4546 wctrlFlags &= ~WHERE_WANT_DISTINCT; 4547 } 4548 4549 /* The number of tables in the FROM clause is limited by the number of 4550 ** bits in a Bitmask 4551 */ 4552 testcase( pTabList->nSrc==BMS ); 4553 if( pTabList->nSrc>BMS ){ 4554 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 4555 return 0; 4556 } 4557 4558 /* This function normally generates a nested loop for all tables in 4559 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should 4560 ** only generate code for the first table in pTabList and assume that 4561 ** any cursors associated with subsequent tables are uninitialized. 4562 */ 4563 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc; 4564 4565 /* Allocate and initialize the WhereInfo structure that will become the 4566 ** return value. A single allocation is used to store the WhereInfo 4567 ** struct, the contents of WhereInfo.a[], the WhereClause structure 4568 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 4569 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 4570 ** some architectures. Hence the ROUND8() below. 4571 */ 4572 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 4573 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop)); 4574 if( db->mallocFailed ){ 4575 sqlite3DbFree(db, pWInfo); 4576 pWInfo = 0; 4577 goto whereBeginError; 4578 } 4579 pWInfo->pParse = pParse; 4580 pWInfo->pTabList = pTabList; 4581 pWInfo->pOrderBy = pOrderBy; 4582 pWInfo->pWhere = pWhere; 4583 pWInfo->pResultSet = pResultSet; 4584 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 4585 pWInfo->nLevel = nTabList; 4586 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v); 4587 pWInfo->wctrlFlags = wctrlFlags; 4588 pWInfo->iLimit = iAuxArg; 4589 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 4590 memset(&pWInfo->nOBSat, 0, 4591 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat)); 4592 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel)); 4593 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ 4594 pMaskSet = &pWInfo->sMaskSet; 4595 sWLB.pWInfo = pWInfo; 4596 sWLB.pWC = &pWInfo->sWC; 4597 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 4598 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 4599 whereLoopInit(sWLB.pNew); 4600 #ifdef SQLITE_DEBUG 4601 sWLB.pNew->cId = '*'; 4602 #endif 4603 4604 /* Split the WHERE clause into separate subexpressions where each 4605 ** subexpression is separated by an AND operator. 4606 */ 4607 initMaskSet(pMaskSet); 4608 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); 4609 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); 4610 4611 /* Special case: No FROM clause 4612 */ 4613 if( nTabList==0 ){ 4614 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 4615 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4616 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4617 } 4618 ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW")); 4619 }else{ 4620 /* Assign a bit from the bitmask to every term in the FROM clause. 4621 ** 4622 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. 4623 ** 4624 ** The rule of the previous sentence ensures thta if X is the bitmask for 4625 ** a table T, then X-1 is the bitmask for all other tables to the left of T. 4626 ** Knowing the bitmask for all tables to the left of a left join is 4627 ** important. Ticket #3015. 4628 ** 4629 ** Note that bitmasks are created for all pTabList->nSrc tables in 4630 ** pTabList, not just the first nTabList tables. nTabList is normally 4631 ** equal to pTabList->nSrc but might be shortened to 1 if the 4632 ** WHERE_OR_SUBCLAUSE flag is set. 4633 */ 4634 ii = 0; 4635 do{ 4636 createMask(pMaskSet, pTabList->a[ii].iCursor); 4637 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); 4638 }while( (++ii)<pTabList->nSrc ); 4639 #ifdef SQLITE_DEBUG 4640 { 4641 Bitmask mx = 0; 4642 for(ii=0; ii<pTabList->nSrc; ii++){ 4643 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); 4644 assert( m>=mx ); 4645 mx = m; 4646 } 4647 } 4648 #endif 4649 } 4650 4651 /* Analyze all of the subexpressions. */ 4652 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); 4653 if( db->mallocFailed ) goto whereBeginError; 4654 4655 /* Special case: WHERE terms that do not refer to any tables in the join 4656 ** (constant expressions). Evaluate each such term, and jump over all the 4657 ** generated code if the result is not true. 4658 ** 4659 ** Do not do this if the expression contains non-deterministic functions 4660 ** that are not within a sub-select. This is not strictly required, but 4661 ** preserves SQLite's legacy behaviour in the following two cases: 4662 ** 4663 ** FROM ... WHERE random()>0; -- eval random() once per row 4664 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall 4665 */ 4666 for(ii=0; ii<sWLB.pWC->nTerm; ii++){ 4667 WhereTerm *pT = &sWLB.pWC->a[ii]; 4668 if( pT->wtFlags & TERM_VIRTUAL ) continue; 4669 if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){ 4670 sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL); 4671 pT->wtFlags |= TERM_CODED; 4672 } 4673 } 4674 4675 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4676 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ 4677 /* The DISTINCT marking is pointless. Ignore it. */ 4678 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4679 }else if( pOrderBy==0 ){ 4680 /* Try to ORDER BY the result set to make distinct processing easier */ 4681 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 4682 pWInfo->pOrderBy = pResultSet; 4683 } 4684 } 4685 4686 /* Construct the WhereLoop objects */ 4687 #if defined(WHERETRACE_ENABLED) 4688 if( sqlite3WhereTrace & 0xffff ){ 4689 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); 4690 if( wctrlFlags & WHERE_USE_LIMIT ){ 4691 sqlite3DebugPrintf(", limit: %d", iAuxArg); 4692 } 4693 sqlite3DebugPrintf(")\n"); 4694 } 4695 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 4696 sqlite3WhereClausePrint(sWLB.pWC); 4697 } 4698 #endif 4699 4700 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 4701 rc = whereLoopAddAll(&sWLB); 4702 if( rc ) goto whereBeginError; 4703 4704 #ifdef WHERETRACE_ENABLED 4705 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ 4706 WhereLoop *p; 4707 int i; 4708 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 4709 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 4710 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 4711 p->cId = zLabel[i%(sizeof(zLabel)-1)]; 4712 whereLoopPrint(p, sWLB.pWC); 4713 } 4714 } 4715 #endif 4716 4717 wherePathSolver(pWInfo, 0); 4718 if( db->mallocFailed ) goto whereBeginError; 4719 if( pWInfo->pOrderBy ){ 4720 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 4721 if( db->mallocFailed ) goto whereBeginError; 4722 } 4723 } 4724 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 4725 pWInfo->revMask = ALLBITS; 4726 } 4727 if( pParse->nErr || NEVER(db->mallocFailed) ){ 4728 goto whereBeginError; 4729 } 4730 #ifdef WHERETRACE_ENABLED 4731 if( sqlite3WhereTrace ){ 4732 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 4733 if( pWInfo->nOBSat>0 ){ 4734 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 4735 } 4736 switch( pWInfo->eDistinct ){ 4737 case WHERE_DISTINCT_UNIQUE: { 4738 sqlite3DebugPrintf(" DISTINCT=unique"); 4739 break; 4740 } 4741 case WHERE_DISTINCT_ORDERED: { 4742 sqlite3DebugPrintf(" DISTINCT=ordered"); 4743 break; 4744 } 4745 case WHERE_DISTINCT_UNORDERED: { 4746 sqlite3DebugPrintf(" DISTINCT=unordered"); 4747 break; 4748 } 4749 } 4750 sqlite3DebugPrintf("\n"); 4751 for(ii=0; ii<pWInfo->nLevel; ii++){ 4752 whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 4753 } 4754 } 4755 #endif 4756 4757 /* Attempt to omit tables from the join that do not affect the result. 4758 ** For a table to not affect the result, the following must be true: 4759 ** 4760 ** 1) The query must not be an aggregate. 4761 ** 2) The table must be the RHS of a LEFT JOIN. 4762 ** 3) Either the query must be DISTINCT, or else the ON or USING clause 4763 ** must contain a constraint that limits the scan of the table to 4764 ** at most a single row. 4765 ** 4) The table must not be referenced by any part of the query apart 4766 ** from its own USING or ON clause. 4767 ** 4768 ** For example, given: 4769 ** 4770 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1); 4771 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2); 4772 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3); 4773 ** 4774 ** then table t2 can be omitted from the following: 4775 ** 4776 ** SELECT v1, v3 FROM t1 4777 ** LEFT JOIN t2 USING (t1.ipk=t2.ipk) 4778 ** LEFT JOIN t3 USING (t1.ipk=t3.ipk) 4779 ** 4780 ** or from: 4781 ** 4782 ** SELECT DISTINCT v1, v3 FROM t1 4783 ** LEFT JOIN t2 4784 ** LEFT JOIN t3 USING (t1.ipk=t3.ipk) 4785 */ 4786 notReady = ~(Bitmask)0; 4787 if( pWInfo->nLevel>=2 4788 && pResultSet!=0 /* guarantees condition (1) above */ 4789 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) 4790 ){ 4791 int i; 4792 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet); 4793 if( sWLB.pOrderBy ){ 4794 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy); 4795 } 4796 for(i=pWInfo->nLevel-1; i>=1; i--){ 4797 WhereTerm *pTerm, *pEnd; 4798 struct SrcList_item *pItem; 4799 pLoop = pWInfo->a[i].pWLoop; 4800 pItem = &pWInfo->pTabList->a[pLoop->iTab]; 4801 if( (pItem->fg.jointype & JT_LEFT)==0 ) continue; 4802 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 4803 && (pLoop->wsFlags & WHERE_ONEROW)==0 4804 ){ 4805 continue; 4806 } 4807 if( (tabUsed & pLoop->maskSelf)!=0 ) continue; 4808 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; 4809 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 4810 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 4811 if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 4812 || pTerm->pExpr->iRightJoinTable!=pItem->iCursor 4813 ){ 4814 break; 4815 } 4816 } 4817 } 4818 if( pTerm<pEnd ) continue; 4819 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); 4820 notReady &= ~pLoop->maskSelf; 4821 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 4822 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 4823 pTerm->wtFlags |= TERM_CODED; 4824 } 4825 } 4826 if( i!=pWInfo->nLevel-1 ){ 4827 int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel); 4828 memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte); 4829 } 4830 pWInfo->nLevel--; 4831 nTabList--; 4832 } 4833 } 4834 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); 4835 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 4836 4837 /* If the caller is an UPDATE or DELETE statement that is requesting 4838 ** to use a one-pass algorithm, determine if this is appropriate. 4839 ** 4840 ** A one-pass approach can be used if the caller has requested one 4841 ** and either (a) the scan visits at most one row or (b) each 4842 ** of the following are true: 4843 ** 4844 ** * the caller has indicated that a one-pass approach can be used 4845 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and 4846 ** * the table is not a virtual table, and 4847 ** * either the scan does not use the OR optimization or the caller 4848 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified 4849 ** for DELETE). 4850 ** 4851 ** The last qualification is because an UPDATE statement uses 4852 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can 4853 ** use a one-pass approach, and this is not set accurately for scans 4854 ** that use the OR optimization. 4855 */ 4856 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 4857 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ 4858 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; 4859 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; 4860 if( bOnerow || ( 4861 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW) 4862 && 0==(wsFlags & WHERE_VIRTUALTABLE) 4863 && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK)) 4864 )){ 4865 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; 4866 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ 4867 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ 4868 bFordelete = OPFLAG_FORDELETE; 4869 } 4870 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); 4871 } 4872 } 4873 } 4874 4875 /* Open all tables in the pTabList and any indices selected for 4876 ** searching those tables. 4877 */ 4878 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 4879 Table *pTab; /* Table to open */ 4880 int iDb; /* Index of database containing table/index */ 4881 struct SrcList_item *pTabItem; 4882 4883 pTabItem = &pTabList->a[pLevel->iFrom]; 4884 pTab = pTabItem->pTab; 4885 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4886 pLoop = pLevel->pWLoop; 4887 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ 4888 /* Do nothing */ 4889 }else 4890 #ifndef SQLITE_OMIT_VIRTUALTABLE 4891 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 4892 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 4893 int iCur = pTabItem->iCursor; 4894 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 4895 }else if( IsVirtual(pTab) ){ 4896 /* noop */ 4897 }else 4898 #endif 4899 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 4900 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ 4901 int op = OP_OpenRead; 4902 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 4903 op = OP_OpenWrite; 4904 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 4905 }; 4906 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 4907 assert( pTabItem->iCursor==pLevel->iTabCur ); 4908 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); 4909 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); 4910 if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){ 4911 Bitmask b = pTabItem->colUsed; 4912 int n = 0; 4913 for(; b; b=b>>1, n++){} 4914 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); 4915 assert( n<=pTab->nCol ); 4916 } 4917 #ifdef SQLITE_ENABLE_CURSOR_HINTS 4918 if( pLoop->u.btree.pIndex!=0 ){ 4919 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); 4920 }else 4921 #endif 4922 { 4923 sqlite3VdbeChangeP5(v, bFordelete); 4924 } 4925 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4926 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, 4927 (const u8*)&pTabItem->colUsed, P4_INT64); 4928 #endif 4929 }else{ 4930 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4931 } 4932 if( pLoop->wsFlags & WHERE_INDEXED ){ 4933 Index *pIx = pLoop->u.btree.pIndex; 4934 int iIndexCur; 4935 int op = OP_OpenRead; 4936 /* iAuxArg is always set to a positive value if ONEPASS is possible */ 4937 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 4938 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 4939 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 4940 ){ 4941 /* This is one term of an OR-optimization using the PRIMARY KEY of a 4942 ** WITHOUT ROWID table. No need for a separate index */ 4943 iIndexCur = pLevel->iTabCur; 4944 op = 0; 4945 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ 4946 Index *pJ = pTabItem->pTab->pIndex; 4947 iIndexCur = iAuxArg; 4948 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 4949 while( ALWAYS(pJ) && pJ!=pIx ){ 4950 iIndexCur++; 4951 pJ = pJ->pNext; 4952 } 4953 op = OP_OpenWrite; 4954 pWInfo->aiCurOnePass[1] = iIndexCur; 4955 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ 4956 iIndexCur = iAuxArg; 4957 op = OP_ReopenIdx; 4958 }else{ 4959 iIndexCur = pParse->nTab++; 4960 } 4961 pLevel->iIdxCur = iIndexCur; 4962 assert( pIx->pSchema==pTab->pSchema ); 4963 assert( iIndexCur>=0 ); 4964 if( op ){ 4965 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 4966 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 4967 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 4968 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 4969 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 4970 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED 4971 ){ 4972 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */ 4973 } 4974 VdbeComment((v, "%s", pIx->zName)); 4975 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4976 { 4977 u64 colUsed = 0; 4978 int ii, jj; 4979 for(ii=0; ii<pIx->nColumn; ii++){ 4980 jj = pIx->aiColumn[ii]; 4981 if( jj<0 ) continue; 4982 if( jj>63 ) jj = 63; 4983 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; 4984 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); 4985 } 4986 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, 4987 (u8*)&colUsed, P4_INT64); 4988 } 4989 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ 4990 } 4991 } 4992 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 4993 } 4994 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 4995 if( db->mallocFailed ) goto whereBeginError; 4996 4997 /* Generate the code to do the search. Each iteration of the for 4998 ** loop below generates code for a single nested loop of the VM 4999 ** program. 5000 */ 5001 for(ii=0; ii<nTabList; ii++){ 5002 int addrExplain; 5003 int wsFlags; 5004 pLevel = &pWInfo->a[ii]; 5005 wsFlags = pLevel->pWLoop->wsFlags; 5006 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 5007 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 5008 constructAutomaticIndex(pParse, &pWInfo->sWC, 5009 &pTabList->a[pLevel->iFrom], notReady, pLevel); 5010 if( db->mallocFailed ) goto whereBeginError; 5011 } 5012 #endif 5013 addrExplain = sqlite3WhereExplainOneScan( 5014 pParse, pTabList, pLevel, wctrlFlags 5015 ); 5016 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 5017 notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady); 5018 pWInfo->iContinue = pLevel->addrCont; 5019 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){ 5020 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); 5021 } 5022 } 5023 5024 /* Done. */ 5025 VdbeModuleComment((v, "Begin WHERE-core")); 5026 return pWInfo; 5027 5028 /* Jump here if malloc fails */ 5029 whereBeginError: 5030 if( pWInfo ){ 5031 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 5032 whereInfoFree(db, pWInfo); 5033 } 5034 return 0; 5035 } 5036 5037 /* 5038 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the 5039 ** index rather than the main table. In SQLITE_DEBUG mode, we want 5040 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine 5041 ** does that. 5042 */ 5043 #ifndef SQLITE_DEBUG 5044 # define OpcodeRewriteTrace(D,K,P) /* no-op */ 5045 #else 5046 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P) 5047 static void sqlite3WhereOpcodeRewriteTrace( 5048 sqlite3 *db, 5049 int pc, 5050 VdbeOp *pOp 5051 ){ 5052 if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return; 5053 sqlite3VdbePrintOp(0, pc, pOp); 5054 } 5055 #endif 5056 5057 /* 5058 ** Generate the end of the WHERE loop. See comments on 5059 ** sqlite3WhereBegin() for additional information. 5060 */ 5061 void sqlite3WhereEnd(WhereInfo *pWInfo){ 5062 Parse *pParse = pWInfo->pParse; 5063 Vdbe *v = pParse->pVdbe; 5064 int i; 5065 WhereLevel *pLevel; 5066 WhereLoop *pLoop; 5067 SrcList *pTabList = pWInfo->pTabList; 5068 sqlite3 *db = pParse->db; 5069 5070 /* Generate loop termination code. 5071 */ 5072 VdbeModuleComment((v, "End WHERE-core")); 5073 sqlite3ExprCacheClear(pParse); 5074 for(i=pWInfo->nLevel-1; i>=0; i--){ 5075 int addr; 5076 pLevel = &pWInfo->a[i]; 5077 pLoop = pLevel->pWLoop; 5078 if( pLevel->op!=OP_Noop ){ 5079 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 5080 int addrSeek = 0; 5081 Index *pIdx; 5082 int n; 5083 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED 5084 && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */ 5085 && (pLoop->wsFlags & WHERE_INDEXED)!=0 5086 && (pIdx = pLoop->u.btree.pIndex)->hasStat1 5087 && (n = pLoop->u.btree.nIdxCol)>0 5088 && pIdx->aiRowLogEst[n]>=36 5089 ){ 5090 int r1 = pParse->nMem+1; 5091 int j, op; 5092 for(j=0; j<n; j++){ 5093 sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j); 5094 } 5095 pParse->nMem += n+1; 5096 op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT; 5097 addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n); 5098 VdbeCoverageIf(v, op==OP_SeekLT); 5099 VdbeCoverageIf(v, op==OP_SeekGT); 5100 sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2); 5101 } 5102 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */ 5103 /* The common case: Advance to the next row */ 5104 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 5105 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 5106 sqlite3VdbeChangeP5(v, pLevel->p5); 5107 VdbeCoverage(v); 5108 VdbeCoverageIf(v, pLevel->op==OP_Next); 5109 VdbeCoverageIf(v, pLevel->op==OP_Prev); 5110 VdbeCoverageIf(v, pLevel->op==OP_VNext); 5111 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 5112 if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek); 5113 #endif 5114 }else{ 5115 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 5116 } 5117 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ 5118 struct InLoop *pIn; 5119 int j; 5120 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 5121 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 5122 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 5123 if( pIn->eEndLoopOp!=OP_Noop ){ 5124 if( pIn->nPrefix ){ 5125 assert( pLoop->wsFlags & WHERE_IN_EARLYOUT ); 5126 sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur, 5127 sqlite3VdbeCurrentAddr(v)+2, 5128 pIn->iBase, pIn->nPrefix); 5129 VdbeCoverage(v); 5130 } 5131 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 5132 VdbeCoverage(v); 5133 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev); 5134 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next); 5135 } 5136 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 5137 } 5138 } 5139 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 5140 if( pLevel->addrSkip ){ 5141 sqlite3VdbeGoto(v, pLevel->addrSkip); 5142 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 5143 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 5144 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 5145 } 5146 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 5147 if( pLevel->addrLikeRep ){ 5148 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1), 5149 pLevel->addrLikeRep); 5150 VdbeCoverage(v); 5151 } 5152 #endif 5153 if( pLevel->iLeftJoin ){ 5154 int ws = pLoop->wsFlags; 5155 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 5156 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); 5157 if( (ws & WHERE_IDX_ONLY)==0 ){ 5158 assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor ); 5159 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur); 5160 } 5161 if( (ws & WHERE_INDEXED) 5162 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx) 5163 ){ 5164 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 5165 } 5166 if( pLevel->op==OP_Return ){ 5167 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 5168 }else{ 5169 sqlite3VdbeGoto(v, pLevel->addrFirst); 5170 } 5171 sqlite3VdbeJumpHere(v, addr); 5172 } 5173 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 5174 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 5175 } 5176 5177 /* The "break" point is here, just past the end of the outer loop. 5178 ** Set it. 5179 */ 5180 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 5181 5182 assert( pWInfo->nLevel<=pTabList->nSrc ); 5183 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 5184 int k, last; 5185 VdbeOp *pOp; 5186 Index *pIdx = 0; 5187 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 5188 Table *pTab = pTabItem->pTab; 5189 assert( pTab!=0 ); 5190 pLoop = pLevel->pWLoop; 5191 5192 /* For a co-routine, change all OP_Column references to the table of 5193 ** the co-routine into OP_Copy of result contained in a register. 5194 ** OP_Rowid becomes OP_Null. 5195 */ 5196 if( pTabItem->fg.viaCoroutine ){ 5197 testcase( pParse->db->mallocFailed ); 5198 translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur, 5199 pTabItem->regResult, 0); 5200 continue; 5201 } 5202 5203 /* If this scan uses an index, make VDBE code substitutions to read data 5204 ** from the index instead of from the table where possible. In some cases 5205 ** this optimization prevents the table from ever being read, which can 5206 ** yield a significant performance boost. 5207 ** 5208 ** Calls to the code generator in between sqlite3WhereBegin and 5209 ** sqlite3WhereEnd will have created code that references the table 5210 ** directly. This loop scans all that code looking for opcodes 5211 ** that reference the table and converts them into opcodes that 5212 ** reference the index. 5213 */ 5214 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 5215 pIdx = pLoop->u.btree.pIndex; 5216 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 5217 pIdx = pLevel->u.pCovidx; 5218 } 5219 if( pIdx 5220 && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable)) 5221 && !db->mallocFailed 5222 ){ 5223 last = sqlite3VdbeCurrentAddr(v); 5224 k = pLevel->addrBody; 5225 #ifdef SQLITE_DEBUG 5226 if( db->flags & SQLITE_VdbeAddopTrace ){ 5227 printf("TRANSLATE opcodes in range %d..%d\n", k, last-1); 5228 } 5229 #endif 5230 pOp = sqlite3VdbeGetOp(v, k); 5231 for(; k<last; k++, pOp++){ 5232 if( pOp->p1!=pLevel->iTabCur ) continue; 5233 if( pOp->opcode==OP_Column 5234 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 5235 || pOp->opcode==OP_Offset 5236 #endif 5237 ){ 5238 int x = pOp->p2; 5239 assert( pIdx->pTable==pTab ); 5240 if( !HasRowid(pTab) ){ 5241 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 5242 x = pPk->aiColumn[x]; 5243 assert( x>=0 ); 5244 } 5245 x = sqlite3ColumnOfIndex(pIdx, x); 5246 if( x>=0 ){ 5247 pOp->p2 = x; 5248 pOp->p1 = pLevel->iIdxCur; 5249 OpcodeRewriteTrace(db, k, pOp); 5250 } 5251 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 5252 || pWInfo->eOnePass ); 5253 }else if( pOp->opcode==OP_Rowid ){ 5254 pOp->p1 = pLevel->iIdxCur; 5255 pOp->opcode = OP_IdxRowid; 5256 OpcodeRewriteTrace(db, k, pOp); 5257 }else if( pOp->opcode==OP_IfNullRow ){ 5258 pOp->p1 = pLevel->iIdxCur; 5259 OpcodeRewriteTrace(db, k, pOp); 5260 } 5261 } 5262 #ifdef SQLITE_DEBUG 5263 if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n"); 5264 #endif 5265 } 5266 } 5267 5268 /* Final cleanup 5269 */ 5270 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 5271 whereInfoFree(db, pWInfo); 5272 return; 5273 } 5274