1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is reponsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 ** 19 ** $Id: where.c,v 1.254 2007/07/30 14:40:48 danielk1977 Exp $ 20 */ 21 #include "sqliteInt.h" 22 23 /* 24 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 25 */ 26 #define BMS (sizeof(Bitmask)*8) 27 28 /* 29 ** Trace output macros 30 */ 31 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 32 int sqlite3_where_trace = 0; 33 # define WHERETRACE(X) if(sqlite3_where_trace) sqlite3DebugPrintf X 34 #else 35 # define WHERETRACE(X) 36 #endif 37 38 /* Forward reference 39 */ 40 typedef struct WhereClause WhereClause; 41 typedef struct ExprMaskSet ExprMaskSet; 42 43 /* 44 ** The query generator uses an array of instances of this structure to 45 ** help it analyze the subexpressions of the WHERE clause. Each WHERE 46 ** clause subexpression is separated from the others by an AND operator. 47 ** 48 ** All WhereTerms are collected into a single WhereClause structure. 49 ** The following identity holds: 50 ** 51 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm 52 ** 53 ** When a term is of the form: 54 ** 55 ** X <op> <expr> 56 ** 57 ** where X is a column name and <op> is one of certain operators, 58 ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the 59 ** cursor number and column number for X. WhereTerm.operator records 60 ** the <op> using a bitmask encoding defined by WO_xxx below. The 61 ** use of a bitmask encoding for the operator allows us to search 62 ** quickly for terms that match any of several different operators. 63 ** 64 ** prereqRight and prereqAll record sets of cursor numbers, 65 ** but they do so indirectly. A single ExprMaskSet structure translates 66 ** cursor number into bits and the translated bit is stored in the prereq 67 ** fields. The translation is used in order to maximize the number of 68 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be 69 ** spread out over the non-negative integers. For example, the cursor 70 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet 71 ** translates these sparse cursor numbers into consecutive integers 72 ** beginning with 0 in order to make the best possible use of the available 73 ** bits in the Bitmask. So, in the example above, the cursor numbers 74 ** would be mapped into integers 0 through 7. 75 */ 76 typedef struct WhereTerm WhereTerm; 77 struct WhereTerm { 78 Expr *pExpr; /* Pointer to the subexpression */ 79 i16 iParent; /* Disable pWC->a[iParent] when this term disabled */ 80 i16 leftCursor; /* Cursor number of X in "X <op> <expr>" */ 81 i16 leftColumn; /* Column number of X in "X <op> <expr>" */ 82 u16 eOperator; /* A WO_xx value describing <op> */ 83 u8 flags; /* Bit flags. See below */ 84 u8 nChild; /* Number of children that must disable us */ 85 WhereClause *pWC; /* The clause this term is part of */ 86 Bitmask prereqRight; /* Bitmask of tables used by pRight */ 87 Bitmask prereqAll; /* Bitmask of tables referenced by p */ 88 }; 89 90 /* 91 ** Allowed values of WhereTerm.flags 92 */ 93 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(pExpr) */ 94 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ 95 #define TERM_CODED 0x04 /* This term is already coded */ 96 #define TERM_COPIED 0x08 /* Has a child */ 97 #define TERM_OR_OK 0x10 /* Used during OR-clause processing */ 98 99 /* 100 ** An instance of the following structure holds all information about a 101 ** WHERE clause. Mostly this is a container for one or more WhereTerms. 102 */ 103 struct WhereClause { 104 Parse *pParse; /* The parser context */ 105 ExprMaskSet *pMaskSet; /* Mapping of table indices to bitmasks */ 106 int nTerm; /* Number of terms */ 107 int nSlot; /* Number of entries in a[] */ 108 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ 109 WhereTerm aStatic[10]; /* Initial static space for a[] */ 110 }; 111 112 /* 113 ** An instance of the following structure keeps track of a mapping 114 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. 115 ** 116 ** The VDBE cursor numbers are small integers contained in 117 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE 118 ** clause, the cursor numbers might not begin with 0 and they might 119 ** contain gaps in the numbering sequence. But we want to make maximum 120 ** use of the bits in our bitmasks. This structure provides a mapping 121 ** from the sparse cursor numbers into consecutive integers beginning 122 ** with 0. 123 ** 124 ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask 125 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A. 126 ** 127 ** For example, if the WHERE clause expression used these VDBE 128 ** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure 129 ** would map those cursor numbers into bits 0 through 5. 130 ** 131 ** Note that the mapping is not necessarily ordered. In the example 132 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0, 133 ** 57->5, 73->4. Or one of 719 other combinations might be used. It 134 ** does not really matter. What is important is that sparse cursor 135 ** numbers all get mapped into bit numbers that begin with 0 and contain 136 ** no gaps. 137 */ 138 struct ExprMaskSet { 139 int n; /* Number of assigned cursor values */ 140 int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */ 141 }; 142 143 144 /* 145 ** Bitmasks for the operators that indices are able to exploit. An 146 ** OR-ed combination of these values can be used when searching for 147 ** terms in the where clause. 148 */ 149 #define WO_IN 1 150 #define WO_EQ 2 151 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) 152 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) 153 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) 154 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) 155 #define WO_MATCH 64 156 #define WO_ISNULL 128 157 158 /* 159 ** Value for flags returned by bestIndex(). 160 ** 161 ** The least significant byte is reserved as a mask for WO_ values above. 162 ** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL. 163 ** But if the table is the right table of a left join, WhereLevel.flags 164 ** is set to WO_IN|WO_EQ. The WhereLevel.flags field can then be used as 165 ** the "op" parameter to findTerm when we are resolving equality constraints. 166 ** ISNULL constraints will then not be used on the right table of a left 167 ** join. Tickets #2177 and #2189. 168 */ 169 #define WHERE_ROWID_EQ 0x000100 /* rowid=EXPR or rowid IN (...) */ 170 #define WHERE_ROWID_RANGE 0x000200 /* rowid<EXPR and/or rowid>EXPR */ 171 #define WHERE_COLUMN_EQ 0x001000 /* x=EXPR or x IN (...) */ 172 #define WHERE_COLUMN_RANGE 0x002000 /* x<EXPR and/or x>EXPR */ 173 #define WHERE_COLUMN_IN 0x004000 /* x IN (...) */ 174 #define WHERE_TOP_LIMIT 0x010000 /* x<EXPR or x<=EXPR constraint */ 175 #define WHERE_BTM_LIMIT 0x020000 /* x>EXPR or x>=EXPR constraint */ 176 #define WHERE_IDX_ONLY 0x080000 /* Use index only - omit table */ 177 #define WHERE_ORDERBY 0x100000 /* Output will appear in correct order */ 178 #define WHERE_REVERSE 0x200000 /* Scan in reverse order */ 179 #define WHERE_UNIQUE 0x400000 /* Selects no more than one row */ 180 #define WHERE_VIRTUALTABLE 0x800000 /* Use virtual-table processing */ 181 182 /* 183 ** Initialize a preallocated WhereClause structure. 184 */ 185 static void whereClauseInit( 186 WhereClause *pWC, /* The WhereClause to be initialized */ 187 Parse *pParse, /* The parsing context */ 188 ExprMaskSet *pMaskSet /* Mapping from table indices to bitmasks */ 189 ){ 190 pWC->pParse = pParse; 191 pWC->pMaskSet = pMaskSet; 192 pWC->nTerm = 0; 193 pWC->nSlot = ArraySize(pWC->aStatic); 194 pWC->a = pWC->aStatic; 195 } 196 197 /* 198 ** Deallocate a WhereClause structure. The WhereClause structure 199 ** itself is not freed. This routine is the inverse of whereClauseInit(). 200 */ 201 static void whereClauseClear(WhereClause *pWC){ 202 int i; 203 WhereTerm *a; 204 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 205 if( a->flags & TERM_DYNAMIC ){ 206 sqlite3ExprDelete(a->pExpr); 207 } 208 } 209 if( pWC->a!=pWC->aStatic ){ 210 sqliteFree(pWC->a); 211 } 212 } 213 214 /* 215 ** Add a new entries to the WhereClause structure. Increase the allocated 216 ** space as necessary. 217 ** 218 ** If the flags argument includes TERM_DYNAMIC, then responsibility 219 ** for freeing the expression p is assumed by the WhereClause object. 220 ** 221 ** WARNING: This routine might reallocate the space used to store 222 ** WhereTerms. All pointers to WhereTerms should be invalided after 223 ** calling this routine. Such pointers may be reinitialized by referencing 224 ** the pWC->a[] array. 225 */ 226 static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){ 227 WhereTerm *pTerm; 228 int idx; 229 if( pWC->nTerm>=pWC->nSlot ){ 230 WhereTerm *pOld = pWC->a; 231 pWC->a = sqliteMalloc( sizeof(pWC->a[0])*pWC->nSlot*2 ); 232 if( pWC->a==0 ){ 233 if( flags & TERM_DYNAMIC ){ 234 sqlite3ExprDelete(p); 235 } 236 return 0; 237 } 238 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 239 if( pOld!=pWC->aStatic ){ 240 sqliteFree(pOld); 241 } 242 pWC->nSlot *= 2; 243 } 244 pTerm = &pWC->a[idx = pWC->nTerm]; 245 pWC->nTerm++; 246 pTerm->pExpr = p; 247 pTerm->flags = flags; 248 pTerm->pWC = pWC; 249 pTerm->iParent = -1; 250 return idx; 251 } 252 253 /* 254 ** This routine identifies subexpressions in the WHERE clause where 255 ** each subexpression is separated by the AND operator or some other 256 ** operator specified in the op parameter. The WhereClause structure 257 ** is filled with pointers to subexpressions. For example: 258 ** 259 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 260 ** \________/ \_______________/ \________________/ 261 ** slot[0] slot[1] slot[2] 262 ** 263 ** The original WHERE clause in pExpr is unaltered. All this routine 264 ** does is make slot[] entries point to substructure within pExpr. 265 ** 266 ** In the previous sentence and in the diagram, "slot[]" refers to 267 ** the WhereClause.a[] array. This array grows as needed to contain 268 ** all terms of the WHERE clause. 269 */ 270 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ 271 if( pExpr==0 ) return; 272 if( pExpr->op!=op ){ 273 whereClauseInsert(pWC, pExpr, 0); 274 }else{ 275 whereSplit(pWC, pExpr->pLeft, op); 276 whereSplit(pWC, pExpr->pRight, op); 277 } 278 } 279 280 /* 281 ** Initialize an expression mask set 282 */ 283 #define initMaskSet(P) memset(P, 0, sizeof(*P)) 284 285 /* 286 ** Return the bitmask for the given cursor number. Return 0 if 287 ** iCursor is not in the set. 288 */ 289 static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){ 290 int i; 291 for(i=0; i<pMaskSet->n; i++){ 292 if( pMaskSet->ix[i]==iCursor ){ 293 return ((Bitmask)1)<<i; 294 } 295 } 296 return 0; 297 } 298 299 /* 300 ** Create a new mask for cursor iCursor. 301 ** 302 ** There is one cursor per table in the FROM clause. The number of 303 ** tables in the FROM clause is limited by a test early in the 304 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 305 ** array will never overflow. 306 */ 307 static void createMask(ExprMaskSet *pMaskSet, int iCursor){ 308 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 309 pMaskSet->ix[pMaskSet->n++] = iCursor; 310 } 311 312 /* 313 ** This routine walks (recursively) an expression tree and generates 314 ** a bitmask indicating which tables are used in that expression 315 ** tree. 316 ** 317 ** In order for this routine to work, the calling function must have 318 ** previously invoked sqlite3ExprResolveNames() on the expression. See 319 ** the header comment on that routine for additional information. 320 ** The sqlite3ExprResolveNames() routines looks for column names and 321 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to 322 ** the VDBE cursor number of the table. This routine just has to 323 ** translate the cursor numbers into bitmask values and OR all 324 ** the bitmasks together. 325 */ 326 static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*); 327 static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*); 328 static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){ 329 Bitmask mask = 0; 330 if( p==0 ) return 0; 331 if( p->op==TK_COLUMN ){ 332 mask = getMask(pMaskSet, p->iTable); 333 return mask; 334 } 335 mask = exprTableUsage(pMaskSet, p->pRight); 336 mask |= exprTableUsage(pMaskSet, p->pLeft); 337 mask |= exprListTableUsage(pMaskSet, p->pList); 338 mask |= exprSelectTableUsage(pMaskSet, p->pSelect); 339 return mask; 340 } 341 static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){ 342 int i; 343 Bitmask mask = 0; 344 if( pList ){ 345 for(i=0; i<pList->nExpr; i++){ 346 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); 347 } 348 } 349 return mask; 350 } 351 static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){ 352 Bitmask mask; 353 if( pS==0 ){ 354 mask = 0; 355 }else{ 356 mask = exprListTableUsage(pMaskSet, pS->pEList); 357 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); 358 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); 359 mask |= exprTableUsage(pMaskSet, pS->pWhere); 360 mask |= exprTableUsage(pMaskSet, pS->pHaving); 361 } 362 return mask; 363 } 364 365 /* 366 ** Return TRUE if the given operator is one of the operators that is 367 ** allowed for an indexable WHERE clause term. The allowed operators are 368 ** "=", "<", ">", "<=", ">=", and "IN". 369 */ 370 static int allowedOp(int op){ 371 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 372 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 373 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 374 assert( TK_GE==TK_EQ+4 ); 375 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; 376 } 377 378 /* 379 ** Swap two objects of type T. 380 */ 381 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 382 383 /* 384 ** Commute a comparision operator. Expressions of the form "X op Y" 385 ** are converted into "Y op X". 386 ** 387 ** If a collation sequence is associated with either the left or right 388 ** side of the comparison, it remains associated with the same side after 389 ** the commutation. So "Y collate NOCASE op X" becomes 390 ** "X collate NOCASE op Y". This is because any collation sequence on 391 ** the left hand side of a comparison overrides any collation sequence 392 ** attached to the right. For the same reason the EP_ExpCollate flag 393 ** is not commuted. 394 */ 395 static void exprCommute(Expr *pExpr){ 396 u16 expRight = (pExpr->pRight->flags & EP_ExpCollate); 397 u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate); 398 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 399 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); 400 pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft; 401 pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight; 402 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 403 if( pExpr->op>=TK_GT ){ 404 assert( TK_LT==TK_GT+2 ); 405 assert( TK_GE==TK_LE+2 ); 406 assert( TK_GT>TK_EQ ); 407 assert( TK_GT<TK_LE ); 408 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 409 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 410 } 411 } 412 413 /* 414 ** Translate from TK_xx operator to WO_xx bitmask. 415 */ 416 static int operatorMask(int op){ 417 int c; 418 assert( allowedOp(op) ); 419 if( op==TK_IN ){ 420 c = WO_IN; 421 }else if( op==TK_ISNULL ){ 422 c = WO_ISNULL; 423 }else{ 424 c = WO_EQ<<(op-TK_EQ); 425 } 426 assert( op!=TK_ISNULL || c==WO_ISNULL ); 427 assert( op!=TK_IN || c==WO_IN ); 428 assert( op!=TK_EQ || c==WO_EQ ); 429 assert( op!=TK_LT || c==WO_LT ); 430 assert( op!=TK_LE || c==WO_LE ); 431 assert( op!=TK_GT || c==WO_GT ); 432 assert( op!=TK_GE || c==WO_GE ); 433 return c; 434 } 435 436 /* 437 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 438 ** where X is a reference to the iColumn of table iCur and <op> is one of 439 ** the WO_xx operator codes specified by the op parameter. 440 ** Return a pointer to the term. Return 0 if not found. 441 */ 442 static WhereTerm *findTerm( 443 WhereClause *pWC, /* The WHERE clause to be searched */ 444 int iCur, /* Cursor number of LHS */ 445 int iColumn, /* Column number of LHS */ 446 Bitmask notReady, /* RHS must not overlap with this mask */ 447 u16 op, /* Mask of WO_xx values describing operator */ 448 Index *pIdx /* Must be compatible with this index, if not NULL */ 449 ){ 450 WhereTerm *pTerm; 451 int k; 452 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ 453 if( pTerm->leftCursor==iCur 454 && (pTerm->prereqRight & notReady)==0 455 && pTerm->leftColumn==iColumn 456 && (pTerm->eOperator & op)!=0 457 ){ 458 if( iCur>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){ 459 Expr *pX = pTerm->pExpr; 460 CollSeq *pColl; 461 char idxaff; 462 int j; 463 Parse *pParse = pWC->pParse; 464 465 idxaff = pIdx->pTable->aCol[iColumn].affinity; 466 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; 467 468 /* Figure out the collation sequence required from an index for 469 ** it to be useful for optimising expression pX. Store this 470 ** value in variable pColl. 471 */ 472 assert(pX->pLeft); 473 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 474 if( !pColl ){ 475 pColl = pParse->db->pDfltColl; 476 } 477 478 for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){} 479 assert( j<pIdx->nColumn ); 480 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; 481 } 482 return pTerm; 483 } 484 } 485 return 0; 486 } 487 488 /* Forward reference */ 489 static void exprAnalyze(SrcList*, WhereClause*, int); 490 491 /* 492 ** Call exprAnalyze on all terms in a WHERE clause. 493 ** 494 ** 495 */ 496 static void exprAnalyzeAll( 497 SrcList *pTabList, /* the FROM clause */ 498 WhereClause *pWC /* the WHERE clause to be analyzed */ 499 ){ 500 int i; 501 for(i=pWC->nTerm-1; i>=0; i--){ 502 exprAnalyze(pTabList, pWC, i); 503 } 504 } 505 506 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 507 /* 508 ** Check to see if the given expression is a LIKE or GLOB operator that 509 ** can be optimized using inequality constraints. Return TRUE if it is 510 ** so and false if not. 511 ** 512 ** In order for the operator to be optimizible, the RHS must be a string 513 ** literal that does not begin with a wildcard. 514 */ 515 static int isLikeOrGlob( 516 sqlite3 *db, /* The database */ 517 Expr *pExpr, /* Test this expression */ 518 int *pnPattern, /* Number of non-wildcard prefix characters */ 519 int *pisComplete /* True if the only wildcard is % in the last character */ 520 ){ 521 const char *z; 522 Expr *pRight, *pLeft; 523 ExprList *pList; 524 int c, cnt; 525 int noCase; 526 char wc[3]; 527 CollSeq *pColl; 528 529 if( !sqlite3IsLikeFunction(db, pExpr, &noCase, wc) ){ 530 return 0; 531 } 532 pList = pExpr->pList; 533 pRight = pList->a[0].pExpr; 534 if( pRight->op!=TK_STRING ){ 535 return 0; 536 } 537 pLeft = pList->a[1].pExpr; 538 if( pLeft->op!=TK_COLUMN ){ 539 return 0; 540 } 541 pColl = pLeft->pColl; 542 if( pColl==0 ){ 543 /* TODO: Coverage testing doesn't get this case. Is it actually possible 544 ** for an expression of type TK_COLUMN to not have an assigned collation 545 ** sequence at this point? 546 */ 547 pColl = db->pDfltColl; 548 } 549 if( (pColl->type!=SQLITE_COLL_BINARY || noCase) && 550 (pColl->type!=SQLITE_COLL_NOCASE || !noCase) ){ 551 return 0; 552 } 553 sqlite3DequoteExpr(pRight); 554 z = (char *)pRight->token.z; 555 for(cnt=0; (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2]; cnt++){} 556 if( cnt==0 || 255==(u8)z[cnt] ){ 557 return 0; 558 } 559 *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0; 560 *pnPattern = cnt; 561 return 1; 562 } 563 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 564 565 566 #ifndef SQLITE_OMIT_VIRTUALTABLE 567 /* 568 ** Check to see if the given expression is of the form 569 ** 570 ** column MATCH expr 571 ** 572 ** If it is then return TRUE. If not, return FALSE. 573 */ 574 static int isMatchOfColumn( 575 Expr *pExpr /* Test this expression */ 576 ){ 577 ExprList *pList; 578 579 if( pExpr->op!=TK_FUNCTION ){ 580 return 0; 581 } 582 if( pExpr->token.n!=5 || 583 sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){ 584 return 0; 585 } 586 pList = pExpr->pList; 587 if( pList->nExpr!=2 ){ 588 return 0; 589 } 590 if( pList->a[1].pExpr->op != TK_COLUMN ){ 591 return 0; 592 } 593 return 1; 594 } 595 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 596 597 /* 598 ** If the pBase expression originated in the ON or USING clause of 599 ** a join, then transfer the appropriate markings over to derived. 600 */ 601 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 602 pDerived->flags |= pBase->flags & EP_FromJoin; 603 pDerived->iRightJoinTable = pBase->iRightJoinTable; 604 } 605 606 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 607 /* 608 ** Return TRUE if the given term of an OR clause can be converted 609 ** into an IN clause. The iCursor and iColumn define the left-hand 610 ** side of the IN clause. 611 ** 612 ** The context is that we have multiple OR-connected equality terms 613 ** like this: 614 ** 615 ** a=<expr1> OR a=<expr2> OR b=<expr3> OR ... 616 ** 617 ** The pOrTerm input to this routine corresponds to a single term of 618 ** this OR clause. In order for the term to be a condidate for 619 ** conversion to an IN operator, the following must be true: 620 ** 621 ** * The left-hand side of the term must be the column which 622 ** is identified by iCursor and iColumn. 623 ** 624 ** * If the right-hand side is also a column, then the affinities 625 ** of both right and left sides must be such that no type 626 ** conversions are required on the right. (Ticket #2249) 627 ** 628 ** If both of these conditions are true, then return true. Otherwise 629 ** return false. 630 */ 631 static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){ 632 int affLeft, affRight; 633 assert( pOrTerm->eOperator==WO_EQ ); 634 if( pOrTerm->leftCursor!=iCursor ){ 635 return 0; 636 } 637 if( pOrTerm->leftColumn!=iColumn ){ 638 return 0; 639 } 640 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 641 if( affRight==0 ){ 642 return 1; 643 } 644 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 645 if( affRight!=affLeft ){ 646 return 0; 647 } 648 return 1; 649 } 650 651 /* 652 ** Return true if the given term of an OR clause can be ignored during 653 ** a check to make sure all OR terms are candidates for optimization. 654 ** In other words, return true if a call to the orTermIsOptCandidate() 655 ** above returned false but it is not necessary to disqualify the 656 ** optimization. 657 ** 658 ** Suppose the original OR phrase was this: 659 ** 660 ** a=4 OR a=11 OR a=b 661 ** 662 ** During analysis, the third term gets flipped around and duplicate 663 ** so that we are left with this: 664 ** 665 ** a=4 OR a=11 OR a=b OR b=a 666 ** 667 ** Since the last two terms are duplicates, only one of them 668 ** has to qualify in order for the whole phrase to qualify. When 669 ** this routine is called, we know that pOrTerm did not qualify. 670 ** This routine merely checks to see if pOrTerm has a duplicate that 671 ** might qualify. If there is a duplicate that has not yet been 672 ** disqualified, then return true. If there are no duplicates, or 673 ** the duplicate has also been disqualifed, return false. 674 */ 675 static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){ 676 if( pOrTerm->flags & TERM_COPIED ){ 677 /* This is the original term. The duplicate is to the left had 678 ** has not yet been analyzed and thus has not yet been disqualified. */ 679 return 1; 680 } 681 if( (pOrTerm->flags & TERM_VIRTUAL)!=0 682 && (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK)!=0 ){ 683 /* This is a duplicate term. The original qualified so this one 684 ** does not have to. */ 685 return 1; 686 } 687 /* This is either a singleton term or else it is a duplicate for 688 ** which the original did not qualify. Either way we are done for. */ 689 return 0; 690 } 691 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 692 693 /* 694 ** The input to this routine is an WhereTerm structure with only the 695 ** "pExpr" field filled in. The job of this routine is to analyze the 696 ** subexpression and populate all the other fields of the WhereTerm 697 ** structure. 698 ** 699 ** If the expression is of the form "<expr> <op> X" it gets commuted 700 ** to the standard form of "X <op> <expr>". If the expression is of 701 ** the form "X <op> Y" where both X and Y are columns, then the original 702 ** expression is unchanged and a new virtual expression of the form 703 ** "Y <op> X" is added to the WHERE clause and analyzed separately. 704 */ 705 static void exprAnalyze( 706 SrcList *pSrc, /* the FROM clause */ 707 WhereClause *pWC, /* the WHERE clause */ 708 int idxTerm /* Index of the term to be analyzed */ 709 ){ 710 WhereTerm *pTerm = &pWC->a[idxTerm]; 711 ExprMaskSet *pMaskSet = pWC->pMaskSet; 712 Expr *pExpr = pTerm->pExpr; 713 Bitmask prereqLeft; 714 Bitmask prereqAll; 715 int nPattern; 716 int isComplete; 717 int op; 718 719 if( sqlite3MallocFailed() ) return; 720 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); 721 op = pExpr->op; 722 if( op==TK_IN ){ 723 assert( pExpr->pRight==0 ); 724 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList) 725 | exprSelectTableUsage(pMaskSet, pExpr->pSelect); 726 }else if( op==TK_ISNULL ){ 727 pTerm->prereqRight = 0; 728 }else{ 729 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); 730 } 731 prereqAll = exprTableUsage(pMaskSet, pExpr); 732 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 733 prereqAll |= getMask(pMaskSet, pExpr->iRightJoinTable); 734 } 735 pTerm->prereqAll = prereqAll; 736 pTerm->leftCursor = -1; 737 pTerm->iParent = -1; 738 pTerm->eOperator = 0; 739 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ 740 Expr *pLeft = pExpr->pLeft; 741 Expr *pRight = pExpr->pRight; 742 if( pLeft->op==TK_COLUMN ){ 743 pTerm->leftCursor = pLeft->iTable; 744 pTerm->leftColumn = pLeft->iColumn; 745 pTerm->eOperator = operatorMask(op); 746 } 747 if( pRight && pRight->op==TK_COLUMN ){ 748 WhereTerm *pNew; 749 Expr *pDup; 750 if( pTerm->leftCursor>=0 ){ 751 int idxNew; 752 pDup = sqlite3ExprDup(pExpr); 753 if( sqlite3MallocFailed() ){ 754 sqlite3ExprDelete(pDup); 755 return; 756 } 757 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 758 if( idxNew==0 ) return; 759 pNew = &pWC->a[idxNew]; 760 pNew->iParent = idxTerm; 761 pTerm = &pWC->a[idxTerm]; 762 pTerm->nChild = 1; 763 pTerm->flags |= TERM_COPIED; 764 }else{ 765 pDup = pExpr; 766 pNew = pTerm; 767 } 768 exprCommute(pDup); 769 pLeft = pDup->pLeft; 770 pNew->leftCursor = pLeft->iTable; 771 pNew->leftColumn = pLeft->iColumn; 772 pNew->prereqRight = prereqLeft; 773 pNew->prereqAll = prereqAll; 774 pNew->eOperator = operatorMask(pDup->op); 775 } 776 } 777 778 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 779 /* If a term is the BETWEEN operator, create two new virtual terms 780 ** that define the range that the BETWEEN implements. 781 */ 782 else if( pExpr->op==TK_BETWEEN ){ 783 ExprList *pList = pExpr->pList; 784 int i; 785 static const u8 ops[] = {TK_GE, TK_LE}; 786 assert( pList!=0 ); 787 assert( pList->nExpr==2 ); 788 for(i=0; i<2; i++){ 789 Expr *pNewExpr; 790 int idxNew; 791 pNewExpr = sqlite3Expr(ops[i], sqlite3ExprDup(pExpr->pLeft), 792 sqlite3ExprDup(pList->a[i].pExpr), 0); 793 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 794 exprAnalyze(pSrc, pWC, idxNew); 795 pTerm = &pWC->a[idxTerm]; 796 pWC->a[idxNew].iParent = idxTerm; 797 } 798 pTerm->nChild = 2; 799 } 800 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 801 802 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 803 /* Attempt to convert OR-connected terms into an IN operator so that 804 ** they can make use of indices. Example: 805 ** 806 ** x = expr1 OR expr2 = x OR x = expr3 807 ** 808 ** is converted into 809 ** 810 ** x IN (expr1,expr2,expr3) 811 ** 812 ** This optimization must be omitted if OMIT_SUBQUERY is defined because 813 ** the compiler for the the IN operator is part of sub-queries. 814 */ 815 else if( pExpr->op==TK_OR ){ 816 int ok; 817 int i, j; 818 int iColumn, iCursor; 819 WhereClause sOr; 820 WhereTerm *pOrTerm; 821 822 assert( (pTerm->flags & TERM_DYNAMIC)==0 ); 823 whereClauseInit(&sOr, pWC->pParse, pMaskSet); 824 whereSplit(&sOr, pExpr, TK_OR); 825 exprAnalyzeAll(pSrc, &sOr); 826 assert( sOr.nTerm>=2 ); 827 j = 0; 828 do{ 829 assert( j<sOr.nTerm ); 830 iColumn = sOr.a[j].leftColumn; 831 iCursor = sOr.a[j].leftCursor; 832 ok = iCursor>=0; 833 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ 834 if( pOrTerm->eOperator!=WO_EQ ){ 835 goto or_not_possible; 836 } 837 if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){ 838 pOrTerm->flags |= TERM_OR_OK; 839 }else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){ 840 pOrTerm->flags &= ~TERM_OR_OK; 841 }else{ 842 ok = 0; 843 } 844 } 845 }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<2 ); 846 if( ok ){ 847 ExprList *pList = 0; 848 Expr *pNew, *pDup; 849 Expr *pLeft = 0; 850 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ 851 if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue; 852 pDup = sqlite3ExprDup(pOrTerm->pExpr->pRight); 853 pList = sqlite3ExprListAppend(pList, pDup, 0); 854 pLeft = pOrTerm->pExpr->pLeft; 855 } 856 assert( pLeft!=0 ); 857 pDup = sqlite3ExprDup(pLeft); 858 pNew = sqlite3Expr(TK_IN, pDup, 0, 0); 859 if( pNew ){ 860 int idxNew; 861 transferJoinMarkings(pNew, pExpr); 862 pNew->pList = pList; 863 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 864 exprAnalyze(pSrc, pWC, idxNew); 865 pTerm = &pWC->a[idxTerm]; 866 pWC->a[idxNew].iParent = idxTerm; 867 pTerm->nChild = 1; 868 }else{ 869 sqlite3ExprListDelete(pList); 870 } 871 } 872 or_not_possible: 873 whereClauseClear(&sOr); 874 } 875 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 876 877 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 878 /* Add constraints to reduce the search space on a LIKE or GLOB 879 ** operator. 880 */ 881 if( isLikeOrGlob(pWC->pParse->db, pExpr, &nPattern, &isComplete) ){ 882 Expr *pLeft, *pRight; 883 Expr *pStr1, *pStr2; 884 Expr *pNewExpr1, *pNewExpr2; 885 int idxNew1, idxNew2; 886 887 pLeft = pExpr->pList->a[1].pExpr; 888 pRight = pExpr->pList->a[0].pExpr; 889 pStr1 = sqlite3Expr(TK_STRING, 0, 0, 0); 890 if( pStr1 ){ 891 sqlite3TokenCopy(&pStr1->token, &pRight->token); 892 pStr1->token.n = nPattern; 893 pStr1->flags = EP_Dequoted; 894 } 895 pStr2 = sqlite3ExprDup(pStr1); 896 if( pStr2 ){ 897 assert( pStr2->token.dyn ); 898 ++*(u8*)&pStr2->token.z[nPattern-1]; 899 } 900 pNewExpr1 = sqlite3Expr(TK_GE, sqlite3ExprDup(pLeft), pStr1, 0); 901 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); 902 exprAnalyze(pSrc, pWC, idxNew1); 903 pNewExpr2 = sqlite3Expr(TK_LT, sqlite3ExprDup(pLeft), pStr2, 0); 904 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); 905 exprAnalyze(pSrc, pWC, idxNew2); 906 pTerm = &pWC->a[idxTerm]; 907 if( isComplete ){ 908 pWC->a[idxNew1].iParent = idxTerm; 909 pWC->a[idxNew2].iParent = idxTerm; 910 pTerm->nChild = 2; 911 } 912 } 913 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 914 915 #ifndef SQLITE_OMIT_VIRTUALTABLE 916 /* Add a WO_MATCH auxiliary term to the constraint set if the 917 ** current expression is of the form: column MATCH expr. 918 ** This information is used by the xBestIndex methods of 919 ** virtual tables. The native query optimizer does not attempt 920 ** to do anything with MATCH functions. 921 */ 922 if( isMatchOfColumn(pExpr) ){ 923 int idxNew; 924 Expr *pRight, *pLeft; 925 WhereTerm *pNewTerm; 926 Bitmask prereqColumn, prereqExpr; 927 928 pRight = pExpr->pList->a[0].pExpr; 929 pLeft = pExpr->pList->a[1].pExpr; 930 prereqExpr = exprTableUsage(pMaskSet, pRight); 931 prereqColumn = exprTableUsage(pMaskSet, pLeft); 932 if( (prereqExpr & prereqColumn)==0 ){ 933 Expr *pNewExpr; 934 pNewExpr = sqlite3Expr(TK_MATCH, 0, sqlite3ExprDup(pRight), 0); 935 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 936 pNewTerm = &pWC->a[idxNew]; 937 pNewTerm->prereqRight = prereqExpr; 938 pNewTerm->leftCursor = pLeft->iTable; 939 pNewTerm->leftColumn = pLeft->iColumn; 940 pNewTerm->eOperator = WO_MATCH; 941 pNewTerm->iParent = idxTerm; 942 pTerm = &pWC->a[idxTerm]; 943 pTerm->nChild = 1; 944 pTerm->flags |= TERM_COPIED; 945 pNewTerm->prereqAll = pTerm->prereqAll; 946 } 947 } 948 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 949 } 950 951 /* 952 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain 953 ** a reference to any table other than the iBase table. 954 */ 955 static int referencesOtherTables( 956 ExprList *pList, /* Search expressions in ths list */ 957 ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ 958 int iFirst, /* Be searching with the iFirst-th expression */ 959 int iBase /* Ignore references to this table */ 960 ){ 961 Bitmask allowed = ~getMask(pMaskSet, iBase); 962 while( iFirst<pList->nExpr ){ 963 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){ 964 return 1; 965 } 966 } 967 return 0; 968 } 969 970 971 /* 972 ** This routine decides if pIdx can be used to satisfy the ORDER BY 973 ** clause. If it can, it returns 1. If pIdx cannot satisfy the 974 ** ORDER BY clause, this routine returns 0. 975 ** 976 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the 977 ** left-most table in the FROM clause of that same SELECT statement and 978 ** the table has a cursor number of "base". pIdx is an index on pTab. 979 ** 980 ** nEqCol is the number of columns of pIdx that are used as equality 981 ** constraints. Any of these columns may be missing from the ORDER BY 982 ** clause and the match can still be a success. 983 ** 984 ** All terms of the ORDER BY that match against the index must be either 985 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE 986 ** index do not need to satisfy this constraint.) The *pbRev value is 987 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if 988 ** the ORDER BY clause is all ASC. 989 */ 990 static int isSortingIndex( 991 Parse *pParse, /* Parsing context */ 992 ExprMaskSet *pMaskSet, /* Mapping from table indices to bitmaps */ 993 Index *pIdx, /* The index we are testing */ 994 int base, /* Cursor number for the table to be sorted */ 995 ExprList *pOrderBy, /* The ORDER BY clause */ 996 int nEqCol, /* Number of index columns with == constraints */ 997 int *pbRev /* Set to 1 if ORDER BY is DESC */ 998 ){ 999 int i, j; /* Loop counters */ 1000 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ 1001 int nTerm; /* Number of ORDER BY terms */ 1002 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ 1003 sqlite3 *db = pParse->db; 1004 1005 assert( pOrderBy!=0 ); 1006 nTerm = pOrderBy->nExpr; 1007 assert( nTerm>0 ); 1008 1009 /* Match terms of the ORDER BY clause against columns of 1010 ** the index. 1011 ** 1012 ** Note that indices have pIdx->nColumn regular columns plus 1013 ** one additional column containing the rowid. The rowid column 1014 ** of the index is also allowed to match against the ORDER BY 1015 ** clause. 1016 */ 1017 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){ 1018 Expr *pExpr; /* The expression of the ORDER BY pTerm */ 1019 CollSeq *pColl; /* The collating sequence of pExpr */ 1020 int termSortOrder; /* Sort order for this term */ 1021 int iColumn; /* The i-th column of the index. -1 for rowid */ 1022 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ 1023 const char *zColl; /* Name of the collating sequence for i-th index term */ 1024 1025 pExpr = pTerm->pExpr; 1026 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ 1027 /* Can not use an index sort on anything that is not a column in the 1028 ** left-most table of the FROM clause */ 1029 break; 1030 } 1031 pColl = sqlite3ExprCollSeq(pParse, pExpr); 1032 if( !pColl ){ 1033 pColl = db->pDfltColl; 1034 } 1035 if( i<pIdx->nColumn ){ 1036 iColumn = pIdx->aiColumn[i]; 1037 if( iColumn==pIdx->pTable->iPKey ){ 1038 iColumn = -1; 1039 } 1040 iSortOrder = pIdx->aSortOrder[i]; 1041 zColl = pIdx->azColl[i]; 1042 }else{ 1043 iColumn = -1; 1044 iSortOrder = 0; 1045 zColl = pColl->zName; 1046 } 1047 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){ 1048 /* Term j of the ORDER BY clause does not match column i of the index */ 1049 if( i<nEqCol ){ 1050 /* If an index column that is constrained by == fails to match an 1051 ** ORDER BY term, that is OK. Just ignore that column of the index 1052 */ 1053 continue; 1054 }else{ 1055 /* If an index column fails to match and is not constrained by == 1056 ** then the index cannot satisfy the ORDER BY constraint. 1057 */ 1058 return 0; 1059 } 1060 } 1061 assert( pIdx->aSortOrder!=0 ); 1062 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); 1063 assert( iSortOrder==0 || iSortOrder==1 ); 1064 termSortOrder = iSortOrder ^ pTerm->sortOrder; 1065 if( i>nEqCol ){ 1066 if( termSortOrder!=sortOrder ){ 1067 /* Indices can only be used if all ORDER BY terms past the 1068 ** equality constraints are all either DESC or ASC. */ 1069 return 0; 1070 } 1071 }else{ 1072 sortOrder = termSortOrder; 1073 } 1074 j++; 1075 pTerm++; 1076 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 1077 /* If the indexed column is the primary key and everything matches 1078 ** so far and none of the ORDER BY terms to the right reference other 1079 ** tables in the join, then we are assured that the index can be used 1080 ** to sort because the primary key is unique and so none of the other 1081 ** columns will make any difference 1082 */ 1083 j = nTerm; 1084 } 1085 } 1086 1087 *pbRev = sortOrder!=0; 1088 if( j>=nTerm ){ 1089 /* All terms of the ORDER BY clause are covered by this index so 1090 ** this index can be used for sorting. */ 1091 return 1; 1092 } 1093 if( pIdx->onError!=OE_None && i==pIdx->nColumn 1094 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 1095 /* All terms of this index match some prefix of the ORDER BY clause 1096 ** and the index is UNIQUE and no terms on the tail of the ORDER BY 1097 ** clause reference other tables in a join. If this is all true then 1098 ** the order by clause is superfluous. */ 1099 return 1; 1100 } 1101 return 0; 1102 } 1103 1104 /* 1105 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied 1106 ** by sorting in order of ROWID. Return true if so and set *pbRev to be 1107 ** true for reverse ROWID and false for forward ROWID order. 1108 */ 1109 static int sortableByRowid( 1110 int base, /* Cursor number for table to be sorted */ 1111 ExprList *pOrderBy, /* The ORDER BY clause */ 1112 ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ 1113 int *pbRev /* Set to 1 if ORDER BY is DESC */ 1114 ){ 1115 Expr *p; 1116 1117 assert( pOrderBy!=0 ); 1118 assert( pOrderBy->nExpr>0 ); 1119 p = pOrderBy->a[0].pExpr; 1120 if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 1121 && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){ 1122 *pbRev = pOrderBy->a[0].sortOrder; 1123 return 1; 1124 } 1125 return 0; 1126 } 1127 1128 /* 1129 ** Prepare a crude estimate of the logarithm of the input value. 1130 ** The results need not be exact. This is only used for estimating 1131 ** the total cost of performing operatings with O(logN) or O(NlogN) 1132 ** complexity. Because N is just a guess, it is no great tragedy if 1133 ** logN is a little off. 1134 */ 1135 static double estLog(double N){ 1136 double logN = 1; 1137 double x = 10; 1138 while( N>x ){ 1139 logN += 1; 1140 x *= 10; 1141 } 1142 return logN; 1143 } 1144 1145 /* 1146 ** Two routines for printing the content of an sqlite3_index_info 1147 ** structure. Used for testing and debugging only. If neither 1148 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 1149 ** are no-ops. 1150 */ 1151 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG) 1152 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 1153 int i; 1154 if( !sqlite3_where_trace ) return; 1155 for(i=0; i<p->nConstraint; i++){ 1156 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 1157 i, 1158 p->aConstraint[i].iColumn, 1159 p->aConstraint[i].iTermOffset, 1160 p->aConstraint[i].op, 1161 p->aConstraint[i].usable); 1162 } 1163 for(i=0; i<p->nOrderBy; i++){ 1164 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 1165 i, 1166 p->aOrderBy[i].iColumn, 1167 p->aOrderBy[i].desc); 1168 } 1169 } 1170 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 1171 int i; 1172 if( !sqlite3_where_trace ) return; 1173 for(i=0; i<p->nConstraint; i++){ 1174 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 1175 i, 1176 p->aConstraintUsage[i].argvIndex, 1177 p->aConstraintUsage[i].omit); 1178 } 1179 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 1180 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 1181 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 1182 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 1183 } 1184 #else 1185 #define TRACE_IDX_INPUTS(A) 1186 #define TRACE_IDX_OUTPUTS(A) 1187 #endif 1188 1189 #ifndef SQLITE_OMIT_VIRTUALTABLE 1190 /* 1191 ** Compute the best index for a virtual table. 1192 ** 1193 ** The best index is computed by the xBestIndex method of the virtual 1194 ** table module. This routine is really just a wrapper that sets up 1195 ** the sqlite3_index_info structure that is used to communicate with 1196 ** xBestIndex. 1197 ** 1198 ** In a join, this routine might be called multiple times for the 1199 ** same virtual table. The sqlite3_index_info structure is created 1200 ** and initialized on the first invocation and reused on all subsequent 1201 ** invocations. The sqlite3_index_info structure is also used when 1202 ** code is generated to access the virtual table. The whereInfoDelete() 1203 ** routine takes care of freeing the sqlite3_index_info structure after 1204 ** everybody has finished with it. 1205 */ 1206 static double bestVirtualIndex( 1207 Parse *pParse, /* The parsing context */ 1208 WhereClause *pWC, /* The WHERE clause */ 1209 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1210 Bitmask notReady, /* Mask of cursors that are not available */ 1211 ExprList *pOrderBy, /* The order by clause */ 1212 int orderByUsable, /* True if we can potential sort */ 1213 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */ 1214 ){ 1215 Table *pTab = pSrc->pTab; 1216 sqlite3_index_info *pIdxInfo; 1217 struct sqlite3_index_constraint *pIdxCons; 1218 struct sqlite3_index_orderby *pIdxOrderBy; 1219 struct sqlite3_index_constraint_usage *pUsage; 1220 WhereTerm *pTerm; 1221 int i, j; 1222 int nOrderBy; 1223 int rc; 1224 1225 /* If the sqlite3_index_info structure has not been previously 1226 ** allocated and initialized for this virtual table, then allocate 1227 ** and initialize it now 1228 */ 1229 pIdxInfo = *ppIdxInfo; 1230 if( pIdxInfo==0 ){ 1231 WhereTerm *pTerm; 1232 int nTerm; 1233 WHERETRACE(("Recomputing index info for %s...\n", pTab->zName)); 1234 1235 /* Count the number of possible WHERE clause constraints referring 1236 ** to this virtual table */ 1237 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1238 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1239 if( pTerm->eOperator==WO_IN ) continue; 1240 nTerm++; 1241 } 1242 1243 /* If the ORDER BY clause contains only columns in the current 1244 ** virtual table then allocate space for the aOrderBy part of 1245 ** the sqlite3_index_info structure. 1246 */ 1247 nOrderBy = 0; 1248 if( pOrderBy ){ 1249 for(i=0; i<pOrderBy->nExpr; i++){ 1250 Expr *pExpr = pOrderBy->a[i].pExpr; 1251 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 1252 } 1253 if( i==pOrderBy->nExpr ){ 1254 nOrderBy = pOrderBy->nExpr; 1255 } 1256 } 1257 1258 /* Allocate the sqlite3_index_info structure 1259 */ 1260 pIdxInfo = sqliteMalloc( sizeof(*pIdxInfo) 1261 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 1262 + sizeof(*pIdxOrderBy)*nOrderBy ); 1263 if( pIdxInfo==0 ){ 1264 sqlite3ErrorMsg(pParse, "out of memory"); 1265 return 0.0; 1266 } 1267 *ppIdxInfo = pIdxInfo; 1268 1269 /* Initialize the structure. The sqlite3_index_info structure contains 1270 ** many fields that are declared "const" to prevent xBestIndex from 1271 ** changing them. We have to do some funky casting in order to 1272 ** initialize those fields. 1273 */ 1274 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; 1275 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 1276 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 1277 *(int*)&pIdxInfo->nConstraint = nTerm; 1278 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 1279 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 1280 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 1281 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 1282 pUsage; 1283 1284 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1285 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1286 if( pTerm->eOperator==WO_IN ) continue; 1287 pIdxCons[j].iColumn = pTerm->leftColumn; 1288 pIdxCons[j].iTermOffset = i; 1289 pIdxCons[j].op = pTerm->eOperator; 1290 /* The direct assignment in the previous line is possible only because 1291 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1292 ** following asserts verify this fact. */ 1293 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1294 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1295 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1296 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1297 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1298 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); 1299 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); 1300 j++; 1301 } 1302 for(i=0; i<nOrderBy; i++){ 1303 Expr *pExpr = pOrderBy->a[i].pExpr; 1304 pIdxOrderBy[i].iColumn = pExpr->iColumn; 1305 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 1306 } 1307 } 1308 1309 /* At this point, the sqlite3_index_info structure that pIdxInfo points 1310 ** to will have been initialized, either during the current invocation or 1311 ** during some prior invocation. Now we just have to customize the 1312 ** details of pIdxInfo for the current invocation and pass it to 1313 ** xBestIndex. 1314 */ 1315 1316 /* The module name must be defined. Also, by this point there must 1317 ** be a pointer to an sqlite3_vtab structure. Otherwise 1318 ** sqlite3ViewGetColumnNames() would have picked up the error. 1319 */ 1320 assert( pTab->azModuleArg && pTab->azModuleArg[0] ); 1321 assert( pTab->pVtab ); 1322 #if 0 1323 if( pTab->pVtab==0 ){ 1324 sqlite3ErrorMsg(pParse, "undefined module %s for table %s", 1325 pTab->azModuleArg[0], pTab->zName); 1326 return 0.0; 1327 } 1328 #endif 1329 1330 /* Set the aConstraint[].usable fields and initialize all 1331 ** output variables to zero. 1332 ** 1333 ** aConstraint[].usable is true for constraints where the right-hand 1334 ** side contains only references to tables to the left of the current 1335 ** table. In other words, if the constraint is of the form: 1336 ** 1337 ** column = expr 1338 ** 1339 ** and we are evaluating a join, then the constraint on column is 1340 ** only valid if all tables referenced in expr occur to the left 1341 ** of the table containing column. 1342 ** 1343 ** The aConstraints[] array contains entries for all constraints 1344 ** on the current table. That way we only have to compute it once 1345 ** even though we might try to pick the best index multiple times. 1346 ** For each attempt at picking an index, the order of tables in the 1347 ** join might be different so we have to recompute the usable flag 1348 ** each time. 1349 */ 1350 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 1351 pUsage = pIdxInfo->aConstraintUsage; 1352 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ 1353 j = pIdxCons->iTermOffset; 1354 pTerm = &pWC->a[j]; 1355 pIdxCons->usable = (pTerm->prereqRight & notReady)==0; 1356 } 1357 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); 1358 if( pIdxInfo->needToFreeIdxStr ){ 1359 sqlite3_free(pIdxInfo->idxStr); 1360 } 1361 pIdxInfo->idxStr = 0; 1362 pIdxInfo->idxNum = 0; 1363 pIdxInfo->needToFreeIdxStr = 0; 1364 pIdxInfo->orderByConsumed = 0; 1365 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0; 1366 nOrderBy = pIdxInfo->nOrderBy; 1367 if( pIdxInfo->nOrderBy && !orderByUsable ){ 1368 *(int*)&pIdxInfo->nOrderBy = 0; 1369 } 1370 1371 sqlite3SafetyOff(pParse->db); 1372 WHERETRACE(("xBestIndex for %s\n", pTab->zName)); 1373 TRACE_IDX_INPUTS(pIdxInfo); 1374 rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo); 1375 TRACE_IDX_OUTPUTS(pIdxInfo); 1376 if( rc!=SQLITE_OK ){ 1377 if( rc==SQLITE_NOMEM ){ 1378 sqlite3FailedMalloc(); 1379 }else { 1380 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1381 } 1382 sqlite3SafetyOn(pParse->db); 1383 }else{ 1384 rc = sqlite3SafetyOn(pParse->db); 1385 } 1386 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 1387 1388 return pIdxInfo->estimatedCost; 1389 } 1390 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1391 1392 /* 1393 ** Find the best index for accessing a particular table. Return a pointer 1394 ** to the index, flags that describe how the index should be used, the 1395 ** number of equality constraints, and the "cost" for this index. 1396 ** 1397 ** The lowest cost index wins. The cost is an estimate of the amount of 1398 ** CPU and disk I/O need to process the request using the selected index. 1399 ** Factors that influence cost include: 1400 ** 1401 ** * The estimated number of rows that will be retrieved. (The 1402 ** fewer the better.) 1403 ** 1404 ** * Whether or not sorting must occur. 1405 ** 1406 ** * Whether or not there must be separate lookups in the 1407 ** index and in the main table. 1408 ** 1409 */ 1410 static double bestIndex( 1411 Parse *pParse, /* The parsing context */ 1412 WhereClause *pWC, /* The WHERE clause */ 1413 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1414 Bitmask notReady, /* Mask of cursors that are not available */ 1415 ExprList *pOrderBy, /* The order by clause */ 1416 Index **ppIndex, /* Make *ppIndex point to the best index */ 1417 int *pFlags, /* Put flags describing this choice in *pFlags */ 1418 int *pnEq /* Put the number of == or IN constraints here */ 1419 ){ 1420 WhereTerm *pTerm; 1421 Index *bestIdx = 0; /* Index that gives the lowest cost */ 1422 double lowestCost; /* The cost of using bestIdx */ 1423 int bestFlags = 0; /* Flags associated with bestIdx */ 1424 int bestNEq = 0; /* Best value for nEq */ 1425 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ 1426 Index *pProbe; /* An index we are evaluating */ 1427 int rev; /* True to scan in reverse order */ 1428 int flags; /* Flags associated with pProbe */ 1429 int nEq; /* Number of == or IN constraints */ 1430 int eqTermMask; /* Mask of valid equality operators */ 1431 double cost; /* Cost of using pProbe */ 1432 1433 WHERETRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady)); 1434 lowestCost = SQLITE_BIG_DBL; 1435 pProbe = pSrc->pTab->pIndex; 1436 1437 /* If the table has no indices and there are no terms in the where 1438 ** clause that refer to the ROWID, then we will never be able to do 1439 ** anything other than a full table scan on this table. We might as 1440 ** well put it first in the join order. That way, perhaps it can be 1441 ** referenced by other tables in the join. 1442 */ 1443 if( pProbe==0 && 1444 findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 && 1445 (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){ 1446 *pFlags = 0; 1447 *ppIndex = 0; 1448 *pnEq = 0; 1449 return 0.0; 1450 } 1451 1452 /* Check for a rowid=EXPR or rowid IN (...) constraints 1453 */ 1454 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); 1455 if( pTerm ){ 1456 Expr *pExpr; 1457 *ppIndex = 0; 1458 bestFlags = WHERE_ROWID_EQ; 1459 if( pTerm->eOperator & WO_EQ ){ 1460 /* Rowid== is always the best pick. Look no further. Because only 1461 ** a single row is generated, output is always in sorted order */ 1462 *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE; 1463 *pnEq = 1; 1464 WHERETRACE(("... best is rowid\n")); 1465 return 0.0; 1466 }else if( (pExpr = pTerm->pExpr)->pList!=0 ){ 1467 /* Rowid IN (LIST): cost is NlogN where N is the number of list 1468 ** elements. */ 1469 lowestCost = pExpr->pList->nExpr; 1470 lowestCost *= estLog(lowestCost); 1471 }else{ 1472 /* Rowid IN (SELECT): cost is NlogN where N is the number of rows 1473 ** in the result of the inner select. We have no way to estimate 1474 ** that value so make a wild guess. */ 1475 lowestCost = 200; 1476 } 1477 WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost)); 1478 } 1479 1480 /* Estimate the cost of a table scan. If we do not know how many 1481 ** entries are in the table, use 1 million as a guess. 1482 */ 1483 cost = pProbe ? pProbe->aiRowEst[0] : 1000000; 1484 WHERETRACE(("... table scan base cost: %.9g\n", cost)); 1485 flags = WHERE_ROWID_RANGE; 1486 1487 /* Check for constraints on a range of rowids in a table scan. 1488 */ 1489 pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0); 1490 if( pTerm ){ 1491 if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){ 1492 flags |= WHERE_TOP_LIMIT; 1493 cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds or rows */ 1494 } 1495 if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){ 1496 flags |= WHERE_BTM_LIMIT; 1497 cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */ 1498 } 1499 WHERETRACE(("... rowid range reduces cost to %.9g\n", cost)); 1500 }else{ 1501 flags = 0; 1502 } 1503 1504 /* If the table scan does not satisfy the ORDER BY clause, increase 1505 ** the cost by NlogN to cover the expense of sorting. */ 1506 if( pOrderBy ){ 1507 if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){ 1508 flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE; 1509 if( rev ){ 1510 flags |= WHERE_REVERSE; 1511 } 1512 }else{ 1513 cost += cost*estLog(cost); 1514 WHERETRACE(("... sorting increases cost to %.9g\n", cost)); 1515 } 1516 } 1517 if( cost<lowestCost ){ 1518 lowestCost = cost; 1519 bestFlags = flags; 1520 } 1521 1522 /* If the pSrc table is the right table of a LEFT JOIN then we may not 1523 ** use an index to satisfy IS NULL constraints on that table. This is 1524 ** because columns might end up being NULL if the table does not match - 1525 ** a circumstance which the index cannot help us discover. Ticket #2177. 1526 */ 1527 if( (pSrc->jointype & JT_LEFT)!=0 ){ 1528 eqTermMask = WO_EQ|WO_IN; 1529 }else{ 1530 eqTermMask = WO_EQ|WO_IN|WO_ISNULL; 1531 } 1532 1533 /* Look at each index. 1534 */ 1535 for(; pProbe; pProbe=pProbe->pNext){ 1536 int i; /* Loop counter */ 1537 double inMultiplier = 1; 1538 1539 WHERETRACE(("... index %s:\n", pProbe->zName)); 1540 1541 /* Count the number of columns in the index that are satisfied 1542 ** by x=EXPR constraints or x IN (...) constraints. 1543 */ 1544 flags = 0; 1545 for(i=0; i<pProbe->nColumn; i++){ 1546 int j = pProbe->aiColumn[i]; 1547 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe); 1548 if( pTerm==0 ) break; 1549 flags |= WHERE_COLUMN_EQ; 1550 if( pTerm->eOperator & WO_IN ){ 1551 Expr *pExpr = pTerm->pExpr; 1552 flags |= WHERE_COLUMN_IN; 1553 if( pExpr->pSelect!=0 ){ 1554 inMultiplier *= 25; 1555 }else if( pExpr->pList!=0 ){ 1556 inMultiplier *= pExpr->pList->nExpr + 1; 1557 } 1558 } 1559 } 1560 cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier); 1561 nEq = i; 1562 if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0 1563 && nEq==pProbe->nColumn ){ 1564 flags |= WHERE_UNIQUE; 1565 } 1566 WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n", nEq, inMultiplier, cost)); 1567 1568 /* Look for range constraints 1569 */ 1570 if( nEq<pProbe->nColumn ){ 1571 int j = pProbe->aiColumn[nEq]; 1572 pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe); 1573 if( pTerm ){ 1574 flags |= WHERE_COLUMN_RANGE; 1575 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){ 1576 flags |= WHERE_TOP_LIMIT; 1577 cost /= 3; 1578 } 1579 if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){ 1580 flags |= WHERE_BTM_LIMIT; 1581 cost /= 3; 1582 } 1583 WHERETRACE(("...... range reduces cost to %.9g\n", cost)); 1584 } 1585 } 1586 1587 /* Add the additional cost of sorting if that is a factor. 1588 */ 1589 if( pOrderBy ){ 1590 if( (flags & WHERE_COLUMN_IN)==0 && 1591 isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){ 1592 if( flags==0 ){ 1593 flags = WHERE_COLUMN_RANGE; 1594 } 1595 flags |= WHERE_ORDERBY; 1596 if( rev ){ 1597 flags |= WHERE_REVERSE; 1598 } 1599 }else{ 1600 cost += cost*estLog(cost); 1601 WHERETRACE(("...... orderby increases cost to %.9g\n", cost)); 1602 } 1603 } 1604 1605 /* Check to see if we can get away with using just the index without 1606 ** ever reading the table. If that is the case, then halve the 1607 ** cost of this index. 1608 */ 1609 if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){ 1610 Bitmask m = pSrc->colUsed; 1611 int j; 1612 for(j=0; j<pProbe->nColumn; j++){ 1613 int x = pProbe->aiColumn[j]; 1614 if( x<BMS-1 ){ 1615 m &= ~(((Bitmask)1)<<x); 1616 } 1617 } 1618 if( m==0 ){ 1619 flags |= WHERE_IDX_ONLY; 1620 cost /= 2; 1621 WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost)); 1622 } 1623 } 1624 1625 /* If this index has achieved the lowest cost so far, then use it. 1626 */ 1627 if( cost < lowestCost ){ 1628 bestIdx = pProbe; 1629 lowestCost = cost; 1630 assert( flags!=0 ); 1631 bestFlags = flags; 1632 bestNEq = nEq; 1633 } 1634 } 1635 1636 /* Report the best result 1637 */ 1638 *ppIndex = bestIdx; 1639 WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n", 1640 bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq)); 1641 *pFlags = bestFlags | eqTermMask; 1642 *pnEq = bestNEq; 1643 return lowestCost; 1644 } 1645 1646 1647 /* 1648 ** Disable a term in the WHERE clause. Except, do not disable the term 1649 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 1650 ** or USING clause of that join. 1651 ** 1652 ** Consider the term t2.z='ok' in the following queries: 1653 ** 1654 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 1655 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 1656 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 1657 ** 1658 ** The t2.z='ok' is disabled in the in (2) because it originates 1659 ** in the ON clause. The term is disabled in (3) because it is not part 1660 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 1661 ** 1662 ** Disabling a term causes that term to not be tested in the inner loop 1663 ** of the join. Disabling is an optimization. When terms are satisfied 1664 ** by indices, we disable them to prevent redundant tests in the inner 1665 ** loop. We would get the correct results if nothing were ever disabled, 1666 ** but joins might run a little slower. The trick is to disable as much 1667 ** as we can without disabling too much. If we disabled in (1), we'd get 1668 ** the wrong answer. See ticket #813. 1669 */ 1670 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 1671 if( pTerm 1672 && (pTerm->flags & TERM_CODED)==0 1673 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 1674 ){ 1675 pTerm->flags |= TERM_CODED; 1676 if( pTerm->iParent>=0 ){ 1677 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; 1678 if( (--pOther->nChild)==0 ){ 1679 disableTerm(pLevel, pOther); 1680 } 1681 } 1682 } 1683 } 1684 1685 /* 1686 ** Generate code that builds a probe for an index. 1687 ** 1688 ** There should be nColumn values on the stack. The index 1689 ** to be probed is pIdx. Pop the values from the stack and 1690 ** replace them all with a single record that is the index 1691 ** problem. 1692 */ 1693 static void buildIndexProbe( 1694 Vdbe *v, /* Generate code into this VM */ 1695 int nColumn, /* The number of columns to check for NULL */ 1696 Index *pIdx /* Index that we will be searching */ 1697 ){ 1698 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 1699 sqlite3IndexAffinityStr(v, pIdx); 1700 } 1701 1702 1703 /* 1704 ** Generate code for a single equality term of the WHERE clause. An equality 1705 ** term can be either X=expr or X IN (...). pTerm is the term to be 1706 ** coded. 1707 ** 1708 ** The current value for the constraint is left on the top of the stack. 1709 ** 1710 ** For a constraint of the form X=expr, the expression is evaluated and its 1711 ** result is left on the stack. For constraints of the form X IN (...) 1712 ** this routine sets up a loop that will iterate over all values of X. 1713 */ 1714 static void codeEqualityTerm( 1715 Parse *pParse, /* The parsing context */ 1716 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 1717 WhereLevel *pLevel /* When level of the FROM clause we are working on */ 1718 ){ 1719 Expr *pX = pTerm->pExpr; 1720 Vdbe *v = pParse->pVdbe; 1721 if( pX->op==TK_EQ ){ 1722 sqlite3ExprCode(pParse, pX->pRight); 1723 }else if( pX->op==TK_ISNULL ){ 1724 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1725 #ifndef SQLITE_OMIT_SUBQUERY 1726 }else{ 1727 int iTab; 1728 struct InLoop *pIn; 1729 1730 assert( pX->op==TK_IN ); 1731 sqlite3CodeSubselect(pParse, pX); 1732 iTab = pX->iTable; 1733 sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0); 1734 VdbeComment((v, "# %.*s", pX->span.n, pX->span.z)); 1735 if( pLevel->nIn==0 ){ 1736 pLevel->nxt = sqlite3VdbeMakeLabel(v); 1737 } 1738 pLevel->nIn++; 1739 pLevel->aInLoop = sqliteReallocOrFree(pLevel->aInLoop, 1740 sizeof(pLevel->aInLoop[0])*pLevel->nIn); 1741 pIn = pLevel->aInLoop; 1742 if( pIn ){ 1743 pIn += pLevel->nIn - 1; 1744 pIn->iCur = iTab; 1745 pIn->topAddr = sqlite3VdbeAddOp(v, OP_Column, iTab, 0); 1746 sqlite3VdbeAddOp(v, OP_IsNull, -1, 0); 1747 }else{ 1748 pLevel->nIn = 0; 1749 } 1750 #endif 1751 } 1752 disableTerm(pLevel, pTerm); 1753 } 1754 1755 /* 1756 ** Generate code that will evaluate all == and IN constraints for an 1757 ** index. The values for all constraints are left on the stack. 1758 ** 1759 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 1760 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 1761 ** The index has as many as three equality constraints, but in this 1762 ** example, the third "c" value is an inequality. So only two 1763 ** constraints are coded. This routine will generate code to evaluate 1764 ** a==5 and b IN (1,2,3). The current values for a and b will be left 1765 ** on the stack - a is the deepest and b the shallowest. 1766 ** 1767 ** In the example above nEq==2. But this subroutine works for any value 1768 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 1769 ** The only thing it does is allocate the pLevel->iMem memory cell. 1770 ** 1771 ** This routine always allocates at least one memory cell and puts 1772 ** the address of that memory cell in pLevel->iMem. The code that 1773 ** calls this routine will use pLevel->iMem to store the termination 1774 ** key value of the loop. If one or more IN operators appear, then 1775 ** this routine allocates an additional nEq memory cells for internal 1776 ** use. 1777 */ 1778 static void codeAllEqualityTerms( 1779 Parse *pParse, /* Parsing context */ 1780 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 1781 WhereClause *pWC, /* The WHERE clause */ 1782 Bitmask notReady /* Which parts of FROM have not yet been coded */ 1783 ){ 1784 int nEq = pLevel->nEq; /* The number of == or IN constraints to code */ 1785 int termsInMem = 0; /* If true, store value in mem[] cells */ 1786 Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */ 1787 Index *pIdx = pLevel->pIdx; /* The index being used for this loop */ 1788 int iCur = pLevel->iTabCur; /* The cursor of the table */ 1789 WhereTerm *pTerm; /* A single constraint term */ 1790 int j; /* Loop counter */ 1791 1792 /* Figure out how many memory cells we will need then allocate them. 1793 ** We always need at least one used to store the loop terminator 1794 ** value. If there are IN operators we'll need one for each == or 1795 ** IN constraint. 1796 */ 1797 pLevel->iMem = pParse->nMem++; 1798 if( pLevel->flags & WHERE_COLUMN_IN ){ 1799 pParse->nMem += pLevel->nEq; 1800 termsInMem = 1; 1801 } 1802 1803 /* Evaluate the equality constraints 1804 */ 1805 assert( pIdx->nColumn>=nEq ); 1806 for(j=0; j<nEq; j++){ 1807 int k = pIdx->aiColumn[j]; 1808 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx); 1809 if( pTerm==0 ) break; 1810 assert( (pTerm->flags & TERM_CODED)==0 ); 1811 codeEqualityTerm(pParse, pTerm, pLevel); 1812 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ 1813 sqlite3VdbeAddOp(v, OP_IsNull, termsInMem ? -1 : -(j+1), pLevel->brk); 1814 } 1815 if( termsInMem ){ 1816 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1); 1817 } 1818 } 1819 1820 /* Make sure all the constraint values are on the top of the stack 1821 */ 1822 if( termsInMem ){ 1823 for(j=0; j<nEq; j++){ 1824 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0); 1825 } 1826 } 1827 } 1828 1829 #if defined(SQLITE_TEST) 1830 /* 1831 ** The following variable holds a text description of query plan generated 1832 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin 1833 ** overwrites the previous. This information is used for testing and 1834 ** analysis only. 1835 */ 1836 char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ 1837 static int nQPlan = 0; /* Next free slow in _query_plan[] */ 1838 1839 #endif /* SQLITE_TEST */ 1840 1841 1842 /* 1843 ** Free a WhereInfo structure 1844 */ 1845 static void whereInfoFree(WhereInfo *pWInfo){ 1846 if( pWInfo ){ 1847 int i; 1848 for(i=0; i<pWInfo->nLevel; i++){ 1849 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; 1850 if( pInfo ){ 1851 if( pInfo->needToFreeIdxStr ){ 1852 /* Coverage: Don't think this can be reached. By the time this 1853 ** function is called, the index-strings have been passed 1854 ** to the vdbe layer for deletion. 1855 */ 1856 sqlite3_free(pInfo->idxStr); 1857 } 1858 sqliteFree(pInfo); 1859 } 1860 } 1861 sqliteFree(pWInfo); 1862 } 1863 } 1864 1865 1866 /* 1867 ** Generate the beginning of the loop used for WHERE clause processing. 1868 ** The return value is a pointer to an opaque structure that contains 1869 ** information needed to terminate the loop. Later, the calling routine 1870 ** should invoke sqlite3WhereEnd() with the return value of this function 1871 ** in order to complete the WHERE clause processing. 1872 ** 1873 ** If an error occurs, this routine returns NULL. 1874 ** 1875 ** The basic idea is to do a nested loop, one loop for each table in 1876 ** the FROM clause of a select. (INSERT and UPDATE statements are the 1877 ** same as a SELECT with only a single table in the FROM clause.) For 1878 ** example, if the SQL is this: 1879 ** 1880 ** SELECT * FROM t1, t2, t3 WHERE ...; 1881 ** 1882 ** Then the code generated is conceptually like the following: 1883 ** 1884 ** foreach row1 in t1 do \ Code generated 1885 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 1886 ** foreach row3 in t3 do / 1887 ** ... 1888 ** end \ Code generated 1889 ** end |-- by sqlite3WhereEnd() 1890 ** end / 1891 ** 1892 ** Note that the loops might not be nested in the order in which they 1893 ** appear in the FROM clause if a different order is better able to make 1894 ** use of indices. Note also that when the IN operator appears in 1895 ** the WHERE clause, it might result in additional nested loops for 1896 ** scanning through all values on the right-hand side of the IN. 1897 ** 1898 ** There are Btree cursors associated with each table. t1 uses cursor 1899 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 1900 ** And so forth. This routine generates code to open those VDBE cursors 1901 ** and sqlite3WhereEnd() generates the code to close them. 1902 ** 1903 ** The code that sqlite3WhereBegin() generates leaves the cursors named 1904 ** in pTabList pointing at their appropriate entries. The [...] code 1905 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 1906 ** data from the various tables of the loop. 1907 ** 1908 ** If the WHERE clause is empty, the foreach loops must each scan their 1909 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 1910 ** the tables have indices and there are terms in the WHERE clause that 1911 ** refer to those indices, a complete table scan can be avoided and the 1912 ** code will run much faster. Most of the work of this routine is checking 1913 ** to see if there are indices that can be used to speed up the loop. 1914 ** 1915 ** Terms of the WHERE clause are also used to limit which rows actually 1916 ** make it to the "..." in the middle of the loop. After each "foreach", 1917 ** terms of the WHERE clause that use only terms in that loop and outer 1918 ** loops are evaluated and if false a jump is made around all subsequent 1919 ** inner loops (or around the "..." if the test occurs within the inner- 1920 ** most loop) 1921 ** 1922 ** OUTER JOINS 1923 ** 1924 ** An outer join of tables t1 and t2 is conceptally coded as follows: 1925 ** 1926 ** foreach row1 in t1 do 1927 ** flag = 0 1928 ** foreach row2 in t2 do 1929 ** start: 1930 ** ... 1931 ** flag = 1 1932 ** end 1933 ** if flag==0 then 1934 ** move the row2 cursor to a null row 1935 ** goto start 1936 ** fi 1937 ** end 1938 ** 1939 ** ORDER BY CLAUSE PROCESSING 1940 ** 1941 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, 1942 ** if there is one. If there is no ORDER BY clause or if this routine 1943 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. 1944 ** 1945 ** If an index can be used so that the natural output order of the table 1946 ** scan is correct for the ORDER BY clause, then that index is used and 1947 ** *ppOrderBy is set to NULL. This is an optimization that prevents an 1948 ** unnecessary sort of the result set if an index appropriate for the 1949 ** ORDER BY clause already exists. 1950 ** 1951 ** If the where clause loops cannot be arranged to provide the correct 1952 ** output order, then the *ppOrderBy is unchanged. 1953 */ 1954 WhereInfo *sqlite3WhereBegin( 1955 Parse *pParse, /* The parser context */ 1956 SrcList *pTabList, /* A list of all tables to be scanned */ 1957 Expr *pWhere, /* The WHERE clause */ 1958 ExprList **ppOrderBy /* An ORDER BY clause, or NULL */ 1959 ){ 1960 int i; /* Loop counter */ 1961 WhereInfo *pWInfo; /* Will become the return value of this function */ 1962 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 1963 int brk, cont = 0; /* Addresses used during code generation */ 1964 Bitmask notReady; /* Cursors that are not yet positioned */ 1965 WhereTerm *pTerm; /* A single term in the WHERE clause */ 1966 ExprMaskSet maskSet; /* The expression mask set */ 1967 WhereClause wc; /* The WHERE clause is divided into these terms */ 1968 struct SrcList_item *pTabItem; /* A single entry from pTabList */ 1969 WhereLevel *pLevel; /* A single level in the pWInfo list */ 1970 int iFrom; /* First unused FROM clause element */ 1971 int andFlags; /* AND-ed combination of all wc.a[].flags */ 1972 1973 /* The number of tables in the FROM clause is limited by the number of 1974 ** bits in a Bitmask 1975 */ 1976 if( pTabList->nSrc>BMS ){ 1977 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 1978 return 0; 1979 } 1980 1981 /* Split the WHERE clause into separate subexpressions where each 1982 ** subexpression is separated by an AND operator. 1983 */ 1984 initMaskSet(&maskSet); 1985 whereClauseInit(&wc, pParse, &maskSet); 1986 whereSplit(&wc, pWhere, TK_AND); 1987 1988 /* Allocate and initialize the WhereInfo structure that will become the 1989 ** return value. 1990 */ 1991 pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel)); 1992 if( sqlite3MallocFailed() ){ 1993 goto whereBeginNoMem; 1994 } 1995 pWInfo->nLevel = pTabList->nSrc; 1996 pWInfo->pParse = pParse; 1997 pWInfo->pTabList = pTabList; 1998 pWInfo->iBreak = sqlite3VdbeMakeLabel(v); 1999 2000 /* Special case: a WHERE clause that is constant. Evaluate the 2001 ** expression and either jump over all of the code or fall thru. 2002 */ 2003 if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){ 2004 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1); 2005 pWhere = 0; 2006 } 2007 2008 /* Analyze all of the subexpressions. Note that exprAnalyze() might 2009 ** add new virtual terms onto the end of the WHERE clause. We do not 2010 ** want to analyze these virtual terms, so start analyzing at the end 2011 ** and work forward so that the added virtual terms are never processed. 2012 */ 2013 for(i=0; i<pTabList->nSrc; i++){ 2014 createMask(&maskSet, pTabList->a[i].iCursor); 2015 } 2016 exprAnalyzeAll(pTabList, &wc); 2017 if( sqlite3MallocFailed() ){ 2018 goto whereBeginNoMem; 2019 } 2020 2021 /* Chose the best index to use for each table in the FROM clause. 2022 ** 2023 ** This loop fills in the following fields: 2024 ** 2025 ** pWInfo->a[].pIdx The index to use for this level of the loop. 2026 ** pWInfo->a[].flags WHERE_xxx flags associated with pIdx 2027 ** pWInfo->a[].nEq The number of == and IN constraints 2028 ** pWInfo->a[].iFrom When term of the FROM clause is being coded 2029 ** pWInfo->a[].iTabCur The VDBE cursor for the database table 2030 ** pWInfo->a[].iIdxCur The VDBE cursor for the index 2031 ** 2032 ** This loop also figures out the nesting order of tables in the FROM 2033 ** clause. 2034 */ 2035 notReady = ~(Bitmask)0; 2036 pTabItem = pTabList->a; 2037 pLevel = pWInfo->a; 2038 andFlags = ~0; 2039 WHERETRACE(("*** Optimizer Start ***\n")); 2040 for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2041 Index *pIdx; /* Index for FROM table at pTabItem */ 2042 int flags; /* Flags asssociated with pIdx */ 2043 int nEq; /* Number of == or IN constraints */ 2044 double cost; /* The cost for pIdx */ 2045 int j; /* For looping over FROM tables */ 2046 Index *pBest = 0; /* The best index seen so far */ 2047 int bestFlags = 0; /* Flags associated with pBest */ 2048 int bestNEq = 0; /* nEq associated with pBest */ 2049 double lowestCost; /* Cost of the pBest */ 2050 int bestJ = 0; /* The value of j */ 2051 Bitmask m; /* Bitmask value for j or bestJ */ 2052 int once = 0; /* True when first table is seen */ 2053 sqlite3_index_info *pIndex; /* Current virtual index */ 2054 2055 lowestCost = SQLITE_BIG_DBL; 2056 for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){ 2057 int doNotReorder; /* True if this table should not be reordered */ 2058 2059 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; 2060 if( once && doNotReorder ) break; 2061 m = getMask(&maskSet, pTabItem->iCursor); 2062 if( (m & notReady)==0 ){ 2063 if( j==iFrom ) iFrom++; 2064 continue; 2065 } 2066 assert( pTabItem->pTab ); 2067 #ifndef SQLITE_OMIT_VIRTUALTABLE 2068 if( IsVirtual(pTabItem->pTab) ){ 2069 sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo; 2070 cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady, 2071 ppOrderBy ? *ppOrderBy : 0, i==0, 2072 ppIdxInfo); 2073 flags = WHERE_VIRTUALTABLE; 2074 pIndex = *ppIdxInfo; 2075 if( pIndex && pIndex->orderByConsumed ){ 2076 flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY; 2077 } 2078 pIdx = 0; 2079 nEq = 0; 2080 if( (SQLITE_BIG_DBL/2.0)<cost ){ 2081 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the 2082 ** inital value of lowestCost in this loop. If it is, then 2083 ** the (cost<lowestCost) test below will never be true and 2084 ** pLevel->pBestIdx never set. 2085 */ 2086 cost = (SQLITE_BIG_DBL/2.0); 2087 } 2088 }else 2089 #endif 2090 { 2091 cost = bestIndex(pParse, &wc, pTabItem, notReady, 2092 (i==0 && ppOrderBy) ? *ppOrderBy : 0, 2093 &pIdx, &flags, &nEq); 2094 pIndex = 0; 2095 } 2096 if( cost<lowestCost ){ 2097 once = 1; 2098 lowestCost = cost; 2099 pBest = pIdx; 2100 bestFlags = flags; 2101 bestNEq = nEq; 2102 bestJ = j; 2103 pLevel->pBestIdx = pIndex; 2104 } 2105 if( doNotReorder ) break; 2106 } 2107 WHERETRACE(("*** Optimizer choose table %d for loop %d\n", bestJ, 2108 pLevel-pWInfo->a)); 2109 if( (bestFlags & WHERE_ORDERBY)!=0 ){ 2110 *ppOrderBy = 0; 2111 } 2112 andFlags &= bestFlags; 2113 pLevel->flags = bestFlags; 2114 pLevel->pIdx = pBest; 2115 pLevel->nEq = bestNEq; 2116 pLevel->aInLoop = 0; 2117 pLevel->nIn = 0; 2118 if( pBest ){ 2119 pLevel->iIdxCur = pParse->nTab++; 2120 }else{ 2121 pLevel->iIdxCur = -1; 2122 } 2123 notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor); 2124 pLevel->iFrom = bestJ; 2125 } 2126 WHERETRACE(("*** Optimizer Finished ***\n")); 2127 2128 /* If the total query only selects a single row, then the ORDER BY 2129 ** clause is irrelevant. 2130 */ 2131 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ 2132 *ppOrderBy = 0; 2133 } 2134 2135 /* Open all tables in the pTabList and any indices selected for 2136 ** searching those tables. 2137 */ 2138 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ 2139 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2140 Table *pTab; /* Table to open */ 2141 Index *pIx; /* Index used to access pTab (if any) */ 2142 int iDb; /* Index of database containing table/index */ 2143 int iIdxCur = pLevel->iIdxCur; 2144 2145 #ifndef SQLITE_OMIT_EXPLAIN 2146 if( pParse->explain==2 ){ 2147 char *zMsg; 2148 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 2149 zMsg = sqlite3MPrintf("TABLE %s", pItem->zName); 2150 if( pItem->zAlias ){ 2151 zMsg = sqlite3MPrintf("%z AS %s", zMsg, pItem->zAlias); 2152 } 2153 if( (pIx = pLevel->pIdx)!=0 ){ 2154 zMsg = sqlite3MPrintf("%z WITH INDEX %s", zMsg, pIx->zName); 2155 }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 2156 zMsg = sqlite3MPrintf("%z USING PRIMARY KEY", zMsg); 2157 } 2158 #ifndef SQLITE_OMIT_VIRTUALTABLE 2159 else if( pLevel->pBestIdx ){ 2160 sqlite3_index_info *pBestIdx = pLevel->pBestIdx; 2161 zMsg = sqlite3MPrintf("%z VIRTUAL TABLE INDEX %d:%s", zMsg, 2162 pBestIdx->idxNum, pBestIdx->idxStr); 2163 } 2164 #endif 2165 if( pLevel->flags & WHERE_ORDERBY ){ 2166 zMsg = sqlite3MPrintf("%z ORDER BY", zMsg); 2167 } 2168 sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC); 2169 } 2170 #endif /* SQLITE_OMIT_EXPLAIN */ 2171 pTabItem = &pTabList->a[pLevel->iFrom]; 2172 pTab = pTabItem->pTab; 2173 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2174 if( pTab->isEphem || pTab->pSelect ) continue; 2175 #ifndef SQLITE_OMIT_VIRTUALTABLE 2176 if( pLevel->pBestIdx ){ 2177 int iCur = pTabItem->iCursor; 2178 sqlite3VdbeOp3(v, OP_VOpen, iCur, 0, (const char*)pTab->pVtab, P3_VTAB); 2179 }else 2180 #endif 2181 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ 2182 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead); 2183 if( pTab->nCol<(sizeof(Bitmask)*8) ){ 2184 Bitmask b = pTabItem->colUsed; 2185 int n = 0; 2186 for(; b; b=b>>1, n++){} 2187 sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n); 2188 assert( n<=pTab->nCol ); 2189 } 2190 }else{ 2191 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2192 } 2193 pLevel->iTabCur = pTabItem->iCursor; 2194 if( (pIx = pLevel->pIdx)!=0 ){ 2195 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); 2196 assert( pIx->pSchema==pTab->pSchema ); 2197 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 2198 VdbeComment((v, "# %s", pIx->zName)); 2199 sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum, 2200 (char*)pKey, P3_KEYINFO_HANDOFF); 2201 } 2202 if( (pLevel->flags & (WHERE_IDX_ONLY|WHERE_COLUMN_RANGE))!=0 ){ 2203 /* Only call OP_SetNumColumns on the index if we might later use 2204 ** OP_Column on the index. */ 2205 sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1); 2206 } 2207 sqlite3CodeVerifySchema(pParse, iDb); 2208 } 2209 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 2210 2211 /* Generate the code to do the search. Each iteration of the for 2212 ** loop below generates code for a single nested loop of the VM 2213 ** program. 2214 */ 2215 notReady = ~(Bitmask)0; 2216 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2217 int j; 2218 int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */ 2219 Index *pIdx; /* The index we will be using */ 2220 int nxt; /* Where to jump to continue with the next IN case */ 2221 int iIdxCur; /* The VDBE cursor for the index */ 2222 int omitTable; /* True if we use the index only */ 2223 int bRev; /* True if we need to scan in reverse order */ 2224 2225 pTabItem = &pTabList->a[pLevel->iFrom]; 2226 iCur = pTabItem->iCursor; 2227 pIdx = pLevel->pIdx; 2228 iIdxCur = pLevel->iIdxCur; 2229 bRev = (pLevel->flags & WHERE_REVERSE)!=0; 2230 omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0; 2231 2232 /* Create labels for the "break" and "continue" instructions 2233 ** for the current loop. Jump to brk to break out of a loop. 2234 ** Jump to cont to go immediately to the next iteration of the 2235 ** loop. 2236 ** 2237 ** When there is an IN operator, we also have a "nxt" label that 2238 ** means to continue with the next IN value combination. When 2239 ** there are no IN operators in the constraints, the "nxt" label 2240 ** is the same as "brk". 2241 */ 2242 brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v); 2243 cont = pLevel->cont = sqlite3VdbeMakeLabel(v); 2244 2245 /* If this is the right table of a LEFT OUTER JOIN, allocate and 2246 ** initialize a memory cell that records if this table matches any 2247 ** row of the left table of the join. 2248 */ 2249 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ 2250 if( !pParse->nMem ) pParse->nMem++; 2251 pLevel->iLeftJoin = pParse->nMem++; 2252 sqlite3VdbeAddOp(v, OP_MemInt, 0, pLevel->iLeftJoin); 2253 VdbeComment((v, "# init LEFT JOIN no-match flag")); 2254 } 2255 2256 #ifndef SQLITE_OMIT_VIRTUALTABLE 2257 if( pLevel->pBestIdx ){ 2258 /* Case 0: The table is a virtual-table. Use the VFilter and VNext 2259 ** to access the data. 2260 */ 2261 int j; 2262 sqlite3_index_info *pBestIdx = pLevel->pBestIdx; 2263 int nConstraint = pBestIdx->nConstraint; 2264 struct sqlite3_index_constraint_usage *aUsage = 2265 pBestIdx->aConstraintUsage; 2266 const struct sqlite3_index_constraint *aConstraint = 2267 pBestIdx->aConstraint; 2268 2269 for(j=1; j<=nConstraint; j++){ 2270 int k; 2271 for(k=0; k<nConstraint; k++){ 2272 if( aUsage[k].argvIndex==j ){ 2273 int iTerm = aConstraint[k].iTermOffset; 2274 sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight); 2275 break; 2276 } 2277 } 2278 if( k==nConstraint ) break; 2279 } 2280 sqlite3VdbeAddOp(v, OP_Integer, j-1, 0); 2281 sqlite3VdbeAddOp(v, OP_Integer, pBestIdx->idxNum, 0); 2282 sqlite3VdbeOp3(v, OP_VFilter, iCur, brk, pBestIdx->idxStr, 2283 pBestIdx->needToFreeIdxStr ? P3_MPRINTF : P3_STATIC); 2284 pBestIdx->needToFreeIdxStr = 0; 2285 for(j=0; j<pBestIdx->nConstraint; j++){ 2286 if( aUsage[j].omit ){ 2287 int iTerm = aConstraint[j].iTermOffset; 2288 disableTerm(pLevel, &wc.a[iTerm]); 2289 } 2290 } 2291 pLevel->op = OP_VNext; 2292 pLevel->p1 = iCur; 2293 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2294 }else 2295 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 2296 2297 if( pLevel->flags & WHERE_ROWID_EQ ){ 2298 /* Case 1: We can directly reference a single row using an 2299 ** equality comparison against the ROWID field. Or 2300 ** we reference multiple rows using a "rowid IN (...)" 2301 ** construct. 2302 */ 2303 pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0); 2304 assert( pTerm!=0 ); 2305 assert( pTerm->pExpr!=0 ); 2306 assert( pTerm->leftCursor==iCur ); 2307 assert( omitTable==0 ); 2308 codeEqualityTerm(pParse, pTerm, pLevel); 2309 nxt = pLevel->nxt; 2310 sqlite3VdbeAddOp(v, OP_MustBeInt, 1, nxt); 2311 sqlite3VdbeAddOp(v, OP_NotExists, iCur, nxt); 2312 VdbeComment((v, "pk")); 2313 pLevel->op = OP_Noop; 2314 }else if( pLevel->flags & WHERE_ROWID_RANGE ){ 2315 /* Case 2: We have an inequality comparison against the ROWID field. 2316 */ 2317 int testOp = OP_Noop; 2318 int start; 2319 WhereTerm *pStart, *pEnd; 2320 2321 assert( omitTable==0 ); 2322 pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0); 2323 pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0); 2324 if( bRev ){ 2325 pTerm = pStart; 2326 pStart = pEnd; 2327 pEnd = pTerm; 2328 } 2329 if( pStart ){ 2330 Expr *pX; 2331 pX = pStart->pExpr; 2332 assert( pX!=0 ); 2333 assert( pStart->leftCursor==iCur ); 2334 sqlite3ExprCode(pParse, pX->pRight); 2335 sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk); 2336 sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk); 2337 VdbeComment((v, "pk")); 2338 disableTerm(pLevel, pStart); 2339 }else{ 2340 sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk); 2341 } 2342 if( pEnd ){ 2343 Expr *pX; 2344 pX = pEnd->pExpr; 2345 assert( pX!=0 ); 2346 assert( pEnd->leftCursor==iCur ); 2347 sqlite3ExprCode(pParse, pX->pRight); 2348 pLevel->iMem = pParse->nMem++; 2349 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 2350 if( pX->op==TK_LT || pX->op==TK_GT ){ 2351 testOp = bRev ? OP_Le : OP_Ge; 2352 }else{ 2353 testOp = bRev ? OP_Lt : OP_Gt; 2354 } 2355 disableTerm(pLevel, pEnd); 2356 } 2357 start = sqlite3VdbeCurrentAddr(v); 2358 pLevel->op = bRev ? OP_Prev : OP_Next; 2359 pLevel->p1 = iCur; 2360 pLevel->p2 = start; 2361 if( testOp!=OP_Noop ){ 2362 sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0); 2363 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2364 sqlite3VdbeAddOp(v, testOp, SQLITE_AFF_NUMERIC|0x100, brk); 2365 } 2366 }else if( pLevel->flags & WHERE_COLUMN_RANGE ){ 2367 /* Case 3: The WHERE clause term that refers to the right-most 2368 ** column of the index is an inequality. For example, if 2369 ** the index is on (x,y,z) and the WHERE clause is of the 2370 ** form "x=5 AND y<10" then this case is used. Only the 2371 ** right-most column can be an inequality - the rest must 2372 ** use the "==" and "IN" operators. 2373 ** 2374 ** This case is also used when there are no WHERE clause 2375 ** constraints but an index is selected anyway, in order 2376 ** to force the output order to conform to an ORDER BY. 2377 */ 2378 int start; 2379 int nEq = pLevel->nEq; 2380 int topEq=0; /* True if top limit uses ==. False is strictly < */ 2381 int btmEq=0; /* True if btm limit uses ==. False if strictly > */ 2382 int topOp, btmOp; /* Operators for the top and bottom search bounds */ 2383 int testOp; 2384 int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0; 2385 int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0; 2386 2387 /* Generate code to evaluate all constraint terms using == or IN 2388 ** and level the values of those terms on the stack. 2389 */ 2390 codeAllEqualityTerms(pParse, pLevel, &wc, notReady); 2391 2392 /* Duplicate the equality term values because they will all be 2393 ** used twice: once to make the termination key and once to make the 2394 ** start key. 2395 */ 2396 for(j=0; j<nEq; j++){ 2397 sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0); 2398 } 2399 2400 /* Figure out what comparison operators to use for top and bottom 2401 ** search bounds. For an ascending index, the bottom bound is a > or >= 2402 ** operator and the top bound is a < or <= operator. For a descending 2403 ** index the operators are reversed. 2404 */ 2405 if( pIdx->aSortOrder[nEq]==SQLITE_SO_ASC ){ 2406 topOp = WO_LT|WO_LE; 2407 btmOp = WO_GT|WO_GE; 2408 }else{ 2409 topOp = WO_GT|WO_GE; 2410 btmOp = WO_LT|WO_LE; 2411 SWAP(int, topLimit, btmLimit); 2412 } 2413 2414 /* Generate the termination key. This is the key value that 2415 ** will end the search. There is no termination key if there 2416 ** are no equality terms and no "X<..." term. 2417 ** 2418 ** 2002-Dec-04: On a reverse-order scan, the so-called "termination" 2419 ** key computed here really ends up being the start key. 2420 */ 2421 nxt = pLevel->nxt; 2422 if( topLimit ){ 2423 Expr *pX; 2424 int k = pIdx->aiColumn[j]; 2425 pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx); 2426 assert( pTerm!=0 ); 2427 pX = pTerm->pExpr; 2428 assert( (pTerm->flags & TERM_CODED)==0 ); 2429 sqlite3ExprCode(pParse, pX->pRight); 2430 sqlite3VdbeAddOp(v, OP_IsNull, -(nEq*2+1), nxt); 2431 topEq = pTerm->eOperator & (WO_LE|WO_GE); 2432 disableTerm(pLevel, pTerm); 2433 testOp = OP_IdxGE; 2434 }else{ 2435 testOp = nEq>0 ? OP_IdxGE : OP_Noop; 2436 topEq = 1; 2437 } 2438 if( testOp!=OP_Noop ){ 2439 int nCol = nEq + topLimit; 2440 pLevel->iMem = pParse->nMem++; 2441 buildIndexProbe(v, nCol, pIdx); 2442 if( bRev ){ 2443 int op = topEq ? OP_MoveLe : OP_MoveLt; 2444 sqlite3VdbeAddOp(v, op, iIdxCur, nxt); 2445 }else{ 2446 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 2447 } 2448 }else if( bRev ){ 2449 sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk); 2450 } 2451 2452 /* Generate the start key. This is the key that defines the lower 2453 ** bound on the search. There is no start key if there are no 2454 ** equality terms and if there is no "X>..." term. In 2455 ** that case, generate a "Rewind" instruction in place of the 2456 ** start key search. 2457 ** 2458 ** 2002-Dec-04: In the case of a reverse-order search, the so-called 2459 ** "start" key really ends up being used as the termination key. 2460 */ 2461 if( btmLimit ){ 2462 Expr *pX; 2463 int k = pIdx->aiColumn[j]; 2464 pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx); 2465 assert( pTerm!=0 ); 2466 pX = pTerm->pExpr; 2467 assert( (pTerm->flags & TERM_CODED)==0 ); 2468 sqlite3ExprCode(pParse, pX->pRight); 2469 sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), nxt); 2470 btmEq = pTerm->eOperator & (WO_LE|WO_GE); 2471 disableTerm(pLevel, pTerm); 2472 }else{ 2473 btmEq = 1; 2474 } 2475 if( nEq>0 || btmLimit ){ 2476 int nCol = nEq + btmLimit; 2477 buildIndexProbe(v, nCol, pIdx); 2478 if( bRev ){ 2479 pLevel->iMem = pParse->nMem++; 2480 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 2481 testOp = OP_IdxLT; 2482 }else{ 2483 int op = btmEq ? OP_MoveGe : OP_MoveGt; 2484 sqlite3VdbeAddOp(v, op, iIdxCur, nxt); 2485 } 2486 }else if( bRev ){ 2487 testOp = OP_Noop; 2488 }else{ 2489 sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk); 2490 } 2491 2492 /* Generate the the top of the loop. If there is a termination 2493 ** key we have to test for that key and abort at the top of the 2494 ** loop. 2495 */ 2496 start = sqlite3VdbeCurrentAddr(v); 2497 if( testOp!=OP_Noop ){ 2498 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2499 sqlite3VdbeAddOp(v, testOp, iIdxCur, nxt); 2500 if( (topEq && !bRev) || (!btmEq && bRev) ){ 2501 sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC); 2502 } 2503 } 2504 if( topLimit | btmLimit ){ 2505 sqlite3VdbeAddOp(v, OP_Column, iIdxCur, nEq); 2506 sqlite3VdbeAddOp(v, OP_IsNull, 1, cont); 2507 } 2508 if( !omitTable ){ 2509 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0); 2510 sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); 2511 } 2512 2513 /* Record the instruction used to terminate the loop. 2514 */ 2515 pLevel->op = bRev ? OP_Prev : OP_Next; 2516 pLevel->p1 = iIdxCur; 2517 pLevel->p2 = start; 2518 }else if( pLevel->flags & WHERE_COLUMN_EQ ){ 2519 /* Case 4: There is an index and all terms of the WHERE clause that 2520 ** refer to the index using the "==" or "IN" operators. 2521 */ 2522 int start; 2523 int nEq = pLevel->nEq; 2524 2525 /* Generate code to evaluate all constraint terms using == or IN 2526 ** and leave the values of those terms on the stack. 2527 */ 2528 codeAllEqualityTerms(pParse, pLevel, &wc, notReady); 2529 nxt = pLevel->nxt; 2530 2531 /* Generate a single key that will be used to both start and terminate 2532 ** the search 2533 */ 2534 buildIndexProbe(v, nEq, pIdx); 2535 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0); 2536 2537 /* Generate code (1) to move to the first matching element of the table. 2538 ** Then generate code (2) that jumps to "nxt" after the cursor is past 2539 ** the last matching element of the table. The code (1) is executed 2540 ** once to initialize the search, the code (2) is executed before each 2541 ** iteration of the scan to see if the scan has finished. */ 2542 if( bRev ){ 2543 /* Scan in reverse order */ 2544 sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, nxt); 2545 start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2546 sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, nxt); 2547 pLevel->op = OP_Prev; 2548 }else{ 2549 /* Scan in the forward order */ 2550 sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, nxt); 2551 start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2552 sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, nxt, "+", P3_STATIC); 2553 pLevel->op = OP_Next; 2554 } 2555 if( !omitTable ){ 2556 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0); 2557 sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); 2558 } 2559 pLevel->p1 = iIdxCur; 2560 pLevel->p2 = start; 2561 }else{ 2562 /* Case 5: There is no usable index. We must do a complete 2563 ** scan of the entire table. 2564 */ 2565 assert( omitTable==0 ); 2566 assert( bRev==0 ); 2567 pLevel->op = OP_Next; 2568 pLevel->p1 = iCur; 2569 pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk); 2570 } 2571 notReady &= ~getMask(&maskSet, iCur); 2572 2573 /* Insert code to test every subexpression that can be completely 2574 ** computed using the current set of tables. 2575 */ 2576 for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){ 2577 Expr *pE; 2578 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2579 if( (pTerm->prereqAll & notReady)!=0 ) continue; 2580 pE = pTerm->pExpr; 2581 assert( pE!=0 ); 2582 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 2583 continue; 2584 } 2585 sqlite3ExprIfFalse(pParse, pE, cont, 1); 2586 pTerm->flags |= TERM_CODED; 2587 } 2588 2589 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2590 ** at least one row of the right table has matched the left table. 2591 */ 2592 if( pLevel->iLeftJoin ){ 2593 pLevel->top = sqlite3VdbeCurrentAddr(v); 2594 sqlite3VdbeAddOp(v, OP_MemInt, 1, pLevel->iLeftJoin); 2595 VdbeComment((v, "# record LEFT JOIN hit")); 2596 for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){ 2597 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2598 if( (pTerm->prereqAll & notReady)!=0 ) continue; 2599 assert( pTerm->pExpr ); 2600 sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1); 2601 pTerm->flags |= TERM_CODED; 2602 } 2603 } 2604 } 2605 2606 #ifdef SQLITE_TEST /* For testing and debugging use only */ 2607 /* Record in the query plan information about the current table 2608 ** and the index used to access it (if any). If the table itself 2609 ** is not used, its name is just '{}'. If no index is used 2610 ** the index is listed as "{}". If the primary key is used the 2611 ** index name is '*'. 2612 */ 2613 for(i=0; i<pTabList->nSrc; i++){ 2614 char *z; 2615 int n; 2616 pLevel = &pWInfo->a[i]; 2617 pTabItem = &pTabList->a[pLevel->iFrom]; 2618 z = pTabItem->zAlias; 2619 if( z==0 ) z = pTabItem->pTab->zName; 2620 n = strlen(z); 2621 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ 2622 if( pLevel->flags & WHERE_IDX_ONLY ){ 2623 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2); 2624 nQPlan += 2; 2625 }else{ 2626 memcpy(&sqlite3_query_plan[nQPlan], z, n); 2627 nQPlan += n; 2628 } 2629 sqlite3_query_plan[nQPlan++] = ' '; 2630 } 2631 if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 2632 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2); 2633 nQPlan += 2; 2634 }else if( pLevel->pIdx==0 ){ 2635 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3); 2636 nQPlan += 3; 2637 }else{ 2638 n = strlen(pLevel->pIdx->zName); 2639 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ 2640 memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n); 2641 nQPlan += n; 2642 sqlite3_query_plan[nQPlan++] = ' '; 2643 } 2644 } 2645 } 2646 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ 2647 sqlite3_query_plan[--nQPlan] = 0; 2648 } 2649 sqlite3_query_plan[nQPlan] = 0; 2650 nQPlan = 0; 2651 #endif /* SQLITE_TEST // Testing and debugging use only */ 2652 2653 /* Record the continuation address in the WhereInfo structure. Then 2654 ** clean up and return. 2655 */ 2656 pWInfo->iContinue = cont; 2657 whereClauseClear(&wc); 2658 return pWInfo; 2659 2660 /* Jump here if malloc fails */ 2661 whereBeginNoMem: 2662 whereClauseClear(&wc); 2663 whereInfoFree(pWInfo); 2664 return 0; 2665 } 2666 2667 /* 2668 ** Generate the end of the WHERE loop. See comments on 2669 ** sqlite3WhereBegin() for additional information. 2670 */ 2671 void sqlite3WhereEnd(WhereInfo *pWInfo){ 2672 Vdbe *v = pWInfo->pParse->pVdbe; 2673 int i; 2674 WhereLevel *pLevel; 2675 SrcList *pTabList = pWInfo->pTabList; 2676 2677 /* Generate loop termination code. 2678 */ 2679 for(i=pTabList->nSrc-1; i>=0; i--){ 2680 pLevel = &pWInfo->a[i]; 2681 sqlite3VdbeResolveLabel(v, pLevel->cont); 2682 if( pLevel->op!=OP_Noop ){ 2683 sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2); 2684 } 2685 if( pLevel->nIn ){ 2686 struct InLoop *pIn; 2687 int j; 2688 sqlite3VdbeResolveLabel(v, pLevel->nxt); 2689 for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){ 2690 sqlite3VdbeJumpHere(v, pIn->topAddr+1); 2691 sqlite3VdbeAddOp(v, OP_Next, pIn->iCur, pIn->topAddr); 2692 sqlite3VdbeJumpHere(v, pIn->topAddr-1); 2693 } 2694 sqliteFree(pLevel->aInLoop); 2695 } 2696 sqlite3VdbeResolveLabel(v, pLevel->brk); 2697 if( pLevel->iLeftJoin ){ 2698 int addr; 2699 addr = sqlite3VdbeAddOp(v, OP_IfMemPos, pLevel->iLeftJoin, 0); 2700 sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0); 2701 if( pLevel->iIdxCur>=0 ){ 2702 sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0); 2703 } 2704 sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top); 2705 sqlite3VdbeJumpHere(v, addr); 2706 } 2707 } 2708 2709 /* The "break" point is here, just past the end of the outer loop. 2710 ** Set it. 2711 */ 2712 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 2713 2714 /* Close all of the cursors that were opened by sqlite3WhereBegin. 2715 */ 2716 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2717 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 2718 Table *pTab = pTabItem->pTab; 2719 assert( pTab!=0 ); 2720 if( pTab->isEphem || pTab->pSelect ) continue; 2721 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ 2722 sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0); 2723 } 2724 if( pLevel->pIdx!=0 ){ 2725 sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0); 2726 } 2727 2728 /* Make cursor substitutions for cases where we want to use 2729 ** just the index and never reference the table. 2730 ** 2731 ** Calls to the code generator in between sqlite3WhereBegin and 2732 ** sqlite3WhereEnd will have created code that references the table 2733 ** directly. This loop scans all that code looking for opcodes 2734 ** that reference the table and converts them into opcodes that 2735 ** reference the index. 2736 */ 2737 if( pLevel->flags & WHERE_IDX_ONLY ){ 2738 int k, j, last; 2739 VdbeOp *pOp; 2740 Index *pIdx = pLevel->pIdx; 2741 2742 assert( pIdx!=0 ); 2743 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); 2744 last = sqlite3VdbeCurrentAddr(v); 2745 for(k=pWInfo->iTop; k<last; k++, pOp++){ 2746 if( pOp->p1!=pLevel->iTabCur ) continue; 2747 if( pOp->opcode==OP_Column ){ 2748 pOp->p1 = pLevel->iIdxCur; 2749 for(j=0; j<pIdx->nColumn; j++){ 2750 if( pOp->p2==pIdx->aiColumn[j] ){ 2751 pOp->p2 = j; 2752 break; 2753 } 2754 } 2755 }else if( pOp->opcode==OP_Rowid ){ 2756 pOp->p1 = pLevel->iIdxCur; 2757 pOp->opcode = OP_IdxRowid; 2758 }else if( pOp->opcode==OP_NullRow ){ 2759 pOp->opcode = OP_Noop; 2760 } 2761 } 2762 } 2763 } 2764 2765 /* Final cleanup 2766 */ 2767 whereInfoFree(pWInfo); 2768 return; 2769 } 2770