xref: /sqlite-3.40.0/src/where.c (revision e21733ba)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is reponsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 **
19 ** $Id: where.c,v 1.254 2007/07/30 14:40:48 danielk1977 Exp $
20 */
21 #include "sqliteInt.h"
22 
23 /*
24 ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
25 */
26 #define BMS  (sizeof(Bitmask)*8)
27 
28 /*
29 ** Trace output macros
30 */
31 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
32 int sqlite3_where_trace = 0;
33 # define WHERETRACE(X)  if(sqlite3_where_trace) sqlite3DebugPrintf X
34 #else
35 # define WHERETRACE(X)
36 #endif
37 
38 /* Forward reference
39 */
40 typedef struct WhereClause WhereClause;
41 typedef struct ExprMaskSet ExprMaskSet;
42 
43 /*
44 ** The query generator uses an array of instances of this structure to
45 ** help it analyze the subexpressions of the WHERE clause.  Each WHERE
46 ** clause subexpression is separated from the others by an AND operator.
47 **
48 ** All WhereTerms are collected into a single WhereClause structure.
49 ** The following identity holds:
50 **
51 **        WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
52 **
53 ** When a term is of the form:
54 **
55 **              X <op> <expr>
56 **
57 ** where X is a column name and <op> is one of certain operators,
58 ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the
59 ** cursor number and column number for X.  WhereTerm.operator records
60 ** the <op> using a bitmask encoding defined by WO_xxx below.  The
61 ** use of a bitmask encoding for the operator allows us to search
62 ** quickly for terms that match any of several different operators.
63 **
64 ** prereqRight and prereqAll record sets of cursor numbers,
65 ** but they do so indirectly.  A single ExprMaskSet structure translates
66 ** cursor number into bits and the translated bit is stored in the prereq
67 ** fields.  The translation is used in order to maximize the number of
68 ** bits that will fit in a Bitmask.  The VDBE cursor numbers might be
69 ** spread out over the non-negative integers.  For example, the cursor
70 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The ExprMaskSet
71 ** translates these sparse cursor numbers into consecutive integers
72 ** beginning with 0 in order to make the best possible use of the available
73 ** bits in the Bitmask.  So, in the example above, the cursor numbers
74 ** would be mapped into integers 0 through 7.
75 */
76 typedef struct WhereTerm WhereTerm;
77 struct WhereTerm {
78   Expr *pExpr;            /* Pointer to the subexpression */
79   i16 iParent;            /* Disable pWC->a[iParent] when this term disabled */
80   i16 leftCursor;         /* Cursor number of X in "X <op> <expr>" */
81   i16 leftColumn;         /* Column number of X in "X <op> <expr>" */
82   u16 eOperator;          /* A WO_xx value describing <op> */
83   u8 flags;               /* Bit flags.  See below */
84   u8 nChild;              /* Number of children that must disable us */
85   WhereClause *pWC;       /* The clause this term is part of */
86   Bitmask prereqRight;    /* Bitmask of tables used by pRight */
87   Bitmask prereqAll;      /* Bitmask of tables referenced by p */
88 };
89 
90 /*
91 ** Allowed values of WhereTerm.flags
92 */
93 #define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(pExpr) */
94 #define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
95 #define TERM_CODED      0x04   /* This term is already coded */
96 #define TERM_COPIED     0x08   /* Has a child */
97 #define TERM_OR_OK      0x10   /* Used during OR-clause processing */
98 
99 /*
100 ** An instance of the following structure holds all information about a
101 ** WHERE clause.  Mostly this is a container for one or more WhereTerms.
102 */
103 struct WhereClause {
104   Parse *pParse;           /* The parser context */
105   ExprMaskSet *pMaskSet;   /* Mapping of table indices to bitmasks */
106   int nTerm;               /* Number of terms */
107   int nSlot;               /* Number of entries in a[] */
108   WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
109   WhereTerm aStatic[10];   /* Initial static space for a[] */
110 };
111 
112 /*
113 ** An instance of the following structure keeps track of a mapping
114 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
115 **
116 ** The VDBE cursor numbers are small integers contained in
117 ** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE
118 ** clause, the cursor numbers might not begin with 0 and they might
119 ** contain gaps in the numbering sequence.  But we want to make maximum
120 ** use of the bits in our bitmasks.  This structure provides a mapping
121 ** from the sparse cursor numbers into consecutive integers beginning
122 ** with 0.
123 **
124 ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
125 ** corresponds VDBE cursor number B.  The A-th bit of a bitmask is 1<<A.
126 **
127 ** For example, if the WHERE clause expression used these VDBE
128 ** cursors:  4, 5, 8, 29, 57, 73.  Then the  ExprMaskSet structure
129 ** would map those cursor numbers into bits 0 through 5.
130 **
131 ** Note that the mapping is not necessarily ordered.  In the example
132 ** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0,
133 ** 57->5, 73->4.  Or one of 719 other combinations might be used. It
134 ** does not really matter.  What is important is that sparse cursor
135 ** numbers all get mapped into bit numbers that begin with 0 and contain
136 ** no gaps.
137 */
138 struct ExprMaskSet {
139   int n;                        /* Number of assigned cursor values */
140   int ix[sizeof(Bitmask)*8];    /* Cursor assigned to each bit */
141 };
142 
143 
144 /*
145 ** Bitmasks for the operators that indices are able to exploit.  An
146 ** OR-ed combination of these values can be used when searching for
147 ** terms in the where clause.
148 */
149 #define WO_IN     1
150 #define WO_EQ     2
151 #define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
152 #define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
153 #define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
154 #define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
155 #define WO_MATCH  64
156 #define WO_ISNULL 128
157 
158 /*
159 ** Value for flags returned by bestIndex().
160 **
161 ** The least significant byte is reserved as a mask for WO_ values above.
162 ** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
163 ** But if the table is the right table of a left join, WhereLevel.flags
164 ** is set to WO_IN|WO_EQ.  The WhereLevel.flags field can then be used as
165 ** the "op" parameter to findTerm when we are resolving equality constraints.
166 ** ISNULL constraints will then not be used on the right table of a left
167 ** join.  Tickets #2177 and #2189.
168 */
169 #define WHERE_ROWID_EQ     0x000100   /* rowid=EXPR or rowid IN (...) */
170 #define WHERE_ROWID_RANGE  0x000200   /* rowid<EXPR and/or rowid>EXPR */
171 #define WHERE_COLUMN_EQ    0x001000   /* x=EXPR or x IN (...) */
172 #define WHERE_COLUMN_RANGE 0x002000   /* x<EXPR and/or x>EXPR */
173 #define WHERE_COLUMN_IN    0x004000   /* x IN (...) */
174 #define WHERE_TOP_LIMIT    0x010000   /* x<EXPR or x<=EXPR constraint */
175 #define WHERE_BTM_LIMIT    0x020000   /* x>EXPR or x>=EXPR constraint */
176 #define WHERE_IDX_ONLY     0x080000   /* Use index only - omit table */
177 #define WHERE_ORDERBY      0x100000   /* Output will appear in correct order */
178 #define WHERE_REVERSE      0x200000   /* Scan in reverse order */
179 #define WHERE_UNIQUE       0x400000   /* Selects no more than one row */
180 #define WHERE_VIRTUALTABLE 0x800000   /* Use virtual-table processing */
181 
182 /*
183 ** Initialize a preallocated WhereClause structure.
184 */
185 static void whereClauseInit(
186   WhereClause *pWC,        /* The WhereClause to be initialized */
187   Parse *pParse,           /* The parsing context */
188   ExprMaskSet *pMaskSet    /* Mapping from table indices to bitmasks */
189 ){
190   pWC->pParse = pParse;
191   pWC->pMaskSet = pMaskSet;
192   pWC->nTerm = 0;
193   pWC->nSlot = ArraySize(pWC->aStatic);
194   pWC->a = pWC->aStatic;
195 }
196 
197 /*
198 ** Deallocate a WhereClause structure.  The WhereClause structure
199 ** itself is not freed.  This routine is the inverse of whereClauseInit().
200 */
201 static void whereClauseClear(WhereClause *pWC){
202   int i;
203   WhereTerm *a;
204   for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
205     if( a->flags & TERM_DYNAMIC ){
206       sqlite3ExprDelete(a->pExpr);
207     }
208   }
209   if( pWC->a!=pWC->aStatic ){
210     sqliteFree(pWC->a);
211   }
212 }
213 
214 /*
215 ** Add a new entries to the WhereClause structure.  Increase the allocated
216 ** space as necessary.
217 **
218 ** If the flags argument includes TERM_DYNAMIC, then responsibility
219 ** for freeing the expression p is assumed by the WhereClause object.
220 **
221 ** WARNING:  This routine might reallocate the space used to store
222 ** WhereTerms.  All pointers to WhereTerms should be invalided after
223 ** calling this routine.  Such pointers may be reinitialized by referencing
224 ** the pWC->a[] array.
225 */
226 static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){
227   WhereTerm *pTerm;
228   int idx;
229   if( pWC->nTerm>=pWC->nSlot ){
230     WhereTerm *pOld = pWC->a;
231     pWC->a = sqliteMalloc( sizeof(pWC->a[0])*pWC->nSlot*2 );
232     if( pWC->a==0 ){
233       if( flags & TERM_DYNAMIC ){
234         sqlite3ExprDelete(p);
235       }
236       return 0;
237     }
238     memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
239     if( pOld!=pWC->aStatic ){
240       sqliteFree(pOld);
241     }
242     pWC->nSlot *= 2;
243   }
244   pTerm = &pWC->a[idx = pWC->nTerm];
245   pWC->nTerm++;
246   pTerm->pExpr = p;
247   pTerm->flags = flags;
248   pTerm->pWC = pWC;
249   pTerm->iParent = -1;
250   return idx;
251 }
252 
253 /*
254 ** This routine identifies subexpressions in the WHERE clause where
255 ** each subexpression is separated by the AND operator or some other
256 ** operator specified in the op parameter.  The WhereClause structure
257 ** is filled with pointers to subexpressions.  For example:
258 **
259 **    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
260 **           \________/     \_______________/     \________________/
261 **            slot[0]            slot[1]               slot[2]
262 **
263 ** The original WHERE clause in pExpr is unaltered.  All this routine
264 ** does is make slot[] entries point to substructure within pExpr.
265 **
266 ** In the previous sentence and in the diagram, "slot[]" refers to
267 ** the WhereClause.a[] array.  This array grows as needed to contain
268 ** all terms of the WHERE clause.
269 */
270 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
271   if( pExpr==0 ) return;
272   if( pExpr->op!=op ){
273     whereClauseInsert(pWC, pExpr, 0);
274   }else{
275     whereSplit(pWC, pExpr->pLeft, op);
276     whereSplit(pWC, pExpr->pRight, op);
277   }
278 }
279 
280 /*
281 ** Initialize an expression mask set
282 */
283 #define initMaskSet(P)  memset(P, 0, sizeof(*P))
284 
285 /*
286 ** Return the bitmask for the given cursor number.  Return 0 if
287 ** iCursor is not in the set.
288 */
289 static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
290   int i;
291   for(i=0; i<pMaskSet->n; i++){
292     if( pMaskSet->ix[i]==iCursor ){
293       return ((Bitmask)1)<<i;
294     }
295   }
296   return 0;
297 }
298 
299 /*
300 ** Create a new mask for cursor iCursor.
301 **
302 ** There is one cursor per table in the FROM clause.  The number of
303 ** tables in the FROM clause is limited by a test early in the
304 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
305 ** array will never overflow.
306 */
307 static void createMask(ExprMaskSet *pMaskSet, int iCursor){
308   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
309   pMaskSet->ix[pMaskSet->n++] = iCursor;
310 }
311 
312 /*
313 ** This routine walks (recursively) an expression tree and generates
314 ** a bitmask indicating which tables are used in that expression
315 ** tree.
316 **
317 ** In order for this routine to work, the calling function must have
318 ** previously invoked sqlite3ExprResolveNames() on the expression.  See
319 ** the header comment on that routine for additional information.
320 ** The sqlite3ExprResolveNames() routines looks for column names and
321 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
322 ** the VDBE cursor number of the table.  This routine just has to
323 ** translate the cursor numbers into bitmask values and OR all
324 ** the bitmasks together.
325 */
326 static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*);
327 static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*);
328 static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
329   Bitmask mask = 0;
330   if( p==0 ) return 0;
331   if( p->op==TK_COLUMN ){
332     mask = getMask(pMaskSet, p->iTable);
333     return mask;
334   }
335   mask = exprTableUsage(pMaskSet, p->pRight);
336   mask |= exprTableUsage(pMaskSet, p->pLeft);
337   mask |= exprListTableUsage(pMaskSet, p->pList);
338   mask |= exprSelectTableUsage(pMaskSet, p->pSelect);
339   return mask;
340 }
341 static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
342   int i;
343   Bitmask mask = 0;
344   if( pList ){
345     for(i=0; i<pList->nExpr; i++){
346       mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
347     }
348   }
349   return mask;
350 }
351 static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){
352   Bitmask mask;
353   if( pS==0 ){
354     mask = 0;
355   }else{
356     mask = exprListTableUsage(pMaskSet, pS->pEList);
357     mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
358     mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
359     mask |= exprTableUsage(pMaskSet, pS->pWhere);
360     mask |= exprTableUsage(pMaskSet, pS->pHaving);
361   }
362   return mask;
363 }
364 
365 /*
366 ** Return TRUE if the given operator is one of the operators that is
367 ** allowed for an indexable WHERE clause term.  The allowed operators are
368 ** "=", "<", ">", "<=", ">=", and "IN".
369 */
370 static int allowedOp(int op){
371   assert( TK_GT>TK_EQ && TK_GT<TK_GE );
372   assert( TK_LT>TK_EQ && TK_LT<TK_GE );
373   assert( TK_LE>TK_EQ && TK_LE<TK_GE );
374   assert( TK_GE==TK_EQ+4 );
375   return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
376 }
377 
378 /*
379 ** Swap two objects of type T.
380 */
381 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
382 
383 /*
384 ** Commute a comparision operator.  Expressions of the form "X op Y"
385 ** are converted into "Y op X".
386 **
387 ** If a collation sequence is associated with either the left or right
388 ** side of the comparison, it remains associated with the same side after
389 ** the commutation. So "Y collate NOCASE op X" becomes
390 ** "X collate NOCASE op Y". This is because any collation sequence on
391 ** the left hand side of a comparison overrides any collation sequence
392 ** attached to the right. For the same reason the EP_ExpCollate flag
393 ** is not commuted.
394 */
395 static void exprCommute(Expr *pExpr){
396   u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
397   u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
398   assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
399   SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
400   pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
401   pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
402   SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
403   if( pExpr->op>=TK_GT ){
404     assert( TK_LT==TK_GT+2 );
405     assert( TK_GE==TK_LE+2 );
406     assert( TK_GT>TK_EQ );
407     assert( TK_GT<TK_LE );
408     assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
409     pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
410   }
411 }
412 
413 /*
414 ** Translate from TK_xx operator to WO_xx bitmask.
415 */
416 static int operatorMask(int op){
417   int c;
418   assert( allowedOp(op) );
419   if( op==TK_IN ){
420     c = WO_IN;
421   }else if( op==TK_ISNULL ){
422     c = WO_ISNULL;
423   }else{
424     c = WO_EQ<<(op-TK_EQ);
425   }
426   assert( op!=TK_ISNULL || c==WO_ISNULL );
427   assert( op!=TK_IN || c==WO_IN );
428   assert( op!=TK_EQ || c==WO_EQ );
429   assert( op!=TK_LT || c==WO_LT );
430   assert( op!=TK_LE || c==WO_LE );
431   assert( op!=TK_GT || c==WO_GT );
432   assert( op!=TK_GE || c==WO_GE );
433   return c;
434 }
435 
436 /*
437 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
438 ** where X is a reference to the iColumn of table iCur and <op> is one of
439 ** the WO_xx operator codes specified by the op parameter.
440 ** Return a pointer to the term.  Return 0 if not found.
441 */
442 static WhereTerm *findTerm(
443   WhereClause *pWC,     /* The WHERE clause to be searched */
444   int iCur,             /* Cursor number of LHS */
445   int iColumn,          /* Column number of LHS */
446   Bitmask notReady,     /* RHS must not overlap with this mask */
447   u16 op,               /* Mask of WO_xx values describing operator */
448   Index *pIdx           /* Must be compatible with this index, if not NULL */
449 ){
450   WhereTerm *pTerm;
451   int k;
452   for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
453     if( pTerm->leftCursor==iCur
454        && (pTerm->prereqRight & notReady)==0
455        && pTerm->leftColumn==iColumn
456        && (pTerm->eOperator & op)!=0
457     ){
458       if( iCur>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){
459         Expr *pX = pTerm->pExpr;
460         CollSeq *pColl;
461         char idxaff;
462         int j;
463         Parse *pParse = pWC->pParse;
464 
465         idxaff = pIdx->pTable->aCol[iColumn].affinity;
466         if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
467 
468         /* Figure out the collation sequence required from an index for
469         ** it to be useful for optimising expression pX. Store this
470         ** value in variable pColl.
471         */
472         assert(pX->pLeft);
473         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
474         if( !pColl ){
475           pColl = pParse->db->pDfltColl;
476         }
477 
478         for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){}
479         assert( j<pIdx->nColumn );
480         if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
481       }
482       return pTerm;
483     }
484   }
485   return 0;
486 }
487 
488 /* Forward reference */
489 static void exprAnalyze(SrcList*, WhereClause*, int);
490 
491 /*
492 ** Call exprAnalyze on all terms in a WHERE clause.
493 **
494 **
495 */
496 static void exprAnalyzeAll(
497   SrcList *pTabList,       /* the FROM clause */
498   WhereClause *pWC         /* the WHERE clause to be analyzed */
499 ){
500   int i;
501   for(i=pWC->nTerm-1; i>=0; i--){
502     exprAnalyze(pTabList, pWC, i);
503   }
504 }
505 
506 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
507 /*
508 ** Check to see if the given expression is a LIKE or GLOB operator that
509 ** can be optimized using inequality constraints.  Return TRUE if it is
510 ** so and false if not.
511 **
512 ** In order for the operator to be optimizible, the RHS must be a string
513 ** literal that does not begin with a wildcard.
514 */
515 static int isLikeOrGlob(
516   sqlite3 *db,      /* The database */
517   Expr *pExpr,      /* Test this expression */
518   int *pnPattern,   /* Number of non-wildcard prefix characters */
519   int *pisComplete  /* True if the only wildcard is % in the last character */
520 ){
521   const char *z;
522   Expr *pRight, *pLeft;
523   ExprList *pList;
524   int c, cnt;
525   int noCase;
526   char wc[3];
527   CollSeq *pColl;
528 
529   if( !sqlite3IsLikeFunction(db, pExpr, &noCase, wc) ){
530     return 0;
531   }
532   pList = pExpr->pList;
533   pRight = pList->a[0].pExpr;
534   if( pRight->op!=TK_STRING ){
535     return 0;
536   }
537   pLeft = pList->a[1].pExpr;
538   if( pLeft->op!=TK_COLUMN ){
539     return 0;
540   }
541   pColl = pLeft->pColl;
542   if( pColl==0 ){
543     /* TODO: Coverage testing doesn't get this case. Is it actually possible
544     ** for an expression of type TK_COLUMN to not have an assigned collation
545     ** sequence at this point?
546     */
547     pColl = db->pDfltColl;
548   }
549   if( (pColl->type!=SQLITE_COLL_BINARY || noCase) &&
550       (pColl->type!=SQLITE_COLL_NOCASE || !noCase) ){
551     return 0;
552   }
553   sqlite3DequoteExpr(pRight);
554   z = (char *)pRight->token.z;
555   for(cnt=0; (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2]; cnt++){}
556   if( cnt==0 || 255==(u8)z[cnt] ){
557     return 0;
558   }
559   *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
560   *pnPattern = cnt;
561   return 1;
562 }
563 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
564 
565 
566 #ifndef SQLITE_OMIT_VIRTUALTABLE
567 /*
568 ** Check to see if the given expression is of the form
569 **
570 **         column MATCH expr
571 **
572 ** If it is then return TRUE.  If not, return FALSE.
573 */
574 static int isMatchOfColumn(
575   Expr *pExpr      /* Test this expression */
576 ){
577   ExprList *pList;
578 
579   if( pExpr->op!=TK_FUNCTION ){
580     return 0;
581   }
582   if( pExpr->token.n!=5 ||
583        sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){
584     return 0;
585   }
586   pList = pExpr->pList;
587   if( pList->nExpr!=2 ){
588     return 0;
589   }
590   if( pList->a[1].pExpr->op != TK_COLUMN ){
591     return 0;
592   }
593   return 1;
594 }
595 #endif /* SQLITE_OMIT_VIRTUALTABLE */
596 
597 /*
598 ** If the pBase expression originated in the ON or USING clause of
599 ** a join, then transfer the appropriate markings over to derived.
600 */
601 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
602   pDerived->flags |= pBase->flags & EP_FromJoin;
603   pDerived->iRightJoinTable = pBase->iRightJoinTable;
604 }
605 
606 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
607 /*
608 ** Return TRUE if the given term of an OR clause can be converted
609 ** into an IN clause.  The iCursor and iColumn define the left-hand
610 ** side of the IN clause.
611 **
612 ** The context is that we have multiple OR-connected equality terms
613 ** like this:
614 **
615 **           a=<expr1> OR  a=<expr2> OR b=<expr3>  OR ...
616 **
617 ** The pOrTerm input to this routine corresponds to a single term of
618 ** this OR clause.  In order for the term to be a condidate for
619 ** conversion to an IN operator, the following must be true:
620 **
621 **     *  The left-hand side of the term must be the column which
622 **        is identified by iCursor and iColumn.
623 **
624 **     *  If the right-hand side is also a column, then the affinities
625 **        of both right and left sides must be such that no type
626 **        conversions are required on the right.  (Ticket #2249)
627 **
628 ** If both of these conditions are true, then return true.  Otherwise
629 ** return false.
630 */
631 static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){
632   int affLeft, affRight;
633   assert( pOrTerm->eOperator==WO_EQ );
634   if( pOrTerm->leftCursor!=iCursor ){
635     return 0;
636   }
637   if( pOrTerm->leftColumn!=iColumn ){
638     return 0;
639   }
640   affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
641   if( affRight==0 ){
642     return 1;
643   }
644   affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
645   if( affRight!=affLeft ){
646     return 0;
647   }
648   return 1;
649 }
650 
651 /*
652 ** Return true if the given term of an OR clause can be ignored during
653 ** a check to make sure all OR terms are candidates for optimization.
654 ** In other words, return true if a call to the orTermIsOptCandidate()
655 ** above returned false but it is not necessary to disqualify the
656 ** optimization.
657 **
658 ** Suppose the original OR phrase was this:
659 **
660 **           a=4  OR  a=11  OR  a=b
661 **
662 ** During analysis, the third term gets flipped around and duplicate
663 ** so that we are left with this:
664 **
665 **           a=4  OR  a=11  OR  a=b  OR  b=a
666 **
667 ** Since the last two terms are duplicates, only one of them
668 ** has to qualify in order for the whole phrase to qualify.  When
669 ** this routine is called, we know that pOrTerm did not qualify.
670 ** This routine merely checks to see if pOrTerm has a duplicate that
671 ** might qualify.  If there is a duplicate that has not yet been
672 ** disqualified, then return true.  If there are no duplicates, or
673 ** the duplicate has also been disqualifed, return false.
674 */
675 static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){
676   if( pOrTerm->flags & TERM_COPIED ){
677     /* This is the original term.  The duplicate is to the left had
678     ** has not yet been analyzed and thus has not yet been disqualified. */
679     return 1;
680   }
681   if( (pOrTerm->flags & TERM_VIRTUAL)!=0
682      && (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK)!=0 ){
683     /* This is a duplicate term.  The original qualified so this one
684     ** does not have to. */
685     return 1;
686   }
687   /* This is either a singleton term or else it is a duplicate for
688   ** which the original did not qualify.  Either way we are done for. */
689   return 0;
690 }
691 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
692 
693 /*
694 ** The input to this routine is an WhereTerm structure with only the
695 ** "pExpr" field filled in.  The job of this routine is to analyze the
696 ** subexpression and populate all the other fields of the WhereTerm
697 ** structure.
698 **
699 ** If the expression is of the form "<expr> <op> X" it gets commuted
700 ** to the standard form of "X <op> <expr>".  If the expression is of
701 ** the form "X <op> Y" where both X and Y are columns, then the original
702 ** expression is unchanged and a new virtual expression of the form
703 ** "Y <op> X" is added to the WHERE clause and analyzed separately.
704 */
705 static void exprAnalyze(
706   SrcList *pSrc,            /* the FROM clause */
707   WhereClause *pWC,         /* the WHERE clause */
708   int idxTerm               /* Index of the term to be analyzed */
709 ){
710   WhereTerm *pTerm = &pWC->a[idxTerm];
711   ExprMaskSet *pMaskSet = pWC->pMaskSet;
712   Expr *pExpr = pTerm->pExpr;
713   Bitmask prereqLeft;
714   Bitmask prereqAll;
715   int nPattern;
716   int isComplete;
717   int op;
718 
719   if( sqlite3MallocFailed() ) return;
720   prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
721   op = pExpr->op;
722   if( op==TK_IN ){
723     assert( pExpr->pRight==0 );
724     pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList)
725                           | exprSelectTableUsage(pMaskSet, pExpr->pSelect);
726   }else if( op==TK_ISNULL ){
727     pTerm->prereqRight = 0;
728   }else{
729     pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
730   }
731   prereqAll = exprTableUsage(pMaskSet, pExpr);
732   if( ExprHasProperty(pExpr, EP_FromJoin) ){
733     prereqAll |= getMask(pMaskSet, pExpr->iRightJoinTable);
734   }
735   pTerm->prereqAll = prereqAll;
736   pTerm->leftCursor = -1;
737   pTerm->iParent = -1;
738   pTerm->eOperator = 0;
739   if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
740     Expr *pLeft = pExpr->pLeft;
741     Expr *pRight = pExpr->pRight;
742     if( pLeft->op==TK_COLUMN ){
743       pTerm->leftCursor = pLeft->iTable;
744       pTerm->leftColumn = pLeft->iColumn;
745       pTerm->eOperator = operatorMask(op);
746     }
747     if( pRight && pRight->op==TK_COLUMN ){
748       WhereTerm *pNew;
749       Expr *pDup;
750       if( pTerm->leftCursor>=0 ){
751         int idxNew;
752         pDup = sqlite3ExprDup(pExpr);
753         if( sqlite3MallocFailed() ){
754           sqlite3ExprDelete(pDup);
755           return;
756         }
757         idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
758         if( idxNew==0 ) return;
759         pNew = &pWC->a[idxNew];
760         pNew->iParent = idxTerm;
761         pTerm = &pWC->a[idxTerm];
762         pTerm->nChild = 1;
763         pTerm->flags |= TERM_COPIED;
764       }else{
765         pDup = pExpr;
766         pNew = pTerm;
767       }
768       exprCommute(pDup);
769       pLeft = pDup->pLeft;
770       pNew->leftCursor = pLeft->iTable;
771       pNew->leftColumn = pLeft->iColumn;
772       pNew->prereqRight = prereqLeft;
773       pNew->prereqAll = prereqAll;
774       pNew->eOperator = operatorMask(pDup->op);
775     }
776   }
777 
778 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
779   /* If a term is the BETWEEN operator, create two new virtual terms
780   ** that define the range that the BETWEEN implements.
781   */
782   else if( pExpr->op==TK_BETWEEN ){
783     ExprList *pList = pExpr->pList;
784     int i;
785     static const u8 ops[] = {TK_GE, TK_LE};
786     assert( pList!=0 );
787     assert( pList->nExpr==2 );
788     for(i=0; i<2; i++){
789       Expr *pNewExpr;
790       int idxNew;
791       pNewExpr = sqlite3Expr(ops[i], sqlite3ExprDup(pExpr->pLeft),
792                              sqlite3ExprDup(pList->a[i].pExpr), 0);
793       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
794       exprAnalyze(pSrc, pWC, idxNew);
795       pTerm = &pWC->a[idxTerm];
796       pWC->a[idxNew].iParent = idxTerm;
797     }
798     pTerm->nChild = 2;
799   }
800 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
801 
802 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
803   /* Attempt to convert OR-connected terms into an IN operator so that
804   ** they can make use of indices.  Example:
805   **
806   **      x = expr1  OR  expr2 = x  OR  x = expr3
807   **
808   ** is converted into
809   **
810   **      x IN (expr1,expr2,expr3)
811   **
812   ** This optimization must be omitted if OMIT_SUBQUERY is defined because
813   ** the compiler for the the IN operator is part of sub-queries.
814   */
815   else if( pExpr->op==TK_OR ){
816     int ok;
817     int i, j;
818     int iColumn, iCursor;
819     WhereClause sOr;
820     WhereTerm *pOrTerm;
821 
822     assert( (pTerm->flags & TERM_DYNAMIC)==0 );
823     whereClauseInit(&sOr, pWC->pParse, pMaskSet);
824     whereSplit(&sOr, pExpr, TK_OR);
825     exprAnalyzeAll(pSrc, &sOr);
826     assert( sOr.nTerm>=2 );
827     j = 0;
828     do{
829       assert( j<sOr.nTerm );
830       iColumn = sOr.a[j].leftColumn;
831       iCursor = sOr.a[j].leftCursor;
832       ok = iCursor>=0;
833       for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
834         if( pOrTerm->eOperator!=WO_EQ ){
835           goto or_not_possible;
836         }
837         if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){
838           pOrTerm->flags |= TERM_OR_OK;
839         }else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){
840           pOrTerm->flags &= ~TERM_OR_OK;
841         }else{
842           ok = 0;
843         }
844       }
845     }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<2 );
846     if( ok ){
847       ExprList *pList = 0;
848       Expr *pNew, *pDup;
849       Expr *pLeft = 0;
850       for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
851         if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue;
852         pDup = sqlite3ExprDup(pOrTerm->pExpr->pRight);
853         pList = sqlite3ExprListAppend(pList, pDup, 0);
854         pLeft = pOrTerm->pExpr->pLeft;
855       }
856       assert( pLeft!=0 );
857       pDup = sqlite3ExprDup(pLeft);
858       pNew = sqlite3Expr(TK_IN, pDup, 0, 0);
859       if( pNew ){
860         int idxNew;
861         transferJoinMarkings(pNew, pExpr);
862         pNew->pList = pList;
863         idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
864         exprAnalyze(pSrc, pWC, idxNew);
865         pTerm = &pWC->a[idxTerm];
866         pWC->a[idxNew].iParent = idxTerm;
867         pTerm->nChild = 1;
868       }else{
869         sqlite3ExprListDelete(pList);
870       }
871     }
872 or_not_possible:
873     whereClauseClear(&sOr);
874   }
875 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
876 
877 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
878   /* Add constraints to reduce the search space on a LIKE or GLOB
879   ** operator.
880   */
881   if( isLikeOrGlob(pWC->pParse->db, pExpr, &nPattern, &isComplete) ){
882     Expr *pLeft, *pRight;
883     Expr *pStr1, *pStr2;
884     Expr *pNewExpr1, *pNewExpr2;
885     int idxNew1, idxNew2;
886 
887     pLeft = pExpr->pList->a[1].pExpr;
888     pRight = pExpr->pList->a[0].pExpr;
889     pStr1 = sqlite3Expr(TK_STRING, 0, 0, 0);
890     if( pStr1 ){
891       sqlite3TokenCopy(&pStr1->token, &pRight->token);
892       pStr1->token.n = nPattern;
893       pStr1->flags = EP_Dequoted;
894     }
895     pStr2 = sqlite3ExprDup(pStr1);
896     if( pStr2 ){
897       assert( pStr2->token.dyn );
898       ++*(u8*)&pStr2->token.z[nPattern-1];
899     }
900     pNewExpr1 = sqlite3Expr(TK_GE, sqlite3ExprDup(pLeft), pStr1, 0);
901     idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
902     exprAnalyze(pSrc, pWC, idxNew1);
903     pNewExpr2 = sqlite3Expr(TK_LT, sqlite3ExprDup(pLeft), pStr2, 0);
904     idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
905     exprAnalyze(pSrc, pWC, idxNew2);
906     pTerm = &pWC->a[idxTerm];
907     if( isComplete ){
908       pWC->a[idxNew1].iParent = idxTerm;
909       pWC->a[idxNew2].iParent = idxTerm;
910       pTerm->nChild = 2;
911     }
912   }
913 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
914 
915 #ifndef SQLITE_OMIT_VIRTUALTABLE
916   /* Add a WO_MATCH auxiliary term to the constraint set if the
917   ** current expression is of the form:  column MATCH expr.
918   ** This information is used by the xBestIndex methods of
919   ** virtual tables.  The native query optimizer does not attempt
920   ** to do anything with MATCH functions.
921   */
922   if( isMatchOfColumn(pExpr) ){
923     int idxNew;
924     Expr *pRight, *pLeft;
925     WhereTerm *pNewTerm;
926     Bitmask prereqColumn, prereqExpr;
927 
928     pRight = pExpr->pList->a[0].pExpr;
929     pLeft = pExpr->pList->a[1].pExpr;
930     prereqExpr = exprTableUsage(pMaskSet, pRight);
931     prereqColumn = exprTableUsage(pMaskSet, pLeft);
932     if( (prereqExpr & prereqColumn)==0 ){
933       Expr *pNewExpr;
934       pNewExpr = sqlite3Expr(TK_MATCH, 0, sqlite3ExprDup(pRight), 0);
935       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
936       pNewTerm = &pWC->a[idxNew];
937       pNewTerm->prereqRight = prereqExpr;
938       pNewTerm->leftCursor = pLeft->iTable;
939       pNewTerm->leftColumn = pLeft->iColumn;
940       pNewTerm->eOperator = WO_MATCH;
941       pNewTerm->iParent = idxTerm;
942       pTerm = &pWC->a[idxTerm];
943       pTerm->nChild = 1;
944       pTerm->flags |= TERM_COPIED;
945       pNewTerm->prereqAll = pTerm->prereqAll;
946     }
947   }
948 #endif /* SQLITE_OMIT_VIRTUALTABLE */
949 }
950 
951 /*
952 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain
953 ** a reference to any table other than the iBase table.
954 */
955 static int referencesOtherTables(
956   ExprList *pList,          /* Search expressions in ths list */
957   ExprMaskSet *pMaskSet,    /* Mapping from tables to bitmaps */
958   int iFirst,               /* Be searching with the iFirst-th expression */
959   int iBase                 /* Ignore references to this table */
960 ){
961   Bitmask allowed = ~getMask(pMaskSet, iBase);
962   while( iFirst<pList->nExpr ){
963     if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
964       return 1;
965     }
966   }
967   return 0;
968 }
969 
970 
971 /*
972 ** This routine decides if pIdx can be used to satisfy the ORDER BY
973 ** clause.  If it can, it returns 1.  If pIdx cannot satisfy the
974 ** ORDER BY clause, this routine returns 0.
975 **
976 ** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
977 ** left-most table in the FROM clause of that same SELECT statement and
978 ** the table has a cursor number of "base".  pIdx is an index on pTab.
979 **
980 ** nEqCol is the number of columns of pIdx that are used as equality
981 ** constraints.  Any of these columns may be missing from the ORDER BY
982 ** clause and the match can still be a success.
983 **
984 ** All terms of the ORDER BY that match against the index must be either
985 ** ASC or DESC.  (Terms of the ORDER BY clause past the end of a UNIQUE
986 ** index do not need to satisfy this constraint.)  The *pbRev value is
987 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
988 ** the ORDER BY clause is all ASC.
989 */
990 static int isSortingIndex(
991   Parse *pParse,          /* Parsing context */
992   ExprMaskSet *pMaskSet,  /* Mapping from table indices to bitmaps */
993   Index *pIdx,            /* The index we are testing */
994   int base,               /* Cursor number for the table to be sorted */
995   ExprList *pOrderBy,     /* The ORDER BY clause */
996   int nEqCol,             /* Number of index columns with == constraints */
997   int *pbRev              /* Set to 1 if ORDER BY is DESC */
998 ){
999   int i, j;                       /* Loop counters */
1000   int sortOrder = 0;              /* XOR of index and ORDER BY sort direction */
1001   int nTerm;                      /* Number of ORDER BY terms */
1002   struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */
1003   sqlite3 *db = pParse->db;
1004 
1005   assert( pOrderBy!=0 );
1006   nTerm = pOrderBy->nExpr;
1007   assert( nTerm>0 );
1008 
1009   /* Match terms of the ORDER BY clause against columns of
1010   ** the index.
1011   **
1012   ** Note that indices have pIdx->nColumn regular columns plus
1013   ** one additional column containing the rowid.  The rowid column
1014   ** of the index is also allowed to match against the ORDER BY
1015   ** clause.
1016   */
1017   for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
1018     Expr *pExpr;       /* The expression of the ORDER BY pTerm */
1019     CollSeq *pColl;    /* The collating sequence of pExpr */
1020     int termSortOrder; /* Sort order for this term */
1021     int iColumn;       /* The i-th column of the index.  -1 for rowid */
1022     int iSortOrder;    /* 1 for DESC, 0 for ASC on the i-th index term */
1023     const char *zColl; /* Name of the collating sequence for i-th index term */
1024 
1025     pExpr = pTerm->pExpr;
1026     if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
1027       /* Can not use an index sort on anything that is not a column in the
1028       ** left-most table of the FROM clause */
1029       break;
1030     }
1031     pColl = sqlite3ExprCollSeq(pParse, pExpr);
1032     if( !pColl ){
1033       pColl = db->pDfltColl;
1034     }
1035     if( i<pIdx->nColumn ){
1036       iColumn = pIdx->aiColumn[i];
1037       if( iColumn==pIdx->pTable->iPKey ){
1038         iColumn = -1;
1039       }
1040       iSortOrder = pIdx->aSortOrder[i];
1041       zColl = pIdx->azColl[i];
1042     }else{
1043       iColumn = -1;
1044       iSortOrder = 0;
1045       zColl = pColl->zName;
1046     }
1047     if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
1048       /* Term j of the ORDER BY clause does not match column i of the index */
1049       if( i<nEqCol ){
1050         /* If an index column that is constrained by == fails to match an
1051         ** ORDER BY term, that is OK.  Just ignore that column of the index
1052         */
1053         continue;
1054       }else{
1055         /* If an index column fails to match and is not constrained by ==
1056         ** then the index cannot satisfy the ORDER BY constraint.
1057         */
1058         return 0;
1059       }
1060     }
1061     assert( pIdx->aSortOrder!=0 );
1062     assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
1063     assert( iSortOrder==0 || iSortOrder==1 );
1064     termSortOrder = iSortOrder ^ pTerm->sortOrder;
1065     if( i>nEqCol ){
1066       if( termSortOrder!=sortOrder ){
1067         /* Indices can only be used if all ORDER BY terms past the
1068         ** equality constraints are all either DESC or ASC. */
1069         return 0;
1070       }
1071     }else{
1072       sortOrder = termSortOrder;
1073     }
1074     j++;
1075     pTerm++;
1076     if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
1077       /* If the indexed column is the primary key and everything matches
1078       ** so far and none of the ORDER BY terms to the right reference other
1079       ** tables in the join, then we are assured that the index can be used
1080       ** to sort because the primary key is unique and so none of the other
1081       ** columns will make any difference
1082       */
1083       j = nTerm;
1084     }
1085   }
1086 
1087   *pbRev = sortOrder!=0;
1088   if( j>=nTerm ){
1089     /* All terms of the ORDER BY clause are covered by this index so
1090     ** this index can be used for sorting. */
1091     return 1;
1092   }
1093   if( pIdx->onError!=OE_None && i==pIdx->nColumn
1094       && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
1095     /* All terms of this index match some prefix of the ORDER BY clause
1096     ** and the index is UNIQUE and no terms on the tail of the ORDER BY
1097     ** clause reference other tables in a join.  If this is all true then
1098     ** the order by clause is superfluous. */
1099     return 1;
1100   }
1101   return 0;
1102 }
1103 
1104 /*
1105 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
1106 ** by sorting in order of ROWID.  Return true if so and set *pbRev to be
1107 ** true for reverse ROWID and false for forward ROWID order.
1108 */
1109 static int sortableByRowid(
1110   int base,               /* Cursor number for table to be sorted */
1111   ExprList *pOrderBy,     /* The ORDER BY clause */
1112   ExprMaskSet *pMaskSet,  /* Mapping from tables to bitmaps */
1113   int *pbRev              /* Set to 1 if ORDER BY is DESC */
1114 ){
1115   Expr *p;
1116 
1117   assert( pOrderBy!=0 );
1118   assert( pOrderBy->nExpr>0 );
1119   p = pOrderBy->a[0].pExpr;
1120   if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1
1121     && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){
1122     *pbRev = pOrderBy->a[0].sortOrder;
1123     return 1;
1124   }
1125   return 0;
1126 }
1127 
1128 /*
1129 ** Prepare a crude estimate of the logarithm of the input value.
1130 ** The results need not be exact.  This is only used for estimating
1131 ** the total cost of performing operatings with O(logN) or O(NlogN)
1132 ** complexity.  Because N is just a guess, it is no great tragedy if
1133 ** logN is a little off.
1134 */
1135 static double estLog(double N){
1136   double logN = 1;
1137   double x = 10;
1138   while( N>x ){
1139     logN += 1;
1140     x *= 10;
1141   }
1142   return logN;
1143 }
1144 
1145 /*
1146 ** Two routines for printing the content of an sqlite3_index_info
1147 ** structure.  Used for testing and debugging only.  If neither
1148 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
1149 ** are no-ops.
1150 */
1151 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
1152 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
1153   int i;
1154   if( !sqlite3_where_trace ) return;
1155   for(i=0; i<p->nConstraint; i++){
1156     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
1157        i,
1158        p->aConstraint[i].iColumn,
1159        p->aConstraint[i].iTermOffset,
1160        p->aConstraint[i].op,
1161        p->aConstraint[i].usable);
1162   }
1163   for(i=0; i<p->nOrderBy; i++){
1164     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
1165        i,
1166        p->aOrderBy[i].iColumn,
1167        p->aOrderBy[i].desc);
1168   }
1169 }
1170 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
1171   int i;
1172   if( !sqlite3_where_trace ) return;
1173   for(i=0; i<p->nConstraint; i++){
1174     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
1175        i,
1176        p->aConstraintUsage[i].argvIndex,
1177        p->aConstraintUsage[i].omit);
1178   }
1179   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
1180   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
1181   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
1182   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
1183 }
1184 #else
1185 #define TRACE_IDX_INPUTS(A)
1186 #define TRACE_IDX_OUTPUTS(A)
1187 #endif
1188 
1189 #ifndef SQLITE_OMIT_VIRTUALTABLE
1190 /*
1191 ** Compute the best index for a virtual table.
1192 **
1193 ** The best index is computed by the xBestIndex method of the virtual
1194 ** table module.  This routine is really just a wrapper that sets up
1195 ** the sqlite3_index_info structure that is used to communicate with
1196 ** xBestIndex.
1197 **
1198 ** In a join, this routine might be called multiple times for the
1199 ** same virtual table.  The sqlite3_index_info structure is created
1200 ** and initialized on the first invocation and reused on all subsequent
1201 ** invocations.  The sqlite3_index_info structure is also used when
1202 ** code is generated to access the virtual table.  The whereInfoDelete()
1203 ** routine takes care of freeing the sqlite3_index_info structure after
1204 ** everybody has finished with it.
1205 */
1206 static double bestVirtualIndex(
1207   Parse *pParse,                 /* The parsing context */
1208   WhereClause *pWC,              /* The WHERE clause */
1209   struct SrcList_item *pSrc,     /* The FROM clause term to search */
1210   Bitmask notReady,              /* Mask of cursors that are not available */
1211   ExprList *pOrderBy,            /* The order by clause */
1212   int orderByUsable,             /* True if we can potential sort */
1213   sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
1214 ){
1215   Table *pTab = pSrc->pTab;
1216   sqlite3_index_info *pIdxInfo;
1217   struct sqlite3_index_constraint *pIdxCons;
1218   struct sqlite3_index_orderby *pIdxOrderBy;
1219   struct sqlite3_index_constraint_usage *pUsage;
1220   WhereTerm *pTerm;
1221   int i, j;
1222   int nOrderBy;
1223   int rc;
1224 
1225   /* If the sqlite3_index_info structure has not been previously
1226   ** allocated and initialized for this virtual table, then allocate
1227   ** and initialize it now
1228   */
1229   pIdxInfo = *ppIdxInfo;
1230   if( pIdxInfo==0 ){
1231     WhereTerm *pTerm;
1232     int nTerm;
1233     WHERETRACE(("Recomputing index info for %s...\n", pTab->zName));
1234 
1235     /* Count the number of possible WHERE clause constraints referring
1236     ** to this virtual table */
1237     for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1238       if( pTerm->leftCursor != pSrc->iCursor ) continue;
1239       if( pTerm->eOperator==WO_IN ) continue;
1240       nTerm++;
1241     }
1242 
1243     /* If the ORDER BY clause contains only columns in the current
1244     ** virtual table then allocate space for the aOrderBy part of
1245     ** the sqlite3_index_info structure.
1246     */
1247     nOrderBy = 0;
1248     if( pOrderBy ){
1249       for(i=0; i<pOrderBy->nExpr; i++){
1250         Expr *pExpr = pOrderBy->a[i].pExpr;
1251         if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
1252       }
1253       if( i==pOrderBy->nExpr ){
1254         nOrderBy = pOrderBy->nExpr;
1255       }
1256     }
1257 
1258     /* Allocate the sqlite3_index_info structure
1259     */
1260     pIdxInfo = sqliteMalloc( sizeof(*pIdxInfo)
1261                              + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1262                              + sizeof(*pIdxOrderBy)*nOrderBy );
1263     if( pIdxInfo==0 ){
1264       sqlite3ErrorMsg(pParse, "out of memory");
1265       return 0.0;
1266     }
1267     *ppIdxInfo = pIdxInfo;
1268 
1269     /* Initialize the structure.  The sqlite3_index_info structure contains
1270     ** many fields that are declared "const" to prevent xBestIndex from
1271     ** changing them.  We have to do some funky casting in order to
1272     ** initialize those fields.
1273     */
1274     pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
1275     pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1276     pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1277     *(int*)&pIdxInfo->nConstraint = nTerm;
1278     *(int*)&pIdxInfo->nOrderBy = nOrderBy;
1279     *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
1280     *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
1281     *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
1282                                                                      pUsage;
1283 
1284     for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1285       if( pTerm->leftCursor != pSrc->iCursor ) continue;
1286       if( pTerm->eOperator==WO_IN ) continue;
1287       pIdxCons[j].iColumn = pTerm->leftColumn;
1288       pIdxCons[j].iTermOffset = i;
1289       pIdxCons[j].op = pTerm->eOperator;
1290       /* The direct assignment in the previous line is possible only because
1291       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1292       ** following asserts verify this fact. */
1293       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1294       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1295       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1296       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1297       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1298       assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
1299       assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
1300       j++;
1301     }
1302     for(i=0; i<nOrderBy; i++){
1303       Expr *pExpr = pOrderBy->a[i].pExpr;
1304       pIdxOrderBy[i].iColumn = pExpr->iColumn;
1305       pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
1306     }
1307   }
1308 
1309   /* At this point, the sqlite3_index_info structure that pIdxInfo points
1310   ** to will have been initialized, either during the current invocation or
1311   ** during some prior invocation.  Now we just have to customize the
1312   ** details of pIdxInfo for the current invocation and pass it to
1313   ** xBestIndex.
1314   */
1315 
1316   /* The module name must be defined. Also, by this point there must
1317   ** be a pointer to an sqlite3_vtab structure. Otherwise
1318   ** sqlite3ViewGetColumnNames() would have picked up the error.
1319   */
1320   assert( pTab->azModuleArg && pTab->azModuleArg[0] );
1321   assert( pTab->pVtab );
1322 #if 0
1323   if( pTab->pVtab==0 ){
1324     sqlite3ErrorMsg(pParse, "undefined module %s for table %s",
1325         pTab->azModuleArg[0], pTab->zName);
1326     return 0.0;
1327   }
1328 #endif
1329 
1330   /* Set the aConstraint[].usable fields and initialize all
1331   ** output variables to zero.
1332   **
1333   ** aConstraint[].usable is true for constraints where the right-hand
1334   ** side contains only references to tables to the left of the current
1335   ** table.  In other words, if the constraint is of the form:
1336   **
1337   **           column = expr
1338   **
1339   ** and we are evaluating a join, then the constraint on column is
1340   ** only valid if all tables referenced in expr occur to the left
1341   ** of the table containing column.
1342   **
1343   ** The aConstraints[] array contains entries for all constraints
1344   ** on the current table.  That way we only have to compute it once
1345   ** even though we might try to pick the best index multiple times.
1346   ** For each attempt at picking an index, the order of tables in the
1347   ** join might be different so we have to recompute the usable flag
1348   ** each time.
1349   */
1350   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
1351   pUsage = pIdxInfo->aConstraintUsage;
1352   for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
1353     j = pIdxCons->iTermOffset;
1354     pTerm = &pWC->a[j];
1355     pIdxCons->usable =  (pTerm->prereqRight & notReady)==0;
1356   }
1357   memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
1358   if( pIdxInfo->needToFreeIdxStr ){
1359     sqlite3_free(pIdxInfo->idxStr);
1360   }
1361   pIdxInfo->idxStr = 0;
1362   pIdxInfo->idxNum = 0;
1363   pIdxInfo->needToFreeIdxStr = 0;
1364   pIdxInfo->orderByConsumed = 0;
1365   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0;
1366   nOrderBy = pIdxInfo->nOrderBy;
1367   if( pIdxInfo->nOrderBy && !orderByUsable ){
1368     *(int*)&pIdxInfo->nOrderBy = 0;
1369   }
1370 
1371   sqlite3SafetyOff(pParse->db);
1372   WHERETRACE(("xBestIndex for %s\n", pTab->zName));
1373   TRACE_IDX_INPUTS(pIdxInfo);
1374   rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo);
1375   TRACE_IDX_OUTPUTS(pIdxInfo);
1376   if( rc!=SQLITE_OK ){
1377     if( rc==SQLITE_NOMEM ){
1378       sqlite3FailedMalloc();
1379     }else {
1380       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1381     }
1382     sqlite3SafetyOn(pParse->db);
1383   }else{
1384     rc = sqlite3SafetyOn(pParse->db);
1385   }
1386   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
1387 
1388   return pIdxInfo->estimatedCost;
1389 }
1390 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1391 
1392 /*
1393 ** Find the best index for accessing a particular table.  Return a pointer
1394 ** to the index, flags that describe how the index should be used, the
1395 ** number of equality constraints, and the "cost" for this index.
1396 **
1397 ** The lowest cost index wins.  The cost is an estimate of the amount of
1398 ** CPU and disk I/O need to process the request using the selected index.
1399 ** Factors that influence cost include:
1400 **
1401 **    *  The estimated number of rows that will be retrieved.  (The
1402 **       fewer the better.)
1403 **
1404 **    *  Whether or not sorting must occur.
1405 **
1406 **    *  Whether or not there must be separate lookups in the
1407 **       index and in the main table.
1408 **
1409 */
1410 static double bestIndex(
1411   Parse *pParse,              /* The parsing context */
1412   WhereClause *pWC,           /* The WHERE clause */
1413   struct SrcList_item *pSrc,  /* The FROM clause term to search */
1414   Bitmask notReady,           /* Mask of cursors that are not available */
1415   ExprList *pOrderBy,         /* The order by clause */
1416   Index **ppIndex,            /* Make *ppIndex point to the best index */
1417   int *pFlags,                /* Put flags describing this choice in *pFlags */
1418   int *pnEq                   /* Put the number of == or IN constraints here */
1419 ){
1420   WhereTerm *pTerm;
1421   Index *bestIdx = 0;         /* Index that gives the lowest cost */
1422   double lowestCost;          /* The cost of using bestIdx */
1423   int bestFlags = 0;          /* Flags associated with bestIdx */
1424   int bestNEq = 0;            /* Best value for nEq */
1425   int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
1426   Index *pProbe;              /* An index we are evaluating */
1427   int rev;                    /* True to scan in reverse order */
1428   int flags;                  /* Flags associated with pProbe */
1429   int nEq;                    /* Number of == or IN constraints */
1430   int eqTermMask;             /* Mask of valid equality operators */
1431   double cost;                /* Cost of using pProbe */
1432 
1433   WHERETRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady));
1434   lowestCost = SQLITE_BIG_DBL;
1435   pProbe = pSrc->pTab->pIndex;
1436 
1437   /* If the table has no indices and there are no terms in the where
1438   ** clause that refer to the ROWID, then we will never be able to do
1439   ** anything other than a full table scan on this table.  We might as
1440   ** well put it first in the join order.  That way, perhaps it can be
1441   ** referenced by other tables in the join.
1442   */
1443   if( pProbe==0 &&
1444      findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 &&
1445      (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){
1446     *pFlags = 0;
1447     *ppIndex = 0;
1448     *pnEq = 0;
1449     return 0.0;
1450   }
1451 
1452   /* Check for a rowid=EXPR or rowid IN (...) constraints
1453   */
1454   pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
1455   if( pTerm ){
1456     Expr *pExpr;
1457     *ppIndex = 0;
1458     bestFlags = WHERE_ROWID_EQ;
1459     if( pTerm->eOperator & WO_EQ ){
1460       /* Rowid== is always the best pick.  Look no further.  Because only
1461       ** a single row is generated, output is always in sorted order */
1462       *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE;
1463       *pnEq = 1;
1464       WHERETRACE(("... best is rowid\n"));
1465       return 0.0;
1466     }else if( (pExpr = pTerm->pExpr)->pList!=0 ){
1467       /* Rowid IN (LIST): cost is NlogN where N is the number of list
1468       ** elements.  */
1469       lowestCost = pExpr->pList->nExpr;
1470       lowestCost *= estLog(lowestCost);
1471     }else{
1472       /* Rowid IN (SELECT): cost is NlogN where N is the number of rows
1473       ** in the result of the inner select.  We have no way to estimate
1474       ** that value so make a wild guess. */
1475       lowestCost = 200;
1476     }
1477     WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost));
1478   }
1479 
1480   /* Estimate the cost of a table scan.  If we do not know how many
1481   ** entries are in the table, use 1 million as a guess.
1482   */
1483   cost = pProbe ? pProbe->aiRowEst[0] : 1000000;
1484   WHERETRACE(("... table scan base cost: %.9g\n", cost));
1485   flags = WHERE_ROWID_RANGE;
1486 
1487   /* Check for constraints on a range of rowids in a table scan.
1488   */
1489   pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0);
1490   if( pTerm ){
1491     if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){
1492       flags |= WHERE_TOP_LIMIT;
1493       cost /= 3;  /* Guess that rowid<EXPR eliminates two-thirds or rows */
1494     }
1495     if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){
1496       flags |= WHERE_BTM_LIMIT;
1497       cost /= 3;  /* Guess that rowid>EXPR eliminates two-thirds of rows */
1498     }
1499     WHERETRACE(("... rowid range reduces cost to %.9g\n", cost));
1500   }else{
1501     flags = 0;
1502   }
1503 
1504   /* If the table scan does not satisfy the ORDER BY clause, increase
1505   ** the cost by NlogN to cover the expense of sorting. */
1506   if( pOrderBy ){
1507     if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){
1508       flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
1509       if( rev ){
1510         flags |= WHERE_REVERSE;
1511       }
1512     }else{
1513       cost += cost*estLog(cost);
1514       WHERETRACE(("... sorting increases cost to %.9g\n", cost));
1515     }
1516   }
1517   if( cost<lowestCost ){
1518     lowestCost = cost;
1519     bestFlags = flags;
1520   }
1521 
1522   /* If the pSrc table is the right table of a LEFT JOIN then we may not
1523   ** use an index to satisfy IS NULL constraints on that table.  This is
1524   ** because columns might end up being NULL if the table does not match -
1525   ** a circumstance which the index cannot help us discover.  Ticket #2177.
1526   */
1527   if( (pSrc->jointype & JT_LEFT)!=0 ){
1528     eqTermMask = WO_EQ|WO_IN;
1529   }else{
1530     eqTermMask = WO_EQ|WO_IN|WO_ISNULL;
1531   }
1532 
1533   /* Look at each index.
1534   */
1535   for(; pProbe; pProbe=pProbe->pNext){
1536     int i;                       /* Loop counter */
1537     double inMultiplier = 1;
1538 
1539     WHERETRACE(("... index %s:\n", pProbe->zName));
1540 
1541     /* Count the number of columns in the index that are satisfied
1542     ** by x=EXPR constraints or x IN (...) constraints.
1543     */
1544     flags = 0;
1545     for(i=0; i<pProbe->nColumn; i++){
1546       int j = pProbe->aiColumn[i];
1547       pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe);
1548       if( pTerm==0 ) break;
1549       flags |= WHERE_COLUMN_EQ;
1550       if( pTerm->eOperator & WO_IN ){
1551         Expr *pExpr = pTerm->pExpr;
1552         flags |= WHERE_COLUMN_IN;
1553         if( pExpr->pSelect!=0 ){
1554           inMultiplier *= 25;
1555         }else if( pExpr->pList!=0 ){
1556           inMultiplier *= pExpr->pList->nExpr + 1;
1557         }
1558       }
1559     }
1560     cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
1561     nEq = i;
1562     if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0
1563          && nEq==pProbe->nColumn ){
1564       flags |= WHERE_UNIQUE;
1565     }
1566     WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n", nEq, inMultiplier, cost));
1567 
1568     /* Look for range constraints
1569     */
1570     if( nEq<pProbe->nColumn ){
1571       int j = pProbe->aiColumn[nEq];
1572       pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
1573       if( pTerm ){
1574         flags |= WHERE_COLUMN_RANGE;
1575         if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
1576           flags |= WHERE_TOP_LIMIT;
1577           cost /= 3;
1578         }
1579         if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
1580           flags |= WHERE_BTM_LIMIT;
1581           cost /= 3;
1582         }
1583         WHERETRACE(("...... range reduces cost to %.9g\n", cost));
1584       }
1585     }
1586 
1587     /* Add the additional cost of sorting if that is a factor.
1588     */
1589     if( pOrderBy ){
1590       if( (flags & WHERE_COLUMN_IN)==0 &&
1591            isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){
1592         if( flags==0 ){
1593           flags = WHERE_COLUMN_RANGE;
1594         }
1595         flags |= WHERE_ORDERBY;
1596         if( rev ){
1597           flags |= WHERE_REVERSE;
1598         }
1599       }else{
1600         cost += cost*estLog(cost);
1601         WHERETRACE(("...... orderby increases cost to %.9g\n", cost));
1602       }
1603     }
1604 
1605     /* Check to see if we can get away with using just the index without
1606     ** ever reading the table.  If that is the case, then halve the
1607     ** cost of this index.
1608     */
1609     if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){
1610       Bitmask m = pSrc->colUsed;
1611       int j;
1612       for(j=0; j<pProbe->nColumn; j++){
1613         int x = pProbe->aiColumn[j];
1614         if( x<BMS-1 ){
1615           m &= ~(((Bitmask)1)<<x);
1616         }
1617       }
1618       if( m==0 ){
1619         flags |= WHERE_IDX_ONLY;
1620         cost /= 2;
1621         WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost));
1622       }
1623     }
1624 
1625     /* If this index has achieved the lowest cost so far, then use it.
1626     */
1627     if( cost < lowestCost ){
1628       bestIdx = pProbe;
1629       lowestCost = cost;
1630       assert( flags!=0 );
1631       bestFlags = flags;
1632       bestNEq = nEq;
1633     }
1634   }
1635 
1636   /* Report the best result
1637   */
1638   *ppIndex = bestIdx;
1639   WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n",
1640         bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq));
1641   *pFlags = bestFlags | eqTermMask;
1642   *pnEq = bestNEq;
1643   return lowestCost;
1644 }
1645 
1646 
1647 /*
1648 ** Disable a term in the WHERE clause.  Except, do not disable the term
1649 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
1650 ** or USING clause of that join.
1651 **
1652 ** Consider the term t2.z='ok' in the following queries:
1653 **
1654 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
1655 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
1656 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
1657 **
1658 ** The t2.z='ok' is disabled in the in (2) because it originates
1659 ** in the ON clause.  The term is disabled in (3) because it is not part
1660 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
1661 **
1662 ** Disabling a term causes that term to not be tested in the inner loop
1663 ** of the join.  Disabling is an optimization.  When terms are satisfied
1664 ** by indices, we disable them to prevent redundant tests in the inner
1665 ** loop.  We would get the correct results if nothing were ever disabled,
1666 ** but joins might run a little slower.  The trick is to disable as much
1667 ** as we can without disabling too much.  If we disabled in (1), we'd get
1668 ** the wrong answer.  See ticket #813.
1669 */
1670 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
1671   if( pTerm
1672       && (pTerm->flags & TERM_CODED)==0
1673       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
1674   ){
1675     pTerm->flags |= TERM_CODED;
1676     if( pTerm->iParent>=0 ){
1677       WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
1678       if( (--pOther->nChild)==0 ){
1679         disableTerm(pLevel, pOther);
1680       }
1681     }
1682   }
1683 }
1684 
1685 /*
1686 ** Generate code that builds a probe for an index.
1687 **
1688 ** There should be nColumn values on the stack.  The index
1689 ** to be probed is pIdx.  Pop the values from the stack and
1690 ** replace them all with a single record that is the index
1691 ** problem.
1692 */
1693 static void buildIndexProbe(
1694   Vdbe *v,        /* Generate code into this VM */
1695   int nColumn,    /* The number of columns to check for NULL */
1696   Index *pIdx     /* Index that we will be searching */
1697 ){
1698   sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
1699   sqlite3IndexAffinityStr(v, pIdx);
1700 }
1701 
1702 
1703 /*
1704 ** Generate code for a single equality term of the WHERE clause.  An equality
1705 ** term can be either X=expr or X IN (...).   pTerm is the term to be
1706 ** coded.
1707 **
1708 ** The current value for the constraint is left on the top of the stack.
1709 **
1710 ** For a constraint of the form X=expr, the expression is evaluated and its
1711 ** result is left on the stack.  For constraints of the form X IN (...)
1712 ** this routine sets up a loop that will iterate over all values of X.
1713 */
1714 static void codeEqualityTerm(
1715   Parse *pParse,      /* The parsing context */
1716   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
1717   WhereLevel *pLevel  /* When level of the FROM clause we are working on */
1718 ){
1719   Expr *pX = pTerm->pExpr;
1720   Vdbe *v = pParse->pVdbe;
1721   if( pX->op==TK_EQ ){
1722     sqlite3ExprCode(pParse, pX->pRight);
1723   }else if( pX->op==TK_ISNULL ){
1724     sqlite3VdbeAddOp(v, OP_Null, 0, 0);
1725 #ifndef SQLITE_OMIT_SUBQUERY
1726   }else{
1727     int iTab;
1728     struct InLoop *pIn;
1729 
1730     assert( pX->op==TK_IN );
1731     sqlite3CodeSubselect(pParse, pX);
1732     iTab = pX->iTable;
1733     sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0);
1734     VdbeComment((v, "# %.*s", pX->span.n, pX->span.z));
1735     if( pLevel->nIn==0 ){
1736       pLevel->nxt = sqlite3VdbeMakeLabel(v);
1737     }
1738     pLevel->nIn++;
1739     pLevel->aInLoop = sqliteReallocOrFree(pLevel->aInLoop,
1740                                     sizeof(pLevel->aInLoop[0])*pLevel->nIn);
1741     pIn = pLevel->aInLoop;
1742     if( pIn ){
1743       pIn += pLevel->nIn - 1;
1744       pIn->iCur = iTab;
1745       pIn->topAddr = sqlite3VdbeAddOp(v, OP_Column, iTab, 0);
1746       sqlite3VdbeAddOp(v, OP_IsNull, -1, 0);
1747     }else{
1748       pLevel->nIn = 0;
1749     }
1750 #endif
1751   }
1752   disableTerm(pLevel, pTerm);
1753 }
1754 
1755 /*
1756 ** Generate code that will evaluate all == and IN constraints for an
1757 ** index.  The values for all constraints are left on the stack.
1758 **
1759 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
1760 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
1761 ** The index has as many as three equality constraints, but in this
1762 ** example, the third "c" value is an inequality.  So only two
1763 ** constraints are coded.  This routine will generate code to evaluate
1764 ** a==5 and b IN (1,2,3).  The current values for a and b will be left
1765 ** on the stack - a is the deepest and b the shallowest.
1766 **
1767 ** In the example above nEq==2.  But this subroutine works for any value
1768 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
1769 ** The only thing it does is allocate the pLevel->iMem memory cell.
1770 **
1771 ** This routine always allocates at least one memory cell and puts
1772 ** the address of that memory cell in pLevel->iMem.  The code that
1773 ** calls this routine will use pLevel->iMem to store the termination
1774 ** key value of the loop.  If one or more IN operators appear, then
1775 ** this routine allocates an additional nEq memory cells for internal
1776 ** use.
1777 */
1778 static void codeAllEqualityTerms(
1779   Parse *pParse,        /* Parsing context */
1780   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
1781   WhereClause *pWC,     /* The WHERE clause */
1782   Bitmask notReady      /* Which parts of FROM have not yet been coded */
1783 ){
1784   int nEq = pLevel->nEq;        /* The number of == or IN constraints to code */
1785   int termsInMem = 0;           /* If true, store value in mem[] cells */
1786   Vdbe *v = pParse->pVdbe;      /* The virtual machine under construction */
1787   Index *pIdx = pLevel->pIdx;   /* The index being used for this loop */
1788   int iCur = pLevel->iTabCur;   /* The cursor of the table */
1789   WhereTerm *pTerm;             /* A single constraint term */
1790   int j;                        /* Loop counter */
1791 
1792   /* Figure out how many memory cells we will need then allocate them.
1793   ** We always need at least one used to store the loop terminator
1794   ** value.  If there are IN operators we'll need one for each == or
1795   ** IN constraint.
1796   */
1797   pLevel->iMem = pParse->nMem++;
1798   if( pLevel->flags & WHERE_COLUMN_IN ){
1799     pParse->nMem += pLevel->nEq;
1800     termsInMem = 1;
1801   }
1802 
1803   /* Evaluate the equality constraints
1804   */
1805   assert( pIdx->nColumn>=nEq );
1806   for(j=0; j<nEq; j++){
1807     int k = pIdx->aiColumn[j];
1808     pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx);
1809     if( pTerm==0 ) break;
1810     assert( (pTerm->flags & TERM_CODED)==0 );
1811     codeEqualityTerm(pParse, pTerm, pLevel);
1812     if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
1813       sqlite3VdbeAddOp(v, OP_IsNull, termsInMem ? -1 : -(j+1), pLevel->brk);
1814     }
1815     if( termsInMem ){
1816       sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1);
1817     }
1818   }
1819 
1820   /* Make sure all the constraint values are on the top of the stack
1821   */
1822   if( termsInMem ){
1823     for(j=0; j<nEq; j++){
1824       sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0);
1825     }
1826   }
1827 }
1828 
1829 #if defined(SQLITE_TEST)
1830 /*
1831 ** The following variable holds a text description of query plan generated
1832 ** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin
1833 ** overwrites the previous.  This information is used for testing and
1834 ** analysis only.
1835 */
1836 char sqlite3_query_plan[BMS*2*40];  /* Text of the join */
1837 static int nQPlan = 0;              /* Next free slow in _query_plan[] */
1838 
1839 #endif /* SQLITE_TEST */
1840 
1841 
1842 /*
1843 ** Free a WhereInfo structure
1844 */
1845 static void whereInfoFree(WhereInfo *pWInfo){
1846   if( pWInfo ){
1847     int i;
1848     for(i=0; i<pWInfo->nLevel; i++){
1849       sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
1850       if( pInfo ){
1851         if( pInfo->needToFreeIdxStr ){
1852           /* Coverage: Don't think this can be reached. By the time this
1853           ** function is called, the index-strings have been passed
1854           ** to the vdbe layer for deletion.
1855           */
1856           sqlite3_free(pInfo->idxStr);
1857         }
1858         sqliteFree(pInfo);
1859       }
1860     }
1861     sqliteFree(pWInfo);
1862   }
1863 }
1864 
1865 
1866 /*
1867 ** Generate the beginning of the loop used for WHERE clause processing.
1868 ** The return value is a pointer to an opaque structure that contains
1869 ** information needed to terminate the loop.  Later, the calling routine
1870 ** should invoke sqlite3WhereEnd() with the return value of this function
1871 ** in order to complete the WHERE clause processing.
1872 **
1873 ** If an error occurs, this routine returns NULL.
1874 **
1875 ** The basic idea is to do a nested loop, one loop for each table in
1876 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
1877 ** same as a SELECT with only a single table in the FROM clause.)  For
1878 ** example, if the SQL is this:
1879 **
1880 **       SELECT * FROM t1, t2, t3 WHERE ...;
1881 **
1882 ** Then the code generated is conceptually like the following:
1883 **
1884 **      foreach row1 in t1 do       \    Code generated
1885 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
1886 **          foreach row3 in t3 do   /
1887 **            ...
1888 **          end                     \    Code generated
1889 **        end                        |-- by sqlite3WhereEnd()
1890 **      end                         /
1891 **
1892 ** Note that the loops might not be nested in the order in which they
1893 ** appear in the FROM clause if a different order is better able to make
1894 ** use of indices.  Note also that when the IN operator appears in
1895 ** the WHERE clause, it might result in additional nested loops for
1896 ** scanning through all values on the right-hand side of the IN.
1897 **
1898 ** There are Btree cursors associated with each table.  t1 uses cursor
1899 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
1900 ** And so forth.  This routine generates code to open those VDBE cursors
1901 ** and sqlite3WhereEnd() generates the code to close them.
1902 **
1903 ** The code that sqlite3WhereBegin() generates leaves the cursors named
1904 ** in pTabList pointing at their appropriate entries.  The [...] code
1905 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
1906 ** data from the various tables of the loop.
1907 **
1908 ** If the WHERE clause is empty, the foreach loops must each scan their
1909 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
1910 ** the tables have indices and there are terms in the WHERE clause that
1911 ** refer to those indices, a complete table scan can be avoided and the
1912 ** code will run much faster.  Most of the work of this routine is checking
1913 ** to see if there are indices that can be used to speed up the loop.
1914 **
1915 ** Terms of the WHERE clause are also used to limit which rows actually
1916 ** make it to the "..." in the middle of the loop.  After each "foreach",
1917 ** terms of the WHERE clause that use only terms in that loop and outer
1918 ** loops are evaluated and if false a jump is made around all subsequent
1919 ** inner loops (or around the "..." if the test occurs within the inner-
1920 ** most loop)
1921 **
1922 ** OUTER JOINS
1923 **
1924 ** An outer join of tables t1 and t2 is conceptally coded as follows:
1925 **
1926 **    foreach row1 in t1 do
1927 **      flag = 0
1928 **      foreach row2 in t2 do
1929 **        start:
1930 **          ...
1931 **          flag = 1
1932 **      end
1933 **      if flag==0 then
1934 **        move the row2 cursor to a null row
1935 **        goto start
1936 **      fi
1937 **    end
1938 **
1939 ** ORDER BY CLAUSE PROCESSING
1940 **
1941 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
1942 ** if there is one.  If there is no ORDER BY clause or if this routine
1943 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
1944 **
1945 ** If an index can be used so that the natural output order of the table
1946 ** scan is correct for the ORDER BY clause, then that index is used and
1947 ** *ppOrderBy is set to NULL.  This is an optimization that prevents an
1948 ** unnecessary sort of the result set if an index appropriate for the
1949 ** ORDER BY clause already exists.
1950 **
1951 ** If the where clause loops cannot be arranged to provide the correct
1952 ** output order, then the *ppOrderBy is unchanged.
1953 */
1954 WhereInfo *sqlite3WhereBegin(
1955   Parse *pParse,        /* The parser context */
1956   SrcList *pTabList,    /* A list of all tables to be scanned */
1957   Expr *pWhere,         /* The WHERE clause */
1958   ExprList **ppOrderBy  /* An ORDER BY clause, or NULL */
1959 ){
1960   int i;                     /* Loop counter */
1961   WhereInfo *pWInfo;         /* Will become the return value of this function */
1962   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
1963   int brk, cont = 0;         /* Addresses used during code generation */
1964   Bitmask notReady;          /* Cursors that are not yet positioned */
1965   WhereTerm *pTerm;          /* A single term in the WHERE clause */
1966   ExprMaskSet maskSet;       /* The expression mask set */
1967   WhereClause wc;            /* The WHERE clause is divided into these terms */
1968   struct SrcList_item *pTabItem;  /* A single entry from pTabList */
1969   WhereLevel *pLevel;             /* A single level in the pWInfo list */
1970   int iFrom;                      /* First unused FROM clause element */
1971   int andFlags;              /* AND-ed combination of all wc.a[].flags */
1972 
1973   /* The number of tables in the FROM clause is limited by the number of
1974   ** bits in a Bitmask
1975   */
1976   if( pTabList->nSrc>BMS ){
1977     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
1978     return 0;
1979   }
1980 
1981   /* Split the WHERE clause into separate subexpressions where each
1982   ** subexpression is separated by an AND operator.
1983   */
1984   initMaskSet(&maskSet);
1985   whereClauseInit(&wc, pParse, &maskSet);
1986   whereSplit(&wc, pWhere, TK_AND);
1987 
1988   /* Allocate and initialize the WhereInfo structure that will become the
1989   ** return value.
1990   */
1991   pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
1992   if( sqlite3MallocFailed() ){
1993     goto whereBeginNoMem;
1994   }
1995   pWInfo->nLevel = pTabList->nSrc;
1996   pWInfo->pParse = pParse;
1997   pWInfo->pTabList = pTabList;
1998   pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
1999 
2000   /* Special case: a WHERE clause that is constant.  Evaluate the
2001   ** expression and either jump over all of the code or fall thru.
2002   */
2003   if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
2004     sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
2005     pWhere = 0;
2006   }
2007 
2008   /* Analyze all of the subexpressions.  Note that exprAnalyze() might
2009   ** add new virtual terms onto the end of the WHERE clause.  We do not
2010   ** want to analyze these virtual terms, so start analyzing at the end
2011   ** and work forward so that the added virtual terms are never processed.
2012   */
2013   for(i=0; i<pTabList->nSrc; i++){
2014     createMask(&maskSet, pTabList->a[i].iCursor);
2015   }
2016   exprAnalyzeAll(pTabList, &wc);
2017   if( sqlite3MallocFailed() ){
2018     goto whereBeginNoMem;
2019   }
2020 
2021   /* Chose the best index to use for each table in the FROM clause.
2022   **
2023   ** This loop fills in the following fields:
2024   **
2025   **   pWInfo->a[].pIdx      The index to use for this level of the loop.
2026   **   pWInfo->a[].flags     WHERE_xxx flags associated with pIdx
2027   **   pWInfo->a[].nEq       The number of == and IN constraints
2028   **   pWInfo->a[].iFrom     When term of the FROM clause is being coded
2029   **   pWInfo->a[].iTabCur   The VDBE cursor for the database table
2030   **   pWInfo->a[].iIdxCur   The VDBE cursor for the index
2031   **
2032   ** This loop also figures out the nesting order of tables in the FROM
2033   ** clause.
2034   */
2035   notReady = ~(Bitmask)0;
2036   pTabItem = pTabList->a;
2037   pLevel = pWInfo->a;
2038   andFlags = ~0;
2039   WHERETRACE(("*** Optimizer Start ***\n"));
2040   for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2041     Index *pIdx;                /* Index for FROM table at pTabItem */
2042     int flags;                  /* Flags asssociated with pIdx */
2043     int nEq;                    /* Number of == or IN constraints */
2044     double cost;                /* The cost for pIdx */
2045     int j;                      /* For looping over FROM tables */
2046     Index *pBest = 0;           /* The best index seen so far */
2047     int bestFlags = 0;          /* Flags associated with pBest */
2048     int bestNEq = 0;            /* nEq associated with pBest */
2049     double lowestCost;          /* Cost of the pBest */
2050     int bestJ = 0;              /* The value of j */
2051     Bitmask m;                  /* Bitmask value for j or bestJ */
2052     int once = 0;               /* True when first table is seen */
2053     sqlite3_index_info *pIndex; /* Current virtual index */
2054 
2055     lowestCost = SQLITE_BIG_DBL;
2056     for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
2057       int doNotReorder;  /* True if this table should not be reordered */
2058 
2059       doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
2060       if( once && doNotReorder ) break;
2061       m = getMask(&maskSet, pTabItem->iCursor);
2062       if( (m & notReady)==0 ){
2063         if( j==iFrom ) iFrom++;
2064         continue;
2065       }
2066       assert( pTabItem->pTab );
2067 #ifndef SQLITE_OMIT_VIRTUALTABLE
2068       if( IsVirtual(pTabItem->pTab) ){
2069         sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo;
2070         cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady,
2071                                 ppOrderBy ? *ppOrderBy : 0, i==0,
2072                                 ppIdxInfo);
2073         flags = WHERE_VIRTUALTABLE;
2074         pIndex = *ppIdxInfo;
2075         if( pIndex && pIndex->orderByConsumed ){
2076           flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY;
2077         }
2078         pIdx = 0;
2079         nEq = 0;
2080         if( (SQLITE_BIG_DBL/2.0)<cost ){
2081           /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
2082           ** inital value of lowestCost in this loop. If it is, then
2083           ** the (cost<lowestCost) test below will never be true and
2084           ** pLevel->pBestIdx never set.
2085           */
2086           cost = (SQLITE_BIG_DBL/2.0);
2087         }
2088       }else
2089 #endif
2090       {
2091         cost = bestIndex(pParse, &wc, pTabItem, notReady,
2092                          (i==0 && ppOrderBy) ? *ppOrderBy : 0,
2093                          &pIdx, &flags, &nEq);
2094         pIndex = 0;
2095       }
2096       if( cost<lowestCost ){
2097         once = 1;
2098         lowestCost = cost;
2099         pBest = pIdx;
2100         bestFlags = flags;
2101         bestNEq = nEq;
2102         bestJ = j;
2103         pLevel->pBestIdx = pIndex;
2104       }
2105       if( doNotReorder ) break;
2106     }
2107     WHERETRACE(("*** Optimizer choose table %d for loop %d\n", bestJ,
2108            pLevel-pWInfo->a));
2109     if( (bestFlags & WHERE_ORDERBY)!=0 ){
2110       *ppOrderBy = 0;
2111     }
2112     andFlags &= bestFlags;
2113     pLevel->flags = bestFlags;
2114     pLevel->pIdx = pBest;
2115     pLevel->nEq = bestNEq;
2116     pLevel->aInLoop = 0;
2117     pLevel->nIn = 0;
2118     if( pBest ){
2119       pLevel->iIdxCur = pParse->nTab++;
2120     }else{
2121       pLevel->iIdxCur = -1;
2122     }
2123     notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor);
2124     pLevel->iFrom = bestJ;
2125   }
2126   WHERETRACE(("*** Optimizer Finished ***\n"));
2127 
2128   /* If the total query only selects a single row, then the ORDER BY
2129   ** clause is irrelevant.
2130   */
2131   if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
2132     *ppOrderBy = 0;
2133   }
2134 
2135   /* Open all tables in the pTabList and any indices selected for
2136   ** searching those tables.
2137   */
2138   sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
2139   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2140     Table *pTab;     /* Table to open */
2141     Index *pIx;      /* Index used to access pTab (if any) */
2142     int iDb;         /* Index of database containing table/index */
2143     int iIdxCur = pLevel->iIdxCur;
2144 
2145 #ifndef SQLITE_OMIT_EXPLAIN
2146     if( pParse->explain==2 ){
2147       char *zMsg;
2148       struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
2149       zMsg = sqlite3MPrintf("TABLE %s", pItem->zName);
2150       if( pItem->zAlias ){
2151         zMsg = sqlite3MPrintf("%z AS %s", zMsg, pItem->zAlias);
2152       }
2153       if( (pIx = pLevel->pIdx)!=0 ){
2154         zMsg = sqlite3MPrintf("%z WITH INDEX %s", zMsg, pIx->zName);
2155       }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
2156         zMsg = sqlite3MPrintf("%z USING PRIMARY KEY", zMsg);
2157       }
2158 #ifndef SQLITE_OMIT_VIRTUALTABLE
2159       else if( pLevel->pBestIdx ){
2160         sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
2161         zMsg = sqlite3MPrintf("%z VIRTUAL TABLE INDEX %d:%s", zMsg,
2162                     pBestIdx->idxNum, pBestIdx->idxStr);
2163       }
2164 #endif
2165       if( pLevel->flags & WHERE_ORDERBY ){
2166         zMsg = sqlite3MPrintf("%z ORDER BY", zMsg);
2167       }
2168       sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC);
2169     }
2170 #endif /* SQLITE_OMIT_EXPLAIN */
2171     pTabItem = &pTabList->a[pLevel->iFrom];
2172     pTab = pTabItem->pTab;
2173     iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2174     if( pTab->isEphem || pTab->pSelect ) continue;
2175 #ifndef SQLITE_OMIT_VIRTUALTABLE
2176     if( pLevel->pBestIdx ){
2177       int iCur = pTabItem->iCursor;
2178       sqlite3VdbeOp3(v, OP_VOpen, iCur, 0, (const char*)pTab->pVtab, P3_VTAB);
2179     }else
2180 #endif
2181     if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
2182       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead);
2183       if( pTab->nCol<(sizeof(Bitmask)*8) ){
2184         Bitmask b = pTabItem->colUsed;
2185         int n = 0;
2186         for(; b; b=b>>1, n++){}
2187         sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n);
2188         assert( n<=pTab->nCol );
2189       }
2190     }else{
2191       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2192     }
2193     pLevel->iTabCur = pTabItem->iCursor;
2194     if( (pIx = pLevel->pIdx)!=0 ){
2195       KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
2196       assert( pIx->pSchema==pTab->pSchema );
2197       sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
2198       VdbeComment((v, "# %s", pIx->zName));
2199       sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum,
2200                      (char*)pKey, P3_KEYINFO_HANDOFF);
2201     }
2202     if( (pLevel->flags & (WHERE_IDX_ONLY|WHERE_COLUMN_RANGE))!=0 ){
2203       /* Only call OP_SetNumColumns on the index if we might later use
2204       ** OP_Column on the index. */
2205       sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
2206     }
2207     sqlite3CodeVerifySchema(pParse, iDb);
2208   }
2209   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
2210 
2211   /* Generate the code to do the search.  Each iteration of the for
2212   ** loop below generates code for a single nested loop of the VM
2213   ** program.
2214   */
2215   notReady = ~(Bitmask)0;
2216   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2217     int j;
2218     int iCur = pTabItem->iCursor;  /* The VDBE cursor for the table */
2219     Index *pIdx;       /* The index we will be using */
2220     int nxt;           /* Where to jump to continue with the next IN case */
2221     int iIdxCur;       /* The VDBE cursor for the index */
2222     int omitTable;     /* True if we use the index only */
2223     int bRev;          /* True if we need to scan in reverse order */
2224 
2225     pTabItem = &pTabList->a[pLevel->iFrom];
2226     iCur = pTabItem->iCursor;
2227     pIdx = pLevel->pIdx;
2228     iIdxCur = pLevel->iIdxCur;
2229     bRev = (pLevel->flags & WHERE_REVERSE)!=0;
2230     omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0;
2231 
2232     /* Create labels for the "break" and "continue" instructions
2233     ** for the current loop.  Jump to brk to break out of a loop.
2234     ** Jump to cont to go immediately to the next iteration of the
2235     ** loop.
2236     **
2237     ** When there is an IN operator, we also have a "nxt" label that
2238     ** means to continue with the next IN value combination.  When
2239     ** there are no IN operators in the constraints, the "nxt" label
2240     ** is the same as "brk".
2241     */
2242     brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v);
2243     cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
2244 
2245     /* If this is the right table of a LEFT OUTER JOIN, allocate and
2246     ** initialize a memory cell that records if this table matches any
2247     ** row of the left table of the join.
2248     */
2249     if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
2250       if( !pParse->nMem ) pParse->nMem++;
2251       pLevel->iLeftJoin = pParse->nMem++;
2252       sqlite3VdbeAddOp(v, OP_MemInt, 0, pLevel->iLeftJoin);
2253       VdbeComment((v, "# init LEFT JOIN no-match flag"));
2254     }
2255 
2256 #ifndef SQLITE_OMIT_VIRTUALTABLE
2257     if( pLevel->pBestIdx ){
2258       /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
2259       **          to access the data.
2260       */
2261       int j;
2262       sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
2263       int nConstraint = pBestIdx->nConstraint;
2264       struct sqlite3_index_constraint_usage *aUsage =
2265                                                   pBestIdx->aConstraintUsage;
2266       const struct sqlite3_index_constraint *aConstraint =
2267                                                   pBestIdx->aConstraint;
2268 
2269       for(j=1; j<=nConstraint; j++){
2270         int k;
2271         for(k=0; k<nConstraint; k++){
2272           if( aUsage[k].argvIndex==j ){
2273             int iTerm = aConstraint[k].iTermOffset;
2274             sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight);
2275             break;
2276           }
2277         }
2278         if( k==nConstraint ) break;
2279       }
2280       sqlite3VdbeAddOp(v, OP_Integer, j-1, 0);
2281       sqlite3VdbeAddOp(v, OP_Integer, pBestIdx->idxNum, 0);
2282       sqlite3VdbeOp3(v, OP_VFilter, iCur, brk, pBestIdx->idxStr,
2283                       pBestIdx->needToFreeIdxStr ? P3_MPRINTF : P3_STATIC);
2284       pBestIdx->needToFreeIdxStr = 0;
2285       for(j=0; j<pBestIdx->nConstraint; j++){
2286         if( aUsage[j].omit ){
2287           int iTerm = aConstraint[j].iTermOffset;
2288           disableTerm(pLevel, &wc.a[iTerm]);
2289         }
2290       }
2291       pLevel->op = OP_VNext;
2292       pLevel->p1 = iCur;
2293       pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2294     }else
2295 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2296 
2297     if( pLevel->flags & WHERE_ROWID_EQ ){
2298       /* Case 1:  We can directly reference a single row using an
2299       **          equality comparison against the ROWID field.  Or
2300       **          we reference multiple rows using a "rowid IN (...)"
2301       **          construct.
2302       */
2303       pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0);
2304       assert( pTerm!=0 );
2305       assert( pTerm->pExpr!=0 );
2306       assert( pTerm->leftCursor==iCur );
2307       assert( omitTable==0 );
2308       codeEqualityTerm(pParse, pTerm, pLevel);
2309       nxt = pLevel->nxt;
2310       sqlite3VdbeAddOp(v, OP_MustBeInt, 1, nxt);
2311       sqlite3VdbeAddOp(v, OP_NotExists, iCur, nxt);
2312       VdbeComment((v, "pk"));
2313       pLevel->op = OP_Noop;
2314     }else if( pLevel->flags & WHERE_ROWID_RANGE ){
2315       /* Case 2:  We have an inequality comparison against the ROWID field.
2316       */
2317       int testOp = OP_Noop;
2318       int start;
2319       WhereTerm *pStart, *pEnd;
2320 
2321       assert( omitTable==0 );
2322       pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0);
2323       pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0);
2324       if( bRev ){
2325         pTerm = pStart;
2326         pStart = pEnd;
2327         pEnd = pTerm;
2328       }
2329       if( pStart ){
2330         Expr *pX;
2331         pX = pStart->pExpr;
2332         assert( pX!=0 );
2333         assert( pStart->leftCursor==iCur );
2334         sqlite3ExprCode(pParse, pX->pRight);
2335         sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk);
2336         sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk);
2337         VdbeComment((v, "pk"));
2338         disableTerm(pLevel, pStart);
2339       }else{
2340         sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
2341       }
2342       if( pEnd ){
2343         Expr *pX;
2344         pX = pEnd->pExpr;
2345         assert( pX!=0 );
2346         assert( pEnd->leftCursor==iCur );
2347         sqlite3ExprCode(pParse, pX->pRight);
2348         pLevel->iMem = pParse->nMem++;
2349         sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
2350         if( pX->op==TK_LT || pX->op==TK_GT ){
2351           testOp = bRev ? OP_Le : OP_Ge;
2352         }else{
2353           testOp = bRev ? OP_Lt : OP_Gt;
2354         }
2355         disableTerm(pLevel, pEnd);
2356       }
2357       start = sqlite3VdbeCurrentAddr(v);
2358       pLevel->op = bRev ? OP_Prev : OP_Next;
2359       pLevel->p1 = iCur;
2360       pLevel->p2 = start;
2361       if( testOp!=OP_Noop ){
2362         sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
2363         sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
2364         sqlite3VdbeAddOp(v, testOp, SQLITE_AFF_NUMERIC|0x100, brk);
2365       }
2366     }else if( pLevel->flags & WHERE_COLUMN_RANGE ){
2367       /* Case 3: The WHERE clause term that refers to the right-most
2368       **         column of the index is an inequality.  For example, if
2369       **         the index is on (x,y,z) and the WHERE clause is of the
2370       **         form "x=5 AND y<10" then this case is used.  Only the
2371       **         right-most column can be an inequality - the rest must
2372       **         use the "==" and "IN" operators.
2373       **
2374       **         This case is also used when there are no WHERE clause
2375       **         constraints but an index is selected anyway, in order
2376       **         to force the output order to conform to an ORDER BY.
2377       */
2378       int start;
2379       int nEq = pLevel->nEq;
2380       int topEq=0;        /* True if top limit uses ==. False is strictly < */
2381       int btmEq=0;        /* True if btm limit uses ==. False if strictly > */
2382       int topOp, btmOp;   /* Operators for the top and bottom search bounds */
2383       int testOp;
2384       int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0;
2385       int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0;
2386 
2387       /* Generate code to evaluate all constraint terms using == or IN
2388       ** and level the values of those terms on the stack.
2389       */
2390       codeAllEqualityTerms(pParse, pLevel, &wc, notReady);
2391 
2392       /* Duplicate the equality term values because they will all be
2393       ** used twice: once to make the termination key and once to make the
2394       ** start key.
2395       */
2396       for(j=0; j<nEq; j++){
2397         sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0);
2398       }
2399 
2400       /* Figure out what comparison operators to use for top and bottom
2401       ** search bounds. For an ascending index, the bottom bound is a > or >=
2402       ** operator and the top bound is a < or <= operator.  For a descending
2403       ** index the operators are reversed.
2404       */
2405       if( pIdx->aSortOrder[nEq]==SQLITE_SO_ASC ){
2406         topOp = WO_LT|WO_LE;
2407         btmOp = WO_GT|WO_GE;
2408       }else{
2409         topOp = WO_GT|WO_GE;
2410         btmOp = WO_LT|WO_LE;
2411         SWAP(int, topLimit, btmLimit);
2412       }
2413 
2414       /* Generate the termination key.  This is the key value that
2415       ** will end the search.  There is no termination key if there
2416       ** are no equality terms and no "X<..." term.
2417       **
2418       ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
2419       ** key computed here really ends up being the start key.
2420       */
2421       nxt = pLevel->nxt;
2422       if( topLimit ){
2423         Expr *pX;
2424         int k = pIdx->aiColumn[j];
2425         pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx);
2426         assert( pTerm!=0 );
2427         pX = pTerm->pExpr;
2428         assert( (pTerm->flags & TERM_CODED)==0 );
2429         sqlite3ExprCode(pParse, pX->pRight);
2430         sqlite3VdbeAddOp(v, OP_IsNull, -(nEq*2+1), nxt);
2431         topEq = pTerm->eOperator & (WO_LE|WO_GE);
2432         disableTerm(pLevel, pTerm);
2433         testOp = OP_IdxGE;
2434       }else{
2435         testOp = nEq>0 ? OP_IdxGE : OP_Noop;
2436         topEq = 1;
2437       }
2438       if( testOp!=OP_Noop ){
2439         int nCol = nEq + topLimit;
2440         pLevel->iMem = pParse->nMem++;
2441         buildIndexProbe(v, nCol, pIdx);
2442         if( bRev ){
2443           int op = topEq ? OP_MoveLe : OP_MoveLt;
2444           sqlite3VdbeAddOp(v, op, iIdxCur, nxt);
2445         }else{
2446           sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
2447         }
2448       }else if( bRev ){
2449         sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk);
2450       }
2451 
2452       /* Generate the start key.  This is the key that defines the lower
2453       ** bound on the search.  There is no start key if there are no
2454       ** equality terms and if there is no "X>..." term.  In
2455       ** that case, generate a "Rewind" instruction in place of the
2456       ** start key search.
2457       **
2458       ** 2002-Dec-04: In the case of a reverse-order search, the so-called
2459       ** "start" key really ends up being used as the termination key.
2460       */
2461       if( btmLimit ){
2462         Expr *pX;
2463         int k = pIdx->aiColumn[j];
2464         pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx);
2465         assert( pTerm!=0 );
2466         pX = pTerm->pExpr;
2467         assert( (pTerm->flags & TERM_CODED)==0 );
2468         sqlite3ExprCode(pParse, pX->pRight);
2469         sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), nxt);
2470         btmEq = pTerm->eOperator & (WO_LE|WO_GE);
2471         disableTerm(pLevel, pTerm);
2472       }else{
2473         btmEq = 1;
2474       }
2475       if( nEq>0 || btmLimit ){
2476         int nCol = nEq + btmLimit;
2477         buildIndexProbe(v, nCol, pIdx);
2478         if( bRev ){
2479           pLevel->iMem = pParse->nMem++;
2480           sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
2481           testOp = OP_IdxLT;
2482         }else{
2483           int op = btmEq ? OP_MoveGe : OP_MoveGt;
2484           sqlite3VdbeAddOp(v, op, iIdxCur, nxt);
2485         }
2486       }else if( bRev ){
2487         testOp = OP_Noop;
2488       }else{
2489         sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk);
2490       }
2491 
2492       /* Generate the the top of the loop.  If there is a termination
2493       ** key we have to test for that key and abort at the top of the
2494       ** loop.
2495       */
2496       start = sqlite3VdbeCurrentAddr(v);
2497       if( testOp!=OP_Noop ){
2498         sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
2499         sqlite3VdbeAddOp(v, testOp, iIdxCur, nxt);
2500         if( (topEq && !bRev) || (!btmEq && bRev) ){
2501           sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC);
2502         }
2503       }
2504       if( topLimit | btmLimit ){
2505         sqlite3VdbeAddOp(v, OP_Column, iIdxCur, nEq);
2506         sqlite3VdbeAddOp(v, OP_IsNull, 1, cont);
2507       }
2508       if( !omitTable ){
2509         sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
2510         sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
2511       }
2512 
2513       /* Record the instruction used to terminate the loop.
2514       */
2515       pLevel->op = bRev ? OP_Prev : OP_Next;
2516       pLevel->p1 = iIdxCur;
2517       pLevel->p2 = start;
2518     }else if( pLevel->flags & WHERE_COLUMN_EQ ){
2519       /* Case 4:  There is an index and all terms of the WHERE clause that
2520       **          refer to the index using the "==" or "IN" operators.
2521       */
2522       int start;
2523       int nEq = pLevel->nEq;
2524 
2525       /* Generate code to evaluate all constraint terms using == or IN
2526       ** and leave the values of those terms on the stack.
2527       */
2528       codeAllEqualityTerms(pParse, pLevel, &wc, notReady);
2529       nxt = pLevel->nxt;
2530 
2531       /* Generate a single key that will be used to both start and terminate
2532       ** the search
2533       */
2534       buildIndexProbe(v, nEq, pIdx);
2535       sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
2536 
2537       /* Generate code (1) to move to the first matching element of the table.
2538       ** Then generate code (2) that jumps to "nxt" after the cursor is past
2539       ** the last matching element of the table.  The code (1) is executed
2540       ** once to initialize the search, the code (2) is executed before each
2541       ** iteration of the scan to see if the scan has finished. */
2542       if( bRev ){
2543         /* Scan in reverse order */
2544         sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, nxt);
2545         start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
2546         sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, nxt);
2547         pLevel->op = OP_Prev;
2548       }else{
2549         /* Scan in the forward order */
2550         sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, nxt);
2551         start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
2552         sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, nxt, "+", P3_STATIC);
2553         pLevel->op = OP_Next;
2554       }
2555       if( !omitTable ){
2556         sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
2557         sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
2558       }
2559       pLevel->p1 = iIdxCur;
2560       pLevel->p2 = start;
2561     }else{
2562       /* Case 5:  There is no usable index.  We must do a complete
2563       **          scan of the entire table.
2564       */
2565       assert( omitTable==0 );
2566       assert( bRev==0 );
2567       pLevel->op = OP_Next;
2568       pLevel->p1 = iCur;
2569       pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk);
2570     }
2571     notReady &= ~getMask(&maskSet, iCur);
2572 
2573     /* Insert code to test every subexpression that can be completely
2574     ** computed using the current set of tables.
2575     */
2576     for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){
2577       Expr *pE;
2578       if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2579       if( (pTerm->prereqAll & notReady)!=0 ) continue;
2580       pE = pTerm->pExpr;
2581       assert( pE!=0 );
2582       if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
2583         continue;
2584       }
2585       sqlite3ExprIfFalse(pParse, pE, cont, 1);
2586       pTerm->flags |= TERM_CODED;
2587     }
2588 
2589     /* For a LEFT OUTER JOIN, generate code that will record the fact that
2590     ** at least one row of the right table has matched the left table.
2591     */
2592     if( pLevel->iLeftJoin ){
2593       pLevel->top = sqlite3VdbeCurrentAddr(v);
2594       sqlite3VdbeAddOp(v, OP_MemInt, 1, pLevel->iLeftJoin);
2595       VdbeComment((v, "# record LEFT JOIN hit"));
2596       for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
2597         if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2598         if( (pTerm->prereqAll & notReady)!=0 ) continue;
2599         assert( pTerm->pExpr );
2600         sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1);
2601         pTerm->flags |= TERM_CODED;
2602       }
2603     }
2604   }
2605 
2606 #ifdef SQLITE_TEST  /* For testing and debugging use only */
2607   /* Record in the query plan information about the current table
2608   ** and the index used to access it (if any).  If the table itself
2609   ** is not used, its name is just '{}'.  If no index is used
2610   ** the index is listed as "{}".  If the primary key is used the
2611   ** index name is '*'.
2612   */
2613   for(i=0; i<pTabList->nSrc; i++){
2614     char *z;
2615     int n;
2616     pLevel = &pWInfo->a[i];
2617     pTabItem = &pTabList->a[pLevel->iFrom];
2618     z = pTabItem->zAlias;
2619     if( z==0 ) z = pTabItem->pTab->zName;
2620     n = strlen(z);
2621     if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
2622       if( pLevel->flags & WHERE_IDX_ONLY ){
2623         memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
2624         nQPlan += 2;
2625       }else{
2626         memcpy(&sqlite3_query_plan[nQPlan], z, n);
2627         nQPlan += n;
2628       }
2629       sqlite3_query_plan[nQPlan++] = ' ';
2630     }
2631     if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
2632       memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
2633       nQPlan += 2;
2634     }else if( pLevel->pIdx==0 ){
2635       memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
2636       nQPlan += 3;
2637     }else{
2638       n = strlen(pLevel->pIdx->zName);
2639       if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
2640         memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n);
2641         nQPlan += n;
2642         sqlite3_query_plan[nQPlan++] = ' ';
2643       }
2644     }
2645   }
2646   while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
2647     sqlite3_query_plan[--nQPlan] = 0;
2648   }
2649   sqlite3_query_plan[nQPlan] = 0;
2650   nQPlan = 0;
2651 #endif /* SQLITE_TEST // Testing and debugging use only */
2652 
2653   /* Record the continuation address in the WhereInfo structure.  Then
2654   ** clean up and return.
2655   */
2656   pWInfo->iContinue = cont;
2657   whereClauseClear(&wc);
2658   return pWInfo;
2659 
2660   /* Jump here if malloc fails */
2661 whereBeginNoMem:
2662   whereClauseClear(&wc);
2663   whereInfoFree(pWInfo);
2664   return 0;
2665 }
2666 
2667 /*
2668 ** Generate the end of the WHERE loop.  See comments on
2669 ** sqlite3WhereBegin() for additional information.
2670 */
2671 void sqlite3WhereEnd(WhereInfo *pWInfo){
2672   Vdbe *v = pWInfo->pParse->pVdbe;
2673   int i;
2674   WhereLevel *pLevel;
2675   SrcList *pTabList = pWInfo->pTabList;
2676 
2677   /* Generate loop termination code.
2678   */
2679   for(i=pTabList->nSrc-1; i>=0; i--){
2680     pLevel = &pWInfo->a[i];
2681     sqlite3VdbeResolveLabel(v, pLevel->cont);
2682     if( pLevel->op!=OP_Noop ){
2683       sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
2684     }
2685     if( pLevel->nIn ){
2686       struct InLoop *pIn;
2687       int j;
2688       sqlite3VdbeResolveLabel(v, pLevel->nxt);
2689       for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){
2690         sqlite3VdbeJumpHere(v, pIn->topAddr+1);
2691         sqlite3VdbeAddOp(v, OP_Next, pIn->iCur, pIn->topAddr);
2692         sqlite3VdbeJumpHere(v, pIn->topAddr-1);
2693       }
2694       sqliteFree(pLevel->aInLoop);
2695     }
2696     sqlite3VdbeResolveLabel(v, pLevel->brk);
2697     if( pLevel->iLeftJoin ){
2698       int addr;
2699       addr = sqlite3VdbeAddOp(v, OP_IfMemPos, pLevel->iLeftJoin, 0);
2700       sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
2701       if( pLevel->iIdxCur>=0 ){
2702         sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0);
2703       }
2704       sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top);
2705       sqlite3VdbeJumpHere(v, addr);
2706     }
2707   }
2708 
2709   /* The "break" point is here, just past the end of the outer loop.
2710   ** Set it.
2711   */
2712   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
2713 
2714   /* Close all of the cursors that were opened by sqlite3WhereBegin.
2715   */
2716   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2717     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
2718     Table *pTab = pTabItem->pTab;
2719     assert( pTab!=0 );
2720     if( pTab->isEphem || pTab->pSelect ) continue;
2721     if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
2722       sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0);
2723     }
2724     if( pLevel->pIdx!=0 ){
2725       sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0);
2726     }
2727 
2728     /* Make cursor substitutions for cases where we want to use
2729     ** just the index and never reference the table.
2730     **
2731     ** Calls to the code generator in between sqlite3WhereBegin and
2732     ** sqlite3WhereEnd will have created code that references the table
2733     ** directly.  This loop scans all that code looking for opcodes
2734     ** that reference the table and converts them into opcodes that
2735     ** reference the index.
2736     */
2737     if( pLevel->flags & WHERE_IDX_ONLY ){
2738       int k, j, last;
2739       VdbeOp *pOp;
2740       Index *pIdx = pLevel->pIdx;
2741 
2742       assert( pIdx!=0 );
2743       pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
2744       last = sqlite3VdbeCurrentAddr(v);
2745       for(k=pWInfo->iTop; k<last; k++, pOp++){
2746         if( pOp->p1!=pLevel->iTabCur ) continue;
2747         if( pOp->opcode==OP_Column ){
2748           pOp->p1 = pLevel->iIdxCur;
2749           for(j=0; j<pIdx->nColumn; j++){
2750             if( pOp->p2==pIdx->aiColumn[j] ){
2751               pOp->p2 = j;
2752               break;
2753             }
2754           }
2755         }else if( pOp->opcode==OP_Rowid ){
2756           pOp->p1 = pLevel->iIdxCur;
2757           pOp->opcode = OP_IdxRowid;
2758         }else if( pOp->opcode==OP_NullRow ){
2759           pOp->opcode = OP_Noop;
2760         }
2761       }
2762     }
2763   }
2764 
2765   /* Final cleanup
2766   */
2767   whereInfoFree(pWInfo);
2768   return;
2769 }
2770