1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* Forward declaration of methods */ 23 static int whereLoopResize(sqlite3*, WhereLoop*, int); 24 25 /* Test variable that can be set to enable WHERE tracing */ 26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 27 /***/ int sqlite3WhereTrace = 0; 28 #endif 29 30 31 /* 32 ** Return the estimated number of output rows from a WHERE clause 33 */ 34 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 35 return pWInfo->nRowOut; 36 } 37 38 /* 39 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 40 ** WHERE clause returns outputs for DISTINCT processing. 41 */ 42 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 43 return pWInfo->eDistinct; 44 } 45 46 /* 47 ** Return TRUE if the WHERE clause returns rows in ORDER BY order. 48 ** Return FALSE if the output needs to be sorted. 49 */ 50 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 51 return pWInfo->nOBSat; 52 } 53 54 /* 55 ** Return TRUE if the innermost loop of the WHERE clause implementation 56 ** returns rows in ORDER BY order for complete run of the inner loop. 57 ** 58 ** Across multiple iterations of outer loops, the output rows need not be 59 ** sorted. As long as rows are sorted for just the innermost loop, this 60 ** routine can return TRUE. 61 */ 62 int sqlite3WhereOrderedInnerLoop(WhereInfo *pWInfo){ 63 return pWInfo->bOrderedInnerLoop; 64 } 65 66 /* 67 ** Return the VDBE address or label to jump to in order to continue 68 ** immediately with the next row of a WHERE clause. 69 */ 70 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 71 assert( pWInfo->iContinue!=0 ); 72 return pWInfo->iContinue; 73 } 74 75 /* 76 ** Return the VDBE address or label to jump to in order to break 77 ** out of a WHERE loop. 78 */ 79 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 80 return pWInfo->iBreak; 81 } 82 83 /* 84 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to 85 ** operate directly on the rowis returned by a WHERE clause. Return 86 ** ONEPASS_SINGLE (1) if the statement can operation directly because only 87 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass 88 ** optimization can be used on multiple 89 ** 90 ** If the ONEPASS optimization is used (if this routine returns true) 91 ** then also write the indices of open cursors used by ONEPASS 92 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 93 ** table and iaCur[1] gets the cursor used by an auxiliary index. 94 ** Either value may be -1, indicating that cursor is not used. 95 ** Any cursors returned will have been opened for writing. 96 ** 97 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 98 ** unable to use the ONEPASS optimization. 99 */ 100 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 101 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 102 #ifdef WHERETRACE_ENABLED 103 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ 104 sqlite3DebugPrintf("%s cursors: %d %d\n", 105 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", 106 aiCur[0], aiCur[1]); 107 } 108 #endif 109 return pWInfo->eOnePass; 110 } 111 112 /* 113 ** Move the content of pSrc into pDest 114 */ 115 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 116 pDest->n = pSrc->n; 117 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 118 } 119 120 /* 121 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 122 ** 123 ** The new entry might overwrite an existing entry, or it might be 124 ** appended, or it might be discarded. Do whatever is the right thing 125 ** so that pSet keeps the N_OR_COST best entries seen so far. 126 */ 127 static int whereOrInsert( 128 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 129 Bitmask prereq, /* Prerequisites of the new entry */ 130 LogEst rRun, /* Run-cost of the new entry */ 131 LogEst nOut /* Number of outputs for the new entry */ 132 ){ 133 u16 i; 134 WhereOrCost *p; 135 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 136 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 137 goto whereOrInsert_done; 138 } 139 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 140 return 0; 141 } 142 } 143 if( pSet->n<N_OR_COST ){ 144 p = &pSet->a[pSet->n++]; 145 p->nOut = nOut; 146 }else{ 147 p = pSet->a; 148 for(i=1; i<pSet->n; i++){ 149 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 150 } 151 if( p->rRun<=rRun ) return 0; 152 } 153 whereOrInsert_done: 154 p->prereq = prereq; 155 p->rRun = rRun; 156 if( p->nOut>nOut ) p->nOut = nOut; 157 return 1; 158 } 159 160 /* 161 ** Return the bitmask for the given cursor number. Return 0 if 162 ** iCursor is not in the set. 163 */ 164 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ 165 int i; 166 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 167 for(i=0; i<pMaskSet->n; i++){ 168 if( pMaskSet->ix[i]==iCursor ){ 169 return MASKBIT(i); 170 } 171 } 172 return 0; 173 } 174 175 /* 176 ** Create a new mask for cursor iCursor. 177 ** 178 ** There is one cursor per table in the FROM clause. The number of 179 ** tables in the FROM clause is limited by a test early in the 180 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 181 ** array will never overflow. 182 */ 183 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 184 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 185 pMaskSet->ix[pMaskSet->n++] = iCursor; 186 } 187 188 /* 189 ** Advance to the next WhereTerm that matches according to the criteria 190 ** established when the pScan object was initialized by whereScanInit(). 191 ** Return NULL if there are no more matching WhereTerms. 192 */ 193 static WhereTerm *whereScanNext(WhereScan *pScan){ 194 int iCur; /* The cursor on the LHS of the term */ 195 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ 196 Expr *pX; /* An expression being tested */ 197 WhereClause *pWC; /* Shorthand for pScan->pWC */ 198 WhereTerm *pTerm; /* The term being tested */ 199 int k = pScan->k; /* Where to start scanning */ 200 201 while( pScan->iEquiv<=pScan->nEquiv ){ 202 iCur = pScan->aiCur[pScan->iEquiv-1]; 203 iColumn = pScan->aiColumn[pScan->iEquiv-1]; 204 if( iColumn==XN_EXPR && pScan->pIdxExpr==0 ) return 0; 205 while( (pWC = pScan->pWC)!=0 ){ 206 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 207 if( pTerm->leftCursor==iCur 208 && pTerm->u.leftColumn==iColumn 209 && (iColumn!=XN_EXPR 210 || sqlite3ExprCompare(pTerm->pExpr->pLeft,pScan->pIdxExpr,iCur)==0) 211 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 212 ){ 213 if( (pTerm->eOperator & WO_EQUIV)!=0 214 && pScan->nEquiv<ArraySize(pScan->aiCur) 215 && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN 216 ){ 217 int j; 218 for(j=0; j<pScan->nEquiv; j++){ 219 if( pScan->aiCur[j]==pX->iTable 220 && pScan->aiColumn[j]==pX->iColumn ){ 221 break; 222 } 223 } 224 if( j==pScan->nEquiv ){ 225 pScan->aiCur[j] = pX->iTable; 226 pScan->aiColumn[j] = pX->iColumn; 227 pScan->nEquiv++; 228 } 229 } 230 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 231 /* Verify the affinity and collating sequence match */ 232 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 233 CollSeq *pColl; 234 Parse *pParse = pWC->pWInfo->pParse; 235 pX = pTerm->pExpr; 236 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 237 continue; 238 } 239 assert(pX->pLeft); 240 pColl = sqlite3BinaryCompareCollSeq(pParse, 241 pX->pLeft, pX->pRight); 242 if( pColl==0 ) pColl = pParse->db->pDfltColl; 243 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ 244 continue; 245 } 246 } 247 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 248 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN 249 && pX->iTable==pScan->aiCur[0] 250 && pX->iColumn==pScan->aiColumn[0] 251 ){ 252 testcase( pTerm->eOperator & WO_IS ); 253 continue; 254 } 255 pScan->k = k+1; 256 return pTerm; 257 } 258 } 259 } 260 pScan->pWC = pScan->pWC->pOuter; 261 k = 0; 262 } 263 pScan->pWC = pScan->pOrigWC; 264 k = 0; 265 pScan->iEquiv++; 266 } 267 return 0; 268 } 269 270 /* 271 ** Initialize a WHERE clause scanner object. Return a pointer to the 272 ** first match. Return NULL if there are no matches. 273 ** 274 ** The scanner will be searching the WHERE clause pWC. It will look 275 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 276 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx 277 ** must be one of the indexes of table iCur. 278 ** 279 ** The <op> must be one of the operators described by opMask. 280 ** 281 ** If the search is for X and the WHERE clause contains terms of the 282 ** form X=Y then this routine might also return terms of the form 283 ** "Y <op> <expr>". The number of levels of transitivity is limited, 284 ** but is enough to handle most commonly occurring SQL statements. 285 ** 286 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 287 ** index pIdx. 288 */ 289 static WhereTerm *whereScanInit( 290 WhereScan *pScan, /* The WhereScan object being initialized */ 291 WhereClause *pWC, /* The WHERE clause to be scanned */ 292 int iCur, /* Cursor to scan for */ 293 int iColumn, /* Column to scan for */ 294 u32 opMask, /* Operator(s) to scan for */ 295 Index *pIdx /* Must be compatible with this index */ 296 ){ 297 int j = 0; 298 299 /* memset(pScan, 0, sizeof(*pScan)); */ 300 pScan->pOrigWC = pWC; 301 pScan->pWC = pWC; 302 pScan->pIdxExpr = 0; 303 if( pIdx ){ 304 j = iColumn; 305 iColumn = pIdx->aiColumn[j]; 306 if( iColumn==XN_EXPR ) pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; 307 if( iColumn==pIdx->pTable->iPKey ) iColumn = XN_ROWID; 308 } 309 if( pIdx && iColumn>=0 ){ 310 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 311 pScan->zCollName = pIdx->azColl[j]; 312 }else{ 313 pScan->idxaff = 0; 314 pScan->zCollName = 0; 315 } 316 pScan->opMask = opMask; 317 pScan->k = 0; 318 pScan->aiCur[0] = iCur; 319 pScan->aiColumn[0] = iColumn; 320 pScan->nEquiv = 1; 321 pScan->iEquiv = 1; 322 return whereScanNext(pScan); 323 } 324 325 /* 326 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 327 ** where X is a reference to the iColumn of table iCur or of index pIdx 328 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by 329 ** the op parameter. Return a pointer to the term. Return 0 if not found. 330 ** 331 ** If pIdx!=0 then it must be one of the indexes of table iCur. 332 ** Search for terms matching the iColumn-th column of pIdx 333 ** rather than the iColumn-th column of table iCur. 334 ** 335 ** The term returned might by Y=<expr> if there is another constraint in 336 ** the WHERE clause that specifies that X=Y. Any such constraints will be 337 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 338 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 339 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 340 ** other equivalent values. Hence a search for X will return <expr> if X=A1 341 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. 342 ** 343 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 344 ** then try for the one with no dependencies on <expr> - in other words where 345 ** <expr> is a constant expression of some kind. Only return entries of 346 ** the form "X <op> Y" where Y is a column in another table if no terms of 347 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 348 ** exist, try to return a term that does not use WO_EQUIV. 349 */ 350 WhereTerm *sqlite3WhereFindTerm( 351 WhereClause *pWC, /* The WHERE clause to be searched */ 352 int iCur, /* Cursor number of LHS */ 353 int iColumn, /* Column number of LHS */ 354 Bitmask notReady, /* RHS must not overlap with this mask */ 355 u32 op, /* Mask of WO_xx values describing operator */ 356 Index *pIdx /* Must be compatible with this index, if not NULL */ 357 ){ 358 WhereTerm *pResult = 0; 359 WhereTerm *p; 360 WhereScan scan; 361 362 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 363 op &= WO_EQ|WO_IS; 364 while( p ){ 365 if( (p->prereqRight & notReady)==0 ){ 366 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ 367 testcase( p->eOperator & WO_IS ); 368 return p; 369 } 370 if( pResult==0 ) pResult = p; 371 } 372 p = whereScanNext(&scan); 373 } 374 return pResult; 375 } 376 377 /* 378 ** This function searches pList for an entry that matches the iCol-th column 379 ** of index pIdx. 380 ** 381 ** If such an expression is found, its index in pList->a[] is returned. If 382 ** no expression is found, -1 is returned. 383 */ 384 static int findIndexCol( 385 Parse *pParse, /* Parse context */ 386 ExprList *pList, /* Expression list to search */ 387 int iBase, /* Cursor for table associated with pIdx */ 388 Index *pIdx, /* Index to match column of */ 389 int iCol /* Column of index to match */ 390 ){ 391 int i; 392 const char *zColl = pIdx->azColl[iCol]; 393 394 for(i=0; i<pList->nExpr; i++){ 395 Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); 396 if( p->op==TK_COLUMN 397 && p->iColumn==pIdx->aiColumn[iCol] 398 && p->iTable==iBase 399 ){ 400 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); 401 if( pColl && 0==sqlite3StrICmp(pColl->zName, zColl) ){ 402 return i; 403 } 404 } 405 } 406 407 return -1; 408 } 409 410 /* 411 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL 412 */ 413 static int indexColumnNotNull(Index *pIdx, int iCol){ 414 int j; 415 assert( pIdx!=0 ); 416 assert( iCol>=0 && iCol<pIdx->nColumn ); 417 j = pIdx->aiColumn[iCol]; 418 if( j>=0 ){ 419 return pIdx->pTable->aCol[j].notNull; 420 }else if( j==(-1) ){ 421 return 1; 422 }else{ 423 assert( j==(-2) ); 424 return 0; /* Assume an indexed expression can always yield a NULL */ 425 426 } 427 } 428 429 /* 430 ** Return true if the DISTINCT expression-list passed as the third argument 431 ** is redundant. 432 ** 433 ** A DISTINCT list is redundant if any subset of the columns in the 434 ** DISTINCT list are collectively unique and individually non-null. 435 */ 436 static int isDistinctRedundant( 437 Parse *pParse, /* Parsing context */ 438 SrcList *pTabList, /* The FROM clause */ 439 WhereClause *pWC, /* The WHERE clause */ 440 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 441 ){ 442 Table *pTab; 443 Index *pIdx; 444 int i; 445 int iBase; 446 447 /* If there is more than one table or sub-select in the FROM clause of 448 ** this query, then it will not be possible to show that the DISTINCT 449 ** clause is redundant. */ 450 if( pTabList->nSrc!=1 ) return 0; 451 iBase = pTabList->a[0].iCursor; 452 pTab = pTabList->a[0].pTab; 453 454 /* If any of the expressions is an IPK column on table iBase, then return 455 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 456 ** current SELECT is a correlated sub-query. 457 */ 458 for(i=0; i<pDistinct->nExpr; i++){ 459 Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); 460 if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; 461 } 462 463 /* Loop through all indices on the table, checking each to see if it makes 464 ** the DISTINCT qualifier redundant. It does so if: 465 ** 466 ** 1. The index is itself UNIQUE, and 467 ** 468 ** 2. All of the columns in the index are either part of the pDistinct 469 ** list, or else the WHERE clause contains a term of the form "col=X", 470 ** where X is a constant value. The collation sequences of the 471 ** comparison and select-list expressions must match those of the index. 472 ** 473 ** 3. All of those index columns for which the WHERE clause does not 474 ** contain a "col=X" term are subject to a NOT NULL constraint. 475 */ 476 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 477 if( !IsUniqueIndex(pIdx) ) continue; 478 for(i=0; i<pIdx->nKeyCol; i++){ 479 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ 480 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; 481 if( indexColumnNotNull(pIdx, i)==0 ) break; 482 } 483 } 484 if( i==pIdx->nKeyCol ){ 485 /* This index implies that the DISTINCT qualifier is redundant. */ 486 return 1; 487 } 488 } 489 490 return 0; 491 } 492 493 494 /* 495 ** Estimate the logarithm of the input value to base 2. 496 */ 497 static LogEst estLog(LogEst N){ 498 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 499 } 500 501 /* 502 ** Convert OP_Column opcodes to OP_Copy in previously generated code. 503 ** 504 ** This routine runs over generated VDBE code and translates OP_Column 505 ** opcodes into OP_Copy when the table is being accessed via co-routine 506 ** instead of via table lookup. 507 ** 508 ** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on 509 ** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero, 510 ** then each OP_Rowid is transformed into an instruction to increment the 511 ** value stored in its output register. 512 */ 513 static void translateColumnToCopy( 514 Vdbe *v, /* The VDBE containing code to translate */ 515 int iStart, /* Translate from this opcode to the end */ 516 int iTabCur, /* OP_Column/OP_Rowid references to this table */ 517 int iRegister, /* The first column is in this register */ 518 int bIncrRowid /* If non-zero, transform OP_rowid to OP_AddImm(1) */ 519 ){ 520 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); 521 int iEnd = sqlite3VdbeCurrentAddr(v); 522 for(; iStart<iEnd; iStart++, pOp++){ 523 if( pOp->p1!=iTabCur ) continue; 524 if( pOp->opcode==OP_Column ){ 525 pOp->opcode = OP_Copy; 526 pOp->p1 = pOp->p2 + iRegister; 527 pOp->p2 = pOp->p3; 528 pOp->p3 = 0; 529 }else if( pOp->opcode==OP_Rowid ){ 530 if( bIncrRowid ){ 531 /* Increment the value stored in the P2 operand of the OP_Rowid. */ 532 pOp->opcode = OP_AddImm; 533 pOp->p1 = pOp->p2; 534 pOp->p2 = 1; 535 }else{ 536 pOp->opcode = OP_Null; 537 pOp->p1 = 0; 538 pOp->p3 = 0; 539 } 540 } 541 } 542 } 543 544 /* 545 ** Two routines for printing the content of an sqlite3_index_info 546 ** structure. Used for testing and debugging only. If neither 547 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 548 ** are no-ops. 549 */ 550 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 551 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 552 int i; 553 if( !sqlite3WhereTrace ) return; 554 for(i=0; i<p->nConstraint; i++){ 555 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 556 i, 557 p->aConstraint[i].iColumn, 558 p->aConstraint[i].iTermOffset, 559 p->aConstraint[i].op, 560 p->aConstraint[i].usable); 561 } 562 for(i=0; i<p->nOrderBy; i++){ 563 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 564 i, 565 p->aOrderBy[i].iColumn, 566 p->aOrderBy[i].desc); 567 } 568 } 569 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 570 int i; 571 if( !sqlite3WhereTrace ) return; 572 for(i=0; i<p->nConstraint; i++){ 573 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 574 i, 575 p->aConstraintUsage[i].argvIndex, 576 p->aConstraintUsage[i].omit); 577 } 578 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 579 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 580 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 581 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 582 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 583 } 584 #else 585 #define TRACE_IDX_INPUTS(A) 586 #define TRACE_IDX_OUTPUTS(A) 587 #endif 588 589 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 590 /* 591 ** Return TRUE if the WHERE clause term pTerm is of a form where it 592 ** could be used with an index to access pSrc, assuming an appropriate 593 ** index existed. 594 */ 595 static int termCanDriveIndex( 596 WhereTerm *pTerm, /* WHERE clause term to check */ 597 struct SrcList_item *pSrc, /* Table we are trying to access */ 598 Bitmask notReady /* Tables in outer loops of the join */ 599 ){ 600 char aff; 601 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 602 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; 603 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 604 if( pTerm->u.leftColumn<0 ) return 0; 605 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; 606 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 607 testcase( pTerm->pExpr->op==TK_IS ); 608 return 1; 609 } 610 #endif 611 612 613 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 614 /* 615 ** Generate code to construct the Index object for an automatic index 616 ** and to set up the WhereLevel object pLevel so that the code generator 617 ** makes use of the automatic index. 618 */ 619 static void constructAutomaticIndex( 620 Parse *pParse, /* The parsing context */ 621 WhereClause *pWC, /* The WHERE clause */ 622 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ 623 Bitmask notReady, /* Mask of cursors that are not available */ 624 WhereLevel *pLevel /* Write new index here */ 625 ){ 626 int nKeyCol; /* Number of columns in the constructed index */ 627 WhereTerm *pTerm; /* A single term of the WHERE clause */ 628 WhereTerm *pWCEnd; /* End of pWC->a[] */ 629 Index *pIdx; /* Object describing the transient index */ 630 Vdbe *v; /* Prepared statement under construction */ 631 int addrInit; /* Address of the initialization bypass jump */ 632 Table *pTable; /* The table being indexed */ 633 int addrTop; /* Top of the index fill loop */ 634 int regRecord; /* Register holding an index record */ 635 int n; /* Column counter */ 636 int i; /* Loop counter */ 637 int mxBitCol; /* Maximum column in pSrc->colUsed */ 638 CollSeq *pColl; /* Collating sequence to on a column */ 639 WhereLoop *pLoop; /* The Loop object */ 640 char *zNotUsed; /* Extra space on the end of pIdx */ 641 Bitmask idxCols; /* Bitmap of columns used for indexing */ 642 Bitmask extraCols; /* Bitmap of additional columns */ 643 u8 sentWarning = 0; /* True if a warnning has been issued */ 644 Expr *pPartial = 0; /* Partial Index Expression */ 645 int iContinue = 0; /* Jump here to skip excluded rows */ 646 struct SrcList_item *pTabItem; /* FROM clause term being indexed */ 647 int addrCounter = 0; /* Address where integer counter is initialized */ 648 int regBase; /* Array of registers where record is assembled */ 649 650 /* Generate code to skip over the creation and initialization of the 651 ** transient index on 2nd and subsequent iterations of the loop. */ 652 v = pParse->pVdbe; 653 assert( v!=0 ); 654 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 655 656 /* Count the number of columns that will be added to the index 657 ** and used to match WHERE clause constraints */ 658 nKeyCol = 0; 659 pTable = pSrc->pTab; 660 pWCEnd = &pWC->a[pWC->nTerm]; 661 pLoop = pLevel->pWLoop; 662 idxCols = 0; 663 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 664 Expr *pExpr = pTerm->pExpr; 665 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */ 666 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */ 667 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */ 668 if( pLoop->prereq==0 669 && (pTerm->wtFlags & TERM_VIRTUAL)==0 670 && !ExprHasProperty(pExpr, EP_FromJoin) 671 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){ 672 pPartial = sqlite3ExprAnd(pParse->db, pPartial, 673 sqlite3ExprDup(pParse->db, pExpr, 0)); 674 } 675 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 676 int iCol = pTerm->u.leftColumn; 677 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 678 testcase( iCol==BMS ); 679 testcase( iCol==BMS-1 ); 680 if( !sentWarning ){ 681 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 682 "automatic index on %s(%s)", pTable->zName, 683 pTable->aCol[iCol].zName); 684 sentWarning = 1; 685 } 686 if( (idxCols & cMask)==0 ){ 687 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 688 goto end_auto_index_create; 689 } 690 pLoop->aLTerm[nKeyCol++] = pTerm; 691 idxCols |= cMask; 692 } 693 } 694 } 695 assert( nKeyCol>0 ); 696 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 697 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 698 | WHERE_AUTO_INDEX; 699 700 /* Count the number of additional columns needed to create a 701 ** covering index. A "covering index" is an index that contains all 702 ** columns that are needed by the query. With a covering index, the 703 ** original table never needs to be accessed. Automatic indices must 704 ** be a covering index because the index will not be updated if the 705 ** original table changes and the index and table cannot both be used 706 ** if they go out of sync. 707 */ 708 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 709 mxBitCol = MIN(BMS-1,pTable->nCol); 710 testcase( pTable->nCol==BMS-1 ); 711 testcase( pTable->nCol==BMS-2 ); 712 for(i=0; i<mxBitCol; i++){ 713 if( extraCols & MASKBIT(i) ) nKeyCol++; 714 } 715 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 716 nKeyCol += pTable->nCol - BMS + 1; 717 } 718 719 /* Construct the Index object to describe this index */ 720 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 721 if( pIdx==0 ) goto end_auto_index_create; 722 pLoop->u.btree.pIndex = pIdx; 723 pIdx->zName = "auto-index"; 724 pIdx->pTable = pTable; 725 n = 0; 726 idxCols = 0; 727 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 728 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 729 int iCol = pTerm->u.leftColumn; 730 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 731 testcase( iCol==BMS-1 ); 732 testcase( iCol==BMS ); 733 if( (idxCols & cMask)==0 ){ 734 Expr *pX = pTerm->pExpr; 735 idxCols |= cMask; 736 pIdx->aiColumn[n] = pTerm->u.leftColumn; 737 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 738 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; 739 n++; 740 } 741 } 742 } 743 assert( (u32)n==pLoop->u.btree.nEq ); 744 745 /* Add additional columns needed to make the automatic index into 746 ** a covering index */ 747 for(i=0; i<mxBitCol; i++){ 748 if( extraCols & MASKBIT(i) ){ 749 pIdx->aiColumn[n] = i; 750 pIdx->azColl[n] = sqlite3StrBINARY; 751 n++; 752 } 753 } 754 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 755 for(i=BMS-1; i<pTable->nCol; i++){ 756 pIdx->aiColumn[n] = i; 757 pIdx->azColl[n] = sqlite3StrBINARY; 758 n++; 759 } 760 } 761 assert( n==nKeyCol ); 762 pIdx->aiColumn[n] = XN_ROWID; 763 pIdx->azColl[n] = sqlite3StrBINARY; 764 765 /* Create the automatic index */ 766 assert( pLevel->iIdxCur>=0 ); 767 pLevel->iIdxCur = pParse->nTab++; 768 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 769 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 770 VdbeComment((v, "for %s", pTable->zName)); 771 772 /* Fill the automatic index with content */ 773 sqlite3ExprCachePush(pParse); 774 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; 775 if( pTabItem->fg.viaCoroutine ){ 776 int regYield = pTabItem->regReturn; 777 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); 778 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 779 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); 780 VdbeCoverage(v); 781 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); 782 }else{ 783 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 784 } 785 if( pPartial ){ 786 iContinue = sqlite3VdbeMakeLabel(v); 787 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 788 pLoop->wsFlags |= WHERE_PARTIALIDX; 789 } 790 regRecord = sqlite3GetTempReg(pParse); 791 regBase = sqlite3GenerateIndexKey( 792 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 793 ); 794 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 795 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 796 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 797 if( pTabItem->fg.viaCoroutine ){ 798 sqlite3VdbeChangeP2(v, addrCounter, regBase+n); 799 translateColumnToCopy(v, addrTop, pLevel->iTabCur, pTabItem->regResult, 1); 800 sqlite3VdbeGoto(v, addrTop); 801 pTabItem->fg.viaCoroutine = 0; 802 }else{ 803 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 804 } 805 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 806 sqlite3VdbeJumpHere(v, addrTop); 807 sqlite3ReleaseTempReg(pParse, regRecord); 808 sqlite3ExprCachePop(pParse); 809 810 /* Jump here when skipping the initialization */ 811 sqlite3VdbeJumpHere(v, addrInit); 812 813 end_auto_index_create: 814 sqlite3ExprDelete(pParse->db, pPartial); 815 } 816 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 817 818 #ifndef SQLITE_OMIT_VIRTUALTABLE 819 /* 820 ** Allocate and populate an sqlite3_index_info structure. It is the 821 ** responsibility of the caller to eventually release the structure 822 ** by passing the pointer returned by this function to sqlite3_free(). 823 */ 824 static sqlite3_index_info *allocateIndexInfo( 825 Parse *pParse, 826 WhereClause *pWC, 827 Bitmask mUnusable, /* Ignore terms with these prereqs */ 828 struct SrcList_item *pSrc, 829 ExprList *pOrderBy, 830 u16 *pmNoOmit /* Mask of terms not to omit */ 831 ){ 832 int i, j; 833 int nTerm; 834 struct sqlite3_index_constraint *pIdxCons; 835 struct sqlite3_index_orderby *pIdxOrderBy; 836 struct sqlite3_index_constraint_usage *pUsage; 837 WhereTerm *pTerm; 838 int nOrderBy; 839 sqlite3_index_info *pIdxInfo; 840 u16 mNoOmit = 0; 841 842 /* Count the number of possible WHERE clause constraints referring 843 ** to this virtual table */ 844 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 845 if( pTerm->leftCursor != pSrc->iCursor ) continue; 846 if( pTerm->prereqRight & mUnusable ) continue; 847 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 848 testcase( pTerm->eOperator & WO_IN ); 849 testcase( pTerm->eOperator & WO_ISNULL ); 850 testcase( pTerm->eOperator & WO_IS ); 851 testcase( pTerm->eOperator & WO_ALL ); 852 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; 853 if( pTerm->wtFlags & TERM_VNULL ) continue; 854 assert( pTerm->u.leftColumn>=(-1) ); 855 nTerm++; 856 } 857 858 /* If the ORDER BY clause contains only columns in the current 859 ** virtual table then allocate space for the aOrderBy part of 860 ** the sqlite3_index_info structure. 861 */ 862 nOrderBy = 0; 863 if( pOrderBy ){ 864 int n = pOrderBy->nExpr; 865 for(i=0; i<n; i++){ 866 Expr *pExpr = pOrderBy->a[i].pExpr; 867 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 868 } 869 if( i==n){ 870 nOrderBy = n; 871 } 872 } 873 874 /* Allocate the sqlite3_index_info structure 875 */ 876 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 877 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 878 + sizeof(*pIdxOrderBy)*nOrderBy ); 879 if( pIdxInfo==0 ){ 880 sqlite3ErrorMsg(pParse, "out of memory"); 881 return 0; 882 } 883 884 /* Initialize the structure. The sqlite3_index_info structure contains 885 ** many fields that are declared "const" to prevent xBestIndex from 886 ** changing them. We have to do some funky casting in order to 887 ** initialize those fields. 888 */ 889 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; 890 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 891 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 892 *(int*)&pIdxInfo->nConstraint = nTerm; 893 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 894 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 895 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 896 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 897 pUsage; 898 899 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 900 u8 op; 901 if( pTerm->leftCursor != pSrc->iCursor ) continue; 902 if( pTerm->prereqRight & mUnusable ) continue; 903 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 904 testcase( pTerm->eOperator & WO_IN ); 905 testcase( pTerm->eOperator & WO_IS ); 906 testcase( pTerm->eOperator & WO_ISNULL ); 907 testcase( pTerm->eOperator & WO_ALL ); 908 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; 909 if( pTerm->wtFlags & TERM_VNULL ) continue; 910 assert( pTerm->u.leftColumn>=(-1) ); 911 pIdxCons[j].iColumn = pTerm->u.leftColumn; 912 pIdxCons[j].iTermOffset = i; 913 op = (u8)pTerm->eOperator & WO_ALL; 914 if( op==WO_IN ) op = WO_EQ; 915 if( op==WO_MATCH ){ 916 op = pTerm->eMatchOp; 917 } 918 pIdxCons[j].op = op; 919 /* The direct assignment in the previous line is possible only because 920 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 921 ** following asserts verify this fact. */ 922 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 923 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 924 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 925 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 926 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 927 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); 928 assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); 929 930 if( op & (WO_LT|WO_LE|WO_GT|WO_GE) 931 && sqlite3ExprIsVector(pTerm->pExpr->pRight) 932 ){ 933 if( i<16 ) mNoOmit |= (1 << i); 934 if( op==WO_LT ) pIdxCons[j].op = WO_LE; 935 if( op==WO_GT ) pIdxCons[j].op = WO_GE; 936 } 937 938 j++; 939 } 940 for(i=0; i<nOrderBy; i++){ 941 Expr *pExpr = pOrderBy->a[i].pExpr; 942 pIdxOrderBy[i].iColumn = pExpr->iColumn; 943 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 944 } 945 946 *pmNoOmit = mNoOmit; 947 return pIdxInfo; 948 } 949 950 /* 951 ** The table object reference passed as the second argument to this function 952 ** must represent a virtual table. This function invokes the xBestIndex() 953 ** method of the virtual table with the sqlite3_index_info object that 954 ** comes in as the 3rd argument to this function. 955 ** 956 ** If an error occurs, pParse is populated with an error message and a 957 ** non-zero value is returned. Otherwise, 0 is returned and the output 958 ** part of the sqlite3_index_info structure is left populated. 959 ** 960 ** Whether or not an error is returned, it is the responsibility of the 961 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 962 ** that this is required. 963 */ 964 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 965 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 966 int rc; 967 968 TRACE_IDX_INPUTS(p); 969 rc = pVtab->pModule->xBestIndex(pVtab, p); 970 TRACE_IDX_OUTPUTS(p); 971 972 if( rc!=SQLITE_OK ){ 973 if( rc==SQLITE_NOMEM ){ 974 sqlite3OomFault(pParse->db); 975 }else if( !pVtab->zErrMsg ){ 976 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 977 }else{ 978 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 979 } 980 } 981 sqlite3_free(pVtab->zErrMsg); 982 pVtab->zErrMsg = 0; 983 984 #if 0 985 /* This error is now caught by the caller. 986 ** Search for "xBestIndex malfunction" below */ 987 for(i=0; i<p->nConstraint; i++){ 988 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ 989 sqlite3ErrorMsg(pParse, 990 "table %s: xBestIndex returned an invalid plan", pTab->zName); 991 } 992 } 993 #endif 994 995 return pParse->nErr; 996 } 997 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 998 999 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1000 /* 1001 ** Estimate the location of a particular key among all keys in an 1002 ** index. Store the results in aStat as follows: 1003 ** 1004 ** aStat[0] Est. number of rows less than pRec 1005 ** aStat[1] Est. number of rows equal to pRec 1006 ** 1007 ** Return the index of the sample that is the smallest sample that 1008 ** is greater than or equal to pRec. Note that this index is not an index 1009 ** into the aSample[] array - it is an index into a virtual set of samples 1010 ** based on the contents of aSample[] and the number of fields in record 1011 ** pRec. 1012 */ 1013 static int whereKeyStats( 1014 Parse *pParse, /* Database connection */ 1015 Index *pIdx, /* Index to consider domain of */ 1016 UnpackedRecord *pRec, /* Vector of values to consider */ 1017 int roundUp, /* Round up if true. Round down if false */ 1018 tRowcnt *aStat /* OUT: stats written here */ 1019 ){ 1020 IndexSample *aSample = pIdx->aSample; 1021 int iCol; /* Index of required stats in anEq[] etc. */ 1022 int i; /* Index of first sample >= pRec */ 1023 int iSample; /* Smallest sample larger than or equal to pRec */ 1024 int iMin = 0; /* Smallest sample not yet tested */ 1025 int iTest; /* Next sample to test */ 1026 int res; /* Result of comparison operation */ 1027 int nField; /* Number of fields in pRec */ 1028 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ 1029 1030 #ifndef SQLITE_DEBUG 1031 UNUSED_PARAMETER( pParse ); 1032 #endif 1033 assert( pRec!=0 ); 1034 assert( pIdx->nSample>0 ); 1035 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol ); 1036 1037 /* Do a binary search to find the first sample greater than or equal 1038 ** to pRec. If pRec contains a single field, the set of samples to search 1039 ** is simply the aSample[] array. If the samples in aSample[] contain more 1040 ** than one fields, all fields following the first are ignored. 1041 ** 1042 ** If pRec contains N fields, where N is more than one, then as well as the 1043 ** samples in aSample[] (truncated to N fields), the search also has to 1044 ** consider prefixes of those samples. For example, if the set of samples 1045 ** in aSample is: 1046 ** 1047 ** aSample[0] = (a, 5) 1048 ** aSample[1] = (a, 10) 1049 ** aSample[2] = (b, 5) 1050 ** aSample[3] = (c, 100) 1051 ** aSample[4] = (c, 105) 1052 ** 1053 ** Then the search space should ideally be the samples above and the 1054 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 1055 ** the code actually searches this set: 1056 ** 1057 ** 0: (a) 1058 ** 1: (a, 5) 1059 ** 2: (a, 10) 1060 ** 3: (a, 10) 1061 ** 4: (b) 1062 ** 5: (b, 5) 1063 ** 6: (c) 1064 ** 7: (c, 100) 1065 ** 8: (c, 105) 1066 ** 9: (c, 105) 1067 ** 1068 ** For each sample in the aSample[] array, N samples are present in the 1069 ** effective sample array. In the above, samples 0 and 1 are based on 1070 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. 1071 ** 1072 ** Often, sample i of each block of N effective samples has (i+1) fields. 1073 ** Except, each sample may be extended to ensure that it is greater than or 1074 ** equal to the previous sample in the array. For example, in the above, 1075 ** sample 2 is the first sample of a block of N samples, so at first it 1076 ** appears that it should be 1 field in size. However, that would make it 1077 ** smaller than sample 1, so the binary search would not work. As a result, 1078 ** it is extended to two fields. The duplicates that this creates do not 1079 ** cause any problems. 1080 */ 1081 nField = pRec->nField; 1082 iCol = 0; 1083 iSample = pIdx->nSample * nField; 1084 do{ 1085 int iSamp; /* Index in aSample[] of test sample */ 1086 int n; /* Number of fields in test sample */ 1087 1088 iTest = (iMin+iSample)/2; 1089 iSamp = iTest / nField; 1090 if( iSamp>0 ){ 1091 /* The proposed effective sample is a prefix of sample aSample[iSamp]. 1092 ** Specifically, the shortest prefix of at least (1 + iTest%nField) 1093 ** fields that is greater than the previous effective sample. */ 1094 for(n=(iTest % nField) + 1; n<nField; n++){ 1095 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; 1096 } 1097 }else{ 1098 n = iTest + 1; 1099 } 1100 1101 pRec->nField = n; 1102 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); 1103 if( res<0 ){ 1104 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; 1105 iMin = iTest+1; 1106 }else if( res==0 && n<nField ){ 1107 iLower = aSample[iSamp].anLt[n-1]; 1108 iMin = iTest+1; 1109 res = -1; 1110 }else{ 1111 iSample = iTest; 1112 iCol = n-1; 1113 } 1114 }while( res && iMin<iSample ); 1115 i = iSample / nField; 1116 1117 #ifdef SQLITE_DEBUG 1118 /* The following assert statements check that the binary search code 1119 ** above found the right answer. This block serves no purpose other 1120 ** than to invoke the asserts. */ 1121 if( pParse->db->mallocFailed==0 ){ 1122 if( res==0 ){ 1123 /* If (res==0) is true, then pRec must be equal to sample i. */ 1124 assert( i<pIdx->nSample ); 1125 assert( iCol==nField-1 ); 1126 pRec->nField = nField; 1127 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 1128 || pParse->db->mallocFailed 1129 ); 1130 }else{ 1131 /* Unless i==pIdx->nSample, indicating that pRec is larger than 1132 ** all samples in the aSample[] array, pRec must be smaller than the 1133 ** (iCol+1) field prefix of sample i. */ 1134 assert( i<=pIdx->nSample && i>=0 ); 1135 pRec->nField = iCol+1; 1136 assert( i==pIdx->nSample 1137 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 1138 || pParse->db->mallocFailed ); 1139 1140 /* if i==0 and iCol==0, then record pRec is smaller than all samples 1141 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must 1142 ** be greater than or equal to the (iCol) field prefix of sample i. 1143 ** If (i>0), then pRec must also be greater than sample (i-1). */ 1144 if( iCol>0 ){ 1145 pRec->nField = iCol; 1146 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 1147 || pParse->db->mallocFailed ); 1148 } 1149 if( i>0 ){ 1150 pRec->nField = nField; 1151 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 1152 || pParse->db->mallocFailed ); 1153 } 1154 } 1155 } 1156 #endif /* ifdef SQLITE_DEBUG */ 1157 1158 if( res==0 ){ 1159 /* Record pRec is equal to sample i */ 1160 assert( iCol==nField-1 ); 1161 aStat[0] = aSample[i].anLt[iCol]; 1162 aStat[1] = aSample[i].anEq[iCol]; 1163 }else{ 1164 /* At this point, the (iCol+1) field prefix of aSample[i] is the first 1165 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec 1166 ** is larger than all samples in the array. */ 1167 tRowcnt iUpper, iGap; 1168 if( i>=pIdx->nSample ){ 1169 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); 1170 }else{ 1171 iUpper = aSample[i].anLt[iCol]; 1172 } 1173 1174 if( iLower>=iUpper ){ 1175 iGap = 0; 1176 }else{ 1177 iGap = iUpper - iLower; 1178 } 1179 if( roundUp ){ 1180 iGap = (iGap*2)/3; 1181 }else{ 1182 iGap = iGap/3; 1183 } 1184 aStat[0] = iLower + iGap; 1185 aStat[1] = pIdx->aAvgEq[iCol]; 1186 } 1187 1188 /* Restore the pRec->nField value before returning. */ 1189 pRec->nField = nField; 1190 return i; 1191 } 1192 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1193 1194 /* 1195 ** If it is not NULL, pTerm is a term that provides an upper or lower 1196 ** bound on a range scan. Without considering pTerm, it is estimated 1197 ** that the scan will visit nNew rows. This function returns the number 1198 ** estimated to be visited after taking pTerm into account. 1199 ** 1200 ** If the user explicitly specified a likelihood() value for this term, 1201 ** then the return value is the likelihood multiplied by the number of 1202 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 1203 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 1204 */ 1205 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 1206 LogEst nRet = nNew; 1207 if( pTerm ){ 1208 if( pTerm->truthProb<=0 ){ 1209 nRet += pTerm->truthProb; 1210 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 1211 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 1212 } 1213 } 1214 return nRet; 1215 } 1216 1217 1218 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1219 /* 1220 ** Return the affinity for a single column of an index. 1221 */ 1222 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ 1223 assert( iCol>=0 && iCol<pIdx->nColumn ); 1224 if( !pIdx->zColAff ){ 1225 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; 1226 } 1227 return pIdx->zColAff[iCol]; 1228 } 1229 #endif 1230 1231 1232 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1233 /* 1234 ** This function is called to estimate the number of rows visited by a 1235 ** range-scan on a skip-scan index. For example: 1236 ** 1237 ** CREATE INDEX i1 ON t1(a, b, c); 1238 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 1239 ** 1240 ** Value pLoop->nOut is currently set to the estimated number of rows 1241 ** visited for scanning (a=? AND b=?). This function reduces that estimate 1242 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 1243 ** on the stat4 data for the index. this scan will be peformed multiple 1244 ** times (once for each (a,b) combination that matches a=?) is dealt with 1245 ** by the caller. 1246 ** 1247 ** It does this by scanning through all stat4 samples, comparing values 1248 ** extracted from pLower and pUpper with the corresponding column in each 1249 ** sample. If L and U are the number of samples found to be less than or 1250 ** equal to the values extracted from pLower and pUpper respectively, and 1251 ** N is the total number of samples, the pLoop->nOut value is adjusted 1252 ** as follows: 1253 ** 1254 ** nOut = nOut * ( min(U - L, 1) / N ) 1255 ** 1256 ** If pLower is NULL, or a value cannot be extracted from the term, L is 1257 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 1258 ** U is set to N. 1259 ** 1260 ** Normally, this function sets *pbDone to 1 before returning. However, 1261 ** if no value can be extracted from either pLower or pUpper (and so the 1262 ** estimate of the number of rows delivered remains unchanged), *pbDone 1263 ** is left as is. 1264 ** 1265 ** If an error occurs, an SQLite error code is returned. Otherwise, 1266 ** SQLITE_OK. 1267 */ 1268 static int whereRangeSkipScanEst( 1269 Parse *pParse, /* Parsing & code generating context */ 1270 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1271 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1272 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 1273 int *pbDone /* Set to true if at least one expr. value extracted */ 1274 ){ 1275 Index *p = pLoop->u.btree.pIndex; 1276 int nEq = pLoop->u.btree.nEq; 1277 sqlite3 *db = pParse->db; 1278 int nLower = -1; 1279 int nUpper = p->nSample+1; 1280 int rc = SQLITE_OK; 1281 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); 1282 CollSeq *pColl; 1283 1284 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 1285 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 1286 sqlite3_value *pVal = 0; /* Value extracted from record */ 1287 1288 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 1289 if( pLower ){ 1290 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 1291 nLower = 0; 1292 } 1293 if( pUpper && rc==SQLITE_OK ){ 1294 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 1295 nUpper = p2 ? 0 : p->nSample; 1296 } 1297 1298 if( p1 || p2 ){ 1299 int i; 1300 int nDiff; 1301 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 1302 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 1303 if( rc==SQLITE_OK && p1 ){ 1304 int res = sqlite3MemCompare(p1, pVal, pColl); 1305 if( res>=0 ) nLower++; 1306 } 1307 if( rc==SQLITE_OK && p2 ){ 1308 int res = sqlite3MemCompare(p2, pVal, pColl); 1309 if( res>=0 ) nUpper++; 1310 } 1311 } 1312 nDiff = (nUpper - nLower); 1313 if( nDiff<=0 ) nDiff = 1; 1314 1315 /* If there is both an upper and lower bound specified, and the 1316 ** comparisons indicate that they are close together, use the fallback 1317 ** method (assume that the scan visits 1/64 of the rows) for estimating 1318 ** the number of rows visited. Otherwise, estimate the number of rows 1319 ** using the method described in the header comment for this function. */ 1320 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 1321 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 1322 pLoop->nOut -= nAdjust; 1323 *pbDone = 1; 1324 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 1325 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 1326 } 1327 1328 }else{ 1329 assert( *pbDone==0 ); 1330 } 1331 1332 sqlite3ValueFree(p1); 1333 sqlite3ValueFree(p2); 1334 sqlite3ValueFree(pVal); 1335 1336 return rc; 1337 } 1338 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1339 1340 /* 1341 ** This function is used to estimate the number of rows that will be visited 1342 ** by scanning an index for a range of values. The range may have an upper 1343 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 1344 ** and lower bounds are represented by pLower and pUpper respectively. For 1345 ** example, assuming that index p is on t1(a): 1346 ** 1347 ** ... FROM t1 WHERE a > ? AND a < ? ... 1348 ** |_____| |_____| 1349 ** | | 1350 ** pLower pUpper 1351 ** 1352 ** If either of the upper or lower bound is not present, then NULL is passed in 1353 ** place of the corresponding WhereTerm. 1354 ** 1355 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 1356 ** column subject to the range constraint. Or, equivalently, the number of 1357 ** equality constraints optimized by the proposed index scan. For example, 1358 ** assuming index p is on t1(a, b), and the SQL query is: 1359 ** 1360 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 1361 ** 1362 ** then nEq is set to 1 (as the range restricted column, b, is the second 1363 ** left-most column of the index). Or, if the query is: 1364 ** 1365 ** ... FROM t1 WHERE a > ? AND a < ? ... 1366 ** 1367 ** then nEq is set to 0. 1368 ** 1369 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 1370 ** number of rows that the index scan is expected to visit without 1371 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 1372 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 1373 ** to account for the range constraints pLower and pUpper. 1374 ** 1375 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 1376 ** used, a single range inequality reduces the search space by a factor of 4. 1377 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 1378 ** rows visited by a factor of 64. 1379 */ 1380 static int whereRangeScanEst( 1381 Parse *pParse, /* Parsing & code generating context */ 1382 WhereLoopBuilder *pBuilder, 1383 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1384 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1385 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 1386 ){ 1387 int rc = SQLITE_OK; 1388 int nOut = pLoop->nOut; 1389 LogEst nNew; 1390 1391 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1392 Index *p = pLoop->u.btree.pIndex; 1393 int nEq = pLoop->u.btree.nEq; 1394 1395 if( p->nSample>0 && nEq<p->nSampleCol ){ 1396 if( nEq==pBuilder->nRecValid ){ 1397 UnpackedRecord *pRec = pBuilder->pRec; 1398 tRowcnt a[2]; 1399 int nBtm = pLoop->u.btree.nBtm; 1400 int nTop = pLoop->u.btree.nTop; 1401 1402 /* Variable iLower will be set to the estimate of the number of rows in 1403 ** the index that are less than the lower bound of the range query. The 1404 ** lower bound being the concatenation of $P and $L, where $P is the 1405 ** key-prefix formed by the nEq values matched against the nEq left-most 1406 ** columns of the index, and $L is the value in pLower. 1407 ** 1408 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 1409 ** is not a simple variable or literal value), the lower bound of the 1410 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 1411 ** if $L is available, whereKeyStats() is called for both ($P) and 1412 ** ($P:$L) and the larger of the two returned values is used. 1413 ** 1414 ** Similarly, iUpper is to be set to the estimate of the number of rows 1415 ** less than the upper bound of the range query. Where the upper bound 1416 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 1417 ** of iUpper are requested of whereKeyStats() and the smaller used. 1418 ** 1419 ** The number of rows between the two bounds is then just iUpper-iLower. 1420 */ 1421 tRowcnt iLower; /* Rows less than the lower bound */ 1422 tRowcnt iUpper; /* Rows less than the upper bound */ 1423 int iLwrIdx = -2; /* aSample[] for the lower bound */ 1424 int iUprIdx = -1; /* aSample[] for the upper bound */ 1425 1426 if( pRec ){ 1427 testcase( pRec->nField!=pBuilder->nRecValid ); 1428 pRec->nField = pBuilder->nRecValid; 1429 } 1430 /* Determine iLower and iUpper using ($P) only. */ 1431 if( nEq==0 ){ 1432 iLower = 0; 1433 iUpper = p->nRowEst0; 1434 }else{ 1435 /* Note: this call could be optimized away - since the same values must 1436 ** have been requested when testing key $P in whereEqualScanEst(). */ 1437 whereKeyStats(pParse, p, pRec, 0, a); 1438 iLower = a[0]; 1439 iUpper = a[0] + a[1]; 1440 } 1441 1442 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 1443 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 1444 assert( p->aSortOrder!=0 ); 1445 if( p->aSortOrder[nEq] ){ 1446 /* The roles of pLower and pUpper are swapped for a DESC index */ 1447 SWAP(WhereTerm*, pLower, pUpper); 1448 SWAP(int, nBtm, nTop); 1449 } 1450 1451 /* If possible, improve on the iLower estimate using ($P:$L). */ 1452 if( pLower ){ 1453 int n; /* Values extracted from pExpr */ 1454 Expr *pExpr = pLower->pExpr->pRight; 1455 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n); 1456 if( rc==SQLITE_OK && n ){ 1457 tRowcnt iNew; 1458 u16 mask = WO_GT|WO_LE; 1459 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1460 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 1461 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0); 1462 if( iNew>iLower ) iLower = iNew; 1463 nOut--; 1464 pLower = 0; 1465 } 1466 } 1467 1468 /* If possible, improve on the iUpper estimate using ($P:$U). */ 1469 if( pUpper ){ 1470 int n; /* Values extracted from pExpr */ 1471 Expr *pExpr = pUpper->pExpr->pRight; 1472 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n); 1473 if( rc==SQLITE_OK && n ){ 1474 tRowcnt iNew; 1475 u16 mask = WO_GT|WO_LE; 1476 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1477 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 1478 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0); 1479 if( iNew<iUpper ) iUpper = iNew; 1480 nOut--; 1481 pUpper = 0; 1482 } 1483 } 1484 1485 pBuilder->pRec = pRec; 1486 if( rc==SQLITE_OK ){ 1487 if( iUpper>iLower ){ 1488 nNew = sqlite3LogEst(iUpper - iLower); 1489 /* TUNING: If both iUpper and iLower are derived from the same 1490 ** sample, then assume they are 4x more selective. This brings 1491 ** the estimated selectivity more in line with what it would be 1492 ** if estimated without the use of STAT3/4 tables. */ 1493 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); 1494 }else{ 1495 nNew = 10; assert( 10==sqlite3LogEst(2) ); 1496 } 1497 if( nNew<nOut ){ 1498 nOut = nNew; 1499 } 1500 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", 1501 (u32)iLower, (u32)iUpper, nOut)); 1502 } 1503 }else{ 1504 int bDone = 0; 1505 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 1506 if( bDone ) return rc; 1507 } 1508 } 1509 #else 1510 UNUSED_PARAMETER(pParse); 1511 UNUSED_PARAMETER(pBuilder); 1512 assert( pLower || pUpper ); 1513 #endif 1514 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); 1515 nNew = whereRangeAdjust(pLower, nOut); 1516 nNew = whereRangeAdjust(pUpper, nNew); 1517 1518 /* TUNING: If there is both an upper and lower limit and neither limit 1519 ** has an application-defined likelihood(), assume the range is 1520 ** reduced by an additional 75%. This means that, by default, an open-ended 1521 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 1522 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 1523 ** match 1/64 of the index. */ 1524 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 1525 nNew -= 20; 1526 } 1527 1528 nOut -= (pLower!=0) + (pUpper!=0); 1529 if( nNew<10 ) nNew = 10; 1530 if( nNew<nOut ) nOut = nNew; 1531 #if defined(WHERETRACE_ENABLED) 1532 if( pLoop->nOut>nOut ){ 1533 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", 1534 pLoop->nOut, nOut)); 1535 } 1536 #endif 1537 pLoop->nOut = (LogEst)nOut; 1538 return rc; 1539 } 1540 1541 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1542 /* 1543 ** Estimate the number of rows that will be returned based on 1544 ** an equality constraint x=VALUE and where that VALUE occurs in 1545 ** the histogram data. This only works when x is the left-most 1546 ** column of an index and sqlite_stat3 histogram data is available 1547 ** for that index. When pExpr==NULL that means the constraint is 1548 ** "x IS NULL" instead of "x=VALUE". 1549 ** 1550 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1551 ** If unable to make an estimate, leave *pnRow unchanged and return 1552 ** non-zero. 1553 ** 1554 ** This routine can fail if it is unable to load a collating sequence 1555 ** required for string comparison, or if unable to allocate memory 1556 ** for a UTF conversion required for comparison. The error is stored 1557 ** in the pParse structure. 1558 */ 1559 static int whereEqualScanEst( 1560 Parse *pParse, /* Parsing & code generating context */ 1561 WhereLoopBuilder *pBuilder, 1562 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 1563 tRowcnt *pnRow /* Write the revised row estimate here */ 1564 ){ 1565 Index *p = pBuilder->pNew->u.btree.pIndex; 1566 int nEq = pBuilder->pNew->u.btree.nEq; 1567 UnpackedRecord *pRec = pBuilder->pRec; 1568 int rc; /* Subfunction return code */ 1569 tRowcnt a[2]; /* Statistics */ 1570 int bOk; 1571 1572 assert( nEq>=1 ); 1573 assert( nEq<=p->nColumn ); 1574 assert( p->aSample!=0 ); 1575 assert( p->nSample>0 ); 1576 assert( pBuilder->nRecValid<nEq ); 1577 1578 /* If values are not available for all fields of the index to the left 1579 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 1580 if( pBuilder->nRecValid<(nEq-1) ){ 1581 return SQLITE_NOTFOUND; 1582 } 1583 1584 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 1585 ** below would return the same value. */ 1586 if( nEq>=p->nColumn ){ 1587 *pnRow = 1; 1588 return SQLITE_OK; 1589 } 1590 1591 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk); 1592 pBuilder->pRec = pRec; 1593 if( rc!=SQLITE_OK ) return rc; 1594 if( bOk==0 ) return SQLITE_NOTFOUND; 1595 pBuilder->nRecValid = nEq; 1596 1597 whereKeyStats(pParse, p, pRec, 0, a); 1598 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n", 1599 p->zName, nEq-1, (int)a[1])); 1600 *pnRow = a[1]; 1601 1602 return rc; 1603 } 1604 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1605 1606 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1607 /* 1608 ** Estimate the number of rows that will be returned based on 1609 ** an IN constraint where the right-hand side of the IN operator 1610 ** is a list of values. Example: 1611 ** 1612 ** WHERE x IN (1,2,3,4) 1613 ** 1614 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1615 ** If unable to make an estimate, leave *pnRow unchanged and return 1616 ** non-zero. 1617 ** 1618 ** This routine can fail if it is unable to load a collating sequence 1619 ** required for string comparison, or if unable to allocate memory 1620 ** for a UTF conversion required for comparison. The error is stored 1621 ** in the pParse structure. 1622 */ 1623 static int whereInScanEst( 1624 Parse *pParse, /* Parsing & code generating context */ 1625 WhereLoopBuilder *pBuilder, 1626 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 1627 tRowcnt *pnRow /* Write the revised row estimate here */ 1628 ){ 1629 Index *p = pBuilder->pNew->u.btree.pIndex; 1630 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 1631 int nRecValid = pBuilder->nRecValid; 1632 int rc = SQLITE_OK; /* Subfunction return code */ 1633 tRowcnt nEst; /* Number of rows for a single term */ 1634 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 1635 int i; /* Loop counter */ 1636 1637 assert( p->aSample!=0 ); 1638 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 1639 nEst = nRow0; 1640 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 1641 nRowEst += nEst; 1642 pBuilder->nRecValid = nRecValid; 1643 } 1644 1645 if( rc==SQLITE_OK ){ 1646 if( nRowEst > nRow0 ) nRowEst = nRow0; 1647 *pnRow = nRowEst; 1648 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); 1649 } 1650 assert( pBuilder->nRecValid==nRecValid ); 1651 return rc; 1652 } 1653 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1654 1655 1656 #ifdef WHERETRACE_ENABLED 1657 /* 1658 ** Print the content of a WhereTerm object 1659 */ 1660 static void whereTermPrint(WhereTerm *pTerm, int iTerm){ 1661 if( pTerm==0 ){ 1662 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 1663 }else{ 1664 char zType[4]; 1665 char zLeft[50]; 1666 memcpy(zType, "...", 4); 1667 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 1668 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 1669 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; 1670 if( pTerm->eOperator & WO_SINGLE ){ 1671 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}", 1672 pTerm->leftCursor, pTerm->u.leftColumn); 1673 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){ 1674 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld", 1675 pTerm->u.pOrInfo->indexable); 1676 }else{ 1677 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor); 1678 } 1679 sqlite3DebugPrintf( 1680 "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x", 1681 iTerm, pTerm, zType, zLeft, pTerm->truthProb, 1682 pTerm->eOperator, pTerm->wtFlags); 1683 if( pTerm->iField ){ 1684 sqlite3DebugPrintf(" iField=%d\n", pTerm->iField); 1685 }else{ 1686 sqlite3DebugPrintf("\n"); 1687 } 1688 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 1689 } 1690 } 1691 #endif 1692 1693 #ifdef WHERETRACE_ENABLED 1694 /* 1695 ** Show the complete content of a WhereClause 1696 */ 1697 void sqlite3WhereClausePrint(WhereClause *pWC){ 1698 int i; 1699 for(i=0; i<pWC->nTerm; i++){ 1700 whereTermPrint(&pWC->a[i], i); 1701 } 1702 } 1703 #endif 1704 1705 #ifdef WHERETRACE_ENABLED 1706 /* 1707 ** Print a WhereLoop object for debugging purposes 1708 */ 1709 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){ 1710 WhereInfo *pWInfo = pWC->pWInfo; 1711 int nb = 1+(pWInfo->pTabList->nSrc+3)/4; 1712 struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab; 1713 Table *pTab = pItem->pTab; 1714 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1; 1715 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 1716 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll); 1717 sqlite3DebugPrintf(" %12s", 1718 pItem->zAlias ? pItem->zAlias : pTab->zName); 1719 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 1720 const char *zName; 1721 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 1722 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 1723 int i = sqlite3Strlen30(zName) - 1; 1724 while( zName[i]!='_' ) i--; 1725 zName += i; 1726 } 1727 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 1728 }else{ 1729 sqlite3DebugPrintf("%20s",""); 1730 } 1731 }else{ 1732 char *z; 1733 if( p->u.vtab.idxStr ){ 1734 z = sqlite3_mprintf("(%d,\"%s\",%x)", 1735 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 1736 }else{ 1737 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 1738 } 1739 sqlite3DebugPrintf(" %-19s", z); 1740 sqlite3_free(z); 1741 } 1742 if( p->wsFlags & WHERE_SKIPSCAN ){ 1743 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 1744 }else{ 1745 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); 1746 } 1747 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 1748 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ 1749 int i; 1750 for(i=0; i<p->nLTerm; i++){ 1751 whereTermPrint(p->aLTerm[i], i); 1752 } 1753 } 1754 } 1755 #endif 1756 1757 /* 1758 ** Convert bulk memory into a valid WhereLoop that can be passed 1759 ** to whereLoopClear harmlessly. 1760 */ 1761 static void whereLoopInit(WhereLoop *p){ 1762 p->aLTerm = p->aLTermSpace; 1763 p->nLTerm = 0; 1764 p->nLSlot = ArraySize(p->aLTermSpace); 1765 p->wsFlags = 0; 1766 } 1767 1768 /* 1769 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 1770 */ 1771 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 1772 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 1773 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 1774 sqlite3_free(p->u.vtab.idxStr); 1775 p->u.vtab.needFree = 0; 1776 p->u.vtab.idxStr = 0; 1777 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 1778 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 1779 sqlite3DbFree(db, p->u.btree.pIndex); 1780 p->u.btree.pIndex = 0; 1781 } 1782 } 1783 } 1784 1785 /* 1786 ** Deallocate internal memory used by a WhereLoop object 1787 */ 1788 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 1789 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); 1790 whereLoopClearUnion(db, p); 1791 whereLoopInit(p); 1792 } 1793 1794 /* 1795 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 1796 */ 1797 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 1798 WhereTerm **paNew; 1799 if( p->nLSlot>=n ) return SQLITE_OK; 1800 n = (n+7)&~7; 1801 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); 1802 if( paNew==0 ) return SQLITE_NOMEM_BKPT; 1803 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 1804 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); 1805 p->aLTerm = paNew; 1806 p->nLSlot = n; 1807 return SQLITE_OK; 1808 } 1809 1810 /* 1811 ** Transfer content from the second pLoop into the first. 1812 */ 1813 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 1814 whereLoopClearUnion(db, pTo); 1815 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ 1816 memset(&pTo->u, 0, sizeof(pTo->u)); 1817 return SQLITE_NOMEM_BKPT; 1818 } 1819 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 1820 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 1821 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 1822 pFrom->u.vtab.needFree = 0; 1823 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 1824 pFrom->u.btree.pIndex = 0; 1825 } 1826 return SQLITE_OK; 1827 } 1828 1829 /* 1830 ** Delete a WhereLoop object 1831 */ 1832 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 1833 whereLoopClear(db, p); 1834 sqlite3DbFree(db, p); 1835 } 1836 1837 /* 1838 ** Free a WhereInfo structure 1839 */ 1840 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 1841 if( ALWAYS(pWInfo) ){ 1842 int i; 1843 for(i=0; i<pWInfo->nLevel; i++){ 1844 WhereLevel *pLevel = &pWInfo->a[i]; 1845 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){ 1846 sqlite3DbFree(db, pLevel->u.in.aInLoop); 1847 } 1848 } 1849 sqlite3WhereClauseClear(&pWInfo->sWC); 1850 while( pWInfo->pLoops ){ 1851 WhereLoop *p = pWInfo->pLoops; 1852 pWInfo->pLoops = p->pNextLoop; 1853 whereLoopDelete(db, p); 1854 } 1855 sqlite3DbFree(db, pWInfo); 1856 } 1857 } 1858 1859 /* 1860 ** Return TRUE if all of the following are true: 1861 ** 1862 ** (1) X has the same or lower cost that Y 1863 ** (2) X is a proper subset of Y 1864 ** (3) X skips at least as many columns as Y 1865 ** 1866 ** By "proper subset" we mean that X uses fewer WHERE clause terms 1867 ** than Y and that every WHERE clause term used by X is also used 1868 ** by Y. 1869 ** 1870 ** If X is a proper subset of Y then Y is a better choice and ought 1871 ** to have a lower cost. This routine returns TRUE when that cost 1872 ** relationship is inverted and needs to be adjusted. The third rule 1873 ** was added because if X uses skip-scan less than Y it still might 1874 ** deserve a lower cost even if it is a proper subset of Y. 1875 */ 1876 static int whereLoopCheaperProperSubset( 1877 const WhereLoop *pX, /* First WhereLoop to compare */ 1878 const WhereLoop *pY /* Compare against this WhereLoop */ 1879 ){ 1880 int i, j; 1881 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 1882 return 0; /* X is not a subset of Y */ 1883 } 1884 if( pY->nSkip > pX->nSkip ) return 0; 1885 if( pX->rRun >= pY->rRun ){ 1886 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */ 1887 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */ 1888 } 1889 for(i=pX->nLTerm-1; i>=0; i--){ 1890 if( pX->aLTerm[i]==0 ) continue; 1891 for(j=pY->nLTerm-1; j>=0; j--){ 1892 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 1893 } 1894 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ 1895 } 1896 return 1; /* All conditions meet */ 1897 } 1898 1899 /* 1900 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so 1901 ** that: 1902 ** 1903 ** (1) pTemplate costs less than any other WhereLoops that are a proper 1904 ** subset of pTemplate 1905 ** 1906 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 1907 ** is a proper subset. 1908 ** 1909 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 1910 ** WHERE clause terms than Y and that every WHERE clause term used by X is 1911 ** also used by Y. 1912 */ 1913 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 1914 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 1915 for(; p; p=p->pNextLoop){ 1916 if( p->iTab!=pTemplate->iTab ) continue; 1917 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 1918 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 1919 /* Adjust pTemplate cost downward so that it is cheaper than its 1920 ** subset p. */ 1921 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 1922 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1)); 1923 pTemplate->rRun = p->rRun; 1924 pTemplate->nOut = p->nOut - 1; 1925 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 1926 /* Adjust pTemplate cost upward so that it is costlier than p since 1927 ** pTemplate is a proper subset of p */ 1928 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 1929 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1)); 1930 pTemplate->rRun = p->rRun; 1931 pTemplate->nOut = p->nOut + 1; 1932 } 1933 } 1934 } 1935 1936 /* 1937 ** Search the list of WhereLoops in *ppPrev looking for one that can be 1938 ** supplanted by pTemplate. 1939 ** 1940 ** Return NULL if the WhereLoop list contains an entry that can supplant 1941 ** pTemplate, in other words if pTemplate does not belong on the list. 1942 ** 1943 ** If pX is a WhereLoop that pTemplate can supplant, then return the 1944 ** link that points to pX. 1945 ** 1946 ** If pTemplate cannot supplant any existing element of the list but needs 1947 ** to be added to the list, then return a pointer to the tail of the list. 1948 */ 1949 static WhereLoop **whereLoopFindLesser( 1950 WhereLoop **ppPrev, 1951 const WhereLoop *pTemplate 1952 ){ 1953 WhereLoop *p; 1954 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 1955 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 1956 /* If either the iTab or iSortIdx values for two WhereLoop are different 1957 ** then those WhereLoops need to be considered separately. Neither is 1958 ** a candidate to replace the other. */ 1959 continue; 1960 } 1961 /* In the current implementation, the rSetup value is either zero 1962 ** or the cost of building an automatic index (NlogN) and the NlogN 1963 ** is the same for compatible WhereLoops. */ 1964 assert( p->rSetup==0 || pTemplate->rSetup==0 1965 || p->rSetup==pTemplate->rSetup ); 1966 1967 /* whereLoopAddBtree() always generates and inserts the automatic index 1968 ** case first. Hence compatible candidate WhereLoops never have a larger 1969 ** rSetup. Call this SETUP-INVARIANT */ 1970 assert( p->rSetup>=pTemplate->rSetup ); 1971 1972 /* Any loop using an appliation-defined index (or PRIMARY KEY or 1973 ** UNIQUE constraint) with one or more == constraints is better 1974 ** than an automatic index. Unless it is a skip-scan. */ 1975 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 1976 && (pTemplate->nSkip)==0 1977 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 1978 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 1979 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 1980 ){ 1981 break; 1982 } 1983 1984 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 1985 ** discarded. WhereLoop p is better if: 1986 ** (1) p has no more dependencies than pTemplate, and 1987 ** (2) p has an equal or lower cost than pTemplate 1988 */ 1989 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 1990 && p->rSetup<=pTemplate->rSetup /* (2a) */ 1991 && p->rRun<=pTemplate->rRun /* (2b) */ 1992 && p->nOut<=pTemplate->nOut /* (2c) */ 1993 ){ 1994 return 0; /* Discard pTemplate */ 1995 } 1996 1997 /* If pTemplate is always better than p, then cause p to be overwritten 1998 ** with pTemplate. pTemplate is better than p if: 1999 ** (1) pTemplate has no more dependences than p, and 2000 ** (2) pTemplate has an equal or lower cost than p. 2001 */ 2002 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 2003 && p->rRun>=pTemplate->rRun /* (2a) */ 2004 && p->nOut>=pTemplate->nOut /* (2b) */ 2005 ){ 2006 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 2007 break; /* Cause p to be overwritten by pTemplate */ 2008 } 2009 } 2010 return ppPrev; 2011 } 2012 2013 /* 2014 ** Insert or replace a WhereLoop entry using the template supplied. 2015 ** 2016 ** An existing WhereLoop entry might be overwritten if the new template 2017 ** is better and has fewer dependencies. Or the template will be ignored 2018 ** and no insert will occur if an existing WhereLoop is faster and has 2019 ** fewer dependencies than the template. Otherwise a new WhereLoop is 2020 ** added based on the template. 2021 ** 2022 ** If pBuilder->pOrSet is not NULL then we care about only the 2023 ** prerequisites and rRun and nOut costs of the N best loops. That 2024 ** information is gathered in the pBuilder->pOrSet object. This special 2025 ** processing mode is used only for OR clause processing. 2026 ** 2027 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 2028 ** still might overwrite similar loops with the new template if the 2029 ** new template is better. Loops may be overwritten if the following 2030 ** conditions are met: 2031 ** 2032 ** (1) They have the same iTab. 2033 ** (2) They have the same iSortIdx. 2034 ** (3) The template has same or fewer dependencies than the current loop 2035 ** (4) The template has the same or lower cost than the current loop 2036 */ 2037 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 2038 WhereLoop **ppPrev, *p; 2039 WhereInfo *pWInfo = pBuilder->pWInfo; 2040 sqlite3 *db = pWInfo->pParse->db; 2041 int rc; 2042 2043 /* If pBuilder->pOrSet is defined, then only keep track of the costs 2044 ** and prereqs. 2045 */ 2046 if( pBuilder->pOrSet!=0 ){ 2047 if( pTemplate->nLTerm ){ 2048 #if WHERETRACE_ENABLED 2049 u16 n = pBuilder->pOrSet->n; 2050 int x = 2051 #endif 2052 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 2053 pTemplate->nOut); 2054 #if WHERETRACE_ENABLED /* 0x8 */ 2055 if( sqlite3WhereTrace & 0x8 ){ 2056 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 2057 whereLoopPrint(pTemplate, pBuilder->pWC); 2058 } 2059 #endif 2060 } 2061 return SQLITE_OK; 2062 } 2063 2064 /* Look for an existing WhereLoop to replace with pTemplate 2065 */ 2066 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 2067 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 2068 2069 if( ppPrev==0 ){ 2070 /* There already exists a WhereLoop on the list that is better 2071 ** than pTemplate, so just ignore pTemplate */ 2072 #if WHERETRACE_ENABLED /* 0x8 */ 2073 if( sqlite3WhereTrace & 0x8 ){ 2074 sqlite3DebugPrintf(" skip: "); 2075 whereLoopPrint(pTemplate, pBuilder->pWC); 2076 } 2077 #endif 2078 return SQLITE_OK; 2079 }else{ 2080 p = *ppPrev; 2081 } 2082 2083 /* If we reach this point it means that either p[] should be overwritten 2084 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 2085 ** WhereLoop and insert it. 2086 */ 2087 #if WHERETRACE_ENABLED /* 0x8 */ 2088 if( sqlite3WhereTrace & 0x8 ){ 2089 if( p!=0 ){ 2090 sqlite3DebugPrintf("replace: "); 2091 whereLoopPrint(p, pBuilder->pWC); 2092 } 2093 sqlite3DebugPrintf(" add: "); 2094 whereLoopPrint(pTemplate, pBuilder->pWC); 2095 } 2096 #endif 2097 if( p==0 ){ 2098 /* Allocate a new WhereLoop to add to the end of the list */ 2099 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); 2100 if( p==0 ) return SQLITE_NOMEM_BKPT; 2101 whereLoopInit(p); 2102 p->pNextLoop = 0; 2103 }else{ 2104 /* We will be overwriting WhereLoop p[]. But before we do, first 2105 ** go through the rest of the list and delete any other entries besides 2106 ** p[] that are also supplated by pTemplate */ 2107 WhereLoop **ppTail = &p->pNextLoop; 2108 WhereLoop *pToDel; 2109 while( *ppTail ){ 2110 ppTail = whereLoopFindLesser(ppTail, pTemplate); 2111 if( ppTail==0 ) break; 2112 pToDel = *ppTail; 2113 if( pToDel==0 ) break; 2114 *ppTail = pToDel->pNextLoop; 2115 #if WHERETRACE_ENABLED /* 0x8 */ 2116 if( sqlite3WhereTrace & 0x8 ){ 2117 sqlite3DebugPrintf(" delete: "); 2118 whereLoopPrint(pToDel, pBuilder->pWC); 2119 } 2120 #endif 2121 whereLoopDelete(db, pToDel); 2122 } 2123 } 2124 rc = whereLoopXfer(db, p, pTemplate); 2125 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2126 Index *pIndex = p->u.btree.pIndex; 2127 if( pIndex && pIndex->tnum==0 ){ 2128 p->u.btree.pIndex = 0; 2129 } 2130 } 2131 return rc; 2132 } 2133 2134 /* 2135 ** Adjust the WhereLoop.nOut value downward to account for terms of the 2136 ** WHERE clause that reference the loop but which are not used by an 2137 ** index. 2138 * 2139 ** For every WHERE clause term that is not used by the index 2140 ** and which has a truth probability assigned by one of the likelihood(), 2141 ** likely(), or unlikely() SQL functions, reduce the estimated number 2142 ** of output rows by the probability specified. 2143 ** 2144 ** TUNING: For every WHERE clause term that is not used by the index 2145 ** and which does not have an assigned truth probability, heuristics 2146 ** described below are used to try to estimate the truth probability. 2147 ** TODO --> Perhaps this is something that could be improved by better 2148 ** table statistics. 2149 ** 2150 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 2151 ** value corresponds to -1 in LogEst notation, so this means decrement 2152 ** the WhereLoop.nOut field for every such WHERE clause term. 2153 ** 2154 ** Heuristic 2: If there exists one or more WHERE clause terms of the 2155 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 2156 ** final output row estimate is no greater than 1/4 of the total number 2157 ** of rows in the table. In other words, assume that x==EXPR will filter 2158 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 2159 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 2160 ** on the "x" column and so in that case only cap the output row estimate 2161 ** at 1/2 instead of 1/4. 2162 */ 2163 static void whereLoopOutputAdjust( 2164 WhereClause *pWC, /* The WHERE clause */ 2165 WhereLoop *pLoop, /* The loop to adjust downward */ 2166 LogEst nRow /* Number of rows in the entire table */ 2167 ){ 2168 WhereTerm *pTerm, *pX; 2169 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 2170 int i, j, k; 2171 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 2172 2173 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2174 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ 2175 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; 2176 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 2177 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 2178 for(j=pLoop->nLTerm-1; j>=0; j--){ 2179 pX = pLoop->aLTerm[j]; 2180 if( pX==0 ) continue; 2181 if( pX==pTerm ) break; 2182 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 2183 } 2184 if( j<0 ){ 2185 if( pTerm->truthProb<=0 ){ 2186 /* If a truth probability is specified using the likelihood() hints, 2187 ** then use the probability provided by the application. */ 2188 pLoop->nOut += pTerm->truthProb; 2189 }else{ 2190 /* In the absence of explicit truth probabilities, use heuristics to 2191 ** guess a reasonable truth probability. */ 2192 pLoop->nOut--; 2193 if( pTerm->eOperator&(WO_EQ|WO_IS) ){ 2194 Expr *pRight = pTerm->pExpr->pRight; 2195 testcase( pTerm->pExpr->op==TK_IS ); 2196 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 2197 k = 10; 2198 }else{ 2199 k = 20; 2200 } 2201 if( iReduce<k ) iReduce = k; 2202 } 2203 } 2204 } 2205 } 2206 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce; 2207 } 2208 2209 /* 2210 ** Term pTerm is a vector range comparison operation. The first comparison 2211 ** in the vector can be optimized using column nEq of the index. This 2212 ** function returns the total number of vector elements that can be used 2213 ** as part of the range comparison. 2214 ** 2215 ** For example, if the query is: 2216 ** 2217 ** WHERE a = ? AND (b, c, d) > (?, ?, ?) 2218 ** 2219 ** and the index: 2220 ** 2221 ** CREATE INDEX ... ON (a, b, c, d, e) 2222 ** 2223 ** then this function would be invoked with nEq=1. The value returned in 2224 ** this case is 3. 2225 */ 2226 static int whereRangeVectorLen( 2227 Parse *pParse, /* Parsing context */ 2228 int iCur, /* Cursor open on pIdx */ 2229 Index *pIdx, /* The index to be used for a inequality constraint */ 2230 int nEq, /* Number of prior equality constraints on same index */ 2231 WhereTerm *pTerm /* The vector inequality constraint */ 2232 ){ 2233 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft); 2234 int i; 2235 2236 nCmp = MIN(nCmp, (pIdx->nColumn - nEq)); 2237 for(i=1; i<nCmp; i++){ 2238 /* Test if comparison i of pTerm is compatible with column (i+nEq) 2239 ** of the index. If not, exit the loop. */ 2240 char aff; /* Comparison affinity */ 2241 char idxaff = 0; /* Indexed columns affinity */ 2242 CollSeq *pColl; /* Comparison collation sequence */ 2243 Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr; 2244 Expr *pRhs = pTerm->pExpr->pRight; 2245 if( pRhs->flags & EP_xIsSelect ){ 2246 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr; 2247 }else{ 2248 pRhs = pRhs->x.pList->a[i].pExpr; 2249 } 2250 2251 /* Check that the LHS of the comparison is a column reference to 2252 ** the right column of the right source table. And that the sort 2253 ** order of the index column is the same as the sort order of the 2254 ** leftmost index column. */ 2255 if( pLhs->op!=TK_COLUMN 2256 || pLhs->iTable!=iCur 2257 || pLhs->iColumn!=pIdx->aiColumn[i+nEq] 2258 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq] 2259 ){ 2260 break; 2261 } 2262 2263 testcase( pLhs->iColumn==XN_ROWID ); 2264 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs)); 2265 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn); 2266 if( aff!=idxaff ) break; 2267 2268 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2269 if( pColl==0 ) break; 2270 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; 2271 } 2272 return i; 2273 } 2274 2275 /* 2276 ** Adjust the cost C by the costMult facter T. This only occurs if 2277 ** compiled with -DSQLITE_ENABLE_COSTMULT 2278 */ 2279 #ifdef SQLITE_ENABLE_COSTMULT 2280 # define ApplyCostMultiplier(C,T) C += T 2281 #else 2282 # define ApplyCostMultiplier(C,T) 2283 #endif 2284 2285 /* 2286 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 2287 ** index pIndex. Try to match one more. 2288 ** 2289 ** When this function is called, pBuilder->pNew->nOut contains the 2290 ** number of rows expected to be visited by filtering using the nEq 2291 ** terms only. If it is modified, this value is restored before this 2292 ** function returns. 2293 ** 2294 ** If pProbe->tnum==0, that means pIndex is a fake index used for the 2295 ** INTEGER PRIMARY KEY. 2296 */ 2297 static int whereLoopAddBtreeIndex( 2298 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 2299 struct SrcList_item *pSrc, /* FROM clause term being analyzed */ 2300 Index *pProbe, /* An index on pSrc */ 2301 LogEst nInMul /* log(Number of iterations due to IN) */ 2302 ){ 2303 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ 2304 Parse *pParse = pWInfo->pParse; /* Parsing context */ 2305 sqlite3 *db = pParse->db; /* Database connection malloc context */ 2306 WhereLoop *pNew; /* Template WhereLoop under construction */ 2307 WhereTerm *pTerm; /* A WhereTerm under consideration */ 2308 int opMask; /* Valid operators for constraints */ 2309 WhereScan scan; /* Iterator for WHERE terms */ 2310 Bitmask saved_prereq; /* Original value of pNew->prereq */ 2311 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 2312 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 2313 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */ 2314 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */ 2315 u16 saved_nSkip; /* Original value of pNew->nSkip */ 2316 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 2317 LogEst saved_nOut; /* Original value of pNew->nOut */ 2318 int rc = SQLITE_OK; /* Return code */ 2319 LogEst rSize; /* Number of rows in the table */ 2320 LogEst rLogSize; /* Logarithm of table size */ 2321 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 2322 2323 pNew = pBuilder->pNew; 2324 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 2325 WHERETRACE(0x800, ("BEGIN addBtreeIdx(%s), nEq=%d\n", 2326 pProbe->zName, pNew->u.btree.nEq)); 2327 2328 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 2329 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 2330 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 2331 opMask = WO_LT|WO_LE; 2332 }else{ 2333 assert( pNew->u.btree.nBtm==0 ); 2334 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; 2335 } 2336 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 2337 2338 assert( pNew->u.btree.nEq<pProbe->nColumn ); 2339 2340 saved_nEq = pNew->u.btree.nEq; 2341 saved_nBtm = pNew->u.btree.nBtm; 2342 saved_nTop = pNew->u.btree.nTop; 2343 saved_nSkip = pNew->nSkip; 2344 saved_nLTerm = pNew->nLTerm; 2345 saved_wsFlags = pNew->wsFlags; 2346 saved_prereq = pNew->prereq; 2347 saved_nOut = pNew->nOut; 2348 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, 2349 opMask, pProbe); 2350 pNew->rSetup = 0; 2351 rSize = pProbe->aiRowLogEst[0]; 2352 rLogSize = estLog(rSize); 2353 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 2354 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 2355 LogEst rCostIdx; 2356 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 2357 int nIn = 0; 2358 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2359 int nRecValid = pBuilder->nRecValid; 2360 #endif 2361 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 2362 && indexColumnNotNull(pProbe, saved_nEq) 2363 ){ 2364 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 2365 } 2366 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2367 2368 /* Do not allow the upper bound of a LIKE optimization range constraint 2369 ** to mix with a lower range bound from some other source */ 2370 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 2371 2372 /* Do not allow IS constraints from the WHERE clause to be used by the 2373 ** right table of a LEFT JOIN. Only constraints in the ON clause are 2374 ** allowed */ 2375 if( (pSrc->fg.jointype & JT_LEFT)!=0 2376 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 2377 && (eOp & (WO_IS|WO_ISNULL))!=0 2378 ){ 2379 testcase( eOp & WO_IS ); 2380 testcase( eOp & WO_ISNULL ); 2381 continue; 2382 } 2383 2384 pNew->wsFlags = saved_wsFlags; 2385 pNew->u.btree.nEq = saved_nEq; 2386 pNew->u.btree.nBtm = saved_nBtm; 2387 pNew->u.btree.nTop = saved_nTop; 2388 pNew->nLTerm = saved_nLTerm; 2389 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2390 pNew->aLTerm[pNew->nLTerm++] = pTerm; 2391 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 2392 2393 assert( nInMul==0 2394 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 2395 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 2396 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 2397 ); 2398 2399 if( eOp & WO_IN ){ 2400 Expr *pExpr = pTerm->pExpr; 2401 pNew->wsFlags |= WHERE_COLUMN_IN; 2402 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2403 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 2404 int i; 2405 nIn = 46; assert( 46==sqlite3LogEst(25) ); 2406 2407 /* The expression may actually be of the form (x, y) IN (SELECT...). 2408 ** In this case there is a separate term for each of (x) and (y). 2409 ** However, the nIn multiplier should only be applied once, not once 2410 ** for each such term. The following loop checks that pTerm is the 2411 ** first such term in use, and sets nIn back to 0 if it is not. */ 2412 for(i=0; i<pNew->nLTerm-1; i++){ 2413 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0; 2414 } 2415 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2416 /* "x IN (value, value, ...)" */ 2417 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 2418 assert( nIn>0 ); /* RHS always has 2 or more terms... The parser 2419 ** changes "x IN (?)" into "x=?". */ 2420 } 2421 }else if( eOp & (WO_EQ|WO_IS) ){ 2422 int iCol = pProbe->aiColumn[saved_nEq]; 2423 pNew->wsFlags |= WHERE_COLUMN_EQ; 2424 assert( saved_nEq==pNew->u.btree.nEq ); 2425 if( iCol==XN_ROWID 2426 || (iCol>0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) 2427 ){ 2428 if( iCol>=0 && pProbe->uniqNotNull==0 ){ 2429 pNew->wsFlags |= WHERE_UNQ_WANTED; 2430 }else{ 2431 pNew->wsFlags |= WHERE_ONEROW; 2432 } 2433 } 2434 }else if( eOp & WO_ISNULL ){ 2435 pNew->wsFlags |= WHERE_COLUMN_NULL; 2436 }else if( eOp & (WO_GT|WO_GE) ){ 2437 testcase( eOp & WO_GT ); 2438 testcase( eOp & WO_GE ); 2439 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 2440 pNew->u.btree.nBtm = whereRangeVectorLen( 2441 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2442 ); 2443 pBtm = pTerm; 2444 pTop = 0; 2445 if( pTerm->wtFlags & TERM_LIKEOPT ){ 2446 /* Range contraints that come from the LIKE optimization are 2447 ** always used in pairs. */ 2448 pTop = &pTerm[1]; 2449 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 2450 assert( pTop->wtFlags & TERM_LIKEOPT ); 2451 assert( pTop->eOperator==WO_LT ); 2452 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2453 pNew->aLTerm[pNew->nLTerm++] = pTop; 2454 pNew->wsFlags |= WHERE_TOP_LIMIT; 2455 pNew->u.btree.nTop = 1; 2456 } 2457 }else{ 2458 assert( eOp & (WO_LT|WO_LE) ); 2459 testcase( eOp & WO_LT ); 2460 testcase( eOp & WO_LE ); 2461 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 2462 pNew->u.btree.nTop = whereRangeVectorLen( 2463 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2464 ); 2465 pTop = pTerm; 2466 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 2467 pNew->aLTerm[pNew->nLTerm-2] : 0; 2468 } 2469 2470 /* At this point pNew->nOut is set to the number of rows expected to 2471 ** be visited by the index scan before considering term pTerm, or the 2472 ** values of nIn and nInMul. In other words, assuming that all 2473 ** "x IN(...)" terms are replaced with "x = ?". This block updates 2474 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 2475 assert( pNew->nOut==saved_nOut ); 2476 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2477 /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4 2478 ** data, using some other estimate. */ 2479 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 2480 }else{ 2481 int nEq = ++pNew->u.btree.nEq; 2482 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); 2483 2484 assert( pNew->nOut==saved_nOut ); 2485 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ 2486 assert( (eOp & WO_IN) || nIn==0 ); 2487 testcase( eOp & WO_IN ); 2488 pNew->nOut += pTerm->truthProb; 2489 pNew->nOut -= nIn; 2490 }else{ 2491 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2492 tRowcnt nOut = 0; 2493 if( nInMul==0 2494 && pProbe->nSample 2495 && pNew->u.btree.nEq<=pProbe->nSampleCol 2496 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) 2497 ){ 2498 Expr *pExpr = pTerm->pExpr; 2499 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ 2500 testcase( eOp & WO_EQ ); 2501 testcase( eOp & WO_IS ); 2502 testcase( eOp & WO_ISNULL ); 2503 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 2504 }else{ 2505 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 2506 } 2507 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 2508 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 2509 if( nOut ){ 2510 pNew->nOut = sqlite3LogEst(nOut); 2511 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 2512 pNew->nOut -= nIn; 2513 } 2514 } 2515 if( nOut==0 ) 2516 #endif 2517 { 2518 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 2519 if( eOp & WO_ISNULL ){ 2520 /* TUNING: If there is no likelihood() value, assume that a 2521 ** "col IS NULL" expression matches twice as many rows 2522 ** as (col=?). */ 2523 pNew->nOut += 10; 2524 } 2525 } 2526 } 2527 } 2528 2529 /* Set rCostIdx to the cost of visiting selected rows in index. Add 2530 ** it to pNew->rRun, which is currently set to the cost of the index 2531 ** seek only. Then, if this is a non-covering index, add the cost of 2532 ** visiting the rows in the main table. */ 2533 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 2534 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); 2535 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ 2536 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 2537 } 2538 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 2539 2540 nOutUnadjusted = pNew->nOut; 2541 pNew->rRun += nInMul + nIn; 2542 pNew->nOut += nInMul + nIn; 2543 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 2544 rc = whereLoopInsert(pBuilder, pNew); 2545 2546 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2547 pNew->nOut = saved_nOut; 2548 }else{ 2549 pNew->nOut = nOutUnadjusted; 2550 } 2551 2552 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 2553 && pNew->u.btree.nEq<pProbe->nColumn 2554 ){ 2555 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 2556 } 2557 pNew->nOut = saved_nOut; 2558 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2559 pBuilder->nRecValid = nRecValid; 2560 #endif 2561 } 2562 pNew->prereq = saved_prereq; 2563 pNew->u.btree.nEq = saved_nEq; 2564 pNew->u.btree.nBtm = saved_nBtm; 2565 pNew->u.btree.nTop = saved_nTop; 2566 pNew->nSkip = saved_nSkip; 2567 pNew->wsFlags = saved_wsFlags; 2568 pNew->nOut = saved_nOut; 2569 pNew->nLTerm = saved_nLTerm; 2570 2571 /* Consider using a skip-scan if there are no WHERE clause constraints 2572 ** available for the left-most terms of the index, and if the average 2573 ** number of repeats in the left-most terms is at least 18. 2574 ** 2575 ** The magic number 18 is selected on the basis that scanning 17 rows 2576 ** is almost always quicker than an index seek (even though if the index 2577 ** contains fewer than 2^17 rows we assume otherwise in other parts of 2578 ** the code). And, even if it is not, it should not be too much slower. 2579 ** On the other hand, the extra seeks could end up being significantly 2580 ** more expensive. */ 2581 assert( 42==sqlite3LogEst(18) ); 2582 if( saved_nEq==saved_nSkip 2583 && saved_nEq+1<pProbe->nKeyCol 2584 && pProbe->noSkipScan==0 2585 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 2586 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 2587 ){ 2588 LogEst nIter; 2589 pNew->u.btree.nEq++; 2590 pNew->nSkip++; 2591 pNew->aLTerm[pNew->nLTerm++] = 0; 2592 pNew->wsFlags |= WHERE_SKIPSCAN; 2593 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 2594 pNew->nOut -= nIter; 2595 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 2596 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 2597 nIter += 5; 2598 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 2599 pNew->nOut = saved_nOut; 2600 pNew->u.btree.nEq = saved_nEq; 2601 pNew->nSkip = saved_nSkip; 2602 pNew->wsFlags = saved_wsFlags; 2603 } 2604 2605 WHERETRACE(0x800, ("END addBtreeIdx(%s), nEq=%d, rc=%d\n", 2606 pProbe->zName, saved_nEq, rc)); 2607 return rc; 2608 } 2609 2610 /* 2611 ** Return True if it is possible that pIndex might be useful in 2612 ** implementing the ORDER BY clause in pBuilder. 2613 ** 2614 ** Return False if pBuilder does not contain an ORDER BY clause or 2615 ** if there is no way for pIndex to be useful in implementing that 2616 ** ORDER BY clause. 2617 */ 2618 static int indexMightHelpWithOrderBy( 2619 WhereLoopBuilder *pBuilder, 2620 Index *pIndex, 2621 int iCursor 2622 ){ 2623 ExprList *pOB; 2624 ExprList *aColExpr; 2625 int ii, jj; 2626 2627 if( pIndex->bUnordered ) return 0; 2628 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 2629 for(ii=0; ii<pOB->nExpr; ii++){ 2630 Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr); 2631 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ 2632 if( pExpr->iColumn<0 ) return 1; 2633 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2634 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 2635 } 2636 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ 2637 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2638 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; 2639 if( sqlite3ExprCompare(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ 2640 return 1; 2641 } 2642 } 2643 } 2644 } 2645 return 0; 2646 } 2647 2648 /* 2649 ** Return a bitmask where 1s indicate that the corresponding column of 2650 ** the table is used by an index. Only the first 63 columns are considered. 2651 */ 2652 static Bitmask columnsInIndex(Index *pIdx){ 2653 Bitmask m = 0; 2654 int j; 2655 for(j=pIdx->nColumn-1; j>=0; j--){ 2656 int x = pIdx->aiColumn[j]; 2657 if( x>=0 ){ 2658 testcase( x==BMS-1 ); 2659 testcase( x==BMS-2 ); 2660 if( x<BMS-1 ) m |= MASKBIT(x); 2661 } 2662 } 2663 return m; 2664 } 2665 2666 /* Check to see if a partial index with pPartIndexWhere can be used 2667 ** in the current query. Return true if it can be and false if not. 2668 */ 2669 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){ 2670 int i; 2671 WhereTerm *pTerm; 2672 while( pWhere->op==TK_AND ){ 2673 if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0; 2674 pWhere = pWhere->pRight; 2675 } 2676 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 2677 Expr *pExpr = pTerm->pExpr; 2678 if( sqlite3ExprImpliesExpr(pExpr, pWhere, iTab) 2679 && (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab) 2680 ){ 2681 return 1; 2682 } 2683 } 2684 return 0; 2685 } 2686 2687 /* 2688 ** Add all WhereLoop objects for a single table of the join where the table 2689 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be 2690 ** a b-tree table, not a virtual table. 2691 ** 2692 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 2693 ** are calculated as follows: 2694 ** 2695 ** For a full scan, assuming the table (or index) contains nRow rows: 2696 ** 2697 ** cost = nRow * 3.0 // full-table scan 2698 ** cost = nRow * K // scan of covering index 2699 ** cost = nRow * (K+3.0) // scan of non-covering index 2700 ** 2701 ** where K is a value between 1.1 and 3.0 set based on the relative 2702 ** estimated average size of the index and table records. 2703 ** 2704 ** For an index scan, where nVisit is the number of index rows visited 2705 ** by the scan, and nSeek is the number of seek operations required on 2706 ** the index b-tree: 2707 ** 2708 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 2709 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 2710 ** 2711 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 2712 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 2713 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 2714 ** 2715 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 2716 ** of uncertainty. For this reason, scoring is designed to pick plans that 2717 ** "do the least harm" if the estimates are inaccurate. For example, a 2718 ** log(nRow) factor is omitted from a non-covering index scan in order to 2719 ** bias the scoring in favor of using an index, since the worst-case 2720 ** performance of using an index is far better than the worst-case performance 2721 ** of a full table scan. 2722 */ 2723 static int whereLoopAddBtree( 2724 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 2725 Bitmask mPrereq /* Extra prerequesites for using this table */ 2726 ){ 2727 WhereInfo *pWInfo; /* WHERE analysis context */ 2728 Index *pProbe; /* An index we are evaluating */ 2729 Index sPk; /* A fake index object for the primary key */ 2730 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 2731 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 2732 SrcList *pTabList; /* The FROM clause */ 2733 struct SrcList_item *pSrc; /* The FROM clause btree term to add */ 2734 WhereLoop *pNew; /* Template WhereLoop object */ 2735 int rc = SQLITE_OK; /* Return code */ 2736 int iSortIdx = 1; /* Index number */ 2737 int b; /* A boolean value */ 2738 LogEst rSize; /* number of rows in the table */ 2739 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 2740 WhereClause *pWC; /* The parsed WHERE clause */ 2741 Table *pTab; /* Table being queried */ 2742 2743 pNew = pBuilder->pNew; 2744 pWInfo = pBuilder->pWInfo; 2745 pTabList = pWInfo->pTabList; 2746 pSrc = pTabList->a + pNew->iTab; 2747 pTab = pSrc->pTab; 2748 pWC = pBuilder->pWC; 2749 assert( !IsVirtual(pSrc->pTab) ); 2750 2751 if( pSrc->pIBIndex ){ 2752 /* An INDEXED BY clause specifies a particular index to use */ 2753 pProbe = pSrc->pIBIndex; 2754 }else if( !HasRowid(pTab) ){ 2755 pProbe = pTab->pIndex; 2756 }else{ 2757 /* There is no INDEXED BY clause. Create a fake Index object in local 2758 ** variable sPk to represent the rowid primary key index. Make this 2759 ** fake index the first in a chain of Index objects with all of the real 2760 ** indices to follow */ 2761 Index *pFirst; /* First of real indices on the table */ 2762 memset(&sPk, 0, sizeof(Index)); 2763 sPk.nKeyCol = 1; 2764 sPk.nColumn = 1; 2765 sPk.aiColumn = &aiColumnPk; 2766 sPk.aiRowLogEst = aiRowEstPk; 2767 sPk.onError = OE_Replace; 2768 sPk.pTable = pTab; 2769 sPk.szIdxRow = pTab->szTabRow; 2770 aiRowEstPk[0] = pTab->nRowLogEst; 2771 aiRowEstPk[1] = 0; 2772 pFirst = pSrc->pTab->pIndex; 2773 if( pSrc->fg.notIndexed==0 ){ 2774 /* The real indices of the table are only considered if the 2775 ** NOT INDEXED qualifier is omitted from the FROM clause */ 2776 sPk.pNext = pFirst; 2777 } 2778 pProbe = &sPk; 2779 } 2780 rSize = pTab->nRowLogEst; 2781 rLogSize = estLog(rSize); 2782 2783 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 2784 /* Automatic indexes */ 2785 if( !pBuilder->pOrSet /* Not part of an OR optimization */ 2786 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 2787 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 2788 && pSrc->pIBIndex==0 /* Has no INDEXED BY clause */ 2789 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ 2790 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ 2791 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ 2792 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ 2793 ){ 2794 /* Generate auto-index WhereLoops */ 2795 WhereTerm *pTerm; 2796 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 2797 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 2798 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2799 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 2800 pNew->u.btree.nEq = 1; 2801 pNew->nSkip = 0; 2802 pNew->u.btree.pIndex = 0; 2803 pNew->nLTerm = 1; 2804 pNew->aLTerm[0] = pTerm; 2805 /* TUNING: One-time cost for computing the automatic index is 2806 ** estimated to be X*N*log2(N) where N is the number of rows in 2807 ** the table being indexed and where X is 7 (LogEst=28) for normal 2808 ** tables or 1.375 (LogEst=4) for views and subqueries. The value 2809 ** of X is smaller for views and subqueries so that the query planner 2810 ** will be more aggressive about generating automatic indexes for 2811 ** those objects, since there is no opportunity to add schema 2812 ** indexes on subqueries and views. */ 2813 pNew->rSetup = rLogSize + rSize + 4; 2814 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){ 2815 pNew->rSetup += 24; 2816 } 2817 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 2818 if( pNew->rSetup<0 ) pNew->rSetup = 0; 2819 /* TUNING: Each index lookup yields 20 rows in the table. This 2820 ** is more than the usual guess of 10 rows, since we have no way 2821 ** of knowing how selective the index will ultimately be. It would 2822 ** not be unreasonable to make this value much larger. */ 2823 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 2824 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 2825 pNew->wsFlags = WHERE_AUTO_INDEX; 2826 pNew->prereq = mPrereq | pTerm->prereqRight; 2827 rc = whereLoopInsert(pBuilder, pNew); 2828 } 2829 } 2830 } 2831 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 2832 2833 /* Loop over all indices 2834 */ 2835 for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){ 2836 if( pProbe->pPartIdxWhere!=0 2837 && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){ 2838 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 2839 continue; /* Partial index inappropriate for this query */ 2840 } 2841 rSize = pProbe->aiRowLogEst[0]; 2842 pNew->u.btree.nEq = 0; 2843 pNew->u.btree.nBtm = 0; 2844 pNew->u.btree.nTop = 0; 2845 pNew->nSkip = 0; 2846 pNew->nLTerm = 0; 2847 pNew->iSortIdx = 0; 2848 pNew->rSetup = 0; 2849 pNew->prereq = mPrereq; 2850 pNew->nOut = rSize; 2851 pNew->u.btree.pIndex = pProbe; 2852 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 2853 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 2854 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 2855 if( pProbe->tnum<=0 ){ 2856 /* Integer primary key index */ 2857 pNew->wsFlags = WHERE_IPK; 2858 2859 /* Full table scan */ 2860 pNew->iSortIdx = b ? iSortIdx : 0; 2861 /* TUNING: Cost of full table scan is (N*3.0). */ 2862 pNew->rRun = rSize + 16; 2863 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 2864 whereLoopOutputAdjust(pWC, pNew, rSize); 2865 rc = whereLoopInsert(pBuilder, pNew); 2866 pNew->nOut = rSize; 2867 if( rc ) break; 2868 }else{ 2869 Bitmask m; 2870 if( pProbe->isCovering ){ 2871 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 2872 m = 0; 2873 }else{ 2874 m = pSrc->colUsed & ~columnsInIndex(pProbe); 2875 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; 2876 } 2877 2878 /* Full scan via index */ 2879 if( b 2880 || !HasRowid(pTab) 2881 || pProbe->pPartIdxWhere!=0 2882 || ( m==0 2883 && pProbe->bUnordered==0 2884 && (pProbe->szIdxRow<pTab->szTabRow) 2885 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 2886 && sqlite3GlobalConfig.bUseCis 2887 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 2888 ) 2889 ){ 2890 pNew->iSortIdx = b ? iSortIdx : 0; 2891 2892 /* The cost of visiting the index rows is N*K, where K is 2893 ** between 1.1 and 3.0, depending on the relative sizes of the 2894 ** index and table rows. */ 2895 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 2896 if( m!=0 ){ 2897 /* If this is a non-covering index scan, add in the cost of 2898 ** doing table lookups. The cost will be 3x the number of 2899 ** lookups. Take into account WHERE clause terms that can be 2900 ** satisfied using just the index, and that do not require a 2901 ** table lookup. */ 2902 LogEst nLookup = rSize + 16; /* Base cost: N*3 */ 2903 int ii; 2904 int iCur = pSrc->iCursor; 2905 WhereClause *pWC2 = &pWInfo->sWC; 2906 for(ii=0; ii<pWC2->nTerm; ii++){ 2907 WhereTerm *pTerm = &pWC2->a[ii]; 2908 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){ 2909 break; 2910 } 2911 /* pTerm can be evaluated using just the index. So reduce 2912 ** the expected number of table lookups accordingly */ 2913 if( pTerm->truthProb<=0 ){ 2914 nLookup += pTerm->truthProb; 2915 }else{ 2916 nLookup--; 2917 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19; 2918 } 2919 } 2920 2921 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup); 2922 } 2923 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 2924 whereLoopOutputAdjust(pWC, pNew, rSize); 2925 rc = whereLoopInsert(pBuilder, pNew); 2926 pNew->nOut = rSize; 2927 if( rc ) break; 2928 } 2929 } 2930 2931 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 2932 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2933 sqlite3Stat4ProbeFree(pBuilder->pRec); 2934 pBuilder->nRecValid = 0; 2935 pBuilder->pRec = 0; 2936 #endif 2937 2938 /* If there was an INDEXED BY clause, then only that one index is 2939 ** considered. */ 2940 if( pSrc->pIBIndex ) break; 2941 } 2942 return rc; 2943 } 2944 2945 #ifndef SQLITE_OMIT_VIRTUALTABLE 2946 2947 /* 2948 ** Argument pIdxInfo is already populated with all constraints that may 2949 ** be used by the virtual table identified by pBuilder->pNew->iTab. This 2950 ** function marks a subset of those constraints usable, invokes the 2951 ** xBestIndex method and adds the returned plan to pBuilder. 2952 ** 2953 ** A constraint is marked usable if: 2954 ** 2955 ** * Argument mUsable indicates that its prerequisites are available, and 2956 ** 2957 ** * It is not one of the operators specified in the mExclude mask passed 2958 ** as the fourth argument (which in practice is either WO_IN or 0). 2959 ** 2960 ** Argument mPrereq is a mask of tables that must be scanned before the 2961 ** virtual table in question. These are added to the plans prerequisites 2962 ** before it is added to pBuilder. 2963 ** 2964 ** Output parameter *pbIn is set to true if the plan added to pBuilder 2965 ** uses one or more WO_IN terms, or false otherwise. 2966 */ 2967 static int whereLoopAddVirtualOne( 2968 WhereLoopBuilder *pBuilder, 2969 Bitmask mPrereq, /* Mask of tables that must be used. */ 2970 Bitmask mUsable, /* Mask of usable tables */ 2971 u16 mExclude, /* Exclude terms using these operators */ 2972 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ 2973 u16 mNoOmit, /* Do not omit these constraints */ 2974 int *pbIn /* OUT: True if plan uses an IN(...) op */ 2975 ){ 2976 WhereClause *pWC = pBuilder->pWC; 2977 struct sqlite3_index_constraint *pIdxCons; 2978 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; 2979 int i; 2980 int mxTerm; 2981 int rc = SQLITE_OK; 2982 WhereLoop *pNew = pBuilder->pNew; 2983 Parse *pParse = pBuilder->pWInfo->pParse; 2984 struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; 2985 int nConstraint = pIdxInfo->nConstraint; 2986 2987 assert( (mUsable & mPrereq)==mPrereq ); 2988 *pbIn = 0; 2989 pNew->prereq = mPrereq; 2990 2991 /* Set the usable flag on the subset of constraints identified by 2992 ** arguments mUsable and mExclude. */ 2993 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 2994 for(i=0; i<nConstraint; i++, pIdxCons++){ 2995 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset]; 2996 pIdxCons->usable = 0; 2997 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight 2998 && (pTerm->eOperator & mExclude)==0 2999 ){ 3000 pIdxCons->usable = 1; 3001 } 3002 } 3003 3004 /* Initialize the output fields of the sqlite3_index_info structure */ 3005 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); 3006 assert( pIdxInfo->needToFreeIdxStr==0 ); 3007 pIdxInfo->idxStr = 0; 3008 pIdxInfo->idxNum = 0; 3009 pIdxInfo->orderByConsumed = 0; 3010 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 3011 pIdxInfo->estimatedRows = 25; 3012 pIdxInfo->idxFlags = 0; 3013 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; 3014 3015 /* Invoke the virtual table xBestIndex() method */ 3016 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); 3017 if( rc ) return rc; 3018 3019 mxTerm = -1; 3020 assert( pNew->nLSlot>=nConstraint ); 3021 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; 3022 pNew->u.vtab.omitMask = 0; 3023 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3024 for(i=0; i<nConstraint; i++, pIdxCons++){ 3025 int iTerm; 3026 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 3027 WhereTerm *pTerm; 3028 int j = pIdxCons->iTermOffset; 3029 if( iTerm>=nConstraint 3030 || j<0 3031 || j>=pWC->nTerm 3032 || pNew->aLTerm[iTerm]!=0 3033 || pIdxCons->usable==0 3034 ){ 3035 rc = SQLITE_ERROR; 3036 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3037 return rc; 3038 } 3039 testcase( iTerm==nConstraint-1 ); 3040 testcase( j==0 ); 3041 testcase( j==pWC->nTerm-1 ); 3042 pTerm = &pWC->a[j]; 3043 pNew->prereq |= pTerm->prereqRight; 3044 assert( iTerm<pNew->nLSlot ); 3045 pNew->aLTerm[iTerm] = pTerm; 3046 if( iTerm>mxTerm ) mxTerm = iTerm; 3047 testcase( iTerm==15 ); 3048 testcase( iTerm==16 ); 3049 if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm; 3050 if( (pTerm->eOperator & WO_IN)!=0 ){ 3051 /* A virtual table that is constrained by an IN clause may not 3052 ** consume the ORDER BY clause because (1) the order of IN terms 3053 ** is not necessarily related to the order of output terms and 3054 ** (2) Multiple outputs from a single IN value will not merge 3055 ** together. */ 3056 pIdxInfo->orderByConsumed = 0; 3057 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; 3058 *pbIn = 1; assert( (mExclude & WO_IN)==0 ); 3059 } 3060 } 3061 } 3062 pNew->u.vtab.omitMask &= ~mNoOmit; 3063 3064 pNew->nLTerm = mxTerm+1; 3065 assert( pNew->nLTerm<=pNew->nLSlot ); 3066 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 3067 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 3068 pIdxInfo->needToFreeIdxStr = 0; 3069 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 3070 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 3071 pIdxInfo->nOrderBy : 0); 3072 pNew->rSetup = 0; 3073 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 3074 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 3075 3076 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated 3077 ** that the scan will visit at most one row. Clear it otherwise. */ 3078 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ 3079 pNew->wsFlags |= WHERE_ONEROW; 3080 }else{ 3081 pNew->wsFlags &= ~WHERE_ONEROW; 3082 } 3083 rc = whereLoopInsert(pBuilder, pNew); 3084 if( pNew->u.vtab.needFree ){ 3085 sqlite3_free(pNew->u.vtab.idxStr); 3086 pNew->u.vtab.needFree = 0; 3087 } 3088 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", 3089 *pbIn, (sqlite3_uint64)mPrereq, 3090 (sqlite3_uint64)(pNew->prereq & ~mPrereq))); 3091 3092 return rc; 3093 } 3094 3095 3096 /* 3097 ** Add all WhereLoop objects for a table of the join identified by 3098 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 3099 ** 3100 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and 3101 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause 3102 ** entries that occur before the virtual table in the FROM clause and are 3103 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the 3104 ** mUnusable mask contains all FROM clause entries that occur after the 3105 ** virtual table and are separated from it by at least one LEFT or 3106 ** CROSS JOIN. 3107 ** 3108 ** For example, if the query were: 3109 ** 3110 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; 3111 ** 3112 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). 3113 ** 3114 ** All the tables in mPrereq must be scanned before the current virtual 3115 ** table. So any terms for which all prerequisites are satisfied by 3116 ** mPrereq may be specified as "usable" in all calls to xBestIndex. 3117 ** Conversely, all tables in mUnusable must be scanned after the current 3118 ** virtual table, so any terms for which the prerequisites overlap with 3119 ** mUnusable should always be configured as "not-usable" for xBestIndex. 3120 */ 3121 static int whereLoopAddVirtual( 3122 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3123 Bitmask mPrereq, /* Tables that must be scanned before this one */ 3124 Bitmask mUnusable /* Tables that must be scanned after this one */ 3125 ){ 3126 int rc = SQLITE_OK; /* Return code */ 3127 WhereInfo *pWInfo; /* WHERE analysis context */ 3128 Parse *pParse; /* The parsing context */ 3129 WhereClause *pWC; /* The WHERE clause */ 3130 struct SrcList_item *pSrc; /* The FROM clause term to search */ 3131 sqlite3_index_info *p; /* Object to pass to xBestIndex() */ 3132 int nConstraint; /* Number of constraints in p */ 3133 int bIn; /* True if plan uses IN(...) operator */ 3134 WhereLoop *pNew; 3135 Bitmask mBest; /* Tables used by best possible plan */ 3136 u16 mNoOmit; 3137 3138 assert( (mPrereq & mUnusable)==0 ); 3139 pWInfo = pBuilder->pWInfo; 3140 pParse = pWInfo->pParse; 3141 pWC = pBuilder->pWC; 3142 pNew = pBuilder->pNew; 3143 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 3144 assert( IsVirtual(pSrc->pTab) ); 3145 p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy, 3146 &mNoOmit); 3147 if( p==0 ) return SQLITE_NOMEM_BKPT; 3148 pNew->rSetup = 0; 3149 pNew->wsFlags = WHERE_VIRTUALTABLE; 3150 pNew->nLTerm = 0; 3151 pNew->u.vtab.needFree = 0; 3152 nConstraint = p->nConstraint; 3153 if( whereLoopResize(pParse->db, pNew, nConstraint) ){ 3154 sqlite3DbFree(pParse->db, p); 3155 return SQLITE_NOMEM_BKPT; 3156 } 3157 3158 /* First call xBestIndex() with all constraints usable. */ 3159 WHERETRACE(0x40, (" VirtualOne: all usable\n")); 3160 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn); 3161 3162 /* If the call to xBestIndex() with all terms enabled produced a plan 3163 ** that does not require any source tables (IOW: a plan with mBest==0), 3164 ** then there is no point in making any further calls to xBestIndex() 3165 ** since they will all return the same result (if the xBestIndex() 3166 ** implementation is sane). */ 3167 if( rc==SQLITE_OK && (mBest = (pNew->prereq & ~mPrereq))!=0 ){ 3168 int seenZero = 0; /* True if a plan with no prereqs seen */ 3169 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ 3170 Bitmask mPrev = 0; 3171 Bitmask mBestNoIn = 0; 3172 3173 /* If the plan produced by the earlier call uses an IN(...) term, call 3174 ** xBestIndex again, this time with IN(...) terms disabled. */ 3175 if( bIn ){ 3176 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n")); 3177 rc = whereLoopAddVirtualOne( 3178 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn); 3179 assert( bIn==0 ); 3180 mBestNoIn = pNew->prereq & ~mPrereq; 3181 if( mBestNoIn==0 ){ 3182 seenZero = 1; 3183 seenZeroNoIN = 1; 3184 } 3185 } 3186 3187 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) 3188 ** in the set of terms that apply to the current virtual table. */ 3189 while( rc==SQLITE_OK ){ 3190 int i; 3191 Bitmask mNext = ALLBITS; 3192 assert( mNext>0 ); 3193 for(i=0; i<nConstraint; i++){ 3194 Bitmask mThis = ( 3195 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq 3196 ); 3197 if( mThis>mPrev && mThis<mNext ) mNext = mThis; 3198 } 3199 mPrev = mNext; 3200 if( mNext==ALLBITS ) break; 3201 if( mNext==mBest || mNext==mBestNoIn ) continue; 3202 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n", 3203 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext)); 3204 rc = whereLoopAddVirtualOne( 3205 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn); 3206 if( pNew->prereq==mPrereq ){ 3207 seenZero = 1; 3208 if( bIn==0 ) seenZeroNoIN = 1; 3209 } 3210 } 3211 3212 /* If the calls to xBestIndex() in the above loop did not find a plan 3213 ** that requires no source tables at all (i.e. one guaranteed to be 3214 ** usable), make a call here with all source tables disabled */ 3215 if( rc==SQLITE_OK && seenZero==0 ){ 3216 WHERETRACE(0x40, (" VirtualOne: all disabled\n")); 3217 rc = whereLoopAddVirtualOne( 3218 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn); 3219 if( bIn==0 ) seenZeroNoIN = 1; 3220 } 3221 3222 /* If the calls to xBestIndex() have so far failed to find a plan 3223 ** that requires no source tables at all and does not use an IN(...) 3224 ** operator, make a final call to obtain one here. */ 3225 if( rc==SQLITE_OK && seenZeroNoIN==0 ){ 3226 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n")); 3227 rc = whereLoopAddVirtualOne( 3228 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn); 3229 } 3230 } 3231 3232 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr); 3233 sqlite3DbFree(pParse->db, p); 3234 return rc; 3235 } 3236 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3237 3238 /* 3239 ** Add WhereLoop entries to handle OR terms. This works for either 3240 ** btrees or virtual tables. 3241 */ 3242 static int whereLoopAddOr( 3243 WhereLoopBuilder *pBuilder, 3244 Bitmask mPrereq, 3245 Bitmask mUnusable 3246 ){ 3247 WhereInfo *pWInfo = pBuilder->pWInfo; 3248 WhereClause *pWC; 3249 WhereLoop *pNew; 3250 WhereTerm *pTerm, *pWCEnd; 3251 int rc = SQLITE_OK; 3252 int iCur; 3253 WhereClause tempWC; 3254 WhereLoopBuilder sSubBuild; 3255 WhereOrSet sSum, sCur; 3256 struct SrcList_item *pItem; 3257 3258 pWC = pBuilder->pWC; 3259 pWCEnd = pWC->a + pWC->nTerm; 3260 pNew = pBuilder->pNew; 3261 memset(&sSum, 0, sizeof(sSum)); 3262 pItem = pWInfo->pTabList->a + pNew->iTab; 3263 iCur = pItem->iCursor; 3264 3265 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 3266 if( (pTerm->eOperator & WO_OR)!=0 3267 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 3268 ){ 3269 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 3270 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 3271 WhereTerm *pOrTerm; 3272 int once = 1; 3273 int i, j; 3274 3275 sSubBuild = *pBuilder; 3276 sSubBuild.pOrderBy = 0; 3277 sSubBuild.pOrSet = &sCur; 3278 3279 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); 3280 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 3281 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 3282 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 3283 }else if( pOrTerm->leftCursor==iCur ){ 3284 tempWC.pWInfo = pWC->pWInfo; 3285 tempWC.pOuter = pWC; 3286 tempWC.op = TK_AND; 3287 tempWC.nTerm = 1; 3288 tempWC.a = pOrTerm; 3289 sSubBuild.pWC = &tempWC; 3290 }else{ 3291 continue; 3292 } 3293 sCur.n = 0; 3294 #ifdef WHERETRACE_ENABLED 3295 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 3296 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 3297 if( sqlite3WhereTrace & 0x400 ){ 3298 sqlite3WhereClausePrint(sSubBuild.pWC); 3299 } 3300 #endif 3301 #ifndef SQLITE_OMIT_VIRTUALTABLE 3302 if( IsVirtual(pItem->pTab) ){ 3303 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); 3304 }else 3305 #endif 3306 { 3307 rc = whereLoopAddBtree(&sSubBuild, mPrereq); 3308 } 3309 if( rc==SQLITE_OK ){ 3310 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); 3311 } 3312 assert( rc==SQLITE_OK || sCur.n==0 ); 3313 if( sCur.n==0 ){ 3314 sSum.n = 0; 3315 break; 3316 }else if( once ){ 3317 whereOrMove(&sSum, &sCur); 3318 once = 0; 3319 }else{ 3320 WhereOrSet sPrev; 3321 whereOrMove(&sPrev, &sSum); 3322 sSum.n = 0; 3323 for(i=0; i<sPrev.n; i++){ 3324 for(j=0; j<sCur.n; j++){ 3325 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 3326 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 3327 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 3328 } 3329 } 3330 } 3331 } 3332 pNew->nLTerm = 1; 3333 pNew->aLTerm[0] = pTerm; 3334 pNew->wsFlags = WHERE_MULTI_OR; 3335 pNew->rSetup = 0; 3336 pNew->iSortIdx = 0; 3337 memset(&pNew->u, 0, sizeof(pNew->u)); 3338 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 3339 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 3340 ** of all sub-scans required by the OR-scan. However, due to rounding 3341 ** errors, it may be that the cost of the OR-scan is equal to its 3342 ** most expensive sub-scan. Add the smallest possible penalty 3343 ** (equivalent to multiplying the cost by 1.07) to ensure that 3344 ** this does not happen. Otherwise, for WHERE clauses such as the 3345 ** following where there is an index on "y": 3346 ** 3347 ** WHERE likelihood(x=?, 0.99) OR y=? 3348 ** 3349 ** the planner may elect to "OR" together a full-table scan and an 3350 ** index lookup. And other similarly odd results. */ 3351 pNew->rRun = sSum.a[i].rRun + 1; 3352 pNew->nOut = sSum.a[i].nOut; 3353 pNew->prereq = sSum.a[i].prereq; 3354 rc = whereLoopInsert(pBuilder, pNew); 3355 } 3356 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); 3357 } 3358 } 3359 return rc; 3360 } 3361 3362 /* 3363 ** Add all WhereLoop objects for all tables 3364 */ 3365 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 3366 WhereInfo *pWInfo = pBuilder->pWInfo; 3367 Bitmask mPrereq = 0; 3368 Bitmask mPrior = 0; 3369 int iTab; 3370 SrcList *pTabList = pWInfo->pTabList; 3371 struct SrcList_item *pItem; 3372 struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel]; 3373 sqlite3 *db = pWInfo->pParse->db; 3374 int rc = SQLITE_OK; 3375 WhereLoop *pNew; 3376 u8 priorJointype = 0; 3377 3378 /* Loop over the tables in the join, from left to right */ 3379 pNew = pBuilder->pNew; 3380 whereLoopInit(pNew); 3381 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ 3382 Bitmask mUnusable = 0; 3383 pNew->iTab = iTab; 3384 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); 3385 if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){ 3386 /* This condition is true when pItem is the FROM clause term on the 3387 ** right-hand-side of a LEFT or CROSS JOIN. */ 3388 mPrereq = mPrior; 3389 } 3390 priorJointype = pItem->fg.jointype; 3391 #ifndef SQLITE_OMIT_VIRTUALTABLE 3392 if( IsVirtual(pItem->pTab) ){ 3393 struct SrcList_item *p; 3394 for(p=&pItem[1]; p<pEnd; p++){ 3395 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){ 3396 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); 3397 } 3398 } 3399 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); 3400 }else 3401 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3402 { 3403 rc = whereLoopAddBtree(pBuilder, mPrereq); 3404 } 3405 if( rc==SQLITE_OK ){ 3406 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); 3407 } 3408 mPrior |= pNew->maskSelf; 3409 if( rc || db->mallocFailed ) break; 3410 } 3411 3412 whereLoopClear(db, pNew); 3413 return rc; 3414 } 3415 3416 /* 3417 ** Examine a WherePath (with the addition of the extra WhereLoop of the 5th 3418 ** parameters) to see if it outputs rows in the requested ORDER BY 3419 ** (or GROUP BY) without requiring a separate sort operation. Return N: 3420 ** 3421 ** N>0: N terms of the ORDER BY clause are satisfied 3422 ** N==0: No terms of the ORDER BY clause are satisfied 3423 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 3424 ** 3425 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 3426 ** strict. With GROUP BY and DISTINCT the only requirement is that 3427 ** equivalent rows appear immediately adjacent to one another. GROUP BY 3428 ** and DISTINCT do not require rows to appear in any particular order as long 3429 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 3430 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 3431 ** pOrderBy terms must be matched in strict left-to-right order. 3432 */ 3433 static i8 wherePathSatisfiesOrderBy( 3434 WhereInfo *pWInfo, /* The WHERE clause */ 3435 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 3436 WherePath *pPath, /* The WherePath to check */ 3437 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */ 3438 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 3439 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 3440 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 3441 ){ 3442 u8 revSet; /* True if rev is known */ 3443 u8 rev; /* Composite sort order */ 3444 u8 revIdx; /* Index sort order */ 3445 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 3446 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 3447 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 3448 u16 eqOpMask; /* Allowed equality operators */ 3449 u16 nKeyCol; /* Number of key columns in pIndex */ 3450 u16 nColumn; /* Total number of ordered columns in the index */ 3451 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 3452 int iLoop; /* Index of WhereLoop in pPath being processed */ 3453 int i, j; /* Loop counters */ 3454 int iCur; /* Cursor number for current WhereLoop */ 3455 int iColumn; /* A column number within table iCur */ 3456 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 3457 WhereTerm *pTerm; /* A single term of the WHERE clause */ 3458 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 3459 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 3460 Index *pIndex; /* The index associated with pLoop */ 3461 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 3462 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 3463 Bitmask obDone; /* Mask of all ORDER BY terms */ 3464 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 3465 Bitmask ready; /* Mask of inner loops */ 3466 3467 /* 3468 ** We say the WhereLoop is "one-row" if it generates no more than one 3469 ** row of output. A WhereLoop is one-row if all of the following are true: 3470 ** (a) All index columns match with WHERE_COLUMN_EQ. 3471 ** (b) The index is unique 3472 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 3473 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 3474 ** 3475 ** We say the WhereLoop is "order-distinct" if the set of columns from 3476 ** that WhereLoop that are in the ORDER BY clause are different for every 3477 ** row of the WhereLoop. Every one-row WhereLoop is automatically 3478 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 3479 ** is not order-distinct. To be order-distinct is not quite the same as being 3480 ** UNIQUE since a UNIQUE column or index can have multiple rows that 3481 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 3482 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 3483 ** 3484 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 3485 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 3486 ** automatically order-distinct. 3487 */ 3488 3489 assert( pOrderBy!=0 ); 3490 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 3491 3492 nOrderBy = pOrderBy->nExpr; 3493 testcase( nOrderBy==BMS-1 ); 3494 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 3495 isOrderDistinct = 1; 3496 obDone = MASKBIT(nOrderBy)-1; 3497 orderDistinctMask = 0; 3498 ready = 0; 3499 eqOpMask = WO_EQ | WO_IS | WO_ISNULL; 3500 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN; 3501 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 3502 if( iLoop>0 ) ready |= pLoop->maskSelf; 3503 if( iLoop<nLoop ){ 3504 pLoop = pPath->aLoop[iLoop]; 3505 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue; 3506 }else{ 3507 pLoop = pLast; 3508 } 3509 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 3510 if( pLoop->u.vtab.isOrdered ) obSat = obDone; 3511 break; 3512 } 3513 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 3514 3515 /* Mark off any ORDER BY term X that is a column in the table of 3516 ** the current loop for which there is term in the WHERE 3517 ** clause of the form X IS NULL or X=? that reference only outer 3518 ** loops. 3519 */ 3520 for(i=0; i<nOrderBy; i++){ 3521 if( MASKBIT(i) & obSat ) continue; 3522 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); 3523 if( pOBExpr->op!=TK_COLUMN ) continue; 3524 if( pOBExpr->iTable!=iCur ) continue; 3525 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 3526 ~ready, eqOpMask, 0); 3527 if( pTerm==0 ) continue; 3528 if( pTerm->eOperator==WO_IN ){ 3529 /* IN terms are only valid for sorting in the ORDER BY LIMIT 3530 ** optimization, and then only if they are actually used 3531 ** by the query plan */ 3532 assert( wctrlFlags & WHERE_ORDERBY_LIMIT ); 3533 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){} 3534 if( j>=pLoop->nLTerm ) continue; 3535 } 3536 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ 3537 const char *z1, *z2; 3538 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 3539 if( !pColl ) pColl = db->pDfltColl; 3540 z1 = pColl->zName; 3541 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr); 3542 if( !pColl ) pColl = db->pDfltColl; 3543 z2 = pColl->zName; 3544 if( sqlite3StrICmp(z1, z2)!=0 ) continue; 3545 testcase( pTerm->pExpr->op==TK_IS ); 3546 } 3547 obSat |= MASKBIT(i); 3548 } 3549 3550 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 3551 if( pLoop->wsFlags & WHERE_IPK ){ 3552 pIndex = 0; 3553 nKeyCol = 0; 3554 nColumn = 1; 3555 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 3556 return 0; 3557 }else{ 3558 nKeyCol = pIndex->nKeyCol; 3559 nColumn = pIndex->nColumn; 3560 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 3561 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID 3562 || !HasRowid(pIndex->pTable)); 3563 isOrderDistinct = IsUniqueIndex(pIndex); 3564 } 3565 3566 /* Loop through all columns of the index and deal with the ones 3567 ** that are not constrained by == or IN. 3568 */ 3569 rev = revSet = 0; 3570 distinctColumns = 0; 3571 for(j=0; j<nColumn; j++){ 3572 u8 bOnce = 1; /* True to run the ORDER BY search loop */ 3573 3574 assert( j>=pLoop->u.btree.nEq 3575 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip) 3576 ); 3577 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){ 3578 u16 eOp = pLoop->aLTerm[j]->eOperator; 3579 3580 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when 3581 ** doing WHERE_ORDERBY_LIMIT processing). 3582 ** 3583 ** If the current term is a column of an ((?,?) IN (SELECT...)) 3584 ** expression for which the SELECT returns more than one column, 3585 ** check that it is the only column used by this loop. Otherwise, 3586 ** if it is one of two or more, none of the columns can be 3587 ** considered to match an ORDER BY term. */ 3588 if( (eOp & eqOpMask)!=0 ){ 3589 if( eOp & WO_ISNULL ){ 3590 testcase( isOrderDistinct ); 3591 isOrderDistinct = 0; 3592 } 3593 continue; 3594 }else if( ALWAYS(eOp & WO_IN) ){ 3595 /* ALWAYS() justification: eOp is an equality operator due to the 3596 ** j<pLoop->u.btree.nEq constraint above. Any equality other 3597 ** than WO_IN is captured by the previous "if". So this one 3598 ** always has to be WO_IN. */ 3599 Expr *pX = pLoop->aLTerm[j]->pExpr; 3600 for(i=j+1; i<pLoop->u.btree.nEq; i++){ 3601 if( pLoop->aLTerm[i]->pExpr==pX ){ 3602 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) ); 3603 bOnce = 0; 3604 break; 3605 } 3606 } 3607 } 3608 } 3609 3610 /* Get the column number in the table (iColumn) and sort order 3611 ** (revIdx) for the j-th column of the index. 3612 */ 3613 if( pIndex ){ 3614 iColumn = pIndex->aiColumn[j]; 3615 revIdx = pIndex->aSortOrder[j]; 3616 if( iColumn==pIndex->pTable->iPKey ) iColumn = -1; 3617 }else{ 3618 iColumn = XN_ROWID; 3619 revIdx = 0; 3620 } 3621 3622 /* An unconstrained column that might be NULL means that this 3623 ** WhereLoop is not well-ordered 3624 */ 3625 if( isOrderDistinct 3626 && iColumn>=0 3627 && j>=pLoop->u.btree.nEq 3628 && pIndex->pTable->aCol[iColumn].notNull==0 3629 ){ 3630 isOrderDistinct = 0; 3631 } 3632 3633 /* Find the ORDER BY term that corresponds to the j-th column 3634 ** of the index and mark that ORDER BY term off 3635 */ 3636 isMatch = 0; 3637 for(i=0; bOnce && i<nOrderBy; i++){ 3638 if( MASKBIT(i) & obSat ) continue; 3639 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); 3640 testcase( wctrlFlags & WHERE_GROUPBY ); 3641 testcase( wctrlFlags & WHERE_DISTINCTBY ); 3642 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 3643 if( iColumn>=(-1) ){ 3644 if( pOBExpr->op!=TK_COLUMN ) continue; 3645 if( pOBExpr->iTable!=iCur ) continue; 3646 if( pOBExpr->iColumn!=iColumn ) continue; 3647 }else{ 3648 if( sqlite3ExprCompare(pOBExpr,pIndex->aColExpr->a[j].pExpr,iCur) ){ 3649 continue; 3650 } 3651 } 3652 if( iColumn>=0 ){ 3653 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 3654 if( !pColl ) pColl = db->pDfltColl; 3655 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 3656 } 3657 isMatch = 1; 3658 break; 3659 } 3660 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 3661 /* Make sure the sort order is compatible in an ORDER BY clause. 3662 ** Sort order is irrelevant for a GROUP BY clause. */ 3663 if( revSet ){ 3664 if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0; 3665 }else{ 3666 rev = revIdx ^ pOrderBy->a[i].sortOrder; 3667 if( rev ) *pRevMask |= MASKBIT(iLoop); 3668 revSet = 1; 3669 } 3670 } 3671 if( isMatch ){ 3672 if( iColumn<0 ){ 3673 testcase( distinctColumns==0 ); 3674 distinctColumns = 1; 3675 } 3676 obSat |= MASKBIT(i); 3677 }else{ 3678 /* No match found */ 3679 if( j==0 || j<nKeyCol ){ 3680 testcase( isOrderDistinct!=0 ); 3681 isOrderDistinct = 0; 3682 } 3683 break; 3684 } 3685 } /* end Loop over all index columns */ 3686 if( distinctColumns ){ 3687 testcase( isOrderDistinct==0 ); 3688 isOrderDistinct = 1; 3689 } 3690 } /* end-if not one-row */ 3691 3692 /* Mark off any other ORDER BY terms that reference pLoop */ 3693 if( isOrderDistinct ){ 3694 orderDistinctMask |= pLoop->maskSelf; 3695 for(i=0; i<nOrderBy; i++){ 3696 Expr *p; 3697 Bitmask mTerm; 3698 if( MASKBIT(i) & obSat ) continue; 3699 p = pOrderBy->a[i].pExpr; 3700 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); 3701 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; 3702 if( (mTerm&~orderDistinctMask)==0 ){ 3703 obSat |= MASKBIT(i); 3704 } 3705 } 3706 } 3707 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 3708 if( obSat==obDone ) return (i8)nOrderBy; 3709 if( !isOrderDistinct ){ 3710 for(i=nOrderBy-1; i>0; i--){ 3711 Bitmask m = MASKBIT(i) - 1; 3712 if( (obSat&m)==m ) return i; 3713 } 3714 return 0; 3715 } 3716 return -1; 3717 } 3718 3719 3720 /* 3721 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 3722 ** the planner assumes that the specified pOrderBy list is actually a GROUP 3723 ** BY clause - and so any order that groups rows as required satisfies the 3724 ** request. 3725 ** 3726 ** Normally, in this case it is not possible for the caller to determine 3727 ** whether or not the rows are really being delivered in sorted order, or 3728 ** just in some other order that provides the required grouping. However, 3729 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 3730 ** this function may be called on the returned WhereInfo object. It returns 3731 ** true if the rows really will be sorted in the specified order, or false 3732 ** otherwise. 3733 ** 3734 ** For example, assuming: 3735 ** 3736 ** CREATE INDEX i1 ON t1(x, Y); 3737 ** 3738 ** then 3739 ** 3740 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 3741 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 3742 */ 3743 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 3744 assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); 3745 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 3746 return pWInfo->sorted; 3747 } 3748 3749 #ifdef WHERETRACE_ENABLED 3750 /* For debugging use only: */ 3751 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 3752 static char zName[65]; 3753 int i; 3754 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 3755 if( pLast ) zName[i++] = pLast->cId; 3756 zName[i] = 0; 3757 return zName; 3758 } 3759 #endif 3760 3761 /* 3762 ** Return the cost of sorting nRow rows, assuming that the keys have 3763 ** nOrderby columns and that the first nSorted columns are already in 3764 ** order. 3765 */ 3766 static LogEst whereSortingCost( 3767 WhereInfo *pWInfo, 3768 LogEst nRow, 3769 int nOrderBy, 3770 int nSorted 3771 ){ 3772 /* TUNING: Estimated cost of a full external sort, where N is 3773 ** the number of rows to sort is: 3774 ** 3775 ** cost = (3.0 * N * log(N)). 3776 ** 3777 ** Or, if the order-by clause has X terms but only the last Y 3778 ** terms are out of order, then block-sorting will reduce the 3779 ** sorting cost to: 3780 ** 3781 ** cost = (3.0 * N * log(N)) * (Y/X) 3782 ** 3783 ** The (Y/X) term is implemented using stack variable rScale 3784 ** below. */ 3785 LogEst rScale, rSortCost; 3786 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); 3787 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 3788 rSortCost = nRow + rScale + 16; 3789 3790 /* Multiple by log(M) where M is the number of output rows. 3791 ** Use the LIMIT for M if it is smaller */ 3792 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){ 3793 nRow = pWInfo->iLimit; 3794 } 3795 rSortCost += estLog(nRow); 3796 return rSortCost; 3797 } 3798 3799 /* 3800 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 3801 ** attempts to find the lowest cost path that visits each WhereLoop 3802 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 3803 ** 3804 ** Assume that the total number of output rows that will need to be sorted 3805 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 3806 ** costs if nRowEst==0. 3807 ** 3808 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 3809 ** error occurs. 3810 */ 3811 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 3812 int mxChoice; /* Maximum number of simultaneous paths tracked */ 3813 int nLoop; /* Number of terms in the join */ 3814 Parse *pParse; /* Parsing context */ 3815 sqlite3 *db; /* The database connection */ 3816 int iLoop; /* Loop counter over the terms of the join */ 3817 int ii, jj; /* Loop counters */ 3818 int mxI = 0; /* Index of next entry to replace */ 3819 int nOrderBy; /* Number of ORDER BY clause terms */ 3820 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 3821 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 3822 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 3823 WherePath *aFrom; /* All nFrom paths at the previous level */ 3824 WherePath *aTo; /* The nTo best paths at the current level */ 3825 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 3826 WherePath *pTo; /* An element of aTo[] that we are working on */ 3827 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 3828 WhereLoop **pX; /* Used to divy up the pSpace memory */ 3829 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 3830 char *pSpace; /* Temporary memory used by this routine */ 3831 int nSpace; /* Bytes of space allocated at pSpace */ 3832 3833 pParse = pWInfo->pParse; 3834 db = pParse->db; 3835 nLoop = pWInfo->nLevel; 3836 /* TUNING: For simple queries, only the best path is tracked. 3837 ** For 2-way joins, the 5 best paths are followed. 3838 ** For joins of 3 or more tables, track the 10 best paths */ 3839 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 3840 assert( nLoop<=pWInfo->pTabList->nSrc ); 3841 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); 3842 3843 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 3844 ** case the purpose of this call is to estimate the number of rows returned 3845 ** by the overall query. Once this estimate has been obtained, the caller 3846 ** will invoke this function a second time, passing the estimate as the 3847 ** nRowEst parameter. */ 3848 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 3849 nOrderBy = 0; 3850 }else{ 3851 nOrderBy = pWInfo->pOrderBy->nExpr; 3852 } 3853 3854 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 3855 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 3856 nSpace += sizeof(LogEst) * nOrderBy; 3857 pSpace = sqlite3DbMallocRawNN(db, nSpace); 3858 if( pSpace==0 ) return SQLITE_NOMEM_BKPT; 3859 aTo = (WherePath*)pSpace; 3860 aFrom = aTo+mxChoice; 3861 memset(aFrom, 0, sizeof(aFrom[0])); 3862 pX = (WhereLoop**)(aFrom+mxChoice); 3863 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 3864 pFrom->aLoop = pX; 3865 } 3866 if( nOrderBy ){ 3867 /* If there is an ORDER BY clause and it is not being ignored, set up 3868 ** space for the aSortCost[] array. Each element of the aSortCost array 3869 ** is either zero - meaning it has not yet been initialized - or the 3870 ** cost of sorting nRowEst rows of data where the first X terms of 3871 ** the ORDER BY clause are already in order, where X is the array 3872 ** index. */ 3873 aSortCost = (LogEst*)pX; 3874 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 3875 } 3876 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 3877 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 3878 3879 /* Seed the search with a single WherePath containing zero WhereLoops. 3880 ** 3881 ** TUNING: Do not let the number of iterations go above 28. If the cost 3882 ** of computing an automatic index is not paid back within the first 28 3883 ** rows, then do not use the automatic index. */ 3884 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); 3885 nFrom = 1; 3886 assert( aFrom[0].isOrdered==0 ); 3887 if( nOrderBy ){ 3888 /* If nLoop is zero, then there are no FROM terms in the query. Since 3889 ** in this case the query may return a maximum of one row, the results 3890 ** are already in the requested order. Set isOrdered to nOrderBy to 3891 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 3892 ** -1, indicating that the result set may or may not be ordered, 3893 ** depending on the loops added to the current plan. */ 3894 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 3895 } 3896 3897 /* Compute successively longer WherePaths using the previous generation 3898 ** of WherePaths as the basis for the next. Keep track of the mxChoice 3899 ** best paths at each generation */ 3900 for(iLoop=0; iLoop<nLoop; iLoop++){ 3901 nTo = 0; 3902 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 3903 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 3904 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 3905 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 3906 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 3907 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ 3908 Bitmask maskNew; /* Mask of src visited by (..) */ 3909 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ 3910 3911 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 3912 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 3913 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<10 ){ 3914 /* Do not use an automatic index if the this loop is expected 3915 ** to run less than 2 times. */ 3916 assert( 10==sqlite3LogEst(2) ); 3917 continue; 3918 } 3919 /* At this point, pWLoop is a candidate to be the next loop. 3920 ** Compute its cost */ 3921 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 3922 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 3923 nOut = pFrom->nRow + pWLoop->nOut; 3924 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 3925 if( isOrdered<0 ){ 3926 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 3927 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 3928 iLoop, pWLoop, &revMask); 3929 }else{ 3930 revMask = pFrom->revLoop; 3931 } 3932 if( isOrdered>=0 && isOrdered<nOrderBy ){ 3933 if( aSortCost[isOrdered]==0 ){ 3934 aSortCost[isOrdered] = whereSortingCost( 3935 pWInfo, nRowEst, nOrderBy, isOrdered 3936 ); 3937 } 3938 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]); 3939 3940 WHERETRACE(0x002, 3941 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 3942 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 3943 rUnsorted, rCost)); 3944 }else{ 3945 rCost = rUnsorted; 3946 } 3947 3948 /* Check to see if pWLoop should be added to the set of 3949 ** mxChoice best-so-far paths. 3950 ** 3951 ** First look for an existing path among best-so-far paths 3952 ** that covers the same set of loops and has the same isOrdered 3953 ** setting as the current path candidate. 3954 ** 3955 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 3956 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 3957 ** of legal values for isOrdered, -1..64. 3958 */ 3959 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 3960 if( pTo->maskLoop==maskNew 3961 && ((pTo->isOrdered^isOrdered)&0x80)==0 3962 ){ 3963 testcase( jj==nTo-1 ); 3964 break; 3965 } 3966 } 3967 if( jj>=nTo ){ 3968 /* None of the existing best-so-far paths match the candidate. */ 3969 if( nTo>=mxChoice 3970 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 3971 ){ 3972 /* The current candidate is no better than any of the mxChoice 3973 ** paths currently in the best-so-far buffer. So discard 3974 ** this candidate as not viable. */ 3975 #ifdef WHERETRACE_ENABLED /* 0x4 */ 3976 if( sqlite3WhereTrace&0x4 ){ 3977 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d order=%c\n", 3978 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 3979 isOrdered>=0 ? isOrdered+'0' : '?'); 3980 } 3981 #endif 3982 continue; 3983 } 3984 /* If we reach this points it means that the new candidate path 3985 ** needs to be added to the set of best-so-far paths. */ 3986 if( nTo<mxChoice ){ 3987 /* Increase the size of the aTo set by one */ 3988 jj = nTo++; 3989 }else{ 3990 /* New path replaces the prior worst to keep count below mxChoice */ 3991 jj = mxI; 3992 } 3993 pTo = &aTo[jj]; 3994 #ifdef WHERETRACE_ENABLED /* 0x4 */ 3995 if( sqlite3WhereTrace&0x4 ){ 3996 sqlite3DebugPrintf("New %s cost=%-3d,%3d order=%c\n", 3997 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 3998 isOrdered>=0 ? isOrdered+'0' : '?'); 3999 } 4000 #endif 4001 }else{ 4002 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 4003 ** same set of loops and has the sam isOrdered setting as the 4004 ** candidate path. Check to see if the candidate should replace 4005 ** pTo or if the candidate should be skipped */ 4006 if( pTo->rCost<rCost || (pTo->rCost==rCost && pTo->nRow<=nOut) ){ 4007 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4008 if( sqlite3WhereTrace&0x4 ){ 4009 sqlite3DebugPrintf( 4010 "Skip %s cost=%-3d,%3d order=%c", 4011 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 4012 isOrdered>=0 ? isOrdered+'0' : '?'); 4013 sqlite3DebugPrintf(" vs %s cost=%-3d,%d order=%c\n", 4014 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4015 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4016 } 4017 #endif 4018 /* Discard the candidate path from further consideration */ 4019 testcase( pTo->rCost==rCost ); 4020 continue; 4021 } 4022 testcase( pTo->rCost==rCost+1 ); 4023 /* Control reaches here if the candidate path is better than the 4024 ** pTo path. Replace pTo with the candidate. */ 4025 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4026 if( sqlite3WhereTrace&0x4 ){ 4027 sqlite3DebugPrintf( 4028 "Update %s cost=%-3d,%3d order=%c", 4029 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 4030 isOrdered>=0 ? isOrdered+'0' : '?'); 4031 sqlite3DebugPrintf(" was %s cost=%-3d,%3d order=%c\n", 4032 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4033 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4034 } 4035 #endif 4036 } 4037 /* pWLoop is a winner. Add it to the set of best so far */ 4038 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 4039 pTo->revLoop = revMask; 4040 pTo->nRow = nOut; 4041 pTo->rCost = rCost; 4042 pTo->rUnsorted = rUnsorted; 4043 pTo->isOrdered = isOrdered; 4044 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 4045 pTo->aLoop[iLoop] = pWLoop; 4046 if( nTo>=mxChoice ){ 4047 mxI = 0; 4048 mxCost = aTo[0].rCost; 4049 mxUnsorted = aTo[0].nRow; 4050 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 4051 if( pTo->rCost>mxCost 4052 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 4053 ){ 4054 mxCost = pTo->rCost; 4055 mxUnsorted = pTo->rUnsorted; 4056 mxI = jj; 4057 } 4058 } 4059 } 4060 } 4061 } 4062 4063 #ifdef WHERETRACE_ENABLED /* >=2 */ 4064 if( sqlite3WhereTrace & 0x02 ){ 4065 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 4066 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 4067 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 4068 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4069 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 4070 if( pTo->isOrdered>0 ){ 4071 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 4072 }else{ 4073 sqlite3DebugPrintf("\n"); 4074 } 4075 } 4076 } 4077 #endif 4078 4079 /* Swap the roles of aFrom and aTo for the next generation */ 4080 pFrom = aTo; 4081 aTo = aFrom; 4082 aFrom = pFrom; 4083 nFrom = nTo; 4084 } 4085 4086 if( nFrom==0 ){ 4087 sqlite3ErrorMsg(pParse, "no query solution"); 4088 sqlite3DbFree(db, pSpace); 4089 return SQLITE_ERROR; 4090 } 4091 4092 /* Find the lowest cost path. pFrom will be left pointing to that path */ 4093 pFrom = aFrom; 4094 for(ii=1; ii<nFrom; ii++){ 4095 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 4096 } 4097 assert( pWInfo->nLevel==nLoop ); 4098 /* Load the lowest cost path into pWInfo */ 4099 for(iLoop=0; iLoop<nLoop; iLoop++){ 4100 WhereLevel *pLevel = pWInfo->a + iLoop; 4101 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 4102 pLevel->iFrom = pWLoop->iTab; 4103 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 4104 } 4105 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 4106 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 4107 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 4108 && nRowEst 4109 ){ 4110 Bitmask notUsed; 4111 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pDistinctSet, pFrom, 4112 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 4113 if( rc==pWInfo->pDistinctSet->nExpr ){ 4114 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4115 } 4116 } 4117 if( pWInfo->pOrderBy ){ 4118 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 4119 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 4120 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4121 } 4122 }else{ 4123 pWInfo->nOBSat = pFrom->isOrdered; 4124 pWInfo->revMask = pFrom->revLoop; 4125 if( pWInfo->nOBSat<=0 ){ 4126 pWInfo->nOBSat = 0; 4127 if( nLoop>0 && (pFrom->aLoop[nLoop-1]->wsFlags & WHERE_ONEROW)==0 ){ 4128 Bitmask m = 0; 4129 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 4130 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m); 4131 if( rc==pWInfo->pOrderBy->nExpr ){ 4132 pWInfo->bOrderedInnerLoop = 1; 4133 pWInfo->revMask = m; 4134 } 4135 } 4136 } 4137 } 4138 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 4139 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 4140 ){ 4141 Bitmask revMask = 0; 4142 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 4143 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 4144 ); 4145 assert( pWInfo->sorted==0 ); 4146 if( nOrder==pWInfo->pOrderBy->nExpr ){ 4147 pWInfo->sorted = 1; 4148 pWInfo->revMask = revMask; 4149 } 4150 } 4151 } 4152 4153 4154 pWInfo->nRowOut = pFrom->nRow; 4155 4156 /* Free temporary memory and return success */ 4157 sqlite3DbFree(db, pSpace); 4158 return SQLITE_OK; 4159 } 4160 4161 /* 4162 ** Most queries use only a single table (they are not joins) and have 4163 ** simple == constraints against indexed fields. This routine attempts 4164 ** to plan those simple cases using much less ceremony than the 4165 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 4166 ** times for the common case. 4167 ** 4168 ** Return non-zero on success, if this query can be handled by this 4169 ** no-frills query planner. Return zero if this query needs the 4170 ** general-purpose query planner. 4171 */ 4172 static int whereShortCut(WhereLoopBuilder *pBuilder){ 4173 WhereInfo *pWInfo; 4174 struct SrcList_item *pItem; 4175 WhereClause *pWC; 4176 WhereTerm *pTerm; 4177 WhereLoop *pLoop; 4178 int iCur; 4179 int j; 4180 Table *pTab; 4181 Index *pIdx; 4182 4183 pWInfo = pBuilder->pWInfo; 4184 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0; 4185 assert( pWInfo->pTabList->nSrc>=1 ); 4186 pItem = pWInfo->pTabList->a; 4187 pTab = pItem->pTab; 4188 if( IsVirtual(pTab) ) return 0; 4189 if( pItem->fg.isIndexedBy ) return 0; 4190 iCur = pItem->iCursor; 4191 pWC = &pWInfo->sWC; 4192 pLoop = pBuilder->pNew; 4193 pLoop->wsFlags = 0; 4194 pLoop->nSkip = 0; 4195 pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0); 4196 if( pTerm ){ 4197 testcase( pTerm->eOperator & WO_IS ); 4198 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 4199 pLoop->aLTerm[0] = pTerm; 4200 pLoop->nLTerm = 1; 4201 pLoop->u.btree.nEq = 1; 4202 /* TUNING: Cost of a rowid lookup is 10 */ 4203 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 4204 }else{ 4205 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4206 int opMask; 4207 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 4208 if( !IsUniqueIndex(pIdx) 4209 || pIdx->pPartIdxWhere!=0 4210 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 4211 ) continue; 4212 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; 4213 for(j=0; j<pIdx->nKeyCol; j++){ 4214 pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx); 4215 if( pTerm==0 ) break; 4216 testcase( pTerm->eOperator & WO_IS ); 4217 pLoop->aLTerm[j] = pTerm; 4218 } 4219 if( j!=pIdx->nKeyCol ) continue; 4220 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 4221 if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){ 4222 pLoop->wsFlags |= WHERE_IDX_ONLY; 4223 } 4224 pLoop->nLTerm = j; 4225 pLoop->u.btree.nEq = j; 4226 pLoop->u.btree.pIndex = pIdx; 4227 /* TUNING: Cost of a unique index lookup is 15 */ 4228 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 4229 break; 4230 } 4231 } 4232 if( pLoop->wsFlags ){ 4233 pLoop->nOut = (LogEst)1; 4234 pWInfo->a[0].pWLoop = pLoop; 4235 pLoop->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 4236 pWInfo->a[0].iTabCur = iCur; 4237 pWInfo->nRowOut = 1; 4238 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 4239 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 4240 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4241 } 4242 #ifdef SQLITE_DEBUG 4243 pLoop->cId = '0'; 4244 #endif 4245 return 1; 4246 } 4247 return 0; 4248 } 4249 4250 /* 4251 ** Generate the beginning of the loop used for WHERE clause processing. 4252 ** The return value is a pointer to an opaque structure that contains 4253 ** information needed to terminate the loop. Later, the calling routine 4254 ** should invoke sqlite3WhereEnd() with the return value of this function 4255 ** in order to complete the WHERE clause processing. 4256 ** 4257 ** If an error occurs, this routine returns NULL. 4258 ** 4259 ** The basic idea is to do a nested loop, one loop for each table in 4260 ** the FROM clause of a select. (INSERT and UPDATE statements are the 4261 ** same as a SELECT with only a single table in the FROM clause.) For 4262 ** example, if the SQL is this: 4263 ** 4264 ** SELECT * FROM t1, t2, t3 WHERE ...; 4265 ** 4266 ** Then the code generated is conceptually like the following: 4267 ** 4268 ** foreach row1 in t1 do \ Code generated 4269 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 4270 ** foreach row3 in t3 do / 4271 ** ... 4272 ** end \ Code generated 4273 ** end |-- by sqlite3WhereEnd() 4274 ** end / 4275 ** 4276 ** Note that the loops might not be nested in the order in which they 4277 ** appear in the FROM clause if a different order is better able to make 4278 ** use of indices. Note also that when the IN operator appears in 4279 ** the WHERE clause, it might result in additional nested loops for 4280 ** scanning through all values on the right-hand side of the IN. 4281 ** 4282 ** There are Btree cursors associated with each table. t1 uses cursor 4283 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 4284 ** And so forth. This routine generates code to open those VDBE cursors 4285 ** and sqlite3WhereEnd() generates the code to close them. 4286 ** 4287 ** The code that sqlite3WhereBegin() generates leaves the cursors named 4288 ** in pTabList pointing at their appropriate entries. The [...] code 4289 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 4290 ** data from the various tables of the loop. 4291 ** 4292 ** If the WHERE clause is empty, the foreach loops must each scan their 4293 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 4294 ** the tables have indices and there are terms in the WHERE clause that 4295 ** refer to those indices, a complete table scan can be avoided and the 4296 ** code will run much faster. Most of the work of this routine is checking 4297 ** to see if there are indices that can be used to speed up the loop. 4298 ** 4299 ** Terms of the WHERE clause are also used to limit which rows actually 4300 ** make it to the "..." in the middle of the loop. After each "foreach", 4301 ** terms of the WHERE clause that use only terms in that loop and outer 4302 ** loops are evaluated and if false a jump is made around all subsequent 4303 ** inner loops (or around the "..." if the test occurs within the inner- 4304 ** most loop) 4305 ** 4306 ** OUTER JOINS 4307 ** 4308 ** An outer join of tables t1 and t2 is conceptally coded as follows: 4309 ** 4310 ** foreach row1 in t1 do 4311 ** flag = 0 4312 ** foreach row2 in t2 do 4313 ** start: 4314 ** ... 4315 ** flag = 1 4316 ** end 4317 ** if flag==0 then 4318 ** move the row2 cursor to a null row 4319 ** goto start 4320 ** fi 4321 ** end 4322 ** 4323 ** ORDER BY CLAUSE PROCESSING 4324 ** 4325 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 4326 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 4327 ** if there is one. If there is no ORDER BY clause or if this routine 4328 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 4329 ** 4330 ** The iIdxCur parameter is the cursor number of an index. If 4331 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index 4332 ** to use for OR clause processing. The WHERE clause should use this 4333 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 4334 ** the first cursor in an array of cursors for all indices. iIdxCur should 4335 ** be used to compute the appropriate cursor depending on which index is 4336 ** used. 4337 */ 4338 WhereInfo *sqlite3WhereBegin( 4339 Parse *pParse, /* The parser context */ 4340 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 4341 Expr *pWhere, /* The WHERE clause */ 4342 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 4343 ExprList *pDistinctSet, /* Try not to output two rows that duplicate these */ 4344 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */ 4345 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number 4346 ** If WHERE_USE_LIMIT, then the limit amount */ 4347 ){ 4348 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 4349 int nTabList; /* Number of elements in pTabList */ 4350 WhereInfo *pWInfo; /* Will become the return value of this function */ 4351 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 4352 Bitmask notReady; /* Cursors that are not yet positioned */ 4353 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 4354 WhereMaskSet *pMaskSet; /* The expression mask set */ 4355 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 4356 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 4357 int ii; /* Loop counter */ 4358 sqlite3 *db; /* Database connection */ 4359 int rc; /* Return code */ 4360 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ 4361 4362 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( 4363 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 4364 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4365 )); 4366 4367 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */ 4368 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4369 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); 4370 4371 /* Variable initialization */ 4372 db = pParse->db; 4373 memset(&sWLB, 0, sizeof(sWLB)); 4374 4375 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 4376 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 4377 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; 4378 sWLB.pOrderBy = pOrderBy; 4379 4380 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 4381 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 4382 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 4383 wctrlFlags &= ~WHERE_WANT_DISTINCT; 4384 } 4385 4386 /* The number of tables in the FROM clause is limited by the number of 4387 ** bits in a Bitmask 4388 */ 4389 testcase( pTabList->nSrc==BMS ); 4390 if( pTabList->nSrc>BMS ){ 4391 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 4392 return 0; 4393 } 4394 4395 /* This function normally generates a nested loop for all tables in 4396 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should 4397 ** only generate code for the first table in pTabList and assume that 4398 ** any cursors associated with subsequent tables are uninitialized. 4399 */ 4400 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc; 4401 4402 /* Allocate and initialize the WhereInfo structure that will become the 4403 ** return value. A single allocation is used to store the WhereInfo 4404 ** struct, the contents of WhereInfo.a[], the WhereClause structure 4405 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 4406 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 4407 ** some architectures. Hence the ROUND8() below. 4408 */ 4409 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 4410 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop)); 4411 if( db->mallocFailed ){ 4412 sqlite3DbFree(db, pWInfo); 4413 pWInfo = 0; 4414 goto whereBeginError; 4415 } 4416 pWInfo->pParse = pParse; 4417 pWInfo->pTabList = pTabList; 4418 pWInfo->pOrderBy = pOrderBy; 4419 pWInfo->pDistinctSet = pDistinctSet; 4420 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 4421 pWInfo->nLevel = nTabList; 4422 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v); 4423 pWInfo->wctrlFlags = wctrlFlags; 4424 pWInfo->iLimit = iAuxArg; 4425 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 4426 memset(&pWInfo->nOBSat, 0, 4427 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat)); 4428 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel)); 4429 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ 4430 pMaskSet = &pWInfo->sMaskSet; 4431 sWLB.pWInfo = pWInfo; 4432 sWLB.pWC = &pWInfo->sWC; 4433 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 4434 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 4435 whereLoopInit(sWLB.pNew); 4436 #ifdef SQLITE_DEBUG 4437 sWLB.pNew->cId = '*'; 4438 #endif 4439 4440 /* Split the WHERE clause into separate subexpressions where each 4441 ** subexpression is separated by an AND operator. 4442 */ 4443 initMaskSet(pMaskSet); 4444 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); 4445 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); 4446 4447 /* Special case: a WHERE clause that is constant. Evaluate the 4448 ** expression and either jump over all of the code or fall thru. 4449 */ 4450 for(ii=0; ii<sWLB.pWC->nTerm; ii++){ 4451 if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){ 4452 sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak, 4453 SQLITE_JUMPIFNULL); 4454 sWLB.pWC->a[ii].wtFlags |= TERM_CODED; 4455 } 4456 } 4457 4458 /* Special case: No FROM clause 4459 */ 4460 if( nTabList==0 ){ 4461 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 4462 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4463 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4464 } 4465 } 4466 4467 /* Assign a bit from the bitmask to every term in the FROM clause. 4468 ** 4469 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. 4470 ** 4471 ** The rule of the previous sentence ensures thta if X is the bitmask for 4472 ** a table T, then X-1 is the bitmask for all other tables to the left of T. 4473 ** Knowing the bitmask for all tables to the left of a left join is 4474 ** important. Ticket #3015. 4475 ** 4476 ** Note that bitmasks are created for all pTabList->nSrc tables in 4477 ** pTabList, not just the first nTabList tables. nTabList is normally 4478 ** equal to pTabList->nSrc but might be shortened to 1 if the 4479 ** WHERE_OR_SUBCLAUSE flag is set. 4480 */ 4481 for(ii=0; ii<pTabList->nSrc; ii++){ 4482 createMask(pMaskSet, pTabList->a[ii].iCursor); 4483 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); 4484 } 4485 #ifdef SQLITE_DEBUG 4486 for(ii=0; ii<pTabList->nSrc; ii++){ 4487 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); 4488 assert( m==MASKBIT(ii) ); 4489 } 4490 #endif 4491 4492 /* Analyze all of the subexpressions. */ 4493 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); 4494 if( db->mallocFailed ) goto whereBeginError; 4495 4496 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4497 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pDistinctSet) ){ 4498 /* The DISTINCT marking is pointless. Ignore it. */ 4499 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4500 }else if( pOrderBy==0 ){ 4501 /* Try to ORDER BY the result set to make distinct processing easier */ 4502 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 4503 pWInfo->pOrderBy = pDistinctSet; 4504 } 4505 } 4506 4507 /* Construct the WhereLoop objects */ 4508 #if defined(WHERETRACE_ENABLED) 4509 if( sqlite3WhereTrace & 0xffff ){ 4510 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); 4511 if( wctrlFlags & WHERE_USE_LIMIT ){ 4512 sqlite3DebugPrintf(", limit: %d", iAuxArg); 4513 } 4514 sqlite3DebugPrintf(")\n"); 4515 } 4516 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 4517 sqlite3WhereClausePrint(sWLB.pWC); 4518 } 4519 #endif 4520 4521 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 4522 rc = whereLoopAddAll(&sWLB); 4523 if( rc ) goto whereBeginError; 4524 4525 #ifdef WHERETRACE_ENABLED 4526 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ 4527 WhereLoop *p; 4528 int i; 4529 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 4530 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 4531 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 4532 p->cId = zLabel[i%sizeof(zLabel)]; 4533 whereLoopPrint(p, sWLB.pWC); 4534 } 4535 } 4536 #endif 4537 4538 wherePathSolver(pWInfo, 0); 4539 if( db->mallocFailed ) goto whereBeginError; 4540 if( pWInfo->pOrderBy ){ 4541 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 4542 if( db->mallocFailed ) goto whereBeginError; 4543 } 4544 } 4545 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 4546 pWInfo->revMask = ALLBITS; 4547 } 4548 if( pParse->nErr || NEVER(db->mallocFailed) ){ 4549 goto whereBeginError; 4550 } 4551 #ifdef WHERETRACE_ENABLED 4552 if( sqlite3WhereTrace ){ 4553 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 4554 if( pWInfo->nOBSat>0 ){ 4555 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 4556 } 4557 switch( pWInfo->eDistinct ){ 4558 case WHERE_DISTINCT_UNIQUE: { 4559 sqlite3DebugPrintf(" DISTINCT=unique"); 4560 break; 4561 } 4562 case WHERE_DISTINCT_ORDERED: { 4563 sqlite3DebugPrintf(" DISTINCT=ordered"); 4564 break; 4565 } 4566 case WHERE_DISTINCT_UNORDERED: { 4567 sqlite3DebugPrintf(" DISTINCT=unordered"); 4568 break; 4569 } 4570 } 4571 sqlite3DebugPrintf("\n"); 4572 for(ii=0; ii<pWInfo->nLevel; ii++){ 4573 whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 4574 } 4575 } 4576 #endif 4577 /* Attempt to omit tables from the join that do not effect the result */ 4578 if( pWInfo->nLevel>=2 4579 && pDistinctSet!=0 4580 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) 4581 ){ 4582 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pDistinctSet); 4583 if( sWLB.pOrderBy ){ 4584 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy); 4585 } 4586 while( pWInfo->nLevel>=2 ){ 4587 WhereTerm *pTerm, *pEnd; 4588 pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop; 4589 if( (pWInfo->pTabList->a[pLoop->iTab].fg.jointype & JT_LEFT)==0 ) break; 4590 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 4591 && (pLoop->wsFlags & WHERE_ONEROW)==0 4592 ){ 4593 break; 4594 } 4595 if( (tabUsed & pLoop->maskSelf)!=0 ) break; 4596 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; 4597 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 4598 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 4599 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 4600 ){ 4601 break; 4602 } 4603 } 4604 if( pTerm<pEnd ) break; 4605 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); 4606 pWInfo->nLevel--; 4607 nTabList--; 4608 } 4609 } 4610 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); 4611 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 4612 4613 /* If the caller is an UPDATE or DELETE statement that is requesting 4614 ** to use a one-pass algorithm, determine if this is appropriate. 4615 */ 4616 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 4617 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ 4618 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; 4619 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; 4620 if( bOnerow 4621 || ((wctrlFlags & WHERE_ONEPASS_MULTIROW)!=0 4622 && 0==(wsFlags & WHERE_VIRTUALTABLE)) 4623 ){ 4624 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; 4625 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ 4626 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ 4627 bFordelete = OPFLAG_FORDELETE; 4628 } 4629 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); 4630 } 4631 } 4632 } 4633 4634 /* Open all tables in the pTabList and any indices selected for 4635 ** searching those tables. 4636 */ 4637 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 4638 Table *pTab; /* Table to open */ 4639 int iDb; /* Index of database containing table/index */ 4640 struct SrcList_item *pTabItem; 4641 4642 pTabItem = &pTabList->a[pLevel->iFrom]; 4643 pTab = pTabItem->pTab; 4644 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4645 pLoop = pLevel->pWLoop; 4646 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ 4647 /* Do nothing */ 4648 }else 4649 #ifndef SQLITE_OMIT_VIRTUALTABLE 4650 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 4651 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 4652 int iCur = pTabItem->iCursor; 4653 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 4654 }else if( IsVirtual(pTab) ){ 4655 /* noop */ 4656 }else 4657 #endif 4658 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 4659 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ 4660 int op = OP_OpenRead; 4661 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 4662 op = OP_OpenWrite; 4663 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 4664 }; 4665 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 4666 assert( pTabItem->iCursor==pLevel->iTabCur ); 4667 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); 4668 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); 4669 if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){ 4670 Bitmask b = pTabItem->colUsed; 4671 int n = 0; 4672 for(; b; b=b>>1, n++){} 4673 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); 4674 assert( n<=pTab->nCol ); 4675 } 4676 #ifdef SQLITE_ENABLE_CURSOR_HINTS 4677 if( pLoop->u.btree.pIndex!=0 ){ 4678 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); 4679 }else 4680 #endif 4681 { 4682 sqlite3VdbeChangeP5(v, bFordelete); 4683 } 4684 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4685 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, 4686 (const u8*)&pTabItem->colUsed, P4_INT64); 4687 #endif 4688 }else{ 4689 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4690 } 4691 if( pLoop->wsFlags & WHERE_INDEXED ){ 4692 Index *pIx = pLoop->u.btree.pIndex; 4693 int iIndexCur; 4694 int op = OP_OpenRead; 4695 /* iAuxArg is always set if to a positive value if ONEPASS is possible */ 4696 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 4697 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 4698 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 4699 ){ 4700 /* This is one term of an OR-optimization using the PRIMARY KEY of a 4701 ** WITHOUT ROWID table. No need for a separate index */ 4702 iIndexCur = pLevel->iTabCur; 4703 op = 0; 4704 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ 4705 Index *pJ = pTabItem->pTab->pIndex; 4706 iIndexCur = iAuxArg; 4707 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 4708 while( ALWAYS(pJ) && pJ!=pIx ){ 4709 iIndexCur++; 4710 pJ = pJ->pNext; 4711 } 4712 op = OP_OpenWrite; 4713 pWInfo->aiCurOnePass[1] = iIndexCur; 4714 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ 4715 iIndexCur = iAuxArg; 4716 op = OP_ReopenIdx; 4717 }else{ 4718 iIndexCur = pParse->nTab++; 4719 } 4720 pLevel->iIdxCur = iIndexCur; 4721 assert( pIx->pSchema==pTab->pSchema ); 4722 assert( iIndexCur>=0 ); 4723 if( op ){ 4724 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 4725 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 4726 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 4727 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 4728 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 4729 ){ 4730 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */ 4731 } 4732 VdbeComment((v, "%s", pIx->zName)); 4733 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4734 { 4735 u64 colUsed = 0; 4736 int ii, jj; 4737 for(ii=0; ii<pIx->nColumn; ii++){ 4738 jj = pIx->aiColumn[ii]; 4739 if( jj<0 ) continue; 4740 if( jj>63 ) jj = 63; 4741 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; 4742 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); 4743 } 4744 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, 4745 (u8*)&colUsed, P4_INT64); 4746 } 4747 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ 4748 } 4749 } 4750 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 4751 } 4752 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 4753 if( db->mallocFailed ) goto whereBeginError; 4754 4755 /* Generate the code to do the search. Each iteration of the for 4756 ** loop below generates code for a single nested loop of the VM 4757 ** program. 4758 */ 4759 notReady = ~(Bitmask)0; 4760 for(ii=0; ii<nTabList; ii++){ 4761 int addrExplain; 4762 int wsFlags; 4763 pLevel = &pWInfo->a[ii]; 4764 wsFlags = pLevel->pWLoop->wsFlags; 4765 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 4766 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 4767 constructAutomaticIndex(pParse, &pWInfo->sWC, 4768 &pTabList->a[pLevel->iFrom], notReady, pLevel); 4769 if( db->mallocFailed ) goto whereBeginError; 4770 } 4771 #endif 4772 addrExplain = sqlite3WhereExplainOneScan( 4773 pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags 4774 ); 4775 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 4776 notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady); 4777 pWInfo->iContinue = pLevel->addrCont; 4778 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){ 4779 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); 4780 } 4781 } 4782 4783 /* Done. */ 4784 VdbeModuleComment((v, "Begin WHERE-core")); 4785 return pWInfo; 4786 4787 /* Jump here if malloc fails */ 4788 whereBeginError: 4789 if( pWInfo ){ 4790 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 4791 whereInfoFree(db, pWInfo); 4792 } 4793 return 0; 4794 } 4795 4796 /* 4797 ** Generate the end of the WHERE loop. See comments on 4798 ** sqlite3WhereBegin() for additional information. 4799 */ 4800 void sqlite3WhereEnd(WhereInfo *pWInfo){ 4801 Parse *pParse = pWInfo->pParse; 4802 Vdbe *v = pParse->pVdbe; 4803 int i; 4804 WhereLevel *pLevel; 4805 WhereLoop *pLoop; 4806 SrcList *pTabList = pWInfo->pTabList; 4807 sqlite3 *db = pParse->db; 4808 4809 /* Generate loop termination code. 4810 */ 4811 VdbeModuleComment((v, "End WHERE-core")); 4812 sqlite3ExprCacheClear(pParse); 4813 for(i=pWInfo->nLevel-1; i>=0; i--){ 4814 int addr; 4815 pLevel = &pWInfo->a[i]; 4816 pLoop = pLevel->pWLoop; 4817 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 4818 if( pLevel->op!=OP_Noop ){ 4819 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 4820 sqlite3VdbeChangeP5(v, pLevel->p5); 4821 VdbeCoverage(v); 4822 VdbeCoverageIf(v, pLevel->op==OP_Next); 4823 VdbeCoverageIf(v, pLevel->op==OP_Prev); 4824 VdbeCoverageIf(v, pLevel->op==OP_VNext); 4825 } 4826 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ 4827 struct InLoop *pIn; 4828 int j; 4829 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 4830 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 4831 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 4832 if( pIn->eEndLoopOp!=OP_Noop ){ 4833 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 4834 VdbeCoverage(v); 4835 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen); 4836 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen); 4837 } 4838 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 4839 } 4840 } 4841 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 4842 if( pLevel->addrSkip ){ 4843 sqlite3VdbeGoto(v, pLevel->addrSkip); 4844 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 4845 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 4846 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 4847 } 4848 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 4849 if( pLevel->addrLikeRep ){ 4850 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1), 4851 pLevel->addrLikeRep); 4852 VdbeCoverage(v); 4853 } 4854 #endif 4855 if( pLevel->iLeftJoin ){ 4856 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 4857 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 4858 || (pLoop->wsFlags & WHERE_INDEXED)!=0 ); 4859 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){ 4860 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); 4861 } 4862 if( pLoop->wsFlags & WHERE_INDEXED ){ 4863 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 4864 } 4865 if( pLevel->op==OP_Return ){ 4866 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 4867 }else{ 4868 sqlite3VdbeGoto(v, pLevel->addrFirst); 4869 } 4870 sqlite3VdbeJumpHere(v, addr); 4871 } 4872 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 4873 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 4874 } 4875 4876 /* The "break" point is here, just past the end of the outer loop. 4877 ** Set it. 4878 */ 4879 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 4880 4881 assert( pWInfo->nLevel<=pTabList->nSrc ); 4882 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 4883 int k, last; 4884 VdbeOp *pOp; 4885 Index *pIdx = 0; 4886 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 4887 Table *pTab = pTabItem->pTab; 4888 assert( pTab!=0 ); 4889 pLoop = pLevel->pWLoop; 4890 4891 /* For a co-routine, change all OP_Column references to the table of 4892 ** the co-routine into OP_Copy of result contained in a register. 4893 ** OP_Rowid becomes OP_Null. 4894 */ 4895 if( pTabItem->fg.viaCoroutine && !db->mallocFailed ){ 4896 translateColumnToCopy(v, pLevel->addrBody, pLevel->iTabCur, 4897 pTabItem->regResult, 0); 4898 continue; 4899 } 4900 4901 /* Close all of the cursors that were opened by sqlite3WhereBegin. 4902 ** Except, do not close cursors that will be reused by the OR optimization 4903 ** (WHERE_OR_SUBCLAUSE). And do not close the OP_OpenWrite cursors 4904 ** created for the ONEPASS optimization. 4905 */ 4906 if( (pTab->tabFlags & TF_Ephemeral)==0 4907 && pTab->pSelect==0 4908 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4909 ){ 4910 int ws = pLoop->wsFlags; 4911 if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){ 4912 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); 4913 } 4914 if( (ws & WHERE_INDEXED)!=0 4915 && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0 4916 && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1] 4917 ){ 4918 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); 4919 } 4920 } 4921 4922 /* If this scan uses an index, make VDBE code substitutions to read data 4923 ** from the index instead of from the table where possible. In some cases 4924 ** this optimization prevents the table from ever being read, which can 4925 ** yield a significant performance boost. 4926 ** 4927 ** Calls to the code generator in between sqlite3WhereBegin and 4928 ** sqlite3WhereEnd will have created code that references the table 4929 ** directly. This loop scans all that code looking for opcodes 4930 ** that reference the table and converts them into opcodes that 4931 ** reference the index. 4932 */ 4933 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 4934 pIdx = pLoop->u.btree.pIndex; 4935 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 4936 pIdx = pLevel->u.pCovidx; 4937 } 4938 if( pIdx 4939 && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable)) 4940 && !db->mallocFailed 4941 ){ 4942 last = sqlite3VdbeCurrentAddr(v); 4943 k = pLevel->addrBody; 4944 pOp = sqlite3VdbeGetOp(v, k); 4945 for(; k<last; k++, pOp++){ 4946 if( pOp->p1!=pLevel->iTabCur ) continue; 4947 if( pOp->opcode==OP_Column ){ 4948 int x = pOp->p2; 4949 assert( pIdx->pTable==pTab ); 4950 if( !HasRowid(pTab) ){ 4951 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 4952 x = pPk->aiColumn[x]; 4953 assert( x>=0 ); 4954 } 4955 x = sqlite3ColumnOfIndex(pIdx, x); 4956 if( x>=0 ){ 4957 pOp->p2 = x; 4958 pOp->p1 = pLevel->iIdxCur; 4959 } 4960 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 ); 4961 }else if( pOp->opcode==OP_Rowid ){ 4962 pOp->p1 = pLevel->iIdxCur; 4963 pOp->opcode = OP_IdxRowid; 4964 } 4965 } 4966 } 4967 } 4968 4969 /* Final cleanup 4970 */ 4971 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 4972 whereInfoFree(db, pWInfo); 4973 return; 4974 } 4975